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Abstract
This thesis is concerned with the analysis of models of heterogeneous populations in infectious disease
epidemiology. Special considerations are made with respect to variables arising from the aggregation
of heterogeneous variables. We analyse the asymptotic behaviour, steady states, and stability of simple
heterogeneous SI-, SIS-, and SIR-models with parametric heterogeneity, which are described by an
infinite dimensional system of ODEs. As for homogeneous models, we are able to define a basic repro-
duction number which can be used as an indicator for the existence of endemic steady states and stability
of disease free steady states. In some cases a finite dimensional ODE system for the aggregated variables
can be formulated, which simplifies both analysis and practical calculations.

For SIS-models we also consider the influence of heterogeneity on early warning signs for critical
transitions. We develop a stochastic model to incorporate fluctuation effects and the random import of
the disease into the population. We analyse the influence of heterogeneity on warning signs for critical
transitions. This theory shows that one may be able to anticipate whether a bifurcation point is close
before it happens. Using numerical simulations, we show that known scaling laws for early warning signs
no longer hold true for heterogeneous models. We identify various different ways in which heterogeneity
can influence these scaling laws. This is of importance if one wants to interpret potential warning signs
for disease outbreaks.

One obstacle to applying heterogeneous models in practice is that in order for the equations to be
well defined it is necessary to have knowledge of the initial conditions for the distributed heterogeneous
variables. This information is in many cases not available. However, the variables of interest are often
not the heterogeneous variables, but their aggregated counterparts. We therefore develop set-membership
estimation techniques for these aggregated variables under the assumption that the initial conditions
for the heterogeneous variables are only partially known. By numerically solving certain optimisation
problems we are able to calculate these estimations.

Furthermore, we consider optimal control problems for heterogeneous systems. For models with
parametric heterogeneity, we show by example how aggregation techniques can in certain cases be used
to reduce the infinite dimensional problem to a finite dimensional one, for which the well developed
standard optimal control theory can be applied. We also develop a version of Pontryagin’s maximum
principle for heterogeneous systems that include aggregated variables. We do this not in the framework
of parametric heterogeneity, but more generally for size structured PDEs.
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Introduction

Infectious diseases are a great concern even in our modern times. Some life threatening maladies such
as acquired immunodeficiency syndrome (AIDS), malaria, schistosomiasis, and cholera are endemic in
many parts of the world, particularly developing countries. The effects of these diseases are not only
in an increased mortality, but also put a significant strain on the economies of the afflicted countries.
The same is true for less threatening infectious diseases which are more prevalent in the western world.
For example, the estimated total economic burden of annual influenza epidemics in the US is 87 billion
dollars ([87]). Even if a disease only affects animals, such as foot and mouth disease, the impact on
the livelihood of people and whole economies can be considerable. Combating and preventing these
infections, whether they are long time epidemics such as AIDS or short disease outburst as seen in the
Ebola virus, is therefore not only important for the people directly afflicted, but for whole societies. To
do so more effectively, infectious diseases need to be well understood.

As all health-related events, infectious diseases are studied in the field of epidemiology. One of the
goals of this field as applied to infectious diseases is to trace factors that contribute or are responsible
for the transmission of an infectious agent from one individual to another and to control these factors to
prevent its spreading. The role of mathematical epidemiology in this process can be broadly categorized
into three stages ([29]). First, one must formulate a model by translating assumptions about behaviour,
demography, immunity, etc. into mathematical notation. The next step is to analyse these mathematical
models and study the dependencies of the dynamics on various factors. Finally, we can draw conclusions
and formulate policies by translating the mathematical results back to give them biological meaning.
In this thesis we focus on the second of these steps. However, we endeavour not to loose sight of the
biological origins and consequences of our considerations.

The ways in which epidemiological transmission process are modelled are manifold. Different bio-
logical situations give rise to different mathematical models. These variations are due to distinct trans-
mission mechanics (e.g. transmission via sexual contact or by the bite of a mosquito), nature of the
infection (e.g. viral or parasitic), possibility of recovery or immunity from the disease, social behaviour
of the population, and many more differences that characterise various situations. Furthermore, all of
these elements may influence each other in intricate ways.

It is then easy to see that models that capture every aspect which could influence disease transmission
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would be exceedingly complex. They are therefore a poor starting point when trying to gain understand-
ing of infectious disease dynamics. Hence, one common way to approach this problem is to start with
very simple models that only capture a few basic features of disease transmission and can be easily anal-
ysed ([18, 29]). As these models are understood, we can consider additional aspects of interest in the
transmission process and in this way successively increase the complexity of the models that are fully
understood. Furthermore, not only are these simple models easier to analyse, but are sometimes already
good approximations of the real processes and very useful in practical applications.

In epidemiology, the most widely used way to formulate dynamics of infectious diseases are so-called
compartmental models, dating back to Kermack and McKendrick in 1927 ([66]). In these models the
population is divided into a certain number of sup-populations (called compartments) which are assumed
to be important in the disease transmission. The dynamics are based on the transition of individuals from
one compartment into another. We will illustrate this by a simple example.

We consider a population consisting at time t of N(t) individuals, and divide it into two compart-
ments, susceptible (denoted by S(t)) and infected (I(t)). We assume that there are two transmission pro-
cesses. First, a transmission from the susceptible to the infected population which models the infection
process and for which a transmission rate is given. Second, a transmission out of the infected population
which models mortality due to the disease and for which a constant mortality rate µ is given. Under the
assumption that contacts between individuals are uniformly distributed and that a fraction σ of contacts
leads to an infection, one reasonable transmission rate is the mass-action law σ I(t)S(t)

N(t) ([82]). Using

this, the dynamics of the susceptible population are Ṡ(t) = −σ I(t)S(t)
N(t) , since the susceptible population

decreases with exactly that rate. Conversely, the infected population increases with the inflow of newly
infecteds at rate σ I(t)S(t)

N(t) and decreases with rate µI(t) due to mortality, so that İ(t) = σ I(t)S(t)
N(t) −µI(t).

Since N(t) = S(t) + I(t) these two equations completely describe the disease dynamics once initial
conditions are given.

This simple model, known as an SI-model (for Susceptible-Infected), can easily be extended. If, for
example, the disease is not fatal but individuals recover with rate γ from the infection and are afterwards
immune towards the disease, we can introduce a new compartment of recovered individuals, R(t). The
dynamics of R(t) are given by Ṙ(t) = γI(t). The dynamics for S(t) and I(t) are the same once γ is
substituted for µ. Also, we now have N(t) = S(t) + I(t) + R(t). The resulting model is known as
an Susceptible-Infected-Recovered-model, or SIR-model for short. In a similar way we could define an
SIS-model (Susceptible-Infected-Susceptible), where an infected individual is upon recovery transmit-
ted back into the susceptible population. By introducing more and more compartments and increasing
the possibilities of transmission between compartments, these models can be extended to an arbitrary
level of complexity. More in-depth discussion of these models as well as further derivations from basic
principles can be found in numerous textbooks on mathematical epidemiology, e.g. [18, 19, 29, 64].

This kind of models assume that the individuals in each compartment are homogeneous, i.e. there is
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no distinction between any two of them. There are however situations in which such a distinction plays
an important role in the transmission of the disease. For example, we might want to keep track of how
long an individual has been infected for (also known as the infection-age), since this can greatly influence
the probability of transmitting the disease. Creating a compartment for each infection-age would make
the resulting model infeasibly large. It is more practical to consider a heterogeneous model.

In heterogeneous models we follow [29] and assign each individual in one or more compartments a
certain state. These states describe the chosen characteristics (those, that are deemed of importance for
the transmission of the disease) of each individual. They may contain information about the individual
(like age, social behaviour, or immune status) or about the disease (e.g. viral load or time since infection).
If the state changes with time we call it a dynamic state, otherwise we call it static or parametric state.
It may take continuous or discrete values. Mathematically, the resulting models are in the form of
infinite dimensional systems of ordinary differential equations (ODEs) or the form of partial differential
equations (PDEs), depending the underlying assumptions.

The need for heterogeneous systems has been realised early in the development of mathematical mod-
els for infectious diseases. Even Kermack and McKendrick’s original work dealt with an age-structured
system. One hindrance in their advancement was of mathematical nature: heterogeneous models are an-
alytically as well as computationally more difficult to handle. Particularly advances in computing have
however helped to overcome some of these difficulties and have led to good understanding of certain
heterogeneous models. But a second problem with these models lies in their practical application. To
utilise them, the distribution of the state among the population needs to be known. This information is
in many cases not available. Furthermore, while the modelling of the heterogeneity may be necessary to
mathematically describe the dynamics of the disease transmission, the values of interest are often not the
heterogeneous variables, but their aggregated equivalent.

This will be the starting point for this thesis.

In Chapter 1 we consider an SI-model with parametric heterogeneity, described by an infinite dimen-
sional ODE system. We reduce this to a finite dimensional system of ODEs, describing the dynamics
of the aggregated variables. The asymptotics of this system can be described in full. We discuss how
they differ from the asymptotics of a homogeneous model. Our analysis also allows us to describe what
information about the heterogeneous variables is necessary to determine the behaviour of the aggregated
variables. We also introduce the notion of the basic reproduction number for the heterogeneous sys-
tem and compare how its value as an indicator for the asymptotic behaviour changes with regard to the
homogeneous system.

In Chapter 2 we continue the discussion of SI-models and focus on aggregation. We show that for
a class of heterogeneous SI-models it is always possible to derive a finite dimensional ODE system
describing its aggregated variables. We apply this approach to an existing model in the literature to
illustrate two points. First, we show how estimation of the unknown distribution of the heterogeneity
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among the population can be included into the model. The resulting equations depend on only a few
parameters which can then be determined from data. Second, we look at an optimal control problem
whose state equations are given by the heterogeneous model. We demonstrate how the aggregated system
is analytically simpler to study.

In Chapter 3 we analyse a heterogeneous SIS-system. The focus here is on early warning signs for
the emergence of a disease outbreak. For this purpose we consider a system containing both variables that
change on different time scales as well as stochastic perturbations. In such systems certain characteristics,
such as the variance of the process, change their behaviour close to critical points at which the dynamics
undergo a qualitative alteration. For homogeneous models this change in behaviour is well understood,
and the characteristics follow certain scaling laws that are known and can be used to predict dynamical
regime changes ahead of time. We show that in heterogeneous systems the aggregated variables no longer
follow these known scaling laws and detect different ways in which they are influenced by heterogeneity.

In Chapter 4 we further analyse the steady states and their stability of SIS- and SIR-models with
parametric heterogeneity. We are able to identify the basic reproduction number, which plays a crucial
role in this investigation. As we will see, the derivations become very technical even for these compar-
atively simple models. Results for the aggregated variables can be derived from the knowledge of the
behaviour of the heterogeneous system.

In the Chapters 5 and 6 we consider the problem, which we mentioned before, that in practice we
often do not have detailed information about the distribution of the heterogeneity among the popula-
tion. We propose a set-membership estimation technique which allows us to gain information about the
possible trajectories of the system under the assumption that our knowledge of the initial conditions is
incomplete or imprecise. These estimations can be calculated by solving certain optimisation problems
for the heterogeneous system, for which we also present a numerical procedure. In Chapter 5 we do
so for systems with parametric heterogeneity and also demonstrate how this technique can be used to
compare different intervention scenarios. In Chapter 6 we consider size-structured systems. We show
how set-membership estimation can be used in the analysis of such models.

Finally, in Chapter 7 we consider optimal control problems containing size-structured systems such
as those presented in Chapter 6. We present a version of Pontryagin’s maximum principle for first order
PDEs that contain aggregated variables and allow for control in the aggregation. The result is of a very
general nature and may be specified to fit numerous applications.

Furthermore we present the context of our work with respect to the existing literature as well as
outlooks and suggestions for possible future directions of research. We do so in the individual chapters.

Even though only one smart part of mathematical epidemiology, the study of heterogeneous models for
the transmission of infectious diseases is nonetheless a vast field with ongoing research in many different
directions. We can here only offer a glimpse at a small section of this field. We nevertheless hope that
our contribution will be of help in gaining understanding in this important area of study.
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Chapter 1

Aggregation and asymptotic behaviour of
an SI-epidemic model for heterogeneous
populations1

1.1 Introduction

In this paper we consider a heterogeneous version of a simple epidemiologic model of a population
consisting of a non-infected (potentially susceptible) sub-population and an infected sub-population
(SI-model). It is well recognized that modelling the population as homogeneous (with equal suscep-
tibility/infectivity of all individuals) may give a rather distorted picture of the evolution of the disease,
compared with the one that appears if the heterogeneity of the population is taken into account. The
main goal is to quantitatively describe the differences (and similarities) in the asymptotic behaviour of
the disease when modelling the population as heterogeneous, versus homogeneous.

In principle, it is well known that the heterogeneity plays an important role in epidemiologic models,
therefore the issue of heterogeneity is introduced and investigated in this subject area in a large number
of papers (see e.g. [26, 32, 47, 48, 91, 92, 107] ). The main contribution of the present paper is that
the asymptotic behaviour of the disease in a heterogeneous population (within an SI framework) is
completely and explicitly described, and compared with the one resulting from the homogeneous version
of the model. The proofs are rather technical, but not routine. Although the analysis is restricted to a very
simple model, it can be useful as a benchmark case for more enhanced investigations of the influence of
heterogeneity on the evolution of infectious diseases. Such are indicated in Section 1.6.

A crucial drawback of the heterogeneous models is that they require information about the distribu-
tion of the population along the space of heterogeneity, which is usually not available. As a by-product

1This chapter has been published in the journal Mathematical Medicine and Biology [109].
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of our analysis, it becomes clear what information about the heterogeneity is actually essential for deter-
mining the ultimate epidemic state. The required information is (in generic cases) substantially less than
the overall distribution.

The paper is organized as follows. In Section 1.2 we present the homogeneous and the heterogeneous
versions of the considered SI-model. The aggregation of the heterogeneous model to an ODE model is
done in Section 1.3. Section 1.4 is devoted to the asymptotic analysis of the disease, where a comparison
between the results for the homogeneous and the heterogeneous model is also presented, as well as some
illustrating numerical examples. The concept of reproduction number is adapted to the heterogeneous
model and discussed in Section 1.5. Some concluding remarks and perspectives for further investigations
of more complex epidemic models are given in Section 1.6. The more technical proofs are given in the
appendix.

1.2 The SI-model

First we recall the standard SI-model for a population with a variable size, depending on fertility and
mortality (natural, and such caused by the disease). Then, in the second subsection, we present a hetero-
geneous version of the same model.

1.2.1 The homogeneous model

The dynamics of the disease is given by the following equations, in which S(t) and I(t) denote the size
of the susceptible and of the infected sub-populations at time t ≥ 0:

Ṡ(t) = −σy(t)S(t) + λS(t), S(0) = S0, (1.1)

İ(t) = σy(t)S(t)− δI(t), I(0) = I0, (1.2)

where

y(t) =
I(t)

S(t) + I(t)
(1.3)

is the prevalence. The meaning of the appearing parameters is as usual: λ (positive or negative) is the
net inflow rate of susceptible individuals (i.e. the difference between birth and mortality rate), similarly
δ is the net mortality rate of infected individuals, and σ is the infectiousness of the disease (strength of
infection). Clearly, there is no recovery from the considered disease. In addition, it will be assumed that
δ > 0, that is, the infected individuals die at a higher rate than they reproduce. The initial data S0 and I0

are both positive.

SI-models are amongst the most basic epidemiological models and therefore an analysis of such models
can be found in introductory texts on epidemiology, such as [18, 19, 29]. Here we will derive some of
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the results anew in order to make the considerations self-contained and to draw parallels between this
homogeneous model and the heterogeneous model described below.

Closely related to SI-models are SIR-models where R(t) stands for removed individuals and follows
the dynamics

Ṙ(t) = δI(t).

This population influences the dynamics of S(t) and I(t) because y(t) now has to be defined as y(t) =
I(t)

S(t)+I(t)+R(t) . However, if the removed no longer participate in infectious contacts, e.g. because the
removal is due to quarantine, then the SI and SIR-models are equivalent.

1.2.2 The heterogeneous model

We introduce a heterogeneity into the above SI-model by differentiating the population according to
some traits, such as genetic markers, natural resistance towards a disease, or social behaviour, that in-
fluence the spreading of the disease. We therefore assume that every individual has a certain h-state
(heterogeneity-state) ω. We restrict ourselves to traits that are time invariant, i.e. an individual that has
h-state ω stays in that state for all of its lifespan. Denote by Ω the space of all h-states. It will be assumed
that Ω is a Borel measurable space with a finite measure µ. This allows Ω to be a continuous or discrete
space, as well as a product space involving different traits. Previous works that use this or a similar
notion of h-state include [26, 31, 32, 48, 91, 107].

We assume that the h-state ω influences the risk of an individual to become infected by a factor p(ω).
More precisely, we denote by S̄(t, ω) and Ī(t, ω) the size of the susceptible and infected sub-populations
of h-state ω and assume that the sub-population of each h-state develops similarly as in the homogeneous
S-I-model:

˙̄S(t, ω) = −σz(t) p(ω) S̄(t, ω) + λS̄(t, ω), S̄(0, ω) = S0(ω), (1.4)
˙̄I(t, ω) = σz(t) p(ω) S̄(t, ω)− δĪ(t, ω), Ī(0, ω) = I0(ω). (1.5)

Here the “dot” means differentiation with respect to t (for every fixed ω). The difference is that now the
infectivity of the environment of the susceptible individuals is represented by the weighted prevalence
z(t) defined as

z(t) =
J(t)

K(t) + J(t)
, (1.6)

where

K(t) =

∫
Ω
p(ω) S̄(t, ω) dω, (1.7)

J(t) =

∫
Ω
p(ω) Ī(t, ω) dω. (1.8)
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Notice that not only the individual risk factor p(ω) is a carrier of heterogeneity in the above model,
but also the weighted prevalence z(t), which depends on the current (heterogeneous) distribution of the
infected and susceptible individuals. A discussion about the model is given after the assumptions below.

Further, we will use the notations

S(t) =

∫
Ω
S̄(t, ω) dω, I(t) =

∫
Ω
Ī(t, ω) dω. (1.9)

for the aggregated states. It is easy to see that in the particular case of µ(Ω) = 1 and p(ω) ≡ 1, the
aggregated states S(t) and I(t) follow the dynamics of the homogeneous model (1.1)–(1.3). Thus the
homogeneous model is a special case of the heterogeneous one. Another way to embed the homogeneous
model into the heterogeneous one is to consider a set Ω which is a singleton with an unit atomic measure
µ.

Below we formulate the assumptions needed for the subsequent analysis.

Assumptions (A). Ω is a complete Borel measurable space (that is, a Lebesgue space) with a nonnegative
measure µ ≥ 0 with µ(Ω) = 1. The initial population is normalized: S(0) + I(0) = 1. The function
p : Ω → [0,∞) is measurable, bounded, almost everywhere strictly positive, and also normalized:∫

Ω p(ω) dω = 1. The initial data S0(·) and I0(·) are non-negative and measurable, both are strictly
positive on a set of positive measure, and I0(ω) = 0 wherever S0(ω) = 0. The parameters σ > 0, δ > 0,
and λ are real numbers.

Everywhere measurability and integration in ω is meant with respect to the measure µ. The differential
equations (1.4), (1.5) are considered as ODEs for every ω separately. From Theorem 1 in [108] it follows
that given a bounded continuous function z(t), the functions S̄(t, ·), Ī(t, ·) resulting from the ODE family
(1.4), (1.5) are measurable for a.e. t ≥ 0. Moreover, wherever it appears in the sequel, changing the
order of integration in t and ω is justified by Fubini’s Theorem (Theorem 2.1 in Chapter V of [33]), while
changing the order of differentiation in t and integration in ω is justified due to a variant of Lebesgue’s
Dominated Convergence Theorem, namely Theorem 5.7 in Chapter IV of [33]. Below we shall perform
these manipulations without further references.

Remark 1. Notice, that due to (1.4), if S0(ω) > 0 for some ω, then S̄(t, ω) > 0 for all t > 0. The same
also applies to Ī . Then, according to (A), we have S(t) > 0, I(t) > 0 for all t > 0, hence y(t) > 0.
Consequently, also K(t) > 0, J(t) > 0, z(t) > 0 for all t ≥ 0.

Obviously, the normalization assumptions in (A) are made only for convenience and do not restrict
the generality. The same is valid to all positivity assumptions in (A). The assumption that I0(ω) = 0

wherever S0(ω) = 0 is natural if the same model is assumed to be also valid before time t = 0.
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On the other hand, the structure of the model (1.4)–(1.8) is somewhat restrictive. First, the definition
of the weighted prevalence (resulting from a proportional mixing scenario, in principle) implicitly implies
certain restrictions for the interpretation of the h-states. The model can be derived by considering a
heterogeneous social contact network (see [92]), which is an often discussed way to model diseases
[9, 10, 83, 84]. Other restrictions are due to the encapsulated assumptions of no-recovery and no-fertility
(or fertility with infected off-springs only) of the infected population. Moreover, the off-springs of the
susceptible individuals “statistically” inherit the h-state distribution of the current susceptible population.
All this is the price to pay for the possibility to perform a detailed analytic investigation of the long run
evolution of the disease.

While the homogeneous model only consists of a 2-dimensional ODE-system, the dynamics of the het-
erogeneous system form a generally infinite dimensional system. This makes its analysis more difficult.
Another issue with this heterogeneous model is that the initial distributions S0(ω) and I0(ω) are either
partially or completely unknown. Further, it is often difficult or impossible to measure the quantities
S̄(t, ω) or Ī(t, ω). Therefore, it is desirable to represent the evolution of the aggregated states S and I
by ODEs, if possible. It was shown in [107] even for a more general class of models that the evolution
of S and I in the expansion phase of the disease is exactly described by a system like (1.1)–(1.3) where,
however, the incidence rate σy(t) is replaced with an (implicitly defined) nonlinear function of the preva-
lence y. In the next section we obtain an explicit representation of the dynamics of S and I valid in the
time horizon [0,∞). The approach is similar to that in [59, 60, 61, 91, 92, 107] but the result is more
explicit due to the specific features of the model considered here.

1.3 Aggregation of the heterogeneous model

In this section we obtain an ODE system that describes the evolution of the aggregated states S(t) and
I(t) in (1.9). For shortness we abbreviate M(t) := K(t) + J(t).

Proposition 1. Let F be the solution of the initial value problem

Ḟ (t) = 1− 1

M(0)

∫
Ω
p(ω) eF (t)(λ+δ−σp(ω)) S0(ω) dω, F (0) = 0, (1.10)

and let us define

ρ(t) = Ḟ (t)

∫
Ω p(ω)e−σF (t) p(ω)S0(ω) dω∫

Ω e
−σF (t) p(ω)S0(ω) dω

. (1.11)

Then the aggregated states S and I of system (1.4)–(1.8) satisfy the equations

Ṡ(t) = −σρ(t)S(t) + λS(t), S(0) = S0, (1.12)

İ(t) = σρ(t)S(t)− δI(t), I(0) = I0. (1.13)

Moreover, the weighted prevalence z in (1.6) is given by z(t) = Ḟ (t).
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In [59] and [60] G. Karev gives a way to reduce equations of a similar form as equations (1.4)-
(1.8) to a system of ODEs. However, he deals only with a single population and not, as is done in this
paper, with two interacting ones. A. Novozhilov applies Karev’s approach to epidemiological models in
[91] and [92], but with different equations than discussed here. In [92] he encounters a special case of
model (1.4)-(1.8) and acknowledges that Karev’s approach is not applicable to it. The proof given here
is inspired by the method of Karev, but takes into account specific features of equations (1.4)-(1.8) that
allow a reduction to an ODE system.

Proof For the proof we first define F (t) :=
∫ t

0 z(τ) dτ (which will be shown below to satisfy (1.10)).
We begin with deriving some preliminary relations.

Integrating (1.4) we obtain

Ṡ(t) =

∫
Ω

˙̄S(t, ω) dω = −σz(t)
∫

Ω
p(ω)S̄(t, ω) dω + λ

∫
Ω
S̄(t, ω) dω

= −σz(t)K(t) + λS(t). (1.14)

Similarly we get

İ(t) = σz(t)K(t)− δI(t). (1.15)

Differentiating (1.7) yields

K̇(t) =

∫
Ω
p(ω) ˙̄S(t, ω) dω

= −σz(t)
∫

Ω
p(ω)2S̄(t, ω) dω + λ

∫
Ω
p(ω) S̄(t, ω) dω

= λK(t)− σz(t)
∫

Ω
p(ω)2S̄(t, ω) dω. (1.16)

Similarly,

J̇(t) = −δJ(t) + σz(t)

∫
Ω
p(ω)2S̄(t, ω) dω. (1.17)

Then using the Cauchy formula for equation (1.16) gives

K(t) = eλt
(
K(0)− σ

∫ t

0
z(s)

∫
Ω
p(ω)2 e−σF (s)p(ω)S0(ω) dω ds

)
= eλt

(
K(0) +

∫
Ω
p(ω)

∫ t

0

d
ds
e−σF (s)p(ω)S0(ω) ds dω

)
= eλt

∫
Ω
p(ω) e−σF (t)p(ω)S0(ω) dω. (1.18)

Since from (1.4)

S̄(t, ω) = S0(ω) e−σ
∫ t
0 z(τ) dτp(ω)+λt,
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we obtain that

S(t) = eλt
∫

Ω
e−σF (t)p(ω)S0(ω) dω. (1.19)

For M(t) := K(t) + J(t) we have from (1.16), (1.17) that

Ṁ(t) = λK(t)− δJ(t).

From here one can represent

Ṁ(t) = λK(t)− δJ(t) = λ(1− z(t))M(t)− δz(t)M(t)

= M(t) (λ− λz(t)− δz(t)) .

(This equality is easy to check starting from the last expression upwards.) Solving the above equation
we obtain that

M(t) = M(0) e
∫ t
0 (λ−λz(τ)−δz(τ)) dτ = M(0) eλt−(λ+δ)F (t). (1.20)

Having relations (1.14)–(1.20) at hand, we may finalize the proof as follows.

Let us define

ρ(t) := z(t)
K(t)

S(t)
=

J(t)

M(t)

K(t)

S(t)
=

(
1− K(t)

M(t)

)
K(t)

S(t)
.

From (1.14) and (1.15) it is evident that S and I satisfy (1.12), (1.13) with this function ρ. On the other
hand, substituting the expressions (1.18)–(1.20) for K, S, and K + J , we obtain for ρ the representation
(1.11). To complete the proof it remains to observe that

Ḟ (t) = z(t) =
J(t)

M(t)
= 1− K(t)

M(t)
,

and inserting the expressions (1.18), (1.20) results in (1.10). 2

Equations (1.12), (1.13) for S(t) and I(t) have the same form as for the homogeneous system. The
only difference is that in place of the incidence function y(t) we use the function ρ(t). Thus, the whole
influence of the heterogeneity in this model is encapsulated in the aggregated prevalence ρ(t) defined in
(1.11) through the solution F of (1.10).

1.4 Asymptotics

1.4.1 The homogeneous system

Before we investigate the asymptotics of the heterogeneous system we analyze the homogeneous system
(1.1), (1.3) in order to see later how the heterogeneity influences the asymptotic behavior.
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Lemma 1. If the number κ := σ − δ − λ is nonzero, then the solution of system (1.1), (1.3) is given by

S(t) = S(0)
(
1− y(0) + y(0) eκt

)−σ
κ eλt, (1.21)

I(t) = I(0)
(
1− y(0) + y(0) eκt

)−σ
κ e(σ−δ)t, (1.22)

y(t) =
(
e−κt

(
y(0)−1 − 1

)
+ 1
)−1

. (1.23)

The last equality is valid also for κ = 0.

The proof is routine but for completeness it is given in the appendix. Notice that y(0)−1 − 1 is well
defined and positive due to Remark 1.

We split the analysis of the asymptotic behavior of system (1.1), (1.3) in 3 cases.

1. First, we consider the special case σ = λ+ δ. Then from Lemma 1, y(t) ≡ y(0).
The solution S(t) of (1.1) is

S(t) = S(0) e(λ−σy(0))t.

Thus, if λ < σy(0) both S(t) and I(t) converge to 0 when t → ∞. If λ > σy(0) both tend to
infinity, and if λ = σy(0) then S(t) = S(0) and I(t) = I(0) are constant. Notice that in the last case
I(0) = y(0) = λ

σ . Thus

I(0)

S(0)
=

λ
σ

1− λ
σ

=
λ
σ

σ−λ
σ

=
λ

δ

and I(0) = λ
δS(0).

2. Next, consider the case σ > δ + λ. We have λ − σ < −δ < 0. Then passing to the limit in (1.21)
and (1.22) we obtain that both S(t) and I(t) converge to 0. According to (1.23) the prevalence y(t)

converges to 1.

3. Finally, let σ < δ + λ. Using (1.21) and (1.22), we consider the following cases. If λ < 0 then
S(t) → 0 and I(t) → 0 (since σ − δ < λ < 0). If λ = 0 then S(t) → S∗ := S(0) (1− y(0))−

σ
σ−δ =

S(0)1− σ
σ−δ = S(0)

δ
δ−σ , while I(t) → 0. If λ > 0 then S(t) → ∞, while the behaviour of I(t)

depends on σ − δ. In this case, if σ > δ then I(t) → ∞, if σ < δ then I(t) → 0, and if σ = δ then
I(t) → I∗ := I(0) (1− y(0))

σ
λ = I(0) (1− I(0))

σ
λ = I(0)S(0)

σ
λ . In all of these cases the prevalence

y(t) converges to 0 due to (1.23).

We summarize these results in Table 1.1, where we give the steady state to which (S(t), I(t)) and the
prevalence y(t) converge, depending on the parameter. Conventionally, we consider also∞ as a steady
state.
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Case Subcases Asymptotics of (S, I) Prevalence

λ < σy(0) (0, 0)

λ+ δ = σ λ = σy(0)
(
S(0), λδS(0)

)
y(0)

λ > σy(0) (∞,∞)

λ+ δ < σ — (0, 0) 1

λ < 0 (0, 0)

λ = 0 (S∗, 0)

λ+ δ > σ λ > 0, σδ < 1 (∞, 0) 0
λ > 0, σδ = 1 (∞, I∗)
λ > 0, σδ > 1 (∞,∞)

Table 1.1: Asymptotic behaviour of the homogeneous system.

A few remarks follow. If λ + δ = σ the prevalence is constant, which is particularly interesting in the
case where both S(t) and I(t) tend to infinity.

If λ + δ < σ, then the prevalence tends to 1, which means that the susceptible individuals become
infected “faster” than the infected ones die.

On the other hand, if λ+δ > σ, then the prevalence goes to zero. This is again particularly interesting
in the case where both S(t) and I(t) tend to infinity. In this case, although the total number of infected
individuals is unbounded, they eventually make up only a negligible fraction of the total population.

1.4.2 The heterogeneous system

Now, we investigate the asymptotics of the aggregated states S(t) and I(t) of the heterogeneous system
(1.4), (1.5), making use of Proposition 1. Also the asymptotics of the weighted prevalence z(t) and the
prevalence y(t) will be obtained.

Notice that due to Remark 1 we have z(t) > 0, which implies that F (t) =
∫ t

0 z(τ) dτ is strictly
increasing.

Define the following sets and numbers:

Ω+ := {w ∈ Ω : λ+ δ > σp(ω)}, S+(0) :=

∫
Ω+

S0(ω) dω,

Ω− := {w ∈ Ω : λ+ δ < σp(ω)}, S−(0) :=

∫
Ω−

S0(ω) dω,

Ω0 := {w ∈ Ω : λ+ δ = σp(ω)}, S0(0) :=

∫
Ω0

S0(ω) dω.
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Let us abbreviate ϕ(t, ω) := eF (t)(λ+δ−σp(ω)). According to Proposition 1 we have

Ḟ (t) = 1− 1

M(0)

[∫
Ω+

p(ω)ϕ(t, ω)S0(ω) dω

+

∫
Ω−

p(ω)ϕ(t, ω)S0(ω) dω +K0(0)

]
, (1.24)

where
K0(0) :=

∫
Ω0

p(ω)S0(ω) dω.

Again from Proposition 1 we have

ρ(t) = z(t)ψ(F (t)), where ψ(x) :=

∫
Ω p(ω)e−σx p(ω)S0(ω) dω∫

Ω e
−σx p(ω)S0(ω) dω

. (1.25)

A remarkable property of the function ψ is that it is monotonically decreasing, which consequently also
applies to ψ(F (t)). Indeed, if for any fixed x ≥ 0 we denote Φ(ω) := e−σx p(ω)S0(ω), we can represent

ψ′(x) = −σ
∫

Ω(p(ω))2 Φ(ω) dω
∫

Ω Φ(ω) dω −
(∫

Ω p(ω) Φ(ω) dω
)2(∫

Ω Φ(ω) dω
)2 ≤ 0,

where we use the known inequality
∫
p2 Φ

∫
Φ ≥

(∫
pΦ
)2 for the integral moments of Φ. As a conse-

quence, ψ∗ := limt→∞ ψ(F (t)) exists and

lim
t→∞

ρ(t) = lim
t→∞

z(t)ψ∗, (1.26)

provided that limt→∞ z(t) does exist.
Another preliminary assertion is that the prevalence y(t) = I(t)

S(t)+I(t) satisfies the equation

ẏ(t) =
İ(t)S(t)− I(t)Ṡ(t)

(S(t) + I(t))2
=
σρ(t)S(t)2 − δI(t)S(t)− (λ− σρ(t))S(t)I(t)

(S(t) + I(t))2

= σ ρ(t) (1− y(t))2 − (λ+ δ − σρ(t)) y(t) (1− y(t))

= (1− y(t)) (σρ(t)− (λ+ δ) y(t)) . (1.27)

We split the analysis of the asymptotic behavior of the heterogeneous system in four basic cases deter-
mined by the numbers S+(0), S−(0), and S0(0).

Case 1. S+(0) = S−(0) = 0.
In this case S0(ω) = 0 for almost every ω ∈ Ω+∪Ω−, therefore p(ω) = (λ+δ)/σ for almost every ω

for which S0(ω) is not zero. Thus, without restricting the generality we can assume that p(ω) = (λ+δ)/σ

is constant everywhere, as changing p(ω) for those ω where S0(ω) (and thus I0(ω)) is zero does not
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influence the system. This turns the heterogeneous system into a homogeneous one, where σ is replaced
by σ̃ := σp(ω) = σ(λ+ δ)/σ = λ+ δ. The asymptotics in case 1 is presented in the first group of cases
in Table 1.1.

Next we consider the following two cases:

Case 2. S+(0) = 0, S−(0) > 0, S0(0) > 0,
Case 3. S+(0) = 0, S−(0) > 0, S0(0) = 0.

In both cases we have from (1.24)

Ḟ (t) = 1− 1

M(0)

(∫
Ω−

p(ω)ϕ(t, ω)S0(ω) dω +K0(0)

)
. (1.28)

If we assume that F (·) is bounded, then due to its monotonicity it would have a limit, F∗ ≥ 0. Then,
having in mind the definition of ϕ, we obtain that

0 = lim
t→∞

Ḟ (t) = 1− 1

M(0)

(∫
Ω−

p(ω) eF∗(λ+δ−σp(ω))S0(ω) dω +K0(0)

)
.

Since the exponent does not exceed 1, we have

0 ≥ 1− 1

M(0)

(∫
Ω−

p(ω)S0(ω) dω +K0(0)

)
= 1− K(0)

M(0)
=

J(0)

M(0)
,

which is a contradiction (see Remark 1). Thus F (t)→∞.

Using this last fact we obtain that ϕ(t, ω)→ 0 for ω ∈ Ω−, which implies that the integral in (1.28)
converges to zero for t→∞. Therefore,

lim
t→∞

z(t) = lim
t→∞

Ḟ (t) = 1− K0(0)

M(0)
. (1.29)

Here we split the analysis of the two cases. We deal with Case 2 first.
In order to find the limit of ρ(t) we use that S0(ω) = 0 for almost every ω ∈ Ω+ and that p(ω) =

(λ+ δ)/σ on Ω0. Then

ψ∗ = lim
t→∞

∫
Ω−

p(ω)e−σF (t) p(ω)S0(ω) dω + λ+δ
σ e−(λ+δ)F (t) S0(0)∫

Ω−
e−σF (t) p(ω)S0(ω) dω + e−(λ+δ)F (t) S0(0)

= lim
x→∞

∫
Ω−

p(ω)e(λ+δ−σp(ω))x S0(ω) dω + λ+δ
σ S0(0)∫

Ω−
e(λ+δ−σp(ω))x S0(ω) dω + S0(0)

.
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Since λ+ δ − σp(ω) < 0 on Ω−, the two integrals in the last expression converge to zero. We therefore
have ψ∗ = (λ+ δ)/σ, and due to (1.26) and (1.29)

ρ∗ := lim
t→∞

ρ(t) =

(
1− K0(0)

M(0)

)
λ+ δ

σ
> 0, (1.30)

where the last inequality follows from the fact that S−(0) > 0.

In order to investigate the asymptotics of S we use equation (1.12) to get

S(t) = e
∫ t
0 (λ−σρ(τ)) dτS(0) = et(λ−

σ
t

∫ t
0 ρ(τ) dτ)S(0)

= et(λ−σρ
∗+σ

t

∫ t
0 (ρ∗−ρ(τ)) dτ)S(0).

Since σ
t

∫ t
0 (ρ∗ − ρ(τ)) dτ converges to zero when t→∞, we obtain that

lim
t→∞

S(t) =

{
0 if λ < σρ∗,

∞ if λ > σρ∗.

It is obvious from (1.13) that I(t) → 0 for λ < σρ∗ and I(t) → ∞ for λ > σρ∗. The “critical” case
λ = σρ∗ requires an additional consideration. We state the result in the following lemma. The proof is
given in the appendix.

Lemma 2. If λ = σρ∗ in Case 2, then S(t) converges to some S∗ > 0 if Λ :=
∫

Ω−

S0(ω)
σp(ω)−λ−δ dω <∞.

Otherwise S(t)→∞.

If Λ is finite then we can use ρ(t)S(t)→ ρ∗S∗ and (1.13) to show that I(t)→ σρ∗

δ S
∗ = λ

δS
∗. If Λ =∞

then ρ(t)S(t)→∞ and thus also I(t)→∞.

To analyse the prevalence we first consider the case λ+ δ ≤ 0. Here it is clear from (1.27) that y(t)→ 1

due to ρ∗ > 0. If λ+ δ > 0 we can rewrite (1.27) as

ẏ(t) = (λ+ δ)(1− y(t))

(
σρ(t)

λ+ δ
− y(t)

)
.

If λ + δ < σρ∗ then σρ(t)
λ+δ > 1 for large enough t. Then obviously y(t) → 1. If, on the other hand,

λ+ δ ≥ σρ∗, then ẏ(t) is positive if y(t) is smaller than σρ(t)
λ+δ and negative if it is bigger than that value.

From this it is easy to see that y(t) → σρ∗

λ+δ . Note that these results can be summarised by the formula

y(t)→ max
{
λ+δ
σρ∗ , 1

}−1
.

We now come to analyzing Case 3.
Here we easily obtain (using (1.29) and K0(0) = 0) that σρ∗ = σψ∗ ≥ σ infω∈Ω− p(ω) ≥ λ + δ. As
above we use equation (1.12) to get

S(t) = e
∫ t
0 (λ−σρ(τ)) dτS(0) = et(λ−σρ

∗+σ
t

∫ t
0 (ρ∗−ρ(τ)) dτ)S(0)

16



where σ
t

∫ t
0 (ρ∗ − ρ(τ)) dτ converges to zero. Because of λ < λ + δ ≤ σρ∗ we get S(t) → 0 and

consequently also I(t)→ 0.

When analysing the prevalence we again see that for λ + δ < 0 we can use (1.27) to get y(t) → 1. If
λ+ δ = 0 an additional argument is needed, which is given in the appendix.

Lemma 3. If λ+ δ = 0 in Case 3 then y(t)→ 1.

For λ + δ > 0 we can again use the same reasoning as in Case 2 above. Then, due to λ + δ ≤ σρ∗

we always have y(t)→ 1.

Case 4. S+(0) > 0.

If we assume that F (t) → ∞, then the second integral in (1.24) converges to zero, while the first
integral converges to +∞. Since Ḟ (t) = z(t) ≥ 0, this is a contradiction. Thus F (t) is bounded, and
since it is monotonically increasing and strictly positive it has a limit F ∗ > 0. In particular,

lim
t→∞

z(t) = lim
t→∞

Ḟ (t) = 0.

Then according to (1.26)

lim
t→∞

ρ(t) = lim
t→∞

z(t)ψ∗ = 0.

Now we investigate the limit F ∗ of F (t). Passing to the limit in (1.10) we obtain that F ∗ satisfies the
equation

1

M(0)

∫
Ω
p(ω) eF

∗(λ+δ−σp(ω))S0(ω) dω = 1. (1.31)

The next lemma sates that this equation uniquely determines the value F ∗.

Lemma 4. Equation (1.31) has a unique positive solution.

Proof. The existence of a solution was obtained above.

Consider the function

g(x) :=
1

K(0) + J(0)

∫
Ω
p(ω) ex(λ+δ−σp(ω))S0(ω) dω, x ≥ 0.

Since the function x 7→ eax is strictly convex for any a 6= 0 and is convex for a = 0, and since
p(ω)S0(ω) ≥ 0 and the inequality is strict on a subset (of Ω+) of positive measure, we have that g is
strictly convex. Since g(0) = K(0)/(K(0) + J(0)) < 1, we conclude that F ∗ is the unique positive
solution of (1.31). 2
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Now, we investigate the asymptotics. For S(t) this is done easily enough. Using (1.12) and ρ(t)→ 0 we
have S(t)→ 0 for λ < 0 and S(t)→∞ for λ > 0. If λ = 0 we get from (1.19)

S(t) =

∫
Ω
e−σF (t)p(ω)S0(ω) dω →

∫
Ω
e−σF

∗p(ω)S0(ω) dω =: S?. (1.32)

So we have for λ ≤ 0 that S(t) converges to a finite value. Thus, ρ(t)S(t)→ 0 which implies I(t)→ 0.
If λ > 0, deriving the asymptotics requires additional work. We state the results in the following lemma
and refer to the appendix for the proof.

Lemma 5. Let λ > 0 in Case 4. Define

Θ =
M(0)∫

Ω(p(ω))2eF ∗(λ+δ−σp(ω))S0(ω) dω
.

Then

lim
t→∞

I(t) =


0 if σδ < Θ,

I? if σδ = Θ,

∞ if σδ > Θ,

with I? > 0.

