
Diese Arbeit haben begutachtet

............................

Ansgar Jüngel

DISSERTATION

Kinetic and di�usion equations for
socio-economic scenarios

Ausgeführt zum Zwecke der Erlangung des akademischen Grades einer

Doktorin der technischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dr. Ansgar Jüngel

E101

Institut für Analysis und Scienti�c Computing

eingereicht an der Technischen Universität Wien Fakultät für Mathematik

und Geoinformatic

von

Lara Trussardi

Matrikelnummer: 1328689

Wien, am 12. Mai 2016

Die approbierte Originalversion dieser 
Dissertation ist in der Hauptbibliothek der 
Technischen Universität Wien  aufgestellt und 
zugänglich. 
http://www.ub.tuwien.ac.at 

 

 
The approved original version of this thesis is 
available at the main library of the Vienna 
University of Technology.  
 

http://www.ub.tuwien.ac.at/eng 
 





CONTENTS

Abstract 3

Zusammenfassung 4

1 introduction 5

1.1 The two scenarios: herding and wealth distribution . . 5

1.2 Models for herding and wealth distribution . . . . . . . 8

2 entropy and bifurcation in cross-diffusion herding 16

2.1 Main Results . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 Entropy Method . . . . . . . . . . . . . . . . . . 16

2.1.2 Analytical Bifurcation Analysis . . . . . . . . . . 20

2.1.3 Numerical Bifurcation Analysis . . . . . . . . . . 22

2.2 Entropy Method – Proofs . . . . . . . . . . . . . . . . . . 24

2.2.1 Proof of Theorem 9 . . . . . . . . . . . . . . . . . 24

2.2.2 Proof of Theorem 2 . . . . . . . . . . . . . . . . . 29

2.3 Analytical Bifurcation Analysis – Proofs . . . . . . . . . 32

2.4 Numerical Bifurcation Analysis – Continuation Results 36

2.4.1 Comparison between the values of δn
b

. . . . . . 37

2.4.2 Case 1: α su�ciently large . . . . . . . . . . . . . 37

2.4.3 Case 2: α su�ciently small . . . . . . . . . . . . 39

2.4.4 Continuation in ρ . . . . . . . . . . . . . . . . . . 41

2.4.5 Solutions and other parameters . . . . . . . . . . 43

3 kinetic equation with irrationality and herding 45

3.1 Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Public information and herding . . . . . . . . . . 45

3.1.2 The kinetic equation . . . . . . . . . . . . . . . . 47

3.1.3 Grazing collision limit . . . . . . . . . . . . . . . 48

3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Existence of weak solutions . . . . . . . . . . . . 50

3.2.2 Asymptotic behaviour of the moments . . . . . . 57

3.3 Numerical simulations . . . . . . . . . . . . . . . . . . . 58

3.3.1 The numerical scheme . . . . . . . . . . . . . . . 58

3.3.2 Choice of functions and parameters . . . . . . . 59

3.3.3 Numerical test 1: constant R, constant W . . . . 60

3.3.4 Numerical test 2: constant R, time-dependent W (t) 62

3.3.5 Numerical test 3: time-dependent R(t) . . . . . . 62

4 boltzmann equation for wealth and knowledge ex-

changes 65

4.1 Kinetic model . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Microscopic exchanges of knowledge and wealth 65

4.1.2 Collision operators and governing equation . . . 67

4.1.3 Well-posedness of the problem . . . . . . . . . . 69

4.2 Numerical experiments . . . . . . . . . . . . . . . . . . . 71

4.2.1 Numerical values, computational strategy . . . . 71

4.2.2 Basic tests . . . . . . . . . . . . . . . . . . . . . . 72

4.2.3 Thresholds and clusters . . . . . . . . . . . . . . 74

iii



1

4.2.4 Quasi-invariant knowledge . . . . . . . . . . . . 75

5 outlook 77

5.1 Cross-di�usion herding . . . . . . . . . . . . . . . . . . 77

5.2 Kinetic model for herding and rationality . . . . . . . . 78

5.3 Wealth distribution model . . . . . . . . . . . . . . . . . 78

Bibliography 80



2

Men nearly always follow the tracks

made by others and proceed in their

a�airs by imitation.

N. Macchiavelli



ABSTRACT

In this work three di�erent models for describing some socio-economic

scenarios are presented. First, a cross-di�usion system modelling the

information herding of individuals has been studied; the second model

describes the dynamics of agents in a large market depending on the

estimated asset value of a product and the rationality of the agents

using a kinetic inhomogeneous Boltzmann-type equation. The third

model describes the in�uence of knowledge and wealth in a society

where the agents interact with the others through binary interactions

via a Boltzmann equation.

The entropy structure of the cross-di�usion system gives us the

global-in-time existence of weak solutions and the exponential decay

to the constant steady state. Moreover, we investigate local bifurcations

from homogeneous steady states analytically and this analysis shows

that generically there is a gap in the parameter regime between the

entropy approach validity and the �rst local bifurcation.

In the second model, a nonlinear nonlocal Fokker-Planck equation

with anisotropic di�usion is derived. The existence of global-in-time

weak solutions to the Fokker-Planck initial-boundary-value problem is

proved using the entropy approach.

For the third model we prove the existence of weak solutions for the

Boltzmann equation.

For eachmodel studied several numerical simulations has been imple-

mented: for the cross-di�usion system we used numerical continuation

methods to track the bifurcating non-homogeneous steady states glob-

ally and to determine non-trivial herding solutions. We �nd that the

main boundaries in the parameter regime are given by the �rst local

bifurcation point, the degeneracy of the di�usion matrix and a certain

entropy decay validity condition.

In the second model, numerical simulations for the Boltzmann equa-

tion highlight the importance of the reliability of public information

in the formation of bubbles and crashes. The use of Bollinger bands in

the simulations shows how herding may lead to strong trends with low

volatility of the asset prices, but eventually also to abrupt corrections.

In the last model we implement the Boltzmann equation. The kinetic

code shows the possibility of cluster formation, using certain speci�c

threshold.
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ZUSAMMENFASSUNG

In dieser Arbeit werden drei verschiedene Modelle zur Beschreibung

einiger sozioökonomischer Szenarien vorgestellt. Zunächst wird ein

Kreuzdi�usionssystem untersucht, welches das Herdenverhalten von

Individuen modelliert. Das zweite Modell beschreibt die Dynamik von

Agenten in einem großen Markt in Abhängigkeit von dem geschätzten

Vermögenswert eines Produkts und der Rationalität der Agenten. Dies

wird mit einer kinetischen inhomogenen Boltzmann-Gleichung model-

liert. Das dritte Modell beschreibt den Ein�uss von Wissen und Wohl-

stand in einer Gesellschaft, in der die Agentenmiteinander durch binäre

Wechselwirkungen gemäß einer Boltzmann-Gleichung interagieren.

Die Entropiestruktur des Kreuzdi�usionssystems liefert die Existenz

von zeitlich globalen schwachen Lösungen und den exponentiellen

Abfall zu einem konstanten stationären Zustand. Darüber hinaus

untersuchen wir analytisch lokale Abzweigungen von homogenen

stationären Zuständen. Diese Analyse zeigt, dass im Allgemeinen

eine Lücke existiert zwischen jenem Parameterberich, in dem der En-

tropieansatz gültig ist, und jenem, in dem die erste lokale Bifurkation

liegt.

Im zweitenModell wird eine nicht lineare nicht lokale Fokker-Planck-

Gleichung mit anisotroper Di�usion hergeleitet. Die Existenz von zeit-

lich globalen schwachen Lösungen für das Fokker-Planck-Anfangs-

Randwertproblem wird mit Hilfe eines Entropieansatzes bewiesen.

Für das dritte Modell beweisen wir die Existenz von Lösungen für

die Boltzmann-Gleichung.

Für alle Modelle wurden verschiedene numerische Verfahren imple-

mentiert: für das Kreuzdi�usionssystem verwenden wir numerische

Fortsetzungsmethoden, umbifurkierende inhomogene stationäre Zustände

global zu verfolgen, und um nicht triviale Herdenlösungen zu bestim-

men. Wir haben festgestellt, dass die Hauptgrenzen im Parameter-

bereich durch den ersten lokalen Bifurkationspunkt, die Entartung der

Di�usionsmatrix und eine gewisse Gültigkeitsbedingung für denAbfall

der Entropie gegeben sind.

Im zweitenModell stellen numerische Simulationen für die Boltzmann-

Gleichung die Bedeutung der Zuverlässigkeit der ö�entlichen Informa-

tion bei der Bildung von Spekulationsblasen und Crashs heraus. Die

Verwendung von Bollinger-Bändern in den Simulationen zeigt, wie

Herdenverhalten zu starken Preistrends führen kann, aber letztendlich

auch zu abrupten Korrekturen.

Im letzten Modell implementieren wir die Boltzmann-Gleichung.

Der kinetische Code zeigt die Möglichkeit der Clusterbildung unter

Verwendung von bestimmten Schwellenwerten für Wissen und Wohl-

stand.
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INTRODUCTION 1
Socio-economics is a relatively new science which studies the rela-

tionship between the social processes and the economy [BM00, DY00,

MS00, Lux98]. It analyses in particular the in�uence of speci�c social

relationship on the formation of groups, economic systems and institu-

tions [Gra85]. It involves di�erent �elds such as sociology, economics,

psychology which cooperate in order to understand better, describe

and explain the social, economic and political reality.

Due to this wide range of concepts and methods, there is no unique

approach to this science and there are several options to investigate the

interactions between the processes involved.

Together with the socio-economics, another �eld of science inspired

this work. In the early eighties Galam, Gefen and Shapir introduced

the term socio-physics for describing the idea of using the tools of

statistical mechanics to model the social behaviour [GGS82, Wei71].

Socio-physics attempts to address a wide range of problems such as

social networks, population dynamics, voting, formation of coalitions,

opinion dynamics.

This work attempts to merge socio-economics and socio-physics with

a model of several socio-economical scenarios. It consists in describ-

ing and modelling from a mathematical point of view some socio-

economical scenarios using kinetic and di�usion equations.

Since the social behaviour of a community shows a very high degree

of complexity and does not represent a physical system, any mathem-

atical model would introduce some limitations and would not be an

exact reproduction of the reality.

Nevertheless, a mathematical model also allows studying subjects

apparently away from mathematics such as the sociological dynamics.

This work consists of three mathematical models, describing the in-

teractions between individuals in a market and addresses two di�erent

scenarios: the herding in �nancial market and the wealth distribution

in a closed society.

1.1 the two scenarios: herding and wealth distribution

The �rst scenario described in this work is the herding in �nancial

markets.

Herding in economicmarkets is characterized by a homogenization of

the actions of the market participants, which behave at a certain time in

the same way. Herding may lead to strong trends with low volatility of

asset prices, but eventually also to abrupt corrections, so it promotes the

occurrence of bubbles and crashes. Numerous socio-economic papers

[Ban92, Bru01, DJH
+
09, RRF09, Roo06] and research in biological sci-

ences [ARNn
+
05, Ham71] show that herding interactions play a crucial

role in social scenarios. Herding behaviour is often irrational because

people are not basing their decision on objective criteria. It is driven

by emotions and usually occurs because of the social pressure of con-

formity and the belief that it is unlikely that a large number of people

5



6 introduction

could be wrong. A market participant might follow the herd in spite of

another opinion.

We can observe herding not only in the �nancial market but also in

every day life situations and in panic situations.

One problem in describing herding (or other human behaviour) arises

from the fact that the behaviour of every individual in a group has local

interactions without centralized coordination, but the global e�ect can

be observed on a macro scale, when we observe all the population.

A full understanding of herding behaviour would need the ability to

understand both levels: the microscopical one which considers each

individual of the crowd separately; and the macroscopic level which

deals with all the group of individual, i.e. the herd. The �rst case

usually represents the individual as a particle; the latter one is often

represented with a density function depending (continuously) on space

and time [BMP11b].

There are many historical examples of herding behaviour in �nancial

and commodity markets, from the so-called Dutch tulip bulb mania in

1637 to the recent credit crunch in the US housing market in 2007. In

the last two decades, herding behaviour started to play an increasing

role in scienti�c research although this phenomenon has been studied

from a variety of perspectives and at distinct levels of analysis since the

XVIII century. Indeed, herding can be seen from a psychological and

sociological point of view, but it has also application in medicine and

political science.

In 1759 Adam Smith in “The Theory of Moral sentiments” [Smi59]

described herding as motor mimicry. More than 100 years later, in 1895,

Gustave Le Bon introduced the idea of herding as a form of irrational

and unconscious social contagion [LB95]. Veblen, American economist

and sociologist, studied sudden shifts in consumers behaviour and in

his book “The Theory of the Leisure Class” (1899) he introduced the

idea of “conspicuous consumption” in which people engage in actions

by making comparison with people who are similar but also slightly

better with the goal to express their strength better. But it was only in

1908 that the doctor Wilfred Trotter introduced the phrase “herd beha-

viour” [Tro06] as an explanatory principle of crowd psychology starting

from the work of Le Bon. In 1935 John Maynard Keynes, an English eco-

nomist, described herding as a contagious “animal spirit” which moves

the market [Key36]. For decades the study of this behaviour in social

psychology and sociology had a broad description and analysis, but

it is in the analysis of the stock market that herding has received most

of the recent attention in the social sciences. Everett Roger introduced

two research directions [Rog03]: one related to di�usion of innovations

and one related to social network analysis. He de�ned di�usion as

“the process by which an innovation is communicated through certain

channels over time among the members of a social system”. His work

found application not only in economics but also in psychology and

sociology.

In 1992, two papers have been published which showed that people

could follow others even if private information and motivations sug-

gested doing otherwise.The �rst work by Banerjee [Ban92] describes a

situation where the individuals focus more on the behaviour of the oth-

ers than on their own information, and another work by Bikhchandani,
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Hirshleifer and Welch [BHW92], which used the concept of “informa-

tion cascades”. Abrahamson and Rosenkopf also took into account the

fact that usually the individuals don’t have equal access to the same

information [AR97], which implies that the position of the individuals

in a social network in�uences the strength of pressure on others to

follow. All these models were based on rational actors. This is what

Veblen called a „hedonistic-associational psychology“ and a „hedonistic

calculus“ in which „human conduct is conceived of and interpreted as

a rational response to the exigencies of the situation in which mankind

is placed“ [Veb09].

Psychologists and economists agree on the de�nition of herding but

there are theoretical and methodological di�erences. From the the-

oretical point of view there are two main issues [Bad10]: economists’

approach focuses on the existence of rational actors while psychologists

consider a bounded rationality [Sim55]. Psychologists assume that hu-

man limitations lead people to satisfying solutions instead to optimal

solution and the simpler solution relies on phrases like “the majority is

always right”. A second point is the existence of complete information

which would always allow individuals to make rational and optimal

decisions. But, as Abrahamson and Rosenkopf showed, herding is

caused by incomplete and ambiguous information [AR93, AR97]. Also

at the methodology level there are di�erent approaches: economics

usually focuses on questions like „how much“ (how to deal with herd

behaviour, how much to bene�t from it), while psychology is more

interested in questions like „why“ and „when“ (why and when herding

occurs).

The second scenario addressed in this work is the wealth distribution.

As for the herding description, there is the microscopic level and the

macroscopic one: each individual owns a certain wealth but it is more

interesting to focus on the distribution of themoney in thewhole society.

The so-called socio-physics has been used for analysing this phe-

nomenon.

The term “Social physics” was introduced by Quetelet in 1835 in his

book “Sur l’homme et le développement de ses facultés, ou Essai de

physique sociale” (in English “Treatise on Man”) where he described

the social physics concept of the “average man” who is characterized by

themean values ofmeasured variables that follow a normal distribution.

His goal was to understand the statistical laws behind the phenomena

such as crime rates, marriage rates or suicide rates. The term “social

physics”was also used fromComte, a French political philosopher, who,

in 1842, de�ned it as the study of the laws of society. Only afterwards

this term became sociology due to his disagreement with Quetelet’s

collection of statistics.

Later on, Maxwell developed the kinetic theory of gases and in 1876

he claimed that the experiences of “social physicists” gave him con-

�dence that the statistical approach could extract order from the mi-

croscopic chaos. So physics became statistical and as Boltzmann said

“Molecules are like many individuals, having the most various states

of motion, and the properties of gases only remain unaltered because

the number of these molecules which on average have a given state of

motion is constant” [Bol09].
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But the step from microscopic to macroscopic level has been done by

two physicists W. Lenz and E. Ising and an economist, T. Schelling. The

two physicists simulated di�erent phenomena with the Ising model

which had in common the presence of individual components which

were interacting in pairs producing collective e�ects, while Schelling

showed that simple agent rules can create complex global patterns or

emergent behaviour [Sch71].

As already pointed out the access to the information plays a funda-

mental role and it should be taken into account. It is complicated to

model the way in which individuals learn, however various aspects of

learning has been studied in these last years [BdO04, dFC06, GAEM
+
11,

LMM13].

This micro-macro approach has been employed both in Chapter 3 and

Chapter 4 where we respectively studied the herding behaviour and the

wealth distribution starting from binary collision between individuals.

In particular, in Chapter 3 a variable which represents the rationality

of the individuals has been taken into account, while in Chapter 4 we

have considered a knowledge variable.

1.2 models for herding and wealth distribution

The �rst question is “how could we model herding?”. We consider

two di�erent herding models: a cross-di�usion system (Chapter 2) and

a kinetic model (Chapter 3). In Chapter 2 we tried to obtain herding

non-constant solutions; in Chapter 3 we tried to address and answer

to the question “is it possible to obtain a model that would allow us to

prevent herding?”. In Chapter 4 we tried to reproduce mathematically

and simulate the reciprocal in�uence between knowledge and wealth.

In Chapter 2 we study the following cross-di�usion system:

∂t u1 � div(∇u1 − g(u1)∇u2), (1.1)

∂t u2 � div(δ∇u1 + κ∇u2) + f (u1) − αu2 , (1.2)

where u1 � u1(t , x), u2 � u2(t , x) for (t , x) ∈ [0, T)×Ω, T > 0 is the �nal

time, Ω ⊂ Rd
(d ≥ 1) is a bounded domain with su�ciently smooth

boundary, ∇ denotes the gradient, div � ∇· is the divergence and

∂t �
∂
∂t denotes the partial derivativewith respect to time. The equations

are supplemented by no-�ux boundary conditions and suitable initial

conditions

(∇u1 − g(u1)∇u2) · ν � 0 on ∂Ω, t > 0,
(δ∇u1 + κ∇u2) · ν � 0 on ∂Ω, t > 0,

u1(0, x) � u0

1
, in Ω,

u2(0, x) � u0

2
in Ω

(1.3)

where ν denotes the outer unit normal vector to ∂Ω. The function

u1(x , t) ∈ [0, 1] represents the density of individuals with information

variable x ∈ Ω at time t ≥ 0, and u2(x , t) is an in�uence function which

modi�es the information state of the individuals and possibly may lead

to a herding (or aggregation) behaviour of individuals. The in�uence

function acts through the term g(u1)∇u2 in (1.1). The non-negative

bounded function g(u1) is assumed to vanish only at u1 � 0 and u1 � 1,
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which provides the bound 0 ≤ u1 ≤ 1 if 0 ≤ u1(0, x) ≤ 1. In particular,

we assume that the in�uence becomesweak if the number of individuals

at �xed x ∈ Ω is very low or close to the maximal value u1 � 1, i.e.

g(0) � 0 and g(1) � 0, which may enhance herding behaviour. The

in�uence function is assumed to be modi�ed by di�usive e�ects also

due to the random behaviour of the density of the individuals with

parameter δ > 0, by the non-negative source term f (u1), relaxation
with time with rate α > 0, and di�usion with coe�cient κ > 0.

If δ � 0, equations (1.1)-(1.2) can be interpreted as a nonlinear variant

of the chemotaxis Patlak-Keller-Segel model [KS70], where the function

u2 corresponds to the concentration of the chemoattractant. The model

with nonlinear mobility g(u1) was �rst analysed by Hillan and Painter

[HP02], even for more general mobilities of the type u1β(u1)χ(u2). Gen-

erally, the mobility g(u1) � u1(1 − u1) models �nite-size exclusion and

prevents blow-up phenomena [Wrz04], which are known in the ori-

ginal Keller-Segel model. The convergence to equilibriumwas shown in

[JZ09]. Such models were also employed to describe evolution of large

human crowds driven by the dynamic �eld u2 [BMP11a]. Although of

high interest in the mathematical community, we will not analyse this

case but assume that δ , 0.

System (1.1)-(1.2) represents one possible model to describe the dy-

namics of information herding in a macroscopic setting. There exist

other approaches tomodel herding behaviour, for instance using kinetic

equations (as in [DL14] and in Chapter 3) or agent-based models [LS08].

The focus in this model is to understand the in�uence of the parameters

δ and α on the solution behaviour from a mathematical viewpoint, i.e.,

to investigate the interplay between cross-di�usion and damping.

Equations (1.1)-(1.2) with δ > 0 can be derived from an interacting

“particle” system modelled by stochastic di�erential equations, at least

in the case g(u1) � const. (see [GS14]). One expects that this derivation

can be extended to the case of nonconstant g(u1) but we do not discuss

this derivation here. The above systemwith g(u1) � u1 was analysed in

[HJ11] in the Keller-Segel context. The additional cross di�usion with

δ > 0 in (1.2)wasmotivated by the fact that it prevents the blowupof the

solutions in two space dimensions, even for large initial densities and

for arbitrarily small values of δ > 0. The motivation to introduce this

term in our model is di�erent since the nonlinear mobility g(u1) allows

us to conclude that u1 ∈ [0, 1], thus preventing blow up without taking

into account the cross-di�usion term δ∆u1. Our aim is to investigate

the behaviour of the solutions to (1.1)-(1.2) for all values for δ, thus
allowing for destabilizing cross-di�usion parameters δ < 0.

