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Abstract

The single-impurity Anderson model (SIAM), comprised of a single impurity with a local
Hubbard interaction immersed in a bath of non-interacting electrons, is a fundamental
model of electronic correlation. It has been used to study the Kondo effect and transport
through quantum junctions. The SIAM in its multi-orbital generalisation also lies at the
computational core of dynamical mean field theory (DMFT) and its combination with
density functional theory (DFT). DMFT improves on the rough treatment of correlations
in DFT by including all local correlations in a non-perturbative manner, corresponding
to the assumption of a local self-energy Σ(k, iν) ≈ Σ(iν), and was successfully used to
study systems with partially filled 3d and 4f shells (Georges et al. 1996).

While for the study of the SIAM and also in DMFT one typically focuses on the
one-particle impurity propagators, recently the local two-particle irreducible vertex Γ has
come into focus. From a physical point of view, Γ enters as vertex corrections into the
charge and magnetic susceptibilities. Moreover, it was recently discovered that a set of
divergencies of Γ surround the Mott transition, marking a bifurcation of the self-energy
that proves problematic for methods relying on an expansion in Γ (Schäfer et al. 2013).
Finally, the impurity vertex is the central ingredient for post-DMFT methods like the
dynamical vertex approximation (DΓA). DΓA augments DMFT with a diagrammatic
treatment of non-local correlations on all length scales, which in turn are dominant for
low-dimensional systems or systems close to a second-order phase transition (Toschi et al.
2007).

A state-of-the-art method for solving the SIAM at finite temperatures is continuous
time quantum Monte Carlo in the hybridisation expansion (CT-HYB). CT-HYB expands
the partition function Z with respect to the hybridisation with the bath and stochasti-
cally sums up the resulting series of strong-coupling Feynman diagrams. CT-HYB can
treat continuous baths, multiple orbitals, different types of local interaction and is free of
systematic bias and thus numerically exact (Gull et al. 2011).

The many-body propagators are usually obtained as a “by-product” of partition func-
tion sampling, as this allows for an easy implementation. The multi-orbital vertex how-
ever is a large object, which is challenge for CT-HYB from a computational and memory
point of view. I will show how by using decompositions and non-equidistant fast Fourier
transforms, one can overcome the problem. I will also analyse the symmetries, conserved
quantities and asymptotics of the vertex.
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Furthermore, I will show that the estimator for Γ has severe ergodicity problems
for strong insulators and fails to yield spin-flip and pair-hopping terms of the vertex in
high-symmetry cases. Worm sampling avoids above complications by directly sampling
the many-body propagators. I will show that its use in CT-HYB significantly improves
the quality and statistical uncertainties of the propagators. I will also demonstrate how
by using worm sampling for the impurity vertex, one can calculate frequency boxes of
arbitrary sizes.

I will then focus on the application of DMFT to models and real systems. I will study
the oxide heterostructure formed by a thin layer of SrVO3 grown on a SrTiO3 substrate.
I will show that local correlation is responsible for pushing the system close to a metal-
insulator transition by enhancing the crystal field splitting. Thus, a small perturbation
of a system by an electric field or a compressive strain may be used to form a “Mott
transistor”. I will show that this effect is stable with respect to choosing a d-only or dp
basis. CT-HYB also allows us to study the divergency lines of Γ at lower temperatures
than other methods. I will show that at low temperatures, the divergencies start to bend
away from the Mott transition and towards the non-interacting limit.



Kurzfassung

Das Anderson-Störstellenmodell (SIAM) ist eines der fundamentalen Modelle elektro-
nischer Korrelation im Festkörper. Es besteht aus einer einzelnen Störstelle, auf der
die Elektronen wechselwirken, und das an ein nichtwechselwirkendes Bad gekoppelt ist.
Das SIAM, verallgemeinert auf mehrere Orbitale, ist außerdem zentraler Bestandteil der
dynamischen Molekularfeldtheorie (DMFT) sowie dessen Kombination mit Dichtefunk-
tionaltheorie (DFT). Während DFT Korrelationen nur stark näherungsweise betrachtet,
beinhaltet DMFT lokalen Korrelationen beliebiger Ordnung. Dies entspricht der Nä-
herung einer lokalen Selbstenergie: Σ(k, iν) ≈ Σ(iν). DMFT findet seine erfolgreiche
Anwendung in Systemen mit teilgefüllten 3d oder 4f -Elektronenschalen (Georges et al.
1996).

Obwohl die Betrachtung der Greenschen Funktion G(iν) für das SIAM und DMFT
in der Regel ausreicht, so rückte in letzter Zeit der zwei-teilchen-irreduzible (2PI) Vertex
Γ(iν) in den Fokus: Γ geht als lokale Vertexkorrektur in die Spin- und Ladungssuszep-
tibilitäten ein. Außerdem zeigt Γ einen Satz von Divergenzen. Diese Divergenzlinien
markieren eine Bifurkation der Selbstenergie in eine physikalische und eine unphysika-
lische Lösung und sind daher problematisch für Lösungsmethoden, die Γ als Baustein
verwenden (Schäfer et al. 2013). Weiters ist der Vertex die zentrale Eingangsgröße für
sogenannte post-DMFT-Methoden wie etwa die sogenannte dynamische Vertexapproxi-
mation (DΓA). DΓA erweitert DMFT um die Behandlung von nicht-lokalen Korrela-
tionen auf allen Längenskalen. Solche Korrelationen sind wichtig für niedrigdimensionale
Systeme bzw. Systeme nahe eines Phasenübergangs zweiter Ordnung (Toschi et al. 2007).

Eine der weitverbreitesten Methoden zur Lösung des SIAM für endliche Temperatu-
ren ist die stochastische Summation von Feynman-Diagrammen aus der Stark-Kopplungs-
Entwicklung der Zustandssumme Z. Diese Methode ist als quantenmechanisches Monte-
Carlo-Integration der Hybridisierungs-Entwicklung in kontinuierlicher Zeit (CT-HYB) be-
kannt . Mittels CT-HYB ist das Anderson-Modell in einem großen Parameterbereich
(mehrere Orbitale, kontinuierliche Dispersionsrelationen des Bads sowie allgemeine lokale
Wechselwirkungen) lösbar (Gull et al. 2011).

Die Greensche Funktion G sowie der Vertex Γ werden in der Regel als “Nebenprodukt”
δZ/δ∆ der Monte-Carlo-Prozedur behandelt, da dies die Implementierung deutlich ver-
einfacht. Diese Arbeit zeigt jedoch auf, dass diese Strategie zwar für G, nicht jedoch für Γ
funktioniert. Die Lösung besteht darin, nicht nur Diagramme der Zustandsumme, sondern

v



vi KURZFASSUNG

auch jene von Γ zu summieren, was als “worm sampling” bekannt ist. Die vorliegende
Arbeit analysiert die Verbesserung der statistischen Fehler durch diese Prozedur.

Da Γ die Bewegung von zwei Teilchen gleichzeitig beschreibt, ist seine Berechnung
und Speicherung eine große Herausforderung. Die vorliegende Arbeit analysiert zunächst
die Struktur sowie das asymptotische Verhalten von Γ. Die Geschwindigkeit der Be-
rechnung lässt sich außerdem über die Verwendung einer nicht-äquidistanten schnellen
Fouriertransformation (NFFT) verbessern.

Den Abschluss der Arbeit bildet die Untersuchung von Modellsystemen und Materia-
lien im Rahmen der DMFT. Zunächst wird eine Heterostruktur untersucht, die sich aus
dem Aufdampfen einer dünnen Schicht von SrVO3 auf ein SrTiO3-Substrat ergibt. Die
vorliegende Arbeit zeigt lokale elektronische Korrelationen auf, welche die Heterostruktur
in die Nähe eines Mott-Hubbard-Metall-Isolator-Übergangs treiben. Eine kleine Störung
des Systems durch Stauchung oder das Anlegen eines elektrisches Feld lässt das System
isolierend werden. Dieser Mechanismus lässt daher die theoretische Konstruktion eines
“Mott-Transistors” zu. Weiters ist mittels CT-HYB die Berechnung des Vertex Γ für
niedrige Temperaturen möglich, was die Untersuchung des Zusammenspiels der Diver-
genzlinien von Γ und dem Mott-Übergang im Hubbard-Modell erlaubt. Die vorliegende
Arbeit zeigt, dass die Divergenzlinien sich für niedrige Temparaturen nicht Richtung Mott-
Übergang, sondern Richtung nichtwechselwirkendem Limit orientieren.
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Chapter 1

Introduction

[Dann] werden zwei Philosophen, die in Streit geraten sind,
nicht anders argumentieren als zwei Rechenmeister. Es
genügt, dass sie ... zueinander sagen: “Calculemus!” [“Lass
uns rechnen!”]

G. W. Leibniz in an untitled 1684 treatise

Understanding the physics of solids has been a tremendous endeavour, with riddles that
stayed unsolved for centuries. Previously treated as “inaccuracies”, the first half of the
twentieth century showed many of these conundrums instead connect to the quantum
nature of the electron: among others, the question why there are so few free charge
carriers in metals turned out to be a direct consequence of the Pauli exclusion principle;
and magnetism can only be understood by the presence of an intrinsic, quantised magnetic
moment of the electron, its spin. A third property of the electron ensemble, however, was
largely neglected until the second half of the last century (for a review, see e.g. Pines
2016): the Coulomb force between any two electrons means that the movement of the
whole ensemble is in principle interdependent. In other words, the electrons cannot be
treated as independent particles, they are instead correlated. Correlation implies that a
straight-forward approach to the problem is completely infeasible: how can we hope to
predict the movement of some trillion trillion electrons in a solid when we cannot find an
analytic solution for the three-body problem?

Two main strategies have been followed to tackle the correlation problem: the reduc-
tionist and the emergent approach (Coleman 2015). Reductionism first breaks a system
down into its basic components and the interactions between them. In a solid, we have
ions (i) and electrons (e) with their kinetic energies, Ti and Te, respectively, as compo-
nents; they interact with the Coulomb force Vii between any two ions, Vee between any
two electrons, and Vie between any ion and any electron. Relativistic effects give rise to
the fine structure, HFS. The corresponding Hamiltonian H thus reads (see Eq. (4.1) for
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2 CHAPTER 1. INTRODUCTION

an explicit definition of all the terms):

H = Te + Ti + Vee + Vie + Vii +HFS. (1.1)

This is the “theory of everything” for solid state physics. However, in terms of predictive
power we have gained very little — we have learned that the answer is forty-two but now
we have to search for the question (Adams 1995, Coleman 2015). Therefore, as a second
step, we simplify the system to a point where we can treat it: either by discarding or by
simplifying players or the interaction between them. One typically starts with the ions
and employs the Born-Oppenheimer approximation (cf. Altland and Simons 2010). This
allows us to write down a Hamiltonian for the electrons moving in an effective potential
Vion of the ions instead of treating the movement of the ions (Ti and Vii in Eq. (1.1))
explicitly:

Hel = Te + Vee + Vion (1.2)

(we will discuss the full form of Eq. (1.2), given by Eq. (4.1), in Chapter 4). The prob-
lematic part, the electron-electron interaction that in turn gives rise to correlations, still
remains however. Initially, one employed the Hartree-Fock method, which discards corre-
lation between electrons of opposite spins altogether. Hohenberg, Kohn and Sham in the
1960s improved on this by approximating the dynamics of the electrons as a homogeneous
electron gas moving in an effective ionic potential. The resulting method, density func-
tional theory (DFT), is still the method of choice for calculating properties of materials
from first principles if correlations are not too strong.

The second approach in a sense tries to pose the opposite question: given a physical
phenomenon, what is the simplest model from which it emerges? With respect to cor-
relation, one of the fundamental models is the single impurity Anderson model (SIAM)
(Anderson 1961). It consists of a bath of non-interacting electrons (Hbath) plus a single cor-
related impurity atom (Hloc,0) on which the electrons do interact (Hint) (cf. Figure 1.1a).
The impurity is “immersed” in the bath such that two systems are coupled through a
hybridisation (Hhyb). The Hamiltonian thus reads:

HSIAM = (Hloc,0 +Hint) +Hhyb +Hbath. (1.3)

Kondo (1964) used an equivalent model1 to explain a (seemingly paradoxical) resistance
minimum in gold for low temperatures, now known as the Kondo effect. Aside from
magnetic impurities in metals, the model successfully describes the physics of quantum
dots (Glazman and Raikh 1988, Ng and Lee 1988) and adatoms on surfaces (Madhavan
et al. 1998, Li et al. 1998).

Despite its staggering simplicity, the SIAM is believed not to be exactly and analyt-
ically solvable away from certain limits. Because of its significance, however, the SIAM

1Let me note here that the Kondo model and the Anderson model are formally equivalent only in the
limit of weak hybridisation as shown by Schrieffer and Wolff (1966). However, this is exactly the local
moments regime and thus both models exhibit the Kondo effect.
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(a) Single impurity Anderson model (SIAM) (b) Hubbard model, here on a square lattice

Figure 1.1: Models for correlated electrons

was tackled by a smorgasbord of numerical methods that apply approximations at various
points (for an overview, see Georges and Kotliar 1992): (i) by treating the interaction or
the hybridisation as small and perform perturbation theory (this is the Kondo’s original
approach); (ii) by replacing the continuous bath by a few sites and performing an exact
diagonalisation of the finite system; (iii) by discretising the bath energies into logarith-
mic intervals and iteratively diagonalise it using the numerical renormalisation group (cf.
Wilson 1975, Bulla et al. 2008); (iv) by perturbation theory to infinite order, but only for
a subset of terms that can be summed up exactly, such as non-crossing approximation or
iterated perturbation theory; amongst others.

For finite temperatures, Hirsch and Fye (1986) put forward (v) a stochastic rather than
deterministic integration of the path integral. The resulting method was the impurity
solver of choice for almost two decades, but unfortunately still relied on a discretisation
of the imaginary time axis. In the early 2000s, this issue was overcome using continuous
time quantum Monte Carlo (CT-QMC) (Beard and Wiese 1996, Prokof’ev et al. 1998b,
Rubtsov and Lichtenstein 2004, Rubtsov et al. 2005). In essence, CT-QMC sums up all
Feynman diagrams to all orders and is thus numerically exact. It can treat continuous
baths, systems with many degrees of freedom and general interactions and is now state-of-
the-art. In Chapter 2, I will discuss the CT-QMC in the strong-coupling or hybridisation
expansion (CT-HYB), and the implementation of its sampling procedure. I will devote
part of the chapter to the three main challenges of the method: the sign problem, which
is inherent to the stochastic sampling of fermionic systems, the exponential scaling with
the problem size and ways to mitigate it, and the signal-to-noise ratio.

As all the impurity solvers, the central estimate of CT-QMC is the one-particle Green’s
function G(1). It describes the probability amplitude of an electron being present at the
impurity if it was introduced into a system at some earlier time or taken out of the system
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at some later time. It thus connects to the interacting density of states and is accessible to
photo emission spectroscopy (PES). Recently however, the two-particle Green’s function
G(2) came into focus. It describes the perturbation of the impurity by two particles and
their subsequent propagation. From a physical perspective, G(2) connects to (generalised)
spin and charge susceptibilities, since the propagation of a charge is equivalent to the joint
propagation of a particle-hole pair. However, a back-of-an-envelope calculation shows that
G(2) is a large object, because in general it depends on three times and four orbital and
spin indices, and the fermionic nature gives rise to discontinuities, because exchanging two
times means a sign change in the function. In Chapter 3, I will first assess the general
structure of G(1) and G(2) and then discuss different strategies for estimating them from
CT-QMC.

Albeit highly applicable, the SIAM falls short in predicting correlations on a lattice, as
only one site is interacting. Most prominently, it is unable to reproduce the Mott-Hubbard
metal-to-insulator transition (Mott 1968) occurring in, e.g., transition metal oxides such
as V2O3 (for a review, see Hansmann et al. 2013). Unlike normal band insulators, which
are insulating because there are no low-energy, “metallic” charge carriers available, this
first-order transition is instead driven by correlation. Perhaps the simplest interacting
lattice model is the Hubbard model (Figure 1.1b). It consists of a tight-binding lattice,
such that the electrons can hop from lattice site to the next neighbours (Hhop). If two
electrons of opposite spin end up on the same lattice site, they feel the Coulomb force
(Hint). The Hamiltonian thus reads:

HHM = (Hloc,0 +Hint) +Hhop (1.4)

As with the SIAM the Hubbard model is widely considered to be analytically unsolvable
except for one dimension. Crucial insights into the physics of the Hubbard model and
the Mott transition came with the advent of dynamical mean field theory (DMFT) (for a
review, see Georges et al. 1996), which will be the subject of Chapter 4. DMFT maps the
Hubbard model onto the Anderson impurity model (connecting Figure 1.1b with 1.1a),
basically by answering the question: given a lattice model, what is the Anderson impurity
model that gives the same local physics? This mapping is exact in infinite dimensions; in
finite dimensions, it corresponds to the exact treatment of all local correlations. Except
for low-dimensional or disordered systems and away from a second-order phase transition,
this is a good approximation.

While DMFT provides deep insights into the physical processes behind correlation
effects, it relies on model parameters that are in principle unknown for real materials. On
the other hand, while the density functional approach gives quantitative predictions from
first principles it fails to account for strong correlation. The DFT+DMFT approach (cf.
Held 2007) solved this by combining the two methods and thereby proving reductionism
versus emergence a false dichotomy. DFT+DMFT can be seen as an “embedding” scheme:
the low-energy and local part of the DFT solution, where we expect correlation is first
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mapped onto a Hubbard model and then replaced by the DMFT solution. I will detail
and embedding and the mapping procedure in Chapter 4.

DFT+DMFT allows us to estimate properties of strongly correlated materials from
first principles. By understanding such materials, we not only strive to solve remaining
riddles in solids: while only a small group experiences correlation, these materials of-
ten exhibit properties that are difficult or even impossible to obtain with other means.
These effects range from high-temperature superconductivity, giant magneto-resistance,
improved yield for solar cells to heavy fermion systems.

In the course of my thesis, I co-developed the w2dynamics code, which bundles together
a CT-HYB impurity solver with a DMFT solver for general multi-site systems. All of the
results were obtained with that software package and the explanation in the respective
chapters try to follow the implementation in the code as closely as possible.

Therefore, my whole thesis is perhaps best described as the pursuit of Leibniz’s goal:
the possibility to settle philosophical disputes — in this case over the physics of strongly
correlated systems — by a well-defined, automated procedure. It is in this spirit that I
propose to the reader: Calculemus! Let us calculate!
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Chapter 2

Strong coupling quantum Monte Carlo

Monte Carlo is an extremely bad method; it should be used
only when all alternative methods are worse.

Alan D. Sokal (1996), in a 76-pages monograph covering a
nine-hours lecture on Monte Carlo methods.

We have seen in Chapter 1 that the single impurity Anderson model (SIAM) is of great
interest, as it is one of the fundamental models of electronic correlation and lies at the
computational core of dynamical mean field theory and diagrammatic extensions thereof
(see Chapter 4). For Norb correlated orbitals, the Hamiltonian (1.3) reads:

HSIAM =
∑
ij

∑
σσ′

εiσ,jσ′c
†
iσcjσ′︸ ︷︷ ︸

Hloc,0

+ 1
2
∑
ijkl

∑
σσ′ττ ′

Uiσ,jσ′,kτ,lτ ′c
†
iσc
†
jσ′clτ ′ckτ︸ ︷︷ ︸

Hint

+

+
∑
i

∑
p

∑
σσ′

(
Vpσ,iσ′f

†
pσciσ′ + V ∗pσ,iσ′c

†
pσfiσ′

)
︸ ︷︷ ︸

Hhyb

+
∑
p

∑
σ

ε̃pσf
†
pσfpσ︸ ︷︷ ︸

Hbath

, (2.1)

In Eq. (2.1), we have employed second quantisation (cf. Abrikosov et al. 1975): c†iσ and
ciσ create and annihilate, respectively, an electron of spin σ = ±1 in the impurity orbital
i = 1, . . . , Norb. Similarly, f †pσ and fpσ create and annihilate, respectively, an electron of
spin σ and a bath quantum number p, which in general will be continuous. The system
thus consists of the impurity (terms with c, c† as in correlated) and the bath (terms with
f , f † as in free), coupling through a hybridisation (terms mixing c, f † and vice-versa).

The SIAM has a number of parameters: the non-interacting problem of the impurity
Hloc,0 is described by impurity levels εiσ,jσ′ (these will often be diagonal in spin and
orbital). For convenience, we have absorbed the chemical potential µ into these levels:
εiσ,jσ′ → εiσ,jσ′ −µδijδσσ′ . The bath consists of non-interacting particles: the Hamiltonian

7
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Hbath is thus diagonal in momentum p and spin σ and fully determined by the bath
levels ε̃pσ. The hybridisation Hhyb is determined by hopping amplitudes Vpσ,iσ′ from the
impurity to the bath. If each bath level (pσ) couples to at most one impurity level (iσ),
∀pσ∃!iσ′ : Vpσ,iσ′ 6= 0, then “excursions” of an impurity electron to the bath cannot change
its spin or orbital. We define this as a diagonal hybridisation.

Perhaps the most interesting part is the local interaction Hint on the impurity, deter-
mined by the four-index interaction matrix U . It encodes the interaction strength of two
electrons on the impurity. A series of simplifications and approximations have been made
for the interaction:

1. Coulomb interaction: If we neglect spin-orbit coupling, the Coulomb interaction c
onserves spin – it is SU(2) invariant. As a result, the interaction only depends on
the orbitals: Uijkl. The full U can be recovered from Uijkl as:

Uiσ,jσ′,kτ,lτ ′ = Uijklδστδσ′τ ′ (2.2)

2. Slater-Kanamori interaction: For up to three degenerate orbitals, the Coulomb
interaction (2.2) can be written exactly in terms of a intra-orbital Hubbard U , an
inter-orbital Hubbard U ′ and a Hund’s coupling J :

Uijkl = (Uδij + U ′(1− δij))δikδjl + J(1− δij)(δilδjk + δijδkl) (2.3)

Eq. (2.3) is frequently used as an approximation for more orbitals as well. If one
sets U ′ = U − 2J , the Hamiltonian is also SO(N) invariant.

3. Density-density interaction: Typically, the terms of U with the largest magnitude
conserve densities. These are determined by a two-index object, Uiσ,jσ′ :

Uiσ,jσ′,kτ,lτ ′ = Uiσ,jσ′δikδστδjlδσ′τ ′ (2.4)

Plugging Eq. (2.4) into Eq. (2.1), we see that indeed the four creation and annihi-
lation operators pair to two density operators. Interactions of the density-density
type are frequently employed because of their simplicity, but they ignore spin flip
and pair hopping processes important in, e.g., Hund’s metals.

Solving the SIAM The Hamiltonian Eq. (2.1) may look innocuous, since it carries no
spatial dependence and the bath can be integrated out (Section 2.1), resulting in a field
theory of dimensionality zero (space) plus one (time). Despite its simplicity, this model
is still believed to be analytically intractable in general due the presence of both a kinetic
and an interaction term.

A state-of-the-art numerical method for solving the Anderson model at finite temper-
atures T = 1/β is continuous-time quantum Monte Carlo (CT-QMC) in the hybridisation
expansion, also known as CT-HYB, which will be the main focus of this chapter. The
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basic idea is to expand the partition function

ZSIAM = tr exp(−βHSIAM), (2.5)

in terms of the hybridisation Hhyb with the bath (cf. Section 2.2) and sum up the re-
sulting series of strong-coupling Feynman diagrams using Monte Carlo integration, more
specifically using the Metropolis-Hastings method (cf. Section 2.3). CT-QMC is free of
systematic bias and thus in principle numerically exact, which sets it apart from many
prior methods1 that rely on a systematic truncation of either the Hamiltonian (exact
diagonalisation, numerical renormalisation group), the path integral (Hirsch-Fye Monte
Carlo), or the diagrammatic series (perturbation theory, non-crossing approximation),
and has thus become the method of choice for many applications.

The main computational challenge in CT-HYB is the efficient construction, evaluation
and update of the Feynman diagrams sampled by the Monte Carlo procedure. Each
diagram decomposes into local and bath part. For the local part of the diagram, one uses
the segment picture for simple, density-density type interactions (cf. Section 2.4) and the
more involved switchboard picture for general interactions (cf. Section 2.5). The bath part
on the other hand is represented by a determinant (cf. Section 2.6). The explanation in
these sections closely follows the implementation in the w2dynamics code, (co-)authored
by me.

There are a set of conceptual challenges in CT-QMC, which are discussed in the re-
mainder of the chapter. The most prohibitive of these is the sign problem (cf. Section 2.7),
which is a fundamental break-down of the Metropolis-Hastings method due to the anti-
commutation relation for fermions. Another problem is autocorrelation (cf. Section 2.8),
which is related to the fact that the Metropolis-Hastings method works along a Markov
chain. Finally, we will discuss the exponential scaling of the algorithm and the dangers
of using truncation schemes to reduce it (cf. Section 2.9).

2.1 Hybridisation function
We are interested in the dynamics on the impurity, which means that the specific layout
of the hybridisation Hhyb and bath term Hbath are only insofar important as how they
influence the impurity. This allows us to integrate out the bath degrees of freedom, but
in doing so, we are required to switch to an action formulation of the partition function
and thus to the path integral formalism (Coleman 2015, Altland and Simons 2010, Negele
and Orland 2008):

Z =
ˆ

D[c, c, f, f̄ ] exp (−S) =
ˆ

D[c, c, f, f̄ ] exp
[
−
ˆ β

0
dτL(τ)

]
(2.6)

1DMRG is a notable exception.
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Figure 2.1: Procedure of integrating out the individual bath sites with energies ε̃k and hybridi-
sation stength Vk for an impurity with a single orbital to arrive at the hybridisation function
∆(iν) (inspired by Georges et al. 1996).

The fermionic operators ciσ, c†iσ on the impurity and fpσ, f †pσ on the bath have been
replaced by a set of Graßmann fields ciσ(τ), ciσ(τ) and fpσ(τ), fpσ(τ), respectively.2 The
trace over the many-body states must be replaced by a sum over functional integrals

´
Dφ,

which in turn run over all anti-cyclic paths φ(0) = −φ(β) (a more formal definition of Dφ
is given in Eqs. 2.16). The action is denoted by S and, by use of a Legendre transform,
we obtain the Lagrangian L of the system:

L(τ) =
∑
iσ

c̄iσ(τ)∂τciσ(τ) +
∑
pσ

f̄pσ(τ)∂τfpσ(τ) +H[ciσ, ciσ](τ), (2.7)

where all fermionic operators have been replaced by Graßmann fields in the Hamilto-
nian (2.1) (the plus sign in front of the Hamiltonian is a result of the imaginary time
representation).

For brevity, we will adopt the following notation: we collect orbital i, spin σ and
imaginary time τ into a multi-index α = (i, σ, τ). The constituents of α can be retrieved by
iα, σα and τα for orbital, spin and τ index, respectively. The anti-commutation algebra can
now be written compactly as {cα, cβ} = 0 and {cα, cβ} = δαβ, where δαβ := δiαjαδσασβδ(τα−
τβ). Motivated by Eq. (2.7), we also define ∂α := ∂/∂τα. Furthermore, we assume the
Einstein summation convention for all inner indices, extending it to the τ “index” as an
integral, e.g.:

fαcα =
ˆ β

0
dτα

∑
iα,σα

f̄iασα(τ)ciασα(τ) (2.8)

2For readers who are not familiar with the path integral formalism let me stress that one can still
think of the—rather intimidating sounding—Graßmann fields in terms of the more familiar fermionic
operators in the interaction representation, since they fulfill exactly the same algebra: {ciρ(τ), c̄jσ(τ ′)} =
{ciρ(τ), c†jσ(τ ′)} = δijδρσδ(τ − τ ′) etc. Indeed, this motivates the S-matrix approach, which is an equiv-
alent formulation, and we will frequently switch between the two representations.
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In order to make rewriting the AIM Hamiltonian (2.1) easier in our notation, we
introduce the short-hands for the impurity parameters:

Uαβγδ := Uiαiβiγ iδδσασγδσβσδδ(τα − τβ)δ(τα − τγ)δ(τα − τδ) (2.9a)
εαβ := εiασα,iβσβδ(τα − τβ) (2.9b)
Vαβ := Vpασα,iβσβδ(τα − τβ) (2.9c)
ε̃αβ := ε̃pασαδ(τα − τβ)δpαpβδσασβ (2.9d)

Plugging equations (2.1) and (2.9) into Eq. (2.7), we arrive at the following compact
expression for the full impurity action:

S = cα(δαβ∂α − εαβ)cβ︸ ︷︷ ︸
Sloc,0

− 1
2Uαβγδcαcβcδcγ︸ ︷︷ ︸

Sint

−Vαβfαcβ − V ∗αβcαfβ︸ ︷︷ ︸
S′hyb

+ fα(δαβ∂α − ε̃αβ)fβ︸ ︷︷ ︸
Sbath

(2.10)
Since the bath problem is non-interacting, the corresponding path integral is of the Gaus-
sian form, for which an analytic solution is well-known (Negele and Orland 2008, Coleman
2015):

ˆ
D[f, f̄ ] exp(−fαA−1

αβfβ + dαfβ + fαdβ) = det(A−1) exp(dαAαβdβ) (2.11)

where fermionic determinant det(A−1) equals
´

D[f, f̄ ] exp(−fαA−1
αβfβ). Indeed by iden-

tifying A−1 with the bath propagator (G−1
bath)αβ = δαβ∂β − ε̃αβ and by choosing the source

terms as dα = −Vαβcβ, we can now integrate out the bath fermions and arrive at the path
integral for the effective impurity action:

Z = Zbath

ˆ
D[c, c] exp (−Seff) (2.12a)

Seff = cα(δαβ∂β − εαβ)cβ︸ ︷︷ ︸
Sloc,0

− cα∆αβcβ︸ ︷︷ ︸
Shyb

− 1
2Uαβγδcαcβcδcγ︸ ︷︷ ︸

Sint

(2.12b)

The bath partition function Zbath = det(G−1
bath) can in the following be ignored since drops

out of every local observable.

By applying Eq. (2.11), the information about the single bath states has now been
lost in the effective action (2.12). Instead, the total retardation effect of the bath on the
impurity is now subsumed into the hybridisation function

∆αδ := (V †)αβ(Gbath)βγVγδ =
V ∗βαVγδ

δβγ∂γ − ε̃βγ
, (2.13)

which unifies the hopping from the impurity into the bath, the propagation through the
bath and then the hopping back onto the impurity (see Figure 2.1). Untangling the multi-
indices and performing a Fourier transform to fermionic Matsubara frequencies iν, which



12 CHAPTER 2. STRONG COUPLING QUANTUM MONTE CARLO

0 2 4 6 8 10
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

=∆(iν)

∆1/iν

(a) Matsubara axis
0 5 10 15 20 25 30 35 40

10−4

10−3

10−2

10−1

100

∆(τ)

(b) imaginary time axis

Figure 2.2: Simple hybridisation function from four bath levels ε̃ = (−1.5, −0.2, 0.2, 1.5) and
hybridisation strengths V = (1, 0.1, 0.1, 1).

amounts to a substitution ∂ → iν, we arrive at the explicit forms:

∆iσ,jσ′(iν) =
∑
k,σ′′

V ∗kσ′′,iσVkσ′′,jσ

iν − ε̃kσ′′
(2.14a)

or, in imaginary time:

∆iσ,jσ′(τ) =
∑
k,σ′′

V ∗kσ′′,iσVkσ′′,jσ

1 + exp(βε̃kσ′′)
×

exp(τ ε̃kσ′′) β > τ > 0
− exp((τ + β)ε̃kσ′′) 0 > τ > −β

(2.14b)

An example of a Hybridisation function in imaginary time and frequency is shown
in Figure 2.2. The Hybridisation functions has the frequency/time structure of the bath
propagator and thus has their properties, discussed in Chapter 3. However, as evident
from Eq. (2.13), these properties are “scaled” by the hybridisation amplitudes. This in
particular means that the high-frequency asymptotics is not 1/iν, but ∆1/iν with:

∆1 = ∆iσ,jσ′(0+) + ∆iσ,jσ′(β−) =
∑
k,σ′′

V ∗kσ′′,iσVkσ′′,jσ (2.15)

2.2 Expansions of the path integral
Integrating out the bath still leaves us with the path integral (Eqs. 2.12) believed to be
analytically intractable in general (Hewson 1997). This is due to the presence of both the
kinetic term T in the action S, which is quadratic in the fields, and a potential term V ,
which is quartic.

One way to continue is to employ a systematic approximation on the action (2.12b),
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Figure 2.3: (a) artistic impression of an arbitrary path in S projected onto the Graßmann field
ci(τ) (inspired by Coleman 2015). The anti-periodicity c(β) ≡ −c(0) can be thought of as the
path living on a Möbius strip. (b) The same path with finite time discretisation (vertical lines)
and Suzuki-Trotter decoupling of the kinetic part (blue) and interaction part (red) of the action,
which interact only at the grid points.

most commonly by fitting the continuous bath to a set of auxiliary bath states and exact
diagonalisation of the resulting many-body Hamiltonian (Georges et al. 1996). The other,
discussed in the following, is to transform the path integral (2.12a) into a Riemann inte-
gral, either by discretising the imaginary time axis or by expansion into a diagrammatic
series. The resulting integral is then solved stochastically.

2.2.1 Time slicing and Hirsch-Fye quantum Monte Carlo
Historically, imaginary time discretisation was the first route taken to solve the full path
integral numerically. Gull et al. (2011) asserts that the resulting method by Hirsch and
Fye (1986) “was the [impurity solver] of choice for almost two decades”.

We will only introduce the principal idea of the method here in order to contrast it
with our approach, for a detailed derivation we refer the reader elsewhere (Hirsch and Fye
1986). One starts from the formal definition of the path integral (Coleman 2015):

ˆ
D[c, c] exp (−S) = lim

N→∞

ˆ N−1∏
n=0

dc(τn) dc̄(τn) exp(−SN) (2.16a)

SN = ∆τ
N−1∑
m=0

[
c̄iσ(τm)ciσ(τm+1)− ciσ(τm)

∆τ −H(τm)
]
, (2.16b)

which is also known as time slicing definition because we divide the imaginary time axis
into N time slices τn of equal spacing ∆τ = β/N and approximate the paths or Graßmann
fields cn(τ) by piecewise linear paths between the slices (cf. Figure 2.3b). While for the
exact path integral, one would then take the limit N → ∞, here one retains a finite ∆τ
(we will discuss the extrapolation ∆τ → 0 later).

One then performs a Suzuki-Trotter decomposition (Suzuki 1976, Zassenhaus not
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dated)

e−∆τ
∑

τ
(Tτ−Vτ )+O(∆τ2) =

∏
τ

e−∆τTτ e∆τVτ e− 1
2 ∆τ2[Tτ ,Vτ ] . . . =

∏
τ

e−∆τTτ e∆τVτ +O(∆τ) (2.17)

to untangle the kinetic part T and interaction part V of the interaction. This—more
severe—approximation essentially confines not only the dynamics, but also the interplay
between T and V to the grid points, introducing a systematic error of O(∆τ) into the
method. This becomes clear by evaluating the first correction term in Eq. (2.17):

∆τ 2[T, V ] = −∆τ 2G−1
ij (Ukl[in]ckclcn − U[kj]mnckcncm), (2.18)

so we are essentially neglecting any temporal effect within ∆τ (cf. Figure 2.3b). This can
be seen as a “numerical extension of a high-temperature expansion to lower temperatures”
(Blümer 2011). A discrete Hubbard-Stratonovich transformation is then used to rewrite∏
τ e∆τVτ as a sum over kN (analytically solvable) quadratic integrals, latter sum performed

using Monte Carlo sampling.
Despite its simple implementation and—in some cases—superior performance (Blümer

2007), the Trotter bias is a significant downside to the Hirsch-Fye method. It can build
up to deviations especially when the impurity is embedded self-consistently, and may,
e.g., underestimate transition temperatures (Schlipf et al. 1999). Running the solver for
multiple ∆τ and careful extrapolating ∆τ → 0 is therefore necessary to obtain the correct
results (Krauth 2000). However, the extrapolation procedure still assumes that the error
is in the linear regime, which is unknown a priori.

2.2.2 Diagrammatic expansion and continuous-time methods

We have seen that the main drawback of the Hirsch-Fye method lies in its systematic bias
introduced with ∆τ . Continuous-time quantum Monte Carlo (CT-QMC) methods avoid
the time discretisation altogether by taking another approach to the path integral (2.12):
we still split the action

S = S0 + SI (2.19)

into an analytically solvable part S0 and a “interaction” part SI , however, instead of
approximately decoupling the different parts of the action for some arbitrary ∆τ , we
expand Eq. (2.12a) in terms of SI :3

Z =
ˆ

D[c, c] exp (−S0 − SI) =
∞∑
k=0

(−1)k
k!

ˆ
D[c, c] exp (−S0)SkI (2.20)

3Please note that while the expansion of the exponential for a single Graßmann pair truncates after
the first term (ecc = 1+ cc) because anti-commutativity forces c2 = 0, this is not the case here: the terms
in the action carry a dependence on imaginary time, such that c(τ)c(τ ′) 6= 0 almost everywhere.
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method action S split into local scaling with U bath scaling with ∆
S0 SI density general† diagonal general†

CT-HYB Sloc,0 + Sint Shyb β2N2 β2 exp(N) + β3∆3N β3∆3N3

CT-INT Sloc,0 + Shyb Sint U3 N3U3 × β3N β3N3

CT-AUX Sloc,0 + Shyb
∑
i S

(i)
int U3 — × β3N β3N3

Table 2.1: Comparison of different diagrammatic expansions (2.20), corresponding to different
choices of S0 and SI in Eq. (2.19) (for an explanation of S(i)

int, see text). For each method, the
runtime scaling with the inverse temperature β, the number of orbitals N , and the strength of
the interaction and hybridisation U and ∆, respectively, is given. Every term is to be enclosed
in O(. . .), which was omitted for readability. For CT-HYB, the local and bath scaling is additive
(+), while for CT-INT and CT-AUX it is multiplicative (×). A potential sign problem is signified
by † (Gull et al. 2011, reproduced with own additions and corrections).

We note that up to this point, we have not made any approximations to the problem.
Provided that a solution for any individual expansion order k in Eq. (2.20) can be found,
we have now solved the full model at the expense of a summation over all expansion orders
k. If we were to truncate at a finite k ≤ kmax, we end up with kmax’th-order perturbation
theory for the partition function. The mean expansion order 〈k〉 is finite but typically of
the order of 100 such that straight-forward Riemann integration is infeasible, and Monte
Carlo techniques become necessary, which sample the diagrams stochastically and have
no problem with the infinite sum (cf. Section 2.3).

The stochastic sampling of the diagrammatic expansion in Eq. (2.20) serves as basis
for all CT-QMC methods and was proposed first for bosonic systems by Beard and Wiese
(1996) and Prokof’ev et al. (1996). For the Anderson impurity model, a number of
methods have been put forward (Gull et al. 2011): the interaction expansion CT-INT by
Rubtsov and Lichtenstein (2004, Rubtsov et al. 2005); the hybridisation expansion CT-
HYB by Werner and Millis (2006); and the auxiliary-field expansion CT-AUX by Gull
et al. (2008) are most widely used.

The main difference is the choice of S0 and SI in Eq. (2.19), summarised in Table 2.1:
CT-HYB expands the partition function with respect to the hybridisation Shyb, while CT-
INT and CT-AUX expand it in terms of the local interaction. While CT-INT performs
this expansion directly in Sint, CT-AUX first performs a discrete Hubbard-Stratonovich
transformation Sint = ∑

i S
(i)
int and then performs the expansion in each of the parts S(i)

int at
the cost of another summation. Let us stress here that with the exception of CT-AUX,
which is currently limited to density-density-like interactions, all methods are in principle
able to solve the same class of problems. However, each method excels in a different
parameter regime with respect to what I would call three “s” of fermionic Monte Carlo:
sign, scaling, and signal-to-noise ratio (i.e., autocorrelation).

All three methods have sign problems (discussed in detail in Section 2.7) in comparable
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parameter regimes. Let us emphasize that the density-density interaction is a poor model
to the full Coulomb interaction in strongly correlated materials since it lacks the Hund’s
exchange terms (de’Medici et al. 2011). Hence we must rule out CT-AUX for our material
calculations. As for the scaling (cf. Table 2.1), we conclude that CT-HYB is bound by an
exponential scaling in the size of the local problem while CT-INT only scales polynom-
ically. This limits the use of CT-HYB to single impurities or small clusters. However,
for a single impurity with . 5 orbitals, which is the main model we are considering, Gull
(2008) showed that expansion orders and thus the signal-to-noise ratio of CT-HYB by far
outperforms CT-INT. Moreover, CT-INT typically suffers from a stronger sign problem
than CT-HYB for general interactions. This is the reason why most LDA+DMFT codes
with CT-QMC as their impurity solver use the hybridisation expansion (e.g., Haule et al.
2010, Seth et al. 2015).

2.2.3 Strong coupling expansion
In the previous section, we have seen that expansion in the hybridisation is the method
of choice for the single impurity. To do so, from Eq. (2.12b) and in Eq. (2.19), we choose

S0 = Sloc = Sat + Sint = cα(δαβ∂β − εαβ)cβ − 1
2Uαβγδcαcβcδcγ (2.21a)

SI = Shyb = −cα∆αβcβ (2.21b)

We already see that S0 contains a quadratic and quartic term, so we expect its scaling to
be exponential with the dimension of the one-particle Hilbert space. Plugging Eqs. 2.21
into Eq. (2.20), we get (Werner and Millis 2006):

Z =
∞∑
k=0

1
k!

ˆ
D[c, c] exp (−Sloc)

k∏
i=1

cαi∆αiβicβi (2.22)

(the prefactor (−1)k cancels with the minus sign from SI). If we considered the integrand
of Eq. (2.22) as Monte Carlo weight, we see that a sign problem is possible. One can
see this for the case k = 2: because there are two possibilities to connect the same local
configuration with hybridisation lines. For the sake of simplicity, it is better to consider
an symmetrised version:

Z(2) = 1
2

ˆ
D[c, c] exp (−Sloc) cαcβcα′cβ′∆αβ∆α′β′ (2.23a)

=
ˆ

D[c, c] exp (−Sloc) cαcβcα′cβ′(∆αβ∆α′β′ −∆αβ′∆α′β) (2.23b)

=
ˆ

D[c, c] exp (−Sloc) cαcβcα′cβ′
∣∣∣∣∣∆αβ ∆α′β

∆αβ′ ∆α′β′

∣∣∣∣∣ (2.23c)

Now, exchanging two indices yields a proper minus sign both in the c operators and in the
∆ part. Let us now generalise Eq. (2.23c) for an arbitrary number of ∆’s in Eq. (2.22):
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we see that the prefactor k! cancels with the combinatorial factor from the determinant
and we get:

Z =
∞∑
k=0

(ˆ
D[c, c] exp (−Sloc)

k∏
i=1

cαicβi

)
det(∆αiβj)ij (2.24)

Note that already here, the local and the bath part completely factorise and are connected
only through the implied index summations and τ integrations over αi and βi.