For the prevalence note that in the considered case Ω+ has a positive measure. From λ+ δ > σp(ω) > 0

a.e. on Ω+ we obtain that λ+ δ > 0. Since ρ(t)→ 0, we see from equation (1.27) that y(t)→ 0.

1.4.3 Summary and comparison

Table 1.2 gives for all cases and parameter configurations the asymptotic state (finite or infinite) to
which the aggregated solution (S(t), I(t)) of the heterogeneous system (1.4), (1.5) and the corresponding
prevalence y(t) converge. We also use ρ∗ defined by (1.30), S∗ and Λ as given in Lemma 2, S? as defined
in (1.32), and I? and Θ referred to in Lemma 5.

We see some obvious similarities between Table 1.1 and Table 1.2. Case 1 is of course itself a homo-
geneous system with λ + δ = σ, but Case 2 is also very similar to the same homogeneous system.
Once the initial incidence y(0) is replaced by the final aggregated prevalence ρ∗ in the differentiation
of the sub-cases, the asymptotics are nearly the same. The difference only is that in the critical case
λ = σρ∗ the heterogeneous system does not necessarily converge to a finite state. Also different is the
asymptotic prevalence, which is constant in the homogeneous case, but may take different values in the
heterogeneous model.

The cases λ+ δ < σ and λ+ δ > σ can be compared to the Cases 3 and 4 respectively. Note that while
S+(0) = S0(0) = 0 implies that λ+δ < σp(ω) for a.e. ω for which S0(ω) 6= 0 and the comparison with
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Case Subcases Asymptotics of (S, I) Prevalence

S+(0) = S−(0) = 0:
homogeneous case with λ+ δ = σ see Table 1.1 see Table 1.1

λ < σρ∗ (0, 0)

1

max
{
λ+δ
σρ∗ ,1

}S+(0) = 0, S−(0) > 0, S0(0) > 0
λ = σρ∗, Λ <∞
λ = σρ∗, Λ =∞

(
S∗, λδS

∗)
(∞,∞)

λ > σρ∗ (∞,∞)

S+(0) = 0, S−(0) > 0, S0(0) = 0 — (0, 0) 1

λ < 0 (0, 0)

0

λ = 0 (S?, 0)

S+(0) > 0 λ > 0, σδ < Θ (∞, 0)

λ > 0, σδ = Θ (∞, I?)
λ > 0, σδ > Θ (∞,∞)

Table 1.2: Asymptotic behaviour of the heterogeneous system

the case λ+ δ < σ of the homogeneous system is obvious, in Case 4 the inequality λ+ δ < σp(ω) may
still hold for a large portion of ω ∈ Ω as µ(Ω+) can be arbitrarily small. Comparing the subcases of Case
4 with those of λ+ δ > σ of the homogeneous system on the other hand shows a very close connection.
The only difference here is that the threshold value for σδ that determines whether the infected population
dies out or not is changed from 1 to Θ.

The main difference is however that once the parameters λ, σ, δ, and for the heterogeneous system p(ω),
and the initial conditions S(0) and I(0) are fixed, the asymptotic behaviour of the homogeneous system
is completely determined. In the heterogeneous system, however, the initial distribution S0(ω) can still
greatly influence the behaviour. Not only is S0(ω) crucial in the definition of the values S+(0), S−(0),
and S0(0) and thus in determining which case is at hand, but it (along with I0(ω)) also plays a role in
the definition of ρ∗ and Θ, so a difference in the initial distributions may result in a different asymptotic
behaviour even though the different initial distributions stay within the same case.

One further aspect that is of interest is the question whether it makes a difference if the disease has a
long history at time t = 0 (at which the data are given) when comparing the results of the homogeneous
and heterogeneous systems. From (1.4) we get

S̄(t, ω) = S0(ω) e−σ
∫ t
0 z(τ) dτp(ω)+λt = S0(ω) e−σF (t)p(ω)+λt.

Thus the proportion between the population sizes of two different h-states is given by

S̄(t, ω1)

S̄(t, ω2)
=
S0(ω1)

S0(ω2)
eσF (t)(p(ω2)−p(ω1)).
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We see that in the case S+(0) > 0, where we have F (t) → F ∗, this proportion converges to some
constant. This shows that the population retains a certain level of heterogeneity for all time.

In the cases where S+(0) = 0 and S−(0) > 0 however we have that F (t)→∞. Thus this proportion
goes to zero whenever p(ω1) > p(ω2). This implies that asymptotically only the h-state with the lowest
value of p(ω) survives. Thus, in a sense, the population becomes more homogeneous. This, however,
does not mean that it can be more closely described by the original homogeneous system. It is more
appropriate to say that the homogeneous system more closely resembles the heterogeneous one if σ is
changed to σp∗ where p∗ is the infimum of p(ω) on Ω or, if this infimum is zero, to a sufficiently small
number.

We emphasize that the above results show what information is needed to determine the ultimate state
of the system. In particular we see that the final state can in some cases be determined without full
knowledge of the initial distribution. For example, if S+(0) = S0(0) = 0 and S−(0) > 0 then we
know that (S(t), I(t)) will converge to (0, 0) and the prevalence converges to 1. But this condition is
just another way of saying that the set of ω ∈ Ω where both λ+ δ ≥ σp(ω) and S0(ω) > 0 has measure
zero. The only information about the function S0(ω) that is needed here is its support. And even this
information might not be needed in detail (e.g. in the simple case where λ+ δ < σp(ω) for all ω ∈ Ω).

In some cases all information about S0(ω) is needed. For example, in the case S+(0) > 0, λ > 0, and
σ/δ = Θ the value Θ can only be calculated with full knowledge of S0(ω), and I? is only calculable with
knowledge of F (t) for all t, for which again S0(ω) is needed in detail. However, to verify inequalities
like σ/δ < Θ, incomplete information might in some cases suffice.

1.4.4 Numerical examples

The homogeneous SI-model is amongst the simplest epidemiological models. Consequently it is used
only as a well understood starting point for the analysis of more complex models. For example, early
attempts to understand the transmission of HIV started out by using simple SI-models (see e.g. [23, 81]).
Some more recent models for HIV are still recognisable as SI-model, albeit more sophisticated ones
using age-structured populations (e.g. [78]) or multiple stages of infection (e.g. [41]). Some diseases in
animals have also been modelled using variants of SI-models (e.g. [12, 50]).

Since SI-models are mostly used as baseline models, we will not attempt to capture the exact dynamics
of a specific disease. Rather we give some numerical examples to illustrate the effect that different initial
distributions (S0(ω), I0(ω)) can have on the asymptotics, although we choose distributions that yield
the same cumulative values, i.e. the initial conditions for the aggregated system (1.12)-(1.13) stay the
same. Although the parameters used here are of a magnitude suitable for modelling HIV2, the specific

2The force of infection has been studied for example in [17], while parameters for population growth or mortality rates can
be found in the internet data repository of the World Health Organisation at www.who.int
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Figure 1.1: Comparison of the trajectories of the system for different choices of S0(ω) and the homoge-
neous system. The solid lines show the results for a constant initial distribution S0(ω) = 0.7, the dashed
lines for S0(ω) = 1.4χ[0.5,1](ω). The dash-dotted line represents the solution for the homogeneous
system.

values have been chosen to highlight the differences in behaviour due to different choices of the initial
conditions.

We first want to show how a different choice of S0(ω) can influence the system. As Ω we take the interval
[0, 1] and for µ the Lebesgue measure. We set I0(ω) = 0.6χ[0.5,1] where χ[0.5,1] is the indicator function
of the interval [0.5, 1]. Further we set p(ω) = 1

2 + ω, σ = 0.3, δ = 0.21, and λ = 0.09. Note that
λ + δ = σ and λ = σy(0), which means that if the population were homogeneous both S(t) and I(t)

would be constant. It is easy to see that with our choice of parameters Ω+ = [0, 0.5) and Ω− = (0.5, 1].
The set Ω0 consists only of one point and, since p(ω) is strictly monotonically increasing, is a µ-null set.

Now we look at two different initial distributions S0(ω). On the one hand, we consider S0(ω) = 0.7,
on the other S0(ω) = 1.4χ[0.5,1](ω). Obviously both cases yield S(0) = 0.7. But in the first case
S+(0) > 0 while in the second case S+(0) = 0. The results can be seen in Figure 1.1. When S+(0) > 0

the number S(t) of susceptible individuals goes to infinity and since σ
δ > Θ for our choice of parameters

(Θ ≈ 1.3091, while σ
δ ≈ 1.4286), so does I(t). The prevalence, however, still goes to zero. When,

on the other hand, we take S0(ω) = 1.4χ[0.5,1](ω), we see that both the populations of susceptible and
infected individuals go to 0, while the prevalence increases towards 1. As mentioned above, both S(t)

and I(t) are constant for the homogeneous system.

A second aspect we want to raise, is the influence of the choice of I0(ω). Since S(0)+I(0) = 1, the value
of I(0) is fixed once S0(ω) is chosen. However, the choice of I0(ω) still influences J(0). To illustrate
the effects different values of J(0) can have on the system we consider the following parameters: Ω, µ,
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Figure 1.2: Comparison between the trajectories of I(t) for different choices of I0(ω) and the homoge-
neous system. The solution to the heterogeneous system is given by the solid line while the solution for
the homogeneous system is represented by the dashed line.

and p(ω), are chosen as above, while we set σ = 0.2 and δ = 0.2. We take S0(ω) = 0.5 to be constant.
Thus we are in the case S+(0) > 0 and S(t) always goes towards infinity as long as λ is positive.
We now choose λ such that for I0(ω) = 0.5 we have σ

δ = Θ, which yields λ ≈ 0.1145. Note that
λ + δ > σ, λ > 0, and σ = δ. Thus, in a homogeneous population the population of susceptibles goes
to infinity while the population of infected individuals converges. In our heterogeneous case I(t) also
converges. We then change I0(ω) while keeping all other parameters fixed. We consider the two choices
I0(ω) = 1

2δ(ω) and I0(ω) = 1
2δ(1− ω) where δ(x) is the Dirac delta distribution. Thus I(0) = 0.5 for

all of these choices while J(0) = 0.25 for I0(ω) = 1
2δ(ω) and J(0) = 0.75 for I0(ω) = 1

2δ(1 − ω)

compared to J(0) = I(0) = 0.5 for constant I0(ω). The results are shown in Figure 1.2. Since S(t)

goes to infinity in all of the cases, we restrict ourselves to giving the results for the infected population
only. For I0(ω) = 0.5 we can see the convergence of I(t). If I0(ω) = 1

2δ(ω) then σ
δ > Θ and I(t) goes

to infinity, while for I0(ω) = 1
2δ(1− ω) we get σδ < Θ and I(t) goes towards 0.

1.5 Basic reproduction number

In this section we consider both the homogeneous and the heterogeneous model assuming that λ = 0,
which means that the population has a fixed size if a disease is not present.

We use the definition of the basic reproduction number R0 as given in [31] where it is defined as the
expected number of secondary cases produced, in a completely susceptible population, by a typical
infected individual during its entire period of infectiousness. The importance of this number lies in the
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threshold criterion which says that a disease can invade the population if R0 > 1 and can not invade if
R0 < 1.

In the homogeneous model the basic reproduction number Rhom0 is given by σ
δ (see for example [29]).

This is due to the fact that a single infected individual in an otherwise completely susceptible population
has on average σ infectious contacts per unit of time and a life expectancy of 1

δ . In order to define a basic
reproduction number for the heterogeneous system we use the following result obtained in [31].

Theorem 1. Let S(ω) denote the density function of susceptibles describing the steady demographic
state in the absence of the disease. Let A(τ, ζ, ω) be the expected infectivity of an individual which was
infected τ units of time ago, while having h-state ω towards a susceptible which has h-state ζ. Assume
that ∫ ∞

0
A(τ, ζ, ω) dτ = a(ζ)b(ω).

Then the basic reproduction number R0 for the heterogeneous system is given by

R0 =

∫
Ω
a(ω)b(ω)S(ω) dω.

In our heterogeneous system the initial condition S0(ω) is, in the absence of any infected individuals,
a steady state due to λ = 0. To derive an expression for the infectivity A(τ, ζ, ω) we note that σ denotes
the strength of infection. The value p(ω) influences the number of contacts an individual has. Then the
chance of an infectious contact between the infective ω individual and a specific ζ individual is given by
σp(ω) p(ζ)∫

Ω p(ξ)S0(ξ) dξ . The infectivity of an individual is constant for its whole lifespan. In the absence of

susceptible individuals the equation for the infected is given by İ(t) = −δI(t), which suggests that the
probability that an infected individual is still alive at time t is given by e−δt. Thus A(τ, ζ, ω) is given by
σp(ω) p(ζ)∫

Ω p(ξ)S0(ξ) dξe
−δτ . We have∫ ∞

0
A(τ, ζ, ω) dτ =

∫ ∞
0

σp(ω)
p(ζ)∫

Ω p(ξ)S0(ξ) dξ
e−δτ dτ =

σ

δ

p(ζ)∫
Ω p(ξ)S0(ξ) dξ

p(ω)

and thus

R0 =
σ

δ

∫
Ω p(ω)2S0(ω) dω∫
Ω p(ω)S0(ω) dω

.

Note that if p(ω) ≡ 1, i.e. we are dealing with the homogeneous system, then R0 = σ
δ as before.

Assume now that a fraction of the population is already infected. Since λ = 0, the population of infected
individuals dies out in both models. Also, the population of susceptibles is strictly decreasing. An
important question is whether the population of susceptible individuals also goes extinct or if some
individuals remain uninfected.

For the homogeneous model this question can be answered immediately from Table 1.1.
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Proposition 2. If the basic reproduction number Rhom0 = σ
δ of the homogeneous model satisfies the

inequality Rhom0 ≥ 1 then the population of susceptible individuals dies out. If Rhom0 < 1 then a part,
S∗ = S(0)

δ
δ−σ , of the initial population stays uninfected.

Note that S∗ as given here is the same as in Table 1.1.

Similarly we can use Table 1.2 to get the following result for the heterogeneous model.

Proposition 3. Define

R∗ =
σ

δ
essinf
ω∈Γ

p(ω) =
σ

δ
sup
B⊆Γ
µ(B)=0

inf
ω∈Γ\B

p(ω),

where Γ = {ω ∈ Ω : S0(ω) 6= 0}. If R∗ ≥ 1 then the population of susceptible individuals dies out. If
R∗ < 1 then a part, S? =

∫
Ω e
−σF ∗p(ω)S0(ω) dω, of the initial population stays uninfected, where F ∗ is

the unique positive solution of the equation∫
Ω
p(ω)eF

∗(δ−σp(ω))S0(ω) dω = M(0).

Proof If R∗ ≥ 1 then σ
δ p(ω) ≥ 1 almost everywhere on Γ. This means that µ(Γ ∩ Ω+) = 0 which

implies S+(0) = 0. If R∗ < 1 then there is a set A ⊆ Γ with positive measure on which σ
δ p(ω) < 1.

Hence, µ(Γ ∩ Ω+) > 0 and S+(0) > 0. Then the conclusions of the proposition in both cases follow
from Table 1.2. The statement about F ∗ is proven in Lemma 4. 2

Note that R0 = σ
δ

∫
Ω p(ω)2S0(ω) dω∫
Ω p(ω)S0(ω) dω ≥

σ
δ essinf

ω∈Γ
p(ω)

∫
Ω p(ω)S0(ω) dω∫
Ω p(ω)S0(ω) dω = R∗. This also shows that R0 =

R∗ if and only if p(ω) is constant a.e. on Γ.

The above proposition exhibits an important difference between the homogeneous and heterogeneous
model, which is that the indicator that determines whether the population dies out or not is in the ho-
mogeneous case given by the basic reproduction number Rhom0 , while in the heterogeneous case this
indicator is R∗ which in general is different from R0.

In the homogeneous model a disease that can invade the population is characterised by Rhom0 >

1, hence it kills the whole population by Proposition 2. This is no longer necessarily the case in the
heterogeneous model. Instead we encounter the following three possibilities:

• 1 ≤ R∗ ≤ R0: the disease leads to an outbreak and S(t)→ 0,

• R∗ < 1 ≤ R0: the disease leads to an outbreak and S(t)→ S?,

• R∗ ≤ R0 < 1: the disease does not lead to an outbreak and S(t)→ S?.
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1.6 Concluding remarks and perspectives

In this paper we show within a simple 2-dimensional distributed (SI) model how the asymptotic be-
haviour of a disease in a heterogeneous population depends on the distribution of the population among
the space of heterogeneity (the h-distribution). The analysis is based on the fact that for this particular
distributed model it is possible to obtain a 3-dimensional ODE model that exactly reproduces the evolu-
tion of the aggregated susceptible and infected individuals. The latter model involves only a few averaged
characteristics of the h-distribution. We show that the asymptotic behaviour of the disease qualitatively
depends on these characteristics and describe it comprehensively.

On the other hand, the information about the h-distribution of the population is usually scarce and
uncertain. Moreover, the results in this paper are obtained under restrictive conditions in a model that is
simplistic, anyway. As mentioned in the introduction, this analysis should be viewed as a baseline for
more complex studies. In particular, we envisage two lines of further research indicated below. Both lines
may involve distributed modes of dimension 3 or 4 with much richer structure than the one considered
in the present paper.

1. The uncertainty in the h-distribution of the population gives rise to a tube of possible aggregated state-
trajectories. The sections of this tube at any given time instant provides a set-membership estimation of
the state of the disease, which is independent of the particular realizations of the uncertainties. To obtain
numerically such set-estimations is tractable by involvement of known methods in the optimal control
theory, and this is our next goal.

2. A second line of ongoing research involves distributed prevention control, which influences the trans-
mission rate of the disease, but is costly. Using the technique of optimal sparse control one may address
the following question: to which risk groups (in terms of the h-distribution of the population) should the
prevention be allocated and how this allocation evolves with time. The results in [34] suggest that the
answer critically depends on the current state of the disease. It turns out that the optimal allocation of
prevention (with respect to reasonable intertemporal criteria) might vary from most risky to least risky
groups. The necessary numerical analysis is tractable for much more complicated models as the one
considered in this paper.

The results in this paper will conveniently serve as a benchmark case for testing the results of each of the
investigations mentioned above, since the asymptotics are precisely known in this case.
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Appendix

Proof of Lemma 1. Differentiating (1.3) we obtain

y′(t) =
d
dt

I(t)

S(t) + I(t)
=
İ(t)S(t)− I(t)Ṡ(t)

(S(t) + I(t))2

=
σy(t)S(t)2 − δI(t)S(t) + σy(t)S(t)I(t)− λS(t)I(t)

(S(t) + I(t))2

= σy(t)(1− y(t))2 − δy(t)(1− y(t)) + σy(t)2(1− y(t))− λy(t)(1− y(t))

=
(
y(t)− y(t)2

)
(σ − δ − λ) .

This is a Bernoulli equation and its solution is given by (1.23).
From (1.1) we have

S(t) = S(0)e−
∫ t
0 σy(s) ds+λt.

Simple calculations give that ∫ t

0
y(s)ds = t− ln(y(t))

σ − δ − λ
+

ln(y(0))

σ − δ − λ
,

thus

e
∫ t
0 −σy(s)ds = y(0)−

σ
σ−δ−λ y(t)

σ
σ−δ−λ e−σt.

Then using (1.23) we have

S(t) = S(0) y(0)−
σ

σ−δ−λ y(t)
σ

σ−δ−λ e(λ−σ)t

= S(0) y(0)−
σ

σ−δ−λ
(
e−(σ−δ−λ)t

(
y(0)−1 − 1

)
+ 1
)− σ

σ−δ−λ
e(λ−σ)t

= S(0)
(

1− y(0) + y(0) e(σ−δ−λ)t
)− σ

σ−δ−λ
eλt.

Considering

I(t)

S(t)
=

I(t)
S(t)+I(t)

S(t)
S(t)+I(t)

=
y(t)

1− y(t)
=

=
1(

e−(σ−δ−λ)t (y(0)−1 − 1) + 1
) (

1− 1
e−(σ−δ−λ)t(y(0)−1−1)+1

)
=

1

e−(σ−δ−λ)t (y(0)−1 − 1)
=

e(σ−δ−λ)t

y(0)−1 − 1
= e(σ−δ−λ)t y(0)

1− y(0)

= e(σ−δ−λ)t I(0)

S(0)
,
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we get

I(t) = S(t)
I(t)

S(t)
= I(0)y(0)−

σ
σ−δ−λ y(t)

σ
σ−δ−λ e−δt

= I(0)
(

1 + y(0)e(σ−δ−λ)t − y(0)
)− σ

σ−δ−λ
e(σ−δ)t.

2

Proof of Lemma 2. On the assumptions of the lemma and in view of (1.12), S(t) is given by

S(t) = S(0) e
∫ t
0 (λ−σρ(τ)) dτ = S(0) eσ

∫ t
0 (ρ∗−ρ(τ)) dτ .

We split the integral

∫ t

0
(ρ∗ − ρ(τ)) dτ =

∫ t

0
(z∗ψ∗ − z(τ)ψ(F (τ))) dτ

=

∫ t

0
(z∗ − z(τ))ψ∗ dτ +

∫ t

0
z(τ) (ψ∗ − ψ(F (τ))) dτ

in two parts and denote them by Int1(t) and Int2(t) respectively.

Using (1.28), (1.29) and the definition of ϕ we have

Int1(t) =
ψ∗

M(0)

∫ t

0

∫
Ω−

p(ω) eF (τ)(λ+δ−σp(ω))S0(ω) dω dτ

From this we can see that Int1(t) is monotonically increasing. It remains to see whether it is bounded or
not. Observe that for ω ∈ Ω− the function ϕ(·, ω) is strictly decreasing. Then (1.28) implies that Ḟ (t) is
strictly increasing. Hence, F (t) > tḞ (0) = tz(0) for t > 0 and we get

Int1(t) =
ψ∗

M(0)

∫ t

0

∫
Ω−

p(ω) eF (τ)(λ+δ−σp(ω))S0(ω) dω dτ

<
ψ∗

M(0)

∫ t

0

∫
Ω−

p(ω) ez(0)τ(λ+δ−σp(ω))S0(ω) dω dτ

=
ψ∗

M(0)z(0)

∫
Ω−

p(ω)
1− e−tz(0)(σp(ω)−λ−δ)

σp(ω)− λ− δ
S0(ω) dω

≤
ψ∗ supω∈Ω− p(ω)

M(0)z(0)

∫
Ω−

1− e−tz(0)(σp(ω)−λ−δ)

σp(ω)− λ− δ
S0(ω) dω.
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Since Ḟ (t) = z(t) < 1, which implies that F (t) < t, we have that

Int1(t) ≥ Int1(tz(0)) =
ψ∗

M(0)

∫ tz(0)

0

∫
Ω−

p(ω) eF (τ)(λ+δ−σp(ω))S0(ω) dω dτ

>
ψ∗

M(0)

∫ tz(0)

0

∫
Ω−

p(ω) eτ(λ+δ−σp(ω))S0(ω) dω dτ

=
ψ∗

M(0)

∫
Ω−

p(ω)
1− e−tz(0)(σp(ω)−λ−δ)

σp(ω)− λ− δ
S0(ω) dω

≥
ψ∗ infω∈Ω− p(ω)

M(0)

∫
Ω−

1− e−tz(0)(σp(ω)−λ−δ)

σp(ω)− λ− δ
S0(ω) dω.

Notice that inf
ω∈Ω−

p(ω) > (λ + δ)/σ = ρ∗
(

1− K0(0)
M(0)

)−1
> 0. Then the above two inequalities

for Int1(t) show that Int1(t) converges if and only if the integral
∫

Ω−
1−e−tz(0)(σp(ω)−λ−δ)

σp(ω)−λ−δ S0(ω) dω is
bounded in t. Since the exponent under the integral converges to zero when t→∞, we obviously have

lim
t→∞

Int1(t) <∞ ⇐⇒
∫

Ω−

S0(ω)

σp(ω)− λ− δ
dω <∞.

Now, we investigate Int2(t). Since we know that ψ(·) is decreasing and F (·) is increasing, we have that
ψ∗ − ψ(F (t)) ≤ 0. Thus Int2(t) is monotonically decreasing. In order to prove that it converges we
estimate it using that z(t) ≤ 1, ψ∗ = λ+δ

σ , and the definition of ψ(·) in (1.25):

|Int2(t)| ≤
∫ t

0

∣∣∣∣∣λ+ δ

σ
−
∫

Ω p(ω)e−σF (τ) p(ω)S0(ω) dω∫
Ω e
−σF (τ) p(ω)S0(ω) dω

∣∣∣∣∣ dτ

=

∫ t

0

∣∣∣∣∣λ+ δ

σ
−

∫
Ω−

p(ω)e(λ+δ−σp(ω))F (τ) S0(ω) dω + λ+δ
σ S0(0)∫

Ω−
e(λ+δ−σp(ω))F (τ) S0(ω) dω + S0(0)

∣∣∣∣∣ dτ

=

∫ t

0

∣∣∣∣∣
∫

Ω−

(
λ+δ
σ − p(ω)

)
e(λ+δ−σp(ω))F (τ) S0(ω) dω∫

Ω−
e(λ+δ−σp(ω))F (τ) S0(ω) dω + S0(0)

∣∣∣∣∣ dτ.

Using again that F (t) > Ḟ (0)t we obtain that

|Int2(t)| ≤ 1

S0(0)

∫ t

0

∫
Ω−

∣∣∣∣λ+ δ

σ
− p(ω)

∣∣∣∣ e(λ+δ−σp(ω))z(0)τ S0(ω) dω dτ

=
1

σz(0)S0(0)

∫
Ω−

(σp(ω)− λ− δ)1− e−tz(0)(σp(ω)−λ−δ)

σp(ω)− λ− δ
S0(ω) dω

≤

∫
Ω−

S0(ω) dω

σz(0)S0(0)
=

S−(0)

σz(0)S0(0)
.

Thus Int2(t) converges. Consequently Int1(t) + Int2(t) converges if Int1(t) converges and we have

S(t) = S(0)eσ
∫ t
0 (ρ∗−ρ(τ)) dτ → S∗ <∞, (1.33)
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(with some strictly positive number S∗), provided that
∫

Ω−

S0(ω)
σp(ω)−λ−δ dω < ∞. Otherwise S(t) → ∞.

2

Proof of Lemma 3 Since λ+ δ = 0 we have from (1.27)

ẏ(t) = (1− y(t))σρ(t).

The solution to this ODE is

y(t) = e−σ
∫ t
0 ρ(τ) dτ (y(0)− 1) + 1.

We see that

lim
t→∞

y(t) = 1⇐⇒
∫ ∞

0
ρ(t) dt =∞.

We remind that due to S+(0) = S0(0) = 0 and the fact that ϕ(t, ω) is decreasing on Ω−, we have from
(1.28) that Ḟ (t) is increasing. Then

ρ(t) = Ḟ (t)ψ(F (t)) ≥ Ḟ (0)ψ(F (t)) = z(0)ψ(F (t)).

On the other hand,

ρ(t) = Ḟ (t)ψ(F (t)) = z(t)ψ(F (t)) ≤ ψ(F (t)).

Then

lim
t→∞

y(t) = 1⇐⇒
∫ ∞

0
ψ(F (t)) dt =∞.

Since ψ(x) is decreasing and F (t) ≤ t, we have ψ(F (t)) ≥ ψ(t). Thus∫ ∞
0

ψ(F (t)) dt ≥
∫ ∞

0
ψ(t) dt =

∫ ∞
0

∫
Ω p(ω)e−σt p(ω)S0(ω) dω∫

Ω e
−σt p(ω)S0(ω) dω

dt

=

∫ ∞
0

− 1
σ

d
dt

∫
Ω e
−σt p(ω)S0(ω) dω∫

Ω e
−σt p(ω)S0(ω) dω

dt

= − 1

σ

∫ ∞
0

d
dt

ln

(∫
Ω
e−σt p(ω)S0(ω) dω

)
dt

= − 1

σ
ln(0) +

1

σ
ln(S(0)) =∞.

2
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Proof of Lemma 5. In order to obtain the asymptotics of I(t) we shall use equation (1.13). We have
to determine the asymptotic behaviour of the term ρ(t)S(t), where we have ρ(t) → 0 and S(t) → ∞.
Using (1.11) and (1.19) we get

ρ(t)S(t) = Ḟ (t)eλt
∫

Ω
p(ω)e−F (t)σp(ω)S0(ω) dω.

Since
∫

Ω p(ω)e−F (t)σp(ω)S0(ω) dω converges, we only need to consider the asymptotic behaviour of the
term Ḟ (t)eλt. Differentiating Ḟ (t) as given in (1.10) and using (1.10) again yields

F̈ (t)=(λ+ δ)(Ḟ (t))2 −
(

(λ+ δ)− σ

M(0)

∫
Ω

(p(ω))2eF (t)(λ+δ−σp(ω))S0(ω) dω
)
Ḟ (t).

We now write

d
dt

(
Ḟ (t)eλt

)
= F̈ (t)eλt + Ḟ (t)λeλt = Ḟ (t)eλt

(
F̈ (t)

Ḟ (t)
+ λ

)
.

Integrating this equation for Ḟ (t)eλt and using the above expression for F̈ (t) we obtain that

Ḟ (t)eλt = Ḟ (0)e
∫ t
0

[
(λ+δ)Ḟ (τ)−

(
(λ+δ)− σ

M(0)

∫
Ω(p(ω))2eF (τ)(λ+δ−σp(ω))S0(ω) dω

)
+λ
]

dτ

= Ḟ (0)e
(λ+δ)F (t)+

∫ t
0

[
σ

M(0)

∫
Ω(p(ω))2eF (τ)(λ+δ−σp(ω))S0(ω) dω−δ

]
dτ
.

Since F (t) converges we need to consider only the integral in the exponent. The first term in the integrand
converges to σΘ−1. Thus, if δ > σΘ−1 then Ḟ (t)eλt converges to zero and consequently I(t) → 0.
Analogously, I(t)→∞ if δ < σΘ−1. This leaves the case δ = σΘ−1. Here we have

∫ ∞
0

σ

M(0)

[∫
Ω

(p(ω))2eF (t)(λ+δ−σp(ω))S0(ω) dω − δ
]

dt

=

∫ ∞
0

[
σ

M(0)

∫
Ω

(p(ω))2eF (t)(λ+δ−σp(ω))S0(ω) dω

− σ

M(0)

∫
Ω

(p(ω))2eF
∗(λ+δ−σp(ω))S0(ω) dω

]
dt

=
σ

M(0)

∫ ∞
0

∫
Ω

(p(ω))2eF
∗(λ+δ−σp(ω))

(
e(λ+δ−σp(ω))(F (t)−F ∗) − 1

)
S0(ω) dω dt

=
σ

M(0)

∫
Ω

(p(ω))2eF
∗(λ+δ−σp(ω))

∫ ∞
0

[
e(λ+δ−σp(ω))(F (t)−F ∗) − 1

]
dt S0(ω) dω.
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Using de l’Hospital’s rule we get

lim
t→∞

ln(Ḟ (t))

−t
= lim

t→∞
− F̈ (t)

Ḟ (t)

= lim
t→∞
−(λ+ δ)Ḟ (t)

+

(
(λ+ δ)− σ

M(0)

∫
Ω

(p(ω))2eF (t)(λ+δ−σp(ω))S0(ω) dω
)

= (λ+ δ)− σ

M(0)

∫
Ω

(p(ω))2eF
∗(λ+δ−σp(ω))S0(ω) dω

= λ+ δ − σΘ−1 = λ > 0

This shows that ln(Ḟ (t)) declines asymptotically linear. Thus Ḟ (t) = eln(Ḟ (t)) goes to zero faster than
e−ct for some c > 0. Because of the equation lim

t→∞
Ḟ (t)

F (t)−F ∗ = lim
t→∞

F̈ (t)

Ḟ (t)
= −λ we can therefore

conclude that F (t)− F ∗ goes to zero faster than de−ct for some constants d and c. From this it follows
that the integral

∫∞
0

[
e(λ+δ−σp(ω))(F (t)−F ∗) − 1

]
dt converges and due to the fact that p(ω) is bounded

the convergence is uniform in ω. Consequently ρ(t)S(t) also converges, which implies I(t)→ I? <∞.
2
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Chapter 2

Aggregation of general SI-models

2.1 Introduction

The analysis of the heterogeneous SI-model in Chapter 1 is based on the fact that, due to the specific
form of the equations, it is possible to formulate an ODE model for the aggregated variables with the
aid of auxiliary functions that can be calculated independently. We will now show that for a class of
heterogeneous SI-models with parametric heterogeneity it is always possible to find an equivalent finite
dimensional ODE model. Due to their simpler structure these models are more suited for certain tasks.

Since no information gets lost in this transformation between models, the finite dimensional model
still contains information about the distributed original state. Furthermore, parameters that depend on
the variable of heterogeneity are still present. Since exact knowledge of the initial condition for the
heterogeneous system is in practice often not available, they have to be estimated from data. By including
this estimation into the model formulation we will for certain systems be able to get rid of the remaining
expressions depending on the heterogeneity by introducing scalar parameters to be estimated from data.

In Section 2.2 we present the general model and the ODE model for its aggregated states. In Section 2.3
we consider an existing model from the literature and apply the results from Section 2.2. As mentioned
above, in Section 2.4 we will include estimation of initial conditions into the model. Finally, in Section
2.5 we show how the equations for the aggregated states can be used to considerably simplify optimal
control problems where the state equations are given by a heterogeneous SI-model.

2.2 General model

We consider SI-models of the following type:

˙̄S(t, ω) = S̄(t, ω)f1(t, ω,G(t), H(t)), S̄(0, ω) = S0(ω),

˙̄I(t, ω) = Ī(t, ω)f2(t, G(t), H(t)) + S̄(t, ω)f3(t, ω,G(t), H(t)), Ī(0, ω) = I0(ω),
(2.1)
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where the functions fk are of the form

fk(t, ω,G(t), H(t)) =

mk∑
i=1

uki(t, G(t), H(t))pki(ω),

with given functions uki and pki (p2i(ω) = 1 for all i), and G(t) = (G1(t), . . . , Gm(t)) and H(t) =

(H1(t), . . . ,Hn(t)) are aggregated variables of the form

Gj(t) =

∫
Ω
gj(ω)S̄(t, ω) dω and Hj(t) =

∫
Ω
hj(ω)Ī(t, ω) dω.

We will assume that all functions here are integrable and that the system (2.1) has a unique solution that
is a.e. measurable.

First note that the solution of the equation for the susceptible population can be written as

S̄(t, ω) = S0(ω)e
∫ t
0 f1(τ,ω,G(τ),H(τ)) dτ .

Furthermore we get for the variables that are weighted averages of the susceptible population that

Ġj(t) =
d
dt

∫
Ω
gj(ω)S̄(t, ω) dω =

∫
Ω
gj(ω) ˙̄S(t, ω) dω =

∫
Ω
gj(ω)S̄(t, ω)f1(t, ω,G(t), H(t)) dω

=

∫
Ω
gj(ω)S̄(t, ω)

m1∑
i=1

u1i(t, G(t), H(t))p1i(ω) dω

=

m1∑
i=1

u1i(t, G(t), H(t))

∫
Ω
gj(ω)p1i(ω)S̄(t, ω) dω

=

m1∑
i=1

u1i(t, G(t), H(t))

∫
Ω
gj(ω)p1i(ω)S0(ω)e

∫ t
0

∑m1
l=1 u1l(τ,G(τ),H(τ))p1l(ω) dτ dω

=

m1∑
i=1

u1i(t, G(t), H(t))

∫
Ω
gj(ω)p1i(ω)S0(ω)e

∑m1
l=1 Al(t)p1l(ω) dω,

where the auxiliary functions Ai are defined through the differential equations

Ȧi(t) = u1i(t, G(t), H(t)), Ai(0) = 0.

Similarly, for weighted averages of I(t, ω) we get

Ḣj(t) =

∫
Ω
hj(ω) ˙̄I(t, ω) dω =

∫
Ω
hj(ω)Ī(t, ω)f2(t, G(t), H(t)) + S̄(t, ω)f3(t, ω,G(t), H(t)) dω

= f2(t, G(t), H(t))Hj(t) +

m3∑
i=1

u3i(t, G(t), H(t))

∫
Ω
hj(ω)p3i(ω)S0(ω)e

∑m1
l=1 Al(t)p1l

(ω) dω.

Thus, these variables (which w.l.o.g. include S(t) and I(t) by adding the functions gj(ω) = 1 and
hj(ω) = 1) can be described by a set of ODEs that only depend on other aggregated variables.
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Note that the last equation is the reason why f2(t, G(t), H(t)) is not allowed to depend on ω. Since
Ī(t, ω) does not allow a simple representation like S̄(t, ω), any dependence of f2 on ω would make it
impossible to reformulate the integral term so that it is only dependent on aggregated variables.

We summarise these findings in the following theorem.

Theorem 2. The aggregated variables of system (2.1) are described by the ODE system

Ġr(t)=

m1∑
i=1

u1i(t, G(t), H(t))

∫
Ω
gr(ω)p1i(ω)S0(ω)e

∑m1
l=1 Al(t)p1l(ω) dω, Gr(0)=

∫
Ω
gr(ω)S0(ω)dω,

Ḣs(t)=f2(t, G(t), H(t))Hs(t)

+

m3∑
i=1

u3i(t, G(t), H(t))

∫
Ω
hs(ω)p3i(ω)S0(ω)e

∑m1
l=1 Al(t)p1l

(ω) dω, Hs(0)=

∫
Ω
hs(ω)I0(ω)dω,

Ȧj(t)=u1j(t, G(t), H(t)), Aj(0) = 0.

(2.2)

2.3 Example

We now want to apply the result of the previous section to an existing model. The following equations
are taken from [107] where they are used to model the spreading of the human immunodeficiency virus
(HIV):

˙̄S(t, ω) = −σp(ω)
J(t)

K(t) + J(t)
S̄(t, ω) + λ(S(t), I(t))S̄(t, ω) + γ(S(t), I(t))

I(t)

S(t)
S̄(t, ω),

˙̄I(t, ω) = σp(ω)
J(t)

K(t) + J(t)
S̄(t, ω)− δ(S(t), I(t))Ī(t, ω),

S(t) =

∫
Ω
S̄(t, ω) dω,

I(t) =

∫
Ω
Ī(t, ω) dω,

K(t) =

∫
Ω
p(ω)S̄(t, ω) dω,

J(t) =

∫
Ω
κp(ω)Ī(t, ω) dω,

S̄(0, ω) = S0(ω), Ī(0, ω) = I0(ω).

(2.3)

The meaning of the parameters is as in Chapter 1; the additional parameter γ denotes the inflow rate of
susceptible individuals resulting from the infected population, and κ is a positive constant describing the
difference in the average risk for infected individuals in contrast to susceptible individuals.
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This model clearly is an example of the general system (2.1). We identify

u11(t,K(t), J(t)) = −σ J(t)

K(t) + J(t)
, p11 = p(ω),

u12(t, S(t), I(t)) = λ(S(t), I(t)) + γ(S(t), I(t))
I(t)

S(t)
, p12 = 1,

u2(t, S(t), I(t)) = −δ(S(t), I(t)), p2 = 1,

u3(t,K(t), J(t)) = σ
J(t)

K(t) + J(t)
, p3 = p(ω),

g1(ω) = 1, g2(ω) = p(ω),

h1(ω) = 1, h2(ω) = κp(ω).

Using Theorem 2.2 the equations for the auxiliary variables A1(t) and A2(t) become

Ȧ1(t) = −σ J(t)

K(t) + J(t)
,

Ȧ2(t) = λ(S(t), I(t)) + γ(S(t), I(t))
I(t)

S(t)
.

Note that S̄(t, ω) can be described by

S̄(t, ω) = S0(ω)e
∫ t
0 −σp(ω)

J(τ)
K(τ)+J(τ)

+λ(S(τ),I(τ))+γ(S(τ),I(τ))
I(τ)
S(τ)

dτ
= S0(ω)eA1(t)p(ω)+A2(t).

Using this together with Theorem 2.2 the equation for S(t) becomes

Ṡ(t) = −σ J(t)

K(t) + J(t)

∫
Ω
p(ω)S0(ω)eA1(t)p(ω)+A2(t) dω

+

(
λ(S(t), I(t)) + γ(S(t), I(t))

I(t)

S(t)

)∫
Ω
S0(ω)eA1(t)p(ω)+A2(t) dω

= −σ J(t)

K(t) + J(t)

∫
Ω
p(ω)S̄(t, ω) dω +

(
λ(S(t), I(t)) + γ(S(t), I(t))

I(t)

S(t)

)∫
Ω
S̄(t, ω) dω

= −σ J(t)

K(t) + J(t)
K(t) +

(
λ(S(t), I(t)) + γ(S(t), I(t))

I(t)

S(t)

)
S(t).
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The other three equations can be dealt with in the same way. The final equations are then given by

Ṡ(t) = −σ J(t)

K(t) + J(t)
K(t) + λ(S(t), I(t))S(t) + γ(S(t), I(t))I(t),

İ(t)= σ
J(t)

K(t) + J(t)
K(t)− δ(S(t), I(t))I(t)

K̇(t)=−σ J(t)

K(t) + J(t)
eA2(t)

∫
Ω
p(ω)2eA1(t)p(ω)S0(ω)dω+

(
λ(S(t),I(t)) +γ(S(t),I(t))

I(t)

S(t)

)
K(t)

J̇(t)= σ
J(t)

K(t) + J(t)
eA2(t)κ

∫
Ω
p(ω)2eA1(t)p(ω)S0(ω) dω − δ(S(t), I(t))J(t),

Ȧ1(t)= −σ J(t)

K(t) + J(t)
,

Ȧ2(t)= λ(S(t), I(t)) + γ(S(t), I(t))
I(t)

S(t)
,

supplemented with the appropriate initial conditions. For A1 and A2 this initial conditions are known to
be 0. The initial conditions for S and I are the total number of infected and susceptible individuals in
the population, a quantity that is reasonably well known in many situations. The quantities K(0) and
J(0) can be calculated from the initial conditions of the distributed system. If they are not known, it
seems prudent to estimate just these two values instead of the whole distributions. But since S0(0, ω)

still appears in the equations one cannot help but estimate at least this one initial condition.

2.4 Parametrising initial conditions and removing integration

For the heterogeneous system to be well determined we need to know the initial conditions S0(ω) and
I0(ω). In practice these functions are often not known exactly. One way to deal with this problem
is to assume that the initial conditions belong to a family of functions described by a small number
of parameters and estimate this parameters by fitting the model to actual data. This problem persists
when we deal with the ODE system for the aggregated variables, as they generally include integral terms
containing S0(ω). However, in some special cases a specific family of parametrised function may be
used to get rid of the integral terms in the equations.