One starting point to investigate the dynamics is to consider the func-

tional structure of the equation. In this context entropy methods are a

possible tool [Jün15]. The entropy structure can frequently be used to

establish the existence of (weak) solutions. Furthermore, it is helpful

for a quantitative analysis of the large-time behaviour of solutions for

certain reaction-di�usion systems; see, e.g., [DF07]. The method quan-

ti�es the decay of a certain functional with respect to a steady state.

An advantage is that the entropy approach can work globally, even for

initial conditions far away from steady states. Moreover, the entropy

structure may be formulated in the variational framework of gradi-

ent �ows which allows one to analyse the geodesic convexity of their



10 introduction

solutions [LM13, ZM15]. However, this global view indicates already

that we may not expect that the approach is valid for all parameters in

general nonlinear systems. Indeed, in many situations, global methods

only work for a certain range of parameters occurring in the system. The

question is what happens for parameter values outside the admissible

parameter range and near the validity boundary.

One natural conjecture is that upon variation of a single parameter,

there exists a single critical parameter value associated to a �rst local

bifurcation point δb beyond which a global functional approach does

not extend. In particular, the homogeneous steady state upon which

the entropy is built, could lose stability and new solution branches may

appear in parameter space. Another possibility is that global bifurcation

branches in parameter space are an obstruction. In our context, the

generic situation is di�erent from the two natural conjectures.

In the context of (1.1)-(1.2), the main distinguished parameter we are

interested in is δ. Here we shall state our results on an informal level.

Carrying out the existence of weak solutions and the global decay to

homogeneous steady states u∗ � (u∗
1
, u∗

2
) via an entropy approach, we

�nd the following results:

(M1) Using the entropy approach, one may prove the existence of weak

solutions to (1.1)-(1.2) in certain parameter regimes.

(M2) The global entropy decay to equilibrium does not extend to ar-

bitrary negative δ. Suppose we �x all other parameters, then

there exists a critical δe (to be de�ned later) such that global decay

occurs only for δ > δe (δ , 0).

(M3) If we consider the limit α → +∞ then we can extend the global

decay up to

δ∗ :� −κ/γ < 0, where γ :� max

v∈[0,1]
g(v),

i.e., global exponential decay to a steady state occurs for all δ >
δ∗(δ , 0) if α is large enough.

(M4) In the limit α → 0, we �nd that δe → +∞. In particular, the

entropy method breaks down in this limiting regime.

We stress that the results for the global decay (M2)-(M4) may not

be sharp, in the sense that one could potentially improve the validity

boundary δe. Interestingly, we shall prove that (M3) is indeed sharp

for certain steady states, i.e., no improvement is possible in this limit.

The proofs of (M1)-(M4) provide a number of technical challenges,

which are discussed in more detail in Section 2.1.1 and Section 2.2. We

also note that the entropy method de�nitely does not extend to any

negative δ. It is clear that a global decay to steady state is impossible if

bifurcating non-homogeneous steady state solutions exist in addition to

homogeneous steady states. We use analytical local bifurcation theory

for the stationary problem, based upon a modi�cation of Crandall-

Rabinowitz theory [Kie04], to prove the following:

(M5) The bifurcation approach for homogeneous steady states can be

carried out as long as

δ , δd :� −κ/g(u∗
1
).
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On a generic open and connected domain, local bifurcations of

simple eigenvalues occur for

δn
b
� δd +

1

µn

[
f ′(u∗

1
) −

α
g(u∗

1
)

]
,

where µn are the eigenvalues of the negative Neumann Laplacian.

(M6) If α > 0 is su�ciently large and �xed, δ∗ > δd > δn
b
and the

bifurcation points accumulate at δd.

(M7) If α > 0 is su�ciently small and �xed, δd < δn
b
and the bifurcation

points again accumulate at δd as long as δ∗ , δd.

Although these results are completely consistent with the global

decay of the entropy functional, they do not yield global information

about the bifurcation curves. In general, this is not possible analytically

for arbitrary nonlinear systems. Therefore, we consider numerical

continuation of the non-homogeneous steady-state solution branches

(for spatial dimension d � 1). The continuation is carried out using

AUTO [DCD
+
07]. Our numerical results show the following:

(M8) We regularize the numerical problem using a small parameter

ρ to avoid higher-dimensional bifurcation surfaces due to mass

conservation.

(M9) The non-homogeneous steady-state bifurcation branches starting

at the local bifurcation points extend in parameter space and

contain multi-bump solutions, which deform into more localized

herding states upon changing parameters.

(M10) A second continuation run considering ρ → 0 yields non-trivial

herding solutions for the original problem. In particular, solutions

may have multiple transition layers (respectively concentration

regions) and the ones with very few layers occupy the largest

ranges in δ-parameter space.

Combining all the results we conclude that we have the situations in

Figure 1(a)-(b) for generic �xed parameter values and a generic �xed

domain. These two main cases of interest are:

(C1) α > 0 su�ciently large: in this limit, the entropy validity boundary,

the analytical bifurcation approach, and the numerical methods

are organized around the singular limit at δ � δ∗. Indeed, note
that

δ∗ � δd , if u � u∗
1
maximizes g(u) on [0, 1],

and we show in Section 2.1.1 that δe → δ∗ as α → +∞. The

generic picture for a homogeneous steady state so that u∗
1
does

notmaximize g and α is moderate and �xed is given in Figure 1(a).

(C2) α > 0 su�ciently small: in this case, the generic picture is shown in

Figure 1(b). The entropy decay only occurs for very large values

δe. Interestingly, the approaches do not seem to collapse onto one

singular limit in this case.
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We remark that the condition κ , −δg(u1) does not only occur in the

numerical continuation analysis but also in the context of the entropy

method as well as the analytical bifurcation calculation. It is precisely

the condition for the vanishing of the determinant of the di�usion mat-

rix that prevents pushing existence and decay techniques based upon

global functionals further and it is also a condition where the analytical

bifurcation theory does not work because the linearised problem does

not yield a Fredholm operator. In some sense, this explain the singular

limit as α → +∞ from (C1). Although (C1) is quite satisfactory from a

mathematical perspective, one drawback is that the forward problem

may not be well-posed in a classical sense if δ < δd; of course, the
stationary problem is still well-de�ned.

δeδd δ∗ δ δd δ∗ δe δ

‖u‖ ‖u‖
(a) (b)1-front

2-front

1-front

2-front

Figure 1: Sketch of the di�erent bifurcation scenarios; for more detailed nu-

merical calculations see Section 2.4. Only the main parameter δ is varied, a
homogeneous branch is shown in black and bifurcation points and branches

in blue (dots and curves). Only the �rst two nontrivial branches are sketched

which contain solutions with one transition layer. (a) Case (C1) with α > 0

su�ciently large; for a suitable choice of u∗ and α → +∞ all three vertical

dashed red lines collapse onto one line. (b) Case (C2) with α > 0 su�ciently

small.

For (C2), we cannot prove sharp global decay via an entropy func-

tional. However, the �rst nontrivial branch of locally stable stationary

herding solutions can be reached in forward time, and not just by adia-

batic parameter variation as in (C1). Althoughwe postpone the detailed

mathematical study of the the limit α → 0 to future work, the observa-

tions raise several interesting problems, whichwe discuss in the outlook

in Chapter 5.

In summary, we study the interplay between three di�erent tech-

niques available for reaction-di�usion systems with cross-di�usion:

entropy methods, analytical local bifurcation and numerical global

bifurcation theory. Furthermore, for each technique, we have to use, im-

prove, and apply the previously availablemethods to the herdingmodel

problem (1.1)-(1.3). Our results lead to clear insight on the subdivision

of parameter space into regimes, where each method is particularly

well-suited to describe the system dynamics. We identify two interest-

ing singular limits and provide a detailed analysis for the limit of large

damping. Furthermore, we compute via numerical continuation several

solutions that are of interest for applications to herding behaviour using

a two-parameter homotopy approach to desingularize the mass con-

servation. From an application perspective, we identify herding states

with clustering of individuals in one, or just a few, distinct regions, as

the ones occupying the largest parameter ranges. Hence, we expect

applications to be governed by homogeneous stationary and relatively

simple heterogeneous herding states.

There seem to be very few works [Gab12, AAN96] studying the para-

meter space interplay between global entropy-structure methods in
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comparison to local analytical and global numerical bifurcation ap-

proaches. This work seems to be, to the best of our knowledge, the

�rst analysis combining and comparing all three methods, and also

the �rst to consider the global-functional and bifurcations interaction

problem for cross-di�usion systems. In fact, our analysis suggests a

general paradigm to improve our understanding of global methods for

nonlinear spatio-temporal systems, i.e., one major goal is to determine

the parameter space validity boundaries between di�erent methods.

While most approaches to herding in the literature are based on agent

models [LM99], in Chapter 3 we use techniques from kinetic theory,

similar to opinion-formationmodels [BS09, DMPW09, Tos06]. Up to our

knowledge, the �rst kinetic models in social sciences were developed

by Helbing [Hel93b, Hel93a] to study the social behaviour dynamics of

a population, and by Cordier, Pareschi and Toscani [CPT05] to describe

a simple market economy. For more details, the reader can refer to

[NPT10], in particular [CMPP10, BS10], and the very complete book by

Pareschi and Toscani [PT13]. Binary collisions between gas molecules

are replaced by interactions of market individuals, and the phase-space

variables are interpreted as socio-economic variables in our case: the

rationality x ∈ R and the estimated asset value w ∈ R+ :� [0,∞),
assigned to the asset by an individual. When x > 0, we say that the

agent behaves rational, otherwise irrational. We refer to the review

[DW96] for a discussion of rational herding models.

Denoting by f (x , w , t) the distribution of the agents at time t ≥ 0, its

time evolution is given by the inhomogenous Boltzmann-type equation

∂t f +[Φ(x , w) f ]x � Q̃I ( f )+Q̃H ( f , f ), (x , w) ∈ R×R+ , t > 0, (1.4)

with the boundary condition f � 0 at w � 0 and initial condition f � f0
at t � 0. The �rst term on the right-hand side describes an interaction

that is soley based on economic fundamentals. After the interaction, the

individuals change their estimated asset value in�uenced by sources

of public information such as �nancial reports, balance sheet numbers,

etc. The second term describes binary interactions of the agents model-

ling the exchange of information and possibly leading to herding and

imitation phenomena.

When the asset value lies within a certain range around the “fair”

prize, determined by fundamentals, the agents may su�er from psy-

chological biases like overcon�dence and limited attention [Hir01], and

we assume that they behave more irrational. This means that the drift

�eld Φ(x , w) is negative in that range. When the asset value becomes

too low or too large compared to the “fair” prize the asset values are

believed to be driven by speculation. We assume that the market agents

recognize this fact at a certain point and are becoming more rational. In

this case, the drift �eldΦ(x , w) is positive. We expect that the estimated

asset value will in average be not too far from the “fair” price, and we

con�rm this expectation by computing the moment of f (x , w , t) with

respect to w in Section 3.1.2. For details on the modelling, we refer to

Section 3.1.

Let us discuss how our study relates to previous works in the liter-

ature. The �rst paper on kinetic models including herding in markets
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seems to be [MP12], while earlier articles are concerned with opinion-

formation modelling; see, e.g., [Tos06]. Our setting is strongly in�u-

enced by the models investigated by Toscani [Tos06] and Delitala and

Lorenzi [DL14]. Toscani [Tos06] described the interaction of individuals

in the context of opinion formation, and we employ ideas from [Tos06]

to model public information and herding. The idea to include public in-

formation and herding is due to [DL14]. In contrast to [DL14], we allow

for the drift �eld Φ(x , w), leading to the inhomogeneous Boltzmann-

type equation (1.4). Such equations were also studied in [DW15] but

using a di�erent drift �eld. The relationship of rational herd behaviour

and asset values was investigated in [AZ98] but no dynamics were ana-

lysed. The novelty of the present work is the combination of dynamics,

transport, public information, and herding.

Our main results are as follows. We derive formally in the grazing

collision limit (as in [Tos06]) the nonlinear Fokker-Planck equation

∂t g + [Φ(x , w)g]x � (K[g]g)w + (H(w)g)w + (D(w)g)ww , (1.5)

g(x , 0, t) � 0, g(x , w , 0) � g0(x , w), (x , w) ∈ R × R+ , t > 0.
(1.6)

Here, K[g] is a nonlocal operator related to the attitude of the agents

to change their mind because of herding mechanisms, H(w) is an aver-

age of the compromise propensity, and D(w) models di�usion, which

can be interpreted as a self-thinking process, and satis�es D(0) � 0.

Again, we refer to Section 3.1 for details. A di�erent herding di�usion

model in the context of crowd motion was derived and analysed in

[BMP11b]. Other kinetic and macroscopic crowd models were con-

sidered in [DARM
+
13].

Equation (1.5) is nonlinear, nonlocal, degenerate in w, and anisotropic

in x (incomplete di�usion). It is well known that partial di�usion

may lead to singularity formation [HPW13], and often the existence

of solutions can be shown only in the class of very weak or entropy

solutions [AN03, EVZ94]. Our situation is better than in [AN03, EVZ94],

since the transport in x is linear. Exploiting the linear structure, we

prove the existence of global weak solutions to (1.5)-(1.6). However,

we need the assumption that D(w) is strictly positive to get rid of the

degeneracy in w. Unfortunately, our estimates depend on inf D(w) and
become useless when D(0) � 0.

Moreover, we present some numerical experiments for the inhomo-

geneous Boltzmann-type equation (1.4) using a splitting scheme. The

collisional part (i.e. (1.4) with Φ � 0) is approximated using the inter-

action rules and a modi�ed Bird scheme. The transport part (i.e. (1.4)

with Q̃I � Q̃H � 0) is discretized using a combination of an upwind

and Lax-Wendro� scheme. The numerical experiments highlight the

importance of the reliability of public information in the formation of

bubbles and crashes. The use of Bollinger bands in the simulations

shows how herding may lead to strong trends with low volatility of the

asset prices, but eventually also to abrupt corrections.

Also in Chapter 4 we used the tools of statistical mechanics for the

study of the collective behaviour of the wealth distribution.
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The advantage of the kinetic formulation is that it allows to study the

dynamic e�ects for a su�ciently large number of people where no one

has a dominant role compared to the others [BS09, Tos06].

The model we mathematically and numerically investigate here is

quite simple. It may lack some realism, because it involves simpli�ed

models with respect to [Tos06, BS09, PT14], to provide a neat mathem-

atical framework. It also allows to recover clustering e�ects highlighted

in [DNAW00, HK02], for example. The main idea relies on the same

kind of assessment as [MP12, DL14, PT14, BT15]: the wealth exchanges

are also driven by the knowledge/beliefs of each agent in the popu-

lation. For instance, in [PT14], the population interacts with a �xed,

time-dependent background of common knowledge, which behaves

like an information mean �eld which does not depend on the popula-

tion itself. This background can then be understood as the media. In

[MP12], the population is divided into two groups, the chartists and the

fundamentalists, whose interactions allow to steer the price formation

of a speci�c good.

The point of view we here choose is di�erent. We assume that all

the exchanges, knowledge or wealth, are of binary kind, inside a ho-

mogeneous closed community. The wealth is described with a one-

dimensional positive real variable v and we suppose that the trading

mechanisms leave the total mean wealth unchanged. The knowledge

variable x is also positive and real and it does not have an upper bound

since the agents can always learn more and more. The microscopic

wealth exchange mechanism between two agents is very similar to the

one from [PT14]: it depends on the knowledge of each agent. In the

same way, the microscopic knowledge exchange takes into account the

dependence with respect to the agents’ wealth, with the quite natural

idea that an agent may consider as more trustworthy another agent

who owns more than himself. In other words, knowledge plays a fun-

damental role to improve the social condition, so that we can safely

suppose that the more we know, the more we can earn and, at the same

time we can imagine that who owns more is because he/she has a

higher knowledge.

For the wealthy exchanges, we only take into account the personal

saving propensity, and forget, for the time being, the risk perception of

the individuals as described in [PT14]. We consider that each agent can

use his own personal knowledge to reduce the risk in a trade.

Denoting by f (x , v , t) the distribution of the individuals at time t ≥ 0,

its time evolution is given by the Boltzmann-type equation

∂t f � QK ( f , f ) + QW ( f , f ), (x , v) ∈ R+ × R+ , t > 0, (1.7)

with initial condition f � f0 at t � 0. The �rst term on the right-

hand side describes binary interactions of the individuals modelling

the exchange of knowledge, while the second term describes binary

interactions of the agents modelling the exchange of wealth.

We focused on the Boltzmann equation and we proved the existence

of weak solutions. In the numerical section we presented some inter-

esting behaviour obtained by introducing thresholds for the collisional

rules and studying the two operators independently.



ENTROPY AND BIFURCATION IN2
CROSS -D IFFUS ION HERDING

The chapter is organised in the following way: in Section 2.1, we state

our main results and provide an overview of the strategy for the proofs

respectively the numerical methods employed. In particular, the en-

tropy method results are considered in Section 2.1.1, the analytical local

bifurcation in Section 2.1.2, and the numerical global bifurcation res-

ults in Section 2.1.3. The following sections contain the full details for

the main results. The proofs using the entropy method are contained

in Section 2.2, where the weak solution construction is carried out in

Section 3.2.1 and the global decay is proved in Section 2.2.2. Section 2.3

proves the existence of local bifurcation points to non-trivial solutions

upon decreasing δ. The details for the global numerical continuation

results are reported in Section 2.4.

2.1 main results

We describe the main results, obtained by either the entropy method or

local analytical and global numerical bifurcation analysis.

2.1.1 Entropy Method

First, we show the global existence of weak solutions and their large-

time decay to equilibrium. We observe that the di�usion matrix of

system (1.1)-(1.2) is neither symmetric nor positive de�nite which com-

plicates the analysis. Local existence of (smooth) solutions follows from

Amann’s results [Ama89] if the system is parabolic in the sense of Pet-

rovskii, i.e., if the real parts of the eigenvalues of the di�usion matrix

are positive. A su�cient condition for this statement is δ ≥ δd � −κ/γ.
The challenge here is to prove the existence of global (weak) solutions.

The main challenge of (1.1)-(1.2) is that the di�usion matrix of the

system is neither symmetric nor positive de�nite. The key idea of our

analysis, similar as in [HJ11], is to de�ne a suitable entropy functional.

The entropy is a special Lyapunov functional which provides suitable

gradient estimates. Compared to Lyapunov functional techniques like

in [Hor11,Wol02] (used for the case δ � 0), the entropymethodprovides

explicit decay rates and, in our case, L∞ bounds without the use of a

maximum principle. (Note that in the system at hand, the L∞ bounds

can be obtained by the standard maximum principle but there are

systems where this can be achieved by using the entropy method only;

see [Jün15].) For this, we introduce the entropy density

h(u) � h0(u1) +
u2

2

2δ0
, u � (u1 , u2)> ∈ [0, 1] × R,

where h0 is de�ned as the second anti-derivative of 1/g,

h0(s) :�
∫ s

m

∫ σ

m

1

g(t)
dt dσ, s ∈ (0, 1), (2.1)

16
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where 0 < m < 1 is a �xed number, and

δ0 :� δ if δ > 0, δ0 :� κ/γ if − κ/γ < δ < 0.

It turns out that the so-called entropy variables w � (w1 , w2)> with

w1 � h′
0
(u1) and w2 � u2/δ0 make the di�usion matrix positive semi-

de�nite for all δ > δ∗ :� −κ/γ, δ , 0. We remark that for δ � 0 the

method does not work and we do not cover this case. In the w-variables,

we can formulate (1.1)-(1.2) equivalently as

∂t u � div(B(w)∇w) + F(u),

where u � u(w), F(u) � (0, f (u1) − αu2)> and

B(w) �
(

g(u1) −δ0g(u1)
δg(u1) δ0κ

)
. (2.2)

The invertibility of themapping w 7→ u(w) is guaranteed byHypothesis

(H3) below. We show in Lemma 4 below that B(w) is positive semi-

de�nite if δ > δ∗, δ , 0. The global existence is based on the fact that

the entropy

H(u(t)) �
∫
Ω

(
h0(u1(t)) +

u2(t)2

2δ0

)
dx (2.3)

is bounded on [0, T] for any T > 0; note that we write u � u(t) here to
emphasize the time dependence of H. A formal computation, which is

made rigorous in Section 3.2.1, shows that

dH
dt

� −

∫
Ω

(
|∇u1 |

2

g(u1)
+

(
δ
δ0
− 1

)
∇u1 · ∇u2 +

κ
δ0
|∇u2 |

2

)
dx (2.4)

+

1

δ0

∫
Ω

( f (u1) − αu2)u2 dx.

The terms in the �rst bracket de�ne a positive de�nite quadratic form

if and only if δ > δ∗. The second integral is bounded since f (u1) is
bounded. This shows that for some ε1(δ) > 0,

dH
dt
≤ −ε1(δ)

∫
Ω

*
,
|∇u1 |

2

g(u1)
+

|∇u2 |
2

δ2
0

+
-
dx + c , (2.5)

where the constant c > 0 depends on Ω, f , and α. These gradient

bounds are essential for the existence analysis.

Before we state the existence theorem, we make our assumptions

precise:

(H1) Ω ⊂ Rd
with ∂Ω ∈ C2

, α > 0, κ > 0, h(u0) ∈ L1(Ω) with u0

1
∈

(0, 1) a.e.

(H2) f ∈ C0([0, 1]) is nonnegative.