At this point, we will untangle the multi-indices Eq. (2.8) and switch back to the
operator formulation in order to arrive at the traditional CT-HYB formula, suited for
implementation (Gull et al. 2011):

Z =
∞∑
k=0

ˆ β

0
dτ1

ˆ β

0
dτ ′1
ˆ τ1

0
dτ2

ˆ τ ′1

0
dτ ′2 · · ·

ˆ τk−1

0
dτk
ˆ τ ′k−1

0
dτ ′k

N∑
α1=1

N∑
α′i=1
· · ·

N∑
αk=1

N∑
α′
k
=1

× tr
[
T exp(−βHloc) cα1(τ1) c†α′1(τ ′1) cα2(τ2) c†α′2(τ ′2) · · · cαk(τk) c

†
α′
k
(τ ′k)

]
× det

[
∆αiα′j

(τi − τ ′j)
]
ij
, (2.25)

cα(τ) and c†α(τ) are now fermionic creation and annihilation operators in the interaction
representation with respect to Hloc. For operators, we use the index α as “flavour” in-
dex α = (i, σ) and write out the imaginary time explicitly. T denotes time-ordering in
imaginary time (note that the time ordering of the integrals differs from the time-ordering
induces by T ).

In Eq. (2.25), we identify three parts: an integral over a large configuration space C
(first line) and the integrand, which in turn separates into the local trace (second line)
and the bath determinant (third line). This separation is a peculiarity of CT-HYB and
is the reason why the scaling (cf. Table 2.1) is additive in the local and bath part. While
the bath part is rather trivial to compute (see Section 2.6), the local part is more involved
and will be discussed in Section 2.4 and Section 2.5.

2.3 Metropolis-Hastings method

In order to discuss integration, we rewrite the hybridisation expansion as

Z =
ˆ
C
dxw(x), (2.26)

where C is the configuration space spanned by all strong-coupling Feynman diagrams, w is
the weight of each diagram, and x is a shorthand for all inner variables (k, α1, α

′
1, τ1, τ

′
1, . . .)

of the diagram. By comparison with Eq. (2.25), we identify:
ˆ
C
dx =

∞∑
k=0

ˆ β

0
dτ1

ˆ β

0
dτ ′1 · · ·

ˆ τk−1

0
dτk
ˆ τ ′k−1

0
dτ ′k

N∑
α1=1

N∑
α′i=1
· · ·

N∑
αk=1

N∑
α′
k
=1

(2.27a)
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w(x) = tr
[
T exp(−βHloc)

k∏
i=1

cαi(τi) c
†
α′i

(τ ′i)
]

det
[
∆αiα′j

(τi − τ ′j)
]
ij

(2.27b)

While the value of the partition function—the result of Eq. (2.26)—is in itself useful for
the computation of the grand potential Ω = − 1

β
logZ and derived quantities such as the

entropy, ultimately we are interested in forming expectation values

〈A〉 = 1
Z

ˆ
C
dxw(x)A(x) (2.28)

of the impurity density (A = nα), the impurity Green’s function (A = −T cα(τ)c†β(τ ′))
and so forth (cf. Chapter 3).

Let us take a moment to analyse the configuration space C (Eq. (2.27a)): the sum over
k extends to infinity, such that the size of C is unbounded. As we know from high energy
physics, the sum of the perturbation series is not even guaranteed to converge, making
regularisation and renormalisation techniques necessary. Fortunately, in the Anderson
model, the—in this case zero-dimensional—lattice regularises the ultraviolet divergence
in the diagrammatic series (Nagaosa 1999, ch. 3). This in principle does not suffice, as the
perturbation series can still diverge (Suslov 2005). Luckily, since we sum up all diagrams
rather than connected diagrams, we pick up factor 1/n! from the linked-cluster theorem
which makes the series absolutely convergent (Negele and Orland 2008).4

We still need to convince ourselves that the expansion is “managable”: one can show
(Gull et al. 2011) that the mean expansion order 〈k〉 in CT-HYB is related to the impurity
kinetic energy via

〈k〉 = −β〈Ekin〉. (2.29)

Since we sample a decisively finite system, consisting only of a single site or a small cluster,
the kinetic energy and thus 〈k〉 stays finite, making a numerical approach possible at
all. This implies that phase transitions are an effect of self-consistent embedding of the
impurity rather than a divergence of the perturbation series (Mukherjee and Cristoforetti
2014). While 〈k〉 may be finite, it is frequently at the order of 100’s (room temperature
is β ≈ 40 eV−1 and a typical kinetic energy Ekin is of the order of 1 eV per orbital).
Such a high-dimensional integral is near impossible to solve with traditional integration
techniques, which scale exponentially in k. As a result, we need to use Monte Carlo
techniques, which are in principle independent of the dimensionality, and break even
around k = 8 (Sokal 1996).

Monte Carlo In its most basic form, Monte Carlo is the computational equivalent of esti-
mating the relative area of a coffee stain on a wall by throwing darts in random directions,

4Let me note here the convergence of the perturbation series not is not to be confused with a the-
ory being perturbative in nature: the Kondo effect is a non-perturbative phenomenon, i.e., one cannot
truncate the perturbation series at any finite order k. However, the series itself does converge (Hewson
1997).
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counting the number of darts hitting the coffee and dividing it by the total number of
thrown darts. More specifically (and mathematically), we selectN configurations {x′i}i≤N ,
distributed uniformly in C for now, and approximate the ensemble average (2.28) by the
Monte Carlo estimator

〈A〉MC =
∑N
i=1A(x′i)w(x′i)∑N

i=1w(x′i)
(2.30)

In order to study the quality of this approximation, we look at the standard error ∆A.
For N → ∞, we can employ the central limit theorem, provided that our xi are truly
random, and we arrive at:

∆A2 = 〈(A− 〈A〉)2〉MC = 1
N

Var[Aw] (2.31)

We see that ∆A only drops as 1/
√
N , which means that one digit of accuracy requires a

factor of one hundred in computing power. This fundamental property led Sokal (1996) to
his—I believe somewhat tongue-in-cheek—statement that “Monte Carlo is an extremely
bad method”, to be used only “if all alternatives are worse” (emphasis in the original).5
However, because of the high dimensionality, here all known other methods are clearly
not only “worse”, but outright infeasible. On the other hand, Eq. (2.31) shows that
the statistical uncertainty in Monte Carlo is formally independent of the dimensionality
(another fundamental property), which allows us to solve the integral at all.

Importance sampling Since the scaling cannot be affected, we concentrate our efforts
on reducing the variance. The main idea of importance sampling is to choose “better”
random numbers by including information of the integral into their distribution (in coffee
stain sampling terms, one could achieve this by moving the archer into an ideal position
with respect to the stain). In our case, since our space is infinitely large because of the
sum over k, we cannot even generate “uniformly distributed” x.

Examining Eq. (2.28), the obvious choice is the diagrammatic weight w: if we choose
N random sample points {xi}i≤N according to the probability distribution function πx :=
w(x)/Z, the Monte Carlo estimate is simply given by:

〈A〉MC = 1
N

N∑
i=1

A(xi) (2.32)

and the sample variances reduces to ∆A2 = 1
N

Var[A] (we have assumed w > 0, which is
not necessarily true for fermions—see Section 2.7).

Sampling on a Markov chain Two main problems with using w/Z as underlying prob-
ability distribution is that (i) the normalisation Z is not known a-priori and (ii) it is

5Let me note that for specific low-dimensional integrals, hybrid methods between Monte Carlo and
numerical integration on a grid exist that improve on the 1/

√
N scaling (Press et al. 2007). To my

knowledge, none of these methods can be applied to the problem at hand, however.
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expensive to compute w(x) for given x. Therefore, we would like to have a method that
works with ratios of weights.

As a result, we sample distributions using a Markov chain, which is a discrete-step
Markov process. A Markov chain is fully characterised by the stochastic matrix P , with
the matrix element

Pxy = P (x→ y) (2.33)

specifying the probability of a transition from state x to state y.6 Conservation of prob-
ability requires ∑y Pxy = 1 (1 is a right eigenvector of P ).

In order to ensure that the Markov chain P generates states according to the proba-
bility distribution π, it must be ergodic and stationary:

1. Ergodicity means that the Markov chain is “sufficiently connected”, such that every
state y is accessible from every other state x in a finite number of steps. Formally,
∀x, y ∈ C ∃n ∈ N : (P n)xy 6= 0

2. Stationarity means that there exists the equilibrium distribution π, which is “re-
produced” by the process. Formally, π is a left eigenvector of P : ∑x πxPxy = πy.
Stationarity is automatically satisfied by imposing reversibility or detailed balance,
which we will do in the following:

πxPxy = πyPyx. (2.34)

Metropolis-Hastings algorithm A simple way to set up a Markov process that satisfies
these conditions was put forward by Metropolis et al. (1953) and Hastings (1970). One
splits the transition probability Pxy = P prop

xy P acc
xy into a proposal and acceptance: given

x, one proposes a move to y with probability P prop
xy and accepts it with the Metropolis-

Hastings acceptance rate:

P acc
xy = min [1, Rxy] where Rxy := πy

πx

P prop
yx

P prop
xy

. (2.35)

This satisfies the detailed balance condition (2.34).
Figure 2.4 shows a basic flow diagram of the Metropolis-Hastings algorithms as used in

CT-QMC. After initialising the simulation, one performs a series of steps: for each step,
one first chooses an update type, which determines the proposal rate (the specific updates
will be discussed in Section 2.4 and Section 2.5). One then computes πy/πx directly and
combines with the proposal balancing factor from Eq. (2.35) to obtain the acceptance rate
Rxy. Afterwards, one rolls a Monte Carlo dice d ∈ [0, 1) and accepts the move if d < Rxy.
Regardless whether the move is accepted or not, one finally measures the observables and

6Note that in accordance with statistics literature, we define P to be a right stochastic matrix, such
that composition works from left to right: Pxz =

∑
y PxyPyz.
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Figure 2.4: Basic flow diagram of continuous time quantum Monte Carlo as special case of the
Metropolis-Hastings algorithm. Thermalisation and finite sweep sizes (cf. Section 2.8) were
omitted for simplicity (adopted from Gull et al. (2011)).

restarts the loop. Let me note can also measure only every Nsweep-th step to account for
autocorrelation (cf. Section 2.8): the important part then is that one does not “change”
the sweep size within the Monte Carlo run.

2.4 Local problems of the density-density type

The most challenging part of the CT-HYB expansion (2.25) is the computation of the
local problem:

wloc := tr
[
T exp(−βHloc)

k∏
i=1

cαi(τi) c
†
α′i

(τ ′i)
]

(2.36)

because formally it still retains the exponential scaling of the underlying local Fock space.
In the following, we will discuss two strategies for computing Eq. (2.36) that correspond
to two “pictures” of the local diagram: the segment picture, which is valid for density-
density-type interactions, and the switchboard picture, which is valid for any type of
interaction.
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2.4.1 Segment picture

If the interaction U is of the density-density type and the non-interacting local problem
ε is diagonal in flavour, i.e.,

Uαβγδ =: Uαβ(δαγδβδ − δαδδβγ) (2.37a)
εαβ − µαδαβ =: Eαδαβ (2.37b)

(this implies that Uαβ is a symmetric matrix with zero in the diagonals) then the local
Hamiltonian Hloc simplifies to a form involving only the number operators n̂:

Hdd = 1
2Uαβn̂αn̂β + Eβn̂β, (2.38)

where we have again assumed Einstein summation over duplicate indices.
Since the Hamiltonian (2.38) commutes with every number operator [Hdd, n̂α] = 0,

the occupation number basis {ni} already diagonalises Hdd. Moreover, the creation and
annihilation operators do not mix different basis states. As a result, every contribution γ
to the configuration is in exactly one state in the occupation number basis at every given
point in imaginary time τ . Eq. (2.36) simplifies to (cf. Gull et al. 2011):

wloc = sT
∑
γ

s
(γ)
F exp

[
−

2k∑
i=1

∆τi(1
2Uαβn

(γ)
i,α − Eβ)n(γ)

i,β

]
. (2.39)

The outer sum in principle runs over all many-body states γ that contribute to the trace.
sT is the sign from the time-ordering operator and sF is the sign from the Fermionic
algebra, which we have to take into account explicitly here in order to get rid of the c,
c† operators (see Section 2.7 for details). The inner sum runs over all imaginary time
intervals ∆τi between two adjacent fermionic operators of any kind, after time-ordering
(we define ∆τ1 = τ1 − τ2k + β to account for the cyclic property of the trace). For the
outer state γ, n(γ)

i,α is the current occupancy of the α’th state inside the i-th time interval:
n

(γ)
i,α = 〈γ(τi)|n̂α|γ(τi)〉.
Eq. (2.39) already reveals the main computational advantage of the density-density

interaction: the time evolution scales as N2 with the number of flavours compared to the
exponential scaling exp(N) of the straight-forward evolution in Eq. (2.36) (cf. Table 2.1).
In principle, there is still the outer sum over γ, but it will collapse to a single term in
most cases as we will see in the following.

We can illustrate the terms in Eq. (2.39) by invoking the segment picture: each flavour
α is represented by one track spanning the imaginary time interval from 0 to β. One
divides the track into segments (continuous intervals of nα = 1), represented by a solid
line, and anti-segments (nα = 0), represented by a dashed line. Each (anti-)segment is
bound by a creation operator c†α (filled diamond) and an annihilation operator cα (open
diamond). These local operators intersect the tracks at their respective τ value, forming
a N × 2k nonequidistant grid.
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As an example, consider the following first-order diagram of a one-orbital model (we
assume τ > τ ′):

− tr
[
exp(−βHdd) c↓(τ) c†↓(τ ′)

]
= (2.40a)

= (2.40b)

= − exp[−(τ − τ ′)E↓] + exp[−βE↑ − (τ − τ ′)(E↓ + U↑↓)], (2.40c)

where the global minus sign is a result of time-ordering. Eq. (2.40b) visualises the com-
putational rule (2.39) nicely: each segment contributes according to its length and local
energy, and segment overlaps (shaded region) contribute with the overlap length and the
corresponding U value (cf. Eq. (2.40c)).

We see that two segment diagrams contribute for the general diagram (2.40a), which
corresponds to the two possibilities of the spin-up electron. The spin-down electron is
pinned to the unoccupied state at τ = 0 by the presence of a segment, because otherwise
the Pauli principle is violated. This is a general rule in the segment picture, namely that
|γ| = 2M , where M is the number of empty tracks.

2.4.2 CT-SEG sampling
Let us now write down the expansion of the partition function (2.25) for a single flavour
in terms of segment diagrams:

Z = +

+ +

+ (2.41)

Each order k > 0 has one segment and an anti-segment variant per track, leading to 2N
distinct diagrams.7 In order to solve the problem that two diagrams contribute for k = 0,
we can extend the pattern from k > 0 and introduce two distinct zero-order diagrams: the
unoccupied and the occupied empty track (Eq. (2.41), first line). This collapses the sum
over γ in Eq. (2.39) to a single term in all cases, greatly simplifying our computation. The
sum over γ is instead integrated in the stochastic sum over diagrams, which is justified
because these two sums commute (see also Section 2.9).

Local moves In order to sample the diagrammatic series in Eq. (2.41) using Metropolis-
Hastings sampling, Table 2.2 summarises the moves commonly used: the minimal require-

7However, note that these two variants are related by a simple “rotation” of the imaginary time space.



24 CHAPTER 2. STRONG COUPLING QUANTUM MONTE CARLO

Table 2.2: Common local moves of CT-HYB in the segment picture, together with its effect on
an example configuration. R = RpropRacc denotes the rate, Rα is the ratio function as defined
in Eq. (2.42), w is the local weight, k is the expansion order, L ≤ β is the maximum segment
length (see text), N is the number of flavours. In this figure, we have set N = 2, i.e. we have
two tracks for each diagram. Racc for the inverse move is just R−1

acc and was therefore omitted.

ment for ergodicity is the inclusion of segment insertion and removal moves (first line),
since we can create the transition P (d→ d′) between two diagrams d and d′ by removing
all segments from d and then inserting all segments from d′. In the case that we introduce
an occupied and an unoccupied empty track as outlined earlier, we also need insertion and
removal of anti-segments (second line): the occupied empty track can then be creating by
removing the last segment as anti-segment.

The maximum segment length L warrants some discussion. It is an optional im-
provement to avoid proposing moves that trivially violate the Pauli principle. For each
insertion, we follow a two-step proposal: we first roll a Monte Carlo dice for the flavour
α and the beginning of the (anti-)segment 0 < τ < β (whether to insert a segment or
anti-segment is determined by the insertion point). The second dice rolled determines the
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length of the (anti-)segment as a fraction of the remaining space L (i.e., the distance be-
tween τ and beginning of the next (anti-)segment on the current track). When removing
a segment, we have to correct for this: L is given as the distance from the beginning of
the (anti-)segment to be removed to beginning of the next one.

Gull (2008) proposed moves that shift an end point of a segment in imaginary time
(third and fourth line in Table 2.2), asserting that they “help reduce autocorrelation
times”. Since these moves can be thought of as a combined segment insertion and
anti-segment removal move, they significantly reduce autocorrelation time—in terms of
moves—only if the order histogram is very sharply peaked. However, they do reduce
autocorrelation time in terms of CPU time, because the shift move is more efficient than
its constituent insertion and removal moves by roughly a factor of two. We will elaborate
on this argument in Section 2.8.

The weight ratios of all aforementioned moves can be computed from a local update
function

Rα(τ, τ ′) :=

exp [−Eα(τ − τ ′)−∑i∆τiUαβni,β] τ > τ ′

Rα(τ, 0)Rα(β, τ ′) τ < τ ′
(2.42)

where i runs over all segment intervals ∆τi between τ and τ ′, and ni,β is defined by
Eq. (2.39). Note that Eq. (2.42) gives the absolute ratio; updates to the sign will be
discussed in Section 2.7.

Global moves It turns out that we can supply additional, global moves to overcome
configuration space barriers: these moves globally, i.e. for all operators, enforce some
symmetry (SO(n), SU(2), particle-hole, point group, etc.) and are trivially accepted in
the Metropolis scheme if the symmetry is preserved by the Hamiltonian, but become
exponentially suppressed with the strength of the symmetry breaking. While for per-
fectly symmetric systems, one can restore the symmetry in the estimates by hand, and
for strong symmetry breaking, the diagrammatic weight vanishes, for weak symmetry
breaking one does not have that option. Global moves are therefore a way to determine
phase boundaries (Gull et al. 2011).

One such move is to propose a global permutation of the operator flavours α→ π(α),
or equivalently, permute the position of the tracks (fifth line in Table 2.2). This is the
generalisation of the global spin flip move necessary for the correct magnetisation in the
Ising model (see Section 2.8), and indeed Hausoel et al. (2016) found that it is essential in
obtaining the correct magnetic moment in iron and nickel. Recently, Huang et al. (2014)
proposed a move to switch all segments with anti-segments, or equivalently, exchange
creation with annihilation operators (Table 2.2, sixth line). This move corresponds to the
particle-hole symmetry.

We implemented a combination of these two symmetry moves: for each flavour α,
a permuted flavour α′ is chosen and it is determined whether to also switch creation
and annihilation operators in the corresponding track. This allows us to model more
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complicated symmetry relations, such as c†↑ ↔ c↓.
Symmetry moves require a complete re-computation of the trace and are thus more

expensive than local updates. As a result, care has to be taken not to “spoil” the scaling
of the algorithm by proposing too many of such moves.

2.5 Local problems with general interactions
If we switch on general interactions, the local problem

wloc := tr
[
T exp(−βHloc)

k∏
i=1

cαi(τi) c
†
α′i

(τ ′i)
]

(2.36*)

cannot be mapped onto segments any more. One in principle has to explicitly construct
a basis of the fermionic Fock space F = 2H and evaluate (i) the outer trace, (ii) the time
evolution and (iii) the product with creation and annihilation operators in Eq. (2.36) in
that basis. Two common choices of basis are:

1. the eigenbasis B of the local Hamiltonian (Hloc = BElocB
†), since the time evolution

becomes trivial in that case: exp(−Hlocτ) = exp(−Elocτ). The Fermionic operators
in turn are precomputed, transformed according to c(†)

α → B†c(†)
α B, and stored. The

eigenbasis is used in so-called matrix-vector or matrix-matrix codes (Werner and
Millis 2006).

2. the occupation number basis, because it allows on-the-fly computation of all oper-
ators. As such, it forms an ideal basis for the Lanczos method (Section 2.9).

Since the size of the Fock space |F| = 2N with the number of flavours N , the naive
scaling is O(exp(αN)) for the local problem (α = 3 ln(2) for matrix-vector codes and
α ≈ 2.8 ln(2) for matrix-matrix codes).

2.5.1 Switchboard picture
Fortunately, we can improve on this scaling by exploiting the conserved quantities of
the system: the segment picture is nothing else but an optimisation based on the fact
that all number operators nα are conserved by the density-density interaction. On closer
examination, there a second implicit requirement in the segment picture: we must ensure
that the creation and annihilation operators “respect” these conserved quantities as well;
otherwise, each operator may bifurcate the diagram and segments become ill-defined.8
This is trivially fulfilled in the segment picture.

For more general interactions, these two requirements lead to the switchboard picture,
which is well-known in quantum chemistry and exact diagonalisation codes (Georges et al.

8Here we consider from a technical rather than a “physical” perspective. We will revisit it from the
latter viewpoint in Section 3.1.
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1996) and was proposed for CT-HYB codes by Haule (2007). One tries to find a set of
quantum numbers Qi satisfying:

[H,Qi] = 0 (2.43a)
[nα, Qi] = 0 (α = 1, . . . , N) (2.43b)

Eq. (2.43a) block-diagonalises H and, correspondingly, partitions the Fock space F into
groups of states, each group defined by a set of quantum numbers (q1 . . . qn). Eqs. 2.43
define a necessary criterion that each creation and annihilation operator only connects
one block to at most one other block (it is not sufficient however – see Section 3.1).

To see that, realise that nα = cαc
†
α, so that Eq. (2.43b) implies [Q, cα] = −[Q, c†α]. If

the commutator did not vanish, we would partly end up in another block by going back
and forth through cα.

Eq. (2.43b) rules out some quantum numbers of H, such that in general H cannot be
fully diagonalised. As an example, consider the total spin S2, conserved in the absence of
spin-orbit coupling:

[S2, nkσ] = 1
2[S+S− + S−S+, nkσ] =

∑
i

(
c†i↑c

†
k↓ck↑ci↓ − c

†
k↑c
†
i↓ci↑ck↓

)
. (2.44)

The commutator does not vanish for N > 1, thereby making it unavailable for the switch-
board picture.9 Loosely speaking, Eqs. 2.43 asserts that the occupation number basis is
“natural” for switchboard conserved quantities, which is intuitively clear since it is the
natural basis of the creation and annihilation operators.

Diagrammatics The use of Qi now has a profound effect on the evaluation of the local
trace (2.36). They partition each operator A into a block matrix AIJ , where I and J are
block indices. The Hamiltonian commutes with the all the quantum numbers, therefore
it is block diagonal: HIJ = HIIδIJ . Consequently, the outer trace becomes a the “block
trace”, where we sum over blocks I:

trA =
∑
I

trAII . (2.45)

The creation and annihilation operators cα also become block operators cα,IJ , but they
have a more complicated structure than the Hamiltonian: by our construction (Eqs. 2.43),
cα mediate between exactly two blocks, such that for each “source” block I there exists
at most one “target” block J such that cα,IJ 6= 0. Borrowing from early telecommuni-
cations we call the block structure cα,IJ of the annihilator cα—its internal “wiring”—the

9Eq. (2.44) and other commutators were verified using the DiracQ package by Wright and Shastry
(2013).
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Figure 2.5: (a) Example diagram k = 2 for density-density-type interaction. (b) Switchboard
picture of the diagram: for density-density interactions, each block contains only one many-body
state (for general interaction, this is not the case anymore, see text). For this diagram, only the
evolution of the | ↑〉-block at τ = 0 contributes to the trace. It is the only one “patched through”
all of the switchboards (gray boxes) and arriving at the same block for τ = β (thick red line).
Again, for other situation there may be more than one contributing block. (c) Corresponding
segment picture of the diagram (cf. Section 2.4).

switchboard bα:

bα,I =


J cα,IJ 6= 0
0 cα,IJ = 0 ∀J
0 I = 0

(2.46)

and similar for b†α for c†α. The switchboards can be used for fast quantum number checking.
Consider the example k = 2 diagram in Figure 2.5. Here, we have assumed density-

density type interactions, which automatically translates to a block size of 1 (each many-
body state is its own block). Figure 2.5(b) shows the switchboard picture: the time
evolution between operators is represented by straight lines, while operators are repre-
sented by rectangles with internal switchboards depending on the type of operator. Only
one outer block (in red) contributes to the trace, because it is connected though all of
the switchboards, back to its original block. Figure 2.5(c) shows the segment picture for
comparison, which of course does not exist any more for more general interactions.

Interactions We will now spend some time examining the conserved quantities for dif-
ferent types of interaction, summarised in Table 2.3.

The total particle number N is conserved by general four-point interactions: Hint =
Uαβγδc

†
αc
†
βcγcδ, since creation and annihilation operators come in pairs. If spin-orbit cou-

pling is neglected, which is considered a justified approximation for 3d systems, then
Hint = Uijklc

†
iσc
†
jσ′clσ′ckσ, which also conserves the total spin Sz. Furthermore, if the inter-

action is of the rotationally invariant Coulomb type, and generated from Slater integrals
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density Kanamori Coulomb general
all densities niσ X
orbital parity Pi = ∏

σ(1− 2niσ) (X) X
total spin Sz = ∑

i(ni↑ − ni↓) (X) X X
total angular mom. Lz = ∑

iσminiσ (X) (X) X
particle number N = ∑

iσ niσ (X) X X X

Table 2.3: Conserved quantities that are compatible with the switchboard picture, for different
interaction types. (X) denotes conserved quantities that are implied by others, mi is the minor
angular momentum quantum number for the i’th orbital.

F0, F2, . . ., then also the total angular momentum Lz is conserved (Eder 2012).10

For the SO(n) ⊗ SU(2)-symmetric Slater-Kanamori interaction (3.4), Parragh et al.
(2012) showed that there exists an additional, so-called PS quantum number. For later
convenience, we will use an equivalent formulation, which is that for every orbital i, we
can introduce a parity Pi, which is 1 for empty orbitals and changes sign with every
particle we put into it, i.e.:

Pi = (1− 2ni↑)(1− 2ni↓) (2.47)

which is related to PS by:
PS =

∑
i

2 i
2 (Pi+1) (2.48)

These quantum numbers are conserved by the Slater-Kanamori Hamiltonian, because
spin flip and pair hopping only alter the orbital occupations by an even number (and
the density-density-like terms trivially conserve Pi). Empirically, I found that the set
of quantum numbers (N,Sz, P1, P2, . . .) already provides the smallest block sizes for this
Hamiltonian.

2.5.2 Automatic partitioning of the Hilbert space
Since the tighter block diagonalisation directly reduces the scaling from O(N)3 to O(N ′)3,
where N and N ′ are the largest block sizes before and after the introduction of an ad-
ditional quantum number, an algorithm for automatically finding all quantum numbers
for an arbitrary Hamiltonian is desirable. The decomposition of the Hamiltonian in the
smallest possible blocks exploiting the maximum number of conserved quantities is a well
studied topic in the context of large-scale exact diagonalization calculations (Dagotto
1994, Lin et al. 1993, Koch et al. 2008). A brute-force algorithm like the present one was
— to the best of my knowledge — first put forward by Thunström et al. (2012) for ED,
and later introduced into CT-HYB codes by Parragh (2013) and Seth et al. (2015).

While mathematical theory of block diagonalisation typically focuses on finding a
10Note however that for, e.g., cubic systems, one typically switches to the crystal field basis (eg, t2g in

the cubic case), which mixes states of different Lz (Ribic et al. 2014).
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(a) Adjacency matrix (b) Corresponding graph.

Figure 2.6: Local Hamiltonian H for the Slater-Kanamori interaction for two orbitals. The
orbital occupancies for the corresponding occupation number basis state (_, ↑, ↓, ↑↓) are shown
for each vertex.

“minimally-invasive” basis change for a given block structure (Cederbaum et al. 1989),
here the basic idea is to find the minimal block structure for a given basis (the occupation
number basis).11 To do so, one interprets the Hamiltonian H as an undirected graph
(V,E) with the many-body states as vertices V = {1, 2, . . . , |F|} and the elements of the
Hamiltonian, interpreted as adjacency matrix

(adjcH)ij :=

true i = j ∨Hij 6= 0
false otherwise

, (2.49)

as the edges E = {(i, j)| adjc[H]ij} (e.g., in (2.6a), all red blocks correspond to true,
while all white blocks correspond to false). Finding the block structure is then equivalent
to finding the connected components of (V,E), which can be done efficiently using a
depth-first search (Hopcroft and Tarjan 1973).

As an example, let us consider the Slater-Kanamori interaction for two orbitals: Fig-
ure 2.6a shows the adjacency matrix, with the four off-diagonal terms being spin-flip and
pair-hopping together with their inverses. Figure 2.6b shows the corresponding graph,
grouped by disconnected components. We see that there are two blocks of size 2 and
12 blocks of size 1. The same result is achieved by imposing the quantum numbers
(N,Sz, P1, P2): the two non-trivial blocks correspond to the quantum numbers (2, 0,+,+)
and (2, 0,−,−).

11In principle, one can also allow basis transformations in the search for a minimal block structure.
However, since Eq. (2.43b) sets the occupation number basis apart from other bases, I conjecture that
the blocks found in this basis are ideal or close to it. Additionally, from a technical standpoint, a basis
transform implies a basis transform also for the bath, which may break its symmetries and introduce a
sign problem.
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Table 2.4: Common local moves of CT-HYB in the switchboard picture, together with its effect
on an example configuration. Rprop denotes the proposal rate, k is the expansion order, N is
the number of flavours.

This strategy not necessarily satisfies the switchboard condition (2.43b). Parragh
(2013) and Seth et al. (2015) therefore proposed to iteratively “merge” blocks until no
creation and annihilation operator connects one block to more than one other block.
However, one can show that the switchboard blocks are simply given by the connected
components of:

adjc1H := adjcH +
∑
α

adjc cα · adjcH · (adjc cα)T (2.50)

(the multiplication and sum is to be understood in a “boolean” sense as ∧ and ∨), which
is much faster and easier to implement.

2.5.3 CT-HYB sampling
CT-HYB sampling proceeds in a similar fashion as CT-SEG sampling (Section 2.4.2).
However, there one does not work with segments, but with pairs of creation an annihilation
operators, as summarised in Table 2.4.

The basic building block again is the insertion and removal of a single operator pair
(first line). While in principle, one can allow the flavour of the creation and annihilation
operator to be different in this case, if (i) the hybridisation function is diagonal or (ii)
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the interaction shows sufficient symmetry (see Section 3.1), such moves will be rejected
trivially. In order to lower autocorrelation times, we also include a shift move (third line).

As opposed to CT-SEG sampling, these three moves do not yet guarantee ergodicity
for off-diagonal hybridisation functions: the interaction in general contains terms with
four different indices, which generates corresponding diagrams for off-diagonal hybridis-
ations, but cannot be generated by repeated insertion and removal of pairs. To remedy
this, Seth et al. (2015) proposed the insertion and removal of a quadruple of operators
(Table 2.4, second line). We have not implemented this move, since we work with diagonal
hybridisation functions.

In CT-HYB, local insertions, removals, and shifts force a partial re-computation of
the trace, such that the acceptance rate is given as

Racc = wnew

wold
=

tr(Wβ,τW
new
τ,τ ′ Wτ ′,0)

tr(Wβ,τW old
τ,τ ′Wτ ′,0) , (2.51)

where Wτ,τ ′ is the updated portion of the diagram from τ to τ ′. Much of the effort in CT-
HYB is devoted to the efficient pre-computation of Eq. (2.51) (we will discuss this in the
follwoing), since the local problem eventually bounds the algorithm. Indeed, the update
formula Eq. (2.42) can be seen as particularly efficient way of computing Eq. (2.51) for
density-density interactions. As for CT-SEG, global moves are necessary, which force a
complete recalculation of the trace.

2.5.4 Matrix-vector method
The matrix-vector method is the simplest method of (pre-)computing the local trace in
Eq. (2.36). The main idea is illustrated in Figure 2.7a: for all outer many-body states α,
one starts at τ = 0 and follows the forward time evolution until we either reach a dead-
end or arrive at the other side of the trace (red lines), storing all intermediate results.
Similarly, one starts from τ = β and follows the same procedure backwards (blue lines).

In order to obtain the weight of a single diagram, this procedure is inefficient, since it
computes every contributing many-body trace twice (red-blue pairs in Figure 2.7) and it
computes traces that eventually do not contribute to the local weight because of quantum
number violations. Indeed, Läuchli and Werner (2009) suggested to compute the trace
from both sides only to τ = β/2. However, these pre-computations become important
when the diagram is to be updated. Moreover, the left and right states are necessary
when implementing improved estimators (Section 3.6.1).

Consider the insertion of a c↓, c†↓ pair in Figure 2.7: first, the diagram portion Wτ1,τ3

is cut out. Second, one follows all the switchboards to check which states in principle
“connect”, i.e., satisfy all quantum numbers. If no such state exists, the move is trivially
rejected. Third, one performs the minimal computation in order to determine the new
weight wnew, i.e., one computes the forward time evolutions for all contributing states only
(centre digram). Fourth, if the move is rejected, one restores the original configuration; if
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Figure 2.7: Pair insertion in the matrix-vector method. (a) switchboard before pair insertion;
(b) connection check and computation of weight ration; (c) in case of acceptance: computation
of all remaining connections both from τ = 0 and τ = β.

the move is accepted, one performs all “intermediate” computations (bottom diagram).
The matrix-vector method is optimised for three main use cases:

• outer truncation, because it corresponds to omitting terms in the outer sum and
the vectors are more space-saving than whole matrices.

• inner truncation using the Lanczos method, because it is defined in terms of matrix-
vector products (cf. Section 2.9).

• highly localised updates in imaginary time, because it reduces the distance covered
by the time evolution of the “new” part.

The main problem of the matrix-vector method is that for non-localised updates, or
localised updates that wrap around β, a great portion of the pre-computes states has to
be discarded and recomputed.
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Figure 2.8: Example diagram in the matrix-matrix method as a stack of “caching layers”. The
gray blocks signify elements of the diagram that are stored. On the lowest layer, we store all the
operators. On the next layer, we collect a portion of the diagram and store its operator form.
On the topmost layer, the value of the whole diagram is stored. This way, parts of the diagram
can be reused in updates.

Fortunately, most accepted updates tend to be τ -local because non-local updates have
a greater chance of quantum number violation in the metallic case, and are greatly sup-
pressed in the insulating case. This motivates introducing a maximum pair length L like
in the segment case. Formal ergodicity is still satisfied as non-local updates can be seen
as iterated insertion and removal moves, thus trading off autocorrelation time for update
performance.

The sliding windows approach by Shinaoka et al. (2014) takes this trade-off to its
extreme, basically by “freezing” all operators in the trace outside of a small window that
is slowly moved in imaginary time. Hausoel (2014a) however found that this approach
suffers from severe autocorrelation problems in symmetry-broken cases.

2.5.5 Matrix-matrix method
The matrix-matrix method is a way to mitigate the expensive re-computations required
in matrix-vector codes, at the expense of a larger memory footprint and more involved
algorithms. Since it is not yet implemented into w2dynamics, I will only give a brief
overview here. For a detailed description, I refer the reader to Gull et al. (2011).

The basic idea of matrix-matrix codes is to collect partial diagramsW (τ, τ ′) of progres-
sively larger intervals in imaginary time. For simplicity, one assumes a layered structure,
such that a pre-computed W of the (n + 1)’th layer contains one or more W of the n’th



2.5. LOCAL PROBLEMS WITH GENERAL INTERACTIONS 35

layer, with the first layer consisting of just the operators (cf. Figure 2.8). This structure
can be represented using self-balancing binary trees (Gull 2008) or skip lists (Sémon et al.
2014), the latter being easier to implement.

If an update is attempted, these pre-computed fractions can be assembled as needed,
thus reducing the scaling for a proposal from O(k) to O(log k).

2.5.6 A note on performance
Let me devote this section to refuting a common misconception by noting that while
segment codes (cf. Section 2.4) are considerably simpler, they need not necessarily be faster
than matrix-vector codes (cf. Section 2.5.4) or matrix-matrix codes (cf. Section 2.5.5),
when run for density-density-like interactions.

To this end, let us compare the ratio function for the segment picture (2.42) and the
switchboard picture (2.51): in the segment picture, the ratio is simply given by a single
exponential of a sum that runs over all affected intervals ∆τ of the trace. However, the
same is true for the switchboard picture: for density-density interaction, the block size
is one; time evolution, which is confined to one block, is therefore also a exponential
of a number for each interval in the trace. We conclude that the main advantage of a
segment code is collecting the product of exponentials into a single exponential of a sum.
This collection does indeed result in considerable speed-up, since the evaluation of the
exponential function is the most expensive operation in the diagram evaluation, however
it can also be implemented in matrix-vector or matrix-matrix codes.

The acceptance of moves is another matter: matrix-matrix codes in particular main-
tain complicated caching structures that may be expensive to update. However, these
precomputed values can then be used to reduce the proposal complexity. Matrix-vector
codes also require some extra computation, which is however fairly trivial in the density-
density case. For very high acceptance rates, a segment code will thus outperform matrix-
vector and matrix-matrix codes, but the main optimisation one should strive for is a low
acceptance rate since this is where the highest computational effort is required. What’s
more, the update procedure incurs at most an overhead of O(log k). This is at some point
swallowed by the update of the bath, which scales as k2.

The main computational advantage lies in the choice of updates: segment insertions
(cf. Table 2.2) can be made in such a way that they avoid quantum number violations
where possible, by limiting the maximum segment length L and by automatically choosing
the type (segment or anti-segment) based on the occupancy at the insertion position.
Similarly, for segment removals all quantum numbers are automatically satisfied, which
is certainly not the case when choosing two random operators like in the switchboard
picture (cf. Table 2.4). Moves that violate quantum numbers are quickly rejected, but
they still have to be chosen by the random number generator, which in density-density
codes is frequently the most expensive operation. The choice of updates in matrix codes
can be optimised to “match” segment codes whenever the density-density approximation
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is employed.

2.6 Bath problem
The more straight-forward part of the CT-HYB expansion (2.25) is the computation of
the bath problem:

wbath := det
[
∆αiβj(τi − τ ′j)

]
ij

(2.52)

which translates to the computation of a determinant.
Physically, the presence of a bath augments the local diagram with hybridisation lines.

Since the operator positions between local and bath part are “synchronised”, these lines
describe all possible propagations from an electron leaving the impurity (annihilation
operator) to its re-entrance (creation operator).

As an example, let us consider a second-order diagram for single flavour in the segment
picture (Eqs. 2.23):

tr
[
exp(−βH) c†(τ1) c(τ2) c†(τ3) c(τ4)

]
det

[
∆(τ1 − τ2) ∆(τ1 − τ4)
∆(τ3 − τ2) ∆(τ3 − τ4)

]
(2.53a)

= (2.53b)

≡ (2.53c)

We see that the Hybridisation lines are in a sense the counterpart to the segments, since
segments correspond to propagation on the impurity and hybridisation lines to propaga-
tion through the bath.

Bath updates The straight-forward computation of the determinant scales as O(k3)
with the diagram order k. However, as noted in Gull et al. (2011), local updates (insertion,
removal and operator shift) of the translate to rank-1 updates bath determinant matrix
∆. These updates follow from the formula by Sherman and Morrison (1950), which states
the following: for a rank-1 update of ∆ to ∆′ = ∆ + cr†, with arbitrary vectors c and r,
the inverse M := ∆−1 is updated according to (cf. Appendix A.1):

M ′ = M − Mcr†M

R
with R := det ∆′

det ∆ = 1− r†Mc (2.54)

For insertions, the matrix determinant lemma is used, which follows from Eq. (2.54) by
enlargingM by a row and column of zeros. When inserting or removing the m-th row and
n-th column of ∆ instead of the last ones, one needs to be careful to include a permutation
factor R→ (−1)m+nR and update the n-th row and m-th column ofM . The permutation
is understood by applying the formula to the matrix R∆C, where R is a row permutation



2.7. FERMIONIC SIGN AND SIGN PROBLEM 37

and C is a column permutation: the corresponding inverse is then (R∆C)−1 = CMR.
We note that we do not need to construct ∆ explicitly in order to compute weight

ratios R from Eq. (2.54). As a result, one stores and updates M rather than ∆. The
use of update formulas reduces the effort to O(k2). As autocorrelation scales as O(k) as
estimated from trace renewal (2.72) and 〈k〉 ∝ β due to Eq. (2.29), the overall effect is
a O(β3) scaling of the bath part (see Table 2.1). For rare global moves that completely
renew ∆, one still needs to compute ∆, its determinant and its inverse explicitly, which
scales as O(k3) (or O(β3) again).

2.7 Fermionic sign and sign problem
Let us start with the weight for a Feynman diagram in the strong coupling expansion
derived in Section 2.2.3,

w(α, τ, β, τ ′) = tr
[
T e−βHloc

k∏
i=1

cαi(τi)c
†
βi

(τ ′i)
]

det
[
∆αiβj(τi − τ ′j)

]
ij

(2.27b*)

where again the multi-indices α, β label flavours of the diagram vertices, αi = 1, . . . , N ,
N is the number of flavours,T denotes the time-ordering symbol and ∆ij(τ) denotes the
hybridisation function.

By interpreting the diagrammatic weight w(α, τ, β, τ ′) as probability density function
in order to use it for a Markov process, we have tacitly assumed that w is non-negative.
However, for fermionic systems, this is in general not true because of the anti-commutating
algebra of the operators.

To try and work around this problem, instead of sampling with respect to w, one
re-samples the system with respect to the absolute value as its weight |w|:

〈A〉w :=
´
dxA(x)w(x)´
dxw(x) =

´
dxA(x) sgnw(x)|w|(x)´
dx sgnw(x)|w|(x) = 〈A sgnw〉|w|

〈sgnw〉|w|
(2.55)

(for w ∈ C we have to replace sgnw with the more general w/|w|). This is not an approx-
imation. However, re-sampling will yield worse error bars when the new distribution is a
poor model to the original distribution. Indeed, if we rewrite the re-sampling factor (2.55)
in terms of the free energy densities fw of the fermionic system and f|w| of the “bosonic”
system (Troyer and Wiese 2005):

〈sgnw〉|w| =
Zw
Z|w|

= exp(−βN(fw − f|w|)), (2.56)

we find exponential scaling in terms of βN of the standard deviation of the mean sign,
and by propagating through eq. (2.55), also in the error bars of the estimators (fw ≥ f|w|
because the free energy of the fermionic system carries the additional energy from the
Coulomb exchange (Loh et al. 1990), or, equivalently, Zw ≤ Z|w| because terms in the
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former may have opposite sign):

∆ sgnw
〈sgnw〉 = 1

〈sgnw〉

√
1− 〈sgnw〉2
NMC − 1 →

exp(βN(fw − f|w|))√
NMC

(2.57)

This is the sign problem, a fundamental concern of quantum Monte Carlo calculations. It
can be subsumed under the following mnemonics: one has to square the mean sign if one
doubles the system or halves the temperature (cf. Eq. (2.56)), and the simulation time
scales inversely to the mean sign (cf. Eq. (2.57)).

2.7.1 Basis dependence of the sign

The good news is that the sign problem is dependent on the Fock space basis: choosing
the (infinitely large) eigenbasis of the full Hamiltonian trivially solves the sign problem.
However, Troyer and Wiese (2005) showed that this problem is of the complexity NP-
hard. Moreover, it is difficult to use arbitrary rotations in the Fock space in the context
of CT-QMC, because part of the basis has already been integrated out and is encoded in
the hybridisation function.