We will continue with the example of the previous section under three additional assumptions:

1. Ω = [0,∞),

2. p(ω) = ω,

3. f(ω) = S0(ω)
S(0) is the probability density function of a generalized inverse Gaussian distribution.
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ad 1.) The interval choice is necessitated by the family of functions under considerations. Other intervals
can be considered for different choices.
ad 2.) We will restrict ourselves to the case p(ω) = ω and q(ω) = κω for some κ ∈ R. Letting p(ω) and
q(ω) take a more general form would only complicate notation. Furthermore, every important aspect of
the calculation is already included when considering this easy functional form.
ad 3.) Since the integral over S0(ω)

S(0) is 1 we can treat it as a probability density function f(ω). This
can be interpreted as the distribution of the trait ω amongst the initial susceptible population S(0). The
generalized inverse Gaussian distribution is a distribution with three parameters a > 0, b > 0, and c ∈ R.
Its probability density function is

f(ω) =

(
a
b

) c
2

2Kc(
√
ab)

ωc−1e−
aω
2
− b

2ω

with parameters a, b, and c, where Kc is the modified Bessel function of second kind, i.e.

Iα(x) =
∞∑
m=0

1

m!Γ(m+ α+ 1)

(x
2

)2m+α
,

Kα(x) =
π

2

I−α(x)− Iα(x)

sin(απ)
.

The moments of a generalized inverse Gaussian with parameters a, b, and p are given by

E[ωn] =

(
b

a

)n
2 Kc+n(

√
ab)

Kc(
√
ab)

.

The generalized inverse Gaussian is a very general distribution and includes for example the Wald and
Gamma distributions as special or limit cases.

Using these two assumptions turns our system into

Ṡ(t) = −σ J(t)

K(t) + J(t)
K(t) + λ(S(t), I(t))S(t) + γ(S(t), I(t))I(t),

İ(t) = σ
J(t)

K(t) + J(t)
K(t)− δ(S(t), I(t))I(t),

K̇(t) = −σ J(t)

K(t) + J(t)
eA2(t)S(0)

∫
Ω
ω2eA1(t)ωf(ω) dω +

(
λ(S(t), I(t)) + γ(S(t), I(t))

I(t)

S(t)

)
K(t),

J̇(t) = σ
J(t)

K(t) + J(t)
eA2(t)S(0)κ

∫
Ω
ω2eA1(t)ωf(ω) dω − δ(S(t), I(t))J(t),

Ȧ1(t) = −σ J(t)

K(t) + J(t)
,

Ȧ2(t) = λ(S(t), I(t)) + γ(S(t), I(t))
I(t)

S(t)
.
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We will look more closely at the integral term. We can rewrite it as

∫
Ω
ω2eA1(t)ωf(ω)dω =

∫
Ω
ω2eA1(t)ω

(
a
b

) c
2

2Kc(
√
ab)

ωc−1e−
aω
2
− b

2ω dω

=

∫
Ω
ω2

(
a
b

) c
2

2Kc(
√
ab)

ωc−1e(A1(t)−a
2 )ω− b

2ω dω

=

∫
Ω
ω2

(
a
b

) c
2

2Kc(
√
ab)

ωc−1e
(2A1(t)−a)ω

2
− b

2ω dω

=
a
c
2 2Kc(

√
(a− 2A1(t))b)

(a− 2A1(t))
c
2 2Kc(

√
ab)

∫
Ω
ω2

(
a−2A1(t)

b

) c
2

2Kc(
√

(a− 2A1(t))b)
ωc−1e−

(a−2A1(t))ω
2

− b
2ω dω.

We now see that the integral in the last term can be interpreted as the second moment of generalized
inverse Gaussian distribution with the parameters a− 2A1(t), b, and c. We therefore get

∫
Ω
ω2eA1(t)ωf(ω)dω =

a
c
2 2Kc(

√
(a− 2A1(t))b)

(a− 2A1(t))
c
2 2Kc(

√
ab)

b

a− 2A1(t)

Kc+2(
√

(a− 2A1(t))b)

Kc(
√

(a− 2A1(t))b)

=
a
c
2 b

(a− 2A1(t))
c
2

+1

Kc+2(
√

(a− 2A1(t))b)

Kc(
√
ab)

.

Putting this in our model yields the following system

Ṡ(t) = −σ J(t)

K(t) + J(t)
K(t) + λ(S(t), I(t))S(t) + γ(S(t), I(t))I(t),

İ(t) = σ
J(t)

K(t) + J(t)
K(t)− δ(S(t), I(t))I(t),

K̇(t) = −σ J(t)

K(t) + J(t)
eA2(t)S(0)

a
c
2 b

(a− 2A1(t))
c
2

+1

Kc+2(
√

(a− 2A1(t))b)

Kc(
√
ab)

,

+

(
λ(S(t), I(t)) + γ(S(t), I(t))

I(t)

S(t)

)
K(t),

J̇(t) = σ
J(t)

K(t) + J(t)
eA2(t)S(0)κ

a
c
2 b

(a− 2A1(t))
c
2

+1

Kc+2(
√

(a− 2A1(t))b)

Kc(
√
ab)

− δ(S(t), I(t))J(t),

Ȧ1(t) = −σ J(t)

K(t) + J(t)
,

Ȧ2(t) = λ(S(t), I(t)) + γ(S(t), I(t))
I(t)

S(t)
.

This model now depends on the parameters a, b, and c, as well as S(0), I(0), and J(0) (the value K(0)

can be calculated with the knowledge of a, b, c, and S(0)), which can be estimated from data.
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2.5 Optimal control

In this section we use the aggregation of the SI-model to deal with the following optimal control prob-
lem.

F (u, v) =

∫ T

0
h(t, S(t), I(t))dt+ g(S(T ), I(T ))→ max (2.4)

where

˙̄S(t, ω) = −σφ1(u(t))p(ω)
J(t)

K(t) + J(t)
S̄(t, ω) + λ(S(t), I(t))S̄(t, ω) + γ(S(t), I(t))

I(t)

S(t)
S̄(t, ω),

˙̄I(t, ω) = σφ1(u(t))p(ω)
J(t)

K(t) + J(t)
S̄(t, ω)− δ(S(t), I(t))φ2(v(t))Ī(t, ω),

S(t) =

∫
Ω
S̄(t, ω) dω,

I(t) =

∫
Ω
Ī(t, ω) dω,

K(t) =

∫
Ω
p(ω)S̄(t, ω) dω,

J(t) =

∫
Ω
κp(ω)Ī(t, ω) dω,

S̄(0, ω) = S0(ω), Ī(0, ω) = I0(ω).

(2.5)

The functions h : [0, T ]×R≥0×R≥0 → R and g : R≥0×R≥0 → R together with the partial derivatives
hI , hS , gI , and gS are Lipschitz continuous in (S, I) and, in the case of h, measurable in t for every
(S, I). The functions φ1 : [0, c1] → [0, 1] and φ2 : [0, c2] → [0, 1] are continuously differentiable and
strictly monotonically decreasing. As controls u(t) and v(t) we allow measurable functions from [0, T ]

to [0, c1] and [0, c2] respectively.

The system (2.5) is the same as (2.3) except for the two functions φ1 and φ2. The function φ1(u)

is attached to the strength of infection σ. It measures to what fraction of σ the strength of infection is
reduced to if an effort u is taken. That φ1 is strictly monotonically decreasing reflects that an increased
effort u leads to a decrease in σ. The function φ2(v) has a similar interpretation with respect to the
mortality rate δ(S, I).

If the cost function h depended on the distributed variables S̄(t, ω) and Ī(t, ω), then we would have to
deal with the infinite dimensional system (2.5). However, since we assume that h depends only on the
aggregated states S(t) and I(t) we can calculate these states using the finite dimensional set of ODEs
for the aggregated states. The presence of the two functions φ1 and φ2 does not influence the derivations
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of the aggregated system in section 2.3, so these equations are

Ṡ(t) = −σφ1(u(t))
J(t)

K(t) + J(t)
K(t) + λ(S(t), I(t))S(t) + γ(S(t), I(t))I(t),

İ(t) = σφ1(u(t))
J(t)

K(t) + J(t)
K(t)− δ(S(t), I(t))φ2(v(t))I(t),

K̇(t) = −σφ1(u(t))
J(t)

K(t) + J(t)
eA2(t)

∫
Ω
p(ω)2eA1(t)p(ω)S0(ω) dω,

+

(
λ(S(t), I(t)) + γ(S(t), I(t))

I(t)

S(t)

)
K(t),

J̇(t) = σφ1(u(t))
J(t)

K(t) + J(t)
eA2(t)κ

∫
Ω
p(ω)2eA1(t)p(ω)S0(ω) dω − δ(S(t), I(t))φ2(v(t))J(t),

Ȧ1(t) = −σφ1(u(t))
J(t)

K(t) + J(t)
,

Ȧ2(t) = λ(S(t), I(t)) + γ(S(t), I(t))
I(t)

S(t)
,

(2.6)

together with the initial conditions

S(0) =

∫
Ω
S0(ω) dω, I(0) =

∫
Ω
I0(ω) dω,

K(0) =

∫
Ω
p(ω)S0(ω) dω, J(0) =

∫
Ω
κp(ω)I0(ω) dω,

A1(0) = 0, A2(0) = 0.

The resulting problem (2.4), (2.6) is a standard optimal control system. There is a large amount of liter-
ature for such problems (e.g. [67]). With the short notation x(t) = (S(t), I(t), R(t), J(t), L(t),K(t))

and f(t, x(t), u(t), v(t)) = ẋ(t), the Hamiltonian for this problem is

H(t, x, η, u) = 〈η, f(x, u, t)〉+ h(t, x).

According to Pontryagin’s Maximum Principle, a necessary condition for (x∗(t), v∗(t), u∗(t)) to be op-
timal is the existence of an absolutely continuous function η(t) such that

H ′x(t, x∗(t), η(t), u∗(t), v∗(t)) = −η̇(t), η(T ) = gx(x∗(T )),

max
(u,v)∈[0,c1]×[0,c2]

H(t, x∗(t), η(t), u, v) = H(t, x∗(t), η(t), u∗(t), v∗(t)).

For writing out the adjoint equations we assume that λ, γ and δ are constant and not dependent on S(t)

or I(t). These assumptions significantly simplifies the equations for η1 and η2. In this case the adjoint
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equations become

η̇1(t) = η1(t)λ− η3(t)γ
I(t)

S(t)2
K(t)− η6(t)γ

I(t)

S(t)2
+ h′S(t, x(t)),

η̇2(t) = η1(t)γ − η2(t)δφ2(v(t)) + η3(t)γ
K(t)

S(t)
+ η6(t)γ

1

S(t)
+ h′I(t, x(t)),

η̇3(t) = σφ1(u(t))
J(t)

(K(t) + J(t))2

(
−η1(t)J(t) + η2(t)J(t)

+(η3(t)− η4(t)κ)eA2(t)

∫
Ω
p(ω)2eA1(t)p(ω)S0(ω) dω + η5(t)

)
+ η3(t)

(
λ+ γ

I(t)

S(t)

)
,

η̇4(t) = σφ1(u(t))
K(t)

(K(t) + J(t))2

(
−η1(t)K(t) + η2(t)K(t)

−(η3(t)− η4(t)κ)eA2(t)

∫
Ω
p(ω)2eA1(t)p(ω)S0(ω) dω − η5(t)

)
− η4(t)δφ2(v(t)),

η̇5(t) = − (η3(t)− η4(t)κ)σφ1(u(t))
J(t)

K(t) + J(t)
eA2(t)

∫
Ω
p(ω)3eA1(t)p(ω)S0(ω) dω,

η̇6(t) = − (η3(t)− η4(t)κ)σφ1(u(t))
J(t)

K(t) + J(t)
eA2(t)

∫
Ω
p(ω)2eA1(t)p(ω)S0(ω) dω.

In the following we want to identify u∗(t) and v∗(t). Note that here we again allow the parameters λ, γ,
and δ to be dependent on S(t) and I(t). We calculate

H ′u(t,x(t),η(t),u(t),v(t))=−η1(t)σφ′1(u(t))
J(t)

K(t) + J(t)
K(t) + η2(t)σφ′1(u(t))

J(t)

K(t) + J(t)
K(t)

− η3(t)σφ′1(u(t))
J(t)

K(t) + J(t)
eA2(t)

∫
Ω
p(ω)2eA1(t)p(ω)S0(ω)dω

+ η4(t)σφ′1(u(t))
J(t)

K(t) + J(t)
eA2(t)

∫
Ω
κp(ω)2eA1(t)p(ω)S0(ω)dω

− η5(t)σφ′1(u(t))
J(t)

K(t) + J(t)

= σφ′1(u(t))
J(t)

K(t) + J(t)

(
−η1(t)K(t) + η2(t)K(t)

−(η3(t)− η4(t)κ)eA2(t)

∫
Ω
p(ω)2eA1(t)p(ω)S0(ω)dω − η5

)
,

and then define a function θ1(t, x(t), η(t)) by H ′u(t, x(t), η(t), u(t)) = φ′1(u(t))θ1(t, x(t), η(t)). Simi-
larly we calculate

H ′v(t, x(t), η(t), u(t), v(t)) = −φ′2(v(t))δ(S, I) (η2(t)I(t) + η4(t)J(t))

and define a function θ2(t, x(t), η(t)) by H ′v(t, x(t), η(t), u(t)) = φ′2(u(t))θ2(t, x(t), η(t)). Assuming
that neither θ1(t, x(t), η(t)) nor θ2(t, x(t), η(t)) is equal to 0 on an interval of positive length, we see
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that due to the fact that φ′1(t) and φ′2(t) are never zero the optimal control is of Bang-Bang type and
given by

(u∗(t), v∗(t)) =


(0, 0) θ1(t, x(t), η(t)), θ2(t, x(t), η(t)) > 0,

(c1, 0) θ1(t, x(t), η(t)) < 0, θ2(t, x(t), η(t)) > 0,

(0, c2) θ1(t, x(t), η(t)) > 0, θ2(t, x(t), η(t)) < 0,

(c1, c2) θ1(t, x(t), η(t)), θ2(t, x(t), η(t)) < 0.

To find out whether there are any singular arcs, i.e. one of the functions θ1 or θ2 becomes zero on an
interval of positive length, one would need to further study the adjoint equations. Due to the complex
nature of these equations we will not do this.

We will consider the same model again with a small change in the control constraints. We assume
that c1 = c2 and add the constraint that u(t) + v(t) ≤ c. In particular the two controls cannot be
chosen independently of each other. One possible interpretation for such a constraint is that u and v are
allocations to prevention and treatment of the disease out of a common budget.

The control constraints can be summarised as

g(u(t), v(t)) ≥ 0, where g(u, v) = (u, v, c− u− v).

In this case, additionally to the necessary conditions above, a further necessary condition for an optimal
control is the existence of a function µ(t) = (µ1(t), µ2(t), µ3(t)) which satisfies

H ′u(t, x(t), η(t), u(t), v(t)) + 〈µ(t), gu(t)〉 = 0,

H ′v(t, x(t), η(t), u(t), v(t)) + 〈µ(t), gv(t)〉 = 0,

µ1(t), µ2(t), µ3(t) ≥ 0,

〈µ(t), g(t)〉 = 0.

This means

H ′u(t, x(t), η(t), u(t), v(t)) + µ1(t)− µ3(t) = 0,

H ′v(t, x(t), η(t), u(t), v(t)) + µ2(t)− µ3(t) = 0,

µ1(t)u(t) = 0,

µ2(t)v(t) = 0,

µ3(t)(c− u(t)− v(t)) = 0.

We now want to give (u∗(t), v∗(t)) again as a function dependent on x(t) and η(t). We fix a t ∈ [0, T ]

and suppress the dependence of the functions on the variables to simplify notation. First, we assume that
u∗ + v∗ < c. Then µ3 = 0. Since H ′u and H ′v are never zero µ1 and µ2 must be non-zero too, which
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means that (u∗, v∗) = (0, 0). Furthermore µ1 is non-negative. So for H ′u + µ1 to be zero, H ′u must be
negative, i.e. θ1 > 0. Similarly we get θ2 > 0. Now conversely consider the case that both θ1 and θ2

are positive. Assume that u∗ > 0. Then µ1 = 0 and we have H ′u = µ3. But because of θ1 > 0 we have
H ′u < 0 while µ3 ≥ 0. Thus u∗ cannot be positive. Analogous reasoning shows that v∗ must also be
zero. Thus, the three statements u∗ + v∗ < c, (u∗, v∗) = (0, 0), and θ1, θ2 > 0 are equivalent.
Next, consider the case θ1 < 0 and θ2 > 0. We know that u∗ + v∗ = c. Assume that v∗ > 0. Then
µ2 = 0 and H ′v = µ3. Since H ′v is negative this is a contradiction. We get that (u∗, v∗) = (c, 0). The
case θ1 > 0 with θ2 < can be dealt with similarly and yields (u∗, v∗) = (0, c).
So far we have

(u∗(t), v∗(t)) =


(0, 0) θ1(t, x(t), η(t)), θ2(t, x(t), η(t)) > 0,

(c, 0) θ1(t, x(t), η(t)) < 0, θ2(t, x(t), η(t)) > 0,

(0, c) θ1(t, x(t), η(t)) > 0, θ2(t, x(t), η(t)) < 0.

It remains to determine (u∗(t), v∗(t)) in the case θ1(t, x(t), η(t)), θ2(t, x(t), η(t)) < 0. The values
(u∗, v∗) = (0, c) or = (c, 0) are possible candidates. If u∗ and v∗ are both greater than 0, we get
µ1 = µ2 = 0 and thus

H ′u = µ3,

H ′v = µ3,

which implies

H ′u = H ′v.

So possible candidates for (u∗(t), v∗(t)) are (0, c), (c, 0), and all positive solutions of the system

φ′1(u(t))θ1(t, x(t), η(t)) = φ′2(v(t))θ2(t, x(t), η(t)),

u+ v = c.
(2.7)

The actual value of (u∗(t), v∗(t)) is the candidate that gives the biggest value for the Hamiltonian. We
define

H̃(t, x, η, u, v) = φ1(u)θ1(t, x, η) + φ2(v)θ2(t, x, η),

which contains all terms of the Hamiltonian that depend on the controls u and v. Thus maximising H
with respect to u and v is equivalent to maximising H̃ with respect to u and v. To decide between the
two candidate values (0, c) and (c, 0) we can reformulate the condition to maximise the Hamiltonian as
follows:

H̃(t, x, η, c, 0) > H̃(t, x, η, 0, c)

⇔ φ1(c)θ1(t, x, η) + φ2(0)θ2(t, x, η) > φ1(0)θ1(t, x, η) + φ2(c)θ2(t, x, η)

⇔ θ1(t, x, η) (φ1(c)− φ1(0)) > θ2(t, x, η) (φ2(c)− φ2(0))

⇔ θ1(t, x, η)

θ2(t, x, η)
>
φ2(c)− φ2(0)

φ1(c)− φ1(0)
.
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The larger one of these two values then has to be compared to any possible solution of (2.7). We now
mention two cases where this comparison can be done analytically. We assume that φ1 and φ2 are both
twice continuously differentiable and concave, at least one of them strictly concave. Using the relation
u+ v = c we can write H̃ as dependent on only one of the control variables,

H̃(t, x, η, u) = φ1(u)θ1(t, x, η) + φ2(c− u)θ2(t, x, η).

Then

d

du
H̃ = φ′1(u)θ1(t, x, λ)− φ′2(c− u)θ2(t, x, λ),

d2

du2
H̃ = φ′′1(u)θ1(t, x, λ) + φ′′2(c− u)θ2(t, x, λ).

We see that the solutions of 2.7 are the extremals of H̃ with respect to u. But due to the concavity of φ1

and φ2 the second derivative is positive, and any solution of (2.7) therefore minimises the Hamiltonian.
The optimal control is therefore given by one of the values (c, 0) or (0, c).

For the second case assume that φ1 and φ2 are both twice continuously differentiable and convex,
at least one of them strictly convex. The same argument as before shows now that any solution of (2.7)
maximises the Hamiltonian. It is also easy to see that H̃ is strictly concave in u, so any solution is unique
and the Hamiltonian at this point bigger than at the boundaries. If (2.7) has a solution, this solution also
gives the optimal control value. If there is no solution to control is given by one of the boundary values
(c, 0) or (0, c).

We conclude that by exchanging the infinite dimensional optimal control problem (2.4), (2.5) with the
finite dimensional problem (2.4), (2.6) we can identify the optimal control (u, v) as a function of x and
η which are given by a finite dimensional system of ODEs. Solving the optimal control problem then
reduces to solving the boundary value problem given by the state and adjoint equations. We see that
the key advantages of taking this approach are twofold: firstly, using the aggregated system allows us to
apply Pontryagin’s maximum principle in its standard form without deriving it for an infinite dimensional
ODE system; and secondly the resulting finite dimensional ODE system is numerically easier to handle
than the infinite dimensional system (finding the solution analytically will in general not be possible).

2.6 Conclusions

We have shown that for a large class of SI-models with parametric heterogeneity the dynamics of the
aggregated states can be described by a finite dimensional ODE system. The information about the initial
conditions of the heterogeneous system is still necessary, however under some assumptions the system
can be described by a finite number of parameters which can then be estimated from data.
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The ODE system can also be useful if the model is to be used in context with other considerations,
as we have shown for the case where the heterogeneous system forms the state equations in an optimal
control problem. Furthermore, this system is easier to handle for numerical procedures since standard
methods for solving ODEs can be used.

Given these advantages, it would be of interest to develop similar aggregation techniques for more
complex models. Since we relied in our derivation on the simple structure of SI-models, we cannot
expect such result for general classes of complex dynamics. However, in special cases such aggregation
techniques might be applicable.
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Chapter 3

Heterogeneous Population Dynamics and
Scaling Laws near Epidemic Outbreaks1

3.1 Introduction

Infectious diseases have a big influence on the livelihood (and indeed lives) of individual people as well
as the performance of whole economies [94]. The development and understanding of mathematical
models that can explain and especially predict the spreading of such diseases is therefore of enormous
importance. A seminal work in this area was provided by Kermack and McKendrick in 1927 [66].
Up to this day their model is used as basis for analysis, although it has of course been extended in
numerous ways. One such way is to consider heterogeneous populations. This is due to the realisation
that individual people differ in their genetics, biology and social behaviour in ways that influence the
spreading of infectious diseases. One type of model treats these individual traits as a static parameter [26,
48, 91]. Since these parameters have a certain distribution amongst the population some information may
be gained by studying the moments of this distribution [32, 107]. Other models deal with time varying
heterogeneities like age or duration of the infection [1, 34, 56]. For a more complete overview of different
ways to model heterogeneity in this context we refer to textbooks on mathematical epidemiology such
as [19, 29, 64].

In this paper we will exclusively deal with susceptible-infected-susceptible, in short SIS, models.
These models assume that an individual is either infected or susceptible, and furthermore that an infected
individual recovers from the infection with no lasting immunity and immediately becomes susceptible
again. One of the main applications of SIS models are sexually transmitted diseases [21, 37, 55, 115],
but other bacterial infections can also be modelled this way [45]. There are also applications of this
model outside of biology, for example in the study of spreading of computer viruses [65, 113] or social

1This chapter has been accepted for publication in the journal Mathematical Biosciences and Engineering.
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contagions [52]. Heterogeneous versions of this model also have a long history, see for example [77].

One feature that is present in most of these models is the existence of a threshold that fundamentally
influences the behaviour of the system. This threshold is usually given in terms of the basic reproduction
number R0. If this number is smaller than one, then a disease can not lead to an outbreak and usually a
disease free population rests, mathematically speaking, in a stable steady state. If R0 is however bigger
than one, then a disease can become endemic in a population. In many diseases this number is not
constant but is susceptible to seasonal or other environmental changes [5, 64]. Hence, it is important to
provide rigorous mathematical analysis, how R0 has to be viewed for heterogeneous populations [24].

Once we understand this influence of heterogeneity, then it is of great interest to analyse possible
warning sings that indicate the approach of R0 to the critical value, when R0 depends upon parameters.
One approach to model this setup is to consider epidemic dynamics as a multiple time scale system
where the population dynamics, including infection and recovery, are fast while parameters influencing
R0 drift slowly, so that R0 increases from the sub-threshold regime R0 < 1 to the critical value R0 =

1. Considering also stochastic perturbations, it has been shown in various epidemic models [69, 93]
that there exist warning signs for the upcoming critical value when recoding time series from the sub-
threshold regime R0 < 1. We follow in this vein and study how incorporating heterogeneity into a
stochastic SIS model influences the warning sings of an impending critical transition.

In this paper we will study in particular the influence of heterogeneity on scaling laws. Knowing the
exact nature of scaling laws is necessary if they are to be used to predict epidemic outbreaks. Only if
they are known is it possible to match the theoretical warning signs to data and consequently anticipate
significant changes in the progression of a disease. See [72] for an example where prediction from a
data measles data set [39] is realised. Furthermore, knowledge of scaling laws give information about
the stochastic stability of the progression of the disease. In particular it tells us with which rate the
stability decreases, which has important real world effects as this can result in (short-lived) increases of
the prevalence of the disease.

Our two main results for dynamics and warning signs for heterogeneous SIS models can be summa-
rized on a non-technical level as follows:

(R1) We prove a theorem, how the global dynamical structure of the deterministic (i.e. no noise) homo-
geneous population model is preserved when the homogeneous population is replaced by a het-
erogeneous one. In particular, the result shows that upon very reasonable modelling assumptions
on the heterogeneity, the homogeneous and heterogeneous models have the same basic bifurcation
structure with an epidemic threshold at R0 = 1.

(R2) We extend the heterogeneous SIS model by stochastic perturbations as well as by slow parameter
dynamics. We use numerical simulations to investigate warning signs for epidemic outbreaks
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based upon scaling laws of the variance in the sub-threshold regime. We show that the rate of
variance can change below the epidemic threshold when

(a) a cut-off for the heterogeneities is considered,

(b) a discretise distribution of heterogeneities is considered,

(c) if the system interacts with the upper and lower level population boundaries,

(d) if the transmission rate cannot be separated into a product of parametric drift and contribution
from heterogeneity.

We also provide first steps to explain (a)-(d) on a non-rigorous level via formal calculations and
considering the influences of various terms in the model.

The main implications for prediction and management of epidemic outbreaks are twofold. First, an
epidemic threshold still exists for heterogeneous populations. It may shift due to the distribution of types
in the heterogeneous population considered but we still have a tipping point or critical transitions towards
an endemic state. This shows that there is a need to develop warning signs that can be applied before
the outbreak. However, warning signs from homogeneous population models do not directly generalize
to the heterogeneous situation. In particular, the functional form at which the warning sign of variance
rises, does depend crucially on many additional factors, which are not predicted by simple homogeneous
SIS-models.

The paper is structured as follows. In Section 3.2 we briefly review a homogeneous SIS-model as a
baseline for our considerations. We state some known results about this model that are relevant to our
analysis. In Section 3.3 we introduce the heterogeneous model we wish to study. In Section 3.4 we
state, prove, and interpret the first main result (R1). In Section 3.5 we explain, why we extend the model
by a slow parameter drift and by a noise term. Furthermore, we explain some background from the
theory of warning signs for stochastic multiscale SIS models with homogeneous populations. In Section
3.6, we numerically analyse the influence that heterogeneity has on the behaviour of the system near
bifurcation point by looking at the variance as warning sign. In Section 3.7, we provide a few first steps
to explain the numerical observations. In particular, Sections 3.6-3.7 provide the details for our second
main result (R2). We conclude in Section 3.8 with an outlook of future problems for epidemic models
with heterogeneous populations which arose during our analysis.

Acknowledgements: AW would like to thank the Austrian Science Foundation (FWF) for support
under grant P 24125-N13. CK would like to thank the Austrian Academy of Science (ÖAW) for support
via an APART Fellowship and the EU/REA for support via a Marie-Curie Integration Re-Integration
Grant. Both authors acknowledge very stimulating discussions with Vladimir Veliov at the beginning of
this work.
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3.2 The homogeneous model

Basic SIS-models are well understood and an in-depth discussion of them can be found in introductory
books about mathematical epidemiology (e.g. [18, 19, 64]). As a baseline homogeneous model we use

Ṡ(t) = −β I(t)

S(t) + I(t)
S(t)− ηS(t) + γI(t), S(0) = S0 ≥ 0,

İ(t) = β
I(t)

S(t) + I(t)
S(t) + ηS(t)− γI(t), I(0) = I0 ≥ 0,

(3.1)

where d
dt = ˙ denotes the time derivative, β > 0 is the transmission rate and γ > 0 the recovery rate. The

parameter η models the propagation of the disease due to imported cases of the infection. Such import
can, for example, be explained by brief contacts with individuals outside of the population (see [64, 93]).
The parameter η has also been used with different interpretations. In [52] and [53] η denotes spontaneous
self-infection in the transmission of social contagions. In [102] and [114] η is a time dependent function
modelling an infective medium. Furthermore, in [4] the mean field approximation of the ε−SIS model
introduced in [106] is presented. It too is an (heterogeneous) SIS-model with positive η. The general
model with η > 0 will be used in the analysis of the steady states and bifurcation of the deterministic
heterogeneous model. For the analysis of the stochastic model it will be included in the noise term.

Note that the positive quadrant is invariant for (3.1) so our choice of initial conditions ensures that the
population sizes of infected and susceptibles remain non-negative. We shall only consider (I(t), S(t)) ∈
[0,+∞)× [0,+∞) for t ≥ 0 from now on.

By adding the two equations in (3.1), it is easy to see that S(t) + I(t) is constant in this model.
Because of the structure of (3.1) we can assume without loss of generality that S(t) + I(t) = 1, since
re-scaling both variables S(t) and I(t) by the inverse of the population size yields a total population of
size 1. By substituting S(t) = 1 − I(t) into the equation for I(t) we can describe the system by the
single equation

İ(t) = β(1− I(t))I(t) + η(1− I(t))− γI(t), I(0) = I0. (3.2)

If η = 0 then we define R0 = β
γ , known as the basic reproduction number. If R0 ≤ 1 then (3.2) has

single steady state, I∗ ≡ 0, that is globally asymptotically stable. If R0 > 1 then (3.2) has two steady
states. The steady state I∗ ≡ 0 remains but is now unstable. The second steady state is I∗∗ ≡ β−γ

β and
is globally asymptotically stable with the exception of I0 = 0. From a mathematical perspective, this
exchange-of-stability happens at a transcritical bifurcation when (I,R0) = (0, 1). If η > 0 then (3.2)
always has one steady state. It is globally asymptotically stable, i.e., all non-negative initial conditions
yield trajectories that are attracted in forward time to the steady state.
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3.3 The heterogeneous model

We now modify the baseline model (3.1) by dividing the population according to some trait that is
relevant to the spreading of the disease. This can indicate social behaviour like contact rates or biological
traits like natural resistance towards the disease (for a detailed interpretation of heterogeneity we refer to
introductory works in epidemiology, e.g. [29]). Each individual is assigned a heterogeneity state (h-state)
ω which lies in some set Ω. This ω can of course also be a vector carrying information about more than
one trait.

We assume that the disease spreads amongst the population of each h-state according to the dynamics

Ṡ(t, ω) = −β(ω)
J(t)

T (t) + J(t)
S(t, ω)− η(ω)S(t, ω) + γ(ω)I(t, ω), S(0, ω) = S0(ω)

İ(t, ω) = β(ω)
J(t)

T (t) + J(t)
S(t, ω) + η(ω)S(t, ω)− γ(ω)I(t, ω), I(0, ω) = I0(ω),

(3.3)

where we use the definitions

T (t) :=

∫
Ω
q(ω)S(t, ω) dω J(t) :=

∫
Ω
q(ω)I(t, ω) dω.

Here we consider the following variables:

• q(ω) is the intensity of participation in risky interactions of an individual with h-state ω,

• β(ω) = ρ(ω)q(ω) where ρ(ω) is the force of infection of the disease towards an individual with
h-state ω,

• γ(ω) is the recovery rate for an individual with h-state ω,

• η(ω) is the h-state dependent fraction of individuals that become infected through the import of
the infection from outside the population.

Of course, η(ω) can also take any of the different interpretations mentioned in section 3.2. Note that if
all these variables are constant then the heterogeneous system (3.3) is equivalent to the homogeneous
system (3.1).

We want to make a short note about two aspects of this model. One is that for each ω the population
S(t, ω) + I(t, ω) is obviously constant. This implies that ω itself is not influenced by the disease and an
individual that has h-state ω at the beginning remains in that h-state for the duration of our consideration.
The second aspect is the transmission function J(t)

T (t)+J(t) . Transmission functions of this type have been
used before [32, 34, 107]. Such a transmission function can for example be derived by assuming a
population with a heterogeneous social contact network [91]. Models with such populations are at the
centre of intensive current research (see e.g. [9, 10, 28, 63]).
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We now formulate the mathematical assumptions for the heterogeneous population epidemic model
used in our subsequent analysis. The set Ω is a complete Borel measurable space with a nonnegative
measure µ and

∫
Ω dµ(ω) = 1. All integration with respect to ω is taken to be with respect to that

measure. All functions and parameters are assumed to be nonnegative and measurable with respect to µ.
Since S(t, ω) + I(t, ω) is constant we can introduce a density function f(ω) := S(t, ω) + I(t, ω). We
can assume without loss of generality that

∫
Ω f(ω) dω = 1. The function q(ω) is taken to be positive

almost everywhere on Ω, i.e. there is always some probability for risky interaction for each h-state. We
have

T (t) + J(t) =

∫
Ω
q(ω)(S(t, ω) + I(t, ω)) dω =

∫
Ω
q(ω)f(ω) dω = C

for some constant C > 0. By using q(ω)
C instead of q(ω), we can assume without loss of generality that

T (t) + J(t) = 1. We also assume that the three functions β(ω), γ(ω) and η(ω) are bounded, which
makes sense from a modelling viewpoint. Furthermore, we assume there exists an ε > 0 such that

inf
ω∈Ω

β(ω) ≥ ε and inf
ω∈Ω

γ(ω) ≥ ε.

These assumptions just mean that the transmission probability is never equal to zero when infected and
susceptible individuals meet and that there is always at least some positive, albeit potentially very long,
time after which any infected individual recovers from the disease. An important consequence of these
assumptions is that the functions S(t, ·), I(t, ·) are measurable for every t ≥ 0 (see Theorem 1 in [108]).
For η(ω) we consider two cases. First the case that there exist a set A ⊆ Ω with positive measure such
that η(ω)f(ω) > 0 for ω ∈ A. We denote this case by η > 0. The second case where such a set does not
exist will be denoted by η = 0.

Using S(t, ω) = f(ω)− I(t, ω) and T (t) + J(t) = 1 we can describe the system (3.3) by

İ(t, ω) = (β(ω)J(t) + η(ω))f(ω)− (β(ω)J(t) + η(ω) + γ(ω))I(t, ω), I(0, ω) = I0(ω),

J(t) =

∫
Ω
q(ω)I(t, ω) dω.

(3.4)

It is now a natural question to ask which dynamical features are shared by the homogeneous popula-
tion ordinary differential equation (ODE) given by (3.2) and the heterogeneous population differential-
integral equation (3.4).

3.4 Persistence of Dynamical Structure

In this section we show that in terms of steady state solutions and their stability properties the system
(3.4) exhibits the same behaviour as the system (3.2).
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Theorem 3. If η > 0 then the system (3.4) has a unique steady state solution. This solution is globally
asymptotically stable. If η = 0 we define the basic reproduction number

R0 =

∫
Ω
q(ω)f(ω)

β(ω)

γ(ω)
dω. (3.5)

If R0 ≤ 1 then (3.4) has the unique steady state solution I(t, ω) = 0. This solution is globally asymp-
totically stable. If R0 > 1 then (3.4) has exactly two steady state solutions, one of which is I(t, ω) = 0.
In this case, the solution I(t, ω) = 0 is an unstable steady state solution while the second steady state
solution is globally asymptotically stable with the exception of I0(ω) = 0 a.e. on Ω.

Proof. We first show that the system does indeed have the number of steady states we claim it has. Let
Î(ω) be a steady state of (3.4) and Ĵ =

∫
Ω q(ω)Î(ω) dω. As a steady state of (3.4) Î(ω) is characterised

by the equation

Î(ω) = f(ω)
β(ω)Ĵ + η(ω)

β(ω)Ĵ + η(ω) + γ(ω)
. (3.6)

Plugging this into the equation for Ĵ yields

Ĵ =

∫
Ω
q(ω)f(ω)

β(ω)Ĵ + η(ω)

β(ω)Ĵ + η(ω) + γ(ω)
dω. (3.7)

Every solution Ĵ to (3.7) yields a steady state of (3.4) by putting it into equation (3.6). Thus, we are
searching for the roots of the function

g(x) =

∫
Ω
q(ω)f(ω)

β(ω)x+ η(ω)

β(ω)x+ η(ω) + γ(ω)
dω − x

in the interval [0, 1]. We have

g(0) =

∫
Ω
q(ω)f(ω)

η(ω)

η(ω) + γ(ω)
dω

and

g(1) =

∫
Ω
q(ω)f(ω)

β(ω) + η(ω)

β(ω) + η(ω) + γ(ω)
dω − 1 <

∫
Ω
q(ω)f(ω) dω − 1 = T (t) + J(t)− 1 = 0.

A simple calculation yields

g′(x) =

∫
Ω
q(ω)f(ω)

β(ω)γ(ω)

(β(ω)x+ η(ω) + γ(ω))2
dω − 1,

g′′(x) =

∫
Ω
q(ω)f(ω)

−β(ω)γ(ω)2(β(ω)x+ η(ω) + γ(ω))β(ω)

(β(ω)x+ η(ω) + γ(ω))4
dω.
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Note that the second derivative is always negative. We consider the case η > 0 first. We know that
g(x) = 0 has a solution since g(0) > 0 and g(1) < 0. Since g(x) is concave this solution is unique.

Consider now the case η = 0. In this case g(0) = 0, so 0 is a solution. If g′(0) ≤ 0 then g(x)

negative on the whole interval [0, 1] due to the concavity of g(x). If however g′(0) > 0 then g(x) is
positive for small enough x. Using same reasoning as in the case η > 0 we see that there exists a unique
positive solution to g(x) = 0. We therefore need to determine whether g′(0) > 0. Since η = 0 this is
given by

g′(0) =

∫
Ω
q(ω)f(ω)

β(ω)

γ(ω)
dω − 1 = R0 − 1.

We see that if R0 ≤ 1 then g′(0) ≤ 0 and 0 is the only solution to g(x) = 0, if R0 > 1 then g′(0) > 0

and there exists a unique solution in of g(x) = 0 in (0, 1) alongside the solution 0.

Now we want to show that the system converges to a steady state. In order to do this, we first need to
show that J(t) converges. In particular, we want to prove:

Lemma 6. The limit J∗ = lim
t→+∞

J(t) exists. Furthermore,

İ(t, ω) ≶ 0⇔ I(t, ω) ≷
f(ω)(β(ω)J(t) + η(ω))

β(ω)J(t) + η(ω) + γ(ω)
. (3.8)

The proof of Lemma 6 is one major difficulty in this proof. However, the argument is quite lengthy
and technical; hence we include it in Appendix 3.8.

Now that we know that J(t) converges it remains to show that if η = 0 and R0 > 1 then J(t) converges
a positive value and not to 0 unless I0(ω) = 0 a.e. on Ω. Consider the inequality

sup
ζ∈Ω

(
β(ζ)

γ(ζ)

)
J(t) =

∫
Ω
q(ω) sup

ζ∈Ω

(
β(ζ)

γ(ζ)

)
I(t, ω) dω ≥

∫
Ω
q(ω)

β(ω)

γ(ω)
I(t, ω) dω.

Thus, if J(t) is positive and sufficiently small we have

R0 − 1 >

∫
Ω
q(ω)

β(ω)

γ(ω)
I(t, ω) dω

⇔ J(t)R0 − J(t) >

∫
Ω
q(ω)

β(ω)

γ(ω)
J(t)I(t, ω) dω

⇔ J(t)

∫
Ω
q(ω)f(ω)

β(ω)

γ(ω)
dω −

∫
Ω
q(ω)I(t, ω) dω >

∫
Ω
q(ω)

β(ω)

γ(ω)
J(t)I(t, ω) dω

⇔
∫

Ω

q(ω)

γ(ω)
(f(ω)β(ω)J(t)− γ(ω)I(t, ω)− β(ω)J(t)I(t, ω)) dω > 0

⇔
∫

Ω

q(ω)

γ(ω)
İ(t, ω) dω > 0.
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This shows that the term
∫

Ω
q(ω)
γ(ω)I(t, ω) dω is monotonically increasing. But since∫

Ω

q(ω)

γ(ω)
I(t, ω) dω ≤ 1

inf
ω∈Ω

γ(ω)
J(t),

we see that J(t) is bounded below by a positive, monotonically increasing function. Therefore it can
not converge to 0. Since I0(ω) > 0 on a set of positive measure we have that J(0) > 0. Thus, J(t)

converges to a positive value.
Conversely, if I0(ω) = 0 a.e. on Ω then J(0) = 0. Directly from (3.4) we see that in this case İ(t, ω) = 0

for a.e. ω ∈ Ω and thus J(t) = 0 for all t ≥ 0.

Since J(t) converges, the convergence of I(t, ω) follows immediately from (3.8). Obviously the
limit of I(t, ω) is one of the steady states we identified above. We have also shown that if there are two
steady states then I(t, ω) converges to the positive one, unless I0(ω) = 0 a.e. on Ω. Since in all other
cases the convergence of I(t, ω) is independent of the initial data, the claim about asymptotic stability is
proven. 2

In the case η = 0 the value R0 acts as a threshold value that determines whether there exists an endemic
steady state or not. So far R0 has only this mathematical meaning. The basic reproduction number
is however a biological concept. Using the definition given in [31], the basic reproduction number is
defined as the expected number of secondary cases produced, in a completely susceptible population, by
a typical infected individual during its entire period of infectiousness. We now want to show that the
value R0 as we defined it coincides with this definition. Also in [31] the following result was obtained.

Proposition 4. Let S(ω) denote the density function of susceptibles describing the steady demographic
state in the absence of the disease. Let A(τ, ζ, ω) be the expected infectivity of an individual which was
infected τ units of time ago, while having h-state ω towards a susceptible which has h-state ζ. Assume
that ∫ ∞

0
A(τ, ζ, ω) dτ = a(ζ)b(ω).

Then the basic reproduction number R0 for the system is given by

R0 =

∫
Ω
a(ω)b(ω)S(ω) dω.