(H3) g ∈ C2([0, 1]) is positive on (0, 1), g(0) � g(1) � 0, g(u) ≤ γ for

u ∈ [0, 1], where γ > 0, and

∫ m
0

ds/g(s) �
∫

1

m ds/g(s) � +∞ for

some 0 < m < 1.
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The condition g(u) ≤ γ in [0, 1] in (H3) implies that (u0

1
−m)2/(2γ) ≤

h0(u0

1
) and hence, h(u0) ∈ L1(Ω) in (H1) yields u0

1
∈ L2(Ω) and u0

2
∈

L2(Ω). Hypothesis (H3) ensures that the function h0 de�ned in (2.1)

is well de�ned and of class C4
(needed in Lemma 5). Its derivative h′

0

is strictly increasing on (0, 1) with range R, thus being invertible with

inverse (h′
0
)−1 : R → (0, 1). For instance, the function g(s) � s(1 − s),

s ∈ [0, 1], satis�es (H3) and h0(s) � s log s + (1 − s) log(1 − s), where

log denotes the natural logarithm. A more general class of functions

ful�lling (H3) is g(s) � sa (1 − s)b
with a, b ≥ 1.

Theorem 1 (Global existence). Let assumptions (H1)-(H3) hold and let δ >
−κ/γ. Then there exists a weak solution to (1.1)-(1.3) satisfying 0 ≤ u1 ≤ 1

in Ω, t > 0 and

u1 , u2 ∈ L2

loc
(0,∞;H1(Ω)), ∂t u1 , ∂t u2 ∈ L2

loc
(0,∞;H1(Ω)′).

The initial datum is satis�ed in the sense of H1(Ω;R2)′.

Weprovide a brief overview of the proof. First, we discretize the equa-

tions in time using the implicit Euler scheme, which keeps the entropy

structure. Since we are working in the entropy-variable formulation,

we need to regularize the equations in order to be able to apply the

Lax-Milgram lemma for the linearised problem. The existence of solu-

tions to the nonlinear problem then follows from the Leray-Schauder

theorem, where the uniform estimate is a consequence of the entropy

inequality (2.5). This estimate also provides bounds uniform in the

approximation parameters. A discrete Aubin lemma in the version of

[DJ12] provides compactness, which allows us to perform the limit of

vanishing approximation parameters.

Although the proof is similar to the existence proofs in [HJ11, Jün15],

the results presented here are not directly applicable since our situ-

ation is more general than in [HJ11, Jün15]. The main novelties of

our existence analysis are the new entropy (2.3) and the treatment of

destabilizing cross di�usion (δ < 0).

For the analysis of the large-time asymptotics, we introduce the con-

stant steady state u∗ � (u∗
1
, u∗

2
), where

u∗
1
� u0

1
, u∗

2
�

f (u∗
1
)

α
, with u0

j :�
1

m(Ω)

∫
Ω

u0

j (x) dx , j ∈ {1, 2},

and m(Ω) denotes the Lebesgue measure ofΩ. Furthermore, we de�ne

the relative entropy

H(u |u∗) �
∫
Ω

h(u |u∗) dx

with the entropy density

h(u |u∗) � h0(u1 |u∗
1
) +

1

2δ0
(u2 − u∗

2
)2 , (2.6)

where h0(u1 |u∗
1
) � h0(u1) − h0(u∗

1
).

Note that u1 conserves mass, i.e. u1(t) :� m(Ω)−1
∫
Ω

u1(t) dx is con-

stant in time and u1(t) � u∗
1
for all t > 0. Thus, by Jensen’s inequality,

h0(u1 |u∗
1
) ≥ 0.
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Theorem 2 (Exponential decay). Let assumptions (H1)-(H3) hold, letΩ be
convex, let f be Lipschitz continuous with constant cL > 0, and let

δ0ε1(δ) >
γ

α
c2LcS , (2.7)

where ε1(δ) > 0 and cS > 0 are de�ned in Lemmas 4 and 5, respectively.
Then, for t > 0,

H(u(t) |u∗) ≤ e
−χ(δ)t H(u0

|u∗), (2.8)

where χ(δ) :� min




ε1(δ)
cS
−
γc2L
αδ0

, α


> 0.

Moreover, it holds for t > 0,

‖u1(t)−u∗
1
‖L2(Ω)+ ‖u2(t)−u∗

2
‖L2(Ω) ≤ 2

√
max{γ, δ}H(u0 |u∗)e−χ(δ)t/2.

(2.9)

Recall that δ0 � κ/γ if δ < 0 and δ0 � δ if δ > 0. The values for

δ0ε1(δ) are illustrated in Figure 2. It turns out that (2.7) is ful�lled if

either the additional di�usion δ > 0 is su�ciently large or if γ/α is

su�ciently small. The latter condition means that the in�uence of the

drift term g(u1)∇u2 is “small” or that the relaxation −αu2 is “strong”.

The theorem states that in all these cases, the di�usion is su�ciently

strong to lead to exponential decay to equilibrium. For all parameters

�xed, except δ, we conclude from the condition (2.7) that there exists a

δe such that exponential decay holds for δ > δe (δ , 0) and we see that

lim

α→+∞
δe � δ

∗
� −κ/γ

as a singular limit already discussed above. We remark that the ex-

clusion of the decay for δ � 0 seems to be purely technical and we

conjecture that exponential decay also holds for δ � 0. On the contrary,

extensions to α → 0 are highly nontrivial and we can currently not

cover this degenerate limiting case using entropy methods.

-4 -3 -2 -1 0 1

0

0.5

1

1.5

δ

δ � δ∗

δ 0
ε 1

(δ
)

Figure 2: Illustration of δ0ε1(δ) for κ � 1 and δ �
1

4
(black curves). The

corresponding singular limit δ∗ � −κ/γ � −4 is also marked (grey dashed

vertical line).

Theorem 2 is proved by di�erentiating the relative entropy H(u |u∗)
with respect to time, similar as in (2.4). We wish to estimate the gradi-

ent terms from below by a multiple of H(u |u∗). The convex Sobolev
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inequality from Lemma 5 shows that the L2
-norm of g(u1)1/2∇u1 is

estimated from below by

∫
Ω

h0(u1 |u∗
1
) dx, up to a factor. The L2

-norm

of ∇u2 is estimated from below by a multiple of

∫
Ω

(u2 − u2)2 dx, us-
ing the Poincaré inequality. However, the variable u2 generally does

not conserve mass and in particular, u2 , u∗
2
. We exploit instead the

relaxation term in (1.2) to achieve the estimate

H(u(t) |u∗) + χ(δ)
∫ t

0

H(u(s) |u∗) ds ≤ 0.

Then Gronwall’s lemma gives the result. The di�culty is the estimate

of the source term f (u1). This problem is overcome by controlling

the expression involving f (u1) by taking into account the contribution

coming from the convex Sobolev inequality. However, we need that δ
is su�ciently large, i.e., cross di�usion has to dominate reaction.

The above arguments hold on a formal level only. A second di�culty

is to make these arguments rigorous since we need the test function

h′
0
(u1) − h′

0
(u∗

1
), which is unde�ned if u1 � 0 or u1 � 1 (since h′

0
(0) �

−∞ and h′
0
(1) � +∞ by Hypothesis (H3)). The idea is to perform

a transformation of variables in terms of so-called entropy variables

which ensure that 0 < u1 < 1 in a time-discrete setting. Passing from

the semi-discrete to the continuous case, the variable u1 may satisfy

0 ≤ u1 ≤ 1 in the limit.

2.1.2 Analytical Bifurcation Analysis

As outlined in the introduction, the �rst natural conjecture for the failure

of the entropy method is to study bifurcations of the homogeneous

steady states u∗ � (u∗
1
, u∗

2
), which solve

0 � div(∇u1 − g(u1)∇u2),
0 � div(δ∇u1 + κ∇u2) + f (u1) − αu2 ,

(2.10)

with the no-�ux boundary conditions (1.3). To study the bifurcations

of u∗ under variation of δ we use the right-hand side of (2.10) to de�ne

a bifurcation function and apply the theory of Crandall-Rabinowitz

[CR71, Kie04]. The problem is that u∗ is not an isolated bifurcation

branch as a function of δ since �xing any initial mass yields a di�erent

one-dimensional family of homogeneous steady states with

u∗
1
�

1

m(Ω)

∫
Ω

u1(x) dx ≥ 0. (2.11)

Hence, the standard approach has to be modi�ed and we follow argu-

ments that can be found in [CKWW12, SW09, WX13]. It is helpful to

introduce some notations �rst. For p > d, let

X :� {u ∈ W2,p (Ω) : ∇u · ν � 0 on ∂Ω},
Y :� Lp (Ω),
Y0 :�

{
u1 ∈ Lp (Ω) :

∫
Ω

u1(x) dx � 0

} (2.12)

where the space X includes standard Neumann boundary conditions.

Due to the Sobolev embedding theorem we know that W2,p (Ω) is con-
tinuously embedded in C(1+θ) ( ¯Ω) for some θ ∈ (0, 1). If Neumann

boundary conditions hold, then our original boundary conditions (1.3)
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hold as well. However, the converse is only true if we can invert the

di�usion matrix, i.e., as long as δ , δd � −
κ

g(u1) . In particular, we shall

always assume for the local bifurcation analysis of homogeneous steady

states that

δ , δd � −
κ

g(u∗
1
)
. (2.13)

This implies that wemay not �nd all possible bifurcations and the single

point when the di�usion matrix vanishes has to be treated separately;

we leave this as a goal for future work.

Next, we de�ne the mapping F : X ×X × R −→ Y0 ×Y × R by

F (u1 , u2 , δ) :�
*..
,

div(∇u1 − g(u1)∇u2)
δ∆u1 + κ∆u2 − αu2 + f (u1)∫

Ω
u1(x) dx −m(Ω)u∗

1

+//
-
. (2.14)

The �rst two terms are the usual bifurcation functions one would nat-

urally de�ne, the third term is used to isolate the bifurcation branch

for the mapping F , i.e., to avoid the problem with mass conservation,

while the last two terms take into account the boundary conditions. We

know that there exists a family of homogeneous steady state solutions

F (u∗
1
, u∗

2
, δ) � 0

for each δ ∈ R. The goal is to �nd the parameter values δb such that at

δ � δb a non-trivial (or non-homogeneous) branch of steady states is

generated at the bifurcation point; see also Figure 1. We are going to

check that F is C1
-smooth and the Fréchet derivative DuF with respect

to u at a point ũ � (ũ1 , ũ2) is given by

Aδ (ũ)
(
U1

U2

)
:�DuF (ũ , δ)

(
U1

U2

)

�
*..
,

∆U1 − div[g′(ũ1)(∇ũ2)U1 + g(ũ1)∇U2]

δ∆U1 + κ∆U2 − αU2 + f ′(ũ1)U1∫
Ω

U1(x) dx

+//
-

(2.15)

where (U1 ,U2)> ∈ X × X andAδ : X × X → Y0 ×Y × R. We already

know from Theorem 2 that for all δ > δe (δ , 0), the homogeneous

steady state u∗ is globally stable. Clearly this implies local stability

as well and this fact can also be checked by studying the spectrum

of Aδ (u∗). From the structure of the cross-di�usion equations (1.1)-

(1.2) one does expect destabilization of the homogeneous state upon

decreasing δ.

Theorem 3. Let u∗ � (u∗
1
, u∗

2
) be a homogeneous steady state, consider the

generic parameter case with −κ , δg(u∗
1
) and suppose all eigenvalues µn of

the negative Neumann Laplacian on Ω are simple. Then the following hold:

(R1) DuF (ũ , δ) : X ×X → Y0 ×Y × R is a Fredholm operator with index
zero;

(R2) there exists a sequence of bifurcation points δ � δn
b
such that

dim

(
N[DuF (u∗ , δn

b
)]
)
� 1, whereN[·] denotes the nullspace;
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(R3) there exist simple real eigenvalues λn (δ) of Aδ (u∗), which satisfy
λn (δn

b
) � 0. Furthermore, λn (δ) crosses the imaginary axis at δn

b

with non-zero speed, i.e., DδuF(u∗ , δn
b

)en
b
< R[Aδn

b

], where R[·] de-
notes the range and span[en

b
] � N[Aδn

b

].

The results from (R1)-(R3) hold quite generically (i.e., for δ , δd
and for generic domains [Uhl72]) and yield, upon applying a standard

result by Crandall-Rabinowitz [CR71, CR73, Kie04], the existence of

branches of non-trivial solutions

(u1[s], u2[s], δ[s]) ∈ X × X × R, (u1[0], u2[0], δ[0]) � (u∗
1
, u∗

2
, δn

b
),

where s ∈ [−s0 , s0] parametrizes the steady-state branch locally for some

small s0 > 0, and (u1[s], u2[s], δ[s]) , (u∗
1
, u∗

2
, δn

b
) for s ∈ [−s0 , 0) ∪

(0, s0]. Slightly more precise information about the branch can be ob-

tained using the eigenfunction eb and we refer to Section 2.3 for the

details. The main conclusion of the bifurcation theorem is that we know

that the entropy method cannot show the decay to steady state for all

parameter regions. However, to track the non-trivial solution branches

in parameter space, it is usually not possible to compute the global

shape of all bifurcation branches analytically. In this case, numerical

bifurcation analysis is extremely helpful.

2.1.3 Numerical Bifurcation Analysis

The results from Section 2.1.1-2.1.2 do not provide a full exploration

of the dynamical structure of the solutions for the parameter regime

δ < δ∗. To understand this regime better we study the bifurcations of

(2.10) numerically for

f (s) � s(1− s), g(s) � s(1− s), s ∈ Ω � [0, l] ⊂ R. (2.16)

for some interval length l > 0. Note that this yields a boundary-value

problem (BVP) involving two second-order ordinary di�erential equa-

tions (ODEs)

0 �
d

dx

(
du1

dx
− g(u1)

du2

dx

)
, (2.17)

0 � δ
d
2u1

dx2

+ κ
d
2u2

dx2

− αu2 + f (u1). (2.18)

with boundary conditions

0 �
du1

dx
(0) − g(u1(0))

du2

dx
(0), 0 � δ

du1

dx
(0) + κ

du2

dx
(0), (2.19)

0 �
du1

dx
(1) − g(u1(1))

du2

dx
(1), 0 � δ

du1

dx
(1) + κ

du2

dx
(1). (2.20)

An excellent available tool to study the problem (2.17)-(2.20) is the

software AUTO [DCD
+
07] for numerical continuation of BVPs; for other

possible options and extensions we refer to the discussion in Chapter 5.

AUTO is precisely designed to deal with BVPs for ODEs of the form

dz
dx

� F(z; p), x ∈ [0, 1], G(w(0), w(1)) � 0 (2.21)

where F : RN
×RP

→ RN
, G : RN

×RN
→ RN

and p ∈ RP
are parameters

and z � z(x) ∈ RN
is the unknown vector. It is easy to re-write (2.17)-

(2.20) as a system in the form (2.21) of four �rst-order ODEs, i.e., we get
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N � 4, consider the scaling x̃ � x/l to normalize the interval length to

one, then drop the tilde for x again, and let

p1 :� δ, p2 :� κ, p3 :� α, p4 :� l ,

so P � 4 with primary bifurcation parameter δ. For more background

on AUTO and on numerical continuation we refer to [KOGV07, Kel77,

Gov87]. In the setup (2.21) one can numerically continue the family of

homogeneous solutions

(u∗ , δ) � (u∗
1
, u∗

2
, δ)

as a function of δ, i.e., to compute u∗ � u∗(·; δ) for δ in some speci�ed

parameter interval. Although this calculation yields bifurcation points

for some δ values, it is not straightforward to use the formulation (2.17)-

(2.18) to switch onto the non-homogeneous solution branches generated

at the bifurcation point. The problem is due to the mass conservation

since

u1 � m(Ω)−1
∫
Ω

u1 dx � u∗
1
, u∗

2
�

f (u∗
1
)

α

is a solution for every positive initial mass u0

1
. In particular, the branch

of solutions is not isolated and there exist parametric two-dimensional

families of solutions. There are multiple ways to deal with this problem;

see also Chapter 5. One possibility is to resolve the degeneracy of the

problem via a small parameter 0 < ρ � 1 and consider

0 �
d

dx

(
du1

dx
− g(u1)

du2

dx

)
− ρ(u1 − u1), (2.22)

0 � δ
d
2u1

dx2

+ κ
d
2u2

dx2

− αu2 + f (u1). (2.23)

for a �xed positive parameter u1 > 0. In particular, upon setting

z1 :� u1 , z2 :� u2 , z3 :�
du1

dx
, z4 :�

du2

dx
,

as well as

p5 :� u1 , p6 :� ρ, P � 6,

we end up with a problem of the form (2.21) by transforming the two

second-order ODEs to four �rst-order ODEs and re-labelling paramet-

ers. The vector �eld for the ODE-BVP we study numerically is then

given by

F(z; p) �
*.....
,

p4z3
p4z4

p4
Dg

[−g(z1) f (z1) + p3g(z1)z2 + p2g′(z1)z3z4 + p2p6(z1 − p5)]
p4
Dg

[− f (z1) + p3z2 − p1g′(z1)z3z4 − p1(z1 − p5)p6]

+/////
-

(2.24)

whereDg :� p2 + p1g(z1) and the detailed choices for the free paramet-

ers are discussed in Section 2.4. Observe that the system (2.24) becomes

singular if Dg � 0, which is precisely the condition δ , −κ/g(u1)
already discovered above. Therefore, we would need also for the nu-

merical analysis a re-formulation (or de-singularization) of the problem

to deal with this singularity and we postpone this problem to future
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work. As mentioned above, the primary bifurcation parameter we are

going to be interested in is δ � p1. The main results of the numerical

bifurcation analysis, which are presented in full detail in Section 2.4,

are the following:

(B1) As predicted by the analytical results, we �nd the existence of local

bifurcation points on the branch of homogeneous steady states

in the parameter region with δ < δd for the case of su�ciently

large α and for δ > δd for the case of su�ciently small α. At

each bifurcation point on the homogeneous branch, a simple

eigenvalue crosses the imaginary axis.

(B2) The non-trivial (i.e. non-homogeneous) solution branches consist

of solutions of multiple ’interfaces’ or ’layers’; branches originat-

ing further away from δd contain less layers. The branches can

acquire sharper layers upon variation of further parameters which

is important for information herding.

(B3) At the local bifurcation points, we observe the emergence of two

symmetric branches of solutions for the case when the nonlinearit-

ies are identical quadratic nonlinearities of the form s 7→ s(1 − s).

(B4) We also construct non-homogeneous solutions for ρ � 0 by a

homotopy continuation step �rst continuing onto the non-trivial

branches in δ and then decreasing ρ to zero in a second continu-

ation step.

(B5) Furthermore, we also study the shape deformation of non-trivial

solutions upon variation of κ and the domain length l. The nu-
merical results show that the main interesting structures of the

problem have already been obtained by just varying δ and α.

2.2 entropy method – proofs

2.2.1 Proof of Theorem 9

First, we prove that the new di�usion matrix B(w), de�ned in (2.2), is

positive semi-de�nite if δ is not too negative.

Lemma 4. Assume (H3) and δ > −κ/γ, δ , 0. Then the matrix B(w)
is positive semi-de�nite, and there exists ε1(δ) > 0 such that for all z �

(z1 , z2)> ∈ R2, w ∈ R2:

z>B(w)z ≥ ε1(δ)(g(u1)z2
1
+ z2

2
).

It holds ε1(δ) → 0 as δ ↘ 0 and δ ↘ −κ/γ (see Figure 3).

For later use, we note that the lemma implies that

∇w : B(w)∇w ≥ ε1(δ) *
,
|∇u1 |

2

g(u1)
+

|∇u2 |
2

δ2
0

+
-
, (2.25)

where w � (w1 , w2) � (h′
0
(u1), u2/δ0) are the entropy variables intro-

duced in the introduction and A : B �
∑

i , j Ai jBi j for two matrices

A � (Ai j), B � (Bi j).



2.2 entropy method – proofs 25
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δ

δ � δ∗

ε 1
(δ

)

Figure 3: Illustration of ε1(δ) for κ � 1 and δ �
1

4
(black curves). The corres-

ponding singular limit δ∗ � −κ/γ � −4 is also marked (grey dashed vertical

line).

Proof. Let z � (z1 , z2)> ∈ R2. Then

z>B(w)z � g(u1)z2
1
− (δ0 − δ)g(u1)z1z2 + δ0κz2

2
.

If δ > 0, then δ0 � δ and the mixed term vanishes, showing the claim

for ε1(δ) � min{1, δκ}. If −κ/γ < δ < 0, we have δ0 � κ/γ. We make

the (non-optimal) choice

ε0 � ε0(δ) �
1

2


1 −

1

4

(
1 −

γδ

κ

)
2
> 0.

Then ε0 < 1 − (1 − γδ/κ)2/4, which is equivalent to (κ − γδ)2 < 4(1 −
ε0)κ2. Thus, using g(u1) ≤ γ (see assumption (H3)),

z>B(w)z � g(u1)z2
1
−

(
κ
γ
− δ

)
g(u1)z1z2 +

κ2

γ
z2
2

� ε0g(u1)z2
1
+ (1 − ε0)g(u1)

(
z1 −

(κ − γδ)z2
2γ(1 − ε0)

)
2

+

1

γ

(
κ2 −

(κ − γδ)2

4γ(1 − ε0)
g(u1)

)
z2
2

≥ ε0g(u1)z2
1
+

1

γ

(
κ2 −

(κ − γδ)2

4(1 − ε0)

)
z2
2
.

In view of the choice of ε0, the bracket on the right-hand side is positive,

and the claim follows after choosing ε1(δ) � min{ε0(δ), [κ2 − (κ −
γδ)2/(4(1 − ε0(δ)))]/γ} > 0 for −κ/γ < δ < 0. �

The proof of Theorem 9 is based on the solution of a time-discrete

and regularized problem.