One can however perform a transformation on the single-particle basis ci → c̄i (Sémon
and Tremblay 2012, Shinaoka et al. 2015):

cα = Aαβ c̄β, c†α = A∗αβ c̄
†
β (2.58)

In order to preserve the canonical anti-commutator, A must be unitary: A†A = 1. Since
the Hamiltonian (2.1) must be covariant under A, this implies a transformation on (i) the
impurity levels, (ii) the interaction matrix and (iii) the hybridisation function:

ε̄αβ = A∗αα′Aββ′εα′β′ (2.59a)
Ūαβγδ = A∗αα′A

∗
ββ′Aγγ′Aδδ′Uα′β′γ′δ′ (2.59b)

∆̄αβ(iν) = A∗αα′Aββ′∆α′β′(iν) (2.59c)

Even though for N flavours one ends up with (N2 − 1) free parameters of A, it is in gen-
eral not possible to diagonalise the hybridisation function, because it carries a frequency
dependence.

Also, a basis transformation may complicate the interaction and thus significantly
increase the block size. The Slater-Kanamori interaction is an exception: Galler (2015)
showed that in this case, U is invariant under any orthogonal transformations (AAT = 1).
Shinaoka et al. (2015) demonstrated that the sign problem is least prevalent if one chooses
a “physically motivated” basis, i.e. along a symmetry axis of the crystal.
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Figure 2.9: Update of the sign due to the Fermionic operators for density-density type interac-
tions when inserting a segment (given in bold) into a diagram (see Section 2.4 for details on the
segment picture).

2.7.2 Origin and update of the sign in CT-HYB calculations
The fermionic anti-commutation relation yields three possible sources for a sign change
in CT-HYB: (i) the Fermionic sign of the local c and c† operators, (ii) the sign of the
determinant, and (iii) the time-ordering symbol T .

Local sign Since the Fermionic operators anti-commute, one has to fix the signs when
acting on the occupation number basis. The most common choice is:

cm|n1 . . . nm . . . nN〉 = nm(−1)
∑

i<m
ni |n1 . . . 0 . . . nN〉

For the matrix-vector and matrix-matrix formalism, one includes this sign directly into the
matrix representation of the Hamiltonian, the creation and the annihilation operators. For
the segment method, one only works with segment overlaps and therefore needs compute
the sign explicitly for every configuration.

One can however construct a local update formula for the insertion, removal and
extension of single segments: the change s in sign by insertion of a segment is given by

s = (−1)N(τ)(−1)N(τ ′), (2.60)

where N(τ) and N(τ ′) is the total occupation of the local trace at the beginning and end
of the segment, respectively. This can be seen from Figure 2.9 as follows: segments of
type (a) and (c) do not interfere with the edges of the inserted segment, segments of type
(b) cause a double flip, which cancels out. The inserted segment causes a flip for segment
(d), and vice-versa for segment (e). Therefore, by Eq. (2.60), s = (−1)2 = 1. The sign for
removing a segment is s as well, and for the shift of an endpoint of a segment it is −s.12

Time-ordering The time-ordering sign is the second by-product of local anti-commuta-
tivity. In implementations, local operators are stored in a time-ordered fashion, but, by

12It is worth mentioning that this update is not strictly necessary from a computational point of view
since the full computation of the sign must be implemented anyway for global moves, and in case of
updates the performance bottleneck is the determinant part. However, it does give a speed-up for the
local part and the I find it to be a convenient “mental algorithm” for manually working out the sign of a
local segment diagram.
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examining (2.27b*), this is actually a reordering from a pair-wise representation, so we
need to take the corresponding sign into account explicitly.

The choice of pairs is arbitrary, however, the i-th local creator-annihilator pair must
correspond to the i-th row/column of the hybridisation matrix, thereby establishing the
connection between the local and the bath operators. Two main conventions exist, where
pairs are formed by ordering creation and annihilation operators separately

1. either by their τ value, which is preferred for general systems (implemented in the
CT-SEG code), or

2. first by flavour, then by the τ value, which corresponds to an automatic block-
diagonalisation of the hybridisation matrix for flavour-diagonal hybridisation func-
tions and is thus often preferred in this case (implemented in CT-HYB).

For the first strategy, a simple formula can be found: given n operators (Ai) in time
ordering,τ(Ai) > τ(Aj) iff (i > j), let Ei be the cumulative sum of “effects”

Ei :=
∑
k≤i

1 Akis a creation operator
0 Akis an annihilation operator

. (2.61)

A single transposition of two operators adds or subtracts one from one element of E.
Therefore, the number of permutations required from (Ai) to (Ai)′ is given by the Manhat-
tan distance |E−E ′|. Since the time-ordered target is characterised by E ′ = (1, 1, . . . , n2 ,

n
2 ),

the sign is simply:
s = (−1)|E−E′| = (−1)|E|. (2.62)

For, e. g., the diagram in Figure 2.9, E = (1, 1, 1, 2, 2, 3, . . . , 7) such that |E| = 55 and
s = −1. This can be turned into an update formula by storing E together with the
operators. The generalisation of the formula to the second strategy requires flavour-wise
book-keeping: Eα

i .

Determinant sign The bath determinant also changes sign upon exchange of two oper-
ators in the weight. For the special case of a diagonal hybridisation function and density-
density-type interactions, this sign in a sense “matches” the combined sign of the time
ordering and Pauli principle, thus one in this case does not observe any sign problem.

2.8 Autocorrelation
While the importance sampling of the equilibrium distribution by the Metropolis-Hastings
algorithm (cf. Section 2.3) is crucial for an acceptable signal-to-noise ratio, the sampling
along a Markov chain means that the subsequent Monte Carlo steps will in general not
be uncorrelated. Unfortunately, this autocorrelation (cross-correlation within the Markov



2.8. AUTOCORRELATION 41

Figure 2.10: Energy levels in the ferromagnetic Ising model as illustration of exponential auto-
correlation: two separate minima with 〈m〉 = ±1 are present and can be connected via single
spin flips only by forming a domain wall. A random configuration and one anti-ferromagnetic
configuration are shown as well.

chain) means that we cannot trust the statistical uncertainties and thus the results them-
selves.

As an example (Coleman 2015), consider the isotropic ferromagnetic (J > 0) lattice
of Ising spins σi ∈ {−1, 1}, in the absence of a magnetic field (h = 0):

H = −J
∑
〈ij〉

σiσj, (2.63)

where the sum 〈ij〉 runs over next-neighbour pairs of lattice sites on an L × L square
lattice with periodic boundary conditions. This model can be sampled by repeatedly
proposing single spin flips σi → −σi. Because h = 0, the magnetisation must be zero
〈m〉 = 0 for finite systems. However, for low temperatures, we end up with two separate
energy minima E0 = −2L2J for all spins pointing upwards or downwards, corresponding to
〈m〉 = ±1. These two minima are separated by a phase space barrier of height ∆E = 2LJ
that corresponds to two interfaces between spin-up and spin-down, each of length L,
that eventually have to form if all the spins are to be flipped (cf. Figure 2.10). In
the Metropolis-Hastings procedure, this means the expected number of steps required to
overcome this barrier, the autocorrelation time τ , grows exponentially with τ ∼ exp(βJL).
Below that number of steps, while formally ergodicity is fulfilled, the magnetisation will
yield a finite value with seemingly converging error-bars in violation of the analytical
result. The inclusion of a global spin flip move σ → −σ restores the symmetry.13

13Let me stress that this example is not perfect, because the formation of two well-separated minima in
finite systems is of course a precursor of the spontaneous symmetry breaking in infinite systems. Moreover,
because single spin flips model the microscopic process, the autocorrelation time τ can be interpreted as
a “survival time” of the magnetic phase, which does diverge at the phase transition. However, despite
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To analyse the autocorrelation effect Metropolis-Hastings algorithm, we turn our at-
tention away from the sampled equilibrium distribution π and towards the underlying
Markov process, described by the stochastic matrix P . Fortunately, a large body of lit-
erature exists for Markov processes, which can be directly applied to the problem (Sokal
1992, 1996, Berg 2004).

To do so, let us again formalise P as an operator with the matrix elements given in
Eq. (2.33). Detailed balance and conservation of probability is equivalent to P being
self-adjoint and a contraction, respectively, which in turn yields the spectrum of P :

P =
ˆ 1

−1
λΠ(λ) dλ. (2.64)

|λ| can be seen as a measure of “stability” of the state subspace projected out by Π(λ):
λ = 1 is the stationarity condition πP = π, which is perfectly reproduced. For |λ| < 1,
at each step a weight of (1− λ) is dissipated to other states. This is also reflected in the
ergodicity relation (cf. Section 2.3):

1xπy = lim
n→∞

(P n)xy =: P∞ (2.65)

where P n denotes the n-th matrix power of P , or put more leniently, n consecutive steps
in the Markov process.

2.8.1 Exponential autocorrelation and thermalisation
Let us now turn around Eq. (2.65) as a criterion for equilibration, defining the part that
has not equilibrated yet after the application of n steps:

P (n) := P∞ − P |n| = −
ˆ 1−

−1+
dλ λnΠ(λ) (2.66)

We immediately conjecture that P is related to autocorrelation, and λ to the “persistence”
of these. Indeed we find that given an observable f with the mean 〈f〉 = ∑

x πxf(x), the
normalised autocorrelation function is given by (Berg 2004):

cf (n) :=
∑
x,y f(x)πxP xy(n)f(y)∑
x,y f(x)πxP xy(0)f(y)

= −
ˆ 1−

−1+
dλ exp(−n/τλ) af,λ (2.67)

where τλ := −1/ log(λ) are the formal autocorrelation times, which are a characteristic
of the Markov process, af,λ := −∑xy f(x)πxΠxy(λ)f(y)/σ2

f are prefactors depending on

its physical interpretation, 〈m〉 6= 0 is still wrong: as soon as we overcome the barrier, either by waiting
O(τ) or by including a global symmetry move, we recover 〈m〉 = 0. In other systems—like the Potts
model, where the density of states shows highly non-trivial features—, the energy minima are spurious.
Note also that while the inclusion of a global symmetry move solves the immediate problem of 〈m〉 6= 0,

it does not address the underlying issue of a “critical slowing down” of single spin flip. Eventually, these
issues are to be solved by block update schemes (Sokal 1992).
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the observable, and σf is the natural variance of f . Taking the limit n→∞, the longest
time dominates and is defined as the exponential autocorrelation time

τexp,f := sup
λ
{τλ|af (λ) 6= 0} (2.68)

of the observable.
In the Metropolis-Hastings algorithm, the autocorrelation time τλ can be understood

as a barrier in phase space of height τ ∝ exp(β∆E). The coefficient aλ in turn determines
how much of that barrier is “felt” by the observable f . These coefficient can vary strongly
with f , as can be seen in our Ising model example (2.63): clearly, τexp ∝ exp(βLJ) for
〈m〉, but much smaller for 〈m2〉 because the barrier is invisible to it (this is why the
Binder cumulant 1− 〈m4〉/3〈m2〉2 also works for low temperatures).

As such, the exponential autocorrelation time is related to thermalisation time (how
long we have to wait until we can be sure that a given configuration is truly independent
from our starting point) and simulation time or round-trip time (how long we have to
sample to explore all of configuration space). The main problem is that τexp is in general
unknown and very difficult to estimate, since autocorrelation only becomes apparent when
we (i) have either overcome it or (ii) observe a violation of some analytic result.

This is why literature on Monte Carlo recommends to discard a fixed percentage a of
initial Monte Carlo steps Nth = aN as thermalisation, ranging from a = 10% (Sokal 1996)
up to 50% (Berg 2004). For CT-HYB, we find that even as low as 10% is too conservative,
as the diagrammatic series thermalises very quickly. This can be understood by the short
“distance” between the designated starting point (diagrammatic order 0) and the mean
diagram order . 100 and a well-localised histogram around this order. If thermalisation
becomes a problem, one has to resort to Wang-Landau sampling and related techniques
(Gull et al. 2011).

2.8.2 Integrated autocorrelation and sweep size

It turns out that the exponential autocorrelation time does not control the statistical
uncertainty: given the sample mean 〈f〉 := 1

N

∑N
n=1 fn, the squared standard error of the

mean ∆f 2 can be shown to be (Sokal 1996):

∆f 2 = 1
N

N∑
m,n=1

σ2
fcf (m− n) N→∞−−−→ 1

N
τint,fσ

2
f , (2.69)

where cf (m − n) is again the autocorrelation function (2.67) and we have defined the
integrated autocorrelation time

τint,f :=
∞∑

n=−∞
cf (n) . (2.70)
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(Note that for the integrated autocorrelation time is indeed distinct from the exponential
one.14) It is important to know τint,f , because inferring from Eq. (2.69), our error bars will
be too small by a factor√τint if we do a naïve measurement. This can be easily understood
by considering a plain Monte Carlo (without a Markov chain), where we sample each point
τint,f times—this yields the same correction formula (2.69) for the variance, or in other
words, we have perfect auto-correlation on a length scale τint,f .

The typical response is to choose a sweep size Nsweep > τint,f and only measure f
at every Nsweep’th Monte Carlo step. Fortunately, unlike τexp, τint,f can be measured by
turning Eq. (2.67) into a Monte-Carlo estimator (Anderson 1971, Assaad 2007):

〈cf (n)〉 = 1
〈cf (0)〉

 1
N

N∑
m=1

fmfm+n −
(

1
N

N∑
m=1

fm

)2
 , (2.71)

where again fm is the m’th measurement of f and we define fm = 0 for m < 1 and
m > N , which is justified for N � n.15 We can then extract τint by performing the sum
over s using a suitable window function (a sum up to N will not converge as N → ∞).
The exponential auto-correlation function cannot be measured that way because the fast-
decaying exponentials “drown” out the signal in the asymptotic region.

The auto-correlation function estimate

〈cG(n)〉 := 1
β

ˆ
dτ〈cG(τ)(n)〉

for the impurity Green’s function G(τ), then averaged over τ , is shown in Figure 2.11 for
a simple one-band impurity model with U = 2D at half filling for a semi-elliptic density
of states. In the logarithmic plot, one can directly identify exponential contributions (cf.
Eq. (2.67)) dominant at different time scales.

In Figure 2.12, the corresponding integrated auto-correlation time τint,G(τ), resolved
in imaginary time τ , is plotted for different temperatures. It is interesting to see that
the autocorrelation for equal-time quantities is larger than in the centre region. This is
consistent with my observations that density and double occupancies are slow to converge
in CT-HYB.

For practical purposes, the measurement of the autocorrelation time Eq. (2.71) is
memory-intensive and computationally costly. Gull (2008) proposed to estimate the au-

14To see this, we interpret c(n) in Eq. (2.67) as a response function in Markov space: τint is then
related to the static susceptibility c(ω = 0), while τexp is related to a correlation length λ, which in a
“physical space” also have different values and scaling laws (Sokal 1992). This is particularly true for
spin flips in the Ising model, where the “Markov time” can be mapped directly to physical time and
length scales, and the appropriate scaling relations can be derived exactly. The notable exception are
linear autoregressive models, AR(1), where P is defined by a single exponential in Eq. (2.64) and thus
exponential and integrated autocorrelation times coincide (Anderson 1971).

15Examining Eq. (2.71) more closely, we can be interpret cf (τ) as the normalised covariance
Cov[f ]/Var[f ] in f is a probability variable over the Markov chain, summed over the τ ’th side diag-
onal.
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(a) Linear scale (b) Logarithmic scale

Figure 2.11: Autocorrelation function estimate 〈cG(t)〉 for the Green’s function estimator in
imaginary time G(τ), averaged over τ (2.71) for a simple one-orbital model for different inverse
temperatures β (Harrer 2013, a master thesis I co-supervised).

tocorrelation of any quantity by the renewal time of the trace:

τren := 〈k〉/Rrem (2.72)

where 〈k〉 is the mean expansion order of the trace and R is the acceptance rate for pair
removal (pair insertion works equally well). Eq. (2.72) tries to estimate the time it takes
for every operator pair to be modified and thus is in a sense an estimate to exponential
rather than integrated autocorrelation. Figure 2.12 shows that for a simple one-orbital
model, the renewal time is too weak an estimate to the integrated autocorrelation time
for high to medium temperatures.

2.9 Basis truncation
We again start with the formula for the weight (2.36) of the local diagram

wloc =
∑
α

〈α|e−β
∑

γ,δ
Hγδ|γ〉〈δ||α〉 (2.73)

where we have made the sum over local many-body states {α} and the matrix elements
Hγδ = 〈γ|H|δ〉 of the local Hamiltonian explicit.

As we increase the size of the system, the sum over the fermionic Fock space runs over
|F| = 2N states, where N is the number of flavours, and quickly becomes prohibitively
large. For strong coupling solvers, this is reflected in an exponential scaling in size of the
local problem: the stochastic sampling only takes care of the hybridisation part of the
partition function, requiring us to solve the atomic part explicitly.

In the high temperature limit β → 0, all states contribute equally and Z becomes truly
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Figure 2.12: Integrated autocorrelation time τint,G for the Green’s function in imaginary time
G(τ), averaged over the imaginary time τ , and as estimated via the trace renewal time τren for
a simple one-orbital model for β = 10, 50, 100, 150 (row-wise from top left). The renewal time
τren (2.72) is given in red.

a Zustandssumme (sum of states): Z = |F|. On the other hand, at zero temperature, the
exponential projects out the ground state α0 and the sums can collapse to a single term.

For finite temperatures, excitations to the ground state are still exponentially sup-
pressed with exp(−β∆E). This motivates us to truncate the Fock space F → F ′ ⊂ F
to its most relevant states. Basis truncation seems particularly appealing in our context
because it conspires nicely with the O(β3) scaling of quantum Monte Carlo: in the high
temperature limit, where the sampling is cheap, we retain the full basis. As we cool down
the system, we can afford to neglect more basis states, while each basis state becomes
more and more expensive.

From a computational point of view, basis truncation reintroduces systematic bias into
the method. From a physical perspective, it is difficult to a priori choose the subspace
F ′ (“static” truncation), because computing the contribution of each many body state α
is equivalent to solving the full system. If a poor estimate is chosen, the systematic bias
becomes uncontrolled in the sense that Z[F ] − Z[F ′] does not need to decay as a power
of |F ′| for small enough temperatures. To see this, one basically reverses the argument



2.9. BASIS TRUNCATION 47

0.0 0.5 1.0 1.5 2.0 2.5 3.0

|V |

0.0

0.2

0.4

0.6

0.8

1.0

〈P
〉

orb. 1 empty
orb. 1 half
orb. 1 full
orb. 2 half
orb. 2 full

Figure 2.13: Elements of the many-body density matrix 〈ρα〉 for a two-orbital SIAM at half
filling with ∆ = 1 and U = U ′ = 1 at β = 100, as the hybridisation strength V is increased.
The many-body eigenstates |ψ〉 were obtained from ED with a single bath sites at ε = 0.

in favour of truncation using a deliberately bad choice of F ′: at T = 0, let the first state
we cut out of our approximation be the ground state, which means that Z[F ′] = 0 for all
F ′. For finite but small temperatures, this improves only up to Z[F ′] = exp(−β∆E).

Figure 2.13 shows that a static truncation scheme based on the local problem is in-
herently uncontrolled: considering a single bath sites at ε = 0 coupling to one orbital of a
two-orbital SIAM, the hybridisation will form a bonding/anti-bonding pair with the bath
level and thus the local energy levels will broaden and reorder with respect to the atomic
values (Gull et al. 2011). Suppose we now choose a cut-off δ and neglect all many-body
states α with

Eα − E0 > 1/δ, (2.74)

we will have chosen the wrong ground state for finite hybridisation. As a result, dynamical
truncation schemes have evolved, which try to choose F ′ by using a controlled heuristic
for Z[F ′].

In our classification of truncation schemes, we furthermore distinguish between an
“inner” truncation, which refers to a truncation of the Fock space at the point of the
Hamiltonian, i.e. the basis β, γ in Eq. (2.73), and an “outer” truncation, which truncates
only the outer trace, i.e. the sum over α. Note that the inner truncation implies the outer
truncation. The different schemes are summarised in Table 2.5. We will discuss these
four possibilities in the context of strong coupling solvers below.
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static dynamic
inner truncation of time evolution Krylov method

matrix norm estimate
outer Hloc truncation scheme truncation sampling

Table 2.5: Truncation schemes in the context of CT-HYB.

2.9.1 Inner basis truncation

Inner basis truncation is the strongest form of truncation: it neglects parts of the Fock
space completely and therefore directly reduces the exponential scaling of the algorithm—
the benefit scales as (|F|−|F ′|)3〈k〉, where 〈k〉 is the mean diagrammatic expansion order.
Static inner truncation schemes are frequently employed in large-scale exact diagonali-
sations: one will typically not consider all possible fillings n, but truncate the possible
fillings to [〈nloc〉 − ∆n, 〈nloc〉 + ∆n] around the most probable filling 〈nloc〉 of the local
problem (e.g., Antipov and Krivenko 2015).

In diagrammatic solvers, static truncation is not only problematic because of its un-
controlled nature, but also because even for strong coupling, the low-order diagrams are
renormalised by short “excursions” to excited states. A typical diagram in the segment
picture (see Section 2.4) will thus look like this:

(2.75)

Note that the local diagram (2.75) does not vanish for large U if the overlaps are sufficiently
small; the hybridisation lines are instead crucial for its value. If one now were to cut all
but the singly-occupied states, which is justified in terms of energy (2.74), all diagrams
of finite order vanish and thus all dynamics are neglected: both the Green’s function and
the double occupation are pinned to zero.

Moreover, static inner truncation is dangerous for sampling methods because it easily
introduces ergodicity problems (Gull et al. 2011). This is best motivated in the switch-
board picture (Section 2.5): truncating states corresponds to severing connections inside
the switchboard connectors (the creation and annihilation operators). Since the sampling
must maintain at least one open link at all times, it is left with less paths to go from one
configuration to another.16

16However, note that formal ergodicity between such states is not violated as suggested by Gull et al.
(2011) because two diagrams that are “reachable” must each be connected to the trivial diagram and
thus connected to each other via this diagram.
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Krylov subspace method In an attempt to solve these shortcomings, a dynamical
method for inner truncation was brought forward by Läuchli and Werner (2009) and
was also implemented as one of the options for the fermionic trace in w2dynamics by
Parragh (2013). The basic idea is to use the Krylov subspace K of order r

Kr[H,ψ] := span{ψ,Hψ,H2ψ, . . . , Hrψ}, (2.76)

where H is the Hamiltonian and ψ is the many-body state to be considered, as truncated
space F ′ and confine the time evolution to that space:

exp(−τH)|ψ〉 ≈ K exp(−τT )K†|ψ〉 (2.77)

Given an n × n Hamiltonian, the n × r projection matrix K and the r × r Hamiltonian
approximant T in Krylov space are constructed using Lanczos iteration. This ensures an
orthonormal basis of K and as a result T becomes tridiagonal, allowing for its efficient
exponentiation (Press et al. 2007). The projector K in equation (2.77) is never computed
explicitly, but implied by the repeated multiplication of ψ with H (2.76) and the elements
of T are essentially a side-product of the orthonormalisation step.

This truncation scheme is ideal in the sense that the Krylov subspace by construction
converges against the dominant eigen-subspace of the Hamiltonian. Indeed, Hochbruck
and Lubich (1997) showed that the Lanczos approximation to the time evolution opera-
tor (2.77) converges as O[exp[−1

5
r2

‖H‖τ ]]. Moreover, since only a small set of matrix-vector
multiplications are involved, one can work with sparse representations of H or compute
its matrix elements on-the-fly.

Läuchli and Werner (2009) found that the Krylov basis becomes more efficient than
time-evolution in the eigenbasis for more than three orbitals, if the Slater-Kanamori in-
teraction is used. Hausoel (2014b) however showed that the inclusion of the orbital parity
(PS) quantum numbers in addition to Ntot and Sz,tot (cf. Section 2.5) reduces the block
size to such an extent that the break-even point is instead seven orbitals (for five orbitals,
the eigenbasis method performs better by about one order of magnitude). Moreover,
one finds that the Krylov basis is most efficient if the interaction has a relatively simple
level structure. In the presence of fine multiplet splittings such as those of the multi-
orbital Coulomb interaction in a low-symmetry local environment, one empirically finds
that Krylov time evolution needs many Lanczos steps to converge. This means that even
for the – more complicated – Coulomb interaction, one gets a higher performance in the
eigenbasis method for up to five orbitals (Hausoel 2014b).

2.9.2 Outer basis truncation

Outer truncation, i.e., neglecting terms in the outer sum of eq. (2.73), also has an ex-
ponential benefit in terms of |H|: it is bounded from above as |F| − |F ′|, but constant
scaling in the expansion k.
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In diagrammatic sampling, the benefit is typically lower: as we go to higher diagram-
matic expansion orders, most outer states are ruled out by quantum number violations
and the outer sum collapses to only a few states. A particularly strong example are
density-density interactions: let ki be the expansion order (number of segments) for the
i-th flavour, the number of terms in the outer trace Nγ becomes (cf. Eq. (2.39)):

N =
N∏
i=1

2 ki = 0
1 ki 6= 0

, (2.78)

which away from strongly insulating cases reduces the outer trace sum from 2N terms
to a single term. One will only compute those outer states that do not violate quantum
numbers (see Section 3.1). If the truncation used is a good approximation to these quan-
tum numbers, then those two sets will strongly correlate, such that the scaling is greatly
diminished. If this is not the case, then the basis truncation becomes a diagrammatic
truncation, where more and more diagrams are approximated as zero. Aside from consid-
erations of bias (considered below), this also lengthens the auto-correlation time, which
dampens the scaling.

The argument typically brought forward in favour of this scheme is “internal ther-
malisation” (Läuchli and Werner 2009): one restricts the Fock space only at one specific
point on the imaginary time axis and (1) thus in principle allows all truncated states to
be present in the trace, yielding a more unbiased approximation and (2) conjectures that
other operators in the trace “screen” the effect of outer truncation as we go away from
τ = 0, thus weakening the effect on estimators in the centre of the trace.

Unfortunately, these arguments do not withstand closer examination: the trace (as
any linear map) commutes with the expectation value:〈∑

α

fα(x)
〉

=
∑
α

〈
fα(x)

〉
, (2.79)

which means sampling a local trace is equivalent to sampling each outer state individually
and sum them up afterwards, provided that the sampling method chosen is ergodic.17 As
a result, neglecting parts of the trace inevitably means neglecting parts of the phase space,
which in turn means we are again left with an uncontrolled approximation.

To see the effect on expectation values let us formalise the truncation procedure as
an truncation projector P := ∑F ′

α |α〉〈α|. Due to (2.79), expectation values 〈A〉 of local
quantities A then become 〈AP 〉.18

Let us study this again for the one-orbital model, where for the strong coupling case
we retain only the singly occupied state in the outer trace, such that P = |↑ 〉〈 ↑ |+|↓ 〉〈 ↓ |.

17It is interesting to note that this is not necessarily fulfilled by the common CT-HYB moves. As
a result, one could in principle hope that by chance the non-ergodicity counteracts the diagrammatic
truncation. We did not follow that possibility.

18For the Green’s function, the expectation value becomes 〈AP 〉/〈P 〉 because the estimator in con-
structed from Hybridisation lines.
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The density 〈n〉 is then replaced by the charge susceptibility:

〈n↑〉 → 〈n↑(τ)P 〉 = 〈n↑(τ)(n↑(0) + n↓(0))〉 = χ↑↑(τ) + χ↑↓(τ) (2.80)

The density is recovered in the combined strong-coupling and low temperature limit.
We follow the suggestion to measure at τ = β/2 to make use of the screening effect.
Formalising the idea of Hansmann et al. (2010), we approximate:

χ(τ = β
2 ) ≈ 1

β
χ(iω = 0) (2.81)

which is justified for the low-temperature limit at hand by the fact that the integral over
β prolongs itself, so it is dominated by the centre region. Inserting (2.81) into (2.80)
finally leads to:

〈nσP 〉 ≈
1
β

[χσ↑ + χσ↓](iω = 0) (2.82)

Away from the atomic limit, we see from Eq. (2.82) that the conjecture of “screening”
on the imaginary axis does not hold: the density is replaced by the static part of the
susceptibility, which in general is not the same. Moreover, truncation creates artificial
coupling between spins and orbitals and we therefore expect to yield significant deviations
in the formation of spin and orbital polarisations. This is in particular true for symmetry-
broken systems, where Hausoel et al. (2016) found that any truncation is bound to yield
wrong results.

Truncation sampling Because of the unreliability of static outer truncation schemes,
one strives to include information from the Monte Carlo sampling procedure. As the first
such partial dynamical truncation scheme, Gull et al. (2011) proposed to use the warm-
up phase to measure the weight of each outer state α by keeping a histogram and then
truncate the states that are seldom visited.

However, one can also make use of the fact that Monte Carlo sum over diagrams C
and the sum over local outer basis states α commute (cf. Eq. (2.79)) and can thus be
merged: ∑

C
wbath · trWβ,0 =

∑
C,α

wbath · 〈α|Wβ,0|α〉, (2.83)

where wbath is the bath weight (2.52) Wβ,0 is the local weight before the application of
the trace (cf. Section 2.5). This is the strategy employed in the segment picture (see
Section 2.4), where the empty diagrams are split into an “occupied” and “unoccupied”
diagram, which corresponds exactly to moving the outer sum into the diagrammatic
sampling.

For the sums to commute in a stochastic sense, we must ensure ergodicity of the
sampling. In particular, one needs to be careful to sample all of C since different diagrams
require a different set of outer basis states. In the segment picture this is not a problem
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since α is known automatically by the operator structure and the move history. We
therefore need moves that change the current outer state α → α′, and may also include
“combined” moves that insert or remove operators together with a state change.

We also need to make sure that all estimators are compatible with this procedure.
For all local (insertion) estimators such as the density, this is not a problem since they
are compatible with the local sum. The Green’s function estimator, which is related to
a derivative on the determinant part, is also unaffected because the determinant is not
truncated and therefore can be factorised before the sum over α.



Chapter 3

CT-QMC sampling of many-body
response functions

As long as it is a well-stirred pot, you only need a single sip
to determine the taste.

George Gallup on sampling public opinion (attributed)

In Chapter 2, we have seen how to estimate the partition function

Z = tr exp(−βHSIAM) (2.5*)

of a single impurity Anderson model by stochastically summing up the constituting strong-
coupling Feynman diagrams. While the value of Z is interesting in itself, mostly we would
like to form expectation values:

〈A〉 = 1
Z

tr[exp(−βHSIAM)A] (3.1)

of some observable A. The central observable is the n-particle many-body propagator

G
(n)
α1α′1...αnα

′
n
(τ1, . . . , τ

′
n) = (−1)n

Z
tr
[
T exp(−βH)cα1(τ1)c†α′1(τ ′1) . . . cαn(τn)c†α′n(τ ′n)

]
, (3.2)

which describes the response of the system to introducing n particles of the flavours
α′1, . . . , α

′
n at imaginary times τ ′1, . . . , τ ′n and removing particles of the flavour α1, . . . , αn

at times τ1, . . . , τn. Each removal may succeed or precede the insertion, describing the
propagation of a particle or a hole, respectively (Abrikosov et al. 1975). By looking at
Eq. (3.2), it is clear that the complexity both in terms of physical processes and in terms
of memory and storage demand grows rapidly in n. We will therefore focus on the one-
and two-particle Green’s function.

In this chapter, we will first provide an analysis of the symmetries of these quantities

53
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(cf. Section 3.1). In constructing an estimator for G, one needs to carefully circumvent
ergodicity problems (cf. Section 3.2). Since G is a continuous function in τ , we have
to choose some representation at this point: we will discuss the imaginary time binning
(cf. Section 3.3); direct measurement in Matsubara frequencies (cf. Section 3.4); and the
recently proposed Legendre expansion (cf. Section 3.5).

In light of the weak scaling of quantum Monte Carlo error bars with the computational
effort we have to amend Hilbert’s original battle cry against ignorance to: “we must know
and we will know – within error bars”. Section 3.6 therefore provides an analysis of
the statistical uncertainties in the high-frequency region and discusses recent proposals
for improvements. Section 3.7 discusses the measurement of the susceptibility as an
important special case of the two-particle Green’s function.

3.1 Dynamical conserved quantities
An important question, both from a physical and a technical point of view, is how con-
served quantities of the impurity Hamiltonian H translate to the n-particle impurity
propagators (3.2). The above use of “conserved quantities” warrants some discussion: the
Green’s function is a one-particle quantity rather than a many-body object, which means
that usual criteria of commutation with a Fock space operator does not apply. It is clear
from Eq. (3.2) that symmetries must translate to specific structure in the outer indices
and frequencies of the propagator instead. We will focus on “static” symmetries, which
are defined solely in terms of the index structure rather than dynamic symmetries, e.g.,
the particle-hole symmetry, which have been discussed at length by Rohringer (2014).

In this section, we will first develop a mathematical framework for describing conserved
quantities and then apply it to the case of the SO(N)⊗ SU(2) invariant Slater-Kanamori
interaction U on top of a non-interacting problem G diagonal in spin and orbital. Before
going into the mathematical rigour, let us first use our physical intuition to try and guess
some of the results:

Prediction 1. If the non-interaction Green’s function G is diagonal in spin and orbital,
we do not expect the interaction to break this symmetry: the Slater-Kanamori U is neither
orbital nor spin-selective, so there is no clear physical mechanism for it. We thus predict
that G(1) is diagonal whenever G is diagonal. If G is proportional to the unit matrix (or
in other cases of high point group symmetry such as for the t2g manifold), this argument
is sufficient to establish the prediction rigorously.

Prediction 2. Diagrammatically, the two-particle Green’s function G(2) consists of the
disconnected terms plus the full vertex F with four external lines attached:

G(2) = (3.3)
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We expect the disconnected part to be of the density-density type, since we predicted
G(1) to be diagonal in spin and orbital. Since F is basically a “renormalised” interaction
U and the internal and external lines are again diagonal by Prediction 1, we expect F
to preserve the structure of the interaction. Thus we predict that G(conn)

αβγδ = 0 whenever
Uαβγδ = 0. For the Slater-Kanamori U , we therefore expect to see density-density, spin-flip
and pair-hopping terms in G(2).

3.1.1 Preliminaries
First, we establish the result for the SU(2)-symmetric Slater-Kanamori Hamiltonian HSK,
which extends the density-density interaction Hdd by pair hopping and spin flip terms:

Hdd =
∑
i

Uni↑ni↓ +
∑

i<j,σ,σ′
(U ′ − Jδσσ′)niσnjσ′

HSK = Hdd − J
∑
i 6=j

(c†i↑c
†
i↓cj↑cj↓ + c†i↑c

†
j↓ci↑cj↓) (3.4)

One can check that this Hamiltonian conserves (among others) the following quantities:

N =
∑
iσ

niσ (3.5a)

S =
∑
i

(ni↑ − ni↓) (3.5b)

Pi = (1− 2ni↑)(1− 2ni↓), (3.5c)

where N is the total number of particles, S is twice the total spin in z-direction, and
Pi is a parity quantum number for each orbital. The latter is −1 if the orbital is singly
occupied, and 1 otherwise. It is directly related to the PS quantum number put forward
by Parragh et al. (2012) as follows:

Pi = 1− 2 · PSi

The following table shows the way Pi works:

1− 2ni↑ 1− 2ni↓ Pi PSi
| 〉 +1 +1 +1 0
| ↓〉 +1 −1 −1 1
|↑ 〉 −1 +1 −1 1
|↑ ↓〉 −1 −1 +1 0

Since each of these quantities consist only of density operators, which commute with
each other, the quantum numbers also commute with each other:

[N,S] = [N,Pi] = [S, Pi] = 0,
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meaning that the quantum numbers are compatible and can be used to classify subspaces
(“blocks”):

{Bi} = {(N,S, P1, P2, . . . , Pn)}

For instance, the vacuum is classified as it’s own block (0, 0,+,+,+, . . .). It is impor-
tant to note that the quantum numbers are not enough to index a single Slater determi-
nant, e.g., both the state c†1↑c

†
2↓|0〉 and c

†
1↓c
†
2↑|0〉 are in the block

(2, 0,−,−,+, . . .).

As we have seen in the beginning of this section, while for the Hamiltonian alone, such
a classification is desirable, for the n-particle propagators it is not. With the quantum
numbers, one can easily prove the following algebra for the creation and annihilation
operators:

ciσN = (N + 1)ciσ c†iσN = (N − 1)c†iσ (3.6a)
ci↑S = (S + 1)ci↑ c†i↑S = (S − 1)c†i↑ (3.6b)
ci↓S = (S − 1)ci↓ c†i↓S = (S + 1)c†i↓ (3.6c)
ciσPj = ((−1)δijPj)cjσ c†iσPi = ((−1)δijPj)c†iσ (3.6d)

These relations provide two central conditions for the proof:

1. While the creation and annihilation operators change the quantum numbers of the
state, they do so in a well-defined way. Equivalently, we can say that the creation
or annihilation operators only connect one block to at most one other block.

2. Given a product of creation and annihilation operators, the commutator with such
a series does not change if one permutes the operators within. Thus, one can say
the creation and annihilation operators form a commutative algebra with respect to
the blocks.

We formalise these as follows:

Theorem 3.1. Let Q be an operator corresponding to a quantum number of the Hamil-
tonian, i.e., [Q,H] = 0, and suppose that for any annihilation operator ck there exists
some number αk ∈ R such that:

ckQ = (Q+ αk)ck, or (3.7a)
ckQ = ((−1)αkQ)ck and detQ 6= 0 (3.7b)

then for a trace of operators,

[Q,A1...An] 6= 0 ⇒ Tr(Π(A1...An)) = 0, (3.8)



3.1. DYNAMICAL CONSERVED QUANTITIES 57

where each operator Aj may either be a creation operator ck(j), annihilation operator c†k(j),
or any function fj(H) of the Hamiltonian and Π denotes arbitrary permutation of the
operators within the trace.

Proof. Since [Q,H] = 0, Q will commute with any function of the Hamiltonian. Also,
since Q must be Hermitian, above relations for annihilation operators also hold for the
respective creation operators by substituting ck 7→ c†k and αk 7→ −αk.

Let β = ∑
j αk(j) be the total “shift” of the trace. Since the sum is commutative, we

can employ any permutation Π of the operators. Let |α〉 be any many-body eigenstate of
the Hamiltonian H. Then it is also an eigenstate of Q with the eigenvalue qα. For case
(3.7a):

〈α|A1 . . . AnQi|α〉 = 〈α|(Qi + β)A1 . . . An|α〉
qα〈α|A1 . . . An|α〉 = (qα + β)〈α|A1 . . . An|α〉

0 = β〈α|A1 . . . An|α〉

thus either β or the sandwich 〈· · · 〉 has to be zero. Because β is consistent for all α, this
proves the statement (3.8) for all eigenstates. For case (3.7b) we can use the fact that all
eigenvalues qα are nonzero:

qα〈α|A1 . . . An|α〉 = (−1)βqα〈α|A1 . . . An|α〉
〈α|A1 . . . An|α〉 = (−1)β〈α|A1 . . . An|α〉

Again, either β has to be a multiple of 2 or this sandwich, and therefore all of them, have
to be zero. �

Examining above relations, we see that N and S satisfy criterion (3.7a) according to
Eq. (3.6a) and Eq. (3.6b,c), respectively, while the Pi satisfy criterion (3.7b) according to
Eq. (3.6d). To see that the determinant is indeed non-zero, we recall that the determinant
of a block-diagonal matrix is the product of the determinants in the blocks. Since for each
block the eigenvalues of Q are consistently −1 or +1, the determinant will also be either
+1 or −1.

It is important to note that while a violation of the quantum numbers implies a
vanishing trace (3.8), the converse in general does not hold, even for interactions of the
density-density type. In particular, time evolution with non-density-denstiy interaction
terms may rotate one occupation number state into an orthogonal state, thus yielding a
zero trace.

With so much machinery in our pocket, we finally turn to the n-particle propagators.
First, we will establish the results for the atomic limit and then show that the addition
of a spin/orbital-diagonal hybridisation function does not change the result.
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3.1.2 Green’s function

We first turn to the Green’s function G

Giσ,jυ(τ) = − 1
Z

Tr
(
T e−βHciσ(τ)c†jυ

)
(3.9)

where T denotes path-ordering in imaginary time. We will start with the atomic limit
and then generalise to the case of a non-zero hybridisation function.

In the atomic limit H = HSK, so we can use the quantum numbers Pi, S and N as
specified by Eqs. 3.5, and the trace definining G satisfies the conditions for the above
theorem. This means all quantum numbers (3.5) must be conserved in the sense of
Theorem 3.1.

By permuting S through first operators of the trace, we see that the Green’s function
must be diagonal in spin σ = υ in order to preserve S. Otherwise we arrive at S ∓ 2,
where the sign depends on path ordering, resulting in a non-vanishing commutator. For
instance, for the off-diagonal term Gi↑,j↓(τ), we get:[

T e−βHci↓(τ)c†j↑
]
S = T e−βHci↓(τ)(S − 1)c†j↑ = (S − 2)

[
T e−βHci↓(τ)c†j↑

]
(3.10)

Using a similar argument, G must be diagonal in the orbitals i = j, because otherwise
Pi and Pj would flip sign only once and therefore not be conserved. Putting everything
together, we arrive at:

Giσ,jυ(τ) = Giσ(τ)δijδσυ (3.11)

For now, Eq. (3.11) is only valid in the atomic limit. We now turn to the case of a
non-zero hybridisation function, which we assume to be spin/orbital-diagonal:

∆iσ,jυ(τ) = ∆iσ(τ)δijδσυ. (3.12)

Then we use the well-known expansion of the Green’s function in terms of the hybridisa-
tion function, which we give here with explicit spin and orbital dependence for complete-
ness:

Giσ,jυ(τ) = 1
Z

∞∑
k=0

(−1)k
k!

∑
(i,σ)

ˆ
dkτ ×

× tr
(
T e−βHciσ(τ)c†jυ(0)ci1σ1(τ1)c†i1σ1(τ ′1) · · · cikσk(τk)c

†
ikσk

(τ ′k)
)

× det
αβ

(∆iασα(τα − τ ′β)δiαiβδσασβ) (3.13)

(Note the additional local two operators compared to the expansion of the partition
function in Eq. (2.25)). Examining each expansion order k separately, we see that in the
local trace there are now k additional pairs of creation and annihilation operators present.

Now comes the crucial part: we will now establish that the atomic limit result (3.11)
is still honoured by a diagonal hybridisation function (3.12). To do so, let us start with



3.1. DYNAMICAL CONSERVED QUANTITIES 59

the case of G↑↓ (3.10), which is forbidden in the atomic limit and add one hybridisation
line (k = 1): the local diagram then becomes

T e−βHci↓(τ)c†j↑(τ ′)ci1σ1(τ1)c†i1σ1(τ ′1)

If we now examine the commutator with S, we see that the additional hybridisation line
do not change the value of the commutator. By Theorem 3.1, this holds regardless of the
position of the hybridisation lines. Therefore, G↑↓ violates the quantum number in the
case of a diagonal hybridisation if and only if it does so in the atomic limit. The same
is true for the particle number N , because each hybridisation line adds and then later
removes one particle. It is also true for the orbital parity Pi, where it performs a double
flip. The path-ordering might reorder the operators, but the position of the operators are
not important (cf. Theorem 3.1).