In our case the function f(ω) describes a steady state, provided that there are no infected individuals. The
value β(ω) denotes the strength of infection for an individual with h-state ω. The value q(ω) indicates
the number of infectious contacts an infected individual with h-state ω has. On the other hand β(ζ) =
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ρ(ζ)q(ζ) is the average amount of risky contacts that would lead to an infection that an individual with
h-state ζ has. The chance of an infectious contact between the infective ω individual and a specific ζ
individual is therefore given by q(ω) β(ζ)∫

Ω q(ξ)f(ξ) dξ = q(ω)β(ζ). In the absence of susceptible individuals

the equation for the infected is given by İ(t) = −γ(ω)I(t), which suggests that the probability that an
infected individual is still infected at time t is given by e−γ(ω)t. Since the infectivity of an individual is
in our case independent of how long ago the individual was infected, we can conclude that the expected
infectivity A(τ, ζ, ω) is given by q(ω)β(ζ)e−γ(ω)τ . Since∫ ∞

0
A(τ, ζ, ω) dτ =

∫ ∞
0

q(ω)β(ζ)e−γ(ω)τ dτ = β(ζ)
q(ω)

γ(ω)
,

we can use Proposition 4 and get

R0 =

∫
Ω
β(ω)

q(ω)

γ(ω)
f(ω) dω.

This is exactly the basic reproduction number as defined in Theorem 3.

3.5 Extending the Model

Although the heterogeneous population SIS model (3.4) does capture additional realistic features of
populations, there are several effects, which it cannot account for at all, or does not account for very
well. In particular, finite-size effects and small fluctuations are not included. Furthermore, most realistic
heterogeneous parameter distributions, e.g. the transmission rate, are not fixed in time but could be
considered as additional dynamical variables. In this section, we extend the model (3.4) to include these
effects.

3.5.1 Noise

In Section 3.2 we introduced several interpretations of the parameter η. Although it is modeled as a
deterministic influence on the disease, the effect η is supposed to describe on the other hand is seemingly
of a random nature. Furthermore, even in a situation where we don’t want to model any of these effects
(i.e we set η = 0) we can still expect there to be some random deviations from the transmission of the
disease as predicted by the deterministic model. In fact, the validity of deterministic epidemiological
models is usually argued by viewing them as the average transmission and recovery rate of individual
random contacts in a sufficiently large population. It is therefore justified to expect to see some remaining
randomness in the actual progression of the disease [20, 54, 76, 90].

We therefore want to model these random effects by exchanging the term containing η with a term
containing a stochastic process. A natural starting point for the case when the functional form and
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properties of the stochastic process are not known is to consider white noise ξ = ξ(t) with mean zero
E[ξ(t)] = 0 and δ-correlation E[ξ(t) − ξ(s)] = δ(t − s), i.e. ξ is a generalized stochastic process, so-
called white noise, as discussed in [8]. We also want to consider the case when the noise depends upon
the heterogenity and write ξ = ξ(t, ω) with the caveat that ω ∈ Ω still denotes the variable measuring the
heterogeneity distribution, while we suppress the underlying probability space for the stochastic process
ξ in the notation.

Putting ξ(t, ω) into equation (3.3) yields

Ṡ(t, ω) = −β(ω)
J(t)

T (t) + J(t)
S(t, ω) + γ(ω)I(t, ω)− σ(ω)ξ(t, ω), S(0, ω) = S0(ω)

İ(t, ω) = β(ω)
J(t)

T (t) + J(t)
S(t, ω)− γ(ω)I(t, ω) + σ(ω)ξ(t, ω), I(0, ω) = I0(ω).

(3.9)

The function σ(ω) : Ω → [0,+∞) is assumed to be bounded and basically provides the noise level for
a specific ω. Note that for every ω, the sum S(t, ω) + I(t, ω) is still constant. We can therefore again
describe the system (3.9) by the smaller system

İ(t, ω) = β(ω)J(t)f(ω)− (β(ω)J(t) + γ(ω))I(t, ω) + σ(ω)ξ(t, ω),

J(t) =

∫
Ω
q(ω)I(t, ω) dω.

(3.10)

One problem with using an additive noise term is that I(t, ω) always has to be positive. But in this model
it would be possible for I(t, ω) to become negative. To disallow this we will use

İ(t, ω) = max{0, β(ω)J(t)f(ω) + σ(ω)ξ(t, ω)} if I(t, ω) = 0.

Similarly, since I(t, ω) has to be smaller than f(ω), we use

İ(t, ω) = min{0,−γ(ω)f(ω) + σ(ω)ξ(t, ω)} if I(t, ω) = f(ω).

In the following considerations we restrict ourselves to models using additive noise. However, we want
to indicate another commonly encountered modelling possibility, which is using a multiplicative noise
term instead of an additive one. That is, to use

İ(t, ω) = β(ω)J(t)f(ω)− (β(ω)J(t) + γ(ω))I(t, ω) + g(I(t, ω), ω)ξ(t, ω),

J(t) =

∫
Ω
q(ω)I(t, ω) dω,

(3.11)

where g : R × Ω → [0,+∞) is bounded. Imposing the conditions g(0, ω) = 0 and g(1, ω) = 0 can
now ensure that it is never possible for I(t, ω) to become negative or larger than f(ω). Usually, one also
assumes that g(·, ω) does not vanish between zero and one.
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Which of these two options is chosen will depend on what kind of random influences are to be
considered. If the random fluctuations are meant to offset fluctuations in the transmission and recovery
of the infection, then the multiplicative noise term might be more appropriate. First of all, if no infected
individuals are present then the disease does not spread at all, which is captured by this model. Also, if
nearly no one (or nearly everyone) is infected then the inaccuracies of the deterministic model should be
small, so the noise term should also be small. Again, the multiplicative noise exhibits this behaviour.

The model with additive noise, which we will use in the following, is however not without merit. It
allows us to model a population that has contact with an outside source that can import the disease into
the population. This source can be, as mentioned above, another population which imports the disease.
Alternatively, there might be factors in the environment that import the infection. For a population of
animals it could for example model the possibility to become infected through one of its food sources.
Also for human populations this allows us to assume that there are vermin or insects in their environment,
which are carriers of the disease and are able to transmit it to humans. In these situations there is a
chance to become infected even in a population that consists entirely of susceptible individuals, which is
not captured in models using multiplicative noise.

Also, it should be noted that if both effects are present, i.e. internal fluctuations as well as external
fluctuations, and we assume that both noise terms act as summands in the model, then the noise term is

[σ(ω) + g(I(t, ω), ω)]ξ(t, ω). (3.12)

Near the two states I(t, ω) ≡ 0 and I(t, ω) ≡ f(ω), we have that g(I(t, ω), ω) is a higher-order term in
comparison to the constant term as long as the constant term does not vanish and we are mainly interested
in the regimes near the the two states I(t, ω) ≡ 0 and I(t, ω) ≡ f(ω) in the remaining part of this work.
Also note that a multiplicative noise term g(I(t, ω), ω)ξ(t, ω) with g(0, ω) > 0 can always be written as

g(I(t, ω), ω)ξ(t, ω) =
[
g(0, ω) +

(
g(I(t, ω), ω)− g(0, ω)

)]
ξ(t, ω),

which is near I(t, ω) = 0 again the sum of an additive noise term and a term of higher order. Based on
these arguments, we proceed with additive noise but it could definitely be interesting to investigate the
purely multiplicative noise in future work.

3.5.2 Multiple time scales

As a final extension of our model we now introduce a slow variable into the system. Making certain
model parameters slow dynamic variables is a very natural extension used in virtually all areas of research
in mathematical biology [43, 70]. The main reason is that it is usually not correct to assume that all
system parameters are fixed but most system parameters are going to change slowly over time, so a
parametric model should rather be viewed as a partially frozen state for a model with multiple time
scales.
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In the context of epidemiology, many diseases have seasonal cycles or are latent for a longer period
before it comes to an outbreak. In both cases we assume that the basic reproduction number R0 was
smaller than 1 until some time, which means the stable steady state of the deterministic system is 0, and
bigger than 1 afterwards, which means that a stable endemic steady state exists. In order to capture this in
our model we assume that β(ω) slowly changes over time. In fact, there are many different possibilities
that may lead to a slowly changing transmission rate, including seasonal changes, evolutionary processes,
socio-economic influences, and so on. Furthermore, if we would keep the transmission rate fixed as a
parameter, then we would either observe a disease-free state or an endemic state in the SIS model but not
the transition between the two cases. It is precisely the dynamic transition regime which we are interested
in.

We assume that the time dependence of the function β(t, ω) is such thatR0 is increasing in t. For ex-
ample, assume that β(t, ω) is separable, i.e. there exists a function β0(t) such that β(t, ω) = β0(t)β(ω),
and that this function β0(t) evolves according to the equation β̇0(t) = ε for 0 < ε � 1. In this case we
would have

R0(t) =

∫
Ω
q(ω)f(ω)

β0(t)β(ω)

γ(ω)
dω = β0(t)

∫
Ω
q(ω)f(ω)

β(ω)

γ(ω)
dω.

Thus, R0(t) is strictly increasing and, if β0(0) is small enough, R0(0) < 1. This is exactly the situation
we want to capture. This effect can of course also be achieved with a β(t, ω) which is not factorisable.
We are therefore looking at the system

İ(t, ω) = β(t, ω)J(t)(f(ω)− I(t, ω))− γ(ω)I(t, ω) + σ(ω)ξ(t, ω),

β̇(t, ω) = εh(t, ω),

J(t) =

∫
Ω
q(ω)I(t, ω) dω,

(3.13)

with an appropriate function h(t, ω).

3.5.3 Warning-Signs for the Homogeneous Fast-Slow Stochastic Model

In this section, we briefly recall some techniques for fast-slow systems and warning signs for stochastic
fast-slow systems. For reviewing this material, we consider a simple homogeneous version of (3.13) to
simplify the exposition

İ(t) = β(t)I(t)(1− I(t))− γI(t) + σξ(t),

β̇(t) = ε,
(3.14)

where I = I(t) is the fast variable and β = β(t) the slow variable. For σ = 0, ε = 0, the set
C0 = {(I, β) ∈ [0,+∞) × [0,+∞) : I(β − γ − βI) = 0} is called the critical manifold [58] and
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consists of steady states for the fast subsystem, which is obtained by setting ε = 0 in (3.14). The
transcritical bifurcation discussed in Section 3.2 separates C0 into three parts in the positive quadrant

Ca0 = C0 ∩ {R0 ≤ 1}, Cr0 = C0 ∩ {R0 > 1, I = 0}, Ce0 = C0 ∩ {I > 0}.

Then Ca0 and Ce0 consist of attracting steady states for the fast subsystem, while Cr0 is repelling. The
stability is exchanged at the transcritical bifurcation point with β = γ, i.e. at R0 = 1. The deterministic
fast-slow systems analysis of the dynamic transcritical bifurcation with 0 < ε � 1 can be found in [68,
98], where one key point is that one can extend a perturbation Caε , a so-called attracting slow manifold,
of Ca0 up to a region of size I ∼ O(ε1/2) and β−γ ∼ O(ε1/2) as ε→ 0 near the transcritical bifurcation
point. The relevant conclusion for us here is that a linearisation analysis is expected to be valid up to this
region, excluding a small ball of size O(ε1/2).

It can be shown that sample paths of the stochastic system with 0 < ε � 1, 0 < σ � 1 also track
with high-probability the attracting manifold inside a neighbourhood of order O(ε) plus a probabilistic
correction term [13]. However, as the transcritical bifurcation point (I, β) = (0, γ) is slowly approached
from below β ↗ γ, the probabilistic correction term starts to grow. Indeed, there is a simple intu-
itive explanation for this behaviour due to an effect also called “critical slowing down”. To understand
this effect, Taylor expand the drift and diffusion terms of the I-component of the stochastic differential
equation (3.14) around Ca0 and keep the linear terms, which yields

İ(t) = [β − γ]I(t) + σξ(t), (3.15)

where we view β as a parameter for now and use I to emphasize that we work on the level of the
linearization. Then (3.15) is just an Ornstein-Uhlenbeck (OU) process [36]. Consider the regime β ≤ γ,
then the variance of the OU process increases if β increases and it is an explicit calculation [69] to see
that

lim
t→+∞

Var(I(t)) ∼ σ2

γ − β
as β ↗ γ, (3.16)

so the variance increases rapidly as we start to approach the bifurcation point by changing the parameter
β more towards γ. This makes sense intuitively as the deterministic stabilizing effect from the drift
term [β − γ]I(t) pushing towards a region near Ca0 is diminished (“critical slowing down”) and hence
the noisy fluctuations increase. It is known that the effect of critical slowing-down in combination with
noise can be exploited to predict bifurcation points in certain situations (see e.g. the ground-breaking
work [112]). The idea has been also suggested in the context of ecology [22] and then applied in many
other circumstances [99]. In fact, one may prove that we indeed have for the full nonlinear stochastic
fast-slow system (3.14), under suitable smallness assumptions on a fixed noise level and stayingO(ε1/2)

away from the region of the deterministic bifurcation point, that

Var(I(t)) ∼ A

(tcrit − t)α
+ higher-order terms, as t↗ tc, (3.17)
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where α = 1, A = σ2, β(tcrit) = γ with β(0) < tcrit; the details can be found in [69] using moment
expansion methods, and in [14] using martingale methods and/or explicit OU-process results. The main
practical conclusion is that there is a leading-order scaling law of the variance as the value of R0 is
approached by letting the transmission rate slowly drift in time. This scaling law can be used for pre-
diction as the scaling exponent α = 1 is universal for a non-degenerate transcritical bifurcation. In fact,
a calculation of the leading-order covariance scaling laws for all bifurcations up to codimension-two
in stochastic fast-slow systems has been carried out [69], which builds a mathematical framework for
generic systems.

However, this theory simply does not apply to the heterogeneous population model (3.13) we con-
sider here. In particular, the influence of heterogeneity on early-warning signs has not been investigated
much to the best of our knowledge (for examples see [62, 99]). Since it is a key effect in realistic models
of disease spreading, it is natural to ask, how it influences the scaling law (3.17).

3.6 Numerical results

Here we present numerical simulations of the homogeneous and heterogeneous system to see the in-
fluence of the heterogeneity. We have chosen to consider the variance as the early warning sign. We
assume that the variance behaves like A

(tcrit−t)α for appropriate A and α, where tcrit is the time at which
R0(t) = 1. The main difficulty lies in correctly determining α. We will calculate it by fitting the refer-
ence curve A

(tcrit−t)α to the time series of our simulation using the least squares method. To smoothen
the time series we will average the variance over 100 simulations. However, since the reference curve
goes to infinity at tcrit we do not fit the curve over the whole interval, which also takes into account
the theory, which excludes a small ε-dependent ball near R0(t) = 1 as discussed in Section 3.5.3. We
therefore calculate the best fit over 80% or 90% of the considered time interval. Generally, fitting over
90% gives better results. In the cases we consider only 80% of the interval, fitting over a larger part
would not yield reasonable results as the solution goes to −∞. These are cases in which the sample path
drops below the negative unstable branch of the transcritical bifurcation (see Figure 3.9). Since different
choices in the size of the considered interval lead to slightly different values for α we cannot claim to
calculate the exact α that the variance of I(t) follows. We will however be able to detect changes in the
level of α that are due to influences of the heterogeneity.

One further aspect we fix for all our considerations is the order in which we aggregate the system
and calculate the variance. We could calculate the variance of I(t, ω) and then aggregate these variances,
or first calculate I(t) =

∫
Ω I(t, ω) dω and calculate the variance of I(t). We choose the latter option

since in applications it is more feasible to be able to track the changes of the prevalence of the disease in
the whole population rather than being able to track it for each h-state, as would be required by the first
method.
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Figure 3.1: Here we see the variance of the aggregated variable I(t). As a reference we show the curve
A/(tcrit − t)α with both the expected theoretical exponent α = 1 and with the exponent α = 0.9125

provided by the best fit over 80% of the considered time interval.

In this section, we shall only consider the numerical simulations make observations about the results.
A more detailed discussion why certain effects may occur is then given in Section 3.7.

First we consider the homogeneous system with additive noise and a very simple multiplicative time
dependency of β:

İ(t) = β β0(t)(1− I(t))I(t)− γI(t) + σξ(t),

β̇0(t) = ε.

As initial conditions we choose I(0) = 0 and β0(0) = 0. The parameters are chosen as β = 0.3, γ = 0.4,
and σ = 0.01. The time scale separation parameter ε for the slow variable drift is set to ε = 0.0001. If
we allow I(t) to become negative then we know that the variance of I(t) should behave as A

tcrit−t . In
Figure 3.1 we show the variance of I(t), averaged over 100 simulations, and the reference curve with
both the theoretical exponent α = 1 and with the exponent provided by the best fit over 80% of the
time interval. The measured exponent is reasonably close to the theoretically predicted value α = 1;
this slight underestimate is expected as a transcritical bifurcation splits into two saddle bifurcations upon
generic perturbations and for saddle-nodes the exponent is α = 1

2 ; see also [69] for more details, which
exponents may occur in the generic cases.
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Figure 3.2: Here we see the variance of the aggregated variable I(t). As a reference we show the curve
A/(tcrit − t)α with both the expected theoretical exponent α = 1 and with the exponent α = 0.8414

provided by the best fit over 90% of the considered time interval. Note that as we approach the critical
moment the curve for the variance is noticeable below the curve with α = 1.

Figure 3.2 shows the result of this calculations if we cut off I(t) at 0, i.e. we use the rule

İ(t) = max{σξ(t), 0}, if I(t) = 0

for the discrete-time numerical scheme; for an introduction to numerical schemes for stochastic ordinary
differential equations see [49]. The results show that the key exponent α decreases in comparison to the
system without cut-off.

Next, we consider the heterogeneous system. We are going to consider situations in which the white
noises ξ(t, ω) are dependent on each other for different ω ∈ Ω, or where the space of h-states is discrete
to understand, which implications these assumptions have on the model. Note that both assumptions
have a direct modelling motivation. Usually, we may group or cluster different parts of a heterogeneous
population into different classes, e.g. all parts with a different trait. Secondly, ξ(t, ω) models all stochas-
tic internal and external effects and one natural assumption would be that all classes of the heterogeneous
population are subject to the same external fluctuations, which would lead to the case ξ(t, ω) = ξ(t), i.e.
the same white noise acts on all h-states. Note that for the aggregated variable I(t) we have

İ(t) =

∫
Ω
β(t, ω)J(t)(f(ω)− I(t, ω))− γ(ω)I(t, ω) dω +

∫
Ω
σ(ω)ξ(t, ω) dω.
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Figure 3.3: The results for the discrete heterogeneous system for two different values of n. For n = 2

the best fit results in A = 0.0432 and α = 0.7842, for n = 100 in A = 0.0004 and α = 0.7135. Note
that both values decrease for bigger n.

If Ω is continuous and the ξ(t, ω) are independent of each other, then
∫

Ω σ(ω)ξ(t, ω) dω = 0 and the
influence of the noise is reduced to indirect effects. We therefore consider either continuous Ω with
dependent ξ(t, ω) or a discrete Ω with independent ξ(t, ω).

We start with the discrete h-state scenario. For an integer n > 1 we set

Ω =

{
i

n− 1
: i = 0, · · · , n− 1

}
.

As measure µ we choose the counting measure normed to 1 over Ω∫
Ω
φ(ω) dω =

1

n

n∑
i=1

φ(ωi).

We assume that β(t, ω) = β0(t)β(ω) and β̇0(t) = ε. As in the homogeneous case we choose I(0) = 0

and β0(0) = 0 as initial conditions and β = 0.3, γ = 0.4, and σ = 0.01 for the parameters. The time
scale separation parameter ε for the slow variable is again set at ε = 0.0001. Here the heterogeneity
influences the number of elements in Ω and the distribution f(ω). Furthermore, ξ(t, ω) are chosen as
n independent identically distributed random variables. We will both now and for continuous Ω later
consider the distribution

f(ω) =

1√
2πθ

e−
(ω−0.5)2

2θ2∫
Ω

1√
2πθ

e−
(ζ−0.5)2

2θ2 dζ
.
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Figure 3.4: We see the influence of n on the on the parameters for the best fit, calculated over 90% of the
time interval. Both α and A decrease as n increases. The decrease is steep for small n and approaches a
constant level as n becomes large.

This is simply a normal distribution with mean 0.5 truncated to Ω. Figure 3.5 shows f(ω) for different
values of p. The parameter θ is the standard deviation of this distribution. Note that as θ goes towards 0,
the function f(ω) converges to the delta-distribution δ(ω − 0.5). Hence, the the heterogeneous system
starts to approximate the homogeneous one as θ → 0. On the other hand, if θ → +∞ then f(ω)

converges to the constant function f(ω) = 1. We will therefore parametrise f(ω) with θ = 1
(2p−2)2 − 1

4

for p ∈ (0, 1). In the discrete case which we consider first, this yields approximately a binomial-type
distribution. In Figure 3.3 we show the result for p = 0.5 and two different choices of n. Figure 3.4
shows how both α andA in the best fit curve change with increasing n. A clear trend is observed showing
that α (and A) decrease as n is increased.

For the heterogeneous system with continuous Ω we choose Ω = [0, 1] with µ as the Lebesgue
measure. At first we again restrict the influence of the heterogeneity to the function f(ω). The choice
of the other parameters in unchanged from the discrete system. What has to be changed however, is the
noise term in the equation. As mentioned above we want the noise for different h-states to be dependent
on each other. We do this by using the first natural approximation of using the same white noise for all
h-states, i.e. ξ(t, ω) = ξ(t) independent of ω. In Figure 3.6 we show the variance of I(t) against the
reference curves for two different values of the parameter p. In Figure 3.7 we show, how p influences
both A and α. The results show that upon increasing p, we first see α increase and A decrease until
they stabilize for larger p. We observe that the stabilization approximately happens when the distribution
f(ω) starts to have full support on [0, 1].

The last case we are interested in here is to consider a system where β(t, ω) is not separable in
the sense that it cannot be factored into a product of functions depending only on t and ω. From the
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Figure 3.6: Results for the continuous heterogeneous system for two different values of p. For p = 0.05

the best fit over 90% of the time interval was calculated as α = 0.8587 and A = 0.0074. For p = 0.95

these values were α = 0.7885 and A = 0.0923. We can see that for p = 0.95 the variance is visibly
below the reference curve with α = 1 while for p = 0.05 it still follows this curve quite closely.
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Figure 3.7: This shows the influence of the parameter p on the values α and A of the best fit, calculated
over 90% of the time interval. In α we see initially a steady decrease until it reaches a constant level. In
A we see an initial increase until the values reach a fixed level. Note that the levelling out both α and
A occur for the same values of p. Furthermore, by comparing with Figure 3.5 we see that this coincides
with those values of p for which the support of f(ω) becomes the whole of Ω.

modelling standpoint, this means that the evolution of the transmission rate and the heterogeneity in
the population interact in a non-trivial way, for example, one may consider the situation when a certain
population trait amplifies the change in the transmission rate, while another trait decreases it. As a first
benchmark mathematical example, we simply set

β̇(t, ω) = ε(ω + 0.5)tω−0.5,

which is solved by β(t, ω) = εtω+0.5. We restrict any further influence of ω to f(ω). However, we
choose f(ω) slightly differently than before. We set

f(ω) =

1√
2π0.1

e−
(ω−µ)2

2∗0.12∫ 1

0

1√
2π0.1

e−
(ζ−µ)2

2∗0.12 dζ
,

i.e. a normal distribution with mean µ and a standard deviation of 0.1. We let µ vary in [0, 1]. All other
parameters are the same as before. Figure 3.8 shows, how µ influences A and α as calculated from an
aggregation of 100 simulations and fitted over 90% of the time interval. We observe a very strong trend
in the crucial exponent α, which decreases as the mean µ of f(ω) is increased.

3.7 Explanations

In this section we give some explanations, formal or heuristic, for the effect that are observable in our
simulations
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Figure 3.8: We see the influence of the parameter µ on the values α and A of the best fit, calculated over
90% of the time interval. With increasing µ both α and A decrease significantly.

3.7.1 Homogeneous system

The first effect we want to explain is the influence of the cut off on the homogeneous system. Since the
steady state solution I(t) = 0 is asymptotically stable and the added white noise always has an expected
value of 0, in the system without cut off I(t) fluctuates around 0. Once we introduce the cut off I(t) can
no longer fluctuate freely. This introduces a bias in the positive direction. That is, a sample path I(t) is
free to change upwards but we stop it when it changes too far downwards. This results in the averaged
path being strictly positive (see Figure 3.9). Another effect is that because we restrict the fluctuations of
the white noise we decrease the variance of the resulting stochastic process I(t). This can be seen by
comparing Figures 3.1 and 3.2. Finally, in the system without cut off the variance increases at a certain
rate. In the system with cut off this increase is still present, but we also have a second effect at work. Due
to the fact that the averaged path also increases, each individual sample path has, as it were, more space
to fluctuate in, as a downwards deviation from the average path can now be bigger than before without
hitting 0. Thus in addition to the usual increase in the variance there is also a decrease of the restriction
we place on the variance. Therefore, the increase of the variance is steeper in the system with cut off.
This steeper increase is translated into a decrease of α.

3.7.2 Discrete heterogeneous system

We now want to analyse the observed changes in the heterogeneous system. We first look at the case
where Ω is discrete. Recall that we used

f(ω) =
1√
2πθ

e−
(ω−0.5)2

2θ2
1

C
.
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Figure 3.9: Averaged path of the homogeneous system, averaged over 100 simulation, both with and
without cut off. The path without cut off eventually tends towards −∞ as it drops below the unstable
branch of the transcritical bifurcation.

with

C =
1

n

n∑
i=1

1√
2πθ

e−
( i
n−1−0.5)

2

2θ2 .

In Figure 3.10 we show, how this normalisation constant C changes with n. Since C is increasing in n
we have that, heuristically, for a fixed ω ∈ Ω the value f(ω) decreases. A more rigorous way to state
this is to say that if ω is in Ω for a discretisation level n1 and for a level n2 with n1 < n2, then f(ω) is
smaller for n2. Now note that due to the fact that we have chosen most of our parameters independent of
ω, the linearisation of İ(t, ω) is given by

İ(t, ω) = β(t)f(ω)I(t)− γI(t, ω) + σξ(t, ω).

Thus, if f(ω) becomes smaller then I(t, ω) becomes more “rigid”, i.e. it fluctuates less, which results
in smaller value of A. But this in turn also means that as R0 approaches 1 the additional freedom to
fluctuate increases. This results in a bigger increase in the variance of I(t) and thus a smaller value of α.
Both of these effects are visible in Figure 3.4. Furthermore, by comparing Figures 3.4 and 3.10 we see
that the levelling out of α and A coincides with the levelling out of C.

3.7.3 Continuous heterogeneous system

For the heterogeneous system with continuous Ω we note that by definition we always have I(t, ω) ∈
[0, f(ω)]. If the parameter p is big enough then f(ω) is large enough for all ω so that the upper bound

69



0 20 40 60 80 100
0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

n

C

Figure 3.10: The normalisation constant C for n = 2, . . . , 100.

is not important due to the fact that it is never reached. If p is small however, then f(ω) also becomes
small for some ω. Thus we not only have a cut off at 0 but also at f(ω). Thus, for small p the variance
is even more restricted. Also for these ω a rise of the average path will not result in more freedom in
its fluctuation due to the restriction above by f(ω). Only when p increases and the upper bound f(ω)

becomes less and less important, then the increase of the variation is aided by a increased freedom to
fluctuate, which leads to lower values of α. In Figure 3.7 we see exactly this behaviour. Since these
changes inA and α depend solely on these cut off effects we expect that they vanish if we make the same
simulations for the system without cut off. The results of such a simulation can be seen in Figure 3.11,
where indeed p has no discernible influence on A or α.

3.7.4 Non-separable β(t, ω)

In order to explain our observations of the system where β(t, ω) is not separable we first look at the
linearisation of the equations. We assume that all functions in our equations are in L2(Ω). We can write
for the deterministic system (3.4)

İ(t, ω) = F (I(t, ω))

with

F (I(t, ω)) = β(ω)

∫
Ω
q(ω)I(t, ω) dω(f(ω)− I(t, ω))− γ(ω)I(t, ω)

The Fréchet-derivative of F , evaluated at I∗ and applied to ζ(ω), is given by[
dF
dI

(I∗)

]
ζ(ω) = β(ω)

∫
Ω
q(ω)ζ(ω) dω (f(ω)− I∗)− β(ω)

∫
Ω
q(ω)I∗ dω ζ(ω)− γ(ω)ζ(ω).
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Figure 3.11: We show, dependent on p, the change in the values α and A of the best fit, calculated over
80% of the time interval, for the heterogeneous system without cut off. There is no discernible influence
of p present.

We define a linear operator T by TI(t, ω) =
[ dF

dI (0)
]
I(t, ω). In particular, the equation linearised at 0

reads as

İ(t, ω) = TI(t, ω) = f(ω)β(ω)

∫
Ω
q(ω)I(t, ω) dω − γ(ω)I(t, ω).

We are interested in the spectrum of the operator T . We consider this operator on the space X = {ζ ∈
L2(Ω) : ζ(ω) ∈ [0, f(ω)]}, i.e. the subset of L2(Ω) that consists of the points which are possible states
of our system. A point λ ∈ C is an eigenvalue of T if and only if there exists an eigenvector ζ ∈ X such
that Tζ − λζ = 0. This equation in its longer form is

f(ω)β(ω)

∫
Ω
q(ω)ζ(ω) dω − γ(ω)ζ(ω)− λζ(ω) = 0.

We can rearrange this to get

ζ(ω) = f(ω)
β(ω)

γ(ω) + λ

∫
Ω
q(ω)ζ(ω) dω.

Plugging this into the above equation yields

0 = f(ω)β(ω)

∫
Ω
q(ω)f(ω)

β(ω)

γ(ω) + λ
dω
∫

Ω
q(ω)ζ(ω) dω − f(ω)β(ω)

∫
Ω
q(ω)ζ(ω) dω

= f(ω)β(ω)

∫
Ω
q(ω)ζ(ω) dω

(∫
Ω
q(ω)f(ω)

β(ω)

γ(ω) + λ
dω − 1

)
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An eigenvalue λ of T must therefore satisfy∫
Ω
q(ω)f(ω)

β(ω)

γ(ω) + λ
dω = 1. (3.18)

or

(γ(ω) + λ)ζ(ω) = 0 and
∫

Ω
q(ω)ζ(ω) dω = 0. (3.19)

Note that any λ that satisfies the first equation in (3.19) is negative as γ(ω) is strictly positive. Fur-
thermore, due to q(ω) being a positive function, any eigenvector to fulfil the second equation in (3.19)
has to be negative somewhere. The domain X which we consider for T does therefore not contain any
eigenvectors satisfying this equation. For these reasons we consider only equation (3.18) to be relevant
for our considerations. This equation has a unique solution. Note that for λ = 0 the left hand side is
exactly R0. In particular, λ is positive if R0 > 1 and negative if R0 < 1. Note that if we assume in our
calculations that γ(ω) is independent of ω then we can rearrange the equation (3.18) to identify λ as2

λ =

∫
Ω
q(ω)f(ω)β(ω) dω − γ.

If we now assume that β(t, ω) is a time dependent slow variable, then we can expect that this equation
approximately describes the evolution of λ. In particular, if β(t, ω) is separable, β(t, ω) = β0(t)β(ω),
then

∫
Ω q(ω)f(ω)β(ω) dω is a constant κ and we get

λ(t) = β0(t)κ− γ.

We know that λ(t) is the exponential rate with, which the quasi-stationary system (ε = 0) would go to
0. Hence, for negative λ(t), the smaller it is the more “rigid” the system is. If β0(t), and thus λ(t), is
increasing fast near the critical point then it is tightly locked to 0 until shortly before tcrit. Therefore,
we expect a sharp increase in the variation close to tcrit and thus a low α. We show this effect for the
homogeneous system in Figure 3.12.

In our simulation for the heterogeneous system we achieve the same effect by changing the distribu-
tion f(ω). Recall that we used β(t, ω) = εtω+0.5. Thus, for ω = 0 the increase is as the square root of
t while for ω = 1 it is polynomial. With the parameter µ we can control, which increase is dominant. If
µ is small then f(ω) is concentrated on those ω for which β(t, ω) ≈ εt0.5. Thus it grows slowly and we
expect a higher α. Also the system is less “rigid” and allows for a higher overall variance in I(t) and thus
largerA. As µ increases, so does the derivative of λ(t) and we expect a more rigid system (hence smaller
A) and a faster increase of the variance near the critical point (smaller α). Both of these behaviours can
be seen in Figure 3.8. In Figure 3.13 we show how λ(t) behaves for different choices of µ.

2This is an example why we only consider equation (3.18): if γ(ω) is constant then (3.19) has exactly one solution λ2 = −γ.
This eigenvalue is always smaller than λ and does therefore not concern us.

72



10
3

10
4

10
−4

10
−3

t

β
0
 = ε t0.8

 

 
A/(t

crit
−t)

A/(t
crit

−t)α

Var(I)

10
1

10
2

10
−4

t

β
0
 = ε t1.5

 

 
A/(t

crit
−t)

A/(t
crit

−t)α

Var(I)

Figure 3.12: The homogeneous system for different β0(t), with best fit over 90% of the time interval.
While for β0(t) = εt0.8 the variance is still in the vicinity of the reference curve with the theoretical
exponent α = 1 (although visibly below it), for β0(t) = εt1.5 these curves are markedly different. This
can also be seen in the value α of the best fit. In the former case it is α = 0.8435 while for the latter we
get α = 0.3795.
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Figure 3.13: The function λ(t) for different choices of µ. We can see that for µ = 0 the function λ(t)

is concave and for µ = 1 it is convex. For the intermediate value µ = 0.5 it is approximately linear.
Furthermore we see a significant difference in the time it takes for λ(t) to reach 0.
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3.8 Outlook

In this paper we have provided new insights on qualitative persistence and quantitative non-persistence of
various dynamical phenomena in an SIS-model with heterogeneous populations. The main conclusions
are that one can expect a generic dynamical structure of a disease-free and endemic state, separated
by a transition at R0, to persist. However, the classical warning signs for tipping points have to be
re-considered carefully in heterogeneous epidemic models. In particular, we observed that the scaling
law exponent for the inverse power-law increase of the variance decreases and in many cases lies below
the theoretically predicted values of the homogeneous population system. This means that using an
extrapolation procedure with fixed exponent to predict the region, where the practical R0-value lies, may
not give the correct epidemic threshold.

Since, this work is one of the first investigations of warning signs in heterogeneous population mod-
els, it is clear that many open questions remain. Here we shall just mention a few of these. From a
mathematical perspective, it would be natural to ask for a full analytical description of phenomena aris-
ing near bifurcation points for heterogeneous stochastic fast-slow systems. There are basically no results
in this direction available yet, although recent significant progress in mathematical multiscale dynamics
may suggest that a (partial) analysis should be possible [69]. From a biological and epidemic-modelling
perspective, it would be interesting to compare different classes of models to the fast-slow heterogeneous
stochastic SIS model we considered with a view towards heterogeneity, epidemic thresholds and warn-
ing signs for critical transitions. For example, this could include SIR models [51, 92], adaptive network
dynamics [40, 88, 101], and stochastic partial differential equations [3, 71].

Of course, many other extensions of the model, for example demographic changes, could also influ-
ence the behaviour. A focus on quantitative scaling laws could shed new light on which models are most
appropriate for certain disease outbreaks, when results are compared with data.

Of course, our study here only carries out a few important baseline steps to achieve these future
goals. Nevertheless, it provides clear evidence for the need to further investigate the interplay between
various effects such as parameter drift, noise, and heterogeneity in the context of biological models,
which exhibit bifurcation phenomena of high practical and social relevance.

Appendix: The convergence in mean

Here we prove the auxillary result Lemma 6, which shows that for the deterministic heterogenous SIS
model we study, a suitable weighted mean of the infected population J(t) :=

∫
Ω q(ω)I(t, ω) dω has a

well-defined limit.

Proof of Lemma 6. We employ the same notation as in the proof of Theorem 3. In addition, define
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J∗ = lim sup J(t) and J∗ = lim inf J(t). Assume that J(t) does not converge, then J∗ − J∗ > 0. In
the following five steps we lead this assumption to a contradiction.

Step 1: Define

h(J(t), ω) =
f(ω)(β(ω)J(t) + η(ω))

β(ω)J(t) + η(ω) + γ(ω)
.

We get this function by setting İ(t, ω) = 0 in (3.4) and solving for I(t, ω). Further define Ωf = {ω ∈
Ω : f(ω) > 0}. Obviously Ω\Ωf is of no interest as I(t, ω) = 0 there. Note that ∂

∂J(t)h(J(t), ω) =
f(ω)β(ω)γ(ω)

(b(ω)J(t)+η(ω)+γ(ω))2 > 0 on Ωf such that d
dth(J(t), ω) ≷ 0 ⇔ J̇(t) ≷ 0. This also shows that

h(J(t), ω) is monotone in J(t). We have

İ(t, ω)= (β(ω)J(t) + η(ω))f(ω)− (β(ω)J(t) + η(ω) + γ(ω))I(t, ω)

= (β(ω)J(t)+η(ω))f(ω)−(β(ω)J(t)+η(ω)+γ(ω)) (h(J(t), ω)+I(t, ω)−h(J(t), ω))

= (β(ω)J(t) + η(ω) + γ(ω)) (h(J(t), ω)− I(t, ω))

(3.20)

Note that we get

İ(t, ω) ≶ 0⇐⇒ I(t, ω) ≷ h(J(t), ω). (3.21)

This proves one of the claims in Lemma 6. Using (3.20) we get∣∣∣∣ d
dt
h(J(t), ω)

∣∣∣∣ =

∣∣∣∣ ∂

∂J(t)
h(J(t), ω)J̇(t)

∣∣∣∣ =

∣∣∣∣ ∂

∂J(t)
h(J(t), ω)

∫
Ω
q(ω)İ(t, ω) dω

∣∣∣∣
=

∣∣∣∣ f(ω)β(ω)γ(ω)

(b(ω)J(t) + η(ω) + γ(ω))2

∫
Ω
q(ω)(β(ω)J(t)+η(ω)+γ(ω)) (h(J(t), ω)−I(t, ω)) dω

∣∣∣∣
≤ f(ω)β(ω)γ(ω)

(b(ω)J(t)+η(ω)+γ(ω))2

∫
Ω
q(ω)(β(ω)J(t)+η(ω)+γ(ω)) |h(J(t), ω)−I(t, ω)| dω

≤ f(ω)
β(ω)γ(ω)

(η(ω) + γ(ω))2
C

∫
Ω
q(ω)f(ω) dω

= f(ω)
β(ω)γ(ω)

(η(ω) + γ(ω))2
C,

(3.22)

where C = supω∈Ωf
(β(ω) + η(ω) + γ(ω)).

Step 2: Define

δ(ω) = h(J∗, ω)− h(J∗, ω) = f(ω)

(
(β(ω)J∗ + η(ω))

β(ω)J∗ + η(ω) + γ(ω)
− (β(ω)J∗ + η(ω))

β(ω)J∗ + η(ω) + γ(ω)

)
= f(ω)

β(ω)γ(ω) (J∗ − J∗)
(β(ω)J∗ + η(ω) + γ(ω)) (β(ω)J∗ + η(ω) + γ(ω))

.
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For all ε > 0 there exist arbitrarily large t∗ such that J(t∗) < J∗ + ε. We want to give an estimate
for t(ω) such that h(J(t), ω) ≤ δ(ω)/3 + h(J∗ + ε, ω) for t ∈ (t∗, t(ω)). Because of (3.22) we get

t(ω) ≥ δ(ω)

3f(ω) β(ω)γ(ω)
(η(ω)+γ(ω))2C

=
f(ω) β(ω)γ(ω)(J∗−J∗)

(β(ω)J∗+η(ω)+γ(ω))(β(ω)J∗+η(ω)+γ(ω))

3f(ω) β(ω)γ(ω)
(η(ω)+γ(ω))2C

=
(J∗ − J∗)

(β(ω)J∗ + η(ω) + γ(ω)) (β(ω)J∗ + η(ω) + γ(ω))

(η(ω) + γ(ω))2

3C

≥
infω∈Ωf

(
(η(ω) + γ(ω))2

)
(J∗ − J∗)

3C3
=: κ.

Note that κ > 0 and is independent of ω.

Step 3: Because of

δ(ω) ≥ f(ω)
infω∈Ωf (β(ω)γ(ω)) (J∗ − J∗)

C2

we have for every ε > 0 a tε such that h(J(t), ω) < h(J∗, ω) + εδ(ω)/2 for all t > tε. Assume now
that I(t, ω) > h(J∗, ω) + εδ(ω). Then using (3.20) we see that∣∣∣İ(t, ω)

∣∣∣ = (β(ω)J(t) + η(ω) + γ(ω)) |h(J(t), ω)− I(t, ω)|

≥ inf
ω∈Ωf

(η(ω) + γ(ω))
ε

2
δ(ω) ≥ ε

2
f(ω) inf

ω∈Ωf

(
δ(ω)

f(ω)

)
inf
ω∈Ωf

(η(ω) + γ(ω)).

From this and (3.21) we get that for t large enough we have I(t, ω) ≤ h(J∗, ω) + εδ(ω) for all ω ∈ Ωf .

Step 4: Choose ε > 0 small enough such that the two inequalities

h(J∗, ω)− εδ(ω)

3
≥ h(J∗ + ε, ω) +

2

3
δ(ω), 2ε ≤ κ

3
inf
ω∈Ωf

(η(ω) + γ(ω)) (3.23)

hold true. Now choose a t∗ such that J(t∗) < J∗ + ε. Let t∗ also be large enough such that for all t ≥ t∗

we have

I(t, ω) ≤ h(J∗, ω) + ε
δ(ω)

3
. (3.24)

For every ω ∈ Ωf and for t ∈ (t∗, t∗ + κ) where I(t, ω) ≥ h(J∗, ω) − εδ(ω)/3 we have because of
the first inequality in (3.23) that |I(t, ω)− h(J(t), ω)| ≥ δ(ω)/3. Thus, using the second inequality in
(3.23), we get ∣∣∣İ(t, ω)

∣∣∣ = (β(ω)J(t) + η(ω) + γ(ω)) |h(J(t), ω)− I(t, ω)|

≥ δ(ω)

3
inf
ω∈Ωf

(η(ω) + γ(ω)) ≥ 2δ(ω)ε

3κ
.