Step 1: Solution of an approximate problem. Let T > 0, N ∈ N, τ � T/N ,

ε > 0, and n ∈ N such that n > d/2. Then Hn (Ω;R2) ↪→ L∞(Ω;R2). Let
wk−1

∈ L∞(Ω;R2) be given. If k � 1, we de�ne w0 � h′(u0). We wish to

�nd wk
∈ Hn (Ω;R2) such that

1

τ

∫
Ω

(u(wk ) − u(wk−1)) · φ dx +

∫
Ω

∇φ : B(wk )∇wk
dx (2.26)

+ ε

∫
Ω

( ∑
|β |�n

Dβwk
· Dβφ + wk

· φ
)
dx �

∫
Ω

F(u(wk )) · φ dx
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for all φ ∈ Hn (Ω;R2), where β ∈ Nn
0
is a multi-index, Dβ

is the cor-

responding partial derivative, u(w) � (h′)−1(w) for w ∈ R, and we

recall that F(u) � (0, f (u1) − αu2)>. By de�nition of h0, we �nd that

u1(w) ∈ (0, 1), thus avoiding any degeneracy at u1 � 0 or u1 � 1.

The existence of a solution to (2.26) will be shown by a �xed-point

argument. In order to de�ne the �xed-point operator, let y ∈ L∞(Ω;R2)
and η ∈ [0, 1] be given. We solve the linear problem

a(w , φ) � G(φ) for all φ ∈ Hn (Ω;R2), (2.27)

where

a(w , φ) �
∫
Ω

∇φ : B(y)∇w dx + ε

∫
Ω

*.
,

∑
|β |�n

Dβw · Dβφ + w · φ+/
-
dx ,

G(φ) � −
η

τ

∫
Ω

(
u(y) − u(wk−1)

)
dx + η

∫
Ω

F(u(y)) · φ dx.

The forms a and G are bounded on Hn (Ω;R2). Moreover, in view of

the positive semi-de�niteness of B(y) and the generalized Poincaré

inequality (see Chap. II.1.4 in [Tem97]), the bilinear form a is coercive:

a(w , w) ≥ ε
∫
Ω

( ∑
|β |�n

|Dβw |2 + |w |2
)
dx ≥ εc‖w‖Hn (Ω)

for w ∈ Hn (Ω;R2). By the Lax-Milgram lemma, there exists a unique

solution w ∈ Hn (Ω;R2) ↪→ L∞(Ω;R2) to (2.27). This de�nes the �xed-

point operator S : L∞(Ω;R2) × [0, 1]→ L∞(Ω;R2), S(y , η) � w.

By construction, S(y , 0) � 0 for all y ∈ L∞(Ω;R2), and standard

arguments show that S is continuous and compact, observing that the

embedding Hn (Ω;R2) ↪→ L∞(Ω;R2) is compact. It remains to prove

a uniform bound for all �xed points of S(·, η). Let w ∈ L∞(Ω;R2) be
such a �xed point. Then w solves (2.27) with y replaced by w. With the

test function φ � w, we �nd that

η

τ

∫
Ω

(u(w) − u(wk−1)) · w dx +

∫
Ω

∇w : B(w)∇w dx (2.28)

+ ε

∫
Ω

( ∑
|β |�n

|Dβw |2 + |w |2
)
dx � η

∫
Ω

F(u(w)) · w dx.

Since h′′
0
� 1/g > 0 on (0, 1), h0 is convex. Consequently, h0(x)−h0(y) ≤

h′
0
(x)(x − y) for all x, y ∈ [0, 1]. Choosing x � u(w) and y � u(wk−1)

and using h′
0
(u(w)) � w, this gives

η

τ

∫
Ω

(u(w) − u(wk−1)) · w dx ≥
η

τ

∫
Ω

(
h(u(w)) − h(u(wk−1))

)
dx.

Since u1 � u1(w) ∈ (0, 1) and f is continuous, there exists fM �

maxs∈[0,1] f (s) and thus,∫
Ω

F(u(w)) · w dx ≤
∫
Ω

( fM − αu2)u2 dx ≤ c f ,

where c f > 0 only depends on fM and α. Hence, (3.20) can be estimated

as follows:

η

∫
Ω

h(u(w)) dx + τ

∫
Ω

∇w : B(w)∇w dx (2.29)
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+ ετ

∫
Ω

( ∑
|β |�n

|Dβw |2 + |w |2
)
dx ≤ ητc f + η

∫
Ω

h(u(wk−1)) dx.

This yields an Hn
bound for w uniform in η (but not uniform in τ or

ε). The Leray-Schauder �xed-point theorem shows the existence of a

solution w ∈ Hn (Ω;R2) to (2.27) with y replaced by w and with η � 1,

which is a solution to (2.26).

Step 2: Uniform bounds. Let wk
be a solution to (2.26). Set w (τ) (x , t) �

wk (x) and u (τ) (x , t) � u(wk (x)) for x ∈ Ω and t ∈ ((k − 1)τ, kτ], k �

1, . . . ,N . At time t � 0, we set w (τ) (·, 0) � h′
0
(u0) and u (τ) (0) � u0

. We

introduce the shift operator (στu (τ))(t) � u(wk−1) for t ∈ ((k − 1)τ, kτ],
k � 1, . . . ,N . Then u (τ)

solves

1

τ

∫ T

0

∫
Ω

(u (τ)
− στu (τ)) · φ dx dt +

∫ T

0

∫
Ω

∇φ : B(w (τ))∇w (τ)
dx dt

+ ε

∫ T

0

∫
Ω

( ∑
|β |�n

Dβw (τ)
· Dβφ + w (τ)

· φ
)
dx dt

�

∫ T

0

∫
Ω

F(u (τ)) · φ dx dt (2.30)

for piecewise constant functions φ : (0, T) → Hn (Ω;R2). By density,

the weak formulation also holds for all L2(0, T;Hn (Ω;R2)).
We have shown in Step 1 that the solution w � wk

satis�es the entropy

estimate (2.29). By (2.25), we obtain the gradient estimate∫
Ω

∇wk
: B(wk )∇wk

dx ≥ ε1(δ) min{γ−1 , δ−2
0
}

∫
Ω

(|∇uk
1
|
2

+ |∇uk
2
|
2) dx ,

since g(uk
1
) ≤ γ. Thus, we obtain from (2.29) the following entropy

inequality:∫
Ω

h(uk ) dx + c0τ
∫
Ω

(|∇uk
1
|
2

+ |∇uk
2
|
2) dx (2.31)

+ ετ

∫
Ω

( ∑
|β |�n

|Dβwk
|
2

+ |wk
|
2

)
dx

≤ c f τ +

∫
Ω

h(uk−1) dx ,

where c0 � ε1(δ) min{γ−1 , δ−2
0
}. Adding these inequalities leads to∫

Ω

h(uk ) dx + c0τ
k∑

j�1

∫
Ω

(|∇u j
1
|
2

+ |∇u j
2
|
2) dx

+ ετ
k∑

j�1

∫
Ω

( ∑
|β |�n

|Dβwk
|
2

+ |wk
|
2

)
dx

≤ c f kτ +
∫
Ω

h(u0) dx.

Since∫
Ω

h(uk ) dx �

∫
Ω

*
,

h0(uk
1
) +

(uk
2
)2

2δ0
+
-
dx ≥

1

2δ0

∫
Ω

(uk
2
)2 dx ,

the above estimate shows the following uniform bounds:

‖u (τ)
1
‖L∞(0,T;L∞(Ω)) + ‖u

(τ)
2
‖L∞(0,T;L2(Ω)) ≤ c , (2.32)
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‖u (τ)
1
‖L2(0,T;H1(Ω)) + ‖u

(τ)
2
‖L2(0,T;H1(Ω)) ≤ c , (2.33)

√
ε‖w (τ)

‖L2(0,T;Hn (Ω)) ≤ c , (2.34)

where c > 0 denotes here and in the following a constant which is

independent of ε or τ (but possibly depending on T).
In order to derive a uniform estimate for the discrete time derivative,

let φ ∈ L2(0, T; Hn (Ω)). Then, setting QT � Ω × (0, T),

1

τ

�����

∫ T

τ

∫
Ω

(u (τ)
1
− στu (τ)

1
)φ dx dt

�����
≤

(
‖∇u (τ)

1
‖L2(QT ) + ‖g(u (τ)

1
)‖L∞(QT ) ‖∇u (τ)

2
‖L2(QT )

)
× ‖∇φ‖L2(QT ) + ε‖w

(τ)
1
‖L2(0,T;Hn (Ω)) ‖φ‖L2(0,T;Hn (Ω))

≤ c
√
ε‖φ‖L2(0,T;Hn (Ω)) + c‖φ‖L2(0,T;H1(Ω)) ,

1

τ

�����

∫ T

τ

∫
Ω

(u (τ)
2
− στu (τ)

2
)φ dx dt

�����
≤

(
δ‖∇u (τ)

1
‖L2(QT ) + κ‖∇u (τ)

2
‖L2(QT )

)
‖∇φ‖L2(QT ) (2.35)

+ ε‖w (τ)
1
‖L2(0,T;Hn (Ω)) ‖φ‖L2(0,T;Hn (Ω))

+

(
‖ f (u (τ)

1
)‖L2(QT ) + α‖u

(τ)
2
‖L2(QT )

)
‖φ‖L2(QT )

≤ c
√
ε‖φ‖L2(0,T;Hn (Ω)) + c‖φ‖L2(0,T;H1(Ω)) ,

which shows that

τ−1‖u (τ)
− στu (τ)

‖L2(0,T;(Hn (Ω))′) ≤ c. (2.36)

Step 3: The limit (ε, τ) → 0. The uniform estimates (2.33) and (2.36)

allow us to apply the discrete Aubin lemma in the version of [DJ12],

showing that, up to a subsequencewhich is not relabelled, as (ε, τ) → 0,

u (τ)
→ u strongly in L2(0, T; L2(Ω)) and a.e. in QT , (2.37)

u (τ) ⇀ u weakly in L2(0, T;H1(Ω)),

τ−1(u (τ)
− στu (τ)) ⇀ ∂t u weakly in L2(0, T; (Hn (Ω))′),

εw (τ)
→ 0 strongly in L2(0, T;Hn (Ω)).

Because of the L∞ bound (2.32) for (u (τ)
1

), we have

g(u (τ)
1

) ⇀∗ g(u1), f (u (τ)
1

) ⇀∗ f (u1) weakly* in L∞(0, T; L∞(Ω))

(and even strongly in Lp (QT ) for any p < ∞). Thus, we can pass to the

limit (ε, τ) → 0 in (2.30) to obtain a solution to∫ T

0

〈∂t u1 , φ〉 dt +
∫ T

0

∫
Ω

(∇u1 − g(u1)∇u2)φ dx dt � 0,∫ T

0

〈∂t u2 , φ〉 dt +
∫ T

0

∫
Ω

(δ∇u1 + κ∇u2)φ dx dt

�

∫ T

0

∫
Ω

( f (u1) − αu2)φ dx dt

for all φ ∈ L2(0, T; Hn (Ω)). In fact, performing the limit ε → 0 and then

τ → 0, we see from (2.35) that ∂t u ∈ L2(0, T; (H1(Ω))′) and hence, the

weak formulation also holds for all φ ∈ L2(0, T; H1(Ω)). It contains the
no-�ux boundary conditions (1.3). Moreover, the initial conditions are

satis�ed in the sense of (H1(Ω;R2))′; see Step 3 of the proof of Theorem

2 in [Jün15]. This �nishes the proof.
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2.2.2 Proof of Theorem 2

We recall �rst the following convex Sobolev inequality which is used to

estimate the gradient terms in the entropy inequality.

Lemma 5. Let Ω ⊂ Rd (d ≥ 1) be a convex domain and let φ ∈ C4 be a
convex function such that 1/φ′′ is concave. Then there exists cS > 0 such that
for all integrable functions u with integrable φ(u) and φ′′(u) |∇u |2,

1

m(Ω)

∫
Ω

φ(u) dx − φ
(

1

m(Ω)

∫
Ω

u dx
)
≤

cS

m(Ω)

∫
Ω

φ′′(u) |∇u |2 dx ,

wherem(Ω) denotes the measure of Ω.

Proof. The lemma is a consequence of Prop. 7.6.1 in [BGL14] after choos-

ing the probability measure dµ � dx/m(Ω) on Ω and the di�erential

operator L � ∆− x · ∇, which satis�es the curvature condition CD(1,∞)
since Γ2(u) � 1

2
(|∇2u |2 + |∇u |2) ≥ 1

2
|∇u |2 � Γ(u). Another proof can be

found in [AMTU01, Section 3.4]. �

Step 1: Uniform bound for the L1 norm of uk
1
. The L1

norm of uk
1
is not

conserved but we are able to control its L1
norm. For this, let wk

∈

Hn (Ω;R2) be a solution to (2.26) and set uk
1
� u1(wk ). We introduce

the notation v � m(Ω)−1
∫
Ω

v(x) dx for any integrable function v. This
implies that u∗

1
� u0

1
. Employing the test function φ � (1, 0) in (2.26),

we �nd that uk
1
� uk−1

1
− ετwk

1
. Solving the recursion gives

uk
1
� u0

1
− ετ

k∑
j�1

w j
1
� u∗

1
− ετ

k∑
j�1

w j
1
,

and by (2.34), we conclude that

|u (τ)
1

(t) − u∗
1
| ≤ ε‖w (τ)

1
‖L1(0,t;L1(Ω)) ≤

√
εc ,

where u (τ)
1

(t) � uk
1
for t ∈ ((k − 1)τ, kτ]. Consequently, as (ε, τ) → 0,

the convergence (2.37) shows that u1(t) � u∗
1
for t > 0.

Step 2: Estimate of the relative entropy. We employ the test function

φ � (h′
0
(uk

1
) − h′

0
(u∗

1
), (uk

2
− u∗

2
)/δ0) � (wk

1
− h′

0
(u∗

1
), wk

2
− u∗

2
/δ0)

in (2.26) to obtain

0 �
1

τ

∫
Ω

(
(uk

1
− uk−1

1
)(h′

0
(uk

1
) − h′

0
(u∗

1
)) +

1

δ0
(uk

2
− uk−1

2
)(uk

2
− u∗

2
)
)
dx

+

∫
Ω

∇wk
: B(wk )∇wk

dx + ε

∫
Ω

( ∑
|β |�n

|Dβwk
|
2

+ wk
1
(wk

1
− h′

0
(u∗

1
))

(2.38)

+ wk
2
(wk

2
− u∗

2
)/δ0)

)
dx −

1

δ0

∫
Ω

( f (uk
1
) − αuk

2
)(uk

2
− u∗

2
) dx

�: I1 + · · · + I4.

For the �rst integral, we employ the convexity of h0:

(uk
1
− uk−1

1
)(h′

0
(uk

1
) − h′

0
(u∗

1
)) ≥ (h0(uk

1
) − h0(uk−1

1
)) − h′

0
(u∗

1
)(uk

1
− uk−1

1
),

(uk
2
− uk−1

2
)(uk

2
− u∗

2
) ≥

1

2

(
(uk

2
− u∗

2
)2 − (uk−1

2
− u∗

2
)2

)
,
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which yields

I1 ≥
1

τ

∫
Ω

(h0(uk
1
) − h0(uk−1

1
)) dx −

h′
0
(u∗

1
)

τ

∫
Ω

(uk
1
− uk−1

1
) dx

+

1

2δ0τ

∫
Ω

(
(uk

2
− u∗

2
)2 − (uk−1

2
− u∗

2
)2

)
dx.

By (2.25), it follows that

I2 ≥ ε1(δ)
∫
Ω

*
,

|∇uk
1
|
2

g(uk
1
)
+

|∇uk
2
|
2

δ2
0

+
-
dx

� ε1(δ)
∫
Ω

*
,

h′′
0

(uk
1
) |∇uk

1
|
2

+

|∇uk
2
|
2

δ2
0

+
-
dx.

Lemma 5 then shows that

I2 ≥
ε1(δ)

cS

∫
Ω

(h0(uk
1
) − h0(uk

1
)) dx +

ε1(δ)
δ2
0

∫
Ω

|∇uk
2
|
2

dx.

The third integral in (2.38) is estimated by using Young’s inequality:

I3 ≥
ε
2

∫
Ω

(
(wk

1
)2 + (wk

2
)2 − h′

0
(u∗

1
)2 − δ−2

0
(u∗

2
)2

)
dx

≥ −
ε
2

∫
Ω

(
h′
0
(u∗

1
)2 + δ−2

0
(u∗

2
)2

)
dx.

Summarizing these estimates, we infer from (2.38) that∫
Ω

(h0(uk
1
) − h0(uk−1

1
)) dx − h′

0
(u∗

1
)
∫
Ω

(uk
1
− uk−1

1
) dx

+

1

2δ0

∫
Ω

(
(uk

2
− u∗

2
)2 − (uk−1

2
− u∗

2
)2

)
dx

+

ε1(δ)τ
cS

∫
Ω

(h0(uk
1
) − h0(uk

1
)) dx +

ε1(δ)τ
δ2
0

∫
Ω

|∇uk
2
|
2

dx

≤
ετ
2

∫
Ω

(
h′
0
(uk

1
)2 + δ−2

0
(u∗

2
)2

)
dx

+

τ
δ0

∫
Ω

( f (uk
1
) − αuk

2
)(uk

2
− u∗

2
) dx.

Adding these equations over k and using the notation as in the proof of

Theorem 9 for u (τ)
i , we obtain∫

Ω

(h0(u (τ)
1

(t)) − h0(u0

1
)) dx − h′

0
(u∗

1
)
∫
Ω

(u (τ)
1

(t) − u0

1
) dx

+

1

2δ0

∫
Ω

(
(u (τ)

2
(t) − u∗

2
)2 − (u0

2
− u∗

2
)2

)
dx (2.39)

+

ε1(δ)
cS

∫ t

0

∫
Ω

(
h0(u (τ)

1
) − h0(u (τ)

1
)
)
dx ds

+

ε1(δ)
δ2
0

∫ t

0

∫
Ω

|∇u (τ)
2
|
2

dx ds

≤
ε
2

∫ t

0

∫
Ω

(
h′
0
(u (τ)

1
)2 + δ−2

0
(u∗

2
)2

)
dx ds

+

1

δ0

∫ t

0

∫
Ω

( f (u (τ)
1

) − αu (τ)
2

)(u (τ)
2
− u∗

2
) dx ds .
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Step 3: The limit (ε, τ) → 0. Because of the L∞ bound for (u (τ)
1

), it
follows that, for a subsequence, u (τ)

1
⇀∗ u1 weakly* in L∞(0, T; L1(Ω))

and thus, as (ε, τ) → 0,∫
Ω

(u (τ)
1

(t) − u0

1
) dx �

∫
Ω

(u (τ)
1

(t) − u∗
1
) dx →

∫
Ω

(u1(t) − u∗
1
) dx � 0,

since u1(t) � u∗
1
for t > 0, by Step 1. The weak convergence of (∇u (τ)

2
)

to ∇u2 in L2(0, T; L2(Ω)) implies that

lim inf

τ→0

∫ t

0

∫
Ω

|∇u (τ)
2
|
2

dx ds ≤
∫ t

0

∫
Ω

|∇u2 |
2

dx ds .

Furthermore, by the strong convergence u (τ)
1
→ u1 in L2(0, T; L2(Ω)),

up to a subsequence, u (τ)
1
→ u1 a.e. in QT � Ω × (0, T) and h0(u (τ)

1
) →

h0(u1) a.e. in QT . Then the L∞ bound of (u (τ)
1

) implies that h0(u (τ)
1

) →
h0(u1) strongly in Lp (0, T; Lp (Ω)) for any p < ∞. Furthermore, we

know that u (τ)
2
→ u2 strongly in L2(0, T; L2(Ω)), see (2.37). Therefore,

the limit (ε, τ) → 0 in (2.39) leads to∫
Ω

(h0(u1(t)) − h0(u0

1
)) dx +

1

2δ0

∫
Ω

(
(u2(t) − u∗

2
)2 − (u0

2
− u∗

2
)2

)
dx

+

ε1(δ)
cS

∫ t

0

∫
Ω

(
h0(u1) − h0(u∗

1
)
)
dx ds +

ε1(δ)
δ2
0

∫ t

0

∫
Ω

|∇u2 |
2

dx ds

≤
1

δ0

∫ t

0

∫
Ω

( f (u1) − αu2)(u2 − u∗
2
) dx ds .

Now, we estimate the right-hand side. Because of f (u∗
1
) � αu∗

2
and

the Lipschitz continuity of f with Lipschitz constant cL > 0, we infer

that (recall (2.6) for the de�nition of h0(u1 |u∗
1
))∫

Ω

(
h0(u1(t) |u∗

1
) dx − h0(u1(0) |u∗

1
)
)
dx

+

1

2δ0

∫
Ω

(
(u2(t) − u∗

2
)2 − (u2(0) − u∗

2
)2

)
dx

+

ε1(δ)
cS

∫ t

0

∫
Ω

h0(u1(s) |u∗
1
) dx ds

≤
1

δ0

∫ t

0

∫
Ω

( f (u1) − f (u∗
1
))(u2 − u∗

2
) dx ds

−
α
δ0

∫ t

0

∫
Ω

(u2 − u∗
2
)2 dx ds

≤
1

2δ0α

∫ t

0

∫
Ω

( f (u1) − f (u∗
1
))2 dx ds

−
α
2δ0

∫ t

0

∫
Ω

(u2 − u∗
2
)2 dx ds

≤
c2L

2αδ0

∫ t

0

∫
Ω

(u1 − u∗
1
)2 dx ds

−
α
2δ0

∫ t

0

∫
Ω

(u2 − u∗
2
)2 dx ds .