This means that the insertion of hybridisation lines cannot “restore” terms that are
forbidden by violation of quantum numbers in the tomic limit, therefore the Green’s
function is spin/orbital-diagonal also in the case of a nonzero, but diagonal hybridisation
function:

Giσ,jυ(τ) = Giσ(τ)δijδσυ

3.1.3 Vertex functions
A similar result can also be proven for higher-order propagators, such as vertex functions.
Note however that the two-particle Green’s function

Giσ,jτ,kλ,lµ(τ1, τ2, τ3) = 1
Z

Tr
(
T e−βHciσ(τ1)cjτ (τ2)c†kλ(τ3)c†lµ

)
has a more complicated structure than its one-particle counterpart. In particular, it is not
pair-wise diagonal Giσ,jτ,kλ,lµ 6= Giσ,iσ,jτ,jτ unless the interaction is of the density-density
type. This poses a problem when measuring the vertex function using the removal of
hybridisation lines in the CT-HYB algorithm.

However, in order to preserve Pi, each orbital has to come in pairs in the two-particle
Green’s function (let a 6= b 6= c 6= d):

i j k l Pa Pb description interaction
a a a a + orbitals unchanged density-density
a b b a + +
a b a b + + orbital flip Slater-Kanamori
a a b b + + pair hopping
a b c a + − forbidden
a b c d − −

Also, in order to preserve S, each spin has to come in pairs:
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σ τ λ µ S description interaction
↑ ↑ ↑ ↑ ±0 spins unchanged density-density↑ ↓ ↓ ↑ ±0
↑ ↓ ↑ ↓ ±0 spin flip/pair hopping Slater-Kanamori
↑ ↑ ↑ ↓ +2

forbidden SU(2) violation↑ ↑ ↓ ↓ +4
↑ ↓ ↑ ↑ −2

That means that aside from the pair-wise diagonal terms Gdia, only a pair-hopping
Ghop and spin-flip terms Gflip and an “anomalous” pair hopping term Gan can contribute
to the two-particle Green’s function in the atomic limit and by the argument above also
away from it:

Giσ,jτ,kλ,lµ(~τ) = Gdia
iσ,kλ(~τ)δijδklδστδλµ +Ghop

iσ,k(~τ)δijδklδστδλµδσλ
+Gflip

iσ,j(~τ)δikδjlδστδσλδτµ +Gan
iσ,j(~τ)δijδklδστδλµδσλ (3.14)

In above equation, we denote the opposite spin of σ by σ and we introduced the shorthand
~τ = (τ1, τ2, τ3). In the case of paramagnetic calculations, i. e., if the hybridisation function
is not spin-dependent, we can drop the spin dependence of Ghop and Gflip.

To summarise, we have established prediction 1: the one-particle Green’s function is
diagonal in spin and orbital: Gij ∝ δij if the non-interaction problem G is diagonal as
well. Prediction 2 is not true, however: aside from density-density, pair hopping and spin
flip terms, the vertex also shows an “anomalous” pair hopping term, e.g.:

Gan
ij,↑(τ1, τ2, τ3, τ4) = 〈ci↑(τ1)ci↑(τ2)c†j↑(τ3)c†j↑(τ4)〉

3.2 Green’s function estimator
This section is partly based on (verbatim passages are marked with a sidebar):
P. Gunacker, MW, E. Gull, A. Hausoel, G. Sangiovanni, and K. Held:
Continuous-time quantum Monte Carlo using worm sampling. Phys. Rev. B.,
92, 155102 (2015)

The general idea of the Green’s function estimator is best understood from the path
integral formalism: we want to construct the (one-particle, for now) Green’s function

Gαβ =
ˆ

D[c, c̄] exp[−c̄α(∂β − εαβ −∆αβ)cβ − Sint]cαc̄β (3.15)

from the partition function

Z =
ˆ

D[c, c̄] exp [−c̄α(∂β − εαβ −∆αβ)cβ − Sint] , (3.16)

where Sint is the local interaction term of the action defined in Eq. (2.10). To do this in
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a formal way, we can follow in principle two strategies:

1. we can introduce a set of auxiliary fields jα as source terms into the action: S 7→
S − cαjα − j̄αcα. The Green’s function is then given by the formal differentiation
with respect to the source fields.

Gαβ = − 1
Z

δZ[j, j̄]
δj̄αδjβ

∣∣∣∣∣
j=j=0

(3.17)

2. One can take the functional derivative with respect to the hybridisation function:

Gαβ = − 1
Z

δZ

δ∆βα

(3.18)

The transposition in Eq. (3.18) can be understood as the local propagator being the
“adjoint” of the bath propagator, encoded in ∆αβ.

Both approaches are equivalent in the sense that they formally yield the same Green’s
function. The main difference is that the first comes from the local problem directly,
whereas the second is given as a side product of the bath problem. We will see in the
following that while the second can be turned into an estimator, the first requires a
sampling procedure.

Failure to construct a local estimator In order to construct a local Green’s function
estimator from Eq. (3.17), we may be tempted to turn the diagrammatic series of the
Green’s function:

〈Gαβ(τ, τ ′)〉 = 1
Z

∞∑
k=0

1
k!

ˆ
dkτ

∑
{α,β}

tr
[
T e−βHloccα(τ)c†β(τ ′)

k∏
i=0

cαi(τi)c
†
βi

(τ ′i)
]

det ∆

(3.19)

into an estimator by inserting a pair of local operators into the diagrams of the partition
function Z and measuring the weight ratio, analogous to the density matrix estimators.
However, as already noted by Gull et al. (2011), such an estimator is not ergodic.

This non-ergodicity arises since that all diagrams of G of order k ≥ 2 in Eq. (3.19)
can be constructed from diagrams of Z as a starting point. As an example, consider the
following diagram in the segment picture (cf. Section 2.4):

d2 = (3.20)

(note the two local operators without hybridisation lines). This diagram has a non-zero
weight in G. However, it cannot be generated by a diagram in Z plus two local operators:
if we strip the two operators without hybridisation lines from Eq. (3.20), we end up with
a diagram that violates the Pauli principle (two consecutive creation operators). Such a
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diagram can never visited in the sampling of the partition function (its weight is zero)
and thus we cannot insert two operators into it.

We can solve this issue by enlarging our configuration space

C = CZ ⊕ CG (3.21)

to contain both types of diagrams (2.25) of the partition function space CZ and diagrams
(3.19) of the Green’s function space CG. The sampling in CG allows us to generate all dia-
grams for the Green’s function, thereby circumventing the ergodicity problems of both the
estimator constructed from insertion of local operators and from removal of hybridization
lines. This technique, known as worm sampling, will be discussed in Section 3.8.

Hybridisation estimator In the absence of worm sampling, one can still follow the second
route by approximating the functional derivative in Eq. (3.18) by the partial derivative
and apply it to the individual diagrams (Boehnke et al. 2011):

1
Z

∂Z

∂∆α′α(τ ′ − τ) =
∞∑
k=0

1
k!

ˆ β

0
dkτ

∑
α,α′

wloc(k, α, α′, τ, τ ′)
∂ det ∆αiα′j

(τi − τ ′j)
∂∆α′α(τ ′ − τ) (3.22)

Physically, the partial derivative in Eq. (3.22) corresponds to the removal of hybridisation
lines from the i-th creation and j-th annihilation operator whenever αi, αj, τi, τj coincide
with the desired outer indices. This removal is equivalent to the removal of the i-th
row and j-th in the determinant, which in turn can be written in terms of the inverse
determinant matrix M = ∆−1 as follows:

∂ det ∆αiα′j
(τi − τ ′j)

∂∆α′α(τ ′ − τ) = det ∆αiα′j
(τ − τ ′) ·

∑
ij

Mjiδ(τ − τ ′i)δ(τ ′ − τj)δα′αiδαα′j (3.23)

Examining Eq. (3.23), we define:

gα′α(τ ′, τ) = −
∑
ij

Mijδ
−(τ ′ − τ ′i)δ−(τ − τj)δα′α′iδααj (3.24)

with the anti-periodic Dirac comb δ−(τ) = ∑
n(±1)nδ(τ + nβ). In a sense, gα′α is the

contribution of the current diagram to the bath propagator. We also define a single-
argument version:

gα′α(∆τ) = 1
β

ˆ β

0
dτ gα′α(τ + ∆τ, τ) (3.25)

We note that g is trivial to compute: as we have seen in Section 2.6, rather than ∆, the
inverse matrix M is stored because it is needed for rank-1 updates. We can then write
the one- and two-particle Green’s function estimator as:

Gαβ(τ1, τ2) =
〈
gβα(τ2 − τ1)

〉
MC

(3.26a)
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Gαβγδ(τ1, τ2, τ3, τ4) =
〈
gβα(τ2 − τ1)gδγ(τ4 − τ3)− gδα(τ4 − τ1)gβγ(τ2 − τ3)

〉
MC

(3.26b)

(note the inversion of arguments between G and g, which signifies the switch from the
bath to the impurity picture).

The estimators given by Eqs. 3.26 are avoiding the problems of an insertion estimator.
We can arrive at our example diagram in Eq. (3.20) by cutting the hybridisation lines
from a k = 3 diagram in Z.

Since we cannot measure δ functions directly, we must make some choice of represen-
tation at this point. Ultimately, we need the Green’s function on the Matsubara axis, but
for the measurement, there are in principle three possibilities: binned measurement in τ ,
direct measurement in iν, and expansion in orthogonal polynomials. We will discuss each
method in the following.

3.3 Imaginary time binning
The simplest estimator is formed by splitting the imaginary time axis [0, β] into Nτ bins,1
which for simplicity we assume of equal width ∆τ = β/Nτ , τn = n∆τ , and histogramming
the δ peaks in Eq. (3.25) and Eq. (3.26a):

Gαβ

(
τn + τn+1

2

)
≈
〈

1
∆τ

ˆ τn+1

τn

dτ ′ gβα(−τ ′)
〉

MC
(3.27)

The Monte-Carlo average in Eq. (3.27) is to be taken over all bins, i. e., one divides each
bin by the total number of measurements. This is clear from Eqs. (3.25, 3.26a): the τ bin
is not an “outer” index of the estimator in the sense that it cannot be controlled freely,
but is determined by the current configuration.

We note that while this amounts to a discretisation in imaginary time, it is not equiva-
lent to the Suzuki-Trotter decomposition of the kinetic part T and the interaction part V
of the action (2.17) which is the systematic approximation in, e. g., Hirsch-Fye quantum
Monte Carlo algorithms (cf. Section 2.2.1). More specifically, Trotter decomposition ap-
proximates the diagrammatic series, thus creating a systematic bias, while in the binning
estimator, we retain all features in imaginary time, but smear them over bins.

The computational time for the one-particle Green’s function scales as k2, which is
the best scaling of all methods (an overview of all methods and their scaling is provided
by Table 3.1 auf Seite 81).

3.3.1 Fourier transform and oversampling
Let us now turn to the Fourier transform G(iν) obtained from the binned measurement.
In trying to determine the number of required bins Nτ for a given number of Matsubara

1These bins are not to be confused with the common practise to split a Monte Carlo of Nmeas into
Nbatch batches (sometimes also called bins) of Nmeas/Nbatch measurements each (cf. Section 2.8).
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Figure 3.1: impurity Green’s functions for a simple insulating model. (a) analytic solution
(eq. 3.29) for G(τ) and corresponding histogram (eq. 3.27) for Nτ = 40 bins. (b) =G(iν)
computed by the Fourier transform from the analytic solution with asymptotic behaviour 1/iν
(dashed line), the bin centres, the bin faces, and the bin centres with the endpoints at τ = 0+, β−

added. The Nyquist frequency iνN = 40π/β is shown as dotted line.

frequencies Nν , we first turn to the sampling limit put forward by Nyquist (1928):

Nτ ≥ 2Nν (3.28)

To check this limit, we set up a sample Green’s function

G(τ) ∝ [exp(−50τ/β) + 0.1 · exp(−10τ/β)] + [τ ↔ β − τ ], (3.29)

which is an insulating solution at half filling, and analytically bin in into Nτ = 40 bins
(Figure 3.1a). The Fourier transform of (3.27), shown in Figure 3.1b, shows significant
deviations from the analytic Fourier transform well before the Nyquist limit (dotted line).

This is mainly because the anti-periodic extension G(τ) is discontinuous at τ = nβ

(cf. Rohringer et al. 2013). As essentially the inverse of the high frequency problem
(Blümer 2002, Gunnarsson et al. 2010), the discontinuities of G(τ) generate the 1/iν
high-frequency behaviour. As a result, we need to include both endpoints τ = {0+, β−}
in the computation of the Fourier transform, which in turn means that have to evaluate
the Fourier integral

G(iνn) =
ˆ β

0
dτ eiνnτG(τ) ≈

∑
i

wi eiνnτiG(τi)

ourselves (e.g., using Simpson’s rule) and cannot rely on fast discrete Fourier transform
methods. This is fortunately no problem as the Fourier transform is performed after
the sampling and thus not a computational bottleneck. The endpoints can be measured
accurately within CT-HYB.
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Figure 3.2: Binning error |∆G|/G for 40 bins (red) and 80 bins (green) for the example G(τ)
defined in Eq. (3.29) (shown as blue line).

Oversampling Indeed, by including the endpoints we find that we significantly improve
the high-frequency region (red curve in Figure 3.1b). Nevertheless, there still see increas-
ing deviations for frequencies iν & 40/β. This is due to the fact that at some frequency,
the bin discretisation becomes “visible” for the Fourier transform in the sense that the bin
centre becomes a poor approximation for the location of the bin’s value (see Figure 3.1).

This problem is well-known in signal processing and can be solved using oversam-
pling (Orfanidis 1996). A oversampling factor of m means we sample at m times the
Nyquist frequency and it can be shown (Greengard and Lee 2004) that the error drops
exponentially with m (cf. Figure 3.2a):

∆fω
fω

= O[exp(−λm)] (3.30)

Assuming naive binning, the proportionality factor λ is prohibitively low for memory-
bound applications. This serves as the starting point for non-equidistant Fast Fourier
transform methods (see Section 3.4.1), which attempt to replace the δ(q) in Eq. (3.27)
with the convolution of a window function φ(q) with compact support, adding a constant
factor to the scaling.

Oversampling is not a problem for the one-particle Green’s function for single impu-
rities because for a reasonable number of τ bins Nτ ∼ 103 and flavours Nα ∼ 10, the
memory requirement stays well inside 106.

Implementation notes The binning estimator works with the tuple (τ, τ ′, α, α′,M) for
a configuration to generate G(τ) via Eq. (3.27). In order to maximise the performance of
the estimator, it is advisable not to store τ, α or τ ′, α′ directly, but convert these quantities
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according to:

(α, τ, α′, τ ′) 7→ (q, q′) =
(

2Nαα + 1 + τ

β
,−2α′ + τ ′

β

)
(3.31)

where Nα is the number of flavours. If the hybridisation is known to be diagonal in flavour,
one instead uses (q, q′) = (2α + 1 + τ/β, τ/β). The Green’s function estimator becomes:

G′(q) =
∑
ij

Mjiδ(q − qi + q′j) (3.32)

Note that any branching instructions needed for resolving δ− have been absorbed by
doubling the imaginary time range, and the estimator is agnostic to the structure of the
hybridisation. As a post-processing step, one inverts (3.31), switches back to the impurity
picture and folds the tau range:

Gαα′(τ) = G′α′α(β − τ)Θ(τ)−G′α′α(β + τ)Θ(−τ) (3.33)

If window functions are used, one replaces β with (β + w) in Eq. (3.31), where w is
the support of the window function, and δ(q) with φ(q) in Eq. (3.32), where φ(q) is the
window function transformed to q space. In Eq. (3.33), care must be taken to wrap the
“spilling” edges [−β−w,−β)∪ (β, β+w] to the respective intervals (the spilling around 0
is taken care of automatically). By avoiding all branching, the estimator can be perfectly
vectorised, resulting in a large speed gain because everything else is basically a fairly local
lookup.

The same technique can be applied to an interpolated hybridisation function in τ :
assuming that ∆αα′(τ − τ ′) is known at nτ + 1 points equally spaced within [0, β], one
first constructs the arrays ai = ∆(i/nτ ) and bi = ∆(i/nτ + 1 − ε) for small ε, basically
by rearranging and doubling the elements of ∆αα′ . From these two arrays, the value of ∆
can be computed efficiently using2

∆(q) ≈ abqc + (q − bqc)(bbqc − abqc). (3.34)

As with the Green’s function estimator, this greatly simplifies the computation of elements
at the expense of some pre-computation. The use of two arrays a, b is necessary because
the discontinuity at τ = 0 otherwise breaks the interpolation on the doubled interval.
The use of Eq. (3.34) yields smaller computational gains but eliminates the need to store
α, τ separately.

2This can in principle be further improved by absorbing the subtraction of bqc into ai and storing the
increment (bbqc − abqc).
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(a) (b)

Figure 3.3: (a) equal-time planes running diagonally through the cubic τ space for the two-
particle Green’s function: τ1 = τ2 (blue), τ2 = τ3 (yellow), τ1 = τ3 (red). These planes meet
in the body diagonal τ1 = τ2 = τ3. Three additional planes τ1, τ2, τ3 = 0, β constitute the
bounding box (dashed). (b) The dual picture: splicing the cubic bins into up six tetrahedra of
equal volume for the different signs τ1 ≶ τ2 ≶ τ3 ≶ τ1 (similar to the tessellation used by Blöchl
et al. (1994) for the Brillouin zone).

3.3.2 Two-particle Green’s function
The straight-forward generalisation of the estimator (3.27)

Gαβγδ (τ k, τ l, τm) ≈
〈

1
∆τ 3

ˆ τk+1

τk

d(τ1 − τ2)
ˆ τl+1

τl

d(τ3 − τ4)
ˆ τm+1

τm

d(τ1 − τ4)

× gβα(τ2 − τ1)gδγ(τ4 − τ3)− gδα(τ4 − τ1)gβγ(τ2 − τ3)
〉

MC
(3.35)

(with the bin centres τ k = τk + 1
2∆τ) is an unsuited representation for the two-particle

Green’s function (Ecker 2012): unlike in the one-particle case, equal-time planes run both
straight and diagonally through the imaginary time domain (see Figure 3.3a). These
planes splice the individual bins into up to six parts of equal volume (see Figure 3.3b).3
Since each plane corresponds to a change in the Fermionic sign, given

G(τ1 ≈ τ2) ≈ a[Θ(τ1 − τ2)−Θ(τ2 − τ1)], (3.36)

3At first glance, a change in frequency representation looks promising, but does not actually help: in
imaginary time, it corresponds to substitutions like τ1 7→ τ1 − τ2. One can visualise these in Figure 3.3a
as shearing of the τ3 = 0 plane along the τ2 axis, which straightens out the τ1 = τ2 plane but puts the
formerly straight τ2 = 0 box boundary in the diagonal (note that we work on the T3, such that the
volume spilling over one edge comes back at the other side).
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the estimator Eq. (3.35) will instead yield 0, because by construction, the plane is dividing
each bin into tetrahedra of equal volume but opposite sign.

As a workaround for the “sliced” bins, Ecker (2012) proposed to discretise the slicing
planes with respect to the bin edges: for each bin cut by one slicing plane (τ = τ ′ 6= τ ′′),
one chooses a sign convention τ < τ ′ discards all measurements that violate that condi-
tion and doubles those which fulfil them (for bins cut by two planes (τ = τ ′ = τ ′′), one
instead needs to sextuple the chosen tetrahedron τ < τ ′ < τ ′′). This corresponds to ap-
proximating Eq. (3.36) by ±a (depending on the convention). However, since the Green’s
function typically changes most strongly around equal-time points, this approximation
yields unphysical values for the susceptibilities (Ecker 2012).

A systematic way to improve upon this approximation would be to splice the bin into
tetrahedrons (Figure 3.3b) also in the estimator, thus sextupling the number of bins. The
centres of mass then form a quasi-lattice loosely representing a twofold oversampled grid.
Such a representation by construction avoids all discontinuities and as such is certainly
an interesting alternative for post-DMFT methods working with the parquet equations.
It is not a viable option for QMC codes because of the binning problem (see below) and
therefore out of the scope of this work.

The main problem with the imaginary time implementation is that high oversampling
factors are required in order to (i) resolve the discontinuities that run diagonally through
the imaginary time cube and (ii) provide enough information for a later Fourier transform.
This puts the required memory at O(N4N3

τ log ε−1), where N is the number of flavours,
which quickly exceeds the available memory (cf. Table 3.1). Computationally, the imple-
mentation of the estimator (3.35) scales as O(k8), which unlike in the single-particle case
is considerably higher than the direct frequency measurement (Section 3.4).

Asymptotics Let me note at this point that as with the one-particle case, where the
τ = 0 discontinuity is related to the iν−1 asymptotic in frequency space, the discontinuity
structures are related to the asymptotics of the vertex in the two-particle case. As already
noted by e.g. Rohringer et al. (2013), this asymptotics are rich in structure and cannot
be modelled using simple expansions. As evident from Figure 3.3a, there are five basic
types of discontinuities:4

1. The point τ1 = τ2 = τ3 = 0 (note indeed all six corners of the bounding box map to
this single point). This corresponds to the asymptotics of the edge terms (type 2),
i.e., a/(iν ′ + iω) etc.

2. The body diagonal τ1 = τ2 = τ3 and the edges of the bounding box: τi = τj = 0
with i 6= j. It corresponds to a parametrisation with a single fermionic frequency:

4These types can be seen as a hierarchy: full space→ (4, 5)→ (2, 3)→ 1, where the arrow marks the
intersection of two elements of the former types to get one of the latter. As such, it closely resembles the
construction of the real projective space RP3 from homogeneous coordinates as 1⊕ R⊕ R2 ⊕ R3.
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iν ′ + iω for the body diagonal, iν + iω for τ2 = τ3 = 0, −iν for τ1 = τ3 = 0, and iν ′
for τ1 = τ2 = 0.

3. Intersections of an equal-time plane with the bounding box: τi = τj ∧ τk = 0 with
i 6= j 6= k. These correspond to a parametrisation with a single bosonic frequency:
iν ′ − iν for τ1 = 0, iω + iν ′ + iν for τ2 = 0, and iω for τ3 = 0.

4. Equal-time planes that constitute the bounding box: τi = 0. These correspond to a
parametrisation with two fermionic frequencies: iν and −iν ′ for τ1 = 0, iν + iω and
iν ′ for τ2 = 0, and iν + iω and iν for τ3 = 0.

5. Equal-time planes that run diagonally: τi = τj with i 6= j. These correspond to
a parametrisation with one fermionic and one bosonic frequency: iν ′ and iω for
τ1 = τ2, iν + iω and iν ′ − iν for τ2 = τ3, and iν ′ and iν + iν ′ + iω for τ1 = τ3.

Essentially, the “kernel approximations” by Li et al. (2015) are trying to model these
types of functions: “level-1 kernels” with one auxiliary frequency model asymptotics of
type 2 and 3, while the “level-2 kernels” model asymptotics of type 4 and 5.

3.4 Direct frequency measurement

In order to avoid the systematic deviations from the Fourier transform of a binned imag-
inary time measurement, we perform a Fourier transform for each measurement individ-
ually:

Gαβ (iνn) =
〈ˆ β

0
dτ exp(iντ) gβα(−τ)

〉
MC

(3.37)

Plugging in the explicit form of g from Eq. (3.25) into Eq. (3.37), we arrive at the Fourier
transform of a set of delta peaks, which leads to a sum of exponentials (Gull et al. 2011):

Gαβ (iνn) = −
〈∑

ij

exp[iν(τi − τ ′j)]δααiδββjMji

〉
MC

(3.38)

(note the transposition of M). As a nice side-effect, the anti-periodic nature of the
fermionic Matsubara functions means that negative imaginary times do not have to rolled
over to the interval [0, β).

One obvious advantage of Eq. (3.38) over the binned measurement in Eq. (3.27) is that
no oversampling is needed, thus the space requirements are O(Nν) per flavour. However,
the Fourier transform does incur a significant runtime cost O(k2Nν) that has to be paid
at every measurement (cf. Table 3.1).
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3.4.1 NFFT measurement

Because of the high cost, we would like to use a fast Fourier transform (FFT) algorithm,
which works with δ functions, but requires them to be equally spaced throughout the
signal domain. Fortunately, Dutt and Rokhlin (1993) generalised the FFT algorithm to
non-equispaced data, which is now known as NFFT.5

Following the convention of the NFFT package of Staar et al. (2012), the inverse or
adjoint NFFT f̂n of a function f(x) : [−1

2 ,
1
2)→ C sampled at Nx points xj is given by:

f̂n = INFFTn[xj; f(xj)] =
∑
j

exp(2πinxj)f(xj) (3.39)

with the integer frequencies n ∈ {−Nω
2 , . . . ,

Nω
2 − 1}. For these Nω frequencies, NFFT

improves the computational cost of the Fourier transform from O(NxNω) to O(Nx logNω).
Since the number of required Matsubara frequencies increases roughly with β, the scaling
of the estimator is log β, which is quickly swallowed by the scaling of the Monte Carlo
procedure itself.

In order to use NFFT, we now map the imaginary time differences ∆τ ∈ [−β, β), which
corresponds to two periods, onto the half-open interval x ∈ [−1

2 ,
1
2) of the NFFT, which

corresponds to a single period. The straight-forward way is to fold the time differences
back to the single period τ ∈ [0, β) by using the anti-periodicity in β:

τij = τi − τ ′j + βΘ(τ ′j − τi) (3.40a)
G(τij) = MjiΘ(τi − τ ′j)−MjiΘ(τ ′j − τi) (3.40b)

Then one uses the definition iνn = π
β
(2n + 1) and from Eqs. 3.40 the fact that τij =

β(xij + 1
2) to get the Fourier transform:

G(iνn) =
∑
ij

exp(iνnτij)G(τij) =
∑
ij

exp(2πi
β
nτij) exp(πi

β
τij)G(τij)

= (−1)n
∑
ij

exp (2πinxij) exp(πi
β
τij)G(τij)

= (−1)nINFFTn[xij; exp(πi
β
τij)G(τij)] (3.41)

In this case, the input data has to be modified by a phase factor to account for the fact
that the transform is fermionic (anti-periodic) rather than bosonic (periodic). Since the
exponential function is a rather expensive function, it is better to avoid computing it
unless there is a tight memory constraint.

An alternative, which is easier to implement and typically faster to compute is to map
the interval [−β, β) directly to the input interval x ∈ [−1

2 ,
1
2) of the NFFT, thus doubling

5Non-equidistant FFT is also known as non-uniform FFT, i.e. NUFFT (Greengard and Lee 2004) and
in image reconstruction also known under fast Gaussian gridding.
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Figure 3.4: Direct frequency estimate G(iν) with and without NFFT for a half-filled single-
orbital SIAM with U = 2D and a semi-elliptic bath DOS. Left: computational effort. Right:
calculated Green’s function.

the period. Instead of Eqs. 3.40, we simply define:

τij = τi − τ ′j (3.42a)
G(τij) = −Mji (3.42b)

The transform to the NFFT convention is then given by Eqs. 3.42 with τij = 2βxij and
the Fourier transform becomes the more simple expression:

G(iνn) =
∑
ij

exp(iνnτij)G(τij) =
∑
ij

exp(πi
β

(2n+ 1)τij)G(τij)

=
∑
ij

exp (2πi(2n+ 1)xij)G(τij)

= INFFT2n+1[xij;G(τij)] (3.43)

As evident from Eq. (3.43), the fermionic Matsubara frequencies will then correspond the
odd frequencies n = {. . . ,−1, 1, 3, . . .} from the NFFT. This is clear since the Matsubara
frequencies, extended to the double interval, must have a node at τ = 0. From a compu-
tational point of view, this means that we discard half of the frequencies, however since
NFFT only scales as log(Nω), this only incurs a constant runtime cost.

Figure 3.4a shows the scaling of the NFFT and direct frequency measurement with
the expansion order k for Nν = 4000 Matsubara frequencies. We see that while NFFT
has a small onset, its O(k2 log k) scaling outperforms the direct frequency O(k2) scaling.
Figure 3.4b in turn shows that the result is identical.
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Delayed NFFT NFFT works by mapping Eq. (3.39) to the traditional FFT on an m-
fold oversampled grid. While Eq. (3.30) guarantees that the error drops exponentially
with λm, λ is often too small, especially for memory-critical applications.

NFFT is therefore centred around a theorem asserting that the binning of compact
window functions φ(τ − τ ′) instead of delta peaks δ(τ − τ ′) improves λ with the extent
of the window function. Intuitively, this can be understood as follows: when binning
δ-peaks, spatial information inside within a single bin is lost, while for small Gaussian
peaks, such information “leaks” out into the neighbouring bins, allowing us to gauge
the structure inside of the bin from analysing its neighbours. The convolution with the
window function can be divided off after the FFT, which allows us to recover the same
result as with δ peaks, but with stronger convergence.

Staar et al. (2012) first noted that as with oversampled binning, the windowing op-
eration and the FFT can be split, thus avoiding the cost of the FFT and the inverse
windowing for each measurement and reducing the effective scaling to O(k2 log ε−1) (cf.
Table 3.1). We found that in our case the logarithmic term did not produce any bottle-
neck, so we did not implement the delayed FFT method. Unfortunately, the approach by
Staar et al. (2012) does not generalise to the two-particle Green’s function (see later).

3.4.2 Two-particle Green’s function

Performing the Fourier transform in the particle-hole convention, where we have two
fermionic frequencies iν, iν ′ and one bosonic frequency iω, we get:

Gαβγδ(iν, iν ′, iω) =
ˆ β

0
d4τ eiν(τ1−τ2)+iν′(τ3−τ4)+iω(τ1−τ4)Gαβγδ(τ1, τ2, τ3, τ4) (3.44)

For the estimator, we would like a decoupling of the individual terms much like in
formal estimator in the τ space Eq. (3.26b). However, the contribution of the “current”
diagram to the bath problem g(τ ′, τ) – defined by Eq. (3.24) – is not time-translation
invariant (only the summation over the inner indices of a diagram restores conservation
of energy). This means that we cannot decouple the different frequencies in Eq. (3.44).
Instead, as already noted for CT-AUX by Staar et al. (2012), we have to retain the explicit
dependence on both times and thus end up with a two-frequency object:

gα′α(iν ′, iν) =
ˆ β

0
dτ ′ dτ exp(iν ′τ ′ − iντ)gα′α(τ ′, τ)

= −
∑
ij

exp(iν ′τ ′i − iντj)Mijδα′α′iδααj (3.45)

Using Eq. (3.45), we find that the Wick decoupling of each individual measurement of the
two-particle Green’s function indeed carries over to the frequency measurement:

Gαβγδ(iν, iν ′, iω) =
〈
gβα(iν, iν + iω)gδγ(iν ′ + iω, iν ′)
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− gδα(iν ′ + iω, iν + iω, )gβγ(iν, iν ′)
〉
MC

(3.46)

In practice, the measurement thus proceeds in two steps: Firstly, one constructs
g(iν ′, iν) via the discrete Fourier transform Eq. (3.44). The frequency grid must be of the
size Nν+ω := Nν +Nω in every direction. Implementing this naively scales as O(k4N2

ν+ω).
Secondly, one assembles the two-particle Green’s function from the “straight” and the
“crossing” term of Eq. (3.46), which scales as O(N2

νNω).
We can again use, in this case a two-dimensional, NFFT to speed up the Fourier

transform. As with the single particle case, one can work on the doubled interval, which
is simpler and computationally beneficial for non-memory bound operations:

g(iν ′m, iνn) = INFFT2m+1,−2n−1[ 1
2β τ

′
i ; 1

2β τj;−Mij] (3.47)

The NFFT on the single interval could instead amount to:

g(iν ′m, iνn) = −
∑
ij

exp(πi
β

(2m+ 1)τ ′i − πi
β

(2n+ 1)τj)Mij

= −
∑
ij

exp(πi
β

(2mτ ′i − 2nτj)) exp(πi
β
τ ′i)Mij exp(−πi

β
τj)

= (−1)m−n+1INFFTm,−n[ 1
β
τ ′i − 1

2 ; 1
β
τj − 1

2 ; exp(πi
β
τ ′i)Mij exp(−πi

β
τj)] (3.48)

Again, note that the evaluation of 2k exponential functions, and subsequently k2 products
in Eq. (3.48), does not spoil the logarithmic scaling of the Fourier transform, it does effect
the low k behaviour because of the high cost of the exponential function.

3.5 Legendre expansion
Instead of representing the Green’s function in imaginary time or frequency, recently
Boehnke et al. (2011) proposed to project it onto scaled Legendre polynomials:

Gαβ(l) = −
√

2l + 1
〈ˆ β

0
dτ Pl(2τ/β − 1) gβα(−τ)

〉
MC

(3.49)

Since the complete set of Legendre polynomials Pl form an orthogonal basis of the square-
integrable functions L2[−1, 1], this is basically a change of representation. Boehnke et al.
(2011) claim however that a heavily truncated expansion l < L

1. provides an effective noise filter for Monte Carlo data

2. improves the modelling of the high-frequency behaviour

3. provides a representation equivalent to but more compact than the Matsubara axis,
valuable especially for two-particle quantities

We will examine some of these points in greater detain in the next sections.
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Figure 3.5: Filtering behaviour of the Legendre expansion in terms of the filter gain t2L(iν) (cf.
Eq. (3.51)) for different truncations L.

3.5.1 Noise filtering
We will first analyse the frequency filtering behaviour of the Legendre representation.
For this it is best to start with the transformation matrix from Legendre to Matsubara
frequencies, which can be formulated in terms of the spherical Bessel functions jl(ν)
(Boehnke et al. 2011):

Tnl =
√

2l + 1
β

ˆ β

0
dτ exp(iνnτ)Pl(2τ/β − 1) = (−1)nil+1√2l + 1 jl

(
n+ 1

2

)
(3.50)

Note that there is no dependence of Tnl on the temperature. We find that the reverse
transform is given by T †. As expected, T is an isometry (T †T = 1) in the limit of infinitely
many Matsubara frequencies, and a coisometry (TT † = 1) in the absence of a truncation
of the Legendre basis L→∞.

In order to study the filtering behaviour, we make a “round trip” through the trans-
formation specified by Eq. (3.50) for a given Legendre truncation L to arrive at the gain
or squared frequency response t2L(iν) of the filter:

tL(βiνn) :=
L−1∑
l=0

TnlT
∗
nl (3.51)

Note again that the gain in Eq. (3.51) is a universal property of the Legendre expansion
and independent of temperature and the total number of Matsubara frequencies. The gain
profiles for different L are shown in Figure 3.5a. We see that in the low frequency region,
we indeed find first perfect transmission t2 = 1 and then an exponential onset consistent
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with the behaviour of low-pass filters. Empirically, we find that the filter provides perfect
transmission up to about

βiνmax ≈ (1.9± 0.05)L. (3.52)

Outside of this region, we find the expected 1/iν2 filtering behaviour, however it is super-
imposed a series of “steps” at intermediate frequencies. These steps are surprising, since
they mean that there should be a physical feature at the corresponding energy scales that
is to be enhanced.

In order to analyse the medium and high-frequency behaviour in more detail, we
expand the gain function in the asymptotic region: with the asymptotic form of the
spherical Bessel function (Abramowitz and Stegun 2012):

lim
x→∞

jl(x) = 1
x

cos
[
x− (l + 1)π2

]
(3.53)

we find in the limit iν →∞ and for high Legendre order, where the cos2 terms for different
orders average out:

lim
iν→∞

t2L(βiνn) = 2
(

L

βiνn

)2

(3.54)

Again, we find the 1/iν behaviour predicted by Boehnke et al. (2011). Dividing by
Eq. (3.54) now allows us to compare filter gains t2L for different Legendre truncations. This
is shown for Legendre truncations L = 40 and L = 41 in Figure 3.5b, where we roughly
distinguish three regions: (I) marks perfect transmission in the low-energy region, which,
in accordance with Eq. (3.52), is about the same size for both truncations; (III) marks
the asymptotic region, where we confirm Eq. (3.54); and (II) signifies the intermediate
region.

The interesting point in Figure 3.5b is now that for very similar truncations, the
structures in regions II and III completely shift. Especially in region III, the filter for L =
41 (including the coefficients l = 0, . . . , 39) has periods that to some extent “annihilate”
the L = 40 structures. This means that we need the additional l = 40 to “stabilise” the
L = 40 expansion. In a sense, that the filtering behaviour is actually a breakdown of the
truncated Legendre expansion, and the medium-energy and high-energy structures are
non-physical artefacts of that truncation.

This is also clear by looking at the explicit form of the T from Eq. (3.50): because
of the pre-factor (l + 1), |Tnl|2 is dominated by the highest-order Bessel functions jL−1

in regions II and III. While the Bessel functions jl(x→ 0) are well-behaved polynomials,
they turn to heavily oscillating functions in the high-energy region (cf. Eq. (3.53)). The
shifted oscillations of the Bessel functions surrounding some order l are thus needed to
cancel the oscillating behaviour of the order l; this is also consistent with the observation
that the onset of region II is correlated with the start of the asymptotics of jL−1.

One might interject at this point that while the artefacts are clearly non-physical, they
are—as evident from Figure 3.5b—dampened with 1/iν2, which conspires nicely with the
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1/iν behaviour of the Green’s function. While this is true, it does not necessarily help,
especially when low temperatures force a high Legendre expansion order: for L = 80, we
find artefacts at the scale of up to t2 = 0.4 (cf. Figure 3.5a).

Moreover, the Legendre artefacts can be problematic when extracting higher-order
functions from G such as the self-energy Σ. This is even true when filtering an analytic,
i.e. noise-less, Green’s function: Figure 3.6a shows the imaginary part of the Green’s
function G(iν) of a single orbital coupled to two bath sites at ε = ±0.5 with V = 1,
with a local interaction U = 5 at half filling (µ = 2.5) and β = 100. We see that the
ED result and the filtered version t2L(iν)G(iν) with L = 100 are almost on-top of each
other. Computing the self-energy, we see a different picture (Figure 3.6b): as we leave
the pass-through region I (iνmax ≈ 3.8) in marked by a dotted line, we see progressively
worsening oscillations (Figure 3.6d), which directly mirror the structures in Figure 3.5b.

Let me note here that Figure 3.6b is not some carefully construed example that shows
an instability: one sees these oscillations in the self-energy also with CT-HYB results, as
long as the Legendre expansion truncates early enough such that the frequency limit in
Eq. (3.52) is visible. For such results, which are superimposed the QMC noise, one is now
faced with a dilemma: one either truncates the series early, which yields “smooth” results,
but causes systematic deviations hidden in the Legendre expansion; or one truncates the
series late, which gives the correct physics, but does not improve upon the noise.

3.5.2 Statistical uncertainties

We will now analyse the high-frequency behaviour of the Legendre representation. Eq. (3.49)
can formally be re-written in terms of the frequency estimator (cf. Section 3.4) as follows:

G(l) =
〈 ∞∑
n=−∞

T ∗nl g(−iνn)
〉

MC
(3.55)

where Tnl is again defined by Eq. (3.50) and we have restricted ourselves to one flavour
for simplicity. To analyse statistics, the lemma we will use is the following: since T is a
unitary transformation that stays constant over the run, it commutes with Monte Carlo
estimation, i.e., Eq. (3.55) is equivalent to

〈G(l)〉 =
∞∑

n=−∞
T ∗nl〈G(iνn)〉. (3.56)

We note however that the frequency sum must extend to infinity in order to be exact.
We now turn to the statistical uncertainty: since the Legendre polynomials forman

orthogonal basis, we can safely assume that the covariance between different Legendre
coefficients Cov[G(l), G(l′)] vanishes if the runs are uncorrelated themselves. If we now
transform our estimated G(l) to G(iν), the covariance matrix is transformed according
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Figure 3.6: Filtering behaviour of the Legendre expansion of orders L = 50 and L = 100 for
an exact Green’s function for a single orbital at half filling (<G(iν) = 0) and β = 100 and the
resulting self-energy. The filter limit (3.52) is shown as dotted line.
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(a) (b)

Figure 3.7: Correlation, or normalised covariance, matrix Corr[G(iν), G(iν ′)] for any quantity
on the Matsubara axis G(iν). (a) G(iν) is obtained from transforming the quantity measured in
the Legendre representation G(l) with L = 50. We have assumed no cross-correlation from the
Legendre measurement, i.e., independent Monte Carlo runs. The “pass-through” limit (3.52)
is shown as dotted lines. (b) G(iν) is directly measured for 50 positive Matsubara frequencies
(βiνmax ≈ 311) plus a fit for the asymptotic region is made.

to:
Cov[G(iνn), G(iνm)] =

L−1∑
l=0

TnlT
∗
lm Var[G(l)] (3.57)

Eq. (3.57) establishes that the Legendre expansion does not improve upon the statistical
uncertainties of a frequency or imaginary time measurement. For the low-frequency part,
it is the identity operation. For the high-frequency part, it may seem to reduce the error
(they are dampened with the filter gain tL) when in fact it merely “rotates” the error bars
into off-diagonal elements of the covariance matrix via T .

To make this more clear, we look at the correlation matrix, which is obtained by
normalising the covariance matrix:

Corr[G(iνn), G(iνm)] = Cov[G(iνn), G(iνm)]√
Var[G(iνn)] Var[G(iνm)]

=
∑L−1
l=0 TnlT

∗
lm

tL(iνn)tL(iνm) . (3.58)

Eq. (3.58) is independent from the variances in the Legendre representation and visualised
in Figure 3.7a.6 Perfect positive or negative correlation is signified by the value +1 (blue)
and −1 (red), respectively, while absence of correlation is signified by 0 (white). We

6One obtains a very similar picture when performing first a set of measurements in the Legendre
expansion in CT-HYB, then transforming to the frequency representation and performing a bootstrap
error analysis (Harrer 2013).
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Figure 3.8: (a) Normalised weights W (p)(βiν)/n(p) for the calculation of the p-th high-frequency
moment from the a Green’s function G(iν) filtered by truncated Legendre expansion with L = 50
(note the logarithmic frequency scale); (b) Imaginary part of the self-energy =Σ(iν) obtained
from an ED Green’s function for a one-orbital SIAM at β = 100: the exact self-energy (blue)
and the “corrected” self-energy for an artificial error of ∆G1 = 10−3 in the moment (green).

again see that in the low-frequency region (inner box), the different measurements are
completely uncorrelated, while we see perfect correlation in the high-frequency part.

The correlation in the high-frequency part is not surprising, since we estimate it from
just a few Legendre coefficients. We see a similar picture for, e. g., a fitting procedure
of the asymptotic region (Figure 3.7b): suppose we estimate G(iν) from 50 Matsubara
frequencies directly, then we wont see a correlation in the region up to iνβ = 99π ≈ 311
(signified by the two diagonals). If we now estimate the asymptotic coefficient (e.g., by
measuring them within Monte Carlo) and replace the asymptotic region by this measure,
we obviously get perfect correlation within that region.

As a result of cross-correlation, special care has to taken when the Legendre mea-
surement is continued to the real frequency axis using the maximum entropy method
(MAXENT). This is because MAXENT assumes a set of Gaussian errors and thus re-
quires us to diagonalise the covariance matrix.

3.5.3 High-frequency moments and fitting
A problem frequently encountered in the solution of the impurity model is the computation
of the asymptotic moments of the Green’s function, as they relate to densities, double
occupations, energies, and so forth. If one wants to extract these from the Green’s function
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instead of measuring them directly (Gull et al. 2011), one usually requires a delicate fitting
procedure of the asymptotic tail to model functions.