76



Combining this with (3.24) and using (3.21) yields

I(t∗ + κ, ω) ≤ h(J∗, ω)− εδ(ω)

3
, ω ∈ Ωf .

Step 5: Let τ > t∗ + κ be such that h(J(τ), ω) ≥ h(J∗, ω)− εδ(ω)/3 for all ω ∈ Ωf and J(τ) > J(t)

for t ∈ (t∗ + κ, τ). Since I(t, ω) is increasing if and only if h(J(t), ω) > I(t, ω) we have for all
ω ∈ Ωf that I(τ, ω) ≤ h(J(τ), ω). Thus İ(τ, ω) ≥ 0 for all ω ∈ Ωf and consequently J̇(τ) =∫

Ωf
q(ω)İ(τ, ω) dω ≥ 0. Therefore, if I(t, ω) = h(J(t), ω) for any t ≥ τ , we have that İ(t, ω) = 0

while J̇(t) ≥ 0 and consequently d
dth(J(t), ω) ≥ 0. Hence, I(t, ω) ≤ h(J(t), ω) for all t > τ and all

ω ∈ Ωf . This in turn implies that J(t) is monotonically increasing for t > τ . Thus, J(t) converges in
contradiction to our assumption.

2
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Chapter 4

Steady states and stability of
heterogeneous SIS- and SIR-models

4.1 Introduction

In Chapter 1 we analysed the asymptotic behaviour of a general SI-model. As mentioned there, SI-
models are amongst the simplest models used in epidemiology to describe infectious diseases. In this
chapter we analyse the steady states and their stability for more complicated models. In SI-models
we consider only the transmission of the disease from the susceptible to the infected population. The
next level of complexity is to add one further process, namely the recovery of an infected individual.
There are two possibilities. Either, an infected individual may upon recovery return into the population
of susceptibles, or it may transfer to a third sub-population of recovered individuals. The first variant
of models is known as an SIS-model, the second one as an SIR-model. Thus, these two types of
models represent in some sense the next level of complexity from the basic SI-model. We will assume
in this chapter that the total population under consideration remains constant. This assumption is often
reasonable since for many diseases the duration of the infection is short compared to any demographical
changes and the mortality of infected individuals is low. Even in instances where this assumption is not
met, it sometimes gives a good approximation to the evolution of the disease while being easier to handle
analytically.

We have already dealt to some extent with SIS-models in the previous chapter. In Section 4.2 we
will consider a more general version of it. In Section 4.3 we turn to SIR-models. In both cases we
identify under certain parameter conditions the steady states of the system and analyse their stability
properties.
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4.2 SIS-model

We now consider an SIS-model where for each ω the infections spreads according to the dynamics

Ṡ(t, ω) = −
(
σ(ω)

J(t)

H(t)
+ η(ω)

)
S(t, ω) + γ(ω)I(t, ω),

İ(t, ω) =

(
σ(ω)

J(t)

H(t)
+ η(ω)

)
S(t, ω)− γ(ω)I(t, ω),

(4.1)

with

J(t) =

∫
Ω
q2(ω)I(t, ω) dω,

H(t) =

∫
Ω
q1(ω)S(t, ω) + q2(ω)I(t, ω) dω.

This is the same model as considered in Chapter 3, except that we allow the weights for S(t, ω) and
I(t, ω) to be different from each other. We however assume that q1(ω) < q2(ω)

(
1 + σ(ω)

γ(ω)

)
holds for

all ω ∈ Ω (below we will explain how different assumptions can be used). We will use the same inter-
pretations and assumptions about the parameter functions as in Chapter 3. In particular the distinction
between the cases η = 0 and η > 0 is the same, the function f(ω) is defined by f(ω) = S(0, ω)+I(0, ω)

and assumed to fulfil
∫

Ω f(ω) dω = 1. Using S(t, ω) = f(ω)− I(t, ω) turns (4.1) into

İ(t, ω) =

(
σ(ω)

J(t)

H(t)
+ η(ω)

)
f(ω)−

(
σ(ω)

J(t)

H(t)
+ η(ω) + γ(ω)

)
I(t, ω). (4.2)

4.2.1 Steady states

Theorem 4. If η > 0 then the system (4.1) has exactly one steady state Î(ω) and Î(ω) > 0 whenever
f(ω) > 0. If η = 0 we define

R0 =

∫
Ω q2(ω)f(ω)σ(ω)

γ(ω) dω∫
Ω q1(ω)f(ω) dω

.

If R0 ≤ 1 then the system (4.1) has the unique steady state Î(ω) ≡ 0. If R0 > 1 then the system
has exactly two steady states, one of them being Î(ω) ≡ 0, whereas the second steady state is positive
whenever f(ω) > 0.

Proof Let (Ŝ(ω), Î(ω)) be a steady state of the system (4.1) and Ĵ and Ĥ the aggregated states. From
(4.2) we see that Î(ω) must fulfil

Î(ω) = f(ω)
σ(ω) Ĵ

Ĥ
+ η(ω)

σ(ω) Ĵ
Ĥ

+ η(ω) + µ(ω) + γ(ω)
. (4.3)
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Putting this into the definition of J(t)
H(t) gives us

Ĵ

Ĥ
=

∫
Ω q2(ω)f(ω)

σ(ω) Ĵ
Ĥ

+η(ω)

σ(ω) Ĵ
Ĥ

+η(ω)+γ(ω)
dω

∫
Ω q1(ω)f(ω) dω +

∫
Ω(q2(ω)− q1(ω))f(ω)

σ(ω) Ĵ
Ĥ

+η(ω)

σ(ω) Ĵ
Ĥ

+η(ω)+γ(ω)
dω
. (4.4)

Every solution to (4.4) gives a steady state solution of system (4.1) by plugging it into (4.3). We are
therefore looking for the solutions of the equation∫

Ω q2(ω)f(ω) σ(ω)x+η(ω)
σ(ω)x+η(ω)+γ(ω) dω∫

Ω q1(ω)f(ω) dω +
∫

Ω(q2(ω)− q1(ω))f(ω) σ(ω)x+η(ω)
σ(ω)x+η(ω)+γ(ω) dω

= x. (4.5)

We will denote the left hand side of this equation by l(x) and the right hand side by r(x). We evaluate
the first of these functions at 0 and 1. At x = 0 we have

l(0) =

∫
Ω q2(ω)f(ω) η(ω)

η(ω)+γ(ω) dω∫
Ω q1(ω)f(ω)dω +

∫
Ω(q2(ω)− q1(ω))f(ω) η(ω)

η(ω)+γ(ω) dω

=

∫
Ω q2(ω)f(ω) η(ω)

η(ω)+γ(ω)dω∫
Ω q1(ω)f(ω)

(
1− η(ω)

η(ω)+γ(ω)

)
dω +

∫
Ω q2(ω)f(ω) η(ω)

η(ω)+γ(ω) dω
.

For η = 0 this gives l(0) = 0 while for η > 0 we can see that l(0) > 0. At x = 1 we get

l(1) =

∫
Ω q2(ω)f(ω) σ(ω)+η(ω)

σ(ω)+η(ω)+γ(ω) dω∫
Ω q1(ω)f(ω) dω +

∫
Ω(q2(ω)− q1(ω))f(ω) σ(ω)+η(ω)

σ(ω)+η(ω)+γ(ω) dω

=

∫
Ω q2(ω)f(ω) σ(ω)+η(ω)

σ(ω)+η(ω)+γ(ω) dω∫
Ω q1(ω)f(ω)

(
1− σ(ω)+η(ω)

σ(ω)+η(ω)+γ(ω)

)
dω +

∫
Ω q2(ω)f(ω) σ(ω)+η(ω)

σ(ω)+η(ω)+γ(ω) dω

<

∫
Ω q2(ω)f(ω) σ(ω)+η(ω)

σ(ω)+η(ω)+γ(ω) dω∫
Ω q2(ω)f(ω) σ(ω)+η(ω)

σ(ω)+η(ω)+γ(ω) dω
= 1.

Thus l(0) ≥ r(0) and l(1) < r(1). In order to show that there is at most one x ∈ (0, 1) that satisfies
equation (4.5) we look at the derivative of l(x) at a point where l(x) = x. The derivative of l(x) is given
by (in the following we will not explicitly note the dependence of any of the parameter functions on ω)

l′(x) =

∫
Ω q2f

σγ
(σx+η+γ)2 dω∫

Ω q1f
γ

σx+η+γdω +
∫

Ω q2f
σx+η

σx+η+γ dω
−

∫
Ω q2f

σx+η
σx+η+γ dω

∫
Ω(q2 − q1)f σγ

(σx+η+γ)2 dω(∫
Ω q1f

γ
σx+η+γ dω +

∫
Ω q2f

σx+η
σx+η+γ dω

)2 .
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Using the definition of l(x) we get

l′(x)=

∫
Ω q1f

σγ
(σx+η+γ)2 dω∫

Ωq1f
γ

σx+η+γ dω+
∫

Ωq2f
σx+η

σx+η+γ dω
l(x)+

∫
Ω q2f

σγ
(σx+η+γ)2 dω∫

Ωq1f
γ

σx+η+γ dω+
∫

Ωq2f
σx+η

σx+η+γ dω
(1−l(x))

=

∫
Ω q1f

σγ
(σx+η+γ)2 dω∫

Ω q2f
σx+η

σx+η+γ dω
l(x)2 +

∫
Ω q2f

σγ
(σx+η+γ)2 dω∫

Ω q2f
σx+η

σx+η+γ dω
(l(x)− l(x)2).

Thus, at a point x ∈ (0, 1) where l(x) = x we have that l′(x) < 1 is equivalent to∫
Ω
q1f

σγx2

(σx+ η + γ)2
dω +

∫
Ω
q2f

σγ(x− x2)

(σx+ η + γ)2
dω <

∫
Ω
q2f

σx+ η

σx+ η + γ
dω.

Elementary manipulations show that this in turn is equivalent to∫
Ω
q1f

σγx2

(σx+ η + γ)2
dω <

∫
Ω
q2f

σ2x2 + σγx2 + 2σηx+ η2 + ηγ

(σx+ η + γ)2
dω. (4.6)

Due to our assumption that q1 < q2

(
1 + σ

γ

)
we get

∫
Ω
q1f

σγx2

(σx+ η + γ)2
dω<

∫
Ω
q2f

σ2x2 + σγx2

(σx+ η + γ)2
dω≤

∫
Ω
q2f

σ2x2 + σγx2 + 2σηx+ η2 + ηγ

(σx+ η + γ)2
dω.

Thus, if l(x) = x we have that l(y) > y for y ∈ (x − ε1, x) and l(y) < y for y ∈ (x, x + ε2) for
sufficiently small ε1, ε2 > 0. In particular, if l(x) < x for some x ∈ (0, 1), then l(y) < y for all y > x.

Now, if η > 0 then l(0) > r(0) and l(1) < r(1). Thus there exists at least one solution to (4.5). By
what we have shown this solution is unique. That the resulting steady state is positive whenever f(ω)

is positive can be seen from (4.3). If η = 0 then x = 0 is a solution. If l′(0) > 1 then l(x) > x for
x sufficiently small and by the same arguments as before l(x) = x has exactly one further solution in
(0, 1). For the case where l′(0) < 1 our analysis of l(x) shows that l(x) = x has no solution in (0, 1).
Finally, if l′(0) = 1, assume that l(x) > x for some sufficiently small x. If we consider the same system
where we exchange q1(ω) with q1(ω) + ε(ω) where ε(ω) > 0 chosen so that all assumptions still hold
true. Then for ‖ε‖ sufficiently small, l(x) will still be greater than x, but l′(0) < 1 (see the expression
for l′(0) below). This is a contradiction to what we have shown before. Thus if we define

R0 = l′(0) =

∫
Ω q2(ω)f(ω)σ(ω)γ(ω)

(γ(ω))2 dω
∫

Ω q1(ω)f(ω) dω(∫
Ω q1(ω)f(ω) dω

)2 =

∫
Ω q2(ω)f(ω)σ(ω)

γ(ω) dω∫
Ω q1(ω)f(ω) dω

,

we have that if R0 ≤ 1 then I(t, ω) ≡ 0 is the only steady state of the system, if R0 > 1 then there are
two steady states, one of them is again I(t, ω) ≡ 0.

2
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The main point of this proof is to show that equation (4.5) has at most one solution. Our assumption
that q1(ω) < q2(ω)

(
1 + σ(ω)

γ(ω)

)
for all ω ∈ Ω is one way to assure this. However this assumption is

obviously only necessary and many different assumptions can lead to the same result. For example, if
we assume η = 0 and q1(ω) > q2(ω)

(
1 + σ(ω)

γ(ω)

)
for all ω ∈ Ω then the inequality (4.6) holds with

’>’ instead of ’<’ from which it can be inferred that (4.5) has no solution in (0, 1). Furthermore, we
were not able to determine whether any assumptions are needed at all and are not aware of any parameter
configuration for which equation (4.5) has two or more solutions.

We note that it can be shown the same way as in Chapter 3 that the definition of R0 as given in
Theorem 4 coincides with the definition of R0 in [31].

4.2.2 Stability

Here we show the asymptotic behaviour of the system (4.1). The proofs here are based on the ones in
Chapter 3.

Lemma 7. The function J(t)
H(t) converges for t→∞. Furthermore we have

İ(t, ω) ≶ 0⇐⇒ I(t, ω) ≷
f(ω)

(
σ(ω) J(t)

H(t) + η(ω)
)

σ(ω) J(t)
H(t) + η(ω) + γ(ω)

. (4.7)

Proof We will denote J(t)
H(t) by K(t). Define K∗ = lim supK(t) and K∗ = lim inf K(t). Assume that

K(t) does not converge, then K∗ − K∗ > 0. In the following five steps we lead this assumption to a
contradiction.

Step 1: Define

h(K(t), ω) =
f(ω)(σ(ω)K(t) + η(ω))

σ(ω)K(t) + η(ω) + γ(ω)
.

We get this function by setting İ(t, ω) = 0 in (4.2) and solving for I(t, ω). Further define Ωf = {ω ∈
Ω : f(ω) > 0}. Obviously Ω\Ωf is of no interest as I(t, ω) = 0 there. Note that ∂

∂K(t)h(K(t), ω) =
f(ω)σ(ω)γ(ω)

(σ(ω)K(t)+η(ω)+γ(ω))2 > 0 on Ωf such that d
dth(K(t), ω) ≷ 0 ⇔ K̇(t) ≷ 0. This also shows that

h(K(t), ω) is monotone in K(t). We have

İ(t, ω)=(σ(ω)K(t) + η(ω))f(ω)− (σ(ω)K(t) + η(ω) + γ(ω))I(t, ω)

=(σ(ω)K(t)+η(ω))f(ω)−(σ(ω)K(t)+η(ω)+γ(ω))(h(K(t), ω)+I(t, ω)−h(K(t), ω))

=(σ(ω)K(t) + η(ω) + γ(ω)) (h(K(t), ω)− I(t, ω))

(4.8)

Note that we get

İ(t, ω) ≶ 0⇐⇒ I(t, ω) ≷ h(K(t), ω). (4.9)
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This proves the second claim of the lemma. Furthermore, we have∣∣∣∣ d
dt
h(K(t), ω)

∣∣∣∣ =

∣∣∣∣ ∂

∂K(t)
h(K(t), ω)K̇(t)

∣∣∣∣ ≤ f(ω)
σ(ω)γ(ω)

(η(ω) + γ(ω))2
C1, (4.10)

where C1 = supt>0

∣∣∣K̇(t)
∣∣∣. It is easy to see that K̇(t) is bounded from which follows that C1 is finite.

Step 2: Define

δ(ω) = h(K∗, ω)− h(K∗, ω) = f(ω)

(
(σ(ω)K∗ + η(ω))

σ(ω)K∗ + η(ω) + γ(ω)
− (σ(ω)K∗ + η(ω))

σ(ω)K∗ + η(ω) + γ(ω)

)
= f(ω)

σ(ω)γ(ω) (K∗ −K∗)
(σ(ω)K∗ + η(ω) + γ(ω)) (σ(ω)K∗ + η(ω) + γ(ω))

.

For all ε > 0 there exist arbitrarily large t∗ such that K(t∗) < K∗ + ε. We want to give an estimate
for t(ω) such that h(K(t), ω) ≤ δ(ω)/3 + h(K∗ + ε, ω) for t ∈ (t∗, t(ω)). Because of (4.10) we get

t(ω) ≥ δ(ω)

3f(ω) σ(ω)γ(ω)
(η(ω)+γ(ω))2C1

=
f(ω) σ(ω)γ(ω)(K∗−K∗)

(σ(ω)K∗+η(ω)+γ(ω))(σ(ω)K∗+η(ω)+γ(ω))

3f(ω) σ(ω)γ(ω)
(η(ω)+γ(ω))2C1

=
(K∗ −K∗)

(σ(ω)K∗ + η(ω) + γ(ω)) (σ(ω)K∗ + η(ω) + γ(ω))

(η(ω) + γ(ω))2

3C

≥
infω∈Ωf

(
(η(ω) + γ(ω))2

)
(K∗ −K∗)

3C1C2
2

=: κ,

where C2 = supω∈Ωf
(σ(ω) + η(ω) + γ(ω)). Note that κ > 0 and is independent of ω.

Step 3: Because of

δ(ω) ≥ f(ω)
infω∈Ωf (σ(ω)γ(ω)) (K∗ −K∗)

C2
2

we have for every ε > 0 a tε such that h(K(t), ω) < h(K∗, ω) + εδ(ω)/2 for all t > tε. Assume now
that I(t, ω) > h(K∗, ω) + εδ(ω). Then using (4.8) we see that∣∣∣İ(t, ω)

∣∣∣ = (σ(ω)K(t) + η(ω) + γ(ω)) |h(K(t), ω)− I(t, ω)|

≥ inf
ω∈Ωf

(η(ω) + γ(ω))
ε

2
δ(ω) ≥ ε

2
f(ω) inf

ω∈Ωf

(
δ(ω)

f(ω)

)
inf
ω∈Ωf

(η(ω) + γ(ω)).

From this and (4.9) we get that for t large enough we have I(t, ω) ≤ h(K∗, ω) + εδ(ω) for all ω ∈ Ωf .

Step 4: Choose ε > 0 small enough such that the two inequalities

h(K∗, ω)− εδ(ω)

3
≥ h(K∗ + ε, ω) +

2

3
δ(ω), 2ε ≤ κ

3
inf
ω∈Ωf

(η(ω) + γ(ω)) (4.11)
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hold true. Now choose a t∗ such that K(t∗) < K∗ + ε. Let t∗ also be large enough such that for all
t ≥ t∗ we have

I(t, ω) ≤ h(K∗, ω) + ε
δ(ω)

3
. (4.12)

For every ω ∈ Ωf and for t ∈ (t∗, t∗ + κ) where I(t, ω) ≥ h(K∗, ω) − εδ(ω)/3 we have because of
the first inequality in (4.11) that |I(t, ω)− h(K(t), ω)| ≥ δ(ω)/3. Thus, using the second inequality in
(4.11), we get ∣∣∣İ(t, ω)

∣∣∣ = (σ(ω)K(t) + η(ω) + γ(ω)) |h(K(t), ω)− I(t, ω)|

≥ δ(ω)

3
inf
ω∈Ωf

(η(ω) + γ(ω)) ≥ 2δ(ω)ε

3κ
.

Combining this with (4.12) and using (4.9) yields

I(t∗ + κ, ω) ≤ h(K∗, ω)− εδ(ω)

3
, ω ∈ Ωf .

Step 5: Let τ > t∗+κ be such that h(K(τ), ω) ≥ h(K∗, ω)−εδ(ω)/3 for all ω ∈ Ωf andK(τ) > K(t)

for t ∈ (t∗+κ, τ). Since I(t, ω) is increasing if and only if h(K(t), ω) > I(t, ω) we have for all ω ∈ Ωf

that I(τ, ω) ≤ h(K(τ), ω). Thus, for all ω ∈ Ωf we have İ(τ, ω) ≥ 0 and consequently Ṡ(τ, ω) ≤ 0.
This shows that

K̇(τ) =

∫
Ωf
q2(ω)İ(τ, ω) dω

∫
Ωf
q1(ω)S(τ, ω) dω −

∫
Ωf
q2(ω)I(τ, ω) dω

∫
Ωf
q1(ω)Ṡ(τ, ω) dω(∫

Ωf
q1(ω)S(τ, ω) + q2I(t, ω) dω

)2 ≥ 0.

Therefore, if I(t, ω) = h(K(t), ω) for any t ≥ τ , we have that İ(t, ω) = 0 while K̇(t) ≥ 0 and
consequently d

dth(K(t), ω) ≥ 0. Hence, I(t, ω) ≤ h(K(t), ω) for all t > τ and all ω ∈ Ωf . This in
turn implies that K(t) is monotonically increasing for t > τ . Thus, K(t) converges in contradiction to
our assumption. 2

Theorem 5. If η > 0 then the unique steady state of system (4.1) is globally asymptotically stable.
If η = 0 then in the case of R0 ≤ 1 the unique steady state, which is disease free, is globally asymp-
totically stable. If R0 > 1 then the disease free steady state is unstable while the second steady state
is globally asymptotically stable with the exception of all initial conditions for which I(0, ω) = 0 for
almost every ω ∈ Ω.

Proof In Lemma 7 we have shown thatK(t) = J(t)
H(t) converges. From (4.7) it is then obvious that I(t, ω)

converges. That the limit is one of the steady states is also immediately clear.
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It remains to show that if η = 0 and R0 > 1 then K(t) converges a positive value and not to 0 unless
I0(ω) = 0 a.e. on Ω. Consider the two inequalities

sup
τ∈[0,∞)

H(τ)
supζ∈Ω

(
σ(ζ)
γ(ζ)

)
∫

Ω q1(ω)f(ω) dω
K(t) =

supτ∈[0,∞)H(τ) supζ∈Ω

(
σ(ζ)
γ(ζ)

)
∫

Ω q1(ω)f(ω) dω
J(t)

H(t)

≥

∫
Ω q2(ω) supζ∈Ω

(
σ(ζ)
γ(ζ)

)
I(t, ω) dω∫

Ω q1(ω)f(ω) dω
≥

∫
Ω q2(ω)σ(ω)

γ(ω)I(t, ω) dω∫
Ω q1(ω)f(ω) dω

.

and

supτ∈[0,∞)H(τ)∫
Ω q1(ω)f(ω) dω

K(t) =
supτ∈[0,∞)H(τ)∫
Ω q1(ω)f(ω) dω

J(t)

H(t)
≥
∫

Ω q2(ω)I(t, ω) dω∫
Ω q1(ω)f(ω) dω

≥
∫

Ω(q2(ω)− q1(ω))I(t, ω) dω∫
Ω q1(ω)f(ω) dω

.

Using them we see that if K(t) is both positive and sufficiently small we have

R0 − 1 >

∫
Ω q2(ω)σ(ω)

γ(ω)I(t, ω) dω∫
Ω q1(ω)f(ω) dω

+

∫
Ω(q2(ω)− q1(ω))I(t, ω) dω∫

Ω q1(ω)f(ω) dω

⇔ K(t)R0 −K(t) >

∫
Ω q2(ω)σ(ω)

γ(ω)K(t)I(t, ω) dω∫
Ω q1(ω)f(ω) dω

+K(t)

∫
Ω(q2(ω)− q1(ω))I(t, ω) dω∫

Ω q1(ω)f(ω) dω

⇔ K(t)

∫
Ω q2(ω)f(ω)σ(ω)

γ(ω) dω∫
Ω q1(ω)f(ω) dω

−
∫

Ω q2(ω)I(t, ω) dω∫
Ω q1(f(ω − I(t, ω)) + q2(ω)I(t, ω) dω

>

∫
Ω q2(ω)σ(ω)

γ(ω)K(t)I(t, ω) dω∫
Ω q1(ω)f(ω) dω

+K(t)

∫
Ω(q2(ω)− q1(ω))I(t, ω) dω∫

Ω q1(ω)f(ω) dω

⇔

∫
Ω q2(ω)f(ω)σ(ω)

γ(ω)K(t) dω∫
Ω q1(ω)f(ω) dω

−
∫

Ω q2(ω)I(t, ω) dω∫
Ω q1(ω)f(ω) dω

+K(t)

∫
Ω(q2(ω)− q1(ω))I(t, ω) dω∫

Ω q1(ω)f(ω) dω

>

∫
Ω q2(ω)σ(ω)

γ(ω)K(t)I(t, ω) dω∫
Ω q1(ω)f(ω) dω

+K(t)

∫
Ω(q2(ω)− q1(ω))I(t, ω) dω∫

Ω q1(ω)f(ω) dω

⇔
∫

Ω

q2(ω)

γ(ω)
(f(ω)σ(ω)K(t)− γ(ω)I(t, ω)− σ(ω)K(t)I(t, ω)) dω > 0

⇔
∫

Ω

q2(ω)

γ(ω)
İ(t, ω) dω > 0.

This shows that
∫

Ω
q2(ω)
γ(ω) I(t, ω) dω is monotonically increasing. But

1

sup
ω∈Ω

γ(ω)
J(t) ≤

∫
Ω

q2(ω)

γ(ω)
I(t, ω) dω ≤ 1

inf
ω∈Ω

γ(ω)
J(t).

Thus, if K(t) is positive and sufficiently small, J(t) is bounded below by a positive and monotonically
increasing function. But sinceK(t) = 0⇔ J(t) = 0 we see thatK(t) cannot converge to 0 if J(0) > 0.
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If we now assume that I(0, ω) is positive on a set of positive measure, then J(0) =
∫

Ω q2(ω)I(0, ω) dω >
0, and consequently K(t) converges to a positive value.

Conversely, if I(0, ω) = 0 almost everywhere on Ω then J(0) = 0 and thus K(0) = 0. Thus
İ(t, ω) ≤ 0 for all ω ∈ Ω and all t ≥ 0. Consequently I(t, ω) converges to 0. 2

We have carried out the analysis for the distributed heterogeneous system. The corresponding results
for the aggregated states follow immediately.

Corollary 1. If η > 0 then the aggregated state I(t) =
∫

Ω I(t, ω) dω converges to a positive value I∗

which is independent of I(0).
If η = 0 and R0 ≤ 1 then I(t) converges to 0. If R0 > 1 then I(t) is constant if I(0) = 0 and otherwise
converges to a positive value I∗ which is independent of I(0).

Recall that the positive steady state Î(ω) in Theorem 4 can be calculated by computing the unique
positive solution of equation (4.4) and plugging it into equation (4.3). To calculate the value I∗ in
Corollary 1 simply integrate Î(ω) over Ω.

The corollary also shows that the qualitative behaviour of the aggregated variables is completely
known once the basic reproduction number R0 is identified.

4.3 SIR-model

We look at the heterogeneous SIR-system

Ṡ(t, ω) = µ(ω)f(ω)(1− p(ω))− σ(ω)
J(t)

H(t)
S(t, ω)− η(ω)S(t, ω)− µ(ω)S(t, ω),

İ(t, ω) = σ(ω)
J(t)

H(t)
S(t, ω) + η(ω)S(t, ω)− (γ(ω) + µ(ω))I(t, ω),

Ṙ(t, ω) = µ(ω)f(ω)p(ω) + γ(ω)I(t, ω)− µ(ω)R(t, ω),

(4.13)

with

J(t) =

∫
Ω
q2(ω)I(t, ω) dω,

H(t) =

∫
Ω
q1(ω)S(t, ω) + q2(ω)I(t, ω) + q3(ω)R(t, ω) dω.

The new compartment, denoted by R(t, ω) denotes the number of people in the population with h-state
ω that have recovered from the disease and have become immune to further infection The interpretations
and assumptions about the parameter functions are the same as in the case of the SIS-model. The
parameter p(ω) is a measurable non-negative function. It denotes the fraction of individuals with h-
state ω that are vaccinated or otherwise immunised against the disease at birth. The parameter µ(ω)
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is assumed to be a measurable function that is bounded away from zero similar to σ(ω) and γ(ω). It
denotes both the birth and the death rate. We consider them equal so the population size is constant. We
define f(ω) = S(0, ω) + I(0, ω) +R(0, ω) and assume w.l.o.g.

∫
Ω f(ω)dω = 1.

4.3.1 Steady states

As with the SIS-system we are only able to prove the following theorem under certain parameter con-
ditions. For the following proof we therefore assume that

q1(ω)
γ(ω) + µ(ω)

µ(ω)
− q3(ω)

γ(ω)

µ(ω)
< q2(ω)

(
1 +

σ(ω)

γ(ω)

)
for all ω ∈ Ω. (4.14)

As with the proof of Theorem 4 the results also holds if η = 0 and the above inequality is fulfilled with
’>’ instead of ’<’. Again, it is not known whether there are any parameter configurations for which the
theorem does not hold true.

Theorem 6. If η > 0 then the system (4.13) has exactly one steady state (Ŝ(ω), Î(ω), R̂(ω)) and Î(ω) >

0 whenever f(ω) > 0. If η = 0 we define

R0 =

∫
Ω q2(ω)f(ω)(1− p(ω)) σ(ω)

γ(ω)+µ(ω) dω∫
Ω q1(ω)f(ω)(1− p(ω)) dω +

∫
Ω q3(ω)f(ω)p(ω) dω

.

If R0 ≤ 1 then the system (4.13) has a unique steady state that is disease free, i.e. Î(ω) ≡ 0. If R0 > 1

then the system has exactly two steady states, one of them being disease free.

Proof Let (Ŝ(ω), Î(ω), R̂(ω)) be a steady state and Ĵ and Ĥ the aggregated states. The equation
Ṡ(t, ω) = 0 yields

Ŝ(ω) =
µ(ω)f(ω)(1− p(ω))

σ(ω) Ĵ
Ĥ

+ η(ω) + µ(ω)
. (4.15)

Putting this into the equation İ(t, ω) = 0 leads to

Î(ω) =
σ(ω) Ĵ

Ĥ
+ η(ω)

γ(ω) + µ(ω)
Ŝ(ω) =

σ(ω) Ĵ
Ĥ

+ η(ω)

γ(ω) + µ(ω)

µ(ω)f(ω)(1− p(ω))

σ(ω) Ĵ
Ĥ

+ η(ω) + µ(ω)
. (4.16)

For R̂(ω) we get the formula

R̂(ω)=f(ω)p(ω) +
γ(ω)

µ(ω)
Î(ω)=f(ω)p(ω)+

γ(ω)

µ(ω)

σ(ω) Ĵ
Ĥ

+ η(ω)

γ(ω) + µ(ω)

µ(ω)f(ω)(1− p(ω))

σ(ω) Ĵ
Ĥ

+ η(ω) + µ(ω)
. (4.17)
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Thus, Ĵ
Ĥ

is given by

Ĵ

Ĥ
=

∫
Ω q2(ω)

σ(ω) Ĵ
Ĥ

+η(ω)

σ(ω) Ĵ
Ĥ

+η(ω)+µ(ω)

µ(ω)f(ω)(1−p(ω))
γ(ω)+µ(ω) dω

∫
Ω

µ(ω)f(ω)(1−p(ω))

σ(ω) Ĵ
Ĥ

+η(ω)+µ(ω)

(
q1(ω)+

σ(ω) Ĵ
Ĥ

+η(ω)

γ(ω)+µ(ω)

(
q2(ω) + q3(ω) γ(ω)

µ(ω)

))
dω +

∫
Ω q3(ω)f(ω)p(ω) dω

.

Every solution of this equation yields a steady state of system (4.13) by plugging it into equations (4.15),
(4.16), and (4.17). We are therefore looking for the solutions of∫

Ω q2(ω) σ(ω)x+η(ω)
σ(ω)x+η(ω)+µ(ω)

µ(ω)f(ω)(1−p(ω))
γ(ω)+µ(ω) dω∫

Ω
µ(ω)f(ω)(1−p(ω))
σ(ω)x+η(ω)+µ(ω)

(
q1(ω)+ σ(ω)x+η(ω)

γ(ω)+µ(ω)

(
q2(ω)+q3(ω) γ(ω)

µ(ω)

))
dω+

∫
Ωq3(ω)f(ω)p(ω)dω

= x. (4.18)

We denote the left hand side by l(x) and the right hands side by r(x). As in the proof of Theorem 4 it is
easy to show that l(0) = r(0) if η = 0 and l(0) > r(0) if η > 0, as well as l(1) < r(1). The derivative
of l(x) can be written as (we again suppress the ω-dependency of the parameter functions)

l′(x) =

∫
Ω q2

σµ
(σx+η+µ)2

µf(1−p)
γ+µ dω∫

Ω q2
σx+η

σx+η+µ
µf(1−p)
γ+µ dω

(l(x)− l(x)2) +

∫
Ω

(
q1
γ+µ
µ − q3

γ
µ

)
σµ

(σx+η+µ)2
µf(1−p)
γ+µ dω∫

Ω q2
σx+η

σx+η+µ
µf(1−p)
γ+µ dω

l(x)2.

At a point x ∈ (0, 1) where l(x) = x it can then be shown that l′(x) < 1 is equivalent to∫
Ω

(
q1
γ + µ

µ
−q3

γ

µ
−q2

)
σµx2

(σx+ η + µ)2

µf(1− p)
γ + µ

dω<
∫

Ω
q2
σ2x2+ 2ση + η2 + ηµ

(σx+ η + µ)2

µf(1− p)
γ + µ

dω.

Due to our assumption (4.14) this inequality is fulfilled for all x ∈ (0, 1). The rest of the proof is
analogous to the proof of Theorem 4. Note that for η = 0 we have

R0 = l′(0) =

∫
Ω q2(ω)f(ω)(1− p(ω)) σ(ω)

γ(ω)+µ(ω) dω∫
Ω q1(ω)f(ω)(1− p(ω)) dω +

∫
Ω q3(ω)f(ω)p(ω) dω

.

2

Here too it can be shown by the same methods as mentioned previously that the definition of the
basic reproduction number R0 coincides with the one given in [31].

4.3.2 Stability

For the SIR-system we will no longer be able to give a complete description of the asymptotic behaviour.
We will restrict ourselves therefore to the analysis of the stability of the disease free steady state in the
case η = 0. Note that some of the parameter configurations we consider, such as case 4) and 5) in
Theorem 8, imply assumption (4.14).
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Theorem 7. If η = 0, then the disease free steady state is unstable if R0 > 1.

Proof Denote K(t) = J(t)
H(t) . Let ‖ · ‖ denote the L1 norm on Ω. Furthermore we define a new norm

by |||(S(t, ω), I(t, ω), R(t, ω))||| = ‖S(t, ω)‖ + ‖I(t, ω)‖ + ‖R(t, ω)‖. Let (S∗(ω), I∗(ω), R∗(ω)) =
(f(ω)(1 − p(ω)), 0, f(ω)p(ω))) be the disease free steady state. Assume the state at time t fulfils
|||(S(t, ω), I(t, ω), R(t, ω))− (S∗(ω), I∗(ω), R∗(ω))||| < ε and that ‖I(t, ω)‖ 6= 0. By choosing ε
sufficiently small we can assure that the two terms∫

Ω
q2(ω)

γ(ω)+µ(ω)σ(ω) (f(ω)(1− p(ω))− S(t, ω)) dω∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

and 1−
∫

Ω
q1(ω)S(t, ω) + q2(ω)I(t, ω) + q3(ω)R(t, ω) dω∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

become arbitrarily small. So for any δ > 0 with δ < R0 − 1 we have for sufficiently small δ that

R0 − 1 >

∫
Ω

q2(ω)
γ(ω)+µ(ω)σ(ω) (f(ω)(1− p(ω))− S(t, ω)) dω∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

−
(

1−
∫

Ω
q1(ω)S(t, ω) + q2(ω)I(t, ω) + q3(ω)R(t, ω) dω∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

)
+ δ

⇔ K(t)R0 −K(t) >

∫
Ω

q2(ω)
γ(ω)+µ(ω)σ(ω)K(t) (f(ω)(1− p(ω))− S(t, ω)) dω∫

Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

−K(t)

(
1− H(t)∫

Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

)
+ δK(t)

⇔ K(t)

∫
Ω
q2(ω)f(ω)(1− p(ω)) σ(ω)

γ(ω)+µ(ω) dω∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

>∫
Ω

q2(ω)
γ(ω)+µ(ω)σ(ω)K(t) (f(ω)(1− p(ω))− S(t, ω)) dω∫

Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

+
J(t)

H(t)

H(t)∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

+ δK(t)

⇔

∫
Ω
q2(ω)f(ω)(1− p(ω)) σ(ω)K(t)

γ(ω)+µ(ω) dω∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

−
∫

Ω
q2(ω)I(t, ω) dω∫

Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

>∫
Ω

q2(ω)
γ(ω)+µ(ω)σ(ω)K(t) (f(ω)(1− p(ω))− S(t, ω)) dω∫

Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

+ δK(t)

⇔
∫

Ω

q2(ω)

γ(ω) + µ(ω)
σ(ω)K(t)f(ω)(1− p(ω)) dω −

∫
Ω

q2(ω)I(t, ω) dω >∫
Ω

q2(ω)

γ(ω) + µ(ω)
σ(ω)K(t) (f(ω)(1− p(ω))− S(t, ω)) dω + δ̃K(t)

⇔
∫

Ω

q2(ω)

γ(ω) + µ(ω)
(σ(ω)K(t)S(t, ω)− (γ(ω) + µ(ω))I(t, ω)) dω > δ̃K(t)

⇔
∫

Ω

q2(ω)

γ(ω) + µ(ω)
İ(t, ω) dω > δ̃K(t),
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where we denote δ̃ = δ
∫

Ω q1(ω)f(ω)(1 − p(ω)) + q3(ω)f(ω)p(ω) dω. Thus for any trajectory with
|||(S(t, ω), I(t, ω), R(t, ω))− (S∗(ω), I∗(ω), R∗(ω))||| < ε and ‖I(t, ω)‖ 6= 0 we have that the term∫

Ω
q2(ω)

γ(ω)+µ(ω)I(t, ω) dω is strictly monotonically increasing. But

∫
Ω

q2(ω)

γ(ω) + µ(ω)
I(t, ω) dω ≤ sup

ω∈Ω

q2(ω)

(γ(ω) + µ(ω))
I(t) = sup

ω∈Ω

q2(ω)

(γ(ω) + µ(ω))
‖I(t, ω)‖.

Since this in particular implies that δ̃K(t) is bounded away from 0, we can conclude that the trajectory
of the system leaves the ε-neighbourhood of the disease free steady state in finite time. Thus the disease
free steady state is unstable.

2

Theorem 8. Let η = 0 and R0 < 1. Define Ωf = {ω ∈ Ω : f(ω) 6= 0} and

Ω− =

{
ω ∈ Ω : q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)
≤ 0

}
.

Assume that one of the following conditions holds true

(1) Ω− ⊆ Ω\Ωf ,

(2) Ω− ⊇ Ωf ,

(3)
∫

Ω−

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω > 0,

(4) p(ω) = 0 and q1(ω) ≤ max{q2(ω), q3(ω)} for all ω ∈ Ωf ,

(5) q1(ω) = q3(ω) ≤ q2(ω) for all ω ∈ Ωf .

Then the disease free steady state is globally asymptotically stable.

Proof In the cases (1)-(3) we will show that the assumption implies the inequality

∫
Ω
q2(ω)I(t, ω) + q3(ω)R(ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
dω > ε (4.19)

91



for some ε > 0 and all sufficiently large t. This inequality can be used to show∫
Ω
q2(ω)S(t, ω)

σ(ω)

γ(ω) + µ(ω)
dω <

∫
Ω
q1(ω)S(t, ω) + q2(ω)I(t, ω) + q3(ω)R(ω) dω − ε

⇔
∫

Ω
q2(ω)S(t, ω)

σ(ω)

γ(ω) + µ(ω)
dωK(t) < H(t)K(t)− εK(t)

⇔
∫

Ω
q2(ω)S(t, ω)

σ(ω)

γ(ω) + µ(ω)
dωK(t)− J(t) < −εK(t)

⇔
∫

Ω
q2(ω)K(t)S(t, ω)

σ(ω)

γ(ω) + µ(ω)
− q2(ω)I(t, ω) dω < −εK(t)

⇔
∫

Ω

q2(ω)

γ(ω) + µ(ω)
(σ(ω)K(t)S(t, ω)− (γ(ω) + µ(ω))I(t, ω)) dω < −εK(t)

⇔
∫

Ω

q2(ω)

γ(ω) + µ(ω)
İ(t, ω) dω < −εK(t)

This implies that
∫

Ω
q2(ω)

γ(ω)+µ(ω)I(t, ω) dω is monotonically decreasing. Since K(t) = 0⇔ J(t) = 0 and

1

sup
ω∈Ω

γ(ω) + µ(ω)
J(t) ≤

∫
Ω

q2(ω)

γ(ω) + µ(ω)
I(t, ω) dω

we see that J(t) must converge to 0. From this it follows easily that the system converges to the disease
free steady state.

We now need to show that (4.19) holds in the first three cases. In case (1) this simply follows from∫
Ω
q2(ω)I(t, ω)+q3(ω)R(ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
dω

≥
∫

Ω
min

{
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)
, q2(ω), q3(ω)

}
f(ω) dω =: ε > 0.

For the case (2) note that if S(t, ω) > f(ω)(1− p(ω)) then

Ṡ(t, ω) = µ(ω)f(ω)(1− p(ω))− (σ(ω)K(t) + µ(ω))S(t, ω)

< µ(ω)S(t, ω)− (σ(ω)K(t) + µ(ω))S(t, ω)

= −σ(ω)K(t)S(t, ω) ≤ 0

If K(t) converges to 0 we are done. Otherwise we can assume that for sufficiently large t we have that
S(t, ω) < f(ω)(1− p(ω)). Similar reasoning shows that we can also assume that for sufficiently large t
we have that R(t, ω) > f(ω)p(ω). Define

ε = (1−R0)

∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω > 0.
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Then for sufficiently large t we have∫
Ω

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
(S(t, ω)− f(ω)(1− p(ω)))

+ q3(ω)(R(t, ω)− f(ω)p(ω)) + q2(ω)I(t, ω) dω > 0

⇔
∫

Ω
q2(ω)I(t, ω) + q3(ω)R(t, ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
dω

>

∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω −

∫
Ω

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω

⇔

∫
Ω q2(ω)I(t, ω) + q3(ω)R(t, ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω)+µ(ω)

)
dω∫

Ω q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

> 1−

∫
Ω

q2(ω)σ(ω)
γ(ω)+µ(ω)f(ω)(1− p(ω)) dω∫

Ω q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

⇔

∫
Ω q2(ω)I(t, ω) + q3(ω)R(t, ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω)+µ(ω)

)
dω∫

Ω q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

> R0 −

∫
Ω

q2(ω)σ(ω)
γ(ω)+µ(ω)f(ω)(1− p(ω)) dω − ε∫

Ω q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

⇔
∫

Ω
q2(ω)I(t, ω) + q3(ω)R(t, ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
dω > ε.