Since u1 � u∗
1
, a Taylor expansion and the assumption 1/h′′

0
(u1) �

g(u1) ≤ γ give∫ t

0

∫
Ω

h0(u1 |u∗
1
) dx ds �

∫ t

0

∫
Ω

(h0(u1) − h0(u∗
1
) dx ds
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�

∫ t

0

∫
Ω

(
h′
0
(u∗

1
)(u1 − u∗

1
) +

1

2

h′′
0

(ξ)(u1 − u∗
1
)2

)
dx ds (2.40)

≥
1

2γ

∫ t

0

∫
Ω

(u1 − u∗
1
)2 dx ds ,

where ξ is a number between u1 and u∗
1
. We conclude that∫

Ω

h0(u1(t) |u∗
1
) dx +

1

2δ0

∫
Ω

(u2(t) − u∗
2
)2 dx

+
*
,
ε1(δ)

cS
−
γc2L
αδ0

+
-

∫ t

0

∫
Ω

h0(u1(s) |u∗
1
) dx ds

+

α
2δ0

∫ t

0

∫
Ω

(u2 − u∗
2
)2 dx ds

≤

∫
Ω

h0(u1(0) |u∗
1
) dx +

1

2δ0

∫
Ω

(u2(0) − u∗
2
)2 dx ,

and recalling the notation h(u |U) � h0(u1 |u∗
1
) + (u2 − u∗

2
)2/(2δ0),∫

Ω

h(u(t) |U) dx+min




ε1(δ)
cS
−
γc2L
αδ0

, α



∫ t

0

h(u |U) ds ≤
∫
Ω

h(u(0) |U) dx.

Then Gronwall’s lemma implies that

H(u(t) |U) �
∫
Ω

h(u(t) |U) dx ≤ e−χ(δ)t H(u(0) |U), t ≥ 0,

where χ(δ) is de�ned in (2.8). Finally, taking into account (2.40), we

estimate

h(u |U) ≥
1

2γ
(u1 − u∗

1
)2 +

1

2δ
(u2 − u∗

2
)2 ,

which shows (2.9) and �nishes the proof.

2.3 analytical bifurcation analysis – proofs

In this section, we are going to prove Theorem 3. The proofs follow

closely ideas presented for similar systems in [CKWW12, SW09,WX13],

which are fundamentally based upon an application of results of Cran-

dall and Rabinowitz [CR71, CR73]; see also [Kie04] for a detailed ex-

position of the these results. Recall that we de�ned the spaces X,Y,Y0

in (2.12) and the mapping

F : X ×X × R→ Y0 ×Y × R

in (2.14). A �rst step is to investigate the Fredholm and di�erentiability

properties of F .

Lemma 6. The mapping F satis�es the following properties:

(L1) F (u∗ , δ) � 0 for all δ ∈ R.

(L2) F (u1 , u2 , δ) � 0 implies that (u1 , u2) solves (2.10).

(L3) F is C1-smooth with Fréchet derivative DuF given by (2.15).

(L4) If ũ(x) ≡ (ũ1 , ũ2) is a homogeneous state and δg(ũ1) , −κ then
DuF (ũ1 , ũ2 , δ) is a Fredholm operator with index zero.
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Proof. For (L1) recall that u∗ � (u∗
1
, u∗

2
) was the notation for a homogen-

eous steady state. Regarding (L2), observe that the �rst two components

of F are just the steady state equations (2.10). Statement (L3) follows

from a direct calculation. The problem is to show (L4). We follow the

argument given in [CKWW12, WX13] and consider

DuF (ũ1 , ũ2 , δ)(U1 ,U2)> � B1(U1 ,U2)> + B2(U1 ,U2)> , (2.41)

where B1 : X ×X → Y0 ×Y × R is de�ned by

B1

(
U1

U2

)
�

*..
,

∆U1 − div[g′(ũ1)(∇ũ2)U1 + g(ũ1)∇U2]

δ∆U1 + κ∆U2 − αU2 + f ′(ũ1)U1

0

+//
-
, (2.42)

and the mapping B2 : X ×X → Y0 ×Y × R is given by

B2

(
U1

U2

)
�

*..
,

0

0∫
Ω

U1(x) dx

+//
-
. (2.43)

We observe easily that B2 : X ×X → Y0 ×Y × R is linear and compact.

We need an ellipticity condition and B1 should satisfy Agmon’s condi-

tion [SW09]. We have ellipticity for B1 (in the sense of Petrovskii [Jan98,

SW09]) if

det

[(
1 −g(ũ1)
δ κ

)
ξ · ξ

]
, 0, (2.44)

for all ξ � (ξ1 , ξ2 , . . . , ξd) ∈ Rd
\{0}. Computing the determinant this

condition just yields

0 , (ξ2
1
+ · · · + ξ2d)(κ + δg(ũ1)) if and only if − κ , δg(ũ1)

and ellipticity in the sense of Petrovskii follows. Moreover we need to

verify Agmon’s condition at a �xed angle θ ∈ [−π, π). Using [SW09,

Remark 2.5] with θ � π/2, one veri�es computing a shifted determinant

similar to the previously computed one in (2.44) that Agmon’s condition

holds for all values of κ. In particular, the ellipticity condition gives

a restriction on the parameters for the bifurcation analysis and not

Agmon’s condition. By applying [SW09, Thm. 3.3] we infer that

B1 : X ×X → Y ×Y × {0}

is a Fredholm operator of index zero. HenceY0 ×Y × {0} � R(B1) ⊕W ,

where R(B1) is the range of B1 and W is a closed subspace of Y ×

Y × R with dimW � dimN (B1) < ∞. Consequently, since the �rst

component of B1 is inY0, we have

Y0 ×Y × R � R(B1) ⊕W0 ⊕ span{(0, 0, 1)>}

where W0 � {(H1 ,H2 ,H3) ∈ W |
∫ L
0

H1(x)dx � 0} and W � W0 +

span{(1, 0, 0)}. Then dimW � dimW0 + 1. Thus the codimension

of R(B1) in Y0 × Y × R is equal to dimW � dimN (B1). Hence,

B1 : X × X → Y0 × Y × R is a Fredholm operator of index zero for

δg(ũ1) , −κ. Therefore, DuF is a Fredholm operator of index zero

as B2 is a compact perturbation. Hence, the result (R1) in Theorem 3

follows. �
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It seems di�cult to improve the result to include the degenerate

cases when κ � −δg(u∗
1
) as this would require to deal with bifurcation

problems with non-elliptic operators. The next goal is to apply [SW09,

Thm. 4.3]. To do so, we need some additional properties of F . In partic-

ular, in order that bifurcations occur from the homogeneous steady state

u∗ � (u∗
1
, u∗

2
) we need that the implicit function theorem fails. For the

following lemma we need to be in the case where each eigenvalue µn of

the negativeNeumann Laplacian onΩ eigenvalue is simple. For the one-

dimensional case this always holds, while for generic d-dimensional

domains the eigenvalues are also simple [Uhl72].

Lemma 7. Suppose the eigenvalues of the negative Neumann Laplacian on
Ω ⊂ Rd are simple and δg(u∗

1
) , −κ. Then there exist bifurcation points at

δ � δn
b
such that the map F satis�es the following properties:

(L5) the null space N[DuF (u∗ , δn
b

)] is one-dimensional, i.e., span[en
b
] �

N[DuF (u∗ , δn
b

)];

(L6) the non-degenerate crossing condition holds, i.e.,

DδuF (u∗ , δn
b

)en
b
< R[DuF (u∗ , δn

b
)]. (2.45)

Proof. We start by proving (L5). By (2.42), the null space of DuF (u∗ , δ)
consists of solutions for

∆U1 − g(u∗
1
)∆U2 � 0,

δ∆U1 + κ∆U2 − αU2 + f ′(u∗
1
)U1 � 0,∫

Ω

U1(x) dx � 0,

(2.46)

with no-�ux conditions on ∂Ω. For any pair u � (u1 , u2) ∈ X × X, we

can expand u1 and u2 as a series of mutually orthogonal eigenfunctions

of the following system{
−∆u � µu in Ω,

∂u
∂ν � 0 on ∂Ω,

(2.47)

multiplied by constants vectors. Let µn > 0 be a simple eigenvalue

of (2.47) and eµn is the eigenfunction corresponding to µn normalized

by

∫
Ω

(eµn )2 dx � 1. Then we de�ne

¯U1 :�

∫
Ω

u1(x)eµn (x) dx , ¯U2 :�

∫
Ω

u2(x)eµn (x) dx.

We obtain∫
Ω

eµn∆u1 dx � −µn

∫
Ω

u1eµn dx � −µn ¯U1 ,∫
Ω

eµn∆u2 dx � −µn

∫
Ω

u2eµn dx � −µn ¯U2.
(2.48)

Now, by multiplying the �rst two equations of (2.46) by eµn and integ-

rating over Ω, using the boundary condition and (2.48), we arrive at

the following algebraic system for
¯U1 and

¯U2:

¯U1 − g(u∗
1
) ¯U2 � 0,

(κµn + α) ¯U2 − ( f ′(u∗
1
) − δµn) ¯U1 � 0.

(2.49)
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If δ > f ′(u∗
1
)/µn then the system (2.49) has only the zero solution. In

this case, we would have N[DuF (u∗ , δ)] � 0 for all δ. In order to

have existence of a non-homogeneous solution we necessarily require

δ ≤ f ′(u∗
1
)/µn . In this case the system (2.49) has a non-zero solution if

and only if

δ �: δn
b
� −

κ
g(u∗

1
)
+

1

µn

[
f ′(u∗

1
)−

α
g(u∗

1
)

]
� δd+

1

µn

[
f ′(u∗

1
)−

α
g(u∗

1
)

]
.

(2.50)

Taking δ � δn
b
, we can rewrite the �rst two equations of (2.46) as the

system:(
∆U1

∆U2

)
�

1

κ + δn
b

g(u∗
1
)

(
−g(u∗

1
) f ′(u∗

1
) g(u∗

1
)α

− f ′(u∗
1
) α

) (
U1

U2

)
�: A

(
U1

U2

)
(2.51)

Using (2.50) and computing the determinant and the trace of the matrix

A we �nd that its eigenvalues are λ1 � 0 and λ2 � −µn , where µn > 0

is a single eigenvalue of the problem (2.47). Let T be the matrix whose

columns are the eigenvectors corresponding to λ1 and λ2 respectively:

T �

(
α g(u∗

1
)

f ′(u∗
1
) 1

)
.

We have

T−1AT �

(
0 0

0 µn

)
.

Then, by considering the transformation(
p
q

)
� T−1

(
U1

U2

)
, (2.52)

it follows that the �rst two equations of (2.46) can be uncoupled and

we �nd that

∆p � 0 in Ω,

∆q � µn q in Ω,

α

∫
Ω

p(x) dx + g(u∗
1
)
∫
Ω

q(x) dx � 0,

∇p · ν � ∇q · ν � 0 on ∂Ω,

(2.53)

where the genericity condition −κ , δn
b

g(u∗
1
) is used to obtain zero

Neumann boundary conditions. Recall that µn is a simple eigenvalue

of (2.47) with eigenfunction eµn . Observe that

∫
Ω

eµn (x) dx � 0, which

implies that p � 0 and q � Ceµn for some constant C are the solutions

of (2.53). Therefore, it follows that

(U1 ,U2)> � Ceµn (g(u∗
1
), 1)>. (2.54)

This shows thatN[DuF (u∗ , δn
b

)] � span[eµn (g(u∗
1
), 1)>] �: span[en

b
]. In

particular, the nullspace is one-dimensional and the result (L5) follows.
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To prove (L6), we argue by contradiction and suppose that (2.45) is

not satis�ed. Hence, by computing DδuF (u∗ , δn
b

), it follows there exists

(p , q) such that

∆p − g(u∗
1
)∆q � µn g(u∗

1
)eµn in Ω,

κ∆q + δn
b
∆p − αq + f ′(u∗

1
)p � 0 in Ω,∫

Ω

p(x) dx � 0,

∇p · ν � ∇q · ν � 0 on ∂Ω.

(2.55)

As in the �rst part of the proof, it is helpful to consider a suitable

projection and we de�ne P and Q as

P :�

∫
Ω

p(x)en
b

(x) dx , Q :�

∫
Ω

q(x)en
b

(x) dx.

Multiplying the �rst two equations (2.55) by en
b
and integrating over Ω

and using boundary conditions one obtains an algebraic system for P
and Q given by{

P − g(u∗
1
)Q � −g(u∗

1
),

( f ′(u∗
1
) − δn

b
µn)P − (κµn + α)Q � 0.

(2.56)

By the de�nition of δn
b
, the determinant of the matrix of coe�cients

on the left-hand side of the system (2.56) is zero. This implies that the

inhomogeneous linear system has no solution. Hence the system (2.55)

has no solutions and the result (2.45) in (L6) follows. �

Note that (L5)-(L6) are just the results (R2)-(R3) claimed in Theorem 3.

By applying [SW09, Thm. 4.3] we obtain the existence of a non-trivial

branch of solutions. Therefore, the local dynamics of the problem

already shows that the entropy method cannot provide exponential

decay to a distinguished steady state for all parameter values.

2.4 numerical bifurcation analysis – continuation results

In Section 2.1.1 we proved the existence of a weak solution for δ > δ∗ �
−κ/δ as well as global convergence to a steady state for δ > δe (δ , 0);

in addition, δe converges to δ∗ � −κ/γ as α → +∞ and δe converges to
+∞ as α → 0. In Section 2.1.2 we showed the existence of non-trivial

solutions for δ � δn
b
where δn

b
is de�ned in (2.50) and in particular δn

b

could be bigger or smaller than δd � κ/g(u∗
1
) depending on α.

The numerical continuation results presented in this section aim

to augment and extend these results. To simplify the comparison to

numerical results, we focus on the case

κ � 1, g(s) � s(1 − s), f (s) � s(1 − s),

which yields the condition δ > δ∗ � −4 for the validity of the entropy

method for α → +∞. As already mentioned, the values for δn
b
depend

on α, so we are going to study a case with α su�ciently large (Sec-

tion 2.4.2) and the case with α su�ciently small (Section 2.4.3). Below

we are going to de�ne the meaning of su�ciently large and su�ciently

small. First, we want to compare the values that we obtain for δn
b
with

the numerical results. The analytical problem did not include the small

parameter ρ and the introduction of this term has the e�ect of shifting

the bifurcation points.
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n 1 2 3 4 5 6 7 8

(2.50) -45.38 -14.45 -8.73 -6.72 -5.80 -5.29 -4.99 -4.79

(2.57) -121.89 -20.81 -10.50 -7.51 -6.24 -5.58 -5.19 -4.94

AUTO -121.89 -20.81 -10.50 -7.51 -6.24 -5.58 -5.19 -4.94

Table 1: Comparison between the analytical and numerical bifurcation values.

The last two rows compare the numerical and analytical solutions with 0 <
ρ � 1.

2.4.1 Comparison between the values of δn
b

The formula for δn
b
given in the equation (2.50) does not consider the

additional term ρ. Introducing this term, we get a new formula which

reads

δn
b
�

f ′(u∗
1
)

µ
−

(κµ + α)(µ + ρ)
g(u∗

1
)µ2

� δd+
1

µ

[
f ′(u∗

1
)−

κρ + α

g(u∗
1
)
−

αρ

g(u∗
1
)µ

]
.

(2.57)

We observe that the formulas (2.50) and (2.57), due to the presence of

the term ρ, will not give the same values δn
b
but the two equations

correspond if we take ρ � 0. We �x the following parameter values

(κ, α, l , ū1 , ρ) � (1, 0.2, 20, 0.594, 0.05).

We are interested in computing the values of δn
b
and to observe how

the parameter ρ shifts the bifurcation branches.

In Table 1 we reported the bifurcation points δn
b
for n ∈ {1, 2, . . . , 8}

computed with the two formulas (2.50) and (2.57) in comparison to

the numerical continuation results using AUTO. The values detected

using AUTO precisely correspond to the values computed with the for-

mula (2.57) as expected while the points are shifted in comparison to

the values for ρ � 0.

2.4.2 Case 1: α su�ciently large

Recall the formula for δn
b
given in (2.50):

δn
b
� δd +

1

µn

[
f ′(u∗

1
) −

α
g(u∗

1
)

]
.

We observe that if α > f ′(u∗
1
)g(u∗

1
) then δn

b
< δd and the branches will

approach the limit value δd for n →∞. Since we are using (2.57), the

condition on α is

α > µn
[ f ′(u∗

1
)g(u∗

1
) − κρ

ρ + µn

]

and, in the case of an interval we can compute the eigenvalues µ. So, α
su�ciently large means

α >
(nπ

l

)
2

[ f ′(u∗
1
)g(u∗

1
) − κρ

ρ + ( nπ
l )2

]
. (2.58)

Figure 4 shows a continuation calculation for �xed parameters

(κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.2, 12, 0.594, 0.05)
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using δ as the primary bifurcation parameter. We observe that the

condition on α is satis�ed since the right-hand side of (2.58) is negative

for all n ∈ N and α � 0.2. The steady state we start the continuation

with is given by

(u∗
1
, u∗

2
) � (ū1 , f (ū1)/α).
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Figure 4: Continuation calculation for the system (2.21) with parameter val-

ues (κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.2, 20, 0.594, 0.05) and primary

bifurcation parameter δ. (a) Bifurcation diagram in (δ, ‖z‖L2 )-space showing

the parameter on the horizontal axis and the solution norm on the vertical axis.

Some of the detected bifurcation points are marked as circles (magenta). The

last branch point (blue circle) is not a true bifurcation point but results from the

degeneracy δ � −κ/g(u∗
1
) �: δd. At the other branches points (magenta, �lled

circles) non-homogeneous solution branches (blue, cyan, magenta, green...)

bifurcate via single eigenvalue crossing. The value δ∗ � −κ/γ � −4 is marked

by a vertical grey dashed line. (b) Solutions are plotted for (x , u1 � u1(x)) at
certain points on the non-homogeneous branches; the solutions are marked in

(a) using crosses.

Webegin the continuation at δ � −25 andwe�nd only one bifurcation

point when δ is decreasing, i.e. for δ < −25. This result is expected
since δ1

b
� −121.889 is the value corresponding to the �rst eigenvalue.

Moreover, we do not detect any bifurcations for δ > −4 � δ∗. The

interesting results in the bifurcation calculation in Figure 4 occur when

we increase the primary bifurcation parameter δ. In this case, several

branch points are detected, in particular the closer we are to the value

δd, the more bifurcation points are found. In Figure 4, we have shown

the �rst six branch points detected obtained upon increasing δ. The
point detected at δ � −20.8116 corresponds to the second non-trivial

bifurcation branch. There are more and more points as we get closer

to δd. The last point detected (in blue) is not a bifurcation point but

corresponds to the degeneracy at

κ/g(u∗
1
) � −1/(0.594(1 − 0.594)) ≈ −4.1466.
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The remaining detected branch points in Figure 4 are true bifurcation

points. This numerical result is in accordance with the analytical results

on the existence of bifurcations in Theorem 3. In fact, one can carry out

the same calculation as in Section 2.3. At each bifurcation point, a simple

eigenvalue crosses the imaginary axis. One can use the branch switch-

ing algorithm implemented in AUTO to compute the non-homogeneous

families of solutions as shown for four points in Figure 4(a). In Fig-

ure 4(b), we show a representative solution u1 � u1(x) on each of the

four solution families. The solutions are non-homogeneous steady

states and have interface-like behaviour in the spatial variable. Each

family has a characteristic number of these interfaces. There are families

with even more interfaces than the one shown in Figure 4(b4), which

can be found upon increasing δ even further; we are not interested in

these highly oscillatory solutions here.
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Figure 5: Continuation calculation for the system (2.21) as in Figure 4 with a

focus on the second bifurcation point (�lled circle, magenta). One can show

that by using two di�erent local branching directions that two di�erent non-

homogeneous solution branches (red) bifurcate via single eigenvalue crossing

but the two branches contain solutions with identical L2
-norm for the same

parameter value. This is a result of a symmetry in the problem. (b) Three

di�erent solutions plotted in (x , u1 � u1(x))-space at the parameter value

δ � −21.8819. The three solutions are marked in (a) using crosses.

Another observation regarding the continuation run in Figure 4 is

reported in more detail in Figure 5 with a focus on the second bifurc-

ation point. It is shown that there are actually two di�erent branches

bifurcating at the same point with families of non-homogeneous solu-

tions that are symmetric. In particular, one non-trivial solution branch

can be transformed into the other by considering u 7→ 1 − u; as an
illustration we refer to three representative numerical solutions on the

three branches originating at the second bifurcation point as shown in

Figure 5(b).

2.4.3 Case 2: α su�ciently small

As speci�ed in (M7) in Chapter 1 when α < f ′(u∗
1
)g(u∗

1
) then δn

b
> δd

and this means that the branches will approach the limit value δd from
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the right. As pointed out in Section 2.4.1, the condition on α is more

complicated since our model contains ρ. The condition on α becomes

0 < α < µn
[ f ′(u∗

1
)g(u∗

1
) − κρ

ρ + µn

]
,

i.e. we must choose an α which satis�ed the inequality for each single

µn . We �x

(κ, α, l , ū1 , ρ) � (1, 0.001, 50, 0.211325, 0.05)

for the numerical continuation in this section.
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Figure 6: Continuation calculation for the system (2.21) with parameter val-

ues (κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.0001, 50, 0.211325, 0.05) and

primary bifurcation parameter δ. (a) Bifurcation diagram in (δ, ‖z‖L2 )-space
showing the parameter on the horizontal axis and the solution norm on the

vertical axis. The detected bifurcation points are marked as circles (magenta).