Boehnke et al. (2011) proposed to instead estimate them from the truncated Legendre
expansion as this allows for filtering the noise of the Matsubara expansion. Rewritten in
terms of the Green’s function in frequency space, the p-th moment of the Green’s function
Gp is then given as:

Gp = 1
βp

∞∑
n=−∞

w(p)
n G(iνn), (3.59)

where we have introduced the weight w(p)
n of the n-th Matsubara frequency:

w(p)
n := (−1)p

L−1∑
l=0

2
√

2l + 1 (l + p− 1)!
(l − p+ 1)!(p− 1)!T

∗
nl. (3.60)

The summation weights (3.60) are not normalised. Instead we define the normalisation
constant as (N (p))2 := ∑

n |w(p)
n |2. Again the form of the fitting is only dependent on the

Legendre truncation.
Figure 3.8a shows the normalised weights of the first, third and fifth moment when

using L = 50 Legendre coefficients. We can again distinguish the three regions present also
in the filtering behaviour (cf. Figure 3.5b). The weights in the low-frequency region (I)
are zero, which is consistent with the fact that is the “pass-through” area of the filter. In
the asymptotic region (III), the weights fall off as 1/iνn. This behaviour ensures that the
sum (3.59) converges also in the presence of constant error-bars in frequency space. The
fast-oscillating weights in region (II) can be problematic: while they are formally exact,
they require a delicate cancellation between G(iν) neighbouring frequencies. Therefore,
the size of statistical uncertainties in the medium frequency region determines the quality
of the moment as estimated from Eq. (3.59).

Boehnke et al. (2011) notes that “it is easy to incorporate a priori information on the
moments” Gp, basically by turning Eq. (3.59) into a fit for the Legendre coefficients. Let
for instance Gexact

1 be the exact first moment of the Green’s function, then the correction
for G(iν) is given by:

∆G(iνn) = w∗n
[N (1)]2 ∆G1 = w∗n

[N (1)]2

[
βGexact

1 −
∞∑

m=−∞
w(p)
m G(iνm)

]
(3.61)

However, because of the presence of w∗, we encounter the “inverse” of the medium fre-
quency problem when fitting the moment, making the procedure unreliable. This is be-
cause a finite correction ∆G to the Legendre coefficients propagates backwards through
the weights and arbitrarily enhances structures at medium frequencies.

To illustrate this, let us again use our simple one-orbital SIAM coupled to two bath
sites at ε = ±0.5 with V = 1, with a local interaction U = 5 at half filling (µ = 2.5) and
β = 100. The blue curve in Figure 3.8b shows the exact self-energy as obtained with ED.
Now we artificially introduce an error of ∆G1 = 0.001 into the first moment and correct
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method computational cost: sum of memory cost
transform windowing assembly

One-particle Green’s function G(iν)
naïve binning k2 – – Nτ

oversampled binning∗ k2 k2 log(ε−1)† – Nτ log(ε−1)
Legendre expansion k2Nl – – Nl

Fourier transform k2Nν – – Nν

NFFT k2 log(k) k2 log(ε−1) – Nν + log(ε−1)
Two-particle Green’s function G(iν, iν ′, iω)

naïve binning k8 – – N3
τ

oversampled binning k8 k8 log(ε−1)† – N3
τ log(ε−1)

Legendre expansion k4NlNω – N2
l Nω N2

l Nω

Fourier transform k4N2
ν+ω – N2

νNω N2
νNω

NFFT∗ k4 log(k) k4 log(ε−1) N2
νNω N2

νNω + log(ε−1)

Table 3.1: Summary of the computational and memory scaling for different estimators in Z space
with respect to the expansion order k, the number of Matsubara frequencies Nν and Nω, the
number of bins in imaginary time Nτ , the number of Legendre coefficients Nl, and the desired
accuracy ε. All terms are to be enclosed in O(. . .), but these were omitted for readability. Costs
marked with (†) must only be paid in case of the use of a delayed FFT. (∗) decorates methods
I deem superior for the given quantity (a detailed analysis is given in the text).

the exact Green’s function according to Eq. (3.61).7 The according “fitted” self-energy
is plotted in green in Figure 3.8b. We find substantial systematic deviations already at
medium frequencies.

Note that the computation of the moment itself already reaches the desired “plateau”
and also the Green’s function is nicely converged. The main problem is instead that the
Legendre expansion is in a sense a “strange” expansion just outside of the pass-through
region of the filter. A small error here destroys the delicate balance required to get the
right moment, so if the moment is corrected, it translates to a non-physical pattern back
in frequency space.

3.6 Estimator statistics
It is worth taking a moment to analyse the statistics of the Green’s function estimators
and its derived quantities. In Section 2.8, we have seen that for an estimator for f , the

7While the value of this error is certainly plausible from QMC simulations, it is admittedly on the
“large” side to show the deviations in Figure 3.8b more clearly. Note however, that the size of these
structure only scales linearly with the size of the error bars on the moment, so one finds them also for
much better statistics.
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Figure 3.9: Propagation of a constant error in the Green’s function to a quadratically diverging
error in the self-energy for a one-orbital SIAM with U = 5, D = 1 at half filling.

squared Monte Carlo error

lim
N→∞

∆f 2 = 1
N
τint,f Var[f ] (2.69*)

tends to the “true” ensemble variance of f , divided by the number of Monte Carlo steps
N corrected for the integrated autocorrelation length τint,f . For the Green’s one-particle
function Gij(τ) = −〈T ci(τ)c†j(0)〉, the variance is trivially given by:

Var[Gij(τ)] = 〈T ni(τ)nj(0)〉 − |Gij(τ)|2, (3.62)

which unsurprisingly is related to the density susceptibility.8
The Fourier transform of Eq. (3.62), in turn is given by

Var[Gij(iν)] = 〈Gij(iν)Gji(−iν)〉 − 〈Gij(iν)〉〈Gji(−iν)〉 (3.63)

Susceptibilities are dominated by their disconnected components at high frequencies.
Given Eq. (3.63), we hence expect that the error bars, i.e. the square root of the sample
variance, of the Green’s function are essentially constant:

lim
iν→∞

∆G(iν) = O(1) (3.64)

The sample covariances, as discussed by Parragh (2013), vanish in the imaginary time or
8One might thus be tempted to construct a susceptibility estimator from the error bars of the Green’s

function estimator. However, inferring from Eq. (2.69*), these error bars are dampened with 1/N , which
means that it is essentially impossible to converge the error on the error bars.
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frequency representation. Figure 3.9a shows an example Green’s function from CT-HYB,
which shows that Eq. (3.64) is indeed correct (see inset).

Constant error bars in the Green’s function are not a problem per se, however, it
becomes an issue when plugging them into the Dyson equation

Σ(iν) = G−1(iν)−G−1(iν) (3.65)

in order to compute the self-energy Σ. This becomes apparent when performing a formal
propagation of the uncertainty in G = (iν + εk − Σ(iν))−1 through Eq. (3.65) (Clifford
1973):

Var[Σ(iν)] ≈
∣∣∣∣∣∂Σ
∂G

∣∣∣∣∣
2

Var[G(iν)] = |G(iν)|−4 Var[G(iν)] (3.66)

where we have neglected Cov[G] and assumed no error in G.9 The latter is justified by the
fact that while G may indeed carry a systematic error from a self-consistency loop, as far
as the impurity model and thus Monte Carlo solver is concerned, G is exact (Hafermann
et al. 2012). By inserting Eq. (3.64) into Eq. (3.66), we expect quadratically diverging
error bars for the self-energy:

∆Σ(iν) = O(iν)2 (3.67)

Looking at the self-energy from Figure 3.9b, this is indeed what we find. Aside from
aesthetic considerations, the poor asymptotics prohibit the extraction of the moments as
well as the analytic continuation of Σ to the real frequency axis. Moreover, it poses a
problem for d+p calculations where the p-bands are far removed from the Fermi energy and
thus influenced by the real part of the self-energy at these energy scales (cf. Section 4.3.2).

Let me note that the asymptotic scaling in Eq. (3.66) is not a general problem of CT-
QMC method, but rather specific to CT-HYB: In CT-AUX and CT-INT, one constructs
an estimator for the difference (G− G), which removes the problematic iν−1 term.

3.6.1 Formal improved estimators for the self-energy

The basic idea of the improved estimators as put forward by Hafermann et al. (2012)
is to construct the self-energy not from the Dyson equation, but from the equation of
motion for the Green’s function. We will give a short sketch of the deviation in the path
integral formulation, for a rather lengthy derivation in the Hamiltonian formulation we
refer the reader to the original paper. Note also that while Hafermann et al. (2012) re-
stricted themselves to density-density-type interactions, I will give a derivation for general
interactions.

9Note that while Eq. (3.66) is formally correct, it is not a good approach for estimating the sample
variance of the self-energy∆Σ because of the inherent bias of the underlying Taylor expansion (Clifford
1973). In general, one has to resort to re-sampling methods such as the bootstrap or jackknife procedure
(Hesterberg et al. 2005). For the scaling analysis of the asymptotics, this bias can however be ignored.
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Following Veschgini and Salmhofer (2013), we start with the master equation

Gβγ
ˆ

D[c, c̄] ∂

∂cβ
e−S[c,c̄]F [c, c̄] = 0, (3.68)

where F is any fermionic functional of the Graßmann fields and S = c̄αGαβcβ + Sint is
again the effective action of the impurity model (cf. Eq. (2.12b)). Eq. (3.68) holds because
all paths are closed and therefore the shell vanishes. Derivation by the product rule yields
the equation of motion or Schwinger-Dyson equation for c̄:
ˆ

D[c, c̄] e−S[c,c̄]c̄γF [c, c̄] = Gβγ
ˆ

D[c, c̄] e−S[c,c̄]
(
∂Sint[c, c̄]
∂cβ

F [c, c̄] + ∂F [c, c̄]
∂cβ

)
(3.69)

We first evaluate the derivative of the interaction part in Eq. (3.69) as:

∂Sint[c, c̄]
∂cβ

= 1
2Uδεκλc̄δ c̄ε(cκδλβ − cλδκβ) = Uδε[κβ]c̄δ c̄εcκ (3.70)

where we borrowed the notation [κβ] from electrodynamics for the anti-symmetrisation
over indices: U...[κβ]... := 1

2(U...κβ... − U...βκ...). Note that this anti-symmetry is a direct
effect of the Pauli principle, such that for most interactions, one can simply replace
Uδε[κβ] → Uδεκβ in Eq. (3.70). By setting F [c, c̄] = cα in Eq. (3.69), and identifying the
empty path integral with Z, we now get an equation for the two-point function:

Gαγ = Gαγ − Gβγ
1
Z

ˆ
D[c, c̄] e−S[c,c̄] Uδε[κβ]cαc̄δ c̄εcκ (3.71)

By comparison with the Dyson equation Gxz = Gxz + GyzΣayGxa, we identify the second
term in Eq. (3.71) as:

(GΣ)αβ = − 1
Z

ˆ
D[c, c̄] e−S[c,c̄] Uδε[κβ]cαc̄δ c̄εcκ = −Uδε[κβ]〈cαc̄δ c̄εcκ〉 (3.72)

Since the interaction is local in τ It is instructive to write Eq. (3.72) in operator form
such that the structure in imaginary time becomes apparent:

(GΣ)αβ(τ − τ ′) = −Uδε[κβ]〈T cα(τ)c†δ(τ ′)c†ε(τ ′)cκ(τ ′)〉 (3.73)

We note that this is in principle a Green’s function with something that looks like a
Hartree diagram attached to the right of the creation operator.

In trying to determine the meaning of the structure to the right of the creation oper-
ator, one can look at the Schwinger-Dyson equation for c:

ˆ
D[c, c̄] e−S[c,c̄]cαF

′[c, c̄] = Gαβ
ˆ

D[c, c̄] e−S[c,c̄]
(
∂Sint[c, c̄]
∂cβ

F ′[c, c̄]− ∂F ′[c, c̄]
∂cβ

)
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Figure 3.10: Improved estimator [GΣ] compared to the Green’s function G for a half-filled
single-orbital SIAM at β = 10, U = 5 and a discrete bath with ε̃ = ±0.5 and V = 1. (a)
impurity Green’s function G and GΣ in imaginary time; (b) imaginary part of G and GΣ on
the Matsubara axis.

Going carefully through Eq. (3.70) and Eq. (3.71), we then arrive at a “reversed” equation:

(ΣG)αβ = − 1
Z

ˆ
D[c, c̄] e−S[c,c̄] U[αδ]εκc̄δcεcκc̄β = −U[αδ]εκ〈c̄δcεcκc̄β〉

Here, the structure is to the left of the annihilation operator, which means that our choice
of derivative in the Schwinger-Dyson equation determines is related to the position of the
“Hartree structure” and this structure is related to the multiplication with the self-energy.

Figure 3.10 shows the result of GΣ for a simple one-orbital SIAM at half filling. The
Green’s function is symmetric in τ (we are at half filing), but the improved estimators
are not (cf. Figure 3.10a). This is because rather than the density, the border values in
the density-density case are are given by:

GΣαβ(τ = β−) = −
∑
γ

δαβUβγ〈nβnγ〉 (3.74a)

GΣαβ(τ = 0+) = −
∑
γ

δαβUβγ〈nγ〉+GΣαβ(τ = β−). (3.74b)

This is because the size of the discontinuity of GΣ in imaginary time is equal to the
zero-th moment of the self-energy on the Matsubara axis (the Hartree diagram):

[GΣ]1 = GΣ(β−) +GΣ(0+) = U〈n〉 = Σ0 (3.75)

(cf. Figure 3.10b and Eq. (3.76)). Moreover, note that GΣ(τ) does not satisfy the usual
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constraints for a propagator (convexity etc.). For the ensemble variance in the asymptotic
region, a similar relation to Eq. (3.64) can be derived: limiν→∞∆GΣ(iν) = const.

One has now another way to compute the self-energy:

Σαγ(iν) = G−1
αβ(iν) (GΣ)βγ(iν) (3.76)

where I made the frequency dependence explicit. For an exact Green’s function, Eq. (3.65)
and Eq. (3.76) are equivalent. However, a formal propagation of uncertainties in both G
and GΣ yields:

∆Σimpr(iν) = O(1) (3.77)

because only the ratio of errors propagates. The constant scaling in Eq. (3.77), which
improves significantly on the scaling of the Dyson equation (3.67), is why GΣ is called an
improved estimator for the self-energy.

3.6.2 Hybridisation estimator
In turning Eq. (3.73) into a Monte Carlo estimator, one needs to be careful not to run into
the same ergodicity problems as for a local Green’s function estimator (cf. Section 3.2).
Hafermann et al. (2012) thus proposed to use a “hybrid” estimator:

GΣαβ(τ − τ ′) = Uδε[κβ]〈gδα(τ ′ − τ)c†ε(τ ′)cκ(τ ′)〉MC (3.78)

where g is the bath propagator for the diagram defined in Eq. (3.24), and c and c† are
inserted in the local diagram to the left of each creation operator. In other words, the
first and second operator in Eq. (3.73) are measured by removing their hybridisation lines,
while the third and fourth operator are physically inserted in the diagram. Clearly this
solves the ergodicity issue inherited from the G space, however I am unaware of any formal
proof that the estimator (3.78) is indeed ergodic.

In the segment picture (cf. Section 2.4), only the term ε = k contributes in the
interaction. This means that no insertion of local operators is necessary. One can instead
just read off the density and modify g accordingly. For matrix-vector codes, one needs
to evaluate the complete trace both from 0 and backwards from β (cf. Section 2.5.4) in
order to store the many-body density matrix ρ(τ ′i − ε) for the later evaluation of the local
part of Eq. (3.78). The latter procedure was implemented into w2dynamics by Parragh
(2013) and me.

Let me also note that the estimator in Eq. (3.78) can be turned into a direct frequency
measurement and is compatible with NFFT (Section 3.4.1): one simply needs to amend
the input matrix Mji in Eq. (3.41) to M ′

ji = Mji[Uρ]j, where [Uρ]j is given by the local
contraction at τ ′j.

Figure 3.11 compares the self-energy Σ(iν) as estimated from the Dyson equation
(3.65) with the one estimated from the improved estimator equation (3.76) for the same
statistics for a simple single-orbital SIAM at β = 10, U = 5. We see that the two
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Figure 3.11: Self energy Σ(iν) estimated from the Dyson equation (3.65) and from the improved
estimator equation (3.76) for a half-filled single-orbital SIAM at β = 10, U = 5 and a discrete
bath with ε̃ = ±0.5 and V = 1.

estimators agree in the low-energy region, but start to diverge from each other as we
go up in frequency. Since we are at half filling, we expect <Σ = µ = 2.5. We see
large deviations from this for the Dyson estimator (Figure 3.11a), whereas the improved
estimator yields a better result. For the imaginary part (Figure 3.11b), the statistics of
the improved estimator is good enough to extract the first moment, while for the Dyson
estimate, this is not possible.

Figure 3.12 provides a more thorough analysis of the error bars of the different methods
by means of the bootstrap procedure (Hesterberg et al. 2005). We find that the error of
the Dyson equation estimation indeed scales quadratically as predicted by Eq. (3.67).
The straight-forward error bars of the Legendre expansion (cf. Section 3.5) are identical
in the pass-through region of the filter, and lower in the other regions (the remaining
uncertainty is pushed into the covariance). The improved estimators are considerably
more accurate than both other methods across the frequency spectrum. Figure 3.12
shows—in contradiction with Eq. (3.77)—a linear scaling of the error bars with iν. By
Eq. (2.69*), the origin of this scaling lies in the frequency behaviour of the eight-point
function that determines the variance of GΣ, however further investigation is necessary.

3.6.3 Connected two-particle Green’s function and vertex
Since with the inverse Bethe-Salpeter equation, a similar relation to the Dyson equation
(3.65) holds for the two-particle irreducible vertex functions:

Γνν′(iω) = χ−1
νν′(iω)− χ−1

0,νν′(iω), (3.79)
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Figure 3.12: Bootstrap error bars (one-sigma BCA confidence interval) for different estimation
methods for the self-energy: LEG refers to the Legendre expansion (Section 3.5), DM computes
Σ from the Dyson equation (3.65), IE denotes Σ estimated from the improved estimator. Inset:
zoom on the low-frequency region (Harrer 2013).

the vertex also suffers from gradually worsening error bars. This is a problem for the
dynamical vertex approximation, which needs irreducible vertices as an input (Toschi
et al. 2007).

Figure 3.13 shows a cut through the irreducible vertex function Γr(iω = 0, iν = π
β
, iν ′)

and different channels r: density channel (r = D), magnetic channel (r = M), singlet
channel (r = S) and triplet channel (r = T). The system under consideration is the
half-filled 2D Hubbard model with 4t = 1 at β = 50 close to the first vertex divergence
line of the density channel (U = 1.48) at DMFT self-consistency. We see that there are
progressively worsening error bars as we go to higher fermionic Matsubara frequencies iν ′,
confirming our suspicion.

We would therefore like to have similar improved estimators like for the self-energy.
However, there are two crucial differences: first, the relation is in a sense a two-frequency
inversion rather than a single frequency one; second, the non-interacting vertex function
χ0 in Eq. (3.79) is formulated in terms of the interacting Green’s function χ0 = GG

instead of the non-interacting one. Therefore, it is doubtful if we can arrive at a similar
relation for the vertex with a procedure that operates on the one-particle level and with
non-interacting Green’s functions.

Indeed, we can reuse our calculation for GΣ by setting F ′[c, c̄] = −cβ c̄κcλ into the
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Figure 3.13: Cut through the impurity irreducible vertex function Γr(iω = 0, iν = π
β ) in the

density (r = D), magnetic (r = M), singlet (r = S) and triplet (r = T) channel for the half-filled
2D Hubbard model with 4t = 1, U = 1.48, β = 50 at DMFT self-consistency. Different statistics
are shown in different colours.

master equation (3.68) and using the fact that

∂F ′[c, c̄]
∂c̄β

= δβγcκc̄λ − δβλcκc̄γ. (3.80)

By carefully going through Eq. (3.69) through 3.72, we get an equation for the four-point
function:

Gαγκλ = GαγGκλ − GαλGγκ + GαβHβγκλ, (3.81)

where we have introduced the six-point propagator:

Hβγκλ := 1
Z

ˆ
D[c, c̄] e−S[c,c̄]U[βρ]στ c̄ρcσcτ c̄γcκc̄λ. (3.82)

Multiplying by G−1 from the left and using the Dyson equation (3.65) yields:

(G−1
µα + Σµα)Gαγκλ = δxzGab − δxbGza + δxyHyzab (3.83)

such that finally we find an expression for the connected part of the 2-particle Green’s
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function:
Gconn.
αγκλ = GαβHβγκλ − (GΣ)αβGβγκλ (3.84)

Again, it is useful to look at the operator form of Hβγκλ. We find that:

Hβγκλ(τ1, τ2, τ3, τ4) = U[βρ]στ 〈T c†ρ(τ1)cσ(τ1)cτ (τ1)c†γ(τ2)cκ(τ3)c†λ(τ4)〉 (3.85)

which again has a similar structure than the two-particle Green’s function with a “Hartree-
like” object, in this case attached to a annihilation operator.

3.7 Susceptibility estimator

Of equally great interest as the impurity Green’s function is the dynamic impurity sus-
ceptibility:

χαβγδ(τ − τ ′) := 〈T c†α(τ)cβ(τ)c†γ(τ ′)cδ(τ ′)〉 (3.86)

While the Green’s function encodes the response of the system perturbed by the insertion
or removal of a particle, the susceptibility captures response to charge or spin fluctuations.
These channels can be obtained from Eq. (3.86) by different ways of “gluing” the outer
indices together10:

χ(A)(τ − τ ′) =
∑
ii′,σσ′

Aσσ′χiσ,i′σ′,iσ,i′σ′ (3.87)

where we have made orbital and spin indices explicit again. Setting A = δσσ′ yields the
charge susceptibility χ(c), while setting A to the i-th Pauli matrix A = σ̂i,σσ′ yields the
spin susceptibility χ(Si). The spin susceptibility is crucial for the study of the formation
and screening of local moments (Hansmann et al. 2010, Galler et al. 2015), while the
charge susceptibility is used to study the nature of Mott transitions (Georges et al. 1996).

The susceptibility Eq. (3.86) is also needed for the computation of the screened local
interaction W and the impurity polarisation Π (see e.g. Held 2007):

Wαβθκ(iω) = Uαβθκ(iω)− Uαβγδ(iω)χγδεζ(iω)Uεζθκ(iω) (3.88)
Παβθκ(iω) = U−1

αβθκ(iω)−W−1
αβθκ(iω) (3.89)

which in turn is required, e. g., for the bosonic self-consistency loop of extended DMFT
(EDMFT) schemes (Sun and Kotliar 2003). In the next sections, I will show different
strategies to construct an estimator for χ.

10Two time indices were already implicitly glued together, i.e. set to an equal time, by choosing the
spin or charge channel. The study of optical response χJJ on the other hand requires the study of the
full generalised susceptibility.
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3.7.1 Frequency summation

Turning Eq. (3.86) into an estimator is straight-forward, albeit numerically expensive, in
Hirsch-Fye quantum Monte Carlo (Georges et al. 1996, ch. VI.A.5), because the operator
pairs decouple in the auxiliary Ising spin space (see also Section 2.2.1). The same is
true for CT-HYB, where there is a Wick decoupling in the bath part of every diagram,
however, since there are no time slices the measure of two operators being at equal times
vanishes. Put differently, we cannot measure the susceptibility by cutting hybridisation
lines because there are no such lines for ∆τ = 0.

When one works in the eigenbasis (cf. Section 2.5), one can remedy this problem
directly: Following Augustinský and Kuneš (2013), one uses the explicit dependence of
the diagrammatic weight on the position of the i-th operator ∂w/∂τi to “slide” pairs of
operators together. This in a sense forces the structure of a susceptibility on a diagram
and thus allows the measurement to be performed in the bath like the two-particle Green’s
function (cf. Section 3.2). However, the sliding procedure incurs a large run-time cost for
each pair of operators. Hausoel (2014a), who to my knowledge first developed and later
implemented the technique into w2dynamics, thus found it difficult to obtain sensible
statistics for the susceptibility.

In the absence of sliding, one can work around this problem by realising that the sus-
ceptibility is related to the generalised susceptibility via the summation over the fermionic
frequency box:

χαβγδ(iω) =
∑
ν,ν′

χαβγδ(iω, iν, iν ′) =
∑
ν,ν′

[Gαβγδ(iω, iν, iν ′)−Gαβ(iν)Gγδ(iν ′)δω0] (3.90)

The main problem with this approach is that since the two-particle Green’s function is
of considerable size (N4NωN

2
ν ), one has only ∼ 100 fermionic frequencies to sum over

in the right-hand side of Eq. (3.90). This turns out to be sufficient only for very high
temperatures (β . 10) and small values of the bosonic frequency (iω � iνmax).

These restrictions can be understood by looking at the diagrammatics of χ:

χ = (3.91)

Rohringer et al. (2013) showed that the full vertex F (iω, iν, iν ′) contains corrections that
are essentially constant in iν or iν ′, which together with the χ0 term in Eq. (3.91) yields
a slowly converging sum. Moreover F contains structures that shift in iν and iν ′ with the
bosonic frequency, eventually shifting out of the fermionic frequency box considered as iω
increases.

Kuneš (2011), in a result generalised by Hummel (2014), tackled this problem by
splitting the vertex into a low-frequency part, to be treated exactly, and a high-frequency
part, expressed as the background U plus diagrams of the form Uχ(iω)U . Since χ(iω) is
related to a sum of both parts of the vertex, it must then be determined self-consistently.
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Figure 3.14: Computation of χnn(iω) from summation over the fermionic frequency box for the
half-filled one-orbital Hubbard model with a semi-elliptic DOS and U = 1.5D, β = 100

√
2/D at

DMFT self-consistency. (a) χ (dotted lines) and [χ−χ0] (solid lines) for an expanding quadratic
frequency box; (b) χ(iω) as computed from different fits.

Our method, used in Galler et al. (2015), is essentially a poor man’s version of Kuneš’s,
where the asymptotics of χ(iω) are fitted. It consists of three steps:

1. Since the one-particle Green’s function is known on a much larger frequency range
than the two-particle Green’s function, the χ0 term

χ0,αβγδ(iω, iν, iν ′) = Gαδ(iν)Gγβ(iν + iω)δνν′ (3.92)

is subtracted from χ(iω, iν, iν ′) and the (more exact) sum over the larger frequency
area added at the end to χ(iω).

2. The remainder (χ− χ0) is summed over expanding quadratic frequency boxes:

[χ− χ0]αβγδ(iω; iνmax) =
∑

|iν|≤iνmax

∑
|iν′|≤iνmax

[χ− χ0]αβγδ(iω, iν, iν ′) (3.93)

As evident from Figure 3.14a, this integration is beneficial for CT-QMC data, since it
mostly averages out statistical fluctuations in χ (note the smooth line in Figure 3.14a
in contract to the statistical fluctations in, e.g., inset of Figure 3.9a for G).

3. For each component and iω, the asymptotic region (which we define as half of the
fermionic frequency range) is fitted to the following model function:

[χ− χ0](iνmax) ∼ a+ b/iνmax + c/iν2
max (3.94)
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with the free parameters a, b and c and the value of c is used as best guess for χ(iω).
The quality of the fit is fair if all main structures lie inside the considered frequency
range. Therefore, one should be careful to use a larger fermionic than bosonic range.

Figure 3.14 shows an analysis of the fitting procedure for a half-filled one-orbital model
with a semi-elliptic density of states and U = 1.5D, β = 100

√
2/D at DMFT self-

consistency. The two-particle Green’s function was measured on 201 bosonic and 160
fermionic Matsubara frequencies each. Figure 3.14a shows the cumulative sum over the
quadratic frequency box up to a cut-off of iνmax. We see that with the subtraction of
the disconnected term χ0 as in Eq. (3.93) (solid lines) improves upon the high-frequency
behaviour of the simple sum over χ (dotted lines). One can clearly see the fermionic
structures found by Rohringer et al. (2013) that shift out in the box as we go to higher
bosonic frequencies as a kink in the cumualtive sum (Figure 3.14a), such that eventually
the fit is poised to fail. These structures are present in both summations, however only the
weaker “renormalised” part remains in the case of the summation of [χ−χ0]. Figure 3.14b
in turn presents the results for χ(iω) with and without fitting according to Eq. (3.94). We
see that with the summation of χ only (blue line), the structures of the disconnected part
χ0 make the fitting unreliable and yield unphysical results (χ < 0) in the high-frequency
region. The fitting procedure with [χ− χ0] improves on the other results considerably.

Let me note that while the fitting procedure provides a good estimate for the suscep-
tibility, the summation over the fermionic box is a delicate procedure. It can introduce
big systematic deviations especially close to phase transitions, where the structures in the
underlying two-particle Green’s function become more extended, but at the same time
cannot be captured with the disconnected part.

3.7.2 Local estimator for density-type interactions
As the bath estimator to the susceptibility is expensive and plagued by problems of
modelling the asymptotics, we are looking for a local estimator. For density-density-type
interactions, the interesting part of the full susceptibility is the density part, which we
get from Eq. (3.86) by setting α = β and γ = δ:

χαγ(τ − τ ′) = 〈T nα(τ)nγ(τ ′)〉 − 〈nα〉〈nγ〉 (3.95)

We start by realising that since the quantity is time translation invariant, we can set τ ′
to any value, or, to increase statistics, integrate over all possible starting points:

χαγ(∆τ) = 1
β

ˆ β

0
dτ〈T nα(τ + ∆τ)nγ(τ)〉 (3.96)

This is nothing but the convolution, which in Fourier space amounts to a simple product:

χαγ(iω) = 1
β
〈nα(−iω)nγ(iω)〉 − 〈nα〉〈nγ〉δω0 (3.97)
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Figure 3.15: Example diagram of order k = 4 for a single-orbital model. (a) Diagram in
the segment picture as introduced in Section 2.4; (b) τ -resolved density n↑(τ) as a piecewise
constant function alternating between 0 and 1; (c) its derivative in a collection of δ peaks centred
(visualised as arrows) at the operator positions.

where n(−iω) = n∗(iω) because n(τ) is real by construction. We have thus reduced the
computation of the susceptibility to the computation of the frequency-dependent density
for each diagram.11

Figure 3.15a shows a typical diagram in the segment picture and Figure 3.15b displays
the corresponding density profile n(τ): since all densities are good quantum numbers,
this function is either 0 and 1 everywhere. The value alternates each time a creation or
annihilation of the corresponding flavour is encountered. For non-empty tracks, we can
write this as:

nα(τ) =
k∑
i=1

δααi [Θ(τ − τ ′i)−Θ(τ − τi)] (3.98)

The naïve Fourier transform is then trivially given by:

nα(iω) =
k∑
i=1

δααi


1
iω [exp(iωτ ′i)− exp(iωτi)] iω 6= 0
τi − τ ′i iω = 0

(3.99)

For iω = 0, we essentially get the total length of segments. Special care has to be taken
for tracks without segments: there, in contrast to Eq. (3.99), n(iω = 0) is either 0 or β,
depending on whether we have a “empty” or “fully occupied” track (see Section 2.4).

It is worth taking a moment to analyse the issue of ergodicity: in Section 3.2 we have

11Note that as with the two-particle Green’s function estimator, the density of each individual diagram
n(ω) is indeed frequency-dependent (cf. Figure 3.15b), while the average 〈n(iω)〉 is simply given by nδω0
since the density is time translation invariant and thus flat in τ . Therefore, it is important to note the
position of the angle brackets in Eq. (3.97): n(iω) has to be computed for each diagram separately, then
multiplied, then averaged over. Note also that Eq. (3.97) is valid for any interaction, but is more difficult
to compute for general interaction because n is not conserved by the interaction (see Section 3.7.3).
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seen that a local estimator for the Green’s function based on the insertion of operators
into a diagram of Z is not ergodic, because it does not generate all diagrams of G. Here,
the situation is different: Eq. (3.97) “decouples” the two density operators at different
times. This reduces the ergodic computation of the density correlator to the ergodic
computation of the density, which is satisfied by Eq. (3.98) and, by extension, Eq. (3.99)
since the diagram is not modified. As a result, the estimator Eq. (3.97) is indeed ergodic.

NFFT Eq. (3.99) is perfectly suitable as an estimator, it however scales as O(kNω)
which makes large frequency boxes difficult to compute since the exponential function is
an expensive operation in CT-SEG. As with the Green’s function estimator, we would like
to use a non-equidistant fast discrete Fourier transform (NFFT), which would improve
the scaling to O(logNω). However, we have to transform a set of rectangular functions,
while in the Green’s function case, we have a set of delta peaks that we can feed directly
into NFFT. Fortunately, Figure 3.15c shows that ∂n/∂τ provides the desired function: a
delta peak in positive (negative) direction for each creation (annihilation) operator (cf.
Eq. (3.98)). We thus amend Eq. (3.99) to:

nα(iω) = 1
iω

ˆ β

0
dτ
∂nα(τ)
∂τ

iω 6= 0 (3.100)

In order to conform to the convention of the NFFT package of Keiner et al. (2009), we
again map the interval τ ∈ [0, β) to x ∈ [−1

2 ,
1
2). The expression for iω 6= 0 for one flavour

in terms of the inverse NFFT therefore becomes:

n(iωn) = 1
iωn

k∑
j=1

[
exp(iωτ ′j)− exp(iωτj)

]

= (−1)n
iωn

k∑
j=1

[
exp(2πinx′j)− exp(2πinxj)

]

= (−1)n
iωn

INFFTn[(x′1, x1, . . . , x
′
k, xk); (1,−1, . . . , 1,−1)] (3.101)

In Eq. (3.99), again xi (x′i) is the position of i-th annihilation (creation) operator of the
desired flavour. By combining Eq. (3.97) with Eq. (3.99) for iω = 0 and Eq. (3.101)
for iω 6= 0, we can now construct an efficient estimator for the susceptibilities. The
computation of the frequency-dependent prefactor can be deferred until the end of the
simulation.

Figure 3.16a compares the speed from using NFFT in the measurement of χ(iω) using
the naïve Fourier transform as a function of the number of bosonic Matsubara frequencies
Nω. We see that while the base cost of NFFT is higher due to bookkeeping, it very soon
breaks even with the linear scaling of the naïve method.

Figure 3.16b shows a simple benchmark result for a single orbital model for β = 10
with U = 1 at half filling using two discrete bath sites at ε̃ = ±1

2 and V = 1. The
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Figure 3.16: Susceptibility computation for a half-filled one-orbital SIAM with U = 1, β = 10
for two discrete bath sites at ε̃ = ±1

2 and V = 1. (a) CPU seconds used by NFFT (3.101) and
the naïve Fourier transform (3.99) over Nω. (b) χ(iω) as computed from CT-HYB (×) vs. the
analytic result from ED (lines).

computation time was less than 20 CPU seconds on a single core, nevertheless we see that
the computed susceptibility is essentially on top of the analytic result from ED. The main
reason for this accuracy is the fact that by using n(iω), the susceptibility information of
the complete diagram is taken into account. Empirically, we find that this improves the
statistical uncertainty of the result over just selecting two random points in imaginary
time (without worm sampling) by about two orders of magnitude.

3.7.3 Local estimator for general interactions
As soon as we switch on interactions of non-density-density type, the estimator detailed
in the previous section breaks down, because the densities cease to be good quantum
numbers and we thus cannot compute n(τ) from Eq. (3.98) any more.

Let me note that one can in principle sidestep the problem entirely using worm sam-
pling (cf. Section 3.8): by defining a new auxiliary partition function

Zχ =
∑
αβγδ

ˆ β

0
dτ dτ ′ 〈T cα(τ)c†β(τ)cγ(τ ′)c

†
δ(τ ′)〉 (3.102)

and sampling diagrams of the enlarged space Z+Zχ, one is able to stochastically generate
the diagrams. However, one may find it difficult to acquire enough statistics for a reliable
analytic continuation this way.

When one works in the eigenbasis ofH, one can still use the expression for n(τ) derived
for the density estimator:

nα(τ) = tr[nαρ(τ)]
tr[ρ(τ)] (3.103)
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Note that again because time-evolution is non-unitary, one has to include the explicit
normalisation in Eq. (3.103). The density matrix in turn can be written as piecewise
operator function:

ρ(τ) =
2k∑
i=0

θ(τi+1 − τ)θ(τ − τi)
∑
ab

exp[−(τ − τi)(εa − εb)]ρ(i)
ab |a〉〈b| (3.104)

where the θ-functions project out the part of the trace between the i-th and (i + 1)-th
operator, which is necessary since ρ changes discontinuously at this point. ρ

(i)
ab are the

matrix elements of the density matrix in the eigenbasis of Hloc just to the left of the i-th
operator in the local trace (this is something that one stores for matrix-vector codes and
can compute cheaply for matrix-matrix codes).

By use of Eq. (3.104), the Fourier transform of Eq. (3.103) becomes:

nα(iω) =
2k∑
i=0

1
tr ρ(i)

ˆ τi+1

τi

dτ
∑
ab

exp[(iω − εα + εβ)τ + (εa − εb)τi]ρ(i)
abnα,ba (3.105)

which for iω = 0 gives:

nα(iω = 0) =
2k∑
i=0

1
tr ρ(i)

∑
ab

(exp[(εa − εb)(τi+1 − τi)]− 1)ρ(i)
abnα,ba. (3.106)

The complexity of Eq. (3.106) is O(kN2), where N = |F| is the size of the Fock space
and thus carries an additional O(k) with respect to the density measurement. However,
as with the density-density case, it is advantageous to replace the traditional density
estimator with 〈nα〉 = 1

β
〈nα(iω = 0)〉, because one gains significant amount of precision

by considering the complete diagram rather than just a single point in imaginary time.
For iω 6= 0, we instead arrive at:

nα(iω) =
2k∑
i=0

1
tr ρ(i)

∑
ab

e(iω−εa+εb)(τi+1−τi) − eiωτi

iω − εa + εb
ρ

(i)
abnα,ba. (3.107)

The complexity of Eq. (3.107) is O(kN2Nω) and thus prohibitively bad for large frequency
boxes at high expansion orders. One can in principle improve on this by using a non-
equidistant fast Fourier transform in both time and frequency space (NNFFT) with the
time grid τi and the frequencies iω − εa + εb. However, this requires a large number of
frequencies.

3.8 Worm sampling
This section is based on (verbatim passages are marked with a sidebar):
P. Gunacker, M. Wallerberger, E. Gull, A. Hausoel, G. Sangiovanni, and
K. Held: Continuous-time quantum Monte Carlo using worm sampling.
Phys. Rev. B., 92:155102, 2015
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Figure 3.17: Illustrating the concept of worm sampling. The configuration space of the partition
function CZ is enlarged by the configuration space of the n-particle Green’s function CG(n) . A
random walk in the combined configuration space is shown, where dashed lines represent the
transition moves between the two configuration spaces and solid lines the moves within one
space.

Because an estimator for the local susceptibility is difficult to construct and expensive
to evaluate, we are looking for different strategies to estimate the susceptibility. This is
provided by worm sampling, which will be the focus of this section. We will also show
that worm sampling is necessary in CT-HYB in obtaining the improved estimator and
two-particle Green’s function for general interactions.

A variant of continuous-time algorithms, usually referred to as the worm algorithm,
expands both the partition function and the Green’s function. This results in the config-
uration space sampled by Monte Carlo to be enlarged (see Figure 3.17). This concept has
been pioneered for diagrammatic Monte Carlo solvers for bosonic Green’s functions by
Prokof’ev et al. (1996, 1998b,a) and adapted for fermionic one-particle Green’s functions
for the CT-INT algorithm by Burovski et al. (2006).

In this section, we introduce a generalization of the worm algorithm for the (multi-
orbital) hybridization expansion. While worm sampling is not restricted to any specific
quantity, we show the application to fermionic two-particle Green’s functions which are
necessary to compute response functions and which appear in formulations of non-local
extensions of the DMFT such as the dynamical vertex approximation (Toschi et al.
2007), the dual fermion approach (Rubtsov et al. 2008), the one-particle irreducible
approach(Rohringer et al. 2013) and the DMFT to functional renormalization group
(Taranto et al. 2014). They also appear in the measurement of single-particle self-energies
using the ‘improved estimator’ (see Section 3.6) technique that has been shown to yield
high precision estimates for the high-frequency behavior of Green’s functions.

3.8.1 Failure of the removal estimator
In order to motivate the use of worm sampling, we look at two-particle quantities for
general interactions. When using the improved estimator (3.78) for these type of inter-
actions, we encounter a problem for diagonal hybridisation functions: Figure 3.18 shows
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Figure 3.18: Self energy Σ(iν) estimated from the Dyson equation (3.65) and from the improved
estimator equation (3.76) for a simple single-orbital model at β = 10, U = 5 at half filling.

the self-energy for an two-orbitals SIAM with the Slater-Kanamori U = 5, J = 2 and
U ′ = U − 2J on top of a semi-elliptic DOS with D = 2 out of half filling (µ = 1.3). We
see that while the asymptotics of both the real (Figure 3.18a) and imaginary part (Fig-
ure 3.18b) agree within error bars, there are significant deviations in the low-frequency
region. This discrepancy is surprising, since we have learned from Figure 3.11 that the
two estimators should agree in this region.

The reason is again the failure of the—in this case “hybrid”—estimator to yield all the
terms: while the estimate for the Green’s function is diagonal for a diagonal hybridisation
function, the addition of two local operators means that we are measuring the equal-time
component of the two-particle Green’s function. These terms are non-zero, but due to
the absence of hybridisation lines, are unable to be measured. As a result the formal
estimator (3.78) is truncated to:

[GΣ]αβ ∼ −δαβUαε[κα]〈T cα(τ)c†α(τ ′)c†ε(τ ′)cκ(τ ′)〉, (3.108)

where the δαβ term is required by the symmetry of the hybridisation.
More generally, for the one-particle Green’s function and diagonal hybridisation func-

tion, we find:
Gαβ(iν) = G̃α(iν)δαβ (3.109)

where G̃ is measured by the estimator. This is no problem for the Slater-Kanamori
interaction since G is guaranteed to be diagonal in this case (cf. Section 3.1). For the
two-particle Green’s function, the hybridisation line removal (cf. Eq. (3.26b)) instead
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yields:

Gαβγδ(ν, ν ′, ω) =

G̃αγ(ν, ν ′, ω)δαβδγδ − G̃αγ(ν ′ + ω, ν ′, ν − ν ′)δαδδβγ α 6= γ

G̃αα(ν, ν ′, ω)δαβδγδ α = γ
(3.110)

where the second term is the crossing term (Gαβγδ(ν, ν ′, ω) = −Gαδγβ(ν ′ + ω, ν ′, ν − ν ′))
of the first, density-density like term and G̃ is again the estimated quantity.

Eq. (3.110) is clearly wrong as can be seen from a simple symmetry argument: for the
Kanamori U , the spin susceptibility is invariant under spatial rotations, such that, e. g.,
〈Sz(τ)Sz(0)〉 = 〈Sx(τ)Sx(0)〉. The spin susceptibility in z-direction relates to density-
density-like terms and can be estimated. The spin susceptibility in x-direction on the
other hand manifests itself as spin flip terms in G(2), which are of equal magnitude but
fail to be captured by Eq. (3.110).

3.8.2 Sampling in Green’s function space
We are now in the unfortunate position that both strategies to arrive at a Green’s function
estimator as outlined in Section 3.2 fail: a local estimator because of its ergodicity, and
the hybridisation operator because of the structure of the hybridisation function. We
note that in principle we can work around this problem by adding a small auxiliary
hybridisation to the model:

∆ij(τ) 7→ ∆i(τ)δij + ε (3.111)

However, the ε in Eq. (3.111) first introduces a systematic bias in the method, such that
careful extrapolation ε → 0+ is necessary; secondly, as ε gets bigger, we increase the
statistics of the problem but at the same time worsen the sign problem.