The last equivalence here follows due to the definition of R0. For case (3) define Ω+ = Ωf\Ω−. Then
we have ∫

Ω+

q2(ω)I(t, ω) + q3(ω)R(t, ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
dω > 0

which implies∫
Ω+

q2(ω)I(t, ω) + q3(ω)R(t, ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
dω

+

∫
Ω+

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω >

∫
Ω+

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω.

(4.20)

Furthermore, with the same reasoning as in case (2), we have for sufficiently large t that

∫
Ω−

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
(S(t, ω)− f(ω)(1− p(ω)))

+ q3(ω)(R(t, ω)− f(ω)p(ω)) + q2(ω)I(t, ω) dω > 0,

93



which is equivalent to∫
Ω−

q2(ω)I(t, ω) + q3(ω)R(t, ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
dω

+

∫
Ω−

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω >

∫
Ω−

q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω.
(4.21)

Now we choose an ε with

0 < ε <

∫
Ω−

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω.

For such an ε we have∫
Ω−

q1(ω)f(ω)(1− p(ω))+q3(ω)f(ω)p(ω) dω>
∫

Ω−

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω+ε (4.22)

Adding (4.20) and (4.21) and then using (4.22) we get∫
Ω
q2(ω)I(t, ω) + q3(ω)R(t, ω) + S(t, ω)

(
q1(ω)− q2(ω)σ(ω)

γ(ω) + µ(ω)

)
dω

+

∫
Ω

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω

>

∫
Ω+

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω +

∫
Ω−

q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

>

∫
Ω+

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω +

∫
Ω−

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω + ε

=

∫
Ω

q2(ω)σ(ω)

γ(ω) + µ(ω)
f(ω)(1− p(ω)) dω + ε.

Subtracting
∫

Ω
q2(ω)σ(ω)
γ(ω)+µ(ω)f(ω)(1− p(ω)) dω from this inequality results in equation (4.19).

In the cases (4) and (5) we have∫
Ω
q1(ω)S(t, ω) + q2(ω)I(t, ω)+q3(ω)R(t, ω) dω ≥

∫
Ω

min {q1(ω), q2(ω), q3(ω)} f(ω)

=

∫
Ω
q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω.

Thus,

−
(

1−
∫

Ω q1(ω)S(t, ω) + q2(ω)I(t, ω) + q3(ω)R(t, ω) dω∫
Ω q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

)
≥ 0.

We again use that for sufficiently large t we have that∫
Ω

q2(ω)
γ(ω)+µ(ω)σ(ω) (f(ω)(1− p(ω))− S(t, ω)) dω∫
Ω q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

> 0.
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Since R0 < 1 we have for sufficiently large t and a sufficiently small δ > 0 that

R0 − 1 <

∫
Ω

q2(ω)
γ(ω)+µ(ω)σ(ω) (f(ω)(1− p(ω))− S(t, ω)) dω∫
Ω q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

−
(

1−
∫

Ω q1(ω)S(t, ω) + q2(ω)I(t, ω) + q3(ω)R(t, ω) dω∫
Ω q1(ω)f(ω)(1− p(ω)) + q3(ω)f(ω)p(ω) dω

)
− δ.

We encountered this inequality in the proof of Theorem 7 with a ’>’ instead of a ’<’ and a different sign
of δ. Taking exactly the same steps as in this proof we get∫

Ω

q2(ω)

γ(ω) + µ(ω)
İ(t, ω) dω < −δ̃K(t),

from which it follows that the system converges to the disease free steady state as shown above. 2

We want to note that in the cases (1) and (3) of the proof of this theorem the fact that R0 < 1

was not used. However, it can be easily shown that this inequality is implied by equation (4.19). The
assumptions (1) and (3) are therefore stronger than the condition that R0 < 1. In particular, in case one
of these assumptions if fulfilled there is no need to calculate the basic reproduction number in order to
know the asymptotic behaviour.

Furthermore, similarly as for the SIS-model it is possible to directly derive results for the aggregated
states from the above analysis. In the case µ = 0 we know for R0 ≤ 1 that I(t) goes to zero. If
R0 > 0 then even a small number of infected individuals will result in the disease being endemic in the
population.

4.3.3 SIR-model without demography

In this section we look at the SIR-system where µ(ω) = 0. Consequently the equations are

Ṡ(t, ω) = −σ(ω)
J(t)

H(t)
S(t, ω)− η(ω)S(t, ω),

İ(t, ω) = σ(ω)
J(t)

H(t)
S(t, ω) + η(ω)S(t, ω)− γ(ω)I(t, ω),

Ṙ(t, ω) = γ(ω)I(t, ω),

(4.23)

with

J(t) =

∫
Ω
q2(ω)I(t, ω) dω,

H(t) =

∫
Ω
q1(ω)S(t, ω) + q2(ω)I(t, ω) + q3(ω)R(t, ω) dω.
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Then R(t, ω) = R(0, ω) +
∫ t

0 γ(ω)I(τ, ω) dτ . We get∫ ∞
0

I(t, ω) dt =
R∗(ω)−R(0, ω)

γ(ω)
,

where R∗(ω) = lim
t→∞

R(t, ω). This limit exists since R(t, ω) is monotonically increasing and bounded
above by f(ω). From this we get∫ ∞

0
K(t) dt =

∫ ∞
0

∫
Ω q2(ω)I(t, ω) dω∫

Ω q1(ω)S(t, ω) + q2(ω)I(t, ω) + q3(ω)R(t, ω) dω
dt

≤
∫ ∞

0

∫
Ω q2(ω)I(t, ω) dω∫

Ω min{q1(ω), q2(ω), q3(ω)}(S(t, ω) + I(t, ω) +R(t, ω)) dω
dt

=
1∫

Ω min{q1(ω), q2(ω), q3(ω)}f(ω) dω

∫
Ω
q2(ω)

∫ ∞
0

I(t, ω) dt dω

=
1∫

Ω min{q1(ω), q2(ω), q3(ω)}f(ω) dω

∫
Ω
q2(ω)

R∗(ω)−R(0, ω)

γ(ω)
dω <∞.

(4.24)

Using the first equation in (4.23),

Ṡ(t, ω) = − (σ(ω)K(t) + η(ω))S(t, ω),

we see that

S(t, ω) = S(0, ω)e−σ(ω)
∫ t
0 K(τ)−η(ω)t dτ . (4.25)

In particular, for all ω ∈ Ω where both S(0, ω) > 0 and η(ω) = 0 hold true we have

S∗(ω) = lim
t→∞

S(t, ω) = S(0, ω)e−σ(ω)
∫∞
0 K(t) dt > 0,

while for any ω where either S(0, ω) = 0 or η(ω) > 0 the limit is obviously 0. That the function I(t, ω)

converges to 0 is also apparent. We have thus proven the following theorem.

Theorem 9. In the SIR model (4.23) the disease always dies out, i.e. I(t, ω) converges to 0 for every
ω ∈ Ω. Every individual with an h-state ω for which η(ω) > 0 becomes infected at some point, i.e.
S(t, ω) converges to 0. For those h-states where η(ω) = 0 the fraction e−σ(ω)

∫∞
0 K(t) dt of the initial

population S(0, ω) never becomes infected.

Note that this result also holds in the case where inf
ω∈Ω

σ(ω) = 0. The function γ(ω) however still

has to be bounded away from zero for this result to hold. A second aspect of importance is that I(0, ω),
although it is not present in the formulation of the result or its proof, is still an important factor here, as
it has a crucial influence on the value

∫∞
0 K(t) dt. Although this value can not be calculated from the

initial conditions alone, using (4.24) we can estimate∫ ∞
0

K(t) dt ≤ 1∫
Ω min{q1(ω), q2(ω), q3(ω)}f(ω) dω

∫
Ω
q2(ω)

f(ω)−R(0, ω)

γ(ω)
dω,
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which can be used to give an estimate for S∗(ω) without calculating the trajectories of the system. A
special case where we can give more information on the final state of the system is when the weights
q1(ω), q2(ω), and q3(ω) are all equal. In the following theorem χA denotes the characteristic function of
the set A. Furthermore, we exclude the rather uninteresting case where η = 0 and I(t, ω) = 0 a.e. in Ω.

Theorem 10. In the SIR model (4.23) where q1(ω) = q2(ω) = q3(ω) =: q(ω), and where η(ω)S(0, ω) =

0 and I(t, ω) = 0 do not both hold true almost everywhere, the final state of the susceptible population
is given by

S∗(ω) = S(0, ω)e
− σ(ω)∫

Ω q(ω)f(ω) dω

(
x−
∫
Ω
q(ω)
γ(ω)

R(0,ω) dω
)
χ{ω∈Ω:η(ω)=0}(ω), (4.26)

where x is the unique solution of the equation

x =

∫
Ω

q(ω)

γ(ω)
f(ω) dω −

∫
{ω∈Ω:η(ω)=0}

q(ω)

γ(ω)
S(0, ω)e

− σ(ω)∫
Ω q(ζ)f(ζ) dζ

(
x−
∫
Ω
q(ζ)
γ(ζ)

R(0,ζ) dζ
)

dω (4.27)

in the interval
(∫

Ω
q(ω)
γ(ω)R(0, ω) dω,∞

)
. The final state of the recovered population is given by

R∗(ω) = f(ω)− S∗(ω).

Proof Note that because of q1(ω) = q2(ω) = q3(ω) = q(ω) equality holds in equation (4.24). Thus,
combining equations (4.24) and (4.25) we get the representation

S∗(ω) = S(0, ω)e
− σ(ω)∫

Ω q(ω)f(ω) dω
∫
Ω q(ω)

R∗(ω)−R(0,ω)
γ(ω)

dω
χ{ω∈Ω:η(ω)=0}(ω). (4.28)

According to Theorem 9 I(t, ω) converges to 0, hence R∗(ω) fulfils the equation

R∗(ω) = f(ω)− S∗(ω) = f(ω)− S(0, ω)e
− σ(ω)∫

Ω q(ω)f(ω) dω
∫
Ω q(ω)

R∗(ω)−R(0,ω)
γ(ω)

dω
χ{ω∈Ω:η(ω)=0}(ω).

Multiplying this equation with q(ω)
γ(ω) and integrating over Ω yields∫

Ω

q(ω)

γ(ω)
R∗(ω) dω =

∫
Ω

q(ω)

γ(ω)
f(ω) dω

−
∫
{ω∈Ω:η(ω)=0}

q(ω)

γ(ω)
S(0, ω)e

− σ(ω)∫
Ω q(ζ)f(ζ) dζ

(∫
Ω
q(ζ)
γ(ζ)

R∗(ζ) dζ−
∫
Ω
q(ζ)
γ(ζ)

R(0,ζ) dζ
)

dω.
(4.29)

Denoting
∫

Ω
q(ω)
γ(ω)R

∗(ω) dω by x in equations (4.28) and (4.29) results in equations (4.26) and (4.27).
Note that we necessarily have∫

Ω

q(ω)

γ(ω)
R∗(ω) dω ≥

∫
Ω

q(ω)

γ(ω)
R(0, ω) dω,
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as R(t, ω) is monotonically increasing. Further note that at x =
∫

Ω
q(ω)
γ(ω)R(0, ω) dω the right hand side

of (4.27) is given by∫
Ω

q(ω)

γ(ω)
f(ω) dω −

∫
{ω∈Ω:η(ω)=0}

q(ω)

γ(ω)
S(0, ω) dω ≥

∫
Ω

q(ω)

γ(ω)
f(ω) dω −

∫
Ω

q(ω)

γ(ω)
S(0, ω) dω

=

∫
Ω

q(ω)

γ(ω)
(I(0, ω) +R(0, ω)) dω

≥
∫

Ω

q(ω)

γ(ω)
R(0, ω) dω = x,

where at least one of the inequalities is strict. That the solution to equation (4.27) exists and is unique in
the given interval can now be inferred from the fact that the left hand side of (4.27) has constant derivative
1 while the derivative of the right hand side is strictly monotonically decreasing in x and converges to 0.
2

Note that instead of knowing q(ω), γ(ω), and f(ω) in Theorem 10 it suffices to know the function
q(ω)
γ(ω) and the values

∫
Ω q(ω)f(ω) dω and

∫
Ω
q(ω)
γ(ω)f(ω) dω. Further note that obviously x has to lie in the

interval
(∫

Ω
q(ω)
γ(ω)R(0, ω) dω,

∫
Ω
q(ω)
γ(ω)f(ω) dω

)
.

4.4 Conclusions

We have identified the steady states and analysed the stability of these steady states for both a SIS-
and SIR-model. Due to the complexity of these models, we were only able to carry out this analysis
under some additional restrictions on the parameters. Furthermore, other SIS- or SIR-models that do
not fall into our framework may be of interest, e.g. models using different transmission functions or
without constant population. However, such models or extensions of the models presented here may still
be analysed by methods similar to the ones we used.

The results show that for heterogeneous systems the basic reproduction number R0 can in many
circumstances be used as an indicator whether an endemic steady state exists or not. Also, the qualitative
behaviour of the system near the disease free steady state can be determined by calculating R0. We see
that the basic reproduction number is still as important a concept as it is for the homogeneous systems.
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Chapter 5

Set membership estimations for the
evolution of infectious diseases in
heterogeneous populations1

5.1 Introduction

The role of heterogeneity of a population for the evolution of infectious diseases is well recognized in
the existing literature, see e.g. [31, 26, 30]. Various kinds of models have been developed to take into
account heterogeneity with respect to immune system, contact rates and other traits, including cellular
automata [100], random networks [86, 110] distributed integro-differential systems [91, 31, 92, 107], etc.
For a more comprehensive bibliography see the recent paper [48]. A substantial limitation for utilization
of most of these models is that they require detailed information about the distribution of the population
along the numerical values of the traits, that is, about the h-state (heterogeneous state) of the individuals
in the population ([30]). Such detailed information is usually not available. The available information
is vague and even reliable statistical characteristics are often not known. One way to overcome this
difficulty is to pass to aggregated models that require less information. This approach is stressed in [30]
and we mention the papers [32, 59, 107, 91, 60, 92] developing aggregation techniques for certain special
classes of heterogeneous models defined by integro-differential systems.

In the present paper we employ an alternative approach, in which the distribution of the population
among the h-states is uncertain, but set-membership information is available (possibly together with cer-
tain aggregated data). The set-membership information may be given in the form of lower and upper
bounds for the number of susceptible, infected, recovered, etc. individuals at each h-state. The aggre-
gated information is typically about the total number of susceptible, infected, etc. individuals at the

1This chapter has at the time of writing been submitted for peer review to the Journal of Mathematical Biology.
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initial time. This information is used to obtain set-membership estimations (shortly set-estimates) for the
evolution of the disease. The set estimations at a given time t contain all aggregated states (total number
of susceptible, infected, etc. individuals) that are consistent with the available initial information and the
model describing the dynamics of the population system. The set-estimation approach is well known and
widely used (see e.g. [15, 85, 73]), but in the present epidemiological context there are important points
that had to be developed.

The investigation is carried out for a rather general model of a heterogeneous multi-group population,
which consists of a distributed first order differential system complemented with integral relations. This
model covers heterogeneous versions of SI, SIR, and many other standard epidemiological models. At
this level of generality we present our set-estimation approach. In the set-estimation theory for evolution-
ary systems one can distinguish two different groups of methods. In the first, set-estimations of Marko-
vian type are sought, where the set-estimation at a given time t determines the future set-estimations
(the minimal set-estimation has this property). The advantage is, that it is sometimes possible to obtain
infinitesimal (even differential) equations for the evolution of Markovian set-estimations in a prescribed
family of sets (polyhedrons, ellipsoids, etc., see [73]). The drawback is, that such estimations are usually
too “pessimistic” , that is, too large, compared with the minimal set-estimation. Our approach belongs
to the second group: at each time the set-estimation is obtained independently of the previously obtained
estimations. Technically, finding such estimations (even minimal ones) can be done by solving families
of auxiliary dynamic optimization problems. In our case these optimization problems are non-standard,
because they involve constraints in the form of first order distributed differential systems and integral re-
lations. Therefore, the first main goal of the paper is to present a technique for solving such optimization
problems.

The second goal of the paper is to show that the set-estimation technique may give useful information
about the spread of infectious diseases under uncertainty of data (we focus on uncertainty of the h-state-
distribution of the initial population). In many cases the population has certain dissipativity property
that makes the set-estimations not much expanding, even shrinking to a point or to a reasonably small
set, when the time progresses. Thanks to this, one can perform various kinds of comparative analysis.
For example, we investigate the effect of various scenarios of interventions (vaccination or prevention
programs) applied prior to the outburst of the disease.

We mention that our previous work [109] allows to determine the exact asymptotics of the aggregated
states of a class of heterogeneous SI-models, depending on the initial h-state-distribution of the popu-
lation. This allows to obtain a set-estimation for the asymptotic state of the disease for this particular
SI-model in an alternative way. The comparison with the results obtained by the general approach in the
present paper, which turns out to be the same, serves as a verification test.

The plan of the paper is as follows. Section 5.2 explains the aim of this paper in terms of a simple SI
model used later as benchmark. The general model, the assumptions, and the formulation of the set-
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estimation problem are given in Section 5.3. In Section 5.4 we present the set-membership technique
and some technicalities needed to adapt it to the present framework. Section 5.5 is devoted to numerical
analysis of certain SI and SIR heterogeneous models by the set-estimation techniques. Some conclusions
and lines of future research are presented in Section 5.6. The main technical issue of the paper is given
in the Appendix.

5.2 A benchmark SI-model

To present our main motivation, we introduce below a particular case of the problem we investigate in
this paper, which involves a heterogeneous version of the known SI model in mathematical epidemiology.
The whole population is divided into two groups – susceptible individuals and infected individuals. The
individuals are heterogeneous, in the sense that a scalar ω ∈ Ω ⊂ R is associated with each individual,
indicating specific traits relevant to the particular disease, e.g. the intensity of risky contacts, the state of
the immune system, etc. The parameter ω is called heterogeneous state (shortly h-state) of the individual,
see e.g. [26, 31] or textbooks such as [30].

The following model is a particular case of the one in [107]:

Ṡ(t, ω) = −σ(ω)p(ω)
J(t)

K(t) + J(t)
S(t, ω) + κS(t, ω), S(0, ω) = u1(ω),

İ(t, ω) = σ(ω)p(ω)
J(t)

K(t) + J(t)
S(t, ω)− γI(t, ω), I(0, ω) = u2(ω),

K(t) =

∫
Ω
p(ω)S(t, ω) dω,

J(t) =

∫
Ω
q(ω)I(t, ω) dω.

(5.1)

Here S(t, ω) and I(t, ω) represent the size of the susceptible and of the infected population with h-state
ω at time t, respectively. The parameter κ is the net population growth rate of the susceptible popula-
tion, γ is the net mortality rate of the infected population, σ(ω) is the force of infection, meaning the
probability that a risky interaction between a susceptible and an infected individual results in infection of
the susceptible individual (it may incorporate also the immune status of the susceptible individual), and
p(ω) and q(ω) denote the participation rate of susceptible/infected individuals of h-state ω in risky inter-
actions. The aggregated state variables K(t) and J(t) represent the total amount of susceptible/infected
individuals, weighted with their respective risky behaviour, while J(t)/(K(t) + J(t)) is the weighted
prevalence of the disease at time t (see e.g [107, 109] for more detailed explanations). At the initial time
t = 0, the distribution of the initial susceptible and infected sub-populations along the h-states, ω ∈ Ω,
is given by the functions u1(ω) and u2(ω), respectively.

In fact, the main quantities of practical interest are the total size of the susceptible and infected
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populations:

S(t) :=

∫
Ω
S(t, ω) dω and I(t) :=

∫
Ω
I(t, ω) dω. (5.2)

Solving system (5.1) is not problematic, provided that all data involved are known. However, in reality
the information about the distribution of individuals along the heterogeneous space Ω is vague. That is,
the functions u1 and u2 are not precisely known. A relatively reliable information about these functions
is provided by the aggregated values∫

Ω
u1(ω) dω = S(0) and

∫
Ω
u2(ω) dω = I(0), (5.3)

since measurements of S(0) and I(0) are feasible. Statistical information for higher integral moments
of u1 and u2 (in the form of equalities or inequalities) may also be available, and its incorporation in our
subsequent considerations is a matter of technical work that we avoid for more transparency. Additional
information about u1 and u2 may be given in terms of bounds:

ui(ω) ∈ [ϕi0(ω), ϕi1(ω)], ω ∈ Ω, i = 1, 2. (5.4)

Any pair of measurable functions (u1, u2) satisfying (5.3) and (5.4) (that is, consistent with the available
information) will be viewed as possible (sometimes called admissible) realizations of the uncertainty for
the h-distribution of the initial population.

Due to the uncertainty of the initial data (u1, u2), the issue of obtaining a set-membership estimation,
E(t), of the aggregated state (S(t), I(t)) does naturally arise. This means that sets E(t), t ≥ 0, have to
be determined, such that

(S(t), I(t)) ∈ E(t), t ≥ 0, (5.5)

whatever the admissible initial functions (u1, u2) are, where (S(t), I(t)) is the corresponding solution
of system (5.1) enhanced with (5.2).

The main goal of this paper is to present a computationally implementable approach for obtaining
set-membership estimations as in (5.5). Such an approach is developed in the next section for a general
system with a structure similar to (5.1), (5.2).

5.3 Formulation of the problem and preliminaries

Having in mind the set-membership estimation problem in the previous section, below we formulate a
more general problem that covers heterogeneous versions of a variety of models in mathematical epi-
demiology and in other areas.

Let [0, T ] be a given time-interval and let Ω be a compact interval in which the parameter of hetero-
geneity, ω, takes values. Denote D = [0, T ]× Ω. State variables in the model below are functions

x : D → Rm and y : [0, T ]→ Rn.
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The dynamics is given by the equations

ẋ(t, ω) = f(t, ω, x(t, ω), y(t)), (t, ω) ∈ D, (5.6)

x(0, ω) = u(ω), ω ∈ Ω, (5.7)

y(t) =

∫
Ω
g(t, ω, x(t, ω)) dω, t ∈ [0, T ], (5.8)

where

f : D × Rm × Rn → Rm and g : D × Rm → Rn

are given functions and the upper “dot” means differentiation with respect to t, so that ẋ(t, ω) :=

∂x(t, ω)/∂t. The initial data u : Ω→ Rn is uncertain, and the available information about it is given by
the following constraints:

u(ω) ∈ [ϕ0(ω), ϕ1(ω)], ω ∈ Ω, (5.9)∫
Ω
u(ω) dω = c. (5.10)

The inclusion in (5.9) is understood component-wise: ui(ω) ∈ [ϕi0(ω), ϕi1(ω)], where u = (u1, . . . , um),
ϕj = (ϕ1

j , . . . , ϕ
m
j ), j = 0, 1; the vector c ∈ Rm and the functions ϕ0 and ϕ1 are given.

We consider every function from the set

U :=

{
u ∈ Lm∞(Ω) : u(ω) ∈ [ϕ0(ω), ϕ1(ω)] for a.e. ω ∈ Ω,

∫
Ω
u(ω) dω = c

}
.

as an admissible (possible) realization of the uncertain function u.
Before formulating the estimation problem in the spirit of the previous section, we give the necessary

assumptions and clarify the meaning of solution of the above model.

Assumptions:

(i) The function f is measurable in (t, ω), g is continuous in t and measurable in ω, both are locally
essentially bounded, differentiable in (x, y) with locally Lipschitz partial derivatives, uniformly with
respect to (t, ω) ∈ D;

(ii) the functions ϕ0, ϕ1 : Ω → Rm are continuous and satisfy the inequalities ϕ0(ω) ≤ ϕ1(ω) and∫
Ω ϕ0(ω) dω < c <

∫
Ω ϕ1(ω) dω;

(ii) For every u ∈ U the solution (x(·, ·), y(·)) of (5.6)–(5.8) exists on the whole interval [0, T ].

By definition, solution of (5.6)–(5.8) is any pair of measurable and bounded functions (x(·, ·), y(·)) on
D and [0, T ] respectively, such that for a.e. ω ∈ Ω the equation

x(t, ω) = u(ω) +

∫ t

0
f(s, ω, x(s, ω), y(s)) ds (5.11)
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holds on [0, T ] and (5.8) holds for a.e. t ∈ [0, T ].

Notice that according to Assumption (i) x(·, ω) is (uniformly) Lipschitz continuous for a.e. ω and y
is continuous.

Every u ∈ U generates a solution (x[u], y[u]) of (5.6)–(5.8) and similarly as in the proof of [34,
Proposition 2] one can prove that the solution is unique. Denote

R(t) := {y[u](t) : u ∈ U} , t ∈ [0, T ].

That is, R(t) the set of all aggregated states y that result from some admissible realization of the un-
certainty, u ∈ U . In this sense, R(t) is the exact (meaning minimal) set-membership estimation of the
aggregated state at time t. In the next section we present a method of obtaining estimates

E(t) ⊃ R(t), t ∈ [0, T ].

Even more, the method allows to obtain outer approximations of arbitrary accuracy of the convex hull
coR(t).

Sometimes not all components of y are of interest (latent components). If L ⊂ Rn is a given subspace,
we will obtain estimations of the projections of y(t) on L:

E(t) ⊃ prL(coR(t)), (5.12)

where prL is the projection operator on L.

In the epidemiological problems which serve as prototypes for the above problem (cf. [32, 48, 107, 109]),
the dimension m may equal 2 (in SI and SIS models), 3 (in SIR models), etc. The aggregated state y
has usually a higher dimension than x. In the benchmark model (5.1), (5.2) considered in Section 5.2
we have m = 2 and n = 4: x(t, ω) = (S(t, ω), I(t, ω)), y(t) = (K(t), J(t), S(t), I(t)). However,
estimating the pair (S(t), I(t)) is of primal interest, thus L := (0, 0,R,R).

5.4 The set-membership estimation

In this section we focus on the approximation of the exact set-membership estimation R(t). The pro-
cedure described in the first subsection is well known in control theory, while the second subsection is
devoted to the main technical tool which is specific for the model presented in the previous section. The
numerical scheme is briefly described in the third subsection.

104



5.4.1 The approach

Let us fix a time τ ∈ (0, T ] and a unit vector l ∈ Rn. Consider the optimization problem

max
u∈U
〈l, y(τ)〉 (5.13)

subject to the constraints (5.6)–(5.10). (Here and below 〈·, ·〉 denotes the scalar product.) If yl = y[ul](τ)

is a solution, then yl ∈ R(τ) and 〈l, yl〉 ≥ 〈l, y〉 for every y ∈ R(τ). If we repeat the same for a number
of unit vectors, say {l1, . . . , lk} =: Λ we obtain that

YΛ(τ) := {yl1 , . . . , ylk} ⊂ R(τ) ⊂ {y ∈ Rn : 〈li, y − yli〉 ≤ 0, i = 1, . . . , k} =: EΛ(τ).

Thus, EΛ(τ) is a set-membership estimation of y(τ). It is an easy exercise to show that the Hausdorff
distance H(coYΛ(τ), EΛ(τ)) decreases when the set Λ is enlarged, and converges to zero if the sets
Λ provide ε-nets on the unit sphere with ε converging to zero. Thus, we may obtain inner and outer
approximations of any accuracy to the convex hull of the exact set-membership estimationR(τ).

If only a set-membership estimation on a subspace L is needed (see (5.12)), then it is enough to
take collections of unit vectors Λ belonging to the space L (which makes problems of high dimension
tractable, provided that the dimension of L is low – 1, 2 or 3).

The approach described above requires multiple solving of problem (5.13), (5.6)–(5.10). This is not an
easy task, since we deal with a distributed system with non-local dynamics (due to the presence of the
aggregated states y) and constraints on the variable u. We employ a gradient projection method in the
space L∞(Ω) for the variable u ∈ U . This means that the objective function in (5.13) is considered as
a functional, J(u) of u ∈ U ⊂ L∞(Ω) with y(τ) viewed as a function of u: y(τ) = y[u](τ). The
functional

J(u) = 〈l, y[u](τ)〉 (5.14)

has to be maximized on the set U . Then a standard gradient projection method can be implemented – for
more details see Section 5.4.3 below.

However, there is an auxiliary problems that arises: to determine the gradient (meaning the Fréchet
derivative) of J . This problem will be addressed in the next subsection.

5.4.2 The gradient in problem (5.13)

Let u ∈ U and let (x, y) be the corresponding solution of system (5.6)–(5.8) on [0, τ ] × Ω, where
τ ∈ (0, T ] is the number fixed in the previous subsection. We shall obtain a representation of the Fréchet
derivative of the functional J in (5.14) in the space L∞.

Let
λ : D 7→ Rm and ν : [0, τ ] 7→ Rn
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be a measurable and bounded solution on [0, τ ]× Ω of the system

−λ̇(t, ω) = (f ′x(t, ω, x(t, ω), y(t)))>λ(t, ω) + (g′x(t, ω, x(t, ω)))>ν(t), (5.15)

λ(τ, ω) = −(g′x(T, ω, x(T, ω)))> l, (5.16)

ν(t) =

∫
Ω

(f ′y(t, ω, x(t, ω), y(t)))>λ(t, ω) dω. (5.17)

Here the superscript > means transposition, and the meaning of solution is similar to that of the initial-
value problem (5.6)–(5.8). As in the proof of Proposition 2 in [34] one can show that system (5.15)–
(5.17) has unique solution.

Proposition 5. The functional J : L∞(Ω) −→ R is Fréchet differentiable and its derivative at u has a
representation in L∞(Ω) given by

J ′(u) = −λ(0, ·), (5.18)

where λ is defined by (5.15), complemented with (5.16), (5.17).

The proof of this proposition is given in the Appendix.

5.4.3 Implementation of the gradient projection method

Below we briefly describe (first at conceptual level, not involving the discretisation) the implementation
of the gradient projection method for solving problem (5.13), (5.6)–(5.10). We start with an initial guess
u0(·) with

∫
Ω u

0(ω) dω = c and u0(ω) ∈ [ϕ0(ω), ϕ1(ω)] (see Assumption (ii)). Then we obtain the
corresponding to u0 solution (x0, y0) of initial value problem (5.6)–(5.8). With this solution inserted
in terminal value problem (5.15)–(5.17) we obtain the corresponding λ0, which determines the Fréchet
derivative J ′(u0) = −λ0(0, ·), according to Proposition 5. Then we make a gradient step of size ρ0

defining u1(·) := prU ((u0(·)−ρ0λ0(0, ·)) (prU is the projection on U ⊂ L∞(Ω)), where ρ0 is chosen by
scalar maximization of J(prU (u0(·)− ρλ0(0, ·))) with respect to ρ ≥ 0. The same procedure is repeated
iteratively (staring with u1 at step 1, etc.) until prU (uk(·) − λk(0, ·)) − uk(·) becomes close to zero,
which is an indication for that uk is close to a (local) maximizer. Making the last statement strict is a
matter of additional work that we do not touch in this paper.

Above, we sketched the gradient projection method in the space L∞(Ω). However, in the numerical
implementation of the method we pass to a finite-dimensional space. We use a discretisation by a second
order Runge-Kutta scheme (the Heun scheme) for the differential equations and the trapezoidal quadra-
ture formula for integration over Ω for obtaining approximate solutions of problems (5.6)–(5.8) and
(5.15)–(5.17) (the latter is used for calculation of the gradient). The projection on the admissibility set U
is than replaced by a projection on a polyhedral set of the form

U :=

{
(u1, . . . uN ) ∈ Rm×N : ϕ0(ωi) ≤ ui ≤ ϕ1(ωi),

N∑
i=1

αiu
i = c

}
,
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where ωi are the mesh points in Ω, N is their number, and αi are the coefficients of the quadrature
formula. (Observe that U is non-empty for a sufficiently dense mesh {ωi} due to Assumption (ii).)
There is a huge literature and available software for this kind of projection problems, for both see e.g.
[42] and the references therein. For details about the implementation of the gradient projection method
(including the choice of the step length ρ) see e.g. [96, Chapter 4].

We remind that to obtain a good approximation E(τ) of the minimal convex set-membership estimation
coR(τ) for a given τ it is necessary to solve problem (5.13), (5.6)–(5.10) for many unit vectors l in the
space of interest, L. Even more, in order to predict the evolution of state y(t) by means of the estimation
E(t) we need to do this for a number of time instances τ . Naturally, the obtained (approximate) maxi-
mizer u for given τ and l can be used as initial guess for neighbouring instances τ and vectors l, which
makes the overall estimation procedure tractable on a commercial PC.

5.5 Numerical analysis

In this section we present numerical results and analysis of versions of SI and SIR heterogeneous models.

5.5.1 SI-model without population growth

Here we deal with the system (5.1), (5.2) with κ = 0, that is, the disease-free population has constant size.
We consider this special case for the following reason: the asymptotics of the minimal set-membership
estimation R(t), t → +∞, can be determined in an alternative way, and can be compared with the
estimation E(t) obtained by the approach in the present paper. This is a test for the performance of the
set-estimation techniques. Let us briefly describe this alternative way.

From (5.1) it is apparent that S(t, ω) is monotonically decreasing and positive, and thus convergent.
This easily implies that Ṡ(t, ω)→ 0. Since İ(t, ω) = −Ṡ(t, ω)− γI(t, ω), we obtain in a standard way
that I(t, ω) converges to 0, provided that γ > 0. Thus also I(t) → 0. In our paper [109] it is shown
how to determine the asymptotics of S(t) for given initial data (S(0, ·), I(0, ·)) = (u1, u2). There, it
is assumed that p(ω) = q(ω) > 0, σ(ω) = σ > 0 is constant, and the set of those ω ∈ Ω, for which
S(0, ω) > 0 and γ > σp(ω), has positive measure. Then [109, Section 4.2] claims that

lim
t→+∞

S(t) := S∗(u1, u2) =

∫
Ω
e−σF

∗p(ω)u1(ω) dω, (5.19)

where F ∗ is the unique positive solution of the equation∫
Ω
p(ω)eF

∗(γ−σp(ω))u1(ω) dω =

∫
Ω
p(ω)(u1(ω) + u2(ω)) dω.

Hence,

lim
t→+∞

R(t) =

[
min

(u1,u2)∈U
S∗(u1, u2), max

(u1,u2)∈U
S∗(u1, u2)

]
× 0. (5.20)
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Solving the two optimization problems involved in the last formula again requires a numerical algorithm,
but now we deal with a completely static problems (differential equations are not involved). Again a
gradient projection method is applied, since the Fréchet derivative of S∗ can be analytically represented.
We skip the details of this procedure.

The essence of the above paragraph is that now we have two different methods for approximation of
the limit ofR(t): by the way mentioned just above, and by using the general technique presented in this
paper for approximating R(t), applied for large t. The comparison is clearly seen in Figs. 5.1 and 5.2,
obtained for the data specifications described below.

The initial size of the population is normalized to one: S(0) + I(0) = 1. Moreover, Ω = [0, 1],
δ = 0.15 and σ = 0.1. The weight functions p(ω) and q(ω) are linear: p(ω) = q(ω) = 0.5 + ω (the
constant term means that all individuals have risky contacts). In order to define the lower and the upper
bounds ϕ0(·) and ϕ1(·) of u(·) we assume that the initial distribution of trait ω among the susceptible
and infected populations is close to a normal distribution ϕ(·) with mean 0.5 and variance 0.3 truncated
to the unit interval and normalised there. More precisely, its deviation from ϕ is at most 20%. This leads
to bounds

u1(ω) ∈
[

4

5
S(0)ϕ(ω),

6

5
S(0)ϕ(ω)

]
, u2(ω) ∈

[
4

5
I(0)ϕ(ω),

6

5
I(0)ϕ(ω)

]
.

Fig. 5.1 shows the evolution of the estimation E(t) obtained by using 20 equidistant unit vectors
l ∈ R2. It converges to the limit set R(+∞) calculated as in (5.20). Thus the two different ways
to approximate the limit set-estimation are consistent with each other. This can be seen even better in
Fig. 5.2 (left plot), where the dotted lines represent the interval in the right-hand side of (5.20), while the
solid lines represent the evolution of prS(E(t)). The convergence of prI(E(t)) to zero is seen on the right
plot in Fig. 5.2 (right plot).

5.5.2 SI-model with population growth

We continue do deal with the system (5.1), (5.2), but now consider a growing population. We set δ = 0.1,
σ = 0.105, and κ = 0.004. Fig. 5.3 shows the set-membership estimation E(t) of the system (5.1) at
t = 2, 4, . . . , 40, obtained by using 20 equidistant unit vectors l ∈ R2.

We remind that obtaining a set-estimation E(t) requires solving the auxiliary problem (5.13) for various
unit vectors l (in the present model case l ∈ R2). A feasible u that solves this problem is called extremal
realization of the uncertainty in the initial data, or merely extremal, in direction l. A comprehensive
analysis of the structure of the extremal u is a complicated task, seemingly not tractable, in general, al-
though it may give useful information about “worst case” realizations of the uncertainty. Our numerical
experiments with the SI model in Section 5.5.1 give evidence that the extremal u has a bang-bang struc-
ture. More precisely, for an extremal u there exists a subset A ⊂ Ω such that u(ω) = ϕ1(ω) for ω ∈ A
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Figure 5.1: Set-membership estimates of system (5.1) with κ = 0 for various t. The thick line at the
bottom left is the exact set-estimation at infinity, R(+∞), calculated as in (5.20). For t < ∞ the
estimation E(t) is calculated by using 20 equidistant unit vectors l ∈ R2.
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Figure 5.2: Estimates for the maximal and minimal value of S(t) and I(t). For large t these values for
S(t) converge to the maximal and minimal value of S∗. For I(t) they converge to 0.
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Figure 5.3: Set-membership estimates of system (5.1), (5.2) for various t, obtained by using 20 equidis-
tant unit vectors l ∈ R2.
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Intervention on σ(ω) Intervention on p(ω)
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Figure 5.5: Set-estimations of the prevalence, Ep(t), in case of intervention affecting σ(ω) (left plot)
and p(ω) (right plot). The dotted lines represent Ep(t) in the case of no intervention, the dashed lines
represent Ep(t) in the case of intervention applied to low risk individuals, and the solid lines – to high
risk individuals.

and u(ω) = ϕ0(ω) for ω ∈ Ω\A. Of course, the set A depends on u, hence on the estimation time t
and the direction l. In the experiments with the present SI-model the set A always consists of a single
interval. Fig. 5.4 presents the extremal initial data u2(ω) = I(0, ω) for l = (sin(1.4π), cos(1.4π)) and
various values of t. For t = 1, . . . , 27 the set A stays the same, A = [0, 0.5), and the corresponding u2

is depicted on the left plot of Fig. 5.4. For t = 28, . . . , 40 we obtain A = (0.5, 1] and the corresponding
u2 is depicted on the right plot of Fig. 5.4. Thus the structure of the extremal data may abruptly change
when the estimation time changes.

In the rest of this subsection we investigate the effect of intervention (prevention) polices implemented
prior to or around the outburst of the disease at t = 0. Such a policy may influence either the individual
susceptibility rate, σ(ω), (say, by vaccination) or the individual contact rate, p(ω) (by educational or
other prevention programs). Assuming that the resource for intervention is limited, the question arises
how to allocate it among individuals, regarding their h-state ω. As mentioned in Section 5.2, exact
information about the h-state of individuals is not available, therefore a complex intervention policy
that targets specific sections of the population with particular h-states cannot be enforced in practice.
However, it may be feasible to identify groups of high-level and groups of low-level risk.

In view of the above, we consider two scenarios: applying the intervention to high risk individuals
(here we mean those with high values of p(ω)) or applying it to low risk individuals (i.e. those with low
values of p(ω), respectively). Even though this way of modelling of interventions is crude, it qualitatively
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Figure 5.6: The left plot shows the evolution of the set-estimation Ep(t) of the prevalence in case of no
intervention: the whole population becomes (asymptotically) infected. The right plot shows Ep(t) with
the intervention applied to the low risk (dashed lines) and high risk (solid lines) individuals. The inter-
vention targeting the low risk individuals is now significantly more efficient and, in particular, prevents
extinction.

answers the question which part of the population (high risk or low risk individuals) should be mainly
targeted. As we see below, the answer is not evident.

To be specific, we assume that for a third of the population we can decrease susceptibility rate σ(ω) or the
contact rate p(ω) by 50%. The question is, what will the effect of the intervention be if it is applied to the
one third of the population at higher risk versus the same fraction of the population at low risk. The effect
of intervention is measured by the set-membership estimation of the prevalence. Let us clarify the last
notion. If we have obtained a set-estimation E(t) for (S(t), I(t)), then the corresponding set-estimation
for the prevalence I(t)/(S(t) + I(t)) is the interval

Ep(t) :=

[
min

(s,i)∈E(t)

i

s+ i
, max

(s,i)∈E(t)

i

s+ i

]
.

In Fig. 5.5 we show the progress of the set-estimation of the prevalence in three scenarios: no in-
tervention (the dotted lines), intervention applied to low risk individuals (dashed lines), and intervention
applied to high risk individuals (solid lines). On the left plot the intervention decreases the susceptibility
σ(ω) of the treated individuals, while on the right plot – the contact rates, p(ω). Comparing the fig-
ures we see that in both cases interventions are productive and that the intervention applied to high risk
individuals is significantly more efficient.
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However, it is not always the case that intervention is more efficient if applied to the individuals with
highest risk. To show this we consider the above SI model with only the value of σ(ω) increased from
0.105 to 0.3, i.e. we assume higher susceptibility. On the left plot of Fig. 5.6 we see that the prevalence
approaches value 1 (and actually the population becomes extinct, asymptotically). We consider again an
intervention that reduces σ(ω) by 50%. On the right plot of Fig. 5.6 we see the result of this intervention
when applied to the high risk and to low risk individuals, respectively. Again both interventions yield
an improvement. However, now the intervention targeting the low risk individuals is more efficient and
prevents extinction.

5.5.3 SIR-model

In this subsection we consider the following heterogeneous SIR model:

Ṡ(t, ω) = −σp(ω)J(t)S(t, ω) + κ(I(t, ω) +R(t, ω)), S(0, ω) = u1(ω)

İ(t, ω) = σp(ω)J(t)S(t, ω)− (γ + κ)I(t, ω), I(0, ω) = u2(ω)

Ṙ(t, ω) = γI(t, ω)− κR(t, ω), R(0, ω) = u3(ω)

(5.21)

where

J(t) =

∫
Ω
p(ω)I(t, ω) dω.