At the three branch points (magenta, �lled circles) non-homogeneous solution

branches (blue, cyan, magenta) corresponding to δ3
b
, δ4

b
, δ5

b
bifurcate via single

eigenvalue crossing. The value δ∗ � −κ/γ � −4 is marked by a vertical grey

dashed line. (b) Solutions are plotted for (x , u1 � u1(x)) at certain points on

the non-homogeneous branches; the solutions are marked in (a) using crosses.

With these values the condition on α is given by 0 < α < 0.0033827
which is satis�ed. We also �nd that with our choices

δd < δ
n
b
< δ∗ < δ5

b
< δ4

b
< δ3

b
< δ2

b
< δ1

b
< δe , n ≥ 6,

i.e. there are some bifurcation points which are bigger than δ∗ and
some which are smaller but all of them are bigger than δd. We begin

the continuation at δ � 3 and we detect only two more branches when

we increase δ at δ � 43.4851 and δ � 9.98041 which correspond to δ1
b

and δ2
b
. We focus on the branches for n ∈ {1, 2, 3, 4, 5} such that δn

b
> δ∗.

This case is represented in Figure 6.

Numerically we observe that all the branches stop when they reach

the critical value δ∗. Next, we consider n ≥ 6 such that δd < δn
b
< δ∗ as



2.4 numerical bifurcation analysis – continuation results 41

−6 −5.8 −5.6 −5.4 −5.2 −5 −4.8 −4.6 −4.4 −4.2 −4
163

164

165

166

167

168

δ

||
z
||
L
2

(a)

(b1)
(b2)

(b3)

0 0.5 1

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b1)

x

u
1

0 0.5 1

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b2)

x

u
1

0 0.5 1

0.18

0.2

0.22

0.24

0.26

0.28

0.3

(b3)

x
u
1

Figure 7: Continuation calculation for the system (2.21) with parameter val-

ues (κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.0001, 50, 0.211325, 0.05) and

primary bifurcation parameter δ. (a) Bifurcation diagram in (δ, ‖z‖L2 )-space
showing the parameter on the horizontal axis and the solution norm on the

vertical axis. Some of the detected bifurcation points are marked as circles

(magenta). The last branch point (blue circle) is not a true bifurcation point but

results from the degeneracy δ � −κ/g(u∗
1
) �: δd. At the other branch points

(magenta, �lled circles) non-homogeneous solution branches (green, blue,

cyan) bifurcate via single eigenvalue crossing. The value δ∗ � −κ/γ � −4

is marked by a vertical grey dashed line. (b) Solutions are plotted for

(x , u1 � u1(x)) at certain points on the non-homogeneous branches; the solu-

tions are marked in (a) using crosses.

reported in Figure 7. In this case there are two critical values: δ∗ � −4
(dashed line) and δd � −6 (blue circle). The branches detected for a δ
close to δ∗ have the same direction as the branches detected for δ > δ∗;
but starting from a certain n, in this case n � 8, we notice that the

branches change the direction. Probably this behaviour is due to the

fact that the branches cannot cross the value δ � δd. We do no detect

any branch for δ < δd.

In the range between δd and δ∗ the branches do not seem to overlap.

Numerically, one observes that the branches get shorter and shorter due

to the numerical continuation breaking down as the branches approach

δd. Looking at the shape of the solutions in the di�erent branches we

can observe that they have more and more interfaces as we approach

the limiting value δd. Moreover, the solutions inside a �xed branch get

sharper and sharper peaks along the branch (see for example the cyan

branch).

2.4.4 Continuation in ρ

The next question is if we can �nd non-homogeneous steady states also

for the original problem with ρ � 0. This can be achieved by using a

homotopy-continuation idea.
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Figure 8: Continuation calculation for the system (2.21) starting with the

same basic parameter values as in Figure 4 but with ρ � 0.001. We stop the

continuation at the solution points for a certain δ (as done in Figure 4(a))

and change from δ as a primary continuation parameter to ρ as a primary

parameter with the goal to decrease the parameter to ρ � 0. The values for δ
are δ � −16 for the red branch, δ � −9.4 for the green branch and δ � −7 for

the blue one. (a1)-(a3) Bifurcation diagrams in (ρ, ‖z‖L2 )-space. The starting
point for the continuation is at the right boundary where ρ � 0.001 and then

ρ is decreased. (b1)-(b3) Solutions obtained on the bifurcation branches above

at the point ρ � 0 (points are marked with squares in (a1)-(a3)). (c1)-(c3)

Solutions obtained on the bifurcation branches for the initial system with

ρ � 0.001. We can observe that also for ρ � 0 the solutions have a non-trivial

herding-type pro�le.

First, we continue the problem in δ and compute the non-homogeneous

solution branches. Thenwe pick a steady state on the non-homogeneous

branch and switch to continuation in ρ while keeping δ �xed. The res-
ults of this strategy are shown in Figure 8 (for α � 0.2) and in Figure 9

(for α � 0.001). For the �rst three solutions shown in Figure 4(b), this

strategy works if we start from a very small ρ. Figure 8(c) shows the

solution in the branch for a ρ , 0: we notice that the solutions for the

case ρ � 0 keep the non-constant pro�le as for ρ , 0 yielding relevant

herding solutions for applications.

In the case with α su�ciently small, the strategy works better and

we indeed �nd non-homogeneous steady states for ρ � 0 as shown in

Figure 9(b). Moreover we can also obtain herding solutions. We use the

starting parameter values

(κ, α, l , ū1 , ρ) � (1, 0.001, 50, 0.211325, 0.05).

We start from δ � 10 and the �rst branch we detect is δ2
b
� 9.98041.

Once we are in this branch, we continue in ρ for a �xed δ (in this

case δ � −9). For information herding models, solutions which are

of particular importance are those with sharp interfaces between the

endstates, i.e., the solution is near zero and near one in certain regions
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Figure 9: Continuation calculation for the system (2.21) starting with the same

parameter value and as in Figure 6. We stop the continuation at δ � −9 (as

done in Figure 6(a)) and change from δ as a primary continuation parameter to

ρ as a primary parameter with the goal to decrease the parameter to ρ � 0. (a)

Bifurcation diagram in (ρ, ‖z‖L2 )-space. The starting point for the continuation
is at the right boundary where ρ � 0.05 and then ρ is decreased. (b) Solution

on the second branch δ2
b
of non-homogeneous steady states at ρ � 0 (point is

marked with squares in (a)).

with sharp interfaces in between. These solutions represent a herding

e�ect in the sense of sharply split opinions. More precisely, they indicate

for which values of the information variable x we observe a herding

behaviour, i.e. a concentration of individuals (u ≈ 1) at certain values

of x. Figure 9(b) shows herding in the interval [0, 0.2] ∪ [0.8, 1], while

only a few individuals adopt the information value in [0.3, 0.7].

2.4.5 Solutions and other parameters

In this section we focus on the case with α su�ciently small. We are

interested in studying, how the solutions change depending on the

other parameters κ and l. We �x as starting parameters

(κ, α, l , ū1 , ρ) � (1, 0.001, 50, 0.211325, 0.05)

and consider the branch δ2
b
. We study the solutions depending on the

di�erent parameters. In Figure 10 we show changes along the branch

(which bifurcates at δ � 9.98041). We observe that the shape is the same

along the branch but the interfaces sharpen as δ is decreased.

In Figure 11 we show how the solution changes with the length of

the domain. We consider l � 20, l � 50 and l � 100. The branch δ2
b

is detected at δ � −3.28144, 9.98041, 43.4851 respectively. Since we

consider the same branch, the shape does not change and length of the

domain shifts the bifurcation points and just scales the solution.

When we change the parameter κ the bifurcation points are also

simply shifted. We consider κ � 1, κ � 5 and κ � 10. The branch δ2
b

is detected at δ � 9.98041,−92.2877,−214.999 respectively. Moreover,

for the �rst case the branches approach the value δd from the right,

while in the other two cases from the left. As for the previous case we
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Figure 10: Solutions along the branch δ2
b
for the system (2.21) with parameter

values (κ, α, l , ū1 , ρ) � (p2 , p3 , p4 , p5 , p6) � (1, 0.001, 50, 0.211325, 0.05). (a)
Solution of non-homogeneous steady states at δ � 8.72901. (b) Solution of non-

homogeneous steady states at δ � 5.76477. (c) Solution of non-homogeneous

steady states at δ � 1.548.
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Figure 11: Solutions in the branch δ2
b
for the system (2.21) with parameter

values (κ, α, ū1 , ρ) � (p2 , p3 , p5 , p6) � (1, 0.001, 0.211325, 0.05). (a) Solution
of non-homogeneous steady states at δ � −3.5154, l � 20. (b) Solution of

non-homogeneous steady states at δ � 8.93964, l � 50. (c) Solution of non-

homogeneous steady states at δ � 37.9117, l � 100.

consider three di�erent solutions with (almost) the same norm (163.863
for the case (a), 163.872 for (b) and 163.911 for (c)).
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Figure 12: Solutions in the branch δ2
b
for the system (2.21) with parameter

values (α, l , ū1 , ρ) � (p3 , p4 , p5 , p6) � (0.001, 50, 0.211325, 0.05). (a) Solution
of non-homogeneous steady states at δ � 8.72901, κ � 1. (b) Solution of

non-homogeneous steady states at δ � −92.2877, κ � 5. (c) Solution of non-

homogeneous steady states at δ � −220.578, κ � 10.

In summary, we conclude that κ and l do not seem to be the paramet-

ers of primary importance in our context as we can re-obtain similar

solutions and similar bifurcation structures for di�erent values of κ
and l upon varying δ, α as primary parameters.



A KINET IC EQUATION FOR ECONOMIC VALUE 3
EST IMATION WITH IRRAT IONALITY AND

HERDING

This chapter is organized as follows. In Section 3.1, the kinetic model

is detailed and the grazing collision limit is performed. The resulting

Fokker-Planck model (1.5)-(1.6) is analysed in Section 3.2. Furthermore,

we discuss the time evolution of the moments of g(x , w , t) in some

speci�c examples. The numerical results are presented in Section 3.3.

3.1 modeling

The aim of this chapter is to propose and investigate a kinetic model

describing irrationality and herding of market agents, motivated by

the works of Toscani [Tos06] and Delitala and Lorenzi [DL14], i. e.we

model the evolution of the distribution of the number of agents in a

large market using a kinetic approach.

3.1.1 Public information and herding

Wedescribe the behaviour of themarket agents bymeans ofmicroscopic

interactions among the agents. The state of the market is assumed to be

characterized by two continuous variables: the estimated asset value

w ∈ R+ :� [0,∞) and the rationality x ∈ R. We say that the agent has

a rational behaviour if x > 0 and an irrational behaviour if x < 0. The

changes in asset valuation are based on binary interactions. We take into

account two di�erent types: the interaction with public sources, which

characterizes a rational agent, and the e�ect of herding, characterizing

an irrational agent. In the following, we de�ne the corresponding

interaction rules.

Let w be the estimated asset value of an arbitrary agent before the

interaction and w∗ the asset value after exchanging information with

the public source. Given the background W � W (t), which may be

interpreted as a “fair” value, the interaction is given, similarly as in

[CDCT09], by

w∗ � w − αP(|w −W |)(w −W ) + ηd(w). (3.1)

The function P measures the compromise propensity and takes values

in [0, 1], and the parameter α > 0 is a measure of the strength of this

e�ect. Furthermore, the function d with values in [0, 1] describes the
modi�cation of the asset value due to di�usion, and η is a random

variable with distribution µ with variance σ2I and zero mean taking

values on R, i.e. 〈w〉 �
∫
R

wdµ(w) � 0 and 〈w2
〉 �

∫
R

w2dµ(w) � σ2I .
An example for P is [Tos06]

P(|w −W |) � 1{|w−W |<r} ,

where r > 0 and 1A denotes the characteristic function on the set A.

Thus, if the estimated asset value is too far from the value available

45



46 kinetic equation with irrationality and herding

from public sources (the “fair” value), the e�ect of public information

will be discarded (selective perception). The idea behind (3.1) is that if a

market agent trusts an information source, he/she will update his/her

estimated asset value to make it closer to the one suggested by the

public information. We expect that a rational investor follows such a

strategy.

The interaction rule (3.1) has to ensure that the post-interaction value

w∗ remains in the intervalR+. We have to require that di�usion vanishes

at the border w � 0, i.e. d(0) � 0. In the absence of di�usion, it follows

that w∗ � w−αP(|w−W |)(w−W ) ≥ w−α(w−W ) � (1−α)w+αW ≥ 0 if

w > W and w∗ � w+αP(|w−W |)(W−w) ≥ w ≥ 0 if w ≤ W . Therefore,

the post-interaction value w∗ stays in the domain R+.

The second interaction rule aims to model the e�ect of herding, i.e.,

we take into account the interaction between a market agent and other

investors. We suggest the interaction rule, similarly as in [Tos06],

w∗ � w − βγ(v , w)(w − v) + η1d(w),
v∗ � v − βγ(v , w)(v − w) + η2d(v).

(3.2)

The pairs (w , v) and (w∗ , v∗) denote the asset values of two arbitrary

agents before and after the interaction, respectively. In (3.2), β ∈ (0, 1/2]
is a constant which measures the attitude of the market participants to

change their mind because of herding mechanisms. Furthermore, η1, η2
are random variables, modelling di�usion e�ects, with the same distri-

bution with variance σ2H and zero mean, and, to simplify, the function

d is the same as in (3.1). The function γ with values in [0, 1] describes a
socio-economic scenario where individuals are highly con�dent in the

asset. An example, taken from [DL14], reads as

γ(v ,w) � 1{w<v}v f (w), (3.3)

where f is nonincreasing, f (0) � 1, and limw→∞ f (w) � 0. If an agent

has an asset value w smaller than v, the function γ will push this agent

to assume a higher value w∗ than that one before the interaction. This

means that the agent trusts other agents that assign a higher value.

If w is larger than v, the agent hesitates to lower his asset value and

nothing changes. Agents that assign a small value w tend to herd

with a higher rate, i.e. f is nonincreasing. Another choice is given by

γ(v , w) � 1{|w−v |<rH } [DL14]. In this case, the interaction occurs only

when the two interacting agents have asset values which are not too

di�erent from each other.

The interaction does not take place if w∗, v∗ are negative. In the

absence of di�usion, adding both equations in (3.2) gives w∗ + v∗ �
v + w which means that the total momentum is conserved. Subtracting

both equations in (3.2) yields w∗ − v∗ � (1 − 2βγ(v ,w))(w − v). Since
1 − 2βγ(v , w) ∈ [0, 1) (observe that 0 < β ≤ 1/2), the post-interaction
di�erence w∗ − v∗ in the asset values is smaller than the pre-interaction

di�erence w − v. We infer that w∗, v∗ remain nonnegative.

When di�usion is taken into account, we need to specify the range

of values the random variables η1, η2 in (3.2) can assume. This clearly

depends on the choice of d(w), and we refer to [DMPW09, page 3691]

for a more detailed discussion.
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3.1.2 The kinetic equation

Instead of calculating the value x and w for each market agent, we

prefer to investigate the evolution of the distribution f (x , w , t) of the
estimated value and the rationality of the market participants. The

integral

∫
B f (x , w , t)dz with z � (x , w) represents the number of agents

with asset value and rationality in B ⊂ R × R+ at time t ≥ 0. In analogy

with classical kinetic theory of rare�ed gases, we may identify the

position variable with the rationality and the velocity with the asset

value. Using standard methods of kinetic theory, f (x , w , t) evolves

according to the inhomogeneous Boltzmann equation

∂t f +[Φ(x , w) f ]x �
1

τI
QI ( f )+

1

τH
QH ( f , f ), (x , w) ∈ R×R+ , t > 0.

(3.4)

Here,Φ(x , w) is the drift term, QI and QH are interaction integrals mod-

elling the public information and herding, respectively, and 1/τI > 0,

1/τH > 0 describe the interaction frequencies. This equation is supple-

mented by the boundary condition f (x , 0, t) � 0 (nobody believes that

the asset has value zero) and the initial condition f (x , w , 0) � f0(x , w)
for (x , w) ∈ R × R+.

A simple model for Φ can be introduced as follows. If an agent gives

an asset value that is much larger than the “fair” value W , he/she will

recognize that the value is overestimated and it is believed that he/she

will become more rational. The same holds true when the estimated

value is too low compared to W . In this regime, the drift function

Φ(x , w) should be positive since agents drift towards higher rationality

x > 0. When the estimated value is not too far from the value W , agents

may behave more irrational and drift towards the region x < 0, so the

drift function is negative. An example for such a function is

Φ(x , w) �
{
−δκ for |w −W | < R,
κ for |w −W | ≥ R,

(3.5)

where δ, κ, R > 0. The constant R �xes the range |w −W | < R in which

bubbles and crashes do not occur. More realistic models are obtained

when R depends on time, andwe consider such a case in Section 3.3. An

alternative is to employ the mean asset value

∫
R

∫
R+

f wdwdx instead

of w in |w −W | < R to distinguish the ranges.

Next, we detail the choice of the interaction integrals. As pointed out

in [CDCT09], the existence of a pre-interaction pair which returns the

post-interaction pair (w∗ , v∗) through an interaction of the type (3.1) is

not guaranteed, because of the boundary constraint. Therefore, we will

give the interaction rule in the weak form. Let φ(w) :� φ(x ,w) be a

regular test function and set Ω � R × R+, z � (x , w). The weak form

reads as∫
Ω

QI ( f )φ(w)dz �

〈∫
R+

∫
Ω

(
φ(w∗) − φ(w)

)
M(W ) f (x , w , t)dzdW

〉
,

(3.6)

where 〈·〉 is the expectation value with respect to the random variable

η in (3.1) and M(W ) ≥ 0 represents the �xed background satisfying
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∫
R+

M(W )dW � 1. The Boltzmann equation for this operator, ∂t f �

QI ( f )/τI , becomes in the weak form

∂t

∫
Ω

f (x , w , t)φ(w)dz �
1

τI

〈∫
R+

∫
Ω

(
φ(w∗)−φ(w)

)
M(W ) f (x , w , t)dzdW

〉
.

Choosing φ(w) � 1, the right-hand side vanishes, which expresses

conservation of the number of agents, ∂t
∫
Ω

f (x , w , t)dz � 0. By taking

φ(w) � w, a computation shows that the mean asset value mw ( f ) �∫
Ω

f wdz is nonincreasing.

The operator QH ( f , f ) models the binary interaction of the agents

and, similarly as in [Tos06], we de�ne∫
Ω

QH ( f , f )φ(w)dz �

〈∫
R+

∫
Ω

(
φ(w∗)−φ(w)

)
f (x , w , t) f (x , v , t)dzdv

〉
,

(3.7)

where (w , v) is the pre-interaction pair that generates via (3.2) the post-

interaction pair (w∗ , v∗). Choosing φ � 1 in the Boltzmann equation

∂t f � QH ( f , f ), we see that this operator also conserves the number

of agents. Taking φ(w) � w and using a symmetry argument, the

interaction rule (3.2), and the fact that the random variables η1 and η2
have zero mean, a computation shows that ∂t mw ( f ) � 0., i.e., mean

asset value is conserved. This is reasonable as the crowd may tend to

any direction depending on the herding.

3.1.3 Grazing collision limit

The analysis of the Boltzmann equation (3.4) is rather involved, and it

is common in kinetic theory to investigate certain asymptotic leading

to simpli�ed models of Fokker-Planck type. Our aim is to perform the

formal limit (α, β, σ2H , σ
2

I ) → 0 (in a certain sense made precise below),

where α, β appear in the interaction rules (3.1) and (3.2) and σ2H , σ2I are

the variances of the random variables in these rules. Since the formal

limit is very similar to that one in [CPT05, Tos06], we sketch it only.

Set k � β/α, ts � αt, xs � αx, and introduce the functions g(xs , w , ts ) �
f (x ,w , t), Φs (xs , w) � Φ(x , w). After the change of variables (x , w) 7→
(xs , ts ) and setting zs � (xs , w), the weak form of (3.4) reads as

∂
∂ts

∫
Ω

g(xs , w , ts )φ(w)dzs +

∫
Ω

∂
∂xs

(
Φs (xs , w)g(xs , w , ts )

)
φ(w)dzs

�
1

ατI

∫
Ω

QI ,s (g)φ(w)dzs +
1

ατH

∫
Ω

QH,s (g , g)φ(w)dzs , (3.8)

where QI ,s (g) � QI ( f ), QH,s (g , g) � QH ( f , f ) are de�ned in weak

form in (3.6), (3.7), respectively. In the following, we omit the index s.
Now, we rewrite the collision integrals in (3.8) using a Taylor expan-

sion of φ(w∗) − φ(w) and the properties 〈η〉 � 0, 〈η2〉 � σ2I , leading
to

1

ατI

∫
Ω

QI (g)φ(w)dz

� −
1

τI

∫
R+

∫
Ω

φ′(w)P(|w −W |)(w −W )M(W )g(x , w , t)dzdW

+

1

2τI

∫
R+

∫
Ω

φ′′(w̃)
(
αP(|w −W |)2(w −W )2 +

σ2I
α

d(w)2
)
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M(W )g(x , w , t)dzdW

� −
1

τI

∫
Ω

φ′(w)H(w)g(x , w , t)dz + R(α, σI )

+

1

2τI

∫
R+

∫
Ω

φ′′(w)
(
αP(|w −W |)2(w −W )2 +

σ2I
α

d(w)2
)

M(W )g(x , w , t)dzdW,

where R(α, σI ) is some remainder term with the property R(α, σI ) → 0

as (α, σI ) → 0 [Tos06, Section 4.1], and

H(w) �
1

τI

∫
R+

P(|w −W |)(w −W )M(W )dW. (3.9)

Then, in the limit α → 0 and σI → 0 such that λI :� σ2I /α is �xed,

lim

(α,σI )→0

1

ατI

∫
Ω

QI (g)φ(w)dz

�
1

τI

∫
Ω

(
− φ′(w)H(w) +

λI

2

d(w)2φ′′(w)
)

g(x , w , t)dz

�

∫
Ω

(
(H(w)g)w +

λI

2τI
(d(w)2g)ww

)
φ(w)dz ,

where in the last step we integrated by parts. The boundary integrals

vanish since g � 0 at w � 0 and d(0) � 0 imply that (d(w)2g)w |w�0 �

d′(0)g |w�0 + d(0)gw |w�0 � 0.