Using worm sampling, we solve this issue by enlarging our configuration space

C = CZ ⊕ CG(n) (3.112)

to contain both types of diagrams of of the partition function space CZ and of the n-particle
Green’s function space CG(n) (see Figure 3.17). The sampling in CG(n) allows us to generate
all diagrams for the Green’s function, thereby circumventing the ergodicity problems of
both the estimator constructed from insertion of local operators and from removal of
hybridization lines. While CG(n) was originally introduced as an auxiliary space to restore
ergodicity and lower auto-correlation times for CZ (Prokof’ev et al. 1996), here the reverse
can be argued: excursions to partition function space lower the auto-correlation times and
provide the proper normalization for the Green’s function (cf. Section 3.8.3). We again
restrict ourselves to the one- and two-particle Green’s function.

In Table 3.2 the Monte Carlo moves in CZ and CG(n) are illustrated. We included all
steps needed to be ergodic and to decrease auto-correlation lengths in both configuration
steps. The pair insertion and removal steps in CZ (Table 3.2(a),(b)) are typical in the
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Table 3.2: Illustration of Monte Carlo moves in the extended configuration space of worm
sampling. Operators denote connected by hybridization lines are dressed with vertical lines. We
have omitted global moves in both spaces.

CT-HYB algorithm. We further introduce the operator shift move for CZ (Table 3.2(c)),
which shifts the time of a creation or annihilation operator.

For later discussion, we set up a modified partition function ZG(n) in configura-
tion space CG(n) by integrating over all degrees of freedom of the Green’s function G(n)

(Burovski et al. 2006):

ZG(n) :=
ˆ ∑

G(n)
α1,...,αn(τ1, . . . τn) =

∑
α1,...,αn

ˆ
dτ1 . . . dτnG(n)

α1,...,αn(τ1, . . . τn) (3.113)

This is not a “physical” partition function in the sense that it is connected to a ther-
modynamic potential, but it simply represents a phase space volume in Green’s function
space. We will now discuss all the steps mentioned in Table 3.2 in full detail.

Worm Insertion and Removal Steps The worm insertion and removal steps are tran-
sition steps between the two configuration spaces, depicted in Table 3.2(d),(e). In order
to sample in CZ and CG(n) , jumping between the two spaces is needed.

In general, the configuration spaces CZ and CG(n) have very different phase space
volumes. This difference is balanced out by introducing a weighting factor η(n) so that
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(2a)

(3)

(2b)
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Figure 3.19: An “insertion estimator”, i.e. the mere insertion of local operators into a diagram
from CZ without sampling, is not ergodic: it fails to produce diagram (3) because (2b) violates
the Pauli principle and is therefore never reached. By first transitioning to CG(1) space from (1)
and then inserting a hybridization operator pair into (2a), one indeed is able to reach diagram
(3).

the total partition function reads

W = Z + η(n)ZG(n) . (3.114)

For now it was not formalized how η(n) scales with the number of orbitals, temperature
and interaction strength. It is best to choose η(n) so that the simulation spends an equal
amount of steps in CZ and CG(n) . We revisit this fact when discussing the normalization
of the worm result in the following section.

The Metropolis acceptance rate of a worm insertion is simply given by Racc = w′loc/wloc,
where wloc is the weight of the local diagram (the hybridisation part is unaffected).

We point out that we jump between CZ and CG(1) and between CZ and CG(2) , but never
between CG(1) and CG(2) . [...] This is because inserting two worm pairs consecutively by
attempting to jump from CZ to CG(1) and then to CG(2) will fail to provide off-diagonal, i.e.
spin flip and pair hopping terms. A very similar observation was recently made for the
conventional CT-HYB algorithm with a off-diagonal hybridization function (Seth et al.
2015).

Pair insertion and removal steps In order to generate all possible Green’s function
configurations, we need to introduce additional updates in the Green’s function space
CG(n) . This is a crucial part of worm sampling: without it, the estimator is not ergodic
(cf. Figure 3.19).

This explains why we are required to sample the Green’s function space CG(n) sep-
arately with operators having hybridization lines attached. To this effect, we perform
insertions and removals of hybridization operator pairs also in Green’s function space
(cf. Table 3.2(f),(g)). Acceptance rates are similar to the corresponding acceptance rates
in CZ space.
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Worm Replacement Step in Green’s Function Space While insertion and removal
moves formally fulfill the condition of ergodicity, worm sampling requires a replacement
move in order to allow for acceptable auto-correlation lengths. We elaborate on this
requirement here.

Let us assume a local trace filled with hybridization operator pairs. We now attempt
to insert a worm pair into this trace. It turns out that inserting a worm pair, where the
worm operators are relatively close to one another is probable, while inserting a worm pair
where the worm operators are far apart is less probable. This is because of (i) possible
quantum number violations since there may be many creation and annihilation in between
the pair for long time differences, and (ii) the pair insertion might lead to an energetically
disadvantageous local configuration which is unfavorable to have for a long time.

Problem (i) is especially severe if we have a large amount of operators in the trace,
which occurs at small interaction or low temperatures. Additionally, more restrictive
interaction types, such as the density-density interaction, produce more rejects due to
quantum number violations of attempted worm inserts. This is why we do not observe
this auto-correlation problem at high temperatures, high interaction parameters and more
general interactions such as Slater-Kanamori interactions (which may change the quantum
number in the local trace).

The solution to this problem is found in shift/replacement moves. We consider, instead
of a general worm shift move, a replacement move which exchanges one of the worm
operators with an operator of the hybridization expansion, i.e., we replace it with one of
the same flavour connected by a hybridization line as illustrated in Table 3.2(h).

This way we do not have to recalculate the local trace, as two locally indistinguish-
able operators switch position. Instead, we need to recalculate the determinant of the
hybridization matrix since the replacement corresponds to a shift of the worm operator
and a shift of the hybridization operator. Further we do not encounter any rejects of
proposed moves due to local quantum number violations.

It turns out that worm replacement moves (or in the same way worm shift moves)
are equally important for traces with very few operators because of problem (ii). This
problem typically occurs if the weight e−Uτ of the worm becomes prohibitively small, i.e.,
in particular for a large interaction strength and a long τ difference such as β

2 . We are then
effectively restricted to inserting operator pairs into the trace, which are very close to each
other in imaginary time. These pairs have similar properties as density operators and can
in principle be inserted for very high insulating cases. By inserting hybridization pairs
at short distances τi − τj and then replacing one worm operator with one hybridization
operator we are able to pass this restrictions of the time evolution. As we will show in
the following, the replacement move only depends on the ratio of the determinant of the
hybridization matrix.

We observe that the [replacement move is self-balancing] and the acceptance ratio is
fully determined by the ratio of weights. Further, the local weights cancel, since a worm
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Figure 3.20: One-particle Green’s function G(1)(τ) in imaginary time τ , illustrating the ergod-
icity problem of the worm algorithm for an average expansion order of k/2 ∼ 40. Parameters:
inverse temperature β = 200/D, Coulomb repulsion U = 0.5D and µ = 0.3D (out of half-filling)
for the the single-orbital AIM with semi-elliptic conduction electron density of states with half-
bandwidth D = 1 and V = 0.5D. The balancing parameter η(1) was chosen in the interval
[0.15, 0.22]. We observe the ergodicity problem between τ = 25/D and τ = 175/D (blue curve).
When adding replacement moves, we are able to insert worm operators for such τ ’s around β/2
(green triangles) and hence obtain much better results. We have additionally supplied G(1)(τ)
for the measurement in partition function space (red curve).

operator and the corresponding hybridization operator are indistinguishable within the
local trace. The Metropolis acceptance rate is hence given by: Racc = w′bath/wbath.

Figure 3.20 shows how worm replacement moves alleviate the ergodicity problem of
the worm algorithm for the situation where many operators are found in the local trace.

We would like to use the opportunity to point out the difference between a worm
replacement and a worm shift move. [The acceptance rate of the worm replacement move
depends on a rank-1 update of the determinant and is thus numerically cheap.] The
acceptance rate of a worm shift move, on the other hand, only depends on the ratio of the
local traces. While for the worm replacement move we are able to pass the restrictions of
the local time evolution, for the worm shift move we are able to pass the restrictions of
the hybridization function. When calculating strong insulating cases we profit the most
if we consider both moves.

3.8.3 Measurements in worm space
We now show how the measurement of Green’s function looks in CG(n) . [...] For the
one-particle Green’s function G(1), a worm is defined by the operators d(τi) and d†(τj).
The correct weight is intrinsically given as we sample in the Green’s function space CG(n) .
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Thus, the estimator of the Green’s function simply follows as:

G
(1)
CG(τ) = 〈sgn · δ(τ, τi − τj)〉MC. (3.115)

The Green’s function in Matsubara frequencies can be calculated by substituting by
the Fourier transform (in the particle hole channel):

G
(1)
CG(iν) = 〈sgn · eiν(τi−τj)〉MC. (3.116a)

G
(2)
CG(iν, iν ′, iω) = 〈sgn · eiν(τi−τj)eiν

′(τk−τl)eiω(τi−τl)〉MC (3.116b)

The imaginary time arguments τi, . . . , τl are assigned to creation and annihilation opera-
tors according to (3.26b). While we both employ (3.115) and (3.116a) for the one-particle
Green’s function measurement, the measurement of the two-particle Green’s function in
Matsubara frequencies, (3.116b), is far more convenient than a binned measurement in
imaginary time (cf. Section 3.4).

As with conventional sampling, we do not observe any sign-problem for worm sampling
in the case of a flavour-diagonal hybridization function. However, unlike in the G(n)

CZ
estimator, the flavour indices and the imaginary time bins in the worm estimator G(n)

CG are
outer indices, such that the mean sign in principle also becomes flavour and τ dependent.

Normalization and Auto-Correlation In principle we are ergodic in CG(n) , when assum-
ing worm replacement or worm shift moves. It turns out however that we need to sample
both in CG(n) and CZ with about the same number of steps to fix the normalization 1

Z
of

the thermal expectation value in (3.1).
When measuring the Green’s functions in CG(n) we implicitly normalize with the num-

ber of steps taken in CG(n) . We correct for this factor by explicitly counting how many
steps NG were taken in CG(n) . We further count how many steps NZ were taken in CZ .
This estimates the size of the configuration space CZ , which then gives the correct nor-
malization. The normalization for G(n) is then given by (Gull et al. 2010):

G(n) = 1
η(n)

NG

NZ

G
(n)
CG , (3.117)

where G(n)
CG is measured in CG(n) and the factor 1/η(n) is a result of rescaling ZG(n) in

(3.114).
Let us note that (3.117) is only one way of normalizing the worm measurement. In

a different approach, we could do the entire sampling in worm space, without removing
the worm operators at all. We are then required to generate worm configurations by shift
moves and replacement moves. In this case, we could normalize the result by assuming
some physical knowledge of the Green’s function. One possibility is to extract the normal-
ization by assuming the correct behavior of the large-frequency asymptotics of G(1)(iν)
or G(2)(iν, iν ′, iω).
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In order to calculate the Monte Carlo expectation value (3.116a), we still need to
divide by the number of measurements N taken. It is important to notice the difference
between the number of measurements N and the number of steps NG and NZ taken since
it is common to skip steps during two consecutive measurements to assure uncorrelated
measurements.

This directly relates to the auto-correlation length of the QMC sampling. The auto-
correlation length in worm space CG(n) looks very different from the auto-correlation in
partition function space CZ . A well-accepted estimate for the auto-correlation length in
traditional CT-HYB is given by the quotient of the number of operator pairs (k/2) over
the acceptance rate for removal in partition function space rrem,Z (Gull et al. 2011):

Ncorr,Z ≈
(k/2)
rrem,Z

. (3.118)

In principle, a similar estimate holds for the Green function sampling CG(n) . However,
another possibility to arrive at an uncorrelated worm is to remove one worm and insert a
new worm into the local trace at another location. If the acceptance rate for removal of a
worm pair is rrem,W , this gives another estimate for the auto-correlation length in worm
space:

Ncorr,W ≈
1

rrem,W
, (3.119)

which we employ in practice.
It is still necessary to modify the approximations in (3.118) and (3.119) by the percent-

age of worm steps proposed and the percentage of hybridization operator steps proposed,
since our new system has two different types of moves instead of one. We observe that
the acceptance rate of worm inserts and worm removals is in general lower when inserting
four operators at once, as is the case for the two-particle Green’s function G(2). While we
are able to alleviate this problem partially by adjusting η(2), the acceptance rate is still
lower due to quantum number violations. The reduced acceptance rate directly translates
to an increased auto-correlation length of the two-particle Green’s function.

3.8.4 Results in the atomic limit
As a first test and validation of the worm algorithm we consider the atomic limit. We
distinguish two scenarios with a divergent ratio of Coulomb repulsion to hybridization
strength U/V → ∞. (i) The actual atomic limit defined as V → 0 for finite U , i.e.,
we decouple the impurity from the bath. In this scenario, we are still able to choose U
freely. This allows us to control the time evolution in the local trace. We observe that
the Green’s function estimators of partition function sampling fail completely in this case
due to the absence of the hybridization function. In the second scenario (ii), we keep V
fixed and increase the Coulomb repulsion U →∞. While the Green’s function estimator
of partition function sampling is still capable of producing results for large U due to the
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Figure 3.21: Green’s function for the atomic limit of the half-filled single-orbital AIM at inverse
temperature β = 5/D, Coulomb repulsion U = 1.0D. In the absence of any hybridization
function, the worm algorithm (green triangles) is able to reproduce the analytic result (red
line). Conventional CT-HYB is not possible.

presence of the hybridization function, we observe systematic deviations of the error bars
around τ = β/2.

Atomic limit V → 0. While sampling the atomic limit with QMC algorithms is mainly
of academic interest, we can use the analytic results for benchmarking. Figure 3.21a
shows the Green’s function in the atomic limit, i.e., for an isolated impurity, comparing
the worm algorithm and the analytic expression.

Let us now turn our focus towards two-particle quantities. The measurement of four
worm operators in imaginary time is Fourier transformed into Matsubara frequencies
using the particle-hole convention. The two-particle Green’s function G(2)(iν, iν ′, iω) in
the particle-hole convention is a function of two fermionic Matsubara frequencies iν, iν ′
and one bosonic Matsubara frequency iω. In order to quantify results, we analyze the
slice [...] G(2)(iν, iν ′ = π

β
, iω = 0). For comparison, we construct the analytic atomic limit

results of the two-particle Green’s function from the expressions of the reducible vertex
(Rohringer et al. 2013, Hafermann et al. 2009). Figure 3.21b shows the G(2)

↑↑↓↓(iν, π/β, 0)
slice measured using worm sampling and compared to the analytic result.

We conclude that the absence of the hybridization function in the atomic limit re-
sults in a complete breakdown of the one- and two-particle Green’s function estimator
in partition function sampling. In contrast worm sampling works very well and correctly
reproduces the analytic result for the atomic limit.

Strong coupling limit U →∞. In principle, CT-QMC algorithms are used for interme-
diate parameter ranges, but not the atomic limit itself. However, the strongly insulating
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Figure 3.22: One-particle Green’s function G(1)(τ) in imaginary time for the single-orbital AIM
with semi-elliptic conduction electron density of states of half-bandwidth D, U = 5.0D and
µ = 2.6D (out of half-filling). The balancing parameter was set to η(1) = 1.4. While the
error bars of the Green’s function calculated by partition function sampling vanish between
τ ∈ [5, 45] (red curve), the error bars of the Green’s function in worm sampling have a comparable
magnitude for all values of τ .

case with high values of U is of interest. While here a hybridization function is still
present for a finite bandwidth, the local time evolution suppresses most of the hopping
from and onto the impurity.
Figure 3.22 shows the one-particle Green’s function G(1)(τ) with error bars on a logarith-
mic scale. Both approaches, partition function and worm sampling, essentially agree for
the Green’s function. However, the error bars of partition function sampling vanish for in-
termediate τ -values. This is clearly an artefact since the error bars should be comparable
along the whole range of τ -values, as it is the case in worm sampling. The origin for this
shortcoming is that hybridization pairs for intermediate τ -values are no longer inserted,
but just measured by cutting hybridization lines between operators of two operator pairs.

While the effect on the Green’s function itself is still small, it already produces wrong
error bars and hence maximum entropy spectra. Small errors may also propagate and
get enlarged through DMFT iterations.We hence conclude that the worm algorithm not
only correctly reproduces the atomic-limit but also works properly for large U , including
error bars. As such, the worm algorithm provides an improvement to the conventional
CT-HYB algorithm in the strong coupling limit. It also correctly reproduces the non-
interacting limit making it, in principle, numerically exact over the complete parameter
range.

Two-particle Green’s function We now turn to the spin-flip and pair-hopping terms
absent in the hybridisation estimator. We again look at the atomic limit. We choose
the two-orbital AIM with semi-elliptic conduction electron density of states and Slater-
Kanamori interaction. Figure 3.23 shows the spin flip term and the pair hopping suscep-
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Figure 3.23: Spin flip term G
(2)
1↑1↓2↓2↑(iν, π/β, 0) and pair hopping term G

(2)
1↑2↑1↓2↓(iν, π/β, 0) of

the two-particle impurity Green’s function for the atomic limit of the half-filled two-orbital AIM
at β = 5/D, U = 1.0D, J = 0.4D, U ′ = 0.2D. The balancing parameter was set to η(2) = 0.09.
In the absence of any hybridization function, the worm algorithm (green triangles) is able to
reproduce the analytic result (red line).

tibility in the atomic limit. Again, we observe that worm sampling is able to reproduce
the analytic expression.
So far we have only presented results for the spin flip and pair hopping term using worm
sampling in the absence of a hybridization. While this atomic limit is very useful for
benchmarking purposes, we are ultimately interested in intermediate parameters, where
CT-QMC algorithms are predominantly used, especially for calculating multi-orbital sys-
tems. In order to further verify our results, we exploit the SU(2) symmetry of Slater-
Kanamori-like interaction, where 〈Sz(τ)Sz(0)〉 = 〈Sx(τ)Sx(0)〉 holds.

Using partition function sampling, we can calculate the spin susceptibility in z-direction
in a straight-forward manner. Note that we can express Sz(τ) = ni↑(τ)−ni↓(τ) in terms of
density operators so that 〈Sz(τ)Sz(0)〉 can eventually be sampled by removing diagonal
hybridization functions in partition function sampling.

This is not possible for 〈Sx(τ)Sx(0)〉 which is expressed in terms of spin flip two-
particle Green’s functions. While this cannot be calculated in conventional partition
function sampling, we can do so by using worm sampling. Instead of looking at the
imaginary-time resolved spin susceptibility, we verify the SU(2)-symmetry for the local
spin susceptibility in terms of its Fourier transform to Matsubara frequencies χloc(iω) =´ β

0 dτe−iωτ 〈Sz(x)(τ)Sz(x)(0)〉.
Figure 3.24 shows the spin-susceptibilities for the two-orbital AIM on a Bethe lattice.

The worm sampling estimate for the SxSx susceptibility in x-direction agrees with the
SzSz susceptibility in z-direction, which can be calculated both by worm and partition
function sampling. This further demonstrates the power of worm sampling to calculate
general Green’s functions and susceptibilities.
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Figure 3.24: Local spin susceptibility Reχloc(iω) of the two-orbital AIM as a function of the
bosonic Matsubara frequency iω. Parameters: identical semi-elliptic bands of half-bandwidth
D, β = 5/D, U = 1.0D, J = 0.4D, U ′ = 0.2D, and µ = 0.5D (half-filling). The balancing
parameter was set to η(2) = 0.08. The SU(2) symmetry is conserved, as the SxSx susceptibility
of the worm algorithm (green error bars) agrees well with the SzSz susceptibility of partition
function sampling (red line) and worm algorithm (blue error bars).

3.8.5 Improved estimators using worm sampling

As with the vertex function, one can solve the problem for the improved estimators using
worm sampling. For this, it is useful to introduce a set of creation operators:

h†β := Uγδ[εβ]c
†
γc
†
δcε (3.120)

”renormalised” by a Hartree diagram-like structure to its right. Plugging (3.120) into
(3.76), the improved estimator then becomes very similar to the Green’s function estima-
tor:

(GΣ)αβ(τ − τ ′) = −〈T cα(τ)h†β(τ ′)〉. (3.121)

For diagonal hybridisation functions, we know that GΣαβ ∝ δαβ, which means that we
for the matrix-vector and matrix-matrix method we only need to consider blocks of h†α
that are also present in the corresponding c†α (other blocks vanish in the trace because
of the switchboard criterion). It is therefore useful to store h and h† beforehand. Using
Eq. (3.121), the extended partition function for worm sampling reads:

Z → Z −
∑
αβ

ˆ
dτ dτ ′〈T cα(τ)h†β(τ ′)〉 (3.122)

This means that GΣ scales exactly as G for worm sampling. However, for general hy-
bridisations, h† may not respect the block-diagonalisation of the local Fock space. In this
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case a decomposition of h is required, which adds a linear factor to the scaling.
A similar argument can be made for the two-particle Green’s function. We use the

fact that:
hβ = U[βρ]στc

†
ρcσcτ (3.123)

and rewrite H as:

Hβγκλ(τ1, τ2, τ3, τ4) = 〈T qβ(τ1)c†γ(τ2)cκ(τ3)c†λ(τ4)〉 (3.124)

While for the 1-particle Green’s function, the change c → h does not matter in terms
of performance, for the two-particle quantities it is a problem for the Fourier transform,
because it inherently breaks the decomposability into an antisymmetric pair of Green’s
functions.
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Chapter 4

Dynamical mean field theory

Statt des törichten ignorabimus heiße daher unsere Losung:
wir müssen wissen, wir werden wissen.

David Hilbert in his 1930 Königsberg address

In Chapter 2 and Chapter 3, we discussed the solution and properties of correlated quan-
tum impurities. While these model important correlation effects, we want to treat a
general class of materials with strong electronic correlation.

To show the scope of the problem, let us start again at the “theory of everything” of
solid state physics: a solid can be perfectly described using the Hamiltonian, including rel-
ativistic corrections, for the movement of the ions and electrons (cf. Eq. (1.1)). Decoupling
the lattice and electron degrees of freedom using the Born-Oppenheimer approximation
the electronic Hamiltonian in atomic units (~ = e = me = 1) reads:

Hel =
∑
σ

ˆ
d3r ψ†σ(r)

[
1
2∇

2
r −

∑
i

Zi
4π|r −Ri|

]
ψσ(r)

+ 1
8π

∑
σσ′

ˆ
d3r d3r′ ψ†σ(r)ψ†σ′(r′)

1
|r − r′|

ψσ′(r′)ψσ(r), (4.1)

where we have again employed second quantisation: ψ†σ(r) and ψσ(r) denote the creation
and annihilation, respectively, of a spin-σ electron at position r. The i-th ion is determined
by its charge Zi and equilibrium position Ri. In Eq. (4.1) we have neglected relativistic
effects for brevity. This is considered justified for 3d systems, which is the main focus of
this thesis, but due to the strong contraction of 4f orbitals towards the nucleus, relativistic
effects such as the spin-orbit coupling plays important role there and have to be included
explicitly.

Due to the presence of the electron-electron interaction in Eq. (4.1), the individual

113
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electron movements do not decouple:

〈ψ†1ψ
†
2ψ3ψ4〉 6= 〈ψ†1ψ4〉〈ψ†2ψ3〉 − 〈ψ†1ψ3〉〈ψ†2ψ4〉, (4.2)

where we have collected position and spin index into compound indices 1 to 4, and sub-
sequently we see correlation between them. This means treating the problem exactly
requires to solve the N -body problem, with N ∼ 1023. A back-of-an-envelope calculation
shows that the exponential scaling instead limits us to N . 10 particles.

Instead of despairing and wallowing in ignorabimus when faced with the apparent im-
possibility, two ways have very successfully been followed to tackle the problem (cf. Chap-
ter 1): (i) Simplifying the problem mathematically, which leads to density functional the-
ory methods that we will revisit in Section 4.2; (ii) replacing the problem with a simpler
model problem, which one hopes still captures the physics we are interested in. This is
the route we will follow for now.

Hubbard model In the realm of strong electronic correlation, one of the simplest lattice
models is the Hubbard model in its multi-orbital generalisation:

HHM =
∑
ij

∑
αβ

hαβ(~Ri − ~Rj)c†iαcjβ + 1
2
∑
i

∑
αβγδ

Uαβγδc
†
iαc
†
iβciδciγ, (4.3)

where again ciα and c†iα denote the annihilation and creation, respectively, of an electron
at the lattice site i and the flavour α (a flavour or spin-orbital is a collection of spin and
orbital). The Hubbard Hamiltonian consists of two parts: h(~R) is the non-interacting
(tight-binding) Hamiltonian in real space and Uαβγδ denotes the elements of the Coulomb
interaction, which is assumed to be local.

The underlying locality assumption of the Hubbard model, which manifests itself in
the tight-binding model of the non-interacting problem and the locality of the Coulomb
repulsion, warrants some discussion. In general, these assumptions are reasonably satisfied
in systems with partially filled 3d or 4f shells, since the orbitals are very localised in this
case and the overlap with neighbours is small. The approximation of the infinite-range
Coulomb U with the local Hubbard U is justified because of screening processes.

The computational effort of solving the Hubbard model in Eq. (4.3) rises exponentially
with the number of orbitals and sites considered, such that more than a few dozen sites
are completely infeasible. As with the Anderson impurity model, we may be tempted to
use diagrammatic Monte Carlo techniques also with the Hubbard model. Unfortunately,
due to fermion loops, the straight-forward sampling of the partition function suffers from
a disastrous sign problem (cf. Section 2.7) away from the simple half-filled case (see,
e.g., Foulkes et al. 2001). Since the sign problem itself is believed to be intractable in
general (Troyer and Wiese 2005), various techniques have been proposed to trade it off
against systematic approximations: by fixing the location of the zeros of the wave function
(Foulkes et al. 2001) or, more recently and less intrusively, by deforming the contour of
the path integral (Mukherjee and Cristoforetti 2014), among others.
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4.1 Dynamical mean field theory
Since the summation, be it symbolic or stochastic, of all finite-temperature Feynman di-
agrams of the Hubbard model is not possible, we are looking for subsets of diagrams that
can be summed up and model the essential physics. The obvious choice is again perturba-
tion theory: either a weak-coupling expansion in powers of U around the non-interacting
limit U = 0 or a strong-coupling expansion in powers of h (4.3) around the atomic limit
h = 0. However, this by construction fails to account for non-perturbative phenomena
such as the Mott-Hubbard metal-to-insulator transition occurring in the intermediate-
coupling regime U ∼ h (Georges et al. 1996).

Another way of finding a subset of diagrams is by considering locality: instead of
treating the full lattice, we single out a lattice site and consider the rest of the lattice only
as an averaged effect on that site. This leads to mean field theories, which were successfully
used to describe a veritable smorgasbord of physical effects in solids. Maybe the simplest
self-consistent mean field theory is Hartree-Fock, which approximates the self-energy with
the Hartree term and the Fock term. The main problem with static mean field theories
is that they ignore quantum fluctuations, which are however responsible for effects like
quasi-particle renormalisation (Sangiovanni et al. 2006).

A major breakthrough in the field began when Metzner and Vollhardt (1989) realised
that in the limit of infinite dimensions, given a proper scaling of the kinetic energy, only
local correlations survive:

lim
d→∞

Σ(~k, iν) = Σ(iν). (4.4)

Müller-Hartmann (1989a,b) later showed that in this limit, only the local Coulomb inter-
action yields dynamic correlation whereas the non-local density-density interactions only
survive in form of the static Hartree contribution (Held 2007).

In Eq. (4.4), we already see the potential improvement over static mean field the-
ory, where neither the spatial nor the time dependence survives. We however still need
a scheme to compute the actual mean field and thus exploit this formal result. This
was provided by Georges and Kotliar (1992), who showed that in the limit of infinite
dimensions, the Hubbard model can be mapped self-consistently on an Anderson model.

Effective medium interpretation While the d → ∞ route was historically the path
taken in deriving DMFT, we would eventually like to apply DMFT to real materials,
which are three- or even two-dimensional in nature and thus seem far removed from the
limit at hand. In finite dimensions, it is thus more instructive to consider DMFT as
approximating the lattice by an effective medium, as put forward by Janiš et al. (1993),
with the action (Georges et al. 1996):

Smed = −
∑
~k,αβ

ˆ
dτ dτ ′c†α(~k, τ)[Gmed]−1

αβ(~k, τ − τ ′)cβ(~k, τ ′) (4.5a)

[Gmed]−1
αβ(~k, iν) = (iν + µ)δαβ − hαβ(~k)− Σαβ(iν), (4.5b)
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Figure 4.1: Self-consistency loop of dynamical mean field theory for a Hubbard-type model. The
up-/downfolding is only necessary for multiple sites per unit cell (cf. Section 4.3.2) and not to
be confused with the downfolding of the DFT result.

where the self-energy Σ associated with the effective medium is assumed to be local.
In trying to determine this self-energy, we single out one site and replace the effective
medium with the local interaction there. After integrating out the remaining lattice, one
obtains an effective impurity action:

Simp = −
∑
αβ

ˆ
dτ dτ ′c†α(τ)G−1

αβ (τ − τ ′)cβ(τ ′) + 1
2
∑
αβγδ

Uαβγδ

ˆ
dτ [c†αc

†
βcδcγ](τ) (4.6a)

G−1 = G−1
loc(iν) + Σ(iν), (4.6b)

where Gloc = ∑
~kGmed(~k) is the local Green’s function. The DMFT condition is then

a consistency condition between Eqs. 4.5 and Eqs. 4.6: we require that the interacting
Green’s function obtained from the effective action matches the on-site local Green’s
function of the medium:

Gimp(iν) != Gloc(iν) (4.7)

We now end up with a closed set of equations that we can iterate.

Self-consistency loop Algorithmically, the DMFT mapping between the lattice problem
and the auxiliary impurity problem thus reduces to the self-consistency loop in Figure 4.1:
we first “guess” a solution to the Anderson impurity model (bottom). For convenience, we
start either with the non-interacting solution Σ = 0 or the Hartree self-energy Σ = ΣH.
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Secondly, we use the DMFT self-consistency condition to approximate the lattice self-
energy with the local impurity self-energy and use the lattice Dyson equation to compute
the Green’s function of the lattice model Glatt. Thirdly, we then compute the local Green’s
function Gloc by Brillouin zone integration. We then again use the DMFT self-consistency
condition to set Gloc = Gimp. Fourthly, we use the local Dyson equation to extract the
Weiss field or non-interacting Green’s function G of the impurity model. Fifthly, we solve
the impurity model and compute the interacting impurity Green’s function Gimp using an
impurity solver. This is where continuous time quantum Monte Carlo (cf. Chapter 2) is
used and the bulk of computation time is spent. Finally, we use the local Dyson equation
to extract the impurity self-energy Σ and restart the loop until we converge the local
Green’s function with the impurity Green’s function.

From a mathematical point of view the DMFT self-consistency loop is nothing but a
fixed-point iteration DG = G for a very complex non-linear “DMFT operator” D, with
the fixed point in question being the DMFT solution of the local Green’s function G.
This immediately begs three very nasty questions: given the Hubbard model in Eq. (4.3)
for some parameters, (i) does a DMFT solution DG = G exist and is it unique; (ii) is
D a contraction at the point G, i.e. does the fixed-point iteration converge if we are
sufficiently close to the solution; and (iii) is D a contraction everywhere, i.e. does the
iteration converge regardless of the starting point? Put more leniently, we ask the question
whether the DMFT loop (i) makes sense at all; (ii) makes sense somewhere; (iii) makes
sense everywhere.

Obviously these questions form a hierarchy, with each positive answer also answering
the preceding ones, and ideally we would like to answer question (iii) in the affirmative
to ensure that DMFT does the right thing regardless of the problem and the starting
point we throw at it. For d → ∞, the question (i) is true by construction of DMFT,
and was later extended to the DMFT approximation in finite-dimensional systems (cf.
Chitra and Kotliar 2001). They also showed that the DMFT free energy indeed has a
minimum exactly at the physical solution, thus establishing (ii) in this case. Schäfer et al.
(2013) discovered that convergence also depends on the choice of representation. More
specifically, an impurity solver based on the Luttinger-Ward functional Φ is problematic
because Φ is not well-behaved for the whole parameter space: instead the irreducible
vertex Γ = δ2Φ/δG2 shows a set of divergencies, which in turn means that the self-energy
Σ = δΦ/δG bifurcates and DMFT may converge to an unphysical solution (Kozik et al.
2015), thus dismissing (iii) in this case and (ii) at the divergencies. A general proof or
counter-argument for (iii) is to the best of my knowledge unknown.

While these facts may cast doubt on the robustness on DMFT, we find that in practise
DMFT converges to a physical solution, and quickly so away from a critical point.1 Non-

1For the reader still doubting the robustness of DMFT let me first concur to the formal argument
but secondly point out that density functional theory (DFT, cf. Section 4.2) is also formulated in terms
of a self-consistency scheme ρ = D′ρ (cf. Eq. (4.12) and following text) and thus formally has the same
problem which is absent in practise. For readers dismissing the potential problems as mathematical oddity



118 CHAPTER 4. DYNAMICAL MEAN FIELD THEORY

interaction correlation
local short-range all length scales

local DMFT DCA, CDMFT DΓA, DF, 1PI
non-local EDMFT “ DΓA, DB, TRILEX

Table 4.1: Approximation to the interaction U and correlations in terms of locality. The different
acronyms are explained in the text.

physical solutions do from time to time occur, but they can immediately be dismissed by
visual inspection of G and subsequently be avoided by tweaking the fixed-point scheme
by, e.g., using a different mixing of the self-energy (cf. Section 4.4)

Locality and extensions As discussed earlier, DMFT assumes that both the effective
interaction U and the self-energy Σ is local and thus includes all local correlations. To
see that this is indeed an approximation, consider Newton’s cradle, a series of balls hung
on swings one after the other: if the last ball is lifted and released, it transmits its
momentum through a purely local interaction to the next ball, however there is perfect
non-local correlation between the two ends of the chain (and satisfying clicking sounds).
While this is a simple one-dimensional classical system, it already hints at where the
DMFT approximating breaks down: in systems of low dimensionality (one and two) or
close to a second-order phase transition, where the correlation length diverges and non-
local correlations dominate.

Unfortunately, these conditions cover a set of interesting systems such as the two-
dimensional Hubbard model, which is believed to be closely related to high-temperature
superconductors. As a result, extensions to DMFT have been developed to extend its
range, which can very crudely be classified according to Table 4.1. Perhaps the most
straight-forward extension is not consider a single impurity, but instead a small cluster
embedded in a bath. This is equivalent to a “coarse-grained” self-energy

Σ(~k, iν) ≈
∑
i

Σ(~ki, iν)χ(~k − ~ki), (4.8)

where χ(k) denotes the shape of a patch in the Brillouin zone. Assuming open boundary
conditions, this leads to cellular dynamical mean field theory or CDMFT (Kotliar et al.
2001), while periodic boundary conditions lead to the dynamical cluster approximation
or DCA (Hettler et al. 1998). While the latter is considered superior due to its better
scaling with the lattice size (Aryanpour et al. 2005), both methods include all correlations
on lengths scales up to the cluster size. The main problem is that the computational effort

however let me point out that these do cause real problems in diagrammatic computations: the parquet
equations (4.72) for example, when iterated self-consistently in a naive way, are numerically unstable in
a wide parameter range (Tam et al. 2013, Li et al. 2015).
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typically scales exponentially with the cluster size due to the sign problem, thus allowing
to go closer to but not up to second-order phase transitions.

This is why diagrammatic extensions to DMFT have been put forward: the dynamical
vertex approximation or DΓA (Toschi et al. 2007), the dual fermion approach or DF
(Rubtsov et al. 2008) and more recently the one-particle irreducible approach or 1PI
(Rohringer et al. 2013). Another approach which is not strictly a digrammatic extension
but uses DMFT as a starting point is the DMFT plus functional renormalisation group
approach or DMF2RG (Taranto et al. 2014). All of these methods use locality of the two-
particle quantities, which allow them to model non-locality on the one-particle level on all
length scales. Furthermore, they all have the single impurity as their auxiliary model, thus
avoiding the scaling problems of the cluster approaches. However, they instead require to
solve complex two-particle equivalents of the Dyson equation, namely the inverse Bethe-
Salpeter equation and the parquet equations. Let me note that diagrammatic and cluster
extensions are in principle complementary, such that one can envision, e.g., cluster DΓA
calculations. For multiple orbitals, such calculations are however completely infeasible
with today’s computing resources.

Another way to extend DMFT as evident from Table 4.1 is by considering non-local
effective interactions W . This is important for nanoscopic systems and molecules, where
the non-local interaction is poorly screened. Also, it is important when interfacing DMFT
with GW methods rather than density functional theory (cf. Section 4.2), because GW
yields a effective non-local interaction. A straight-forward way to extend DMFT is by
considering not only the self-energy Σ, but also the polarisation operator Π—in a sense
the bosonic counterpart to the self-energy—to be local. The method is known as extended
dynamical mean field theory or EDMFT (Sun and Kotliar 2003) because it works with
the extended Hubbard model: there, the Hubbard model is amended with a frequency-
dependent interaction W (iω). One can again generalise this to the four-leg vertex, which
leads to Ab-initio DΓA (Toschi et al. 2011) or the dual boson approach (Rubtsov et al.
2012). Both methods are computationally extremely intensive and have been used to
study only very simple models. Recently, a generalisation to the three-leg instead of the
four-leg vertex called TRILEX has been put forward (Ayral and Parcollet 2015).

While we have seen that there is a veritable “zoo” of DMFT-esque methods, for many
strongly correlated systems such as transition metal oxides, the assumption of locality is
valid: the data obtained with DMFT shows quantitative agreement with experiment and
allow accurate predictions of magnetic order, metallicity and other microscopic properties.

4.2 Combination with ab-initio methods
The Hubbard model (4.3) allows us to study (a rather simple) strongly correlated lattice
systematically. We would however like to connect it to the properties of materials, which
requires us to estimate the hopping term hαβ(~k) and the interaction term Uαβγδ from
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Figure 4.2: Schematic procedure of density functional plus dynamical mean field theory
(DFT+DMFT).

first principles. Put differently, we would like to treat the Hubbard model as an effective
low-energy model of the full solid state Hamiltonian (4.1). For this estimation, we will
use the ab-initio density functional theory (DFT) method, and the resulting method is
known as DFT+DMFT (see, e.g., Held 2007).

Schematically, the method is shown in Figure 4.2. It consists of three parts: first,
we approximately solve the full system using DFT. Second, we extract the low-energy
manifold where we suspect correlation effects and compute an effective interaction on
that manifold. We then use these as parameters for the Hubbard model and use DMFT
to solve it approximately. In principle, one can then use the updated densities for DFT
and close the self-consistency cycle.

Density functional theory Without a doubt one of the most successful theories of solid
state physics, density functional theory is founded on a theorem by Hohenberg and Kohn
(1964): they established given the many-body ground state ψ0 of a system, the ground
state energy E0 = E[ψ0] is a unique functional E[ρ0] of the ground state density

ρ0(r) = |ψ0(r)|2 =
N∑
i=1
|φi(r)|2 (4.9)

only, where φi is the wave function of the i-th particle. The change E[ψ0] → E[ρ0] has
thus formally reduced the dimensionality of the problem from 1023 to three.

The first functionals proposed were simple expressions of the density (Jones and Gun-
narsson 1989). Striving for a more systematic approach, we perform a decomposition of
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E similar to the Hamiltonian into analytically known terms and the rest:

E[ρ] = T [ρ] +
ˆ

d3r Vion(r)ρ(r)︸ ︷︷ ︸
Eion[ρ]

+ 1
8π

ˆ
d3r d3r′

ρ(r)ρ(r′)
|r − r′|︸ ︷︷ ︸

EH[ρ]

+Exc[ρ]. (4.10)

In Eq. (4.10), T [ρ] is the kinetic energy, Eion[ρ] is the energy from the ionic potential,
and EH[ρ] is the Hartree energy. We have lumped the remaining terms together in the
exchange and correlation energy Exc[ρ]. Other than E[ψ0], which is trivially given by the
Hamiltonian (4.1), E[ρ] and therefore Exc is in general unknown. Worse, calculations for
analytically solvable models such as molecules show that Exc is a very complex and highly
non-analytic object. So on the surface it seems we have just shifted the complexity from
the wave function ψ to the functional E.

Local density approximation Fortunately, given its low dimensionality, Exc serves as a
better basis to make approximations than the full many-body wave function. For example,
by neglecting Exc completely, we immediately recover the Hartree approximation from
Eq. (4.10). Another route, which turned out to be highly successful, is by again considering
locality: formally, E[ρ(r)] is a functional and thus connects every point in space r with
the density at every other point. However, we can attempt a Taylor expansion around
the local density:

Exc ≡
ˆ

d3r ρ(r)Vxc[ρ] ≈
ˆ

d3r ρ(r) [VLDA(ρ(r)) + VGGA(∇ρ(r)) + . . .] (4.11)

Note that in Eq. (4.11), the approximation is to replace the functional (square) brackets
with a function of the value of the density. Keeping only the zeroth-order term, we arrive
at the local density approximation (LDA), which coincides with the exact solution of Exc

for a homogeneous electron gas (HEG) (Jones and Gunnarsson 1989).
By expanding the density ρ in terms of single-particle trial wave functions χi(r) and

assuming the LDA, Kohn and Sham (1965) were able to convert the Hohenberg-Kohn
theorem into a Schrödinger equation for χi:[

−1
2∇

2 + Vion + VLDA(ρ(r)) + 1
8π

ˆ
d3r′

ρ(r′)
|r − r′|

]
χi(r) = εiχi(r), (4.12)

which is solved self-consistently for the Lagrange multipliers εi by updating the density
ρ(r) in Eq. (4.12). The Kohn-Sham equations and DFT are the most successful method to
get qualitative data from first principles, i.e., without any external parameters other than
the crystal structure. Its success, especially in weakly correlated and metallic systems,
is based on the fact that the long-ranged Coulomb interaction is screened such that the
approximation by a HEG is valid.

As we turn up correlations or go to gapped systems, the LDA starts to break down.
One can improve Exc by including, e.g., the first-order term in Eq. (4.11), leading to
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the generalised gradient approximation or GGA (Perdew et al. 1996). Further, more
complex, functionals have been proposed that try to balance computational cost and
(empirical) agreement with experiment (Perdew et al. 1996). For strongly correlated
systems, however, this intensive search has not yielded a suitable potential, justifying a
further treatment with DMFT.

Maximally localised Wannier functions DFT typically yields a set of (Bloch) wave
functions |χnk〉 and associated energies εnk, where n is the band label and k is the crystal
momentum. We are now faced with the problem how to construct an effective low-energy
model from this result. This “downfolding” can be broken down into three interconnected
problems: (i) we need to identify the sub-manifoldM where we expect correlation effects
to play a role; (ii) we need to separate out M from the rest of the system; and (iii) we
need to make sure that we use a localised basis forM for the use in DMFT (cf. Eqs. 4.5).

In formulating a tight-binding Hamiltonian and study its localisation, a basis in real
space are preferable. The corresponding wave functions |wRm〉 were proposed by Wannier
(1937):

|wRm〉 =
ˆ

d3k eik·R Umn(k) |χnk〉, (4.13)

with an arbitrary field U of unitary N × N matrices and R a lattice translation vector.
This does not yet guarantee localisation, e.g., U = 1 yields the plain Fourier transform
of a delocalised Block wave. However, Marzari and Vanderbilt (1997) showed that one
can construct maximally localised Wannier functions (MLWF) by minimising the total
spread of the wave function Ω[U ] = ∑

m∈M〈wm|r2|wm〉 − |〈wm|r|wm〉|2 over all possible
choices of U . Aside from providing the desired localised basis, the MLWF have chemical
significance, as they strongly relate to bonds (cf. Wissgott 2011, Assmann 2015, Kuneš
et al. 2010).