The new variable R(t, ω) represents the “number” of individuals who have recovered from the infection.
Now the parameter γ has to be interpreted as the recovery rate, and κ denotes both the birth rate and the
mortality rate. Thus in this model the disease has no influence on the mortality of infected individuals and
the size of the population is constant. Furthermore, newborn individuals are assumed to be susceptible
and reproduction is not affected by being infected or recovered.

In Fig. 5.7 we show the progress of the set-estimation of (S(t), I(t)) for σ = 0.25, κ = 0.004, γ = 0.1,
and p(ω) = 0.5 + ω. We assume that at t = 0 there are no recovered individuals, i.e. u3(ω) = 0, and
the bounds on u1(·) and u2(·) are the same as in Section 5.5.1. We see that the set-estimation exhibits an
oscillatory behaviour, in contrast with the SI-model. The size of the set-estimation varies with time, but
remains reasonably small.

It is interesting to mention that the structure of the extremal initial data (u1(ω), u2(ω), 0) (see Sec-
tion 5.5.2) in the SIR-model is much more complicated than that in the SI-model. As seen in Fig. 5.8,
for a given unit vector l ∈ L := R2 × 0, the extremal initial data u2(ω) = I(0, ω) may change its
structure several times when the estimation time progresses: for time instances t = 20 and t = 220 the
lower bound ϕ2

0(ω) is active for small ω and the upper bound ϕ2
1(ω) is active for large ω, while for time

instances t = 120 and t = 320 the opposite happens.
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Figure 5.7: Set-membership estimates on the (S, I)-plane of system (5.21) for various times t, obtained
by using 8 equidistant unit vectors l ∈ R2 × 0.
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5.6 Conclusions and perspectives

In this paper we demonstrate the tractability and applicability of the set-membership estimation approach
for prediction of the evolution of infectious diseases in heterogeneous populations, using distributed
differential models under uncertainty about the individual traits relevant for the disease. The available
information is in the form of two-sided bounds for the distribution of the initial population along the space
of heterogeneity (the h-states), possibly together with some aggregated data. Although the numerical
illustrations of the developed estimation technique involve only SI and SIR heterogeneous models, the
technique is applicable to more complex models, provided that the evolution of only 2 or 3 aggregated
states (such as the total number of susceptible, infected, recovered, etc. individuals) have to be estimated.

However, the presented general model has the drawback that the individuals do not change their h-
state (that is, their individual traits) over time. If the trait comprises the contact rate, this means that
individuals keep their contact rate constant, independently of the evolution of the disease. Change of
the contact rate may happen only if an individual becomes infected. This assumption is not realistic,
and models and corresponding estimation techniques aimed to cope with variable individual traits are a
subject of current work.

Another line of research is to involve in the presented model framework dynamic intervention poli-
cies (not only prevention prior to the outburst of the disease, as in Section 5.5.2 of the present paper). The
uncertainty about the h-states of the population brings into consideration the problem to control the evo-
lution of set-membership estimations by prevention or medication policies. This problem is profoundly
investigated in other, mainly engineering, contexts (see the recent book [74] and the numerous references
therein).

Appendix: Proof of Proposition 5

Let u(·) be an admissible control and ∆u(·) be such that u(·) + ∆u(·) is admissible too. We shall denote
by x(·, ·) + ∆x(·, ·), and by y(·) + ∆y(·) the state variables corresponding to u(·) + ∆u(·) and by J(u)

the functional 〈l, y[u](τ)〉 (we remind that l is a given nonzero vector from Rn). We also introduce
the notational convention to skip the arguments x and y. For instance f(t, ω) := f(t, ω, x(t, ω), y(t)),
g′x(t, ω) := g′x(t, ω, x(t, ω)), etc.

Let us define the number r as

r = J(u+ ∆u)− J(u) +

∫
Ω
〈λ(0, ω),∆u(ω)〉 dω

We will show that r fulfils |r| ≤ C||∆u(·)||2L∞ (Ω) for some positive constant C, from which the propo-
sition follows. First we give a more explicit representation of r.
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Lemma 8. The remainder r fulfils

r = −
∫ τ

0

∫
Ω

〈
λ(t, ω), f ′y(t, ω)

∫
Ω

[g′x(t, ω′, x̃(t, ω′))− g′x(t, ω′)]∆x(t, ω′) dω′
〉

dω dt

+

∫ τ

0

∫
Ω

〈
λ(t, ω), [f ′x(t, ω, x̄(t, ω), ȳ(t))− f ′x(t, ω)]∆x(t, ω)

〉
dω dt

+

∫ τ

0

∫
Ω

〈
λ(t, ω), [f ′y(t, ω, x̄(t, ω), ȳ(t))− f ′y(t, ω)]∆y(t)

〉
dω dt

+

∫
Ω

〈
l,
[
g′x(τ, ω, x̃(τ, ω))− g′x(τ, ω)

]
∆x(τ, ω)

〉
dω

where x̄(t, ω) and x̃(t, ω) lie between x(t, ω) and x(t, ω)+∆x(t, ω) for (t, ω) ∈ D and ȳ(t) lies between
y(t) and y(t) + ∆y(t) for t ∈ [0, τ ].

Proof Using (5.6) in the last term in the third row below, we obtain∫ τ

0

∫
Ω

〈
λ̇(t, ω),∆x(t, ω)

〉
dω dt =

=

∫ τ

0

d

dt

(∫
Ω
〈λ(t, ω),∆x(t, ω)〉 ds

)
dt−

∫ τ

0

∫
Ω

〈
λ(t, ω), ∆̇x(t, ω)

〉
dω dt

=

∫
Ω
〈λ(τ, ω),∆x(τ, ω)〉 dω −

∫
Ω
〈λ(0, ω),∆x(0, ω)〉 dω −

∫ τ

0

∫
Ω

〈
λ(t, ω), ∆̇x(t, ω)

〉
dω dt

=

∫
Ω
〈λ(τ, ω),∆x(τ, ω)〉 dω −

∫
Ω
〈λ(0, ω),∆x(0, ω)〉 dω (5.22)

−
∫ τ

0

∫
Ω

〈
λ(t, ω), f ′x(t, ω)∆x(t, ω) + f ′y(t, ω)∆y(t)

〉
dω dt

+

∫ τ

0

∫
Ω

〈
λ(t, ω), [f ′x(t, ω, x̄(t, ω), ȳ(t))− f ′x(t, ω)]∆x(t, ω)

〉
dω dt

+

∫ τ

0

∫
Ω

〈
λ(t, ω), [f ′y(t, ω, x̄(t, ω), ȳ(t))− f ′y(t, ω)]∆y(t)

〉
dω dt,

where x̄(t, ω) is between x(t, ω) and x(t, ω) + ∆x(t, ω) for (t, ω) ∈ D and ȳ(t) is between y(t) and
y(t) + ∆y(t) for t ∈ [0, τ ]. It is standard to prove that x̄ and ȳ may be chosen measurable. Also, for
each t ∈ [0, τ ] we have

∆y(t) =

∫
Ω

[g(t, ω, x(t, ω) + ∆x(t, ω))− g(t, ω)] dω

=

∫
Ω
g′x(t, ω)∆x(t, ω) dω +

∫
Ω

[g′x(t, ω, x̃(t, ω))− g′x(t, ω))]∆x(t, ω) dω (5.23)

where x̃(t, ω) is between x(t, ω) and x(t, ω) + ∆x(t, ω) for (t, ω) ∈ D, and is also measurable. Substi-
tuting ∆y(t) from (5.23) into the fifth row of (5.22), we obtain∫ τ

0

∫
Ω

〈
λ̇(t, ω),∆x(t, ω)

〉
dω dt =
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=

∫
Ω
〈λ(τ, ω),∆x(τ, ω)〉 dω −

∫
Ω
〈λ(0, ω),∆x(0, ω)〉 dω

−
∫ τ

0

∫
Ω

〈
λ(t, ω), f ′x(t, ω)∆x(t, ω) + f ′y(t, ω)

∫
Ω
g′x(t, ω′)∆x(t, ω′) dω′

〉
dω dt

−
∫ τ

0

∫
Ω

〈
λ(t, ω), f ′y(t, ω)

∫
Ω

[g′x(t, ω′, x̃(t, ω′))− g′x(t, ω′))]∆x(t, ω′) dω′
〉

dω dt (5.24)

+

∫ τ

0

∫
Ω

〈
λ(t, ω), [f ′x(t, ω, x̄(t, ω), ȳ(t))− f ′x(t, ω)]∆x(t, ω)

〉
dω dt

+

∫ τ

0

∫
Ω

〈
λ(t, ω), [f ′y(t, ω, x̄(t, ω), ȳ(t))− f ′y(t, ω)]∆y(t)

〉
dω dt.

Denote the last three terms in (5.24) by r̃. In the first three terms we substitute λ̇(t, ω) and ∆x(0, ω)

from (5.15) and (5.7), respectively. Using also (5.17), we rewrite the above equality as

0 =

∫
Ω
〈λ(τ, ω),∆x(τ, ω)〉 dω −

∫
Ω
〈λ(0, ω),∆u(ω)〉 dω + r̃. (5.25)

On the other hand we have

J(u+ ∆u)− J(u) = 〈l, y(τ) + ∆y(τ)〉 − 〈l, y(τ)〉

=

〈
l,

∫
Ω

[g(τ, ω, x(τ, ω) + ∆x(τ, ω))− g(τ, ω)] dω
〉

=

〈
l,

∫
Ω
g′x(τ, ω)∆x(τ, ω) dω

〉
+

〈
l,

∫
Ω

[g′x(τ, ω, x̃(τ, ω))− g′x(τ, ω)]∆x(τ, ω) dω
〉
. (5.26)

Adding (5.25) to this equality and taking into account (5.16) we obtain

J(u+ ∆u)− J(u) = −
∫

Ω
〈λ(0, ω),∆u(ω)〉 dω + r̃ +

∫
Ω

〈
l, [g′x(τ, ω, x̃(τ, ω))− g′x(τ, ω)]∆x(τ, ω)

〉
dω,

which, in view of the definition of r̃, implies the claim of the lemma. 2

We next estimate the four terms in the remainder r.

Lemma 9. The remainder r satisfies the estimate

|r| ≤ C||∆u(·)||2L∞ (Ω) (5.27)

where C is a positive constant.

Proof As in (5.23) we have

∆y(t) =

∫
Ω

[g(t, ω, x(t, ω))− g(t, ω)] dω =

∫
Ω
g′x(t, ω, x̃(t, ω))∆x(t, ω) dω,
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for each t ∈ [0, τ ]. Because of the local essential boundedness of g′x, we obtain

|∆y(t)| ≤ C1

∫
Ω
|∆x(t, ω)| dω (5.28)

for each t ∈ [0, τ ], where C1 is some positive constant (as are C2, C3, etc., below). Because of (5.11), as
in (5.22) we obtain

∆x(t, ω) = ∆u(ω) +

∫ t

0
[f ′x(s, ω, x̄(s, ω), ȳ(s))∆x(s, ω) + f ′y(s, ω, x̄(s, ω), ȳ(s))∆y(s)] ds.

for (t, ω) ∈ [0, τ ]×Ω′ ⊂ D (Ω′ being of full Lebesgue measure in Ω). Hence, using (5.28) and the local
essential boundedness of f ′x and f ′y, we have

|∆x(t, ω)| ≤ |∆u(ω)|+ C2

∫ t

0

[
|∆x(s, ω)|+

∫
Ω
|∆x(s, ω)| dω

]
ds. (5.29)

for (t, ω) ∈ [0, τ ] × Ω′ ⊂ D (Ω′ of full Lebesgue measure in Ω). Integrating the above inequality in ω
over Ω and changing the order of integration where necessary, we obtain that the function

δ(t)
def
=

∫
Ω
|∆x(t, ω)| dω

satisfies

δ(t) ≤ ||∆u(·)||L1 (Ω) + C2(1 + meas{Ω})
∫ t

0
δ(s) ds

and the Gronwall inequality yields

δ(t) ≤ C3||∆u(·)||L1 (Ω) (5.30)

for all t ∈ [0, τ ]. Substituting (5.30) into (5.29), we obtain

|∆x(t, ω)| ≤ |∆u(ω)|+ C2

∫ t

0
|∆x(s, ω)| ds+ C2

∫ t

0
δ(s) ds

≤ |∆u(ω)|+ C2C3T ||∆u(·)||L1 (Ω) + C2

∫ t

0
|∆x(s, ω)| ds

≤ (1 + C2C3T meas{Ω})||∆u(·)||L∞ (Ω) + C2

∫ t

0
|∆x(s, ω)| ds

for (t, ω) ∈ [0, τ ] × Ω′ ⊂ D (Ω′ of full Lebesgue measure in Ω). Using again the Gronwall inequality,
we obtain

|∆x(t, ω)| ≤ C4||∆u(·)||L∞ (Ω) (5.31)

for (t, ω) ∈ [0, τ ]× Ω′ ⊂ D (Ω′ of full Lebesgue measure in Ω). From here and from (5.28) we obtain

|∆y(t)| ≤ C1C4 meas{Ω}||∆u(·)||L∞ (Ω) (5.32)
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for all t ∈ [0, τ ]. The boundedness of λ(·, ·), the local essential boundedness of f ′y, the local Lipschitz
continuity of f ′x, f ′y and g′x (cf. Assumption (i)), as well as the inequalities (5.31) and (5.32) allow us to
estimate the absolute values of the first three terms in the remainder r from above by C5||∆u(·)||2L∞ (Ω).
In the same way, the local Lipschitz continuity of g′x and (5.31) yield the same estimate from above for
the absolute value of the fourth term in the remainder r. 2
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Chapter 6

Modelling and Estimation of infectious
diseases in a population with
heterogeneous dynamic immunity1

6.1 Introduction

Ever since the seminal work by Kermack and McKendrick [66] compartmental models, such as SIR- or
SIS-models, play a prominent role in mathematical epidemiology. The idea behind such models is to
divide the population into several groups such as susceptibles (S), infectives (I), recovered (R), etc., and
to study the interactions between these groups and in particular the transition of individuals from one
group into another.

It is obvious that the immune system of individuals plays an important role in this process by coun-
teracting the pathogen inside the body. The exact understanding of how this process works and the
modelling of in-host dynamics is the aim of immunology. An introduction to this discipline may be
found in [95]. In an epidemiological context immunology is important because the state of the immune
system influences, for example, the susceptibility, infectivity, and recovery of individuals. The combina-
tion of these two disciplines, sometimes referred to as “immunoepidemiology” ([11, 44, 80]), is therefore
a natural consequence. One way to achieve this is to model the within-host dynamics of the pathogen and
couple this with an epidemiological model by assuming that the state of within-host dynamics influences
the transmission of the pathogen between hosts. This approach has lead to a number of contributions,
e.g. [2, 7, 27, 35, 38].

We will instead focus on the influence on the epidemiological dynamics of the waning and boosting
of the immune response towards a disease. A short explanation of why the immune response increases

1This chapter has at the time of writing been submitted for peer review to the Journal of Biological Dynamics.
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and decreases depending on exposure to a pathogen can, for example, be found in [11]. One approach to
capture the waning of immunity towards a disease is to introduce additional subclasses of, for example,
recovered individuals (e.g. [46, 104]) or individuals with waning immunity from vaccination (e.g. [89,
97]). This approach has the advantage that the dynamics are still described by an ODE model, however
these ODE systems can become large if many compartments are added. Another approach is to assume
that the recovered population is structured with respect to the immune status of the individuals. This
approach retains the low-dimensionality of the equations, however at the cost of introducing a PDE into
the system (e.g. [16]). Such systems can also be formulated to include boosting of the immune system
for the recovered population as well ([11]). Other approaches to model the boosting of the immune
system during the infective period leads to models with multiple structured populations ([80]). We will
study dynamical systems in which every sub-population is structured with respect to the host immunity.
An example of such a model can be found in [111].

In this paper we present a model for the evolution of the susceptible and infected subpopulations (SIS-
model) in which the immunity of individuals has its own dynamics, depending on whether the individual
is susceptible of infected. The model involves a system of first order PDEs (of the type of the so-called
size-structured systems), which is similar to (but different from) [111]. It could be interpreted in terms of
an influenza infection, but similar models may be appropriate to simulate sexually transmitted diseases
[18]. In [111] it is argued that this framework can also be used to model microparasite infections.

To numerically simulate heterogeneous models such as the one developed here, the initial distribution
of the population along the possible immunity states has to be known. However, precise information
about this distribution is not available in practice. Therefore, we develop a method to estimate the
dynamics of the disease under uncertain initial conditions, based on available data only. It builds on the
general approach of set-membership estimation under deterministic uncertainty (see e.g. [74, 75, 85]).

The paper is organised as follows. In Section 6.2 we introduce a benchmark SIS-model with heteroge-
neous immunity, which consists of a pair of size-structured first order PDEs. In Section 6.3 we begin
the investigation of this model by studying its steady state distributions. In Section 6.4 we present a
more general class of models (including SIR-models, for example), and develop the appropriate set-
membership estimation technique. This allows us to estimate the evolution of the disease without com-
plete knowledge of its initial state. Finally, in Section 6.5 we apply this technique to the benchmark
model to gain additional insights about the steady states found in Section 6.3 and to study how differ-
ences in the initial distribution influence the short term and long term behaviour of the disease.
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6.2 The heterogeneous SIS-model

In the model below we consider a closed population of fixed size, a part of which is infected by influenza.
Each individual has an immunity level characterized by a number ω ∈ [0, 1]: the larger is ω, the higher
is the immunity of an individual. The level of immunity has its own dynamics. If an individual is
susceptible (that is, not infected, in the present context) in a time interval [τ, θ), then her immunity level
obeys the equation

ω̇(t) = d(ω(t)), ω(τ) = ωτ , t ∈ [τ, θ), (6.1)

where ωτ is the immunity level at time τ and d(ω) is the time-rate of decrease of immunity at immune
state ω. Thus, d : [0, 1]→ (−∞, 0].

Similarly, e : [0, 1]→ [0,∞) represents the rate of increase of immunity of infected individuals: the
dynamics of the immune state of an individual which is infected in [θ, η) is described by the equation

ω̇(t) = e(ω(t)), ω(θ) = ωθ, t ∈ [θ, η). (6.2)

Of course, if a susceptible individual becomes infected at time θ, then the dynamics of her immune level
switches from (6.1) to (6.2), then switches back to (6.1) at the time of recovery. In the long run such
switchings may happen several time. Notice that the dynamics of the immune state is not individual-
specific – the laws (6.1) and (6.2) apply to each individual.

In order to ensure existence and uniqueness of the solutions of the above ODEs, and invariance of
the interval [0, 1] (which is required in order to make the model meaningful) we assume that d and e are
continuously differentiable and d(0) = e(1) = 0. This resembles the assumption that the interval [0, 1]

contains all possible immune states.

Now, we describe the model of the evolution of the susceptible and the infected subpopulations, begin-
ning with some notations. The numbers S(t, ω) and I(t, ω) represent the sizes of the susceptible/infected
subpopulations of immunity state ω at time t. The susceptibility of a susceptible individual depends on
the immunity state and is denoted by p(ω) ≥ 0. The infectivity of an infected individual may also de-
pend on the immunity state and is denoted by q(ω) ≥ 0. The recovery rate of an infected individual of
immunity state ω is denoted by δ(ω) ≥ 0. Finally, σ(t) ≥ 0 is the strength of infection or aggressiveness
of the disease. It is reasonably assumed to depend on time in order to capture possible seasonal changes
or other time-dependent effects.

Notice that the total population size can be represented as

N(t) =

∫ 1

0
[S(t, ω) + I(t, ω)] dω.

In the model below it will be assumed that the total population size remains constant, therefore one
may normalize it to N(t) = 1. Then under the assumption of proportional mixing (see e.g. [30]), the
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incidence rate takes the form

1∫
0

q(ζ)I(t, ζ) dζ

N(t)
=

1∫
0

q(ζ)I(t, ζ) dζ. (6.3)

The evolution of the susceptible/infected individuals, regarding the changes of the immunity state, is
described by the equations

∂

∂t
S(t, ω) +

∂

∂ω
(d(ω)S(t, ω)) = −σ(t)p(ω)

1∫
0

q(ζ)I(t, ζ) dζ S(t, ω) + δ(ω)I(t, ω),

∂

∂t
I(t, ω) +

∂

∂ω
(e(ω)I(t, ω)) = σ(t)p(ω)

1∫
0

q(ζ)I(t, ζ) dζ S(t, ω)− δ(ω)I(t, ω),

(6.4)

complemented with the initial conditions

S(0, ω) = S0(ω), I(0, ω) = I0(ω), ω ∈ [0, 1], (6.5)

and the boundary (zero-flux) conditions

d(1)S(t, 1) = 0, e(0)I(t, 0) = 0, t ≥ 0. (6.6)

In our case we will fulfil the zero-flux conditions by assuming that d(1) = e(0) = 0, which is not
principally necessary, but is reasonable and makes the analysis technically simpler (see Remark 4 in
Section 6.4.1). For simplicity, the data p, q, δ, σ, S0, I0 are assumed to be continuous functions (although
this assumption can be easily relaxed – only measurability and boundedness suffice). Also it is reasonably
assumed that d(ω) < 0 and e(ω) > 0 for ω ∈ (0, 1) (strict loss/gain of immunity if not-perfect/missing),
and that p(0) > 0, q(0) > 0. Due to the normalization of the population size we have to assume also that∫ 1

0 [S0(ω) + I0(ω)] dω = 1.

Equations (6.4) have a clear micro-foundation: they can be derived (like in physics) by calculating
what amount of individuals will enter/leave immunity state interval [ω, ω+ ∆ω] in a time horizon [t, t+

∆t], and then pass to a limit with ∆t and ∆ω. This kind of size-structured systems are widely used in
mathematical biology, while in the context of epidemiology we may refer to [80, 111].

The exact definition of the notion of solution of equations (6.4)–(6.6) will be given in Section 6.4.

Remark 2. In the above model we assumed in advance (by taking N(t) = 1) that the population has
constant size. Notice that equations (6.4) together with the zero-flux conditions (6.6) and the natural
condition d(0) = e(1) = 0 keep the size of the population constant (= 1).

124



Remark 3. The assumption that there is no in/out flow of population is somewhat restrictive. In fact, in-
and out-flows of equal amounts of individuals is implicitly included in the model, provided that the flows
have the same ω-distributions as the existing population, hence have no effect on S and I . Moreover, the
model (6.4)–(6.6) can be easily enhanced to include out-flows due to mortality (also additional mortality
caused by infection) and migration, and in-flows of new-borns and immigrants, having heterogeneous
immunity states. This is just a matter of adding new terms in equations (6.4) and replacing the incidence
rate with the left term in (6.3) in order to take into account a possible change of the population size.

6.3 Steady states

In this section we investigate the steady states of the benchmark system (6.4) in the case of time-invariant
strength of infection σ(t) = σ. Steady states are important in the study of asympototic behaviour and
give valuable information, in general. Although we are, due to the complexity of the model, not able to
completely describe the steady states or asymptotic behaviour analytically, the calculations here are the
basis for a numerical analysis of the steady states which will be carried out in Section 6.5.

We formally drop the time dependence of the functions S(t, ω) and I(t, ω). This yields (denoting differ-
entiation with respect to ω by ′)

(d(ω)S(ω))′ = −σp(ω)

∫ 1

0
q(ζ)I(ζ) dζ S(ω) + δ(ω)I(ω),

(e(ω)I(ω))′ = σp(ω)

1∫
0

q(ζ)I(ζ) dζ S(ω)− δ(ω)I(ω).

(6.7)

Note that we have (d(ω)S(ω) + e(ω)I(ω))′ = 0 which implies

d(ω)S(ω) + e(ω)I(ω) = κ = const. (6.8)

6.3.1 Disease free steady states

First, we look for disease free steady states of (6.7), i.e. solutions with I(ω) ≡ 0. Under this condition
(6.8) becomes d(ω)S(ω) = κ. If κ 6= 0 then S(ω) = κ

d(ω) . Since
∫ 1

0 S(ω) dω = 1 we get that

κ =
(∫ 1

0
1

d(ω) dω
)−1

. This in particular means that κ 6= 0⇒
∣∣∣∫ 1

0
1

d(ω) dω
∣∣∣ <∞. However, note that for

κ 6= 0 the zero-flux condition d(1)S(1) = 0 is not fulfilled.

For κ = 0 we get that d(ω)S(ω) = 0 which implies S(ω) = 0 for ω ∈ (0, 1). Since
∫ 1

0 S(ω) dω = 1 we
get that S(ω) = aδ0(ω)+(1−a)δ0(ω−1) for a ∈ [0, 1] and where δ0(ω) is the Dirac-delta. In particular,
the only disease free steady state that fulfils the zero-flux condition d(1)S(1) = 0 is S(ω) = δ0(ω).
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6.3.2 Endemic steady states

Now, we consider the solutions of the steady state system (6.7), where I(ω) is not zero almost every-
where. We furthermore restrict ourselves to solutions where both S(ω) and I(ω) are non-negative. For
this analysis we fix an ω∗ ∈ (0, 1). Furthermore, for κ, θ ∈ (0,∞) we define the three functions

gκ(θ) =

θ −
1∫
0

ω∫
ω∗
q(ω)e

∫ s
ω
σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ σp(s)θ

d(s)e(s)κ ds dω

1∫
0

q(ω)e
−
∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ dω

, (6.9)

I(κ,θ)(ω) = gκ(θ)e
−
∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ

+

ω∫
ω∗

e
∫ s
ω
σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ σp(s)θ

d(s)e(s)
κ ds, (6.10)

S(κ,θ)(ω) =
κ

d(ω)
− e(ω)

d(ω)
I(κ,θ)(ω). (6.11)

First, assume that (S∗(ω), I∗(ω)) solves (6.7) and is non-negative. Define

θ∗ =

∫ 1

0
q(ω)I∗(ω) dω, κ∗ = d(ω∗)S∗(ω∗) + e(ω∗)I∗(ω∗). (6.12)

Using (6.7) and (6.8) it is easy to show for ω ∈ (0, 1) that I∗(ω) fulfils

I∗′(ω) = −
(
σp(ω)θ∗

d(ω)
+
δ(ω) + e′(ω)

e(ω)

)
I∗(ω) +

σp(ω)θ∗

d(ω)e(ω)
κ∗.

From this we see that for ω ∈ (0, 1) we can write

I∗(ω) = I∗(ω∗)e
−
∫ ω
ω∗

σp(ζ)θ∗
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ

+

ω∫
ω∗

e
∫ s
ω
σp(ζ)θ∗
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ σp(s)θ

∗

d(s)e(s)
κ∗ ds. (6.13)

Multiplying this equation by q(ω) and integrating over (0, 1) yields

θ∗=I∗(ω∗)

1∫
0

q(ω)e
−
∫ ω
ω∗

σp(ζ)θ∗
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ dω+

1∫
0

ω∫
ω∗

q(ω)e
∫ s
ω
σp(ζ)θ∗
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ σp(s)θ

∗

d(s)e(s)
κ∗ dsdω,

which is equivalent to I∗(ω∗) = gκ∗(θ
∗). Plugging this into (6.13) we see that I∗(ω) = I(κ∗,θ∗)(ω), and

using (6.8) that S∗(ω) = S(κ∗,θ∗)(ω). Note that because the solution is assumed to be non-negative and
that I∗(ω) is not identically zero, we get that (κ∗, θ∗) is a pair that fulfils the following conditions:

κ, θ, gκ(θ) ∈ (0,∞), gκ(θ) + κ inf
ω∈(0,1)

ω∫
ω∗

e
∫ s
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ σp(s)θ

d(s)e(s)
ds ≥ 0. (6.14)
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Now conversely assume that the pair (κ, θ) fulfils (6.14). Then it is obvious that I(κ,θ) and S(κ,θ) are both
non-negative. Due to our definition of gκ(θ) it is easy to see that

∫ 1
0 q(ω)I(κ,θ)(ω) dω = θ. Using this,

by a simple differentiation of (6.10) we obtain that for ω ∈ (0, 1)

I ′(κ,θ)(ω) =

σp(ω)
1∫
0

q(ζ)I(κ,θ)(ζ) dζ

d(ω)

(
κ

e(ω)
− I(κ,θ)(ω)

)
− δ(ω) + e′(ω)

e(ω)
I(κ,θ)(ω).

(6.15)

Multiplying (6.11) with d(ω)
e(ω) and plugging the result into (6.15), then multiplying by e(ω) yields

(
e(ω)I(κ,θ)(ω)

)′
= σp(ω)

1∫
0

q(ζ)I(κ,θ)(ζ) dζS(κ,θ)(ω)− δ(ω)I(κ,θ)(ω).

Consequently,
(
S(κ,θ)(ω), I(κ,θ)(ω)

)
solves (6.7) on the open interval (0, 1). Thus, we have proven the

following theorem.

Theorem 11. Choose ω∗ ∈ (0, 1). Let gκ(θ), I(κ,θ)(ω) and S(κ,θ)(ω) be defined as in (6.9), (6.10) and
(6.11) respectively.

• If (κ, θ) fulfils (6.14), then
(
S(κ,θ)(ω), I(κ,θ)(ω)

)
solves (6.7) for all ω ∈ (0, 1).

• If (S∗(ω), I∗(ω)) solves (6.7), define κ∗ and θ∗ as in (6.12). Then (κ∗, θ∗) fulfils (6.14) and
(S∗(ω), I∗(ω)) =

(
S(κ∗,θ∗)(ω), I(κ∗,θ∗)(ω)

)
for all ω ∈ (0, 1).

This theorem shows that there is a one-to-one correspondence between non-negative solutions of
(6.7) on (0, 1) and pairs (κ, θ) that fulfil (6.14). Note that the solutions that fulfil the zero-flux condition
correspond to the pairs (0, θ) that fulfil (6.14). We look at these solutions more closely. The condition
(6.14) reduces in this case to θ ∈ (0,∞) and g0(θ) ∈ (0,∞). Furthermore, we are looking for solutions
for which the total population is constant and equal to 1. Using (6.10) and (6.11) this yields

1 =

1∫
0

I(0,θ)(ω) + S(0,θ)(ω) dω

=

1∫
0

g0(θ)e
−
∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ − e(ω)

d(ω)
g0(θ)e

−
∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ dω

= g0(θ)

1∫
0

(
1− e(ω)

d(ω)

)
e
−
∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ dω.

Using (6.9) we see that for θ ∈ (0,∞) that fulfils g0(θ) ∈ (0,∞) this is equivalent to

0 =

1∫
0

((
1− e(ω)

d(ω)

)
θ − q(ω)

)
e
−
∫ ω
ω∗

σp(ζ)θ
d(ζ)

+
δ(ζ)+e′(ζ)

e(ζ)
dζ dω.
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We denote the function on the right-hand side by r(θ). We see that r(0) < 0 (possibly −∞) and
r(θ) > 0 (again possibly infinite) for any θ bigger than supω∈[0,1] q(ω) =: Q. Therefore any solution
of the equation r(θ) = 0 must lie in the interval (0, Q). With this notation we arrive at the following
corollary.

Corollary 2. The system (6.7) has a solution that fulfils the zero-flux condition and is non-negative if
and only if the function r(θ) has a root θ∗ ∈ (0, Q). In this case the solution is given by (S(0,θ∗), I(0,θ∗)).
This solution is unique if and only if this root is unique.

We note that one can show that r(θ) is continuous on any set where it is bounded. The question of
the existence of a solution to r(θ) = 0 is therefore closely connected to the question of where r(θ) is
bounded. This however cannot be answered in general and depends on the particular choice of parameter
functions. The same applies to the uniqueness.

6.4 Set-membership estimation

In order to calculate a solution of system (6.4) one needs to know the initial distributions of the suscep-
tible and infected subpopulations along the heterogeneity ω, that is, S(0, ω) and I(0, ω). However, this
information is usually not available in detail. We may assume that the total number of susceptible and
infected individuals at time 0, that is, the quantities S(0) =

∫ 1
0 S(0, ω) dω and I(0) =

∫ 1
0 I(0, ω) dω,

are known. We may also have additional information about the initial distributions, for example point-
wise constraints of the form u(ω) := (S(0, ω), I(0, ω)) ∈ [φ1(ω), φ2(ω)] where φ1 and φ2 are known
functions. More generally, we summarize the available information about the initial data as u(·) ∈ U ,
where U is a closed, convex and bounded subset of L∞ := L∞([0, 1] 7→ Rn+). Below in this sec-
tion we will formulate the problem of set-membership estimation of the aggregated state of the system,
y(t) :=

(∫ 1
0 S(t, ω) dω,

∫ 1
0 I(t, ω) dω

)
, based on the information u(·) ∈ U about the initial data and

the systems dynamics. Moreover, a computational tool for finding (approximating) the set-membership
estimation will be provided. This will be done in a more general framework, including other (also higher
dimensional) models of interest in epidemiology and beyond.

6.4.1 Formulation of the general model

Below x : [0, T ] × [0, 1] → Rn will be viewed as a distributed state function and y : [0, T ] → Rm – as
an aggregated state function, with their dynamics given by the equations

∂

∂t
x(t, ω) +

∂

∂ω
(A(ω)x(t, ω)) = f(t, ω, x(t, ω), y(t)), x(0, ω) = u(ω), (6.16)

y(t) =

1∫
0

g(t, ω, x(t, ω)) dω. (6.17)
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The following assumptions will be standing in this section. The function f : [0, T ] × [0, 1] × Rn ×
Rm → Rn is differentiable in x and y, the derivatives fx and fy and f itself are measurable in (t, ω),
locally essentially bounded, and locally Lipschitz continuous in (x, y) uniformly in (t, ω). The function
g : [0, T ] × [0, 1] × Rn → Rm is differentiable in x, the derivative gx and the function g itself are
measurable in ω and continuous in t, locally essentially bounded, and locally Lipschitz continuous in x
uniformly in (t, ω). Moreover, f(t, ω, x, y) ≥ −cx, g(t, ω, x) ≥ 0, where c ≥ 0 is a constant and the
inequalities (understood component-wise) hold for every (t, ω) and every x ≥ 0 and y ≥ 0. The matrix
function A : [0, 1] → Rn × Rn is diagonal with continuously differentiable diagonal elements ai(ω),
ai(0) = ai(1) = 0 and ai(ω) 6= 0 for ω ∈ (0, 1).

Remark 4. The assumptions about f and g are fulfilled in our model (6.4) with x = (S, I) and y(t) as
in the beginning of the present section. Moreover, there we have A = diag(d, e) and the assumptions
about A are fulfilled if d and e are as assumed in Section 6.2. We stress that the additional assumption
d(1) = e(0) = 0 made there provides one way to satisfy the zero-flux conditions (6.6). In this case
equations (6.16), (6.17) require only initial conditions to produce a unique solution (see below). If
d(1) 6= 0 and/or e(0) 6= 0, then the zero-flux conditions must be ensured by adding the boundary
conditions S(t, 1) = 0 and/or I(t, 0) = 0 (see, e.g., the more general consideration in [6]). The approach
below is still applicable, but the calculations become more cumbersome.

As it will be seen below, a solution of (6.16), (6.17) is uniquely defined by the initial condition

x(0, ω) = u(ω), ω ∈ [0, 1], (6.18)

where u : [0, 1] 7→ Rn+ is a measurable and bounded function.

The notion of solution of system (6.16)–(6.18) can be defined in several ways, but for the considered
problem the method of characteristics seem to be most natural. Let for i = 1, . . . , n the function ωi :

[0, T ]× [0, 1]→ [0, 1] be defined as the unique solution of the initial value problem

∂

∂t
ωi(t, ρ) = ai(ωi(t, ρ)), ωi(0, ρ) = ρ,

where ρ is regarded as a parameter for ωi. Due to the assumptions about ai(ω), the mapping (t, ρ) 7→
(t, ωi((t, ρ)) is a diffeomorphism of [0, T ]×[0, 1] onto itself. Its inverse has the form (t, ω) 7→ (t, ρi(t, ω)),
where ρi is continuously differentiable and satisfies ωi(t, ρi(t, ω)) = ω and ρi(t, ωi(t, ρ)) = ρ.

As a motivation for the definition below we assume that x is a continuously differentiable solution of
(6.16)–(6.18). Denote zi(t, ρ) = xi(t, ωi(t, ρ)), thus xi(t, ω) = zi(t, ρi(t, ω)). Then

d
dt
zi(t, ρ) =

∂

∂t
xi(t, ωi(t, ρ)) + ai(ωi(t, ρ))

∂

∂ω
xi(t, ωi(t, ρ)),

zi(0, ρ) = xi(0, ωi(0, ρ)) = xi(0, ρ) = u(ρ),
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hence
d
dt
zi(t, ρ) = fi(t, ωi(t, ρ), x(t, ωi(t, ρ)), y(t))− a′i(ωi(t, ρ)) zi(t, ρ). (6.19)

zi(0, ρ) = u(ρ). (6.20)

The above equations motivate the following definition (cf. [6]).

Definition 1. The pair of functions x : [0, T ] × [0, 1] → Rn and y[0, T ] → Rm is a solution of system
(6.16)–(6.18) if x has the representation xi(t, ωi(t, ρ)) = zi(t, ρ), t ∈ [0, T ], ρ ∈ [0, 1], where zi(t, ρ) is
measurable in ρ and absolutely continuous in t for a.e. ρ, and (6.19), (6.20), (6.17) are satisfied almost
everywhere.

The definition is correct and x is a measurable function due to the measurability of z and the fact
that (t, ρ) 7→ (t, ωi((t, ρ)) is a diffeomorphism. For the same reason the functions xj(t, ωi(t, ρ)) =

zj(t, ρj(t, ωi(t, ρ))) in the right-hand side of (6.19) are well defined and measurable. A solution x does
not need to be differentiable. It may even be discontinuous in each of the directions t and ω, but xi is
absolutely continuous along almost every characteristic line (t, ωi(t)).

Lemma 10. If (x, y) is a solution of (6.16)–(6.18) then the mappings

[0, T ] 3 t 7→ x(t, ·) ∈ L1(0, 1) and [0, T ] 3 t 7→ y(t)

are continuous.

Proof. The second claim follows from the first due to the Lipschitz continuity of g in x and the bound-
edness of x. Let us prove the first claim. For every i = 1, . . . n and for a.e. t, τ ∈ [0, 1] we have, by
change of the variable ω = ωi(t, ρ)∫ 1

0
|xi(t, ω)− xi(τ, ω)| dω =

∫ 1

0
|xi(t, ωi(t, ρ))− xi(τ, ωi(t, ρ))| ∂

∂ρ
ωi(t, ρ) dρ

≤
∫ 1

0
[|xi(t, ωi(t, ρ))− xi(τ, ωi(τ, ρ))|+ |xi(τ, ωi(t, ρ))− xi(τ, ωi(τ, ρ))|] ∂

∂ρ
ωi(t, ρ) dρ

=

∫ 1

0
|zi(t, ρ)− zi(τ, ρ)| ∂

∂ρ
ωi(t, ρ) dρ +

∫ 1

0
|xi(τ, ω)− xi(τ, ωi(τ, ρi(t, ω)))| dω

≤ c1|t− τ |+
∫ 1

0
|xi(τ, ω)− xi(τ, ω + ε(ω, t, τ))| dω,

where |ε(ω, t, τ))| ≤ c2|t−τ | (c1 and c2 are appropriate constants). It is a standard fact from the analysis
(a consequence from Lousin’s theorem, for example) that the second term converges to zero when t→ τ .
2
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Existence and uniqueness of a solution can be proved by a fixed point argument similarly as in [6]. In
fact, the result there is more general, but not directly applicable to our case, since ai > 0 is assumed in [6].
But our assumptions about ai bring more a simplification rather than complication, since we do not need
boundary conditions at ω = 0, resp. ω = 1 (depending on the sign of ai) – see Remark 4. In addition, the
unique solution of (6.16)–(6.18) is proved in [6] to be non-negative, provided that u(ω) ≥ 0, ω ∈ [0, 1].
We also note that the assumptions f ≥ −cx and g ≥ 0 are only needed to ensure non-negativity of the
solution.

6.4.2 The set-estimation problem

As explained at the beginning of the section, the initial data u(ω) is not assumed to be exactly known.
Instead, we assume that the only information about u(·) is that u ∈ U , where U is a given bounded,
closed and convex subset of L∞. Every element u ∈ U will be considered as a possible realization of
the uncertainty in the initial data. Let our task be to obtain information about a part of the components
of the aggregated state y at a given time, say t = T . That is, we wish to estimate the projection prLy(T )

on a given subspace L ⊂ Rm.

Every u ∈ U generates a unique solution (x[u], y[u]) of (6.16)–(6.18). Denote

R(T ) := {y[u](T ) : u ∈ U} .

That is, R(T ) is the set of all aggregated states y(T ) that result from some possible realization of the
uncertainty, u ∈ U . In this sense, R(T ) is the exact (meaning minimal) set-membership estimation of
the aggregated state at time T . Thus the object of our interest is the set RL(T ) := prLR(T ). Below we
adapt a well-known method for obtaining estimates

E(T ) ⊃ RL(T ).

Even more, the method allows to obtain outer approximations of arbitrary accuracy to the convex hull
coR(T ).

For a fixed l ∈ L we consider the problem of maximization of

Jl(u) := 〈l, y[u](T )〉 (6.21)

on the set U , where 〈·, ·〉 denotes the scalar product in Rm. Notice that J is bounded on U (see Lemma
11 in the Appendix). Without caring about existence of a solution of problem (6.21), we observe that if
(ul, yl) is an ε-solution (in the sense that Jεl := Jl(ul) ≥ supU Jl − ε), then

coR(T ) ⊂ {y : 〈l, y〉 ≤ Jεl + ε}.
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Repeating the same for a mesh {li} in the unit sphere on L, we obtain the set-membership estimation

coRL(T ) ⊂ E(T ) :=
⋂
i

{y : 〈li, y〉 ≤ Jεli + ε},

which is the intersection of a finite number of (affine) half-spaces. Furthermore, if ε is small enough and
the mesh {li} is dense enough in the unit sphere in L, the estimation E(T ) provides an arbitrarily fine
outer approximation (in Hausdorff sense) to the convex hull ofRL(T ). Notice also that co{yli} provides
an inner approximation to coRL(T ).

The main issue in the above set-estimation approach is to solve problem (6.21). For this, one can
apply the standard gradient projection method. In order to implement it, one needs to calculate the
derivative of J(u) and perform projections on U . In the next subsection we focus on the first issue, while
the implementation of the gradient projection method is standard and will only be briefly discussed.