The limit (α, σH ) → 0 in the last term of (3.8) is performed in a similar

way. Using a Taylor expansion and (3.2), we can show that

1

ατH

∫
Ω

QH (g , g)dz

�

∫
Ω

(
− K[g](x , w , t)φ′(w) +

σ2H
2ατH

d(w)2ρφ′′(w)
)

g(x , w , t)dz

+

αk2

2τH

∫
R+

∫
Ω

γ(v , w)2(v − w)2g(x , v , t)g(x , w , t)φ′′(w)dzdw

+ R(α, σH ),

where R(α, σH ) is another remainder term, ρ �
∫
Ω

f dz, and

K[g](x , w , t) �
k
τH

∫
∞

0

γ(v , w)(v.w)g(x , v , t)dv.

Keeping λH � σ2H/α �xed, the limit (α, σH ) → 0 gives

lim

(α,σH )→0

1

ατH

∫
Ω

QH (g , g)dz �

∫
Ω

(
(K[g]g)w +

λHρ

2τH
(d(w)2g)ww

)
φ(w)dz.

Summarizing, we obtain in the limit the weak form of the Fokker-

Planck-type equation

∂t g+(Φ(x , w)g)x � (K[g]g+H(w))w+
1

2

(
λI

τI
+

λHρ

τH

)
(d(w)2g)ww (3.10)

for (x , w) ∈ R × R+, t > 0. This equation is supplemented by the

boundary condition g � 0 at w � 0 and the initial condition g(0) � g0

in Ω.
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3.2 analysis

The aim of this section is to analyse the Fokker-Planck-type equation

derived in the previous section. To this end, we set

Γ(v ,w) :�
k
τH
γ(v , w)(v−w), D(w) :�

1

2

(
λI

τI
+

λHρ

τH

)
d(w)2 , Ω � R×R+.

Then (3.10) simpli�es to

∂t g + [Φ(x , w)g]x � (K[g]g + H(w)g)w + [D(w)g]ww (3.11)

with

K[g] �
∫
∞

0

Γ(v , w)g(v)dv.

3.2.1 Existence of weak solutions

We wish to show the existence of weak solutions to (3.11)–(1.6) under

the following hypotheses:

(H1) Φ ∈ W2,∞(Ω), H ∈ W1,∞(R+), D ∈ W2,∞(R+), and there exists

δ > 0 such that D(w) ≥ δ > 0 for w ∈ (0,∞).

(H2) Γ ∈ L2((R+)2), Γ ≥ 0, and Γw (v , w) ≤ 0 for all v, w ≥ 0.

(H3) g0 ∈ H1(Ω) and 0 ≤ g0 ≤ M0 for some M0 > 0.

Remark 8. We discuss the above assumptions. The strict positivity of

D(w) (and consequently of d(w)) is needed for technical reasons since

we cannot handle the degeneracy d(0) � 0 which was assumed in the

modelling part. One may interpret our assumption as a regularization

for “small” δ > 0. Condition Γw (v , w) ≤ 0 is satis�ed for regularized

versions of (3.3) since both w 7→ γ(v , w) and w 7→ v − w are nonin-

creasing functions on R+. The remaining hypotheses are regularity

conditions needed for the mathematical analysis. �

Then the main result reads as follows.

Theorem 9. Let Hypotheses H1-H3 hold. Then there exists a weak solution
g to (1.5)-(1.6) satisfying 0 ≤ g(x , w , t) ≤ M0eλt for (x , w) ∈ Ω, t > 0,
where λ > 0 depends on Φ, H and D, and it holds g ∈ L2(0, T;H1(Ω)),
∂t g ∈ L2(0, T;H1(Ω)′).

The idea of the proof is to regularize equation (1.5) by adding a

second-order derivative with respect to x, to truncate the nonlinearity,

and to solve the equation in the �nite interval w ∈ (0, ρ). Then we pass

to the deregularization limit. The key step of the proof is the derivation

of uniform H1
estimates allowing for the compactness argument. These

estimates are derived by analysing the di�erential equation satis�ed by

h :� gx and by making crucial use of the boundary conditions.

Proof of Theorem 9. Let ρ > 0, 0 < ε < 1, M > 0, set

KM[g](x , w , t) �
∫ ρ

0

Γ(v , w)(g)M (x , v , t)dv

(g)M � max{0,min{M, g}},
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where g is an integrable function, and introduce Ωρ � (−ρ, ρ) × (0, ρ).
We split the boundary ∂ΩR into two parts:

∂Ωρ � ∂ΩD ∪ ∂ΩN , where

∂ΩD � {(x , w) : x ∈ [−ρ, ρ], w � 0, ρ},

∂ΩN � {(x , w) : x � ±ρ, w ∈ (0, ρ)}.

Finally, we set g+ � max{0, g}. Consider the approximated nonlinear

problem

∂t g + [Φ(x , w)g+

]x (3.12)

�
[
(KM[g] + H(w) + D′(w))g+

]
w + [D(w)gw]w + εgxx ,

g � 0 on ∂ΩD , gx � 0 on ∂ΩN , g(x , w , 0) � 0 in Ωρ .
(3.13)

We introduce the space H1

D (Ωρ) consisting of those functions v ∈
H1(Ωρ) which satisfy v � 0 on ∂ΩD , and we set H−1D (Ωρ) � (H1

D (Ωρ))′.
The weak formulation of (3.12)-(3.13) reads as:

for all v ∈ L2(0, T;H1

D (Ωρ)),∫ T

0

〈∂t g , v〉dt (3.14)

� −

∫ T

0

∫
Ωρ

(
(Φx (x , w)g+

+Φ(x , w)g+

x )v

+

(
KM[g] + H(w) + D′(w)

)
g+vw + d(w)gw vw + εgx vx

)
dzdt ,

where 〈·, ·〉 is the dual product between H−1D (Ωρ) and H1

D (Ωρ).
We wish to apply the Leray-Schauder �xed-point theorem. For this,

we split the proof in several steps.

Lemma 10. Given T > 0, g̃ ∈ L2(0, T; L2(Ω)), and η ∈ [0, 1], there exists
a weak solution to the linearised problem

∂t g + η
(
Φ(x , w)x g̃+

+Φ(x , w)gx
)

� η
(
(KM[ g̃] + H(w) + D′(w)) g̃+

)
w + (D(w)gw)w + εgxx ,

g � 0 on ∂ΩD , gx � 0 on ∂ΩN , g(x , w , 0) � 0 in ΩR .

Proof. We introduce the forms

a(g , v) �
∫
Ωρ

(
ηΦ(x , w)gx v + D(w)gw vw + εgx vx

)
dz , (3.15)

g , v ∈ H1

D (Ωρ),

F(v) � −η
∫
Ωρ

(
Φx (x , w) g̃+v + (KM[ g̃] + H(w) + D′(w)) g̃+vw

)
dz.

(3.16)

Since KM[ g̃] is bounded, it is not di�cult to see that a is bilinear and

continuous on H1

D (Ωρ)2 and F is linear and continuous on H1

D (Ωρ).
Furthermore, using Young’s inequality and D(w) ≥ δ > 0, it follows

that, for some Cε > 0,

a(g , g) ≥
1

2

∫
Ωρ

(
δg2

wdz + ε(g2

x + g2)
)
dz − (Cε + ε)

∫
Ωρ

g2

dz

≥ min{δ, ε}‖g‖2H1(Ωρ ) − (Cε + ε)‖g‖2L2(Ωρ ) .
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By Corollary 23.26 in [Zei90], there exists a unique solution

g ∈ L2(0, T;H1

D (Ωρ)) ∩ H1(0, T; H−1D (Ωρ)) to

〈∂t g , v〉 + a(g , v) � F(v), t > 0, g(0) � ηg0. (3.17)

�nishing the proof. �

This de�nes the �xed-point operator S : L2(0, T; L2(Ωρ)) × [0, 1]→
L2(0, T; L2(Ωρ)), S( g̃ , η) � g, where g solves (3.17). This operator satis-

�es S( g̃ , 0) � 0. Standard arguments show that S is continuous (employ-

ing H1
estimates depending on ε). Since L2(0, T;H1

D (Ωρ)) ∩ H1(0, T;
H−1D (Ωρ)) is compactly embedded in L2(0, T; L2(Ωρ)), the operator is
also compact. In order to apply the �xed-point theorem of Leray-

Schauder, we need to show uniform estimates, which are provided

by the following lemma.

Lemma 11. Let g be a �xed point of S(·, η), i.e., g solves (3.17) with g̃ � g.
Then, for some λ > 0 independent of ε and R, it holds that 0 ≤ g ≤ M0eλt

in (0, T)

Proof. We choose v � g− :� min{0, g} ∈ L2(0, T;H1

D (ΩR)) as a test

function in (3.17) and integrate over (0, t). Since g+g− � 0 and g−(0) �
g−
0
� 0, we have

a(g , g−) �
∫
ΩR

(
D(w)(g−w)2 + ε(g−x )2

)
dz ≥ 0, F(g−) � 0,

which shows that

1

2

∫
Ωρ

g−(t)2dz �
1

2

∫
Ωρ

g−(0)2dz −
∫ t

0

a(g , g−)ds ≤ 0.

This yields g− � 0 and g ≥ 0 inΩρ, t > 0. In particular, we may write g
instead of g+

in (3.15)-(3.16).

For the upper bound, we choose the test function v � (g − M)+ ∈
L2(0, T; H1

D (Ωρ)) in (3.14), where M � M0eλt
for some λ > 0whichwill

be determined later. By Hypothesis H3, (g −M)+(0) � (g0 −M0)+ � 0.

Observing that ∂t M � λM, (g −M)(g −M)+w �
1

2
[((g −M)+)2]w and

integrating by parts in the integrals involving KM[g] + H(w) + D′(w),
we �nd that

1

2

∫
Ωρ

(g −M)+(t)2dz � −λ

∫ t

0

∫
Ωρ

M(g −M)+dzds

− η

∫ t

0

∫
Ωρ

(
Φx (x , w)((g −M) + M) +Φ(x , w)(g −M)+x

)
(g −M)+dzds

− η

∫ t

0

∫
Ωρ

(KM[g] + H(w) + D′(w))((g −M) + M)(g −M)+wdzds

−

∫ t

0

∫
Ωρ

(
D(w)((g −M)+w )2 + ε((g −M)+x )2

)
dzds

� −η

∫ t

0

∫
Ωρ

(Φx (x , w) + λ)M(g −M)+dzds

− η

∫ t

0

∫
Ωρ

Φx (x , w)((g −M)+)2dzds

− η

∫ t

0

∫
Ωρ

Φ(x , w)(g −M)+x (g −M)+dzds
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+

η

2

∫ t

0

∫
Ωρ

(
KM[g]w + H′(w) + D′′(w)

)
((g −M)+)2dzds

+ η

∫ t

0

∫
Ωρ

(
KM[g]w + H′(w) + D′′(w)

)
M(g −M)+dzds

−

∫ t

0

∫
Ωρ

(
D(w)((g −M)+w )2 + ε((g −M)+x )2

)
dzds .

The third integral on the right-hand side can be estimated by Young’s

inequality,

− η

∫ t

0

∫
Ωρ

Φ(x , w)(g −M)+x (g −M)+dzds

≤
η

2ε
‖Φ‖2L∞ (Ω)

∫ t

0

∫
Ωρ

((g −M)+)2dzds +
ε
2

∫ t

0

∫
Ωρ

((g −M)+x )2dzds .

Then, collecting the integrals involving M(g −M)+ and ((g −M)+)2
and observing that Γw ≤ 0 implies that KM[g]w ≤ 0, it follows that

1

2

∫
Ωρ

(g −M)+(t)2dz

≤ η

∫ t

0

∫
Ωρ

(
−Φx (x , w) + H′(w) + D′′(w) − λ

)
M(g −M)+dzds

+

η

2

∫ t

0

∫
Ωρ

(
1

ε
‖Φ‖2L∞ (Ω) − 2Φx (x , w) + H′(w) + D′′(w)

)
((g −M)+)2dzds

−

∫ t

0

∫
Ωρ

(
D(w)((g −M)+w )2 +

ε
2

((g −M)+x )2
)
dzds .

Choosing λ ≥ ‖Φx ‖L∞(Ω) + ‖H′‖L∞(0,∞) + ‖D′′‖L∞(0,∞) , the �rst integral

on the right-hand side is nonpositive. The last integral is nonpositive

too, and the second integral can be estimated by some constant Cε > 0.

We conclude that∫
Ωρ

(g −M)+(t)2dz ≤ Cε

∫ t

0

∫
Ωρ

((g −M)+)2dzds .

Then Gronwall’s lemma implies that (g −M)+ � 0 and g ≤ M in Ωρ,

t > 0. �

In particular, we can write K[g] instead of KM[g] in (3.14). The

L∞ bound provides the desired bound for the �xed-point operator

in L2(0, T; L2(ΩR)), yielding the existence of a weak solution to (3.14).

We need more a priori estimates. The following lemma is the key step

in the proof.

Lemma 12. Let g be a weak solution to (3.14). Then there exists C > 0

independent of ε and R such that ‖g‖L2(0,T;H1(ΩR )) ≤ C.

Proof. We choose �rst the test function v � g ∈ L2(0, T;H1

D (Ωρ)) in

(3.14) (replacing T by t ∈ (0, T)):

1

2

∫
Ωρ

g(t)2dz

� −

∫ t

0

∫
Ωρ

Φx (x , w)g2

dzds −
∫ t

0

∫
Ωρ

Φ(x , w)gx gdzds
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−
1

2

∫ t

0

∫
Ωρ

(
K[g] + H(w) + D′(w)

)
(g2)wdzds

−

∫ t

0

∫
Ωρ

(
D(w)g2

w + εg2

x
)
dzds +

1

2

∫
Ωρ

g2

0
dz.

Applying Young’s inequality to the second integral on the right-hand

side, integrating by parts in the third integral, and observing that g � 0

at w ∈ {0, ρ} yields, for some constant C1 > 0 which depends on the

L∞ norms of Φx , H′, and D′′ (we use again that K[g]w ≤ 0),

1

2

∫
Ωρ

g(t)2dzdt (3.18)

≤ C1

∫ t

0

∫
Ωρ

g2

dzds + C1

∫ T

0

∫
Ωρ

g2

xdzds

−

∫ T

0

∫
Ωρ

(
δg2

w + εg2

x
)
dzds +

1

2

∫
Ωρ

g2

0
dz.

Since C1 > ε is possible, this does not give an estimate, and we need a

further argument.

Next, we di�erentiate (3.12) with respect to x in the sense of distribu-

tions and set h :� gx :

∂t h +

[
Φx (x , w)g +Φ(x , w)h

]
x (3.19)

� (K[h]g)w +

[
(K[g] + H(w) + D′(w))h

]
w

+ (D(w)hw)w + εhxx in Ωρ , t > 0.

We observe that the boundary condition g � 0 on ∂ΩD implies that also

gx � 0 holds on ∂ΩD and so, gx � 0 on ∂Ωρ. Hence, equation (3.19)

is complemented with homogeneous Dirichlet boundary conditions.

Furthermore, h(x ,w , 0) � g0,x (x , w). The weak formulation of (3.19)

reads as∫ T

0

〈∂t h , v〉dt

� −

∫ T

0

∫
Ωρ

((
Φxx (x , w)g + 2Φx (x , w)h +Φ(x , w)hx

)
v

+ K[h]gvw +

(
K[g] + H(w) + D′(w)

)
hvw + D(w)hw vw + εhx vx

)
dzdt

for all v ∈ L2(0, T;H1

0
(Ωρ)). This is a linear nonlocal problem for h,

with given g, and we verify that there exists a solution

h ∈ L2(0, T;H1

0
(Ωρ)) ∩ H1(0, T;H−1(Ωρ)), using similar arguments as

above. Therefore, we can choose v � h as a test function in (3.19):

1

2

∫
Ωρ

h(t)2dz

� −

∫ t

0

∫
Ωρ

(
(Φxx (x , w)gh + 2Φx (x , w)h2

+

1

2

Φ(x , w)(h2)x

)
dzds

−

∫ t

0

∫
Ωρ

(
K[h]ghw

+

1

2

(
K[g] + H(w) + D′(w)

)
(h2)w + D(w)h2

w + εh2

x

)
dzds

+

1

2

∫
Ωρ

gx (0)2dz.
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We integrate by parts and employ the inequalities K[g]w ≤ 0, D(w) ≥ δ:

1

2

∫
Ωρ

h(t)2dzds (3.20)

≤ −

∫ t

0

∫
Ωρ

(
Φxx (x , w)gh +

3

2

Φx (x , w)h2

)
dzds

−

∫ t

0

∫
Ωρ

K[h]ghwdzds +
1

2

∫ t

0

∫
Ωρ

(
H′(w) + D′′(w)

)
h2

dzds

−

∫ t

0

∫
Ωρ

(
δh2

w + εh2

x
)
dzds +

1

2

∫
Ωρ

gx (0)2dz.

The �rst integral on the right-hand side is estimated by using Young’s

inequality:∫ t

0

∫
Ωρ

(
Φxx (x , w)gh+

3

2

Φx (x , w)h2

)
dzds

≤
1

2

‖Φxx ‖L∞(Ω)

∫ t

0

∫
Ωρ

(g2

+ h2)dzds

+

3

2

‖Φx ‖L∞(Ω)

∫ t

0

∫
Ωρ

h2

dzds .

For the second integral on the right-hand side of (3.20), we observe that

0 ≤ g ≤ M and ‖K[h]‖L2(Ωρ ) ≤ CΓ‖h‖L2(Ωρ ) , where

C2

Γ
�

∫
∞

0

∫
∞

0

Γ(v , w)2dvdw. Thus,

−

∫ t

0

∫
Ωρ

K[h]ghwdzds ≤ M
∫ t

0

‖h‖L2 (Ωρ ) ‖hw ‖L2 (Ωρ )ds

≤
δ
2

∫ t

0

∫
Ωρ

h2

wdzds +
M
2δ

∫ t

0

∫
Ωρ

h2

dzds .

This shows that, for some C2(δ) > 0,

1

2

∫
Ωρ

h(t)2dz ≤ C2(δ)
∫ t

0

∫
Ωρ

(g2

+ h2)dzds −
δ
2

∫ t

0

∫
Ωρ

h2

wdzds

− ε

∫ t

0

∫
Ωρ

h2

xdzds +
1

2

∫
Ωρ

gx (0)2dz. (3.21)

We add (3.18) and (3.21) to �nd that, for some C3(δ) > 0,∫
Ωρ

(g2

+ h2)(t)dz +

∫ t

0

∫
Ωρ

(
δg2

w + εh2

+ εh2

x
)
dzds

≤ C3(δ)
∫ t

0

∫
Ωρ

(g2

+ h2)dzds +
1

2

∫
Ωρ

(g2

0
+ g2

0,x)dz.

Gronwall’s lemma provides uniform estimates for g and gx � h:

‖g‖L∞(0,T;L2(Ωρ )) + ‖gx ‖L∞(0,T;L2(Ωρ )) + ‖gw ‖L2(0,T;L2(Ωρ )) ≤ C, (3.22)

where C > 0 depends on δ, M, and the L∞ bounds for Φ, H, D′ and
their derivatives, but not on R and ε. �

Lemma 13. There exists a weak solution g to

∂t g +Φx (x , w)g +Φ(x , w)gx

�
(
(KM[g] + H(w) + D′(w))g+

)
w + (D(w)gw)w ,

g � 0 on ∂ΩD , gx � 0 on ∂ΩN , g(x , w , 0) � 0 in ΩR .
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Proof. The lemma follows after passing to the limit ε → 0 in (3.12).

Let gε :� g be a solution to (3.12)-(3.13) with K[g] � KM[g]. First, we

estimate ∂t gε:

‖∂t gε‖L2(0,T;H−1D (Ωρ )) (3.23)

≤ ‖Φ(x , w)gε‖L2(0,T;L2(Ωρ ))

+ ‖K[gε] + H(w) + D′(w)‖L∞(0,T;L∞(Ωρ )) ‖gε‖L2(0,T;L2(Ωρ ))

+

(
‖D‖L∞(0,T;L∞(Ωρ )) + 1

)
‖gε‖L2(0,T;H1(Ωρ )) ≤ C,

where C > 0 does not depend on ε and ρ (since K[gε] is uniformly

bounded). Estimates (3.22) and (3.23) allow us to apply the Aubin-Lions

lemma to conclude the existence of a subsequence of (gε), which is not

relabelled, such that as ε → 0,

gε → g strongly in L2(0, T; L2(Ωρ)),

gε ⇀ g weakly in L2(0, T;H1(Ωρ)),

∂t gε ⇀ ∂t g weakly in L2(0, T;H−1D (Ωρ)).

By the Cauchy-Schwarz inequality, this shows that

‖K[gε] − K[g]‖L2 (0,T;L2 (Ωρ ))

≤

( ∫ ρ

0

∫
∞

0

Γ(v , w)2dvdw
) ∫ T

0

∫ ρ

0

∫ ρ

−ρ
(gε − g)2(x , w , t)dxdwdt

≤ CΓ‖gε − g‖L2 (0,T;L2 (Ωρ )) → 0 as ε → 0.