In order to extract the correlated manifold, there are two scenarios: if M is well-
separated, such that we can identify the relevant correlated Bloch bands n, then we only
perform the transformation for these bands. This is the situation in, e.g., bulk SrVO3,
where the correlated V–d–t2g manifold is well-separated. If this is not the case, we first
have to disentangle the correlated and uncorrelated bands (Souza et al. 2001): one replaces
U(k) 7→ U(k)Udis(k) in Eq. (4.13), where Udis then is the N ×M disentanglement matrix
field and U again takes care of the localisation.

The basis of MLWF now provides a suitable representation for the non-interacting
Hamiltonian (but note that it still contains the Hartree term and further correlation—
cf. Section 4.3.3)

hmn(k) = Umi(k)εikU∗ni(k) (4.14a)

and the local part of the bare Coulomb interaction:

Ubare
mnpq =

ˆ
d3r d3r′

w∗m(r)w∗n(r′)wp(r)wq(r′)
|r − r′|

, (4.14b)
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thus providing a first guess for the Hubbard model parameters from first principles (Anisi-
mov et al. 2005).

Constrained random phase approximation Eq. (4.14b) denotes the bare or atomic
interaction. These values are typically of the order 10 to 20 eV, which is far too high
since it neglects screening effects. A simple way to fix this is by assuming Thomas-
Fermi screening: one replaces the long-ranged Coulomb potential 1/r in Eq. (4.14b) by
the short-ranged Yukawa potential e−r/λTF/r, with the Thomas-Fermi screening length
λTF ≈ 1

2 [∂n/∂µ]−1/2. This yields good results if the screening is not strongly orbital-
selective.

Two methods have been developed to estimate the screened U directly from first prin-
ciples calculations, both similar in spirit to cavity or embedding methods: the constrained
local density approximation or cLDA (Gunnarsson et al. 1989, Anisimov et al. 1991) and
the constrained random phase approximation or cRPA (Aryasetiawan et al. 2004), ex-
plained in the following. The main idea of cRPA is to split the polarisation operator Π
of the full system into a correlated part (denoted by c) and the rest, (denoted by u) and
estimate Π using the random phase approximation:

Π =
(

Πcc Πcu

Πuc Πuu

)
≈ ΠRPA = GG. (4.15)

One then uses the Hedin’s fourth equation W = U(1 − UΠ)−1 (Hedin 1965, Eq. (A20))
in its block form to first compute Wcc, the local fully screened interaction. However,
one then needs to apply the Hedin equation again to remove the fully local screening
effect and arrive at Ucc, otherwise we will doubly count these terms in DMFT (see also
Section 4.3.3). In contrast to cLDA, which only gives the static U(ω → 0), cRPA can
reproduce the full frequency-dependence of U .

Charge self-consistency As already noted by Savrasov and Kotliar (2004), DFT+DMFT
is not necessarily a “single-shot” computation scheme. The presence of a local self-energy
Σ induces a redistribution of spectral weight with respect to the non-interacting (DFT)
case (Lechermann et al. 2006, Eq. A6):

∆ρ(k) =
∑
iν

[G(k, iν)−G0(k, iν)] =
∑
iν
G0(k, iν)[Σ(iν)−∆µ]G(k, iν), (4.16)

where G0 is the Kohn-Sham Green’s function (Σ = 0) and ∆µ is the change in chemical
potential between DFT and DMFT solution.2 One can upfold the density change in
Eq. (4.16) to the full DFT basis by “reversing” the Wannier projection (4.13) and then

2No high-frequency regularisation of the sum is necessary, as the terms drop with iν−2. In the case
where DFT uses the tetrahedron method, it is essential to use a very fine Brillouin zone mesh for ∆ρ(k)
in DMFT; otherwise charge is introduced or removed from the system due to the different computation
schemes (Bhandary 2016).
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use it to update the Kohn-Sham Hamiltonian (4.12). This closes an outer, so-called charge
self-consistency loop over the whole DFT+DMFT process (cf. Figure 4.1).

Charge self-consistency in general and especially the relation between the inner self-
consistency loops of DFT and DMFT and the outer charge loop is less well-established
than the single-shot DFT+DMFT method due to their fundamental mismatch in formu-
lation, and several strategies have been followed. It is clear that we cannot perform both
self-consistent DFT and DMFT calculations individually, since this would just alternate
between the DFT and the DMFT solution. An advantageous approach seems to be to
first do a self-consistent DFT calculation, then a self-consistent DMFT calculation on top
of it. Afterwards one alternates between updating the Kohn-Sham Hamiltonian with the
new densities, performing the downfolding, and performing a single DMFT iteration.

4.3 DMFT from a DFT starting point
This section can be seen as an extension to Section 4.1 and is devoted to discuss issues
arising when combining DMFT with a Hamiltonian obtained from DFT (cf. Section 4.2).
The equations closely follow and thus try to motivate the corresponding implementation
in the w2dynamics code.

We will first discuss DMFT with multiple sites, where we map the lattice problem
to more than one impurity problem, which couple through the lattice, and models with
both correlated and uncorrelated bands (Section 4.3.2). We will then discuss the double-
counting problem of DFT+DMFT (Section 4.3.3). Afterwards, we will visit different lat-
tice types and the corresponding Dyson equations (Section 4.3.1). We will then tackle the
(rather technical) issue of the conversion between Matsubara frequencies and imaginary
time and use model functions to solve it (Section 4.3.4). Building on this, Section 4.3.5
discusses the fixing of the chemical potential necessary because DMFT in general does
not conserve the total charge. We will conclude with a brief analysis of starting points
and mixing schemes for the self-energy and the chemical potential (Section 4.3.6).

4.3.1 Lattice types
We first turn to the lattice part of the DMFT self-consistency cycle (cf. Figure 4.1),
modelled by h(k). It turns out that the lattice only contributes with local or k-space
integrated quantities, more specifically:

1. The computation of the local Green’s function Gloc(iν) by given a set of fermionic
frequencies iν, a chemical potential µ and an—upfolded (cf. Section 4.3.2)—self-
energy Σ(iν):

Gloc(iν) = 1
V

ˆ d3k

(iν + µ)1− h(k)− Σ(iν) (4.5b*)

In principle, one could extend this to the local part Ḡloc(iν) of a k-dependent model
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Green’s functions Ḡ(k, iν). Usually, however, a local model (see Eq. (4.54)) is suffi-
cient.

2. The non-interacting density of states:

ρ0(ε) = 1
V

∑
α

ˆ
d3k f ′(ε− εkα)|kα〉〈kα|, (4.17)

where h(k) = 1
V

∑
α

´
d3k εki|ki〉〈ki| is the spectral representation of h(k), f ′(x) is

the derivative of the Fermi function, and V is the volume of the frist Brillouin zone.
From this, one can compute the non-interacting fillings N0 =

´ µ
−∞ tr ρ0(ε) and use

it for fixing the initial chemical potential: N0(µ) = N .

3. The first (non-central) moments of the density of states:

〈hn〉 := 1
V

ˆ
d3k hn(k), (4.18)

where the first moment defines the local Hamiltionian hloc := 〈h1〉, used for comput-
ing model functions that are in turn used for modelling the asymptotics of Eq. (4.5b)
(cf. Section 4.3.4).

This allows us to “abstract” away the concrete form of the lattice from the DMFT self-
consistency cycle. This is turn is useful, because h(k) on a finite k grid is not always the
ideal representation to carry out these tasks.

Density of states For non-interacting systems, we can directly work with the density
of states and do not have to construct the Hamiltonian explicitly. This carries over to
the interacting system only for one-orbital models, since there [H(k),Σ(iν)] = 0 holds. In
this case, Eq. (4.5b) simplifies to a Hilbert transform:

Gloc(iν) =
ˆ dε ρ(ε)

(iν + µ)1− ε− Σ(iν) , (4.19)

where ρα is the non-interacting density of states given by Eq. (4.17). The moments of the
density of states (4.18) in turn are given by 〈hn〉 =

´
dε εn ρ(ε).

For models, it is best to keep the density of states in its analytical expression rather
than discretise it over the energy range. This is because of non-analyticities in low dimen-
sions and temperature, e.g. the 2D square lattice experiences the van Hove singularity at
ε = 0.

Bethe lattice The Bethe lattice of coordination number Z, a well-studied model in the
context of electronic correlation, is a infinite tree where every node has Z next neighbours
(it is a lattice because as seen in Figure 4.3a, a translation just changes the “root status”
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(a) Bethe lattice for Z = 3
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Figure 4.3

to another node). For a properly scaled nearest neighbour hopping t∗ = t/
√
Z − 1, its

density of states reads (see, e.g., Eckstein et al. 2005):

ρ(ε) = 1
2π

√
4t2 − ε2

Zt2/(Z − 1)− ε2/Z
Z→∞−−−→ 2

πD2

√
D2 − ε2 (4.20)

For Z = 2, Eq. (4.20) yields the density of states for the one-dimensional chain, motivating
the Bethe ansatz, where for Z →∞, it yields the well-known semi-elliptic density of states
with the half bandwidth D = 2t (Figure 4.3b).

The Bethe lattice for Z →∞ has been extensively studied by DMFT (Georges et al.
1996). Since Bethe lattice contains no loops, the self-consistency condition formally sim-
plifies to: ∆(iν) = −t2G(iν). However, in our case we like to keep the explicit integration
of the self-energy in order to be able to use the additional information from the improved
estimators (Section 3.6.1). The Hilbert transform (4.19) yields:

Gloc(iν) = 2ζ
D2

(
1−

√
1−D2/ζ2

)
(4.21)

with ζ := iν + µ− Σ(iν). Moreover, the non-interacting density N(ε) again for Z →∞,
used for problem 1 above, is analytically given by:

N(x = ε/D) = 1
2 + 1

π

(
x
√

1− x2 + arcsin x
)
, −1 ≤ x ≤ 1. (4.22)

General k-space Hamiltonian For multi-orbital systems with Σ 6= 0, we have no choice
but perform the k-space integration explicitly. The Hamiltonian is given on a (typically
regular) mesh of size Nk and we can replace the k-space integral by its zeroth order
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approximant:
1
V

ˆ
d3k f(k) ≈ 1

Nk

∑
ki

f(ki) (4.23)

Empirically, this is a reasonable strategy for d-only calculations (cf. Section 4.3.2) away
from the non-interacting limit, because the presence of the imaginary part of the self-
energy broadens the energy levels. However, for low temperatures, weak correlations, or
dp models we do require a significantly finer k-mesh than in DFT calculations with the
tetragonal method. To improve on this, generalisation to Eq. (4.23) have been proposed
(e.g., Haule et al. 2010).

For the computation of the density of states, a further simplification is possible by
writing Eq. (4.17) as convolution:

ρ0(ε) =
ˆ

dε′f ′(ε− ε′)ρ0,T=0(ε′) (4.24)

One can then approximately compute ρ(ε) by first sorting the eigenvalues from Eq. (4.17)
of h(k) into fine energy bins. One then performs a Gaussian or Lorentzian smearing by
convolution with an appropriate discrete filter.

Nanoscopic systems A nanoscopic systems is typically connected to external leads,
modelled by an additional hybridisation term ∆L(iν), and we have to amend Eq. (4.5b)
to (Valli 2013):

Gloc(iν) = 1
V

ˆ dnk
(iν + µ)1− h(k)−∆L(iν)− Σ(iν) (4.25)

The k-space integral runs over the remaining n ≤ 2 “periodic” dimensions of the Hamilto-
nian. Eq. (4.25) allows us to reuse either the Dyson equation for the full Hamiltonian or
for a density of states (4.19) simply by replacing Σ(iν)→ Σ(iν) + ∆L(iν). The moments
of the density of states have to be extended as well (cf: since ∆L

0 = 0, hloc is unchanged.
However, the second moment is affected as follows: 〈h2〉 → 〈h2〉+ ∆L

1 .

4.3.2 Multiple sites and dp calculations
When evaluating realistic systems, sometimes more than one correlated atom has to be
considered. The first thing that comes to mind are magnetic supercells. In DMFT,
Slater-type (anti-)ferromagnetism can still be modelled by a single impurity using special
couplings to the bath (Georges et al. 1996, Pruschke and Zitzler 2003).

However we can also explicitly construct the supercell in DMFT: we artificially repli-
cate unit cell Nat times and therefore have Nat duplicates of the correlated impurity. The
self-consistency condition of the original DMFT approximation then reads:

P−1
I Gloc(iν)PI = Gimp(iν), I = 1, . . . , Nat. (4.26)
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PI is a NI × N matrix that “downfolds” the to the I-th impurity problem, where N
the total number of flavours and NI the number of flavours on the I-th impurity. The
corresponding N × NI “upfolding” matrix P−1

I must satisfy PIP
−1
J = δIJ1 (upfolding

followed by downfolding is a trivial operation), or equivalently ΠI := PIP
−1
I must be a

set of pairwise disjoint projectors onto the downfolded problems. In the simplest case, PI
just projects out some rows of the lattice problem.

We now generalise this to surfaces and nanoscopic systems, where the correlated atoms
are in general non-equivalent and we get Nat distinct impurity solutions G(I)(iν).3 We
then amend the self-consistency condition Eq. (4.26) to:

G(I)(iν) = P−1
I Gloc(iν)PI (4.27a)

Σ(iν) = ∑Nat
I=1PIΣ(I)(iν)P−1

I (4.27b)

The local screened interaction Uαβγδ (cf. Section 4.2) in turn is downfolded according to:

U
(IJ)
αβγδ =

∑
α′β′γ′δ′

PI,αα′PJ,ββ′Uα′β′γ′δ′P
−1
I,γ′γP

−1
J,δ′δ (4.28)

with I = J . In Eqs. 4.27, we have made the computational steps in the DMFT loop
(Figure 4.1) explicit: Eq. (4.27a) denotes the downfolding of the local Green’s function
in order to compute the Weiss field for the I-th impurity problem. Eq. (4.27b) models
the upfolding: the impurity self-energies are combined into the lattice self-energy. Note
that already here, the impurity self-energy and the lattice self-energy are different because
they have different sizes.

It is important to contrast Eq. (4.26) with cluster extensions of DMFT (cf. Section 4.1):
in cluster methods, we map the lattice to a single multi-site problem, while here we map
it to multiple single-site problems. In a sense, we can think of multi-site DMFT as cluster
calculations where we have ignored inter-site correlation inside the cluster, which is again
justified in infinite dimensions but an approximation otherwise. However, the different
impurities are not completely independent, but are still coupled through hybridisation
terms in the lattice (cf. Section 4.3.4).

Ligand atoms and dp calculations Other than just taking into account correlations
on the (typically d) correlated manifold while freezing the dynamics in the surrounding
ligands, Hansmann et al. (2010) proposed to include these (typically p) degrees of freedom
explicitly. The Hamiltonian of the effective system Hdd is thus amended to (Han et al.
2011):

H = Hdd +Hpp + (Vdp + h.c.), (4.29)

3The generalisation of DMFT to multiple inequivalent sites per unit cell was to my knowledge first put
forward by Potthoff and Nolting (1999) in studying surface effects using the semi-infinite Hubbard model,
and is now known as layered-DMFT. Florens (2007) later used the same approach to study nanoscopic
systems, i.e. correlated molecules possibly attached to non-interacting leads, and called it nano-DMFT.
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where Hpp denotes the dynamics on the ligands and Vdp is the hybridisation between d

and p manifold. The resulting dp calculations especially are important when the charge
transfer energy ∆ = εd − εp, renormalised by double counting (cf. Section 4.3.3), causes
the system to gain energy by moving charge between manifolds (Han et al. 2011) and
the strength and nature of correlation strongly depend on the d filling. Hansmann et al.
(2014) showed that the explicit inclusion of p orbitals is also crucial in stabilising the
charge transfer insulating state in the cuprates.

Moreover, the inclusion of the p manifold in the Wannier projection allows the d or-
bitals to be more localised since they don’t have to carry an effective p character (Wissgott
2011). By constructing selectively localised Wannier functions (Wang et al. 2014a), where
the localisation condition on the p bands is dropped, we can localise the d orbitals even
more strongly (cf. Section 4.2).

The dp Hamiltonian (4.29) can be seen as a special case of the multi-site calculation,
where we treat the d and p manifolds as different sites. In principle, we could now
explicitly construct and solve an impurity problem for the p and upfold the corresponding
self-energy Σpp. However, it turns out that the ligands are typically more weakly correlated
in themselves, such that we can employ the Hartree approximation:

Σ(I)
αβ ≈

∑
γ

δαβU
(II)
βγ 〈n(I)

γ 〉, (4.30)

where I denotes a p-site, 〈nγ〉 is the density as extracted from the lattice model, and we
have introduced the density-density interaction matrix U again as:

Uαβ = Uαβαβ − Uαββα (4.31)

and its downfolded version as U (IJ) = P−1
I UPJ . The Pauli principle in Eq. (4.30) is thus

modelled by the construction of the density-density matrix: Uαα = 0 (cf. Section 2.4).

Inter-site correlation on the Hartree level In some materials we find that the screened
Hubbard interaction Uαβγδ (cf. Section 4.2) is not sufficiently local, i.e., we find significant
terms U (IJ) with I 6= J from Eq. (4.28). This is especially important in dp calculations,
where the dp interaction renormalises the hopping between d and p manifold and thus
influences the strength of charge transfer processes.

Short of performing a cluster calculation with all the impurity sites collected, typically
infeasible due to the scaling of the underlying impurity solver, we can again apply the
Hartree approximation for the inter-site self-energy Σis:

[Σis]αβ ≈
∑
γ

δαβ[Uβγ − PIU (II)
βγ P−1

I ]〈nγ〉 (4.32)

where, as in Eq. (4.30), nγ denotes the lattice densities. We have projected out the inter-
site terms of the interaction matrix, because otherwise we doubly count the correlations
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on the sites: these are given by the impurity self-energies Σ(I)(iν) on the d-atoms or the
Hartree self-energies Σ(I) on the p-atoms. The inter-site correlation modifies the up- and
downfolding Eqs. 4.27 as follows:

G(I)(iν) = P−1
I Gloc(iν)PI (4.33a)

Σ(iν) = ∑Nat
I=1P

−1
I Σ(I)(iν)PI + Σis + ΣDC + Σext, (4.33b)

where we anticipated the double-counting correction ΣDC introduced in Section 4.3.3 and
the presence of a external magnetic field Σext. Note that Eq. (4.33a) implies that for
computation of the Weiss fields [G(I)]−1 = [G(I)]−1 + Σ(I), the impurity self-energy Σ(I)

rather than a downfolded Σ (4.33b) has to be used, which does not include ΣDC, Σis,
and Σext. Otherwise their effect in the lattice Dyson equation and the impurity Dyson
equation erroneously cancels (up to iν−2, cf. Section 4.3.4).

Equivalent sites Let us for a moment go back to the simple supercell calculation (4.26):
we only need to compute one impurity problem since all of the sites are equivalent. For
deterministic solvers such as exact diagonalisation, it is important to take that equiva-
lence into account, otherwise we needlessly duplicate the significant computational cost of
solving the impurity model. For stochastic solvers such as CT-QMC on the other hand,
we may instead average over the calculations for the different impurities, thus doubling
the effort but also the statistical information.

In the general case, only some sites may be equivalent to each other, such that the
set of all impurities is composed of one or more equivalence classes or atom “species”.
Considering the simple anti-ferromagnetic case, where the impurities are related by a
simple spin flip, we can also improve upon the notion of equivalence: we consider two
impurities I and J as equivalent, I ≡ J , if they are related by

G(J)(iν) = TJIG(I)(iν)TIJ (4.34a)
U

(JJ)
αβγδ = TJI,αα′TJI,ββ′U

(II)
α′β′γ′δ′TIJ,γ′γTIJ,δ′δ, (4.34b)

where TIJ,αα′ is an arbitrary unitary transformation, TIJ = T †JI and TII = 1, of the one
particle picture. This is because Eqs. 4.34, by insertion into the Dyson-Feynman series,
implies that the impurity self-energies are also related:

Σ(J)(iν) = TJIΣ(I)(iν)TIJ (4.35)

We can now write our “atom species” or equivalence classes as: [I] := {J : I ≡ J}.
Using these equivalence classes, we can again update our up- and downfolding (4.33):

G(I)(iν) = 1
|[I]|

∑
J∈[I]

TIJP
−1
J Gloc(iν)PJTJI (4.36a)

Σ(iν) =
∑
[I]

∑
J∈[I]

P−1
J TJIΣ(I)(iν)TIJPJ + Σis + ΣDC + Σext, (4.36b)
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Here, |[I]| denotes the size of the equivalence class [I] or in other words the number of
sites of species [I]. The symmetrisation in Eq. (4.36a) is in principle unnecessary, but
averages out high-frequency fluctuation in the lattice Green’s function. Similarly, one can
introduce the symmetrisation in Eq. (4.36b) if one calculates all impurity problems.

The equivalence classes [I] are often determined by simple symmetry relations known
before the calculation. However, we can find these symmetries computationally from
Eqs. 4.34. To do so, one compares the singular value decomposition (SVD) (Press et al.
2007) of the non-interacting Green’s functions:

G(I)(iν) = A(I)(iν)g(I)(iν)B(I)†(iν) (4.37)

with the diagonal matrices g and unitary matrices A and B. If two impurities I, J
are related by symmetry, then g(I)(iν) = g(J)(iν) for all frequencies by Eq. (4.34a). In
this case, the transformation is given by TIJ = A(I)(iν)A(J)†(iν). In principle one then
has to check Eq. (4.34b) using T , but in case of the Slater-Kanamori interaction this is
unnecessary since it is invariant under unitary transformations.4

4.3.3 Double-counting correction
When one combines a first-principles calculation with dynamical mean field theory, one
needs to be careful: if the non-interacting problem contains local correlation, these are
again included in DMFT. One needs to correct for this double counting, either

1. by removing local correlation terms from the Hamiltonian from the onset: H 7→
H −HDC , or

2. by correcting the self-energies Σ 7→ Σ− ΣDC obtained from the impurity solver

As evident from Eq. (4.5b), both strategies are equivalent at self-consistency (ΣDC =
HDC), rather it is a matter of perspective.

As a simple example, let us consider the Hartree+DMFT approach (Held 2007), where
H is computed from a Hartree calculation and the self-energy is just given by the Hartree
diagram.5 As DMFT includes all purely local correlations, Held (2007) notes that the
proper double counting for DMFT is to subtract the local part of the Hartree digram on
the correlated subspace L:

(ΣDC)iσ = 1
N

∑
i′∈L

∑
σ′
Uiσ,i′σ′〈ni′σ′〉 (4.38)

4In practical calculations, one checks these relations over a small low-frequency window W :∑
iν∈W |g(I)(iν) − g(J)(iν)| < ε|W |, and then extracts T also by averaging over the window: |W |TIJ =∑
iν∈W A(I)(iν)A(J)†(iν), where |W | is the number of Matsubara frequencies in the window.
5One should be careful not to confuse the Hartree+DMFT method with the incorporation of Hartree-

like interaction terms for weakly correlated bands within a d+p calculation, also known as HartreeDMFT
(Hansmann 2010), the subject of present section.
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where the density-density U matrix is defined in Eq. (4.42) and N is the number of
flavours.

Let us now consider the more general case of combining density functional theory with
DMFT (one can think of Hartree+DMFT as a special case of DFT+DMFT, where we have
neglected the exchange and correlation potential Exc[ρ]). However, as with all DFT plus
many-body theory approaches, one runs into a fundamental problem when interfacing
the two theories: The most widely used density functionals, such as the local density
approximation (LDA) and its generalisations, do not have any known representation in
terms of Feynman diagrams.6

As a result, several schemes have evolved to approximate the double counting cor-
rection for DFT+U and DFT+DMFT calculations. Most of these schemes correct for
the local Hartree diagram (cf. Eq. (4.38)), which is included in DFT as EH[ρ], and
try to approximate the exchange and correlation energy by simple diagrams. Different
schemes yield—sometimes significantly—different values, so one may justifiably be con-
cerned about the reliability of the procedure itself. In a systematic study of NiO, Karolak
et al. (2010) showed that the physics however are stable over a range of values of the
double counting.

Around mean field In the context of LDA+U , Anisimov et al. (1991) improved on the
double counting (4.38) for the Hartree term only by asserting that LDA corresponds to
a mean field solution of the many-body problem, with the mean field generated by the
mean charge n̄σ on the level of an atomic `-subshell:

n̄(I)
σ = 2

NI

∑
i

[PIn]iσ, (4.39)

where PI again are the projectors to the I-th site and subshell (4.33), NI is the number
of flavours spin-orbitals on I. Unlike Anisimov et al. (1991) and following Czyżyk and
Sawatzky (1994), we have kept the explicit spin dependence of the mean density. We also
define the mean density-density interaction between the sub-shell I and J , respectively:

Ū (IJ)
στ := 4

NINJ

∑
ij

[PIUP−1
J ]iσ,jτ (4.40)

where U is given by Eq. (4.31). A mean field decoupling of the densities n then yields the
around mean field (AMF) double counting correction:

ΣAMF =
∑
IJ

∑
τ

P−1
I Ū (IJ)

στ

[
N (J)
τ − n̄(J)

τ

]
PI , (4.41)

6One can sidestep this problem entirely by building on first-principles calculations that have a diagram-
matic formulation, e. g., a method of the GW family, where as in the Hartree case the double counting
can be computed explicitly. The resulting GW+DMFT method, introduced by Biermann et al. (2003),
is more accurate (Tomczak et al. 2014) but also considerably more expensive than the DFT+DMFT
method, such that e. g. large super-cells are currently infeasible.
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where N (J)
τ = n̄(J)

τ NJ/2 is the total charge in the J-th subshell.7 Eq. (4.41) is general
enough for any multi-site and d + p calculation but perhaps not an ideal expression in
terms of readability; for explicit calculations for the Kanamori-U we refer the reader to
Parragh (2013).

Fully localised limit Contrary to the mean field argument, Anisimov et al. (1993) and
later Czyżyk and Sawatzky (1994) argued in terms of localisation: because correlated 3d
or 4f electrons are also localised and DFT describes the local energies well in the atomic
limit, one should instead subtract the atomic limit solution. For a simple Hubbard U , the
energy of the fully localise limit (FLL) reads E = UN(N − 1)/2 and the corresponding
double counting is thus ΣDC = ∂E/∂N = U(N − 1

2). For the general case, it amounts to:

ΣFLL =
∑
IJ

∑
τ

P−1
I Ū (IJ)

στ

[
N (J)
τ − 1

2

]
PI , (4.43)

It has been argued (Parragh 2013) that the FLL double counting, by construction, is more
suitable for correlated insulators because of its “proximity” to the atomic limit. We note
that the AMF (4.41) and FLL double counting (4.43) agree for half-filled single-orbital
systems, i.e., n̄(J)

τ = 1
2 .

Self-consistent double counting Other double counting schemes have been proposed
that exploit the self-consistency condition for the charge. We first note that in principle,
DMFT does not conserve the total charge mainly because the real part of the self-energy
<Σ(iν) induces energy level shifts, which requires us to adjust the chemical potential
accordingly (cf. Section 4.3.5).

However, for a single-site metallic calculation we can argue that the total charge in
the system should also not change on the impurity level, thus we fix the double counting
such that (Amadon et al. 2008):

trGAIM(β−) != trG(β−) (4.44)

A closely related approach is to treat any rigid shift Σ0 of the impurity electrons due to

7Note that Eq. (4.40) and Eq. (4.41) deviates from the convention of Czyżyk and Sawatzky (1994):
for i 6= j, they define the generalised Hubbard Uij and Hund’s Jij from the four-orbital U matrix Uijkl:

Uiσ,jτ :=
[
Uij − Jij Uij
Uij Uij − Jij

]
στ

= Uijij − Uijjiδστ , (4.42)

while for i = j, Jij is left undefined. This means that while their Ū equals our Ūστ , on the other hand
their Ū − J̄ equals our N

N−2 Ūσσ. This also means that one has to take the Pauli principle explicitly
into account into the double counting formulas (hence the i 6= j when summing with the prefactor J̄ in
their double-counting formulas, while this is absent in Eq. (4.41) and Eq. (4.43)). The simplicity of these
relations is also why it is important computationally to keep spin dependence of the mean U matrix and
mean densities n.
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correlation as spurious, thus (Braun et al. 2006):

Σtr =
∑
I

P−1
I

1
NI

tr(Σ0)Pi, (4.45)

These double-counting schemes have successfully been applied to metallic systems, but
fail for insulators since the chemical potential becomes ill-defined in this case.

4.3.4 Fourier transform: moments and models
The Matsubara representation is a natural representation for the DMFT self-consistency
loop as evident from Figure 4.2. However, a finite frequency box is problematic for τ -local
quantities:

A1 = A(τ = 0−) = 1
β

∑
iν

e−iν0−A(iν). (4.46)

A finite value of A1 implies a jump at τ = 0, which in turn cannot be resolved by a finite
set fermionic Matsubara frequencies, since all of them have a node at zero (essentially a
variant of Gibbs’ phenomenon). As a result, the Fourier transform of the jump yields a
long-ranged frequency tail A(iν)→ A1/iν and the sum is only regularised by e−iν0− .

Since we can only store a finite frequency box, this is problematic especially in two
points of the DMFT self-consistency loop (see, e.g., Blümer 2002):

1. The computation of the local density of the lattice model Nloc from Gloc(iν) by
Eq. (4.46), which is also important for the fixing of the chemical potential; and

2. The computation of the local impurity level(s) E from G(iν) and the boundaries
of the Hybridisation function in imaginary time ∆(τ = 0+) for ∆(iν) (the second
moment of G) again by Eq. (4.46). The inverse transform of Gimp is more well-
behaved (cf. Section 3.3).

We thus have to make sure that we take care of the asymptotic part of A(iν) explicitly,
which can be done by using models Ā(iν). A model agrees with the true function in the
asymptotic region, limν→∞A(iν) = Ā(iν), and the infinite sum Ā1, defined by Eq. (4.46),
must be known analytically. One then approximates the infinite sum over A with the
finite sum over the difference with the model:

A1 = 1
β

∑
iν

e−iν0− [A(iν)− Ā(iν) + Ā(iν)] ≈ Ā1 + 1
β

∑
iν

[A(iν)− Ā(iν)] (4.47)

In Eq. (4.47), we will use mainly a model that represents the shape of the Green’s
function, for which we can exploit the identity (Abrikosov et al. 1975):

1
β

∑
iν

e−iν0−

iν − x = f(x) = 1
1 + exp(βx) , (4.48)
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where f(x) is the Fermi function. The choice of model is not unique: e.g., the model
Eq. (4.48) agrees in the asymptotic region for all x. To see this, let us perform a Taylor
expansion of Eq. (4.48) around x = 0, unsurprisingly yielding the geometric series:

e−iν0−

iν − x =
∞∑
n=0

e−iν0−

iνn+1 x
n (4.49)

which agrees up to the zeroth order and for n > 1, we can omit the convergence factor
e−iν0− since the series converges on its own. The coefficients in turn can be evaluated by
comparing Eq. (4.49) with the Taylor expansion of the Fermi function in Eq. (4.48):

1
β

∑
iν

e−iν0−

iνn+1 = 1
n!f

(n)(0) = 1
2
βn

n!En(0) = 1
2 ,−

β

4 , 0,
β3

48 , 0,−
β5

480 , 0, . . . (4.50)

where f (n)(x) denotes the n-th derivative of the Fermi function and En(x) is the n-th
Euler polynomial (Abramowitz and Stegun 2012).

One can also generalise the model in Eq. (4.48) to include more information about the
asymptotics, e.g., further moments of the self-energy:

1
β

∑
iν

e−iν0−

iν − x0 − x1iν−1 − . . .− xkiν−k
=
∑
i

f(zi)zki
∏
j 6=i

1
zi − zj

, (4.51)

where zi are the (possibly complex) roots of the polynomial zk+1 − x0z
k − . . .− xk. This

is valid if we only have single roots zi. Convergence of the sum itself requires iν 6= zi
for all iν and zi. The deviation of Eq. (4.51) using the residuum calculus is lengthy but
straight-forward. The expansion of the model in the asymptotic region in turn yields:

e−iν0−

iν − x0 − x1iν−1 − . . .
= e−iν0−

iν + x0

iν2 + x1 + x2
0

iν3 + . . . (4.52)

Thus the correction by the iν−n term in the denominator corrects Eq. (4.49) only in
the iν2+n term. Therefore, since there is significant computational effort in evaluating
Eq. (4.51), we typically omit higher-order terms in the model.

Local density We first turn to the computation of the local density matrix from the
Green’s function:

ρloc = 1
V

ˆ
d3k

∑
iν

1
(iν + µ)1− h(k)− Σ(iν) , (4.53)

where we have absorbed the double counting correction into the self-energy. Here, because
of the commutativity of the sums we essentially have two choices for a model: we can
first perform the Brillouin zone integration and find a model for the local Green’s function
Ḡloc(iν) or we can find a model for the k-dependent Green’s function Ḡ(k, iν) and perform
the Brillouin zone integration afterwards for both ρ(k) and the difference. Eq. (4.50)
implies that both strategies agree up to the order iν−2, so we choose the simpler first
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strategy for now and our model is simply:8

Ḡloc(iν) = 1
(iν + µ)1− hloc − Σ0

, (4.54)

where hloc = 1
V

´
d3k h(k) is the local Hamiltonian, and Σ0 is the constant Σ0 in an

Σ → Σniν−n expansion. Σ0 consists of the Hartree term ΣH and in general the double
counting correction ΣDC.

Looking at the form of the model, we need to generalise Eq. (4.48) with an operator
A = hloc + ΣH in the denominator rather than a scalar x for the case n = 1:

1
β

∑
iν

e−iν0−

(iν + µ)1− A = f(A− µ1) = [1+ eβ(A−µ1)]−1 (4.55)

where eA in this case denotes the matrix exponential.
For practical computations of Eq. (4.55), we first perform an SVD: A = UA diag[ai]V †A

where UA and VA are orthogonal transformation to a diagonal matrix collecting the eigen-
values ai. We can also use the eigenbasis rather than the SVD of A: as A is in general a
complex operator, the eigenvalue problem is very likely to be solvable since the measure
of non-diagonalisable complex matrices vanishes. Inserting this into Eq. (4.48) yields:

ρ̄loc = 1
β

∑
iν

e−iν0−

(iν + µ)1− A = f(A− µ1) = VA diag[f(ai − µ)]U †A (4.56)

Note that the eigenvalue decomposition is not strictly necessary since the matrix expo-
nential exists also for non-diagonalisable matrices. However, it allows us also to compute
Ḡloc(iν) quickly for different frequencies, without relying on the inversion. In terms of the
eigenvalues, they are simply given by:

Ḡloc(iν) = VA diag
[

1
iν + µ− f(ai)

]
U †A (4.57)

Updating Eq. (4.53) with Eq. (4.56) and Eq. (4.57), we arrive at the improved formula
for the local density matrix in the spirit of Eq. (4.47):

ρloc = ρ̄loc +
∑
iν

[Gloc(iν)− Ḡloc(iν)] (4.58)

Impurity levels and hybridisation function The second important point is the impurity
levels E and the borders of the hybridisation function ∆(τ = 0+) from the impurity

8This statement assumes that we use the same Brillouin zone integration method for both cases. One
can however also envision an analytic Brillouin zone integration method for the simpler model, which
may improve on the accuracy in general.
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Green’s function for the I-th impurity problem:

G(I)(iν) = 1
iν1+ E − Σ(I)

0 −∆1/iν − Σ(I)
1 /iν − . . .

(4.59)

Here we use the impurity self-energy Σ(I) to be consistent also in full calculations (cf. Sec-
tion 4.3.2). Expanding this in powers of iν using Eq. (4.52), we first identify x0 =
E + Σ(I)

0 − µ1 and x1 = ∆1 + Σ(I)
1 and we get (Parragh 2013):

G(I)(iν)→ 1

iν + Σ(I)
0 − E
iν2 + ∆1 + Σ(I)

1 + Σ(I)2
0 − {Σ(I)

0 , E}+ E2

iν3 (4.60)

We will determine E and ∆1 from the self-consistency condition. Therefore, we also
perform a similar expansion for the local Green’s function:

Gloc(iν) = 1
V

ˆ d3k

(iν + µ)1− h(k)− Σ0 − Σ1/iν − . . .

→ 1

iν + hloc + Σ0 − µ1
iν2 + Σ1 + Σ2

0 + µ2
1+ {Σ0, hloc} − 2µ(hloc + Σ0) + 〈h2〉

iν3

(4.61)

where 〈h2〉 is defined as the second moment of the density of states: 1
V

´
d3k h2(k). When

using the self-consistency condition (4.33), we need to be careful about the self-energy
moments:

Σ(I)
0 =

∑
i

PiΣ(I)
0 P †i + Σdp + ΣDC (4.62a)

Σ(I)
1 =

∑
i

PiΣ(I)
1 P †i + ∆L,1 (4.62b)

As evident from Eq. (4.62a), the constant term Σ0 aside from the upfolded impurity
self-energy also contains the double-counting term ΣDC and the Hartree self-energy from
the d–p interaction Σdp. The first-order term is given by the upfolded energy, plus for
nanostructures the first moment ∆L,1 of the hybridisation with external leads (4.62b).
Inserting Eq. (4.60), Eq. (4.61) and Eqs. 4.62 into Eq. (4.26) and comparing coefficients
yields:

E = µ1− P †i (ΣDC + Σdp + hloc)Pi (4.63a)
∆1 = P †i ∆L,1Pi + P †i 〈h2〉Pi − (P †i hlocPi)2 (4.63b)

In Eq. (4.63b), note the different placement of Pi for hloc and h2. This implies for multi-
site calculations, ∆1 is in general not equivalent to the second moment of the density
of states: P †i [〈h2〉 − 〈h〉2]Pi. In other news, Eq. (4.63a) now allows us to compute the
hybridisation function ∆(iν) from G(iν), and Eq. (4.63b) allows us to perform its Fourier
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transform, analogous to Eq. (4.47), as:

∆(τ − τ ′) =
∑
iν

e−iν(τ−τ ′)
[
∆(iν)− ∆1

iν

]
+ ∆1

2 (4.64)

4.3.5 Fixing the chemical potential
DMFT does not conserve the total charge of the non-interacting system except at half
filling, so that in general:

NLDA(µ) 6= NDMFT(µ) (4.65)

This is because the real part of the self-energy <Σ(iν) may shift energy levels across
the chemical potential, and the imaginary part =Σ(iν) may broaden low-energy levels,
thereby making an asymmetry in the low-energy part of the spectrum “more visible”.
This is clearly a spurious phenomenon, since barring a strange downfolding strategy or an
interface to external leads, the total number of electrons in the system should not change
when we include correlation effects. There are basically two strategies to fix this:

1. Closing the charge self-consistency loop (cf. Section 4.2) to allow the self-energy
effects to flow back to the LDA calculation, thereby determining a unique µ for
both LDA and DMFT. Unlike GW+DMFT, in practical DFT+DMFT calculations
this does not work due to the double-counting problem.

2. Fixing the chemical potential µDMFT (or equivalently, the double-counting correc-
tion, cf. Section 4.3.3) such that the total charge agrees:

NLDA(µLDA) != NDMFT(µDMFT) (4.66)

In a sense, the latter strategy is “poor man’s charge self-consistency” scheme, where we
have assumed that the total charge is already converged in the LDA calculation and just
look for the “right” DMFT solution to match it. This is reasonable for many 3d systems,
where the total charge is well-defined. For model systems, it is important for calculations
at given doping.

Computationally, Eq. (4.66) amounts to a finding the root N(µ) − NLDA = 0 with a
monotonous function N(µ). One may in principle use the self-consistent DMFT solutions
N(µ) for some µ as input to this procedure, however this is highly inefficient: it is much
faster to update µ after each DMFT step to ensure the correct number of electrons in the
lattice model (cf. Figure 4.2).

Caching of singular values The fixing of the chemical potential in general requires us,
by Eq. (4.53), to compute a number of traces over local Green’s functions for different
N(µ) = tr ρloc(µ). For systems with a large number of orbitals N , k-points Nk and
frequencies Nν , the inversions involved can be a major bottleneck of the code, since the
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algorithm scales as O(N3NkNνNit), where Nit is the number of iterations of the root
finding.

However, we can use the SVD of the combined problem (h+ Σ):

h(k) + Σ(iν) = A(k, iν) diag[λα(k, iν)]B†(k, iν), (4.67)

because the unitary transformations U , V are invariant under addition of a constant, and
the local density becomes:

N(µ) = 1
V β

ˆ
d3k

∑
iν,α

aα(k, iν)
iν + µ− λα(k, iν) (4.68)

where we have defined aα(k, iν) = [A†(k, iν)B(k, iν)]αα. If G(k, iν) is diagonalisable, then
aα(k, iν) = 1 and λα(k, iν) are the eigenvalues rather than the singular values of the
problem. Since the measure of non-diagonalisable complex matrices vanishes, this can be
expected.

Eq. (4.68) allows us to pre-compute a and λ, yielding the same scaling O(N3NkNν)
for the first root finding iteration as a naive computation, however then use it in every
subsequent iteration to speed it up to O(NNkNν). The memory requirement in turn is
O(NNkNν), which requires memory parallel strategies for large systems.

4.3.6 DMFT convergence and mixing
While a straight-forward iteration of the DMFT self-consistency loop (Figure 4.1) is typi-
cally used, it is by no means the only way: instead, it just corresponds to a naive iteration
of the fixed-point scheme DG = G (cf. Section 4.1).

Mixing We can instead use mixing schemes, which try to incorporate the “history” of
the DMFT cycle. It is most useful to perform these mixing at the level of the self-energy
Σ(iν) and also the chemical potential µ if is fixed after each iteration (cf. Section 4.3.5).
Perhaps the simplest scheme is that we mix a part α of the previous self-energy Σi−1(iν)
into the current one Σi(iν):

Σi(iν)← (1− α)Σi(iν) + αΣi−1(iν) (4.69)

For any α, Eq. (4.69) is compatible with the self-consistency condition. Away from that,
we distinguish:

1. Under-relaxation (0 < α < 1): The influence of a self-energy into the n-th next
iteration decreases as α−n. This slows down convergence, but at the same time
dampens systematic or statistical fluctuations of Σ between iterations. Since a
(weighed) mean of self-energies is again a valid self-energy, we do not mix together
an unphysical quantity.
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2. Prediction (−1 < α < 0): The previous self-energy is a negative feedback for the
current one. This can speed up convergence, but it amplifies any fluctuations of
Σ and a self-energy constructed that way is not guaranteed to be physical, e.g.,
=Σ > 0 if it increases fast enough between iterations.

More complicated schemes based on Newton’s method have been put forward that incor-
porate more than one previous iteration and typically have both aspects of both relaxation
and prediction.

External field We can also use an external magnetic field h, which corresponds to an
external self-energy contribution:

Σext =
3∑
i=1

hiσi, (4.70)

where σi is the i-th Pauli matrix. This is useful for magnetic calculations to extract the
susceptibility χ = ∂M/∂h in the linear regime. It is also useful to apply Σext only in the
first iteration to “kick” the system out of the paramagnetic phase when the statistical
uncertainty of the QMC solver is not enough to do so.

4.4 Electronics with correlated oxides: SrVO3/SrTiO3 as
a Mott transistor

This section is based on (verbatim passages are marked with a sidebar):
Zhong Z., MW, J. M. Tomczak, C. Taranto, N. Parragh, A. Toschi,
G. Sangiovanni, and K. Held: “Electronics with correlated oxides:
SrVO3/SrTiO3 as a Mott transistor”. Phys. Rev. Lett. 114, 246401 (2015).
My contributions to the paper were the analytic continuation of the self-energy
and the dp calculations. The first version of Section 4.4.3 was also written by
me.