6.4.3 Solving the set-estimation problem

Recall that fx, fy, gx denote the respective derivatives of f and g. Furthermore, let ∗ denote transposition.
Given u ∈ U and the corresponding solution (x, y) := (x[u], y[u]), consider the following adjoint system(

∂

∂t
+A(ω)

∂

∂ω

)
λ(t, ω) = −fx(t, ω, x(t, ω), y(t))∗ λ(t, ω)− gx(t, ω, x(t, ω))∗ ν(t)

λ(T, ω) = −gx(T, ω, x(T, ω))∗l,

ν(t) =

1∫
0

fy(t, ω, x(t, ω), y(t))∗ λ(t, ω) dω

(6.22)

with respect to λ : [0, T ] × [0, 1] 7→ Rn and ν : [0, T ] 7→ Rm. This system has the same structure
as (6.16)–(6.18) (and is linear), therefore the solution is understood in the same way, with the same
characteristic functions ωi. Thus a solution of (6.22) exists and is unique.

Theorem 12. The functional Jl : L∞ 7→ R is Fréchet differentiable. Its derivative has an L∞ represen-
tation, namely for every u ∈ U

J ′l (u)(·) = −λ(0, ·),

where λ is defined by the adjoint system (6.22) .

The proof of this theorem uses similar arguments as [105, Proposition 1]. However, the latter con-
cerns a system of a form similar to (6.19)–(6.20), but much simpler. There, the characteristic functions
ωi(t, ρ) are the same for each i, which is a substantial simplification, although mainly technical. There-
fore we sketch the proof of Theorem 12 in the Appendix.
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Details about the implementation of the gradient projection method for solving problem (6.21) are given
in [105]. Here we only mention that in order to obtain a good approximation of the set-membership
estimation E(T ) it is necessary to solve problem (6.21) for many unit vectors l in the subspace of interest,
L. Moreover, estimations E(Ti) at a discrete mesh {Ti} of time instances may be wished. Naturally, the
obtained (approximate) maximizer u for given T = Ti and l can be used as initial guess for neighboring
instances Tj and vectors l, which makes the overall estimation procedure tractable on a commercial PC.
The critical dimension for the implementability of the method is that of the space L (not the dimensions
n and m, which can be much larger). Practically, the number of aggregated states yj of interest (that is,
dim(L)) may vary from 1 to 3.

6.5 Numerical analysis

In this section we apply the results from Section 6.4 to calculate set membership estimations for the
benchmark system (6.4). According to Lemma 11 in the Appendix, the mapping u→ (S[u](t), I([u](t)))

is continuous in L∞. Then due to the convexity of U , the exact set-estimation R(t) is a connected
set. Hence, its projection on the I-subspace is an interval, [Imin(t), Imax(t)]. Due to the relation
S(t) = 1− I(t) we obtain that

R(t) =
{

(S, I) ∈ R2 : S = 1− I, I ∈ [Imin(t), Imax(t)]
}
. (6.23)

Thus, in order to calculate the estimationR(t) it suffices to solve problem (6.21) for only two vectors l1
and l2 given by the positive and negative I-axis.

First, we use the method described at the end of Section 6.4 and demonstrate how this can be used to
analyze the steady states of the benchmark system numerically. The actual functional parameters for a
given disease are hard to obtain (see discussion in Section 6.6), therefore to illustrate the method we take
parameters of simple form (that fulfill all the assumptions), where the force of infection and the recovery
rate are of a magnitude appropriate for modeling influenza (see e.g. [48]):

• σ = 2.5

• p(ω) = 1− ω,

• q(ω) = 2p(ω),

• δ(ω) = 2ω,

• d(ω) = −0.015ω(1− ω),

• e(ω) = 0.15ω(1− ω).
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Figure 6.1: On the left we see the function r(θ) plotted over the interval [0,Q]. Note that the function is
not bounded on the whole interval, but is continuous whenever it is bounded. On the right we show the
behaviour of r(θ) near its root. We see that it is strictly monotonically increasing there. In particular,
r(θ) has a unique root given by θ∗ ≈ 0.08707.

Using these parameters we can calculate the function r(θ) as described a the end of Section 6.3.
In Figure 6.1 we show the function r(θ) over the interval [0, Q]. Note that Q = 2 in our case. From
this calculations we can conclude that r(θ) has a unique root. Hence, a steady state exists and it is
unique. Having calculated the root θ∗ we can then calculate the steady state solution (S(0,θ∗), I(0,θ∗)).
We show this in Figure 6.2, where we compare the steady state solution with the solution to system (6.4)
at t = 200, where each component of u(ω) is given by the function ω4 − 2ω3 + ω2, scaled so that∫ 1

0 u(ω) dω = (0.9, 0.1).
We will use this steady states to describe the set U of possible initial distributions. Namely, we set

φ(ω) = (S(0,θ∗)(ω), I(0,θ∗)(ω)) and define

U =

{
u ∈ L∞ :

∫ 1

0
u(ω) dω =

∫ 1

0
φ(ω) dω, u(ω) ∈ [0.5φ(ω), 1.5φ(ω)]

}
.

Thus, we assume that the prevalence I(t) =
∫ 1

0 I(t, ω) dω of the disease is initially as we would expect
in a steady state, but we allow uncertainty in the actual distribution of the immune level among the
population. That the particular initial condition becomes largely irrelevant for t this large can be seen in
Figure 6.3. There we use the set-membership estimation technique developed in Section 6.4 to calculate
the maximum and minimum value the prevalence I(t) may achieve. We see that the prevalence converges
to a single value independent of the initial condition. In Figure 6.4 we show the functions S(t, ω) and
I(t, ω) for an “extremal” initial condition.
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Figure 6.2: We see for both the susceptible and infected population the theoretical steady states S(0,θ∗)(ω)

and I(0,θ∗)(ω) given by the thick black line. The dashed white lines show S(200, ω) and I(200, ω)

respectively, where S and I were calculated from system (6.4) using a polynomial initial condition. On
the right we plot dist(t) =

∥∥(S(0,θ∗)(ω), I(0,θ∗)(ω)
)
− (S(t, ω), I(t, ω))

∥∥
L1

to show that the solution
does indeed converge towards the steady state.
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Figure 6.3: Set-membership estimation of the prevalence I(t). Note that while for small t the prevalence
can take significantly different values for different initial conditions, for large t both the maximum and
the minimum converge to the same value. On the right we show in more detail the interval where the
maximum and minimum differ significantly.
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Figure 6.4: The solutions to S(t, ω) and I(t, ω) that maximise the prevalence at t = 200. It can be
seen that both functions converge to fixed shape, which can be shown to coincide with the steady state
solution.

We see that with these calculations we can analyse the asymptotic behaviour of the aggregated vari-
ables of system (6.4). Using the function r(θ) we can determine existence and uniqueness of an endemic
steady state solution and using the set-membership estimation we can conclude that this steady state is
globally asymptotically stable for all initial data u(·) ∈ U .

If we significantly decrease the force of infection by taking σ = 0.25, we find that we can no longer find
a root of r(θ). In Figure 6.5 we see that the solution does indeed converge to the disease free steady state
we described in Section 6.3.

We now calculate solutions to system (6.4) with periodic σ(t). We take all parameters as in the previous
subsection, but change σ to σ(t) = 2.5(1 + sin( 4π

100 t)/100). The results can be seen in Figures 6.6
and 6.7. Similar to the case with constant σ the maximal and minimal prevalence converge towards
each other. However, they now converge to a periodic solution that oscillates in accordance with the
function σ(t). In Figures 6.8 and 6.9 we show the results if the sinus term is dampened less and we
take σ(t) = 2.5(1 + sin( 4π

100 t)/10). Qualitatively, we see the same behaviour as before, but with more
pronounced oscillations. Overall we see that periodic behaviour, which is commonly observed in various
diseases, is readily reproduced by this model.

In conclusion, using the techniques developed we are able to estimate the evolution of the disease under
uncertain information and to numerically describe the asymptotic behaviour of the system (6.4) for initial
conditions u ∈ U . In particular we see that while the long term behaviour may be independent of the
initial condition u, the short term behaviour may change significantly for different u. For example,
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can be seen that the disease dies out. On the right we show the solution S(t, ω) with initial condition
u(ω) = φ(ω). We see that the function does indeed tend towards a Dirac delta at ω = 0.
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Figure 6.6: Set-estimation of the prevalence for the system with σ(t) = 2.5(1 + sin( 4π
100 t)/100). The

prevalence I(t) converges to a periodic solution.
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sin( 4π
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Figure 6.8: Set-estimation of the prevalence for the system with σ(t) = 2.5(1 + sin( 4π
100 t)/10). The

prevalence I(t) converges again to a periodic solution, but with more pronounced oscillations.
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Figure 6.9: Solution (S(t, ω), I(t, ω) that maximises the prevalence at t = 200 for σ(t) = 2.5(1 +

sin( 4π
100 t)/10). Here we can see that between each oscillation the shape of the susceptible population

drifts towards lower immunity.

events that decrease the immunity of the population may lead to a temporary outbreak of the disease,
or an intervention that is aimed at increasing the immunity will only have temporary benefits. Using
set-estimation we can gain information about possible outcomes of such events and actions.

6.6 Conclusions

In this paper we present a model for the evolution of an infectious disease in a population where the
individuals have different immunity and their immune states vary with the time according to its own
dynamics. We propose a set-membership estimation procedure based on the available information about
the initial distribution of the population along the possible immune states. The rest of the parameters of
the model are assumed known. However, this is usually not the case: many of the parameters may be
uncertain and changing with the time – the rates of loosing/gaining immunity, d and e, the strength of
infection, σ, etc. The approach in this paper can be enhanced correspondingly, with the difference that
the auxiliary optimization problems that are involved in the set-membership estimations will become
more complex, still being tractable by standard methods in the optimal control theory of size structured
systems (see e.g. [108]). Such an enhancement could be a topic of further research.
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Appendix

Lemma 11. There exists a constantC such that for every u1, u2 ∈ U and for the corresponding solutions
(x[u1], y[u1]) and (x[u2], y[u2]) of system (6.16)–(6.18) it holds that

‖x[u1]− x[u2]‖L∞ + ‖y[u1]− y[u2]‖C ≤ C‖u1 − u2‖L∞ .

Proof According to the definition of a solution, xi[uj ](t, ω) = zi[uj ](t, ρi(t, ω)), where zi[uj ] together
with y[uj ] satisfy equations (6.19)–(6.20) with u = uj , j = 1, 2. Then it is straightforward that

‖x[u1]− x[u2]‖L∞ = ‖∆z‖L∞ ,

where ∆zi(t, ρ) = zi[u1](t, ρ)− zi[u2](t, ρ), ∆z = (∆z1, . . . ,∆n).

Let Θ ⊂ [0, 1] be of full measure and such that the functions zi[uj ](·, ρ) are absolutely continuous
for every ρ ∈ Θ. Then

‖∆z‖L∞ = sup
t∈[0,T ]

∆z(t),

where ∆z(t) := maxi=1,...,n supρ∈Θ |∆zi(t, ρ)| is a Lipschitz continuous function due to the uniform
Lipschitz continuity of ∆zi(·, ρ). From the assumptions about the data of the system, equation (6.17)
and equation (6.19), we successively obtain that

|y[u1](t)− y[u2](t)| ≤ c1 ∆z(t),

∆z(t) ≤ ‖u1 − u2‖L∞ +

∫ t

0
(c2∆z(s) + c3|y[u1](s)− y[u2](s)|)) ds

≤ ‖u1 − u2‖L∞ +

∫ t

0
c4∆z(s) ds,

where c1, ..., c4 are appropriate constants. The claim of the lemma follows from Grönwall’s inequality.
2

Proof of Theorem 12. Let u ∈ U and let ũ ∈ L∞(0, 1). Denote ε := ‖ũ − u‖∞, which will be
presumably a ”small” number. We denote by (x, y) and (x̃, ỹ) the corresponding solutions of (6.16)–
(6.18). Also we denote by zi and z̃i the corresponding z-functions from the definition of solution, so that
xi(t, ωi(t, ρ)) = zi(t, ρ), similarly for z̃i. Further, ∆u := ũ − u, ∆x := x̃ − x, ∆y := ỹ − y , and
∆z := z̃ − z. Then using (6.19), Lemma 11 and some standard calculus we obtain that the following
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equations are fulfilled:

d
dt

∆zi(t, ρ) = fix(t, ωi(t, ρ)) ∆x(t, ωi(t, ρ)) + fiy(t, ωi(t, ρ)) ∆y(t)− a′(ωi(t, ρ)) ∆zi(t, ρ) + o(ε),

∆zi(0, ρ) = ∆ui(ρ),

∆y(t) =

∫ 1

0
gx(t, ω, x(t, ω)) ∆x(t, ω) dω + o(ε),

where the superscripts x and y denote differentiation with respect to x and y, the prime in a′ denotes
differentiation in ω, the missing arguments of fix and fiy are obviously x(t, ωi(t, ρ)), y(t), and o(ε) is
any function of ε (possibly depending on t and ρ), such that o(ε)/ε→ 0 (uniformly in t, ρ) when ε→ 0.
We mention that the second equation above holds due to ∆zi(0, ρ) = xi(0, ωi(0, ρ)) = xi(0, ρ) = ui(ρ).

Now we consider the adjoint system (6.22) and denote by ζ(t, ρ) the corresponding to λ function in
Definition 1. Thus

d
dt
ζi(t, ρ) = −fxi(t, ωi(t, ρ))∗ λ(t, ωi(t, ρ))− gxi(t, ωi(t, ρ), x(t, ωi(t, ρ)))∗ ν(t),

ζi(T, ρ) = −gxi(T, ωi(T, ρ), x(T, ωi(T, ρ)))∗l,

ν(t) =

∫ 1

0
fy(t, ω, x(t, ω), y(t))∗ λ(t, ω) dω.

Using the second last equation and changing the variable ω = ωi(t, ρ), we represent

Jl(ũ)− Jl(u) = 〈l,∆y(T )〉 =

∫ 1

0
〈l, gx(T, ω, x(T, ω)) ∆x(T, ω)〉 dω + o(ε)

=

∫ 1

0

n∑
i=1

∆xi(T, ωi(T, ρ)) gxi(T, ωi(T, ρ), x(T, ωi(T, ρ)))∗l
∂

∂ρ
ωi(T, ρ) dρ+ o(ε)

= −
n∑
i=1

∫ 1

0
∆zi(T, ρ) ζi(T, ρ)

∂

∂ρ
ωi(T, ρ) dρ+ o(ε). (6.24)

Now, we rework the following expression integrating by parts:
n∑
i=1

∫ T

0

∫ 1

0

d
dt

∆zi(t, ρ) ζi(t, ρ)
∂

∂ρ
ωi(t, ρ) dρ dt

=

n∑
i=1

∫ 1

0
∆zi(T, ρ)ζi(T, ρ)

∂

∂ρ
ωi(T, ρ) dρ−

n∑
i=1

∫ 1

0
∆zi(0, ρ)ζi(0, ρ)

∂

∂ρ
ωi(0, ρ) dρ

−
n∑
i=1

∫ T

0

∫ 1

0
∆zi(t, ρ)

[
d
dt
ζi(t, ρ)

∂

∂ρ
ωi(t, ρ) + ζi(t, ρ)

∂

∂t

∂

∂ρ
ωi(t, ρ)

]
dρ dt.

Then we use the relation (6.24) and the identities

∆zi(0, ρ) = ∆ui(ρ), ζi(0, ρ) = ζi(0, ρi(0, ρ)) = λi(0, ρ),

∂

∂ρ
ωi(0, ρ) = 1,

∂

∂t

∂

∂ρ
ωi(t, ρ) = a′(ωi(t, ρ))

∂

∂ρ
ωi(t, ρ)
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to obtain the representation

Jl(ũ)−Jl(u) =
n∑
i=1

∫ 1

0
∆zi(0, ρ) ζi(0, ρ) dρ+∆+o(ε) = −

∫ 1

0
〈λ(0, ρ),∆u(ρ)〉 dρ+∆+o(ε), (6.25)

where

∆ := −
n∑
i=1

∫ T

0

∫ 1

0

d
dt

∆zi(t, ρ) ζi(t, ρ)
∂

∂ρ
ωi(t, ρ) dρ dt

−
n∑
i=1

∫ T

0

∫ 1

0
∆zi(t, ρ)

[
d
dt
ζi(t, ρ) + ζi(t, ρ) a′(ωi(t, ρ))

]
∂

∂ρ
ωi(t, ρ) dρ dt.

After substituting the expressions for d
dt∆zi(t, ρ), d

dtζi(t, ρ), obtained in the beginning of the proof,
changing back the variable ρ = ωi(t, ω), and using the equations for ∆y and ν, it is a matter of simple
algebra to obtain that ∆ = o(ε). Then from (6.25)

Jl(ũ)− Jl(u) = −
∫ 1

0
〈λ(0, ω), ũ(ω)− u(ω)〉 dρ+ o(‖ũ− u‖∞),

which implies the claim of the theorem. 2
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Chapter 7

Optimal control of size-structured first
order partial differential equations

7.1 Introduction

We have seen in the last chapter how size-structured PDEs can arise in epidemiological models of in-
fectious diseases. They also appear in numerous other biological contexts (see [79]). In this chapter we
present a theorem on how optimal control problems utilising such size-structured models can be solved.
More precisely, we develop a Pontryagin-type maximum principle for the problem. In the problem for-
mulation aggregated variables may appear in the objective function as well as the state equations. We also
allow for the control to influence the aggregation itself. In context of the model developed in the previous
chapter, this could reflect the possibility to influence the infectivity of the infected sub-population.

In this chapter we consider a general model that puts no restrictions on any of the parameters in-
volved. The usefulness of the presented theorem is therefore not restricted to epidemiological models
of disease transmission. It is also closely related to the results from Section 6.4 where we considered
optimisation of the initial conditions, while here we focus on control of the dynamics.

7.2 Formulation of the theorem

We consider the optimal control problem

max
u∈U

J(u), (7.1)

where

J(u) =

T∫
0

1∫
0

h(t, ω, x(t, ω), y(t), u(t, ω)) dω dt+

1∫
0

k(ω, x(T, ω), y(T )) dω, (7.2)
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with state equations

∂

∂t
x(t, ω) +

∂

∂ω
A(t, ω)x(t, ω) = f(t, ω, x(t, ω), y(t), u(t, ω)), (7.3)

y(t) =

1∫
0

g(t, ω, x(t, ω), u(t, ω)) dω, (7.4)

x(0, ω) = x0(ω). (7.5)

Here x : [0, T ] × [0, 1] → Rn and y : [0, T ] → Rm. The initial condition x0 lies in the space
L∞ ([0, 1],Rn). For every t ∈ [0, T ] let U(t) be a bounded and convex subset of L∞

(
[0, 1],Rl

)
. The set

U is then defined as U = {u ∈ L∞
(
[0, T ]× [0, 1],Rl

)
: u(t, ·) ∈ U(t)}. We say that the triple (x, y, u)

is admissible if it satisfies the state equations (7.3)-(7.5) in the sense as explained in Section 7.3. We say
that the triple (x̂, ŷ, û) is a solution of (7.1) if (x̂, ŷ, û) is admissible and J(û) ≥ J(u) for every other
admissible triple (x, y, u).

We now formulate the assumptions about the other functions involved. To ease notation, if r is a function
of several variables, r′η we will denote the partial derivative or r with respect to η. The matrix A :

[0, T ] × [0, 1] → Rn×n is diagonal with entries Aii = ai(t, ω). The functions ai : [0, T ] × [0, 1] → R,
f : [0, T ] × [0, 1] × Rn × Rm × Rl → Rn, g : [0, T ] × [0, 1] × Rn × Rl → Rm, h : [0, T ] × [0, 1] ×
Rn×Rm×Rl → R, and k : [0, 1]×Rn×Rm → R, as well as the partial derivatives f ′x, f ′y, g′x, h′x, h′y,
k′x, and k′y are locally bounded, measurable in (t, ω) for every (x, y, u) and locally Lipschitz continuous
in (x, y, u). The functions ai are furthermore absolutely continuous in ω.

In addition we assume that k depends only on components yi of y for which the corresponding
components gi are independent from u. Finally, let A(t, 0) = A(t, 1) = 0 for almost every t ∈ [0, T ]

and for every i let either ai(t, ω) = 0 for ω ∈ (0, 1) or ai(t, ω) 6= 0 for ω ∈ (0, 1) hold true.

Remark 5. The regularity assumptions about the functions are standard. The restriction that k may only
depend on certain components is necessary so that changing the control u at the single time T cannot
increase the value of J(u). In fact, this restriction may be weakened to reflect that this independence is
only necessary at the final time T . With regards to the assumptions about A we note that allowing ai to
be identically zero can for example be used to model components xi that do not depend on the structure
variable ω. Furthermore, the restriction that A(t, 0) = A(t, 1) = 0 is not strictly necessary and is used
only to simplify the proofs (see discussion in Section 7.3).

We will use the notation µ∗ for the transpose of the vector (or matrix) µ. For an admissible triple
(x(t, ω), y(t), u(t, ω)) we introduce their adjoint variables λ : [0, T ]× [0, 1]→ Rn and ν : [0, T ]→ Rm
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via the adjoint equations

∂

∂t
λ(t, ω) +A(t, ω)

∂

∂ω
λ(t, ω) = −f ′x(t, ω, x(t, ω), y(t), u(t, ω))∗λ(t, ω)

− h′x(t, ω, x(t, ω), y(t), u(t, ω))− g′x(t, ω, x(t, ω), u(t, ω))∗ν(t),

(7.6)

ν(t) =

1∫
0

f ′y(t, ω, x(t, ω), y(t), u(t, ω))∗λ(t, ω) + h′y(t, ω, x(t, ω), y(t), u(t, ω)) dω, (7.7)

λ(T, ω) = k′x(ω, x(T, ω), y(T )) + g′x(T, s, x(T, ω), u(T, ω))∗
1∫

0

k′y(σ, x(T, σ), y(T )) dσ. (7.8)

How a solution to this PDE is to be understood will be explained in Section 7.3. Note that the terminal
condition (7.8) is well defined, since our assumptions about k assure that the value u(T, ω) does not
influence λ(T, ω).

Theorem 13. Let (x̂, ŷ, û) be a solution of (7.1), and let λ̂ and ν̂ be their adjoint variables. Define the
HamiltonianH : [0, T ]× L∞ ([0, 1],Rn)× Rm × L∞ ([0, 1],Rn)× Rm × L∞

(
[0, 1],Rl

)
→ R as

H(t, x(·), y, λ(·), ν, u(·))

=

1∫
0

λ(ω)∗f(t, ω, x(ω), y, u(ω)) + h(t, ω, x(ω), y, u(ω)) + ν∗(g(t, ω, x(ω), u(ω))− y) dω.

Then for t ∈ [0, T ] the equations

∂

∂λ
H(t, x̂(t, ·), ŷ(t), λ̂(t, ·), ν̂(t), û(t, ·)) =

∂

∂t
x̂(t, ω) +

∂

∂ω
A(t, ω)x̂(t, ω),

∂

∂x
H(t, x̂(t, ·), ŷ(t), λ̂(t, ·), ν̂(t), û(t, ·)) = − ∂

∂t
λ̂(t, ω)−A(t, ω)

∂

∂ω
λ̂(t, ω),

∂

∂ν
H(t, x̂(t, ·), ŷ(t), λ̂(t, ·), ν̂(t), û(t, ·)) = 0,

∂

∂y
H(t, x̂(t, ·), ŷ(t), λ̂(t, ·), ν̂(t), û(t, ·)) = 0,

(7.9)

with boundary conditions (7.5) and (7.8) hold true, as well as the following maximum principle

H(t, x̂(t, ·), ŷ(t), λ̂(t, ·), ν̂(t), û(t, ·)) = max
u(·)∈U(t)

H(t, x̂(t, ·), ŷ(t), λ̂(t, ·), ν̂(t), u(·)). (7.10)

How the equations (7.9) are to be interpreted will be explained in Section 7.3.
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7.3 Notion of solution

The solutions to the state and adjoint equations are defined via the solutions along the characteristic lines.

Definition 2. For a given control u : [0, T ] × [0, 1] → Rl, the pair of functions x : [0, T ] × [0, 1] →
Rn and y : [0, T ] → Rm is a solution to the state equations (7.3)-(7.5) if x has the representation
xi(t, ωi(t, ρ)) = ζi(t, ρ), t ∈ [0, T ], ρ ∈ [0, 1], where ζi(t, ρ) is measurable in ρ, absolutely continuous
in t for a.e. ρ and fulfils the equations

d
dt
ζi(t, ρ) = fi(t, ωi(t, ρ), x(t, ωi(t, ρ)), y(t), u(t, ωi(t, ρ)))− (ai)

′
ω(t, ωi(t, ρ)) ζi(t, ρ), (7.11)

y(t) =

1∫
0

g(t, ω, x(t, ω), u(t, ω)) dω, (7.12)

ζi(0, ρ) = x0i(ρ), (7.13)

where the characteristic line ωi : [0, T ] × [0, 1] → [0, 1] is defined as the unique solution of the initial
value problem

∂

∂t
ωi(t, ρ) = ai(t, ωi(t, ρ)), ωi(0, ρ) = ρ. (7.14)

This definition is similar to the one presented in Section 6.4. Arguments that show that the system
(7.11)-(7.13) is well defined and a motivation for this definition can be found there. We stress that the
solution x will generally not be smooth and may even be discontinuous in each of the directions t and x.
The component xi however is absolutely continuous along the characteristic line ωi(t, ω).

Lemma 12. There exists a constant C such that for all controls u1, u2 ∈ U and for the corresponding
solutions (x[u1], y[u1]) and (x[u2], y[u2]) of system (7.3)–(7.5) it holds that

‖x[u1]− x[u2]‖L∞ + ‖y[u1]− y[u2]‖L∞ ≤ C‖u1 − u2‖L∞ .

Proof According to the definition of a solution, xi[uj ](t, ω) = ζi[uj ](t, ρi(t, ω)), where ζi[uj ] together
with y[uj ] satisfy equations (7.11)–(7.13), j = 1, 2. Then it is straightforward that

‖x[u1]− x[u2]‖L∞ = ‖∆ζ‖L∞ ,

where ∆ζi(t, ρ) = ζi[u1](t, ρ)− ζi[u2](t, ρ), ∆ζ = (∆ζ1, . . . ,∆ζn).
Let Θ ⊂ [0, 1] be of full measure and such that the functions ζi[uj ](·, ρ) are absolutely continuous

for every ρ ∈ Θ. Then

‖∆ζ‖L∞ = sup
t∈[0,T ]

∆ζ(t),
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where ∆ζ(t) := maxi=1,...,n supρ∈Θ |∆ζi(t, ρ)| is a Lipschitz continuous function due to the uniform
Lipschitz continuity of ∆ζi(·, ρ). From the Lipschitz continuity of g in x and u we get that

‖y[u1](t)− y[u2](t)‖L∞ =

∥∥∥∥∥∥
1∫

0

g(t, x[u1](t, ω), u1(t, ω))− g(t, x[u2](t, ω), u2(t, ω)) dω

∥∥∥∥∥∥
L∞

≤ c1 ∆z(t) + c2‖u1 − u2‖L∞ ,

where c1 and c2 are appropriate constants (as are c3 and c4 below). Since

∆ζi(t, ρ) =

t∫
0

d
dt

∆ζi(s, ρ) ds,

we can similarly use (7.11) and the Lipschitz continuity of f ′x and (ai)
′
ω to get

∆ζ(t) ≤ c3‖u1 − u2‖L∞ +

t∫
0

c4∆ζ(s) ds,

The claim of the lemma follows from Grönwall’s inequality. 2

A solution of the adjoint equations is defined similarly as that of the state equations.

Definition 3. The pair of functions λ : [0, T ] × [0, 1] → Rn and ν : [0, T ] → Rm are a solution to the
adjoint equations (7.6)-(7.8) if λ has the representation λi(t, ωi(t, ρ)) = ξi(t, ρ), t ∈ [0, T ], ρ ∈ [0, 1],
where ξi(t, ρ) is measurable in ρ, absolutely continuous in t for a.e. ρ and fulfils the equations

d
dt
ξi(t, ρ) = −f ′xi(t, ωi(t, ρ), x(t, ωi(t, ρ)), y(t), u(t, ωi(t, ρ)))∗λ(t, ωi(t, ρ))

− h′xi(t, ωi(t, ρ), x(t, ωi(t, ρ)), y(t), u(t, ωi(t, ρ)))

− g′xi(t, ωi(t, ρ), x(t, ωi(t, ρ)), u(t, ωi(t, ρ)))∗ν(t),

(7.15)

ν(t) =

1∫
0

f ′y(t, ω, x(t, ω), y(t), u(t, ω))∗λ(t, ω) + h′y(t, ω, x̂(t, ω), y(t), u(t, ω)) dω, (7.16)

ξi(T, ρ) =k′xi(ωi(t, ρ), x(T, ωi(T, ρ)), y(T ))

+

1∫
0

k′y(σ, x(T, σ), y(T )) dσ g′xi(T, ωi(T, ρ), x(T, ωi(T, ρ)), u(T, ω)),
(7.17)
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where the characteristic line ωi : [0, T ] × [0, 1] → [0, 1] is defined as the unique solution of the initial
value problem

∂

∂t
ωi(t, ρ) = ai(t, ωi(t, ρ)), ωi(0, ρ) = ρ. (7.18)

The same arguments as for the state equations show that the system (7.15)-(7.17) is well defined. The
motivation for this definition is again that a smooth solution of this system will be a classical solution
of (7.6)-(7.8). We point out the important fact that the characteristic lines for the state equations and the
adjoint equations are the same.

Concerning existence and uniqueness of the solution of both the state and adjoint equations we refer
to [6]. There, systems of a form even more general than the ones here are considered, but under the
assumption that A(t, ω) > 0. However, our assumption that A(t, 0) = A(t, 1) = 0 is a simplification
rather than a complication as it dispenses of the need for boundary conditions, hence the proof presented
in [6] can be readily adapted to the present problem. Should this assumption not be fulfilled, the approach
presented here is still applicable, however the proof of Theorem 13 will become more cumbersome.

Next, we want to explain how equations (7.9) are to be interpreted. First note that if we calculate the
Fréchet derivative ofH with respect to λ at a point (t, x̂(t, ·), ŷ(t), λ̂(t, ·), ν̂(t), û(t, ·)) in direction φ we
get

∂

∂λ
H(t, x̂(t, ·), ŷ(t), λ̂(t, ·), ν̂(t), û(t, ·))φ(·) =

1∫
0

f(t, ω, x̂, ŷ, û)φ(ω) dω,

so that we can identify ∂
∂λH = f(t, ω, x(t, ω), y(t), u(t, ω)). Thus the first equation in (7.9) reads

f(t, ω, x(t, ω), y(t), u(t, ω)) =
∂

∂t
x(t, ω) +

∂

∂ω
A(t, ω)x(t, ω),

which is the same as equation (7.3). This if course again to interpreted using Definition 2. The second
equation is to be interpreted similarly. The third and fourth equations recover the relations (7.4) and
(7.7), respectively. Note in particular that any admissible triple together with their adjoint variables will
satisfy the equations (7.9).

It is a standard result in optimal control theory that the Hamiltonian is constant along an optimal tra-
jectory, as long the Hamiltonian does not depend explicitly on t ([67]). It is an open question whether
the Hamiltonian, as we defined it, has this property. We mention that we include the final term −ν∗y in
the Hamiltonian since it was shown in [103] that for a simpler version of the optimal control problem
presented here, where A = 0 and g is independent of u, this definition does indeed yield a Hamiltonian
that is constant along the optimal trajectory.
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7.4 Proof of the theorem

Let the triple (x̂, ŷ, û) be a solution to the optimal control problem, let λ̂(t, ω) and ν̂(t) be their ad-
joint variables, and ζ̂(t, ω) and ξ̂(t, ω) the corresponding function according to Definitions 2 and 3.
Let for u ∈ U the triple (x, y, u) be admissible with adjoint variables λ(t, ω), ν(t) and correspond-
ing functions ζ(t, ω), and ξ(t, ω). We denote ∆x(t, ω) = x(t, ω) − x̂(t, ω). A ∆ in front of another
expression will have a similar definition. Furthermore we use the notation ∆uf(t, ω, x(t, ω), y(t)) =

f(t, ω, x(t, ω), y(t), u(t, ω)) − f(t, ω, x(t, ω), y(t), û(t, ω)). Again, a ∆u in front of another function
has a similar definition. To further simplify notation we will also skip the state variables and control when
they appear as arguments with a ”hat”, e.g. f(t, ω) := f(t, ω, x̂(t, ω), ŷ(t), û(t, ω)). We will assume that
‖u− û‖L∞ = ε is small. Using this we get

J(u)− J(û) =

T∫
0

1∫
0

∆h(t, ω, x(t, ω), y(t), u(t, ω)) dω dt+

1∫
0

∆k(ω, x(T, ω), y(T )) dω

=

T∫
0

1∫
0

h′x(t, ω)∗∆x(t, ω) + h′y(t, ω)∗∆y(t) + ∆uh(t, ω) dω dt

+

1∫
0

k′x(ω, x̂(T, ω), ŷ(T ))∗∆x(T, ω) + k′y(ω, x̂(T, ω), ŷ(T ))∗∆y(T ) dω + o(ε).

(7.19)

To see that the remainder is indeed o(ε), we consider the term ∆h(t, ω, x(t, ω), y(t), u(t, ω)). For sim-
plicity we assume that h is independent of y (this is only to simplify notation; no additional difficulties
arise if h depends on y). We have

1∫
0

h(t, ω, x(t, ω), u(t, ω))− h(t, ω, x̂(t, ω), û(t, ω)) dω

=

1∫
0

h(t, ω, x(t, ω), u(t, ω))− h(t, ω, x̂(t, ω), u(t, ω)) + ∆uh(t, ω) dω.
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The last term is accounted for in (7.19). Using an appropriate x̄(t, ω) between x(t, ω) and x̂(t, ω), the
remaining difference can be rewritten as

1∫
0

h(t, ω,x(t, ω), u(t, ω))− h(t, ω, x̂(t, ω), u(t, ω)) dω

=

1∫
0

h′x(t, ω, x̄(t, ω), u(t, ω))∗∆x(t, ω) dω

=

1∫
0

h′x(t, ω, x̂(t, ω), û(t, ω))∗∆x(t, ω)

+
(
h′x(t, ω, x̄(t, ω), u(t, ω))∗ − h′x(t, ω, x̂(t, ω), û(t, ω))∗

)
∆x(t, ω) dω.

The first term is accounted for in (7.19) while the Lipschitz continuity of hx in x, y and u together
with the fact that ‖∆x(t, ω)‖L∞ and ‖∆y(t)‖L∞ can be estimated from above by some constant times ε
(see Lemma 12) shows that the remaining term is indeed o(ε). The same argument can be used for the
remaining terms. Similar calculations show up below, where we will not repeat this argument.
Using the representation

∆y(t) =

1∫
0

g(t, ω, x(t, ω), u(t, ω))− g(t, ω, x̂(t, ω), û(t, ω)) dω

=

1∫
0

g′x(t, ω)∆x(t, ω) + ∆ug(t, ω) dω + o(ε)

(7.20)

yields

J(u)−J(û)=

T∫
0

1∫
0

h′x(t, ω)∗∆x(t, ω)+

1∫
0

h′y(t, σ)∗dσ
(
g′x(t, ω)∆x(t, ω)+∆ug(t, ω)

)
+∆uh(t, ω)dωdt

+

1∫
0

k′x(ω, x̂(T, ω), ŷ(T ))∗∆x(T, ω)+

1∫
0

k′y(σ, x̂(T, σ), ŷ(T ))∗ dσ g′x(T, ω)∆x(T, ω) dω+o(ε),

(7.21)

where we also used the fact that due to our assumptions on k the term
∫ 1

0 k
′
y(σ, x̂(T, σ), ŷ(T ))∗ dσ∆ug(T, ω)

is zero.
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Now we integrate by parts the following expression

n∑
i=1

T∫
0

1∫
0

ξ̂i(t, ρ)
d
dt

∆ζi(t, ρ)
∂

∂ρ
ωi(t, ρ) dρ dt

=

n∑
i=1

1∫
0

ξ̂i(T, ρ)∆ζi(T, ρ)
∂

∂ρ
ωi(T, ρ) dρ−

n∑
i=1

1∫
0

ξ̂i(0, ρ)∆ζi(0, ρ)
∂

∂ρ
ωi(0, ρ) dρ

−
n∑
i=1

T∫
0

1∫
0

[
d
dt
ξ̂i(t, ρ)

∂

∂ρ
ωi(t, ρ) + ξ̂i(t, ρ)

∂

∂t

∂

∂ρ
ωi(t, ρ)

]
∆ζi(t, ρ) dρ dt.

(7.22)

We rewrite the term on the left hand side, using ξi(t, ρ) = λi(t, ωi(t, ρ)), equations (7.11) and (7.20),
and a transformation of variables to yield

n∑
i=1

T∫
0

1∫
0

ξ̂i(t, ρ)
d
dt

∆ζi(t, ρ)
∂

∂ρ
ωi(t, ρ) dρdt=

n∑
i=1

T∫
0

1∫
0

λ̂i(t, ω)
[
∆fi(t, ω)−(ai)

′
ω(t, ω)∆xi(t, ω)

]
dωdt

=

T∫
0

1∫
0

λ̂(t, ω)∗
[
f ′x(t, ω)∆x(t, ω) + f ′y(t, ω)∆y(t) + ∆uf(t, ω)−A′ω(t, ω)∆x(t, ω)

]
dω dt+o(ε)

=

T∫
0

1∫
0

λ̂(t, ω)∗f ′x(t, ω) +

1∫
0

λ̂(t, σ)∗f ′y(t, σ) dσg′x(t, ω)− λ̂(t, ω)∗A′ω(t, ω)

∆x(t, ω)

+

1∫
0

λ̂(t, σ)∗f ′y(t, σ) dσ∆ug(t, ω) + λ̂(t, ω)∗∆uf(t, ω) dω dt+ o(ε).

Using (7.17) it can similarly be shown that the first term on the right hand side of (7.22) is exactly the
last line in (7.21). The second term is obviously zero, as ∆ζi(0, ρ) = 0. The remaining term we split in
two. By the same method as before we easily get

−
n∑
i=1

T∫
0

1∫
0

d
dt
ξ̂i(t, ρ)∆ζi(t, ρ)

∂

∂ρ
ωi(t, ρ) dρ dt

= −
T∫

0

1∫
0

(
−λ̂(t, ω)∗f ′x(t, ω)− h′x(t, ω)∗ − ν(t)∗g′x(t, ω)

)
∆x(t, ω) dω dt+ o(ε).

For the last term note that

∂

∂t

∂

∂ρ
ωi(t, ρ) = (ai)

′
ω(t, ωi(t, ρ))

∂

∂ρ
ωi(t, ρ).
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Consequently we get

−
n∑
i=1

T∫
0

1∫
0

ξ̂i(t, ρ)∆ζi(t, ρ)
∂

∂t

∂

∂ρ
ωi(t, ρ) dρ dt = −

T∫
0

1∫
0

λ̂(t, ω)∗A′ω(t, ω)∆x(t, ω) dω dt.

Bringing the right hand side of (7.22) onto the left hand side and using the representations we have
derived, we arrive after some cancellation at

0 =

T∫
0

1∫
0

 1∫
0

λ̂(t, σ)∗f ′y(t, σ) dσg′x(t, ω)− h′x(t, ω)∗ − ν(t)∗g′x(t, ω)

∆x(t, ω)

+

1∫
0

λ̂(t, σ)∗f ′y(t, σ) dσ∆ug(t, ω) + λ̂(t, ω)∗∆uf(t, ω) dω dt

−
1∫

0

k′x(ω, x̂(T, ω), ŷ(T ))∗∆x(T, ω)+

1∫
0

k′y(σ, x̂(T, σ), ŷ(T ))∗ dσ g′x(T, ω)∆x(T, ω) dω+ o(ε).

Adding this to (7.21) results in

J(u)− J(û) =

T∫
0

1∫
0

λ̂(t, ω)∗∆uf(t, ω) + ∆uh(t, ω) + ν(t)∗∆ug(t, ω) dω dt+ o(ε).

We see that a first order condition for û to be optimal is that it maximises the Hamiltonian (note that
the Hamiltonian has an additional term; this term is independent of u and therefore plays no role in the
maximisation). It was already established at the end of Section 7.3 that the first equation in (7.9) is
fulfilled . The remaining equations are equally straightforward to prove.

7.5 Conclusions

We have derived a Pontryagin-type maximum principle for an optimal control system using a size-
structured PDE as state equation, including aggregated variables depending on the control. We mention
that optimal control of size structured systems has been studied before, for example in [108], where the
system is one-dimensional. We extend the results there by allowing for arbitrary dimension of the state
variables. Optimal control of other heterogeneous systems has been considered for example in [103],
where, among others, systems with parametric heterogeneity have been investigated.

One topic we have not touched upon here are additional constraints. Epidemiological models for the
transmission of infectious diseases in general ensure non-negativity of the trajectories, and we expect
that a meaningful inclusion of a control into these dynamics will retain this property, so that the result
presented here is useful in actual applications. However, additional constraints are of course of interest
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for various other reasons. This includes not only state constraints, but also terminal constraints which
could be used to demand that the prevalence of the disease at the terminal time lies beneath some fixed
value. Furthermore, problems of the same structure but where the terminal time T is free could be used
to calculate control trajectories that eradicate the disease in minimal time.

We see that while the theorem presented here provides a useful extension of previous results in
applying optimal control to size-structured models, there are still many ways in which the result may be
expanded.

153





Bibliography

[1] B. Ainseba, M. Iannelli: Optimal screening in structured SIR epidemics. Mathematical Modelling
of Natural Phenomena 7(03) (2012): pp. 12–27.

[2] S. Alizon, M. van Baalen: Multiple infections, immune dynamics, and the evolution of virulence.
The American Naturalist 172(4) (2008): E150–E168.

[3] E.J. Allen: Derivation of stochastic partial differential equations for size-and age-structured popu-
lations. Journal of Biological Dynamics 3(1) (2009): pp. 73–86.

[4] F. Altarelli, A. Braunstein, L. Dall’Asta, J.R. Wakeling, R. Zecchina: Containing epidemic out-
breaks by message-passing techniques. Physical Review X 4(2) (2014): 021024.

[5] S. Altizer, A. Dobson, P. Hosseini, P. Hudson, M. Pascual, P. Rohani: Seasonality and the dynamics
of infectious diseases. Ecology Letters 9(4) (2006): pp. 467–484.
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