In the last years, there has been tremendous experimental progress to grow oxide het-
erostructures atomic layer by atomic layer, brought about by modern deposition tech-
niques such as molecular beam epitaxy and pulsed laser deposition. A key experiment
has been the discovery that a two-dimensional electron gas (2DEG) with high mobil-
ity is created at the interface of two band insulators, LaAlO3 and SrTiO3 (Ohtomo and
Hwang 2004). This raised the hope that oxide heterostructures might substitute conven-
tional semiconductor electronics one day, at least for specific applications (Mannhart and
Schlom 2010, Zubko et al. 2011). Oxide electronics is however still in its infancy compared
to the matured field of silicon electronics. Particularly promising are transistors at the
scale of 2 nm (Cen et al. 2009), solar cells (Assmann et al. 2013, Guo et al. 2013, Liang
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et al. 2013), and the possibility to generate spin-polarized currents (Reyren et al. 2012).
Last but not least, there is high hope that strong electronic correlations make a difference
to conventional semiconductors and give rise to new phenomena (Okamoto and Millis
2004, Okamoto 2011, Orfanidis 1996).

However, many oxide heterostructures, including the LaAlO3/SrTiO3 prototype, ac-
tually do not show strong electronic correlations. Since electronic correlations are weak,
bandstructure calculations on the basis of density functional theory (DFT), e.g., within
the local density approximation or LDA (Jones and Gunnarsson 1989), or even a tight
binding modelling (Zhong et al. 2013) are sufficient: Such calculations well reproduce
or predict experiment, e.g., angular resolved photoemission spectra (Yoshimatsu et al.
2011, Santander-Syro et al. 2011, Wang et al. 2014b). A heterostructure where electronic
correlations do play a decisive role is, on the other hand, SrVO3 grown on a SrTiO3 sub-
strate. In the bulk, SrVO3 is a correlated metal with a moderate renormalization ∼ 2
of the bandwidth (Maiti 2006, Takizawa et al. 2009, Sekiyama et al. 2004) and a kink in
the energy-momentum dispersion (Byczuk et al. 2007, Nekrasov et al. 2006, Aizaki et al.
2012). SrVO3 has been widely employed (Pavarini et al. 2004, Liebsch 2003) as a testbed
material for [DFT+DMFT calculations (Section 4.3)]. Quite surprisingly, [experiments
by Yoshimatsu et al. (2010)] have found that two layers of SrVO3 grown on a SrTiO3

substrate are insulating, not metallic (weakly correlated surfaces usually stay metallic to
a single layer). On the basis of the one band Hubbard model, [they argued that] the
reduced bandwidth of the thin film is responsible for the Mott insulating state.

In this letter, we present realistic DFT+DMFT calculations and pin point the origin of
the insulator to the crystal field splitting of the orbitals, caused by the reduced symmetry
of the ultrathin film. The reduced bandwidth and the enhanced Coulomb interaction of
the thin film do not play the key role. Our calculations demonstrate the high sensitivity
of SrVO3 films. A Mott-Hubbard metal-insulator transition can be triggered by small
changes of temperature, (uniaxial) pressure, a capping layer, and an electric field. This
makes SrVO3 grown on SrTiO3 most promising for applications as sensors or as a Mott
transistor with a gate voltage controlling the Mott-Hubbard transition.

4.4.1 Method
We perform DFT+DMFT calculations for two layers of SrVO3 on a substrate given by
four unit cells of SrTiO3 and a sufficiently thick vacuum of 10Å along the z direction.
We fix the in-plane (x-y plane) lattice constant to the calculated equilibrium bulk value
of the substrate aSrTiO3 = 3.92Å, and optimize the internal coordinates by DFT. The
DFT calculations are performed using the all-electron full potential augmented plane-
wave method of the Wien2K package (Blaha et al. 2001) with the generalized gradient
approximation (GGA) potential and a 10×10×1 k-point grid [cf. Section 4.2].

The DFT states near the Fermi-level are mainly of vanadium t2g orbital characters,
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Figure 4.4: Layer-resolved spectral function of two SrVO3 films grown on SrTiO3 in DFT (a,b)
and DFT+DMFT at room temperature (c,d); dashed line: corresponding bulk spectrum. A
metallic solution, with a peak in the spectral functions A(ω) at the Fermi level (ω = 0) in both
SrVO3 layers, can be stabilized with (e,f) a compressive strain ε and (g,h) an electric field E.

which are well-localized and exhibit strong correlations beyond DFT and DFT+U. To
properly include these correlation effects, we first perform a Wannier projection onto
maximally localized t2g orbitals, using the wien2wannier package (Kuneš et al. 2010). We
supplement this t2g Hamiltonian constructed from DFT by the local Kanamori Coulomb
interaction, given by the intra-orbital interaction U , the inter-orbital (averaged) interac-
tion U ′ and the Hund’s exchange and pair-hopping J [cf. Section 3.1]. Constrained LDA
for the bulk yields U ′ = 3.55 eV (Sekiyama et al. 2004, Nekrasov et al. 2006) and for
the Hund’s exchange a reasonable value for early transition metal oxides: J = 0.75 eV
(cf. Supplementary); U = U ′ + 2J by symmetry. For the DMFT calculations we use
the w2dynamics package, which is an implementation ofcontinuous-time quantum Monte
Carlo (CT-QMC) in the hybridization expansion [cf. Chapter 2]. We employ the maxi-
mum entropy method (Jarrell and Gubernatis 1996) for the analytical continuation of the
spectra to real frequencies. For checking the validity of our findings we also perform d+p
DFT+DMFT calculations for some heterostructures and interactions, which yield very
similar results [cf. Section 4.4.3]. All DMFT calculations are at room temperature if not
stated otherwise.

4.4.2 Results
Figure 4.4 shows the DFT and DFT+DMFT spectrum for two layers of SrVO3 on a
SrTiO3 substrate, as well as bulk SrVO3 for comparison. Within DFT, the xy-states are
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Figure 4.5: Mott-Hubbard transition with increasing interaction U ′; the grey shaded region
indicates the estimated values of U ′ (see Supplementary). (a): Spectral function around the
Fermi level A(ω = 0) – layer and orbitally resolved. (b): Orbital occupation. (c): Intra-orbital
double occupation. The solid (dotted) line is obtained when increasing (decreasing) U ′.

showing (almost) the same spectrum as for the bulk. These states have their orbital lobes
within the xy-plane and can be well modeled with a nearest neighbor hopping that is only
in-plane (Zhong et al. 2013). Hence, the confinement along the z-axis has little effect.
The yz-states (and by symmetry the xz-states) have a nearest neighbor hopping along
the z-axis, which is cut-off by the vacuum and the insulating SrTiO3 substrate (Zhong
et al. 2013). As a consequence these states become more one-dimensional (y-axis hopping
only) and the yz-bandwidth is reduced. The yz-bands are also pushed up in energy since
breaking the cubic symmetry leads to a crystal field splitting ∆=0.18eV between xy and
yz (xz) states.

This lifting of the orbital degeneracy has dramatic consequences when electronic corre-
lations are taken into account. Indeed it is the physical origin of why thin SrVO3 films are
insulating. Figure 4.4(c,d) show the DFT+DMFT spectra; the DMFT self energies and
comparative d+p calculations are given in the Supplementary Material. For the topmost
(surface) layer, we see that electronic correlations further push the yz- (and xz-) states
up in energy, they are essentially depopulated. That means on the other hand that the
xy-states are half-filled. Because of this effective one band situation and the relatively
large intra-orbital Coulomb interaction U , the xy-states are Mott-Hubbard split into an
upper and lower Hubbard band. The SrVO3 film is a Mott insulator. With the surface
layer being insulating, also the second layer becomes a Mott insulator, albeit here the
difference between xy and yz population is much less pronounced. Note that due to the
DMFT self-consistency also a more insulating second layer feeds back into an even more
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insulating surface layer.
This mutual influence can be inferred from Figure 4.5(a), which shows that both layers

get insulating at the same interaction strength. Here, A(0) ≡ βG(τ=β/2)/π (β = 1/T
is the inverse temperature) is the spectral function around the Fermi level averaged over
a frequency interval ∼ T ; it can be calculated directly from the CT-QMC data without
analytic continuation.

Clearly, the phase transition is of first order, as demonstrated by the hysteresis loop
upon increasing/decreasing U ′. We have checked that at a higher temperature (600K),
the hysteresis goes away, similarly as for the one-band Hubbard model (Georges et al.
1996). Figure 4.5(a) also shows that, while the two-layer SrVO3 film is insulating, it is
just on the verge of an insulator-to-metal transition. As we will see below, this makes the
SrVO3 film (SrVO3/SrTiO3 heterostructure) prone to small changes of the environment
such as changing temperature, pressure or applying an electric field.

The orbital occupations niασ = 〈c†iασciασ〉 of the two layers i and orbitals α in Fig-
ure 4.5(b) reflect what we have already qualitatively inferred from the spectra in Figure
4.4: the surface layer becomes fully orbitally polarized, whereas the second layer shows
only small differences in the orbital occupation. We did not observe any spin ordering in
DMFT. Figure 4.5(c) shows how the normalized double occupation

Diα = 〈c†iα↑ciα↑c
†
iα↓ciα↓〉/(niα↑niα↓)

drops at the Mott-Hubbard transition. The constant behavior of the surface layer yz
orbital is simply due to the normalization (numerator and denominator become extremely
small).

Altogether, Figure 4.4 and Figure 4.5 show the typical behavior of a Mott-Hubbard
transition in a multi-orbital system which is controlled by the ratio interaction-to-band-
width and the orbital splitting. The latter is further enhanced by electronic correlations
and is also crucial for (CrxV1−x)2O3 (Keller et al. 2004, Poteryaev et al. 2008) as is the
GdFeO3 distortion for LaTiO3 (Pavarini et al. 2004).

Physical origin of the Mott insulator By performing a number of additional calcula-
tions we have been able to identify the orbital symmetry breaking as the physical origin
behind the dramatic difference between insulating SrVO3 films and metallic SrVO3 bulk.
[Yoshimatsu et al. (2010), Liebsch (2003) held] the reduction of the bandwidth due to
cutting off the hopping perpendicular to the thin films (or surfaces) [...] responsible for
the enhanced correlation effect and even the Mott-Hubbard transition. We calculated
this effect: the reduction in bandwidth for the yz orbital is 20% and essentially zero for
the xy orbitals. Following this picture, one would also expect an enhanced yz-orbital
occupation, opposite to our findings.

Another possibility is an enhanced Coulomb interaction due to the reduced screening
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at the surface. To quantify this effect, we have performed constrained random phase
approximation (cRPA) calculations (see Supplementary). This was (numerically) only
possible for two freestanding SrVO3 layers and yields ∼ 10% larger interactions. Such
a calculation overestimates however the enhancement since the screening of the SrTiO3

substrate is disregarded. A rough estimate is a 5% larger interaction strength than for
the bulk.

Even when combining the reduced bandwidth and enhanced Coulomb interaction, this
effect is by far insufficient to make SrVO3 insulating: our DFT+DMFT calculations (not
shown) still give a metallic phase for bulk SrVO3 if the ratio interaction-to-bandwidth is
increased by 70%.

Instead, the key for the insulating nature of SrVO3 films is the orbital symmetry
breaking, given by the crystal field splitting and also the different bandwidths of the
xy and yz (xz) orbitals. Electronic correlations largely amplify the small DFT orbital
polarization, see Figure 4.5. With the depopulation of the yz states, the surface SrVO3

layer effectively becomes a one-(xy-)band system; and such a one-band system is Mott-
insulating already at a much smaller interaction strength. Let us note that the lifting
of the orbital symmetry was considered by Yoshimatsu et al. (2010) as a possible source
for the observed deviations between theory and experiment and as a means to reduce the
critical U ′.

Surface shift of the lower Hubbard band Let us also emphasize the peculiar differences
between surface and second layer in Fig. 4.4. Besides the difference in occupation already
discussed, also the position of the lower Hubbard band is shifted upwards by 0.5 eV in the
surface layer; its weight and sharpness are enhanced. This effect might actually explain the
disagreement between photoemission spectroscopy (PES) and DFT+DMFT (Sekiyama
et al. 2004, Taranto et al. 2013) regarding the position of the lower Hubbard band. As
PES is surface sensitive, the surface layer will contribute strongly to the PES signal. In
the Supplementary Material, we confirm that shift and sharpening are a general trend
also observed for more (four) SrVO3 layers; and we simulate PES spectra for different
penetration depths. Including this surface effect leads to a better agreement with PES
for bulk SrVO3. A 20% upwards shift and a 10% narrowing of the lower Hubbard band
in the surface layer has also been reported experimentally (Laverock et al. 2013). Let us
note in passing that there is also a layer-dependence of the quasiparticle weight in the
metallic (more layer) case (Okamoto 2011).

Sensitivity to external perturbations There has been a long quest to make use of
strongly correlated electron systems and their huge responses upon small changes of the
environment. As we have seen in 4.5(a,b), two insulating layers of SrVO3 are at the edge
of the hysteresis region. The (coexisting) metallic phase of SrVO3/SrTiO3 can still be
stabilized if we slightly change the environment, e.g., by (i) pressure (which increases
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the bandwidth) or uniaxial strain (which controls the important splitting between the
xy- and yz-orbital), see Figure 4.4(e,f); (ii) decreasing temperature to 200K; (iii) one
capping layer of SrTiO3 on top of the SrVO3 layers; (iv) an external electric field of 0.01
V/Å, which corresponds to a voltage difference of 0.08V across the two SrVO3 layers, see
Figure 4.4(g,h).

Application as a Mott transistor This electric field effect suggests that the SrVO3/
SrTiO3 heterostructure is ideally suited for making a Mott transistor. In this respect, on
(metal) and off (insulator) are much better separated than in semiconductor transistors,
where the change in conductivity with applied gate voltage is much more gradual than the
first-order Mott-Hubbard transition. On the metallic side of the Mott-Hubbard transition,
also a major part of all electrons contributes to the conductivity, not only a small number
of doped charge carriers. Let us, in this context, also note the considerable experimental
efforts to destabilize the (Mott or Peierls) insulating state of bulk VO2 by an electric
field using electrolyte gating (Nakano et al. 2012), which might actually originate from
field-induced oxygen vacancies (Jeong et al. 2013).a

The two layers of SrVO3 on SrTiO3 are just above the “upper” edge of the hysteresis
region in 4.5. That is, the metallic solution is not stable any longer, but as we have seen
in Figure 4.5 it can still be stabilized by small perturbations. Switching from metal to
insulator is hence no problem. The insulator is however quite stable: it requires a change
in U ′ of ∼ 0.2 eV (Figure 4.5) or a change in ∆ by ∼ 0.15 eV before reaching the “lower”
edge of the hysteresis loop in Figure 4.5. This is difficult to achieve experimentally.

For a Mott transistor there is however another path to destabilize the insulator: Dop-
ing it with only a very few electrons will turn the whole Mott insulator metallic, with a
pronounced quasiparticle peak and a major part of the electrons contributing to the con-
ductance, see Fig. 4.6 (right). Such a doping might be achieved by ad-atoms or molecules
on the SrVO3 surface, and the system might hence act as a molecular sensor. For a tran-
sistor it is however preferable to have a protected surface, e.g., by an additional, insulating
layer at the top. In this case applying a gate voltage will shift the t2g states and eventu-
ally dope the Mott insulator, turning two insulating SrVO3 layers metallic. In Figure 4.6
(left), we see that an effective gate voltage of 0.3 Volt is indeed sufficient to turn the
two layers of SrVO3 metallic. In our calculations we directly applied this effective gate
voltage as a chemical potential shift eVg. Due to geometry and distance, the actual gate
voltage needed might be slightly higher. On the other hand, SrTiO3 is a high-k dielectric
which reduces the actually needed gate voltage. Experiments have already demonstrated
a similar amount of the doping as in Figure 4.6 (b) for oxide heterostructures, see, e.g.,
Caviglia et al. (2008) for LaAlO3/SrVO3. This confirms that realistic voltages allow to
switch the Mott transistor on and off. Alternatively an electron doping and hence metal-
licity might also be achieved by a non-equilibrium injection of charge carriers or large
source-drain voltage.
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Figure 4.6: Left: The hysteresis loop of the first order Mott-Hubbard transition as a function of
effective gate voltage Vg. Right: At Vg = 0.3V the spectral function A(ω) has developed a metal-
lic peak; Vg = 0.3V corresponds to 2% electron doping per V site or 2.5× 1013 electrons/cm2.

Let us note that also the application as a sensor is best combined with the above
voltage effect. If we tune the voltage to the tipping point of the Mott transition arbitrary
small external perturbations will trigger the first order transition. A quantitative mea-
surement is possible by gauging what voltage is needed for reaching the Mott transition
at a given temperature, pressure, number of ad atoms etc.

aLet us also note the switching between metal and insulator in manganites achived by an electric field
by Asamitsu et al. (1997).

4.4.3 DFT+DMFT calculations with d+p orbitals
In order to validate our results and the reliability thereof, we here compare the d-only
calculations, which downfold the system to three t2g orbitals per vanadium in the unit cell,
to d+p calculations, where the p orbitals on the oxygen sites are also taken into account
besides the V d-orbitals. It is worth mentioning that for SrVO3, d-only calculations are
expected to give the right physics because the V-t2g manifold is well-separated from other
bands. Moreover, for d+p calculations the double-counting problem and the d-p-Coulomb
interaction Udp become relevant (cf. Section 4.3.2).

In order to account for this, one can in principle follow three strategies: either one uses
interaction parameters Udp and Upp and calculate the corresponding Hartree self-energy for
the p bands (Hansmann et al. 2014); one modifies the double couting Haule et al. (2010),
or one shifts the energy levels of the p bands such that their location corresponds to the
experimental values Dang et al. (2014). We followed the latter strategy and extracted a
shift of ∆p ≈ −5 eV when starting from the double counting in the fully localized limit
(FLL). For such a shift the oxygen band for bulk SRO has its maximum in at around
-8eV similar to a PES experiments by Morikawa et al. (1995) and the many layer limit
of Yoshimatsu et al. (2010), see Fig. 4.7. Here, we used the SO(3)⊗SU(2)-symmetric
Slater-Kanamori interaction for the t2g orbitals with similar interaction parameters (U ′ =
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Figure 4.7: DFT+DMFT spectral function A(ω) for bulk SrVO3 based on d+p orbitals; U ′ =
3.55 eV, J = 0.70 eV and a d-p shift of −5 eV. The PES+BIS Morikawa et al. (1995) and PES
Yoshimatsu et al. (2010) intensities shown have been scaled to allow for a comparison with the
theoretical results.

3.55 eV, J = 0.70 eV) as in the d-only calculation.
The d+p bulk calculations in Figure 4.7 yield a moderately correlated metal with a

quasiparticle renormalization Z ≈ 0.5, in agreement with the d-only calculations and
experiment Sekiyama et al. (2004). The total filling of the t2g orbitals is fixed to one
electron for the d-only model, whereas the d+p yields 1.23 ± 0.01 electrons due to the
hybridization with the O-p bands.
With these checks for the bulk we are positive that we have reasonably set up the param-
eters for our d+p calculations and now turn to the film calculations. Figure 4.8 compares
d+p and d-only calculations for two free-standing monolayers of SrVO3. Although there
are quantitative differences, the overall physical picture agrees: we find an insulating solu-
tion as well as a strong orbital polarization in both cases. For the d+p calculation, the dxy
orbital contains 0.88± 0.03 electrons per Ru site which is close to half filling, whereas the
dxz and the dyz orbitals are occupied with 0.16± 0.02 electrons each. A similar physical
picture is found for the d-only calculation which yields 0.70 and 0.15 for the “dxy” and
“dxz/dyz” orbitals respectively, which are actually a mixture of oxygen p and vanadium d

character.
The most noteworthy difference is the two-peak structure of the upper Hubbard band

observed for the d-only but not for the d+p calculation. This difference might be actually
due to the poorer Monte-Carlo statistics of the d+p calculation. That we obtain poorer
statistics can be explained by insets of Figure 4.8 that show the distribution of kinetic
energy extracted by histogramming the expansion order in the CT-QMC(HYB) solver.
For the d-only model, we find the typical insulating behavior, where the kinetic energy of
the dxy orbital is slightly larger. For the d+p model, while still being insulating, a second
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maximum emerges, in accordance with findings by Amaricci et al. (2013). This makes
the Monte-Carlo sampling more difficult, i.e., its error larger.
Figure 4.9 shows the spectrum of two layers of SVO on top of an STO substrate in the
metallic (left) and insulating (right) phase of the Mott transition. Again these spectra
are very much comparable to the d only calculations. In particular: the surface layer
is strongly orbital polarized, whereas the interface layer is not. At the Mott transition
both layers turn insulating. For U ′ = 3.5 eV, we already have a very narrow quasiparticle
peak and are close to the transition, as is also reflected in the fact that there is a strong
orbital polarization. The Mott transition is at a slightly larger interaction strength of
U ′ ≈ 3.7 − 3.8 eV. Both, d+p and d-only, calculations give a consistent physical picture,
in particular (i) the crystal field and orbital polarization of the surface layer drive the
Mott transition and (ii) two layers of SVO are in the immediate vicinity of the Mott
transition.
Let us here also mention a numerical aspect regarding the d+p calculation: At low tem-
peratures the chemical potential is poorly defined within in the insulating gap. At first we
experienced for this reason that the chemical potential is fluctuating quite dramatically
from iteration to iteration and because of this we obtained a non-concave hybridization
∆ii(τ) as a function of imaginary time (cf. Section 4.3.5). This in turn led to a non-
convex Green function G(τ). A similar observation was made by Haule et al. (2010).
Using under-relaxation, i.e., a linear mixing, of the chemical potential, we were able to
stabilize the chemical potential and to overcome this problem (cf. Section 4.3.6).
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4.5 Non-perturbative landscape surrounding the Mott-
Hubbard transition, investigated at low temperatures

The Mott-Hubbard metal-to-insulator transition or MIT (Mott 1968) is without a doubt
one of the most intriguing phenomena in correlated electron systems: from a physics per-
spective, because the insulating state is a localisation effect emerging from the Coulomb
repulsion rather than a simple absence of charge carriers at the Fermi edge; from a ma-
terials perspective, because its presence in several correlated systems has potential appli-
cations in electronics (cf. Section 4.4) and data storage (Imada et al. 1998, Zhong et al.
2015); and it is challenge for model development, because its non-perturbative nature
means that both weak- and strong-coupling perturbation theory fail to describe it.

A major breakthrough in understanding the Mott-Hubbard transition was by using
DMFT and thereby treating local correlations exactly (cf. Section 4.1). DMFT reconciled
the Brinkman-Rice picture, which predicts the MIT as a breakdown of the Fermi liquid
regime as the carriers’ effective mass m∗ diverges, with the Hubbard-III picture, which
predicts it instead as an opening of a spectral gap between two incoherent bands centred
at ω = ±U/2: these are in fact the low-energy and high-energy perspective, respectively,
of the formation of a pole at ω = 0 in the local DMFT self-energy Σ(R = 0, ω) at the
Mott transition(Georges et al. 1996).

The physics of the MIT itself is now well-understood from a local and a one-particle
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picture alone. Nevertheless, recently the analysis of two-particle quantities has helped
clarify the rich physics of the intermediate coupling regime that surrounds a possible
Mott transition: for instance, Gunnarsson et al. (2015) found that in the case of com-
peting instabilities, indistinguishable by looking at the self-energy alone, the dominant
contribution may be found by reversing the equation of motion for Σ (cf. Section 3.6),

, (4.71)

and looking instead at partial summations of the full two-particle vertex F .
Recently, Schäfer et al. (2013) discovered that in DMFT, the local irreducible vertex

functions Γ(r) show a set of divergencies before the Mott transition. The irreducible
Γ(r) and reducible vertex function Φ(r) for a given channel r are defined by the parquet
equations and the Bethe-Salpeter equation or BSE (Rohringer 2014):

F = Λ +
∑
r

Φ(r) (4.72a)

F = Γ(r) + Φ(r) = Γ(r) + Γ(r)χ
(r)
0 F, (4.72b)

where Λ denotes the fully, i.e. all-channels, irreducible vertex and χr0 = GG is the dis-
connected part of the two-particle Green’s function. We observe, however, that F stays
always finite, unless one does not cross the physical Mott MIT. Eqs. 4.72 then dictates
these divergencies always to come in either two channels at once or in one channel and in
Λ, such that they exactly cancel to yield a finite F . We may thus be tempted to think that
we have just chosen a “bad” channel decomposition and discard the issue as mathematical
oddity. In fact, it is quite clear that such low-frequency divergencies of the irreducible
vertices, which do not affect the full two-particle scattering amplitude and are essentially
of fermionic nature (in frequency domain), are not related to any thermodynamic phase
transitions. Rather they describe how the breakdown of the perturbation theory occurs,
and that – at least in DMFT – such breakdown occurs well before the physics of the
system becomes Mott insulating.

While the question of possible physical meanings of such divergencies is still a subject of
forefront research, we note that their implication for the theoretical/algorithmic develop-
ments in the field of quantum many-body theory are quite important, for several reasons:
firstly, they mark a kink in the Baym-Kadanoff functional Φ because Γ = δ2Φ/δGδG and
thus the breakdown of perturbative techniques that rely on it. This was confirmed by
Kozik et al. (2015), who showed that a self-energy obtained as Σ = δΦ/δG bifurcates
into a physical and a unphysical solution and discussed possible implications for the bold
diagrammatic quantum Monte Carlo algorithms (Gull et al. 2010). Secondly, every diver-
gence is present also in the fully irreducible part Λ, which is believed to be robust with
respect to the choice of channel decomposition and is one of the most fundamental build-
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and Γc (Γpp) diverges for iω = 0. Dashed lines estimate these lines from the atomic limit. Inset:
zoom on the low-temperature region.

ing blocks of parquet-based theories. Hence, the presence of intrinsic divergencies in the
2PI vertex should be carefully considered in ensuring the stability of all non-perturbative
diagrammatic algorithms based on such input. Thirdly, while for high temperatures, the
divergence lines follow the atomic limit result, for low temperatures they closely resem-
ble the shape of the MIT (cf. Figure 4.10). The kink from the central peak roughly
corresponds (in DMFT) to the parameter regime where the separation of the Hubbard
sub-bands are observed (Byczuk et al. 2007, Held et al. 2013). The divergence may thus
indicate the existence of a Fermi Liquid phase with an intrinsically “non-perturbative
nature”. Further physical implications of this observation will be the subject of future
studies.

4.5.1 CT-QMC study of the irreducible vertex
However, due to technical limitations of the Hirsch-Fye quantum Monte Carlo solver
(cf. Section 2.2.1), Schäfer et al. (2013) could only investigate the divergence lines down
to T = 0.02, just below the onset of the Mott transition. Thus the interplay between the

9Note, however that the Mott transition is actually absent in the unfrustrated Hubbard model: for
d ≥ 3, it is shielded by an anti-ferromagnetic dome (Georges et al. 1996), while for d ≤ 2, a gap is opened
by long-ranged anti-ferromagnetic spin fluctuations (Schäfer et al. 2015).
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Mott transition and the behaviour of divergencies for T → 0 has not been clarified yet.
We have used the techniques outlined in Chapter 2 and Chapter 3 to tackle the problem

and obtain data for T = 0.01 and T = 0.005 (β = 100, 200, see inset of Figure 4.10). In
principle, low temperatures are problematic for the measurement of two-particle Green’s
functions because the need for an linearly expanding frequency range and thus quadrat-
ically rising memory requirements. However, Since the divergencies are in the low fre-
quency regime, we found that a fermionic box of the size Nν = 200 is sufficient down to
β = 200. Since we are interested in divergencies at iω = 0 only, we can in principle set
Nω = 1. There is one complication however: we need the Green’s function in both the
particle-hole G(ph) and the particle-particle channel G(pp). While these are related by a
simple frequency shift:

G(pp)(iω, iν, iν ′) = G(ph)(iω − iν − iν ′, iν, iν ′), (4.73)

we lose at least a fraction of 1 − (2
3)2 = 5

9 of our frequencies when we performing the
transformation on a cubic frequency box and, worse, all but one frequency when Nω = 1.
The solution is to sample the two-particle Green’s function in frequency using Eq. (3.44)
both in the ph and pp channel. For G(pp), only the assembly formula (3.46) has to be
transformed according to Eq. (4.73); the transformed bath Green’s function g(iν, iν ′) can
be reused.

The irreducible impurity vertices were obtained from the two-particle impurity Green’s
function by the inversion of the Bethe-Salpeter equation. Due to the poor statistics in
the high-energy region of the CT-HYB estimator (cf. Section 3.6), one needs to make sure
to obtain enough statistics: otherwise, the inversion is dominated by the high-frequency
noise of the QMC data and the vertex is simply wrong. This can be seen in Figure 4.11,
where for low statistics (“1×”, 50 CPU hours) not even the general shape of the density
vertex is reproduced; this is due to the fact that it is associated with 1/ε, where ε is the
lowest eigenvalue of the susceptibility χD and this eigenvalue is distorted too strongly by
high-frequency fluctuations. By increasing the number of Monte Carlo steps, the shape of
Γ stabilised. The remaining feature in Figure 4.11 are then progressively worsening error
bars for large iν without any bearing on the low-energy part.

Figure 4.12a shows the lowest eigenvalue of the irreducible vertex ΓD in the density
channel at U = 1.49 and β = 50, at slightly higher U than the first divergence and so
shortly after the eigenvalue crosses zero. We see that we actually need to strike a delicate
balance between statistics, the number of frequencies considered in the inversion and the
systematic accuracy of the irreducible vertex: if the fermionic frequency box is too small
(Nν < 50), the asymptotics in the naive inversion of the BSE are poorly modelled and
the eigenvalue is wrong. On the other hand, we need enough statistics to model the
high-frequency region correctly, otherwise we fold these errors back on the low-frequency
region in the inversion. If enough statistics is obtained, the eigenvalue reaches a stable
plateau.
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Figure 4.11: Cut through the impurity irreducible vertex function Γr(iω = 0, iν = π
β ) in the

density (r = D), magnetic (r = M), singlet (r = S) and triplet (r = T) channel for a half-filled
2D Hubbard model with 4t = 1, U = 1.48, β = 50 at DMFT self-consistency, as estimated from
QMC. The baseline statistics is 50 core hours of computation time (“1×”). Different statistics
are shown in different colours.

4.5.2 Results
Using these techniques, we calculated the first and second divergence line of the half-filled
2D Hubbard model with 4t = 1 in the paramagnetic phase (Figure 4.10, inset): for the
first divergence, of ΓD, we obtained U = 1.508± 0.001 for β = 100 and U = 1.493± 0.001
for β = 200. Note that this means that the divergence line ceases to follow the Mott
transition and instead starts bending towards the non-interacting limit U = 0. For the
second divergence, of Γpp, we obtained U = 1.944±0.001 for β = 100 and U = 1.959±0.001
for β = 200. This line does not change its direction so strongly, but we can still see a
small bending effect.

In trying to understand where the “bending” comes from, we suspect the van Hove
singularity, since it becomes visible around this energy scale. Indeed, by performing the
same calculation for the Bethe lattice with the same second moment of the DOS (D = 1),
we find that the bending effect is smaller, though not absent. For the first divergence, we
extract U = 1.645± 0.002 for β = 100 and U = 1.650± 0.004 for β = 200.
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Figure 4.12: First divergence of ΓD(iω = 0): (a) Lowest eigenvalue of ΓD for U = 1.49, β = 50
as a function of the fermionic box size; (b) location of the divergence for the 2D Hubbard model
and the Bethe lattice for Z →∞.
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Chapter 5

Conclusions and Outlook

[T]he statisting spin extending and the matrix and the
interaction of the spin of the static first from the full becomes
τ1 ↓ and we density and the transform of the each in the
summation α [...] means the computation of Eq. ([??])
problem preplaces are respect the since the formalisor to the
condition sut [sic!] to see space measurement are expansion of
the formally interaction of the staties (cf. Section 2.4).

Output of a recurrent neural network – a type of artificial
intelligence – after learning the text of this thesis1

The central theme of this thesis has been the solution of the single impurity Anderson
model (SIAM) for multiple orbitals and general interactions and the various applications
of the results. To this end, Chapter 2 describes the design and outlines the implemen-
tation of a continuous time quantum Monte Carlo solver in the hybridisation expansion
(CT-HYB). The challenges presented were threefold. Firstly, a physical one: converting
many-body physics into a procedure amendable to numerical solution (Sections 2.1–2.3).
Secondly, a computational one: finding an efficient algorithm to model and update Feyn-
man diagrams (Sections 2.4–2.6). Thirdly, a statistical one: understanding and optimising
the sampling procedure and the Markov process behind it (Sections 2.7–2.9). We have
seen that advanced techniques in all three fields are needed for CT-HYB. This in turn in-
dicates that the algorithmic complexity needed in physics simulations has caught up with
the forefront of computer science research – compared to the earlier Hirsch-Fye algorithm,
which has a much easier algorithmic description. However, in a sense CT-HYB is closer

1I used the torch-rnn package (Johnson 2016) to set up a two-layer recurrent neural network with 128
hidden nodes (Medsker and Jain 1999). I trained the network on the LATEX source code of the first four
chapters for 64,000 iterations. The extraction temperature was 0.5. Only a part of the text was selected
and mildly edited based on my preference; the excerpt itself however does not make any sense. I think.
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to the physical intuition, with the sampled terms being Feynman diagrams rather than
an abstract field of auxiliary spins.

In my view, the main remaining challenges in CT-QMC can be subsumed as balanc-
ing the three “s”: scaling, signal-to-noise ratio and sign problem. The exponential scaling
with the number of orbitals in CT-HYB for general interactions is its greatest drawback:
to be able to calculate five or more orbitals, one has to go to great lengths algorithmically.
While having an inferior signal-to-noise ratio and a more prohibitive sign problem, the
interaction expansion (CT-INT) scales polynomically. We may thus see more research in
this direction. Ideally, one would like to find a discrete Hubbard-Stratonovich transforma-
tion for general interactions and use the auxiliary field expansion (CT-AUX). However,
whether such an transformation exists and if so, whether a sampling based on it suffers
from a sign problem, is an open question. Another attack angle on the scaling problem
is trying different expansion schemes of the partition function altogether: for instance,
Steiner et al. (2015) expand the partition function both in the hybridisation and in the
problematic parts of the interaction, but that formulation unfortunately suffers from a
severe sign problem. If other types of single- or multi-expansion may correct this remains
subject to further research. A final approach is to tackle the root of the exponential
scaling, the many-body basis, directly: for instance, Shinaoka et al. (2014) use matrix
product states (MPS), which removes the exponential scaling but unfortunately breaks
even with the naive method only around 12 orbitals – currently a massive computational
cost. Since the field of tensor networks is relatively young, further research may improve
on this significantly.

As we move to systems of low point group symmetry or strong spin-orbit coupling (off-
diagonal and/or complex hybridisation function), the sign problem in CT-HYB becomes
more pressing. Here, other expansions, rotations of the single-particle basis (Sémon and
Tremblay 2012, Shinaoka et al. 2015), deformations of the path integral (Mukherjee and
Cristoforetti 2014) and analytical techniques may provide further insights into the sign. To
bring down autocorrelation times and thus improve the signal-to-noise ratio, the choice of
moves is crucial (the largest speed-up in segment codes comes from the virtually rejection-
free choice of updates). Further research into this topic seems promising.

On a general note, let us revisit Sokal’s statement (epigraph of Chapter 2) that Monte
Carlo is only to be used as the lesser of all evils. Tremendous research effort into the
solution of quantum impurity models have brought to light new techniques competing for
the status of the “lesser evil”: for instance, Wolf et al. (2015) extend the density matrix
renormalisation group to finite temperatures, Arsenault et al. (2015) use machine learning
techniques, and Ganahl et al. (2014) use MPS directly.

Chapter 3 in turn focused on the many-body response functions. As such it connects
physics and computer science with a different field: signal theory, since the response func-
tion is nothing but a β-(anti-)periodic signal, and it is sampled through the Monte Carlo
procedure as a series of “spikes” at non-equidistant times (Section 3.2). We analysed dif-
ferent representations of the series (Sections 3.3–3.5) and found that the direct frequency
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measurement via a non-equidistant fast Fourier transform (NFFT) is most suitable. Most
of the considerations in these sections are however applicable to other impurity solvers.
Afterwards, we returned to sampling by discussing derived quantities from the many-
body propagators (Sections 3.6, 3.7): computing irreducible vertices like the self-energy
or equal-time quantities like susceptibilities suffers from poor statistics, which is why one
needs to measure these quantities directly. The chapter concluded with a discussion of
worm sampling (Section 3.8), which addresses the problem that the typical technique of
measuring the impurity propagator as “dual” of the bath propagator breaks down for the
two-particle Green’s function, as the symmetry of the bath propagator is higher than the
one of the impurity propagator.

One main challenge remaining is a better understanding of the two-particle impurity
Green’s function and its irreducible counterparts for multiple orbitals and general inter-
actions. In the context of CT-QMC, the high-frequency asymptotics and the frequency
and index symmetries are especially important because of the tight memory constraints.
Further research into this area may thus be valuable both from a technical and physical
perspective.

Chapter 4 dealt with dynamical mean field theory (DMFT) and its combination with
density functional theory to form the ab-initio DFT+DMFT approach. We have seen
that DMFT provides a self-consistent mapping of the Hubbard model to the SIAM, thus
allowing us to use impurity models to make predictions for a lattice model. We have seen
that DFT+DMFT is a rather involved procedure, relying on the combination of a DFT
calculation, a downfolding procedure, and a DMFT run with an impurity solver at its
core (Sections 4.1–4.3). We then applied DFT+DMFT to a thin layer of SrVO3 grown
on a SrTiO3 substrate: this combination of correlated transition metal oxides undergoes
a thickness-dependent phase transition (Section 4.4). We showed that, in disagreement
with an earlier argument, the crystal field splitting is enhancing the correlation and thus
responsible for the transition. We did a DMFT study on the half-filled 2D Hubbard model
(Section 4.5): we studied the vertex divergencies found by Schäfer et al. (2013) at low
temperatures and found that the form of the divergency lines is influenced by the van
Hove singularity.

The main limitation of DMFT is that it is unable to treat non-local dynamical cor-
relations and thus breaks down close to a second-order phase transition as well as in
low-dimensional or disordered systems. Several “post-DMFT” methods have been pro-
posed and established: they including more diagrams that model correlations on all length
scales. Most of the diagrammatic methods rely on local two-particle quantities: the role
of the three-particle quantities is out of reach of what is numerically achievable.

One of the main challenges of DFT+DMFT I think is one of reproducability and
reliability. The mismatch in formulation between DFT and DMFT leads to the double-
counting problem, which only known solution is to abandon DFT for a diagrammatic
method. However, in my experience the more severe problem is that in each of the three
steps – DFT, downfolding, and DMFT – there are so many “dials” one can turn: in
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DFT, the choice of functional sometimes yields different results. In the downfolding, the
choice of basis matters: d-only and d + p calculations still differ significantly in their
results (Parragh et al. 2013). We need to better understand how to converge these to
a single DFT+DMFT solution. In DMFT, the size of the k-mesh, the impurity solver
used, the way we fix the chemical potential, among other things, can make a difference,
though careful convergence analysis mitigates these problems significantly. This is not
to say that these problems are unsolvable or even “hard”: some ten years ago, a focused
effort on reliability, exhaustive parameter searches and comparative studies between codes
have improved the collective codebase of DFT considerably. Maybe we should consider a
similar approach.

In terms of physics, the field is wide open: the interplay of strong electronic correlation
with spin-orbit coupling in some 4f systems, and the related question of topological Mott
insulators, is one of many open areas. Similarly, correlated systems with a low point
group symmetry are largely unsolved because they pose a tremendous challenge on the
impurity solver. On the model side, despite tremendous progress, the physics of the
two-dimensional Hubbard model has not yet been clarified out of half filling.



Appendix A

Additional derivations

A.1 Woodbury matrix identity

The formulas used for rank-1 updates of the determinant and the inverse matrix are the
matrix determinant lemma and the Sherman-Morrison formula. These formulae follow
from the more general Woodbury matrix identity. We will give a sketch of the derivation
below, and will extract useful properties at each step.

We start by considering by the (n+k)×(n+k) extension matrix A+ formed block-wise
by the original n×n matrix A, an n×k “column” matrix C, a k×n “row” matrix R and
a k × k “star” matrix S. We perform a LDU decomposition on the matrix A+:

A+ =
[
A C

R S

]
=
[

1 0
RA−1

1

] [
A 0
0 (S −RA−1C)

] [
1 A−1C

0 1

]
(A.1)

Insertions As a lemma of Eq. (A.1), the determinant ratio of the extension A+ yields:

detA+

detA = det(S −RA−1C) (A.2)

because the determinants of the transformation matrices L and U vanish. By inverting
Eq. (A.1), we get the inverse A−1

+ in terms of updated blocks as:

A−1
+ =:

[
Ā C̄

R̄ S̄

]
=
[
A−1 + A−1CS̄RA−1 −A−1CS̄

−S̄RA−1 (S −RA−1C)−1

]
. (A.3)

These equations are used in insertion moves A → A+: one first computes the matrix
S̄ = S − RA−1C and performs its LU decomposition in order to get its determinant,
which by Eq. (A.2) gives the acceptance ratio. If the move is accepted, one computes
the inverse from the decomposed S̄ and updates the blocks using Eq. (A.3). In case of
a rank-1 update, the LU decomposition is unnecessary, since one can replace det S̄ = S̄

and S̄−1 = 1/S̄.
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Removals For removal moves A+ → A, one instead works with the bar blocks in
Eq. (A.3). The ratio is thus just given by:

detA
detA+

= det S̄ (A.4)

In order to update the inverse A−1 from Ā−1, one rewrites the top-left block in terms of
bar blocks:

A−1 = Ā− C̄S̄−1R̄ (A.5)

One again first starts by performing an LU decomposition of S̄ in order to get its deter-
minant, and by Eq. (A.4), the acceptance ratio. If the move is accepted, one uses the
decomposed matrix to invert S̄ and updates Ā according to Eq. (A.5). One can then drop
C̄ and R̄. As with insertions, the LU decomposition is unnecessary in case of a rank-1
update.

Updates In order to find a formula for the rank-k update A→ A+CS−1R, it is useful
to look at the “opposite” LDU decomposition of A+:

A+ =
[
A C

R S

]
=
[
1 A−1C

0 1

] [
(A− CS−1R) 0

0 S

] [
1 0

RA−1
1

]
(A.6)

By comparing the determinants of A+ as calculated from the centre elements of Eq. (A.3)
and the inverse of Eq. (A.6), we find the update formula for the determinant:

det(A− CS−1R)
det(A) = det(S −RA−1C) det(S−1) (A.7)

Eq. (A.7) is also known as the matrix determinant lemma. By again defining S̄ = (S −
RA−1C)−1 and comparing Ā−1 of Eq. (A.3) and Eq. (A.6), we find the Woodbury formula
for a rank-k update of the inverse:

(A− CS−1R)−1 = A−1 + A−1CS̄RA−1 (A.8)

In an actual computation, Eq. (A.7) and Eq. (A.8) translate to a three-step process.
Firstly, one computes the determinant and inverse of S−1. Secondly, one uses S to con-
struct S̄−1 and performs an LU decomposition to get its determinant. By Eq. (A.7),
these two determinants combined give the acceptance rate. If the move is accepted, one
computes S̄ from the decomposition and uses Eq. (A.8) to update the inverse.
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