We infer that

K[gε]gε → K[g]g strongly in L1(0, T; L1(Ωρ)).

Since (K[gε]gε) is bounded, this convergence holds in Lp
for any p < ∞.

Consequently, we may perform the limit ε → 0 in (3.14) (with g+ � g
and KM[g] � K[g]) to obtain for all v ∈ L2(0, T;H1

D (Ωρ)),∫ T

0

〈∂t g , v〉 � −
∫ T

0

∫
Ωρ

(
(Φx (x , w)g +Φ(x , w)gx)v (3.24)

+

(
K[g] + H(w) + D′(w)

)
gvw + D(w)gw vw

)
dzdt

which �nishes the proof. �

To �nish the proof of Theorem 9, it remains to perform the limit

R → ∞. This limit is based on Cantor’s diagonal argument. We have

shown that there exists a weak solution gn to (3.24) with gn (0) � g0 in

the sense of H−1D (Ωn), where n ∈ N. In particular, (gn) is bounded in

L2(0, T; H1(Ωm)) for all n ≥ m. We can extract a subsequence (gn ,m) of
(gn) that converges weakly in L2(0, T; H1(Ωm)) to some g (m)

as n →∞.

Observing that the estimates in Step 4 are independent of ρ � n, we

obtain even the strong convergence gn ,m → g (m)
in L2(0, T; L2(Ωm))

and a.e. in Ωm × (0, T). This yields the diagonal scheme

g1,1 , g2,1 , g3,1 , . . . → g (1)
� u |Ω1×(0,T) ,

g2,2 , g3,2 , . . . → g (2)
� u |Ω2×(0,T) ,

g3,3 , . . . → g (3)
� u |Ω3×(0,T) ,

. . .
...
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This means that there exists a subsequence (gn ,1) of (gn) that converges
strongly in L2(0, T;H1(Ω1)) to some g (1)

. From this subsequence, we

can select a subsequence (gn ,2) that converges strongly in L2(0, T; H1(Ω1))
to some g (2)

such that g (2)
|Ω1×(0,T) � g (1)

, etc. The diagonal sequence

(gn ,n) converges to some g ∈ L2(0, T;H1(Ω)) which is a solution to

(1.5)-(1.6). �

3.2.2 Asymptotic behaviour of the moments

We analyse the time evolution of the macroscopic moments

mw (g) �
∫
Ω

g(x , w , t)wdz , mx (g) �
∫
Ω

g(x , w , t)xdz ,

where g is a (smooth) solution to (1.5)-(1.3), in the special situation that

P � 1 and Φ(x ,w) is given by (3.5). We assume that the number of

agents is normalized,

∫
Ω

gdz � 1.

Proposition 14 (Convergence of the �rst moment mw (g)). Let P � 1 and
letΦ be given by (3.5). Then mw (g(t)) →W as t →∞, and the convergence
is exponentially fast.

Proof. Assumption P � 1 implies that (recall (3.9))

H(w) � w −W, where W �

∫
∞

0

ωM(ω)dω.

The parameter W may be the same as in the de�nition of Φ(x , w) in
(3.5). Using g � 0 at w � 0 and integrating by parts with respect to w,

we obtain

∂t mw (g) � −
∫
Ω

(
K[g]g+H(w)g

)
dz ≤ −

∫
Ω

(w−W )gdz � −mw (g)+W,

where we have taken into account that K[g] ≥ 0. By Gronwall’s lemma,

mw (g(t)) converges exponentially fast to the mean value W as t →
∞. �

Proposition 15 (Convergence of the variance). Let P � 1, Γ(v , w) � Γ0,
D(w) � w, and let Φ be given by (3.5). Then Vw (g(t)) :�

∫
Ω

g(t)(w −
W )2dz →W as t →∞, and the convergence is exponentially fast.

Proof. We compute

∂tVw (g) � −2
∫
Ω

(K[g] + H(w))(w −W )gdz + 2

∫
Ω

D(w)gdz.

Since Γ(v , w) � Γ0 and D(w) � w, we �nd that K[g] � Γ0ρ and

∂tVw (g) � −2
∫
Ω

(
Γ0ρ(w −W )g + (w −W )2g

)
dz + 2

∫
Ω

gwdz

� 2(1 − Γ0)mw (g) + 2Γ0W − 2Vw (g)
� 2(mw (g) − Vw (g)) + 2Γ0(W − mw (g)).

We infer from mw (g(t)) →W that the variance Vw (g(t)) converges to
W as t →∞. �
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Finally, we compute ∂t mx (g). Then

∂t mx (g) �
∫
R
Φ(x , w)gdw

� −δκ

∫
R

∫
{|w−W |<R

gdwdx + κ

∫
R

∫
{|w−W |≥R

gdwdx.

This expression explains the role of the parameter δ. Indeed, assume

that in some time interval, the number of agents with estimated asset

value around W (|w −W | < R) is of the same order as those with asset

value which di�ers signi�cantly from W (|w−W | ≥ R). Then, for δ � 1,

the mean rationality is decreasing, and if δ � 1, it is increasing. Thus,

δ is a measure for the expected mean rationality.

3.3 numerical simulations

We illustrate the behaviour of the solution to the kinetic model derived

in Section 3.1.2 by numerical simulations.

3.3.1 The numerical scheme

The kinetic equation (3.4) is originally posed in the unbounded spatial

domain (x ,w) ∈ R × R+. Numerically, we consider instead a bounded

domain, similarly as for the approximate equation (3.12) in the existence

analysis. Since the �rst moment with respect to w is conserved along

the evolution, we can normalize the maximal possible asset value to

one and thus consider w ∈ I � [0, 1]. For the rationality variable, we

approximate the whole line R by a bounded interval x ∈ [−1, 1]. This
means that agents with x � −1 are completely irrational and individuals

with x � 1 are completely rational. A scaling argument shows that we

may also choose x ∈ [−R, R] for any R > 0. By our existence analysis,

the solution on [−R, R] for su�ciently large R converges to the solution

on R. Thus, the reduction to the �nite interval [−1, 1] will not destroy

the qualitative behaviour of the solution. Thanks to the interaction rules

(3.1)-(3.2), we do not need to impose any boundary conditions. Indeed,

if we start with a value w ∈ I, the post-interaction value w∗ stays in this

interval. We choose uniform subdivisions (x0 , . . . , xN ) for the variable
x and (w0 , . . . ,wM) for the variable w. We take N � M � 70 in the

simulations. The function f (x , w , tk ) is approximated by f k
i j , where

x ∈ (xi , xi+1), w ∈ (w j , w j+1), and tk � k4t, where 4t is the time step

size (we choose 4t � 10
−5
).

For the numerical approximation, we make an operator splitting

ansatz, i.e., we split the Boltzmann equation (3.4) into a collisional part

and a drift part. The collisional part

∂t f � QI ( f ) or ∂t f � QH ( f , f )

is numerically solved by using the interaction rules (3.1) or (3.2), re-

spectively, and a slightly modi�ed Bird scheme [Bir95]. First, we de-

scribe the choice of the interaction rule. The stochastic process η is a

point process with η � ±0.06 with probability 0.5. The total number

of agents is normalized to one. We introduce the number of irrational

agents Iirr(w , t) �
∫

0

−1
f (x , w , t)dx and the number of rational agents
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Irat(w , t) �
∫

1

0

f (x , w , t)dx. If for �xed (w , t), the majority of the agents

is rational (Irat > 0.6), we select the herding interaction rule (3.2). If the

majority of the market participants is irrational (Irat < 0.4), we choose

the interaction rule (3.1). In the intermediate case, the choice of the in-

teraction rule is random. Clearly, this choice could be re�ned by relating

it to the value of the ratio Irat/Iirr. The pairs of individuals that interact
are chosen randomly and at each step all the agents interact with the

background and with another randomly chosen agent, respectively.

After the interaction part, we need to distribute the function f on the

grid. The distribution at w∗ is de�ned by f (w∗) � f (w) − f (v). Then
the part f (w∗) is distributed proportionally to the neighbouring grid

points w j and w j+1. In order to avoid that the post-interaction values

become negative, some restriction on the random variables are needed;

we refer to [DW15, Section 2.1] for details.

At each time step, we solve the transport part

∂t f � (Φ(x , w) f )x

using a �ux-limited Lax-Wendro�/upwind scheme. More precisely, let

4x � 1/N be the step size for the rationality variable, and recall that

4t � 10
−5

is the time step size. The value f (xi , w j , tk ) is approximated

by f k
i for a �xed w j . We recall that the upwind scheme reads as

f k+1
i �

{
f k
i −

4t
4xΦ(xi , w j)( f k

i − f k
i−1) if Φ(xi , w j) > 0,

f k
i −

4t
4xΦ(xi , w j)( f k

i+1 − f k
i ) if Φ(xi , w j) ≤ 0,

and the Lax-Wendro� scheme is given by

f k+1
i � f k

i −
4t
24x
Φ(xi ,w j)( f k

i+1− f k
i−1)+

(4t)2

2(4x)2
Φ(xi , w j)2( f k

i+1−2 f k
i + f k

i−1).

The Lax-Wendro� scheme has the advantage that it is of second order,

while the �rst-order upwind scheme is employed close to discontinuit-

ies. The choice of the scheme depends on the smoothness of the data. In

order to measure the smoothness, we compute the ratio θk
i of the con-

secutive di�erences and introduce a smooth van-Leer limiter function

Ψ(θk
i ), de�ned by

Ψ(θk
i ) �

|θk
i | + θ

k
i

1 + |θk
i |
, where θk

i �
f k
i − f k

i−1

f k
i+1 − fi

.

Our �nal scheme is de�ned by

f k+1
i � f k

i −
4t
4x
Φ(xi , w j)(Fk

i+1 − Fk
i ), where

Fk
i �

1

2

( f k
i−1 − f k

i )

−
1

2

sgn(Φ(xi ,w j))
(
1 −Ψ(θi)

(
1 −
4t
4x
|Φ(xi , w j) |

))
( f k

i − f k
i−1).

3.3.2 Choice of functions and parameters

We still need to specify the functions used in the simulations. We take

τH � τI � 1,

P(|w −W |) � 1, d(w) � 4w(1 − w), γ(v , w) � 1{w<v}v(1 − w),
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andΦ(x , w) is given by (3.5). The values of the parameters α, β, R, W , δ,
and κ are speci�ed below. With the simple setting P � 1, the interaction

rule (3.1) becomes w∗ � (1 − α)w + αW + ηd(w). This means that α
measures the in�uence of the public source: if α � 1, the agent adopts

the asset value W , being the background value; if α � 0, the agent is not

in�uenced by the public source. The random variables η is normally

distributed with zero mean and standard deviation 0.06.

The di�usion coe�cient d(w) is chosen such that it vanishes at the

boundary of the domain of de�nition of w, i.e. at w � 0 and w � 1, and

that its maximal value is one.

The choice of γ(v , w) is similar to that one in [DL14, Formula (11)],

and we explained its structure already in Section 3.1.1. In (3.3), we have

chosen f (w) � 1 − w. This means that agents do not change their asset

value due to herding when w is close to its maximal value. When the

asset value is very low, w ≈ 0, we have w∗ ≈ βv + η1d(w), and the agent

adopts the value βv.

3.3.3 Numerical test 1: constant R, constant W

We choose R � 0.025 and W � 0.5. The aim is to understand the

occurrence of bubbles and crashes depending on the parameters α,
β, and κ. We say that a bubble (crash) occurs at time t if the mean

asset value mw ( f (t)) is larger than W + R (smaller than W − R). This
de�nition is certainly a strong simpli�cation. However, there seems

to be no commonly accepted scienti�c de�nition or classi�cation of

a bubble. Shiller [Shi00, page 2] de�nes “a speculative bubble as a

situation in which news of price increases spurs investor enthusiasm,

which spreads by psychological contagion from person to person”. Our

de�nition may be di�erent from the usual perception of a bubble or

crash in real markets.

Figure 13 (left) presents the percentage of bubbles and crashes for

di�erent values of α. More precisely, we count how often the mean

asset value is larger than W + R (smaller than W − R) and how often it

lies in the range [W −R,W + R]. The quotient de�nes the percentage of

bubbles (crashes). The simulations were performed 200 times and the

mean asset value is then averaged. We observe that bubbles occur more

frequently when α is close to zero. This may be explained by the fact

that α represents the reliability of the public information, and when

this quantity is small, the agents do not trust the public source. If α is

close to one, all the market participants rely on the public information.

This means that they assume an asset value close to the “fair” prize W .

This corresponds to a herding behaviour, and the herding interaction

rule, which tends to higher values, applies, leading to bubble forma-

tion. A market that does neither overestimate nor underestimate public

information leads to the smallest bubble percentage, here with α being

around 0.5. Interestingly, the results vary only slightly with respect to

the parameter β.

The percentage of crashes is depicted in Figure 13 (right). Qualit-

atively, the percentage is small for values α not too far from 0.5, but

the shape of the curves is more complex than those for bubbles. For

instance, there is a local maximum at α � 0.1 and a local minimum at
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Figure 13: Left: Percentage of bubbles (left) and crashes (right) depending on

the choice of α and β. The parameters are R � 0.025, W � 0.5, δ � κ � 1.

α � 0.85. The percentage of crashes is largest for α close to one. Again,

the dependence on the parameter β is very weak.

In the above simulations, we have assumed a constant value for

α, i.e., all market participants have the same attitude to change their

mind when interacting with public sources. We wish to show that

nonconstant values lead to similar conclusions. For this, we generate α
from a normal distribution with standard deviation 0.45 and various

means 〈α〉. The result is shown in Figure 14 for β � 0.25 and β � 0.5.
For comparison, the percentages for constant α and β � 0.05 are also

shown. It turns out that the results for nonconstant or constant α are

qualitatively similar which justi�es the use of constant α.
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Figure 14: On the left: percentage of bubbles for varying α (β � 0.25) and
constant α (β � 0.5 and β � 0.05); on the right: in blue is represented the

probability distribution function for the logarithmic return, in magenta the

normal distribution with same mean and variance as the return.

In Figure 14 (on the right) we show an empirical distribution function

for the logarithmic return rt which has been computed in the following

way:

rt � ln

( mw (t)
mw (t − ∆t)

)
, ∆t � 50, t ∈ [0, 2500].

The �rst moment mw (t) has been computed choosing the parameters

α � 0.35, β � 0.25, and δ � 2. The return distribution has a mean very

close to zero and variance 0.0037. A normal distribution (in magenta)

with the same mean and the same variance as the return is also shown

for comparison. The returns are negatively skewed (skewness −0.1104)
and leptokurtic (kurtosis 3.2743). These features are consistent with

characteristics of real �nancial time series.
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3.3.4 Numerical test 2: constant R, time-dependent W (t)

Now, we chose R � 0.025 and

W (t) � 0.1 + 0.05
(
sin

t
5004t

+

1

2

exp

t
15004t

)
, t ≥ 0.

The time evolution of the �rst moment mw ( f (t)) �
∫
Ω1

f (x , w , t)wdz
is shown in Figure 15. We see that the mean asset value stays within

the range [W (t) − R,W (t) + R] if α is small (except for increasing “fair”

prices) and it has the tendency to take values larger than W (t) if α is

large.
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Figure 15: Mean asset value mw ( f (t)) versus time t for α � 0.5 (right) and

α � 0.05 (left). The function W (t) is represented by the solid line in between

the dashed lines which represent the functions W (t) + R and W (t) − R. The

parameters are β � 0.25, R � 0.025, δ � 2, κ � 1.

Figure 16 illustrates the in�uence of the parameter δ which describes

the strength of the drift in the region |w −W (t) | < R. The background

value W (t) models a crash: it increases up to time t � 0.2 then decreases

abruptly, and stays constant for t > 0.2. For small values of δ, the mean

asset value decreases slowly while it adapts to W (t) more quickly when

δ is large. Interestingly, we observe a (small) time delay for small δ
although the equations do not contain any delay term. The delay is

only caused by the slow drift term. The same phenomenon can be

reproduced for abruptly increasing W (t).
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Figure 16: Mean asset value mw ( f (t)) versus time for δ � 0.01 (left) and

δ � 100 (right) with α � 0.25, β � 0.2, R � 0.025, κ � 1.

3.3.5 Numerical test 3: time-dependent R(t)

The �nal numerical test is concerned with time-dependent bounds

R(t). We distinguish the upper and lower bound and accordingly the
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boundaries w � W (t) + R+(t) and w � W (t) − R−(t). The functions

R±(t) are de�ned as the Bollinger bands which are volatility bands

above and below a moving average. They are employed in technical

chart analysis although its interpretationmay be delicate. The de�nition

reads as

R±(tk ) � Mn (tk ) ± kσ(tk ),

where Mn (tk ) is the n-period moving average (we take n � 30), k is

a factor (usually k � 2), and σ(tk ) is the corrected sample standard

deviation,

Mn (tk ) �
1

n

n∑
`�1

mw ( f (tk−`)),

σ(tk ) �
(

1

n − 1

n∑
`�1

(
mw ( f (tk−`)) −Mn (tk−`)

)
2

)
1/2

.

Figure 17 shows the time evolution of the mean asset value and the

Bollinger bands for two di�erent values of α and constant W . One may

say that the market is overbought (or undersold) when the asset value is

close to the upper (or lower) Bollinger band. For small values of α, the
market participants are not much in�uenced by the public information

and they tend to increase their estimated asset value due to herding.
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Figure 17: Mean asset value mw ( f (t)) and Bollinger bands R±(t) versus time

for α � 0.2 (right) and α � 0.05 (left). The parameters are β � 0.25, W � 0.5,
δ � 1, κ � 1.

The mean asset value and the corresponding Bollinger bands for a

discontinuous background value W (t) is displayed in Figure 18 (left

column). We have chosen d(w) � w(1 − w) and η � ±0.06 (upper row)

or η � ±0.18 (lower row).

The value W (t) abruptly decreases at time t � 0.2. We are interested

in the di�erence of the upper and lower Bollinger bands, more precisely

in the Bollinger bandwidth B(t) � 100(R+(t)−R−(t))/W (t), measuring

the relative di�erence between the upper and lower Bollinger bands.

According to chart analysts, falling (increasing) bandwidths re�ect

decreasing (increasing) volatility. In our simulation, the jump of W (t)
gives rise to a peak of the Bollinger bandwidth at t � 0.2; see Figure 18
(right column). Another small peak can be observed at t ≈ 0.38 (upper

right �gure) when η � ±0.06. For larger values of η (lower right �gure),

the �uctuations in the Bollinger bandwidth are larger.
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Figure 18:Mean asset value mw ( f (t)) (left column) and Bollinger bands R±(t)
(right column) versus time. The function W (t) has a jump at t � 0.2. The
parameters are α � 0.05, β � 0.25, R � 0.025, δ � κ � 1. Upper row: η � ±0.06,
lower row: η � ±0.18.



BOLTZMANN EQUATION FOR WEALTH AND 4
KNOWLEDGE EXCHANGES

The chapter is organised as follow. Section 4.1 is dedicated to the present-

ation of the microscopic and kinetic models of wealth and knowledge

exchange processes. Section 4.1.3 gives a proper mathematical frame-

work of the model. In Section 4.2, we provide numerical experiments,

including a study of the quasi-invariant knowledge case.

4.1 kinetic model

We want to foresee the time evolution of a population of agents who

are described thanks to two characteristics: their wealth and their

knowledge. Using the formalism of kinetic theory, we are led to in-

troduce an unknown distribution function f : R+ × R
∗
+
× R∗

+
→ R+,

(t , x , v) 7→ f (t , x , v), where t ≥ 0 is the time variable, x > 0 the know-

ledge and v > 0 the wealth. Then the quantity f (t , x , v) dx dv can be

understood as the fraction of agents of the population inside an ele-

mentary volume of the phase space (in both knowledge and wealth

variables) centred at (x , v) and of measure dx dv.
We �rst need to describe themicroscopicmechanisms between agents

for both knowledge and wealth to be able to de�ne the associated

mesoscopic collision operators of Boltzmann type, and eventually write

the kinetic equation governing the time evolution of f .
In what remains, for the sake of simplicity, when we write “agent

(x , v)”, that means that we deal with an agent of knowledge x and

wealth v.

4.1.1 Microscopic exchanges of knowledge and wealth

An agent in the population can interact with any other one. We here

assume that those interactions are of binary type, i.e. we suppose that

the interactions involving three individuals or more can be seen as

the “sum” of binary exchanges between agents. Moreover, the wealth

and knowledge exchanges are chosen to be independent. That means

that an agent does not interact with another one for both wealth and

knowledge at the same time.

Let us �rst describe the knowledge binary exchange process, and

consider two agents (x , v) and (y , w). Their knowledges x′ and y′

are updated thanks to the following collision (with the kinetic theory

vocabulary) rule{
y′ � y + κ(v)(x − y) � κ(v)x + [1 − κ(v)]y ,
x′ � x + κ(w)(y − x) � [1 − κ(w)]x + κ(w)y ,

(4.1)

where κ : R∗
+
→ [α, 1/2) is a non-decreasing function of the wealth

variable, with 0 < α � 1/2. For instance, we can choose κ constant or

satisfying κ(v) � [1 − (1 − 2α)e−2v
]/2. The previous mechanism (4.1)

implies that the knowledge change for an individual depends on the

65
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wealth of the other agent involved in the interaction. More precisely, κ
can be considered as a con�dence function, in the sense that the bigger

v is with respect to w, the more agent (y , w) trusts agent (x , v). Let us
point out that this rule is quite similar to the one presented in [Tos06].

As a matter of fact, the post-collisional knowledge x′ is computed from

x, contrary to [BS09] where the average opinion was used, by adding a

quantity involving the relative knowledge x − y and a coe�cient κ(w)
depending on the wealth of the other agent. The dependence of this

coe�cient is a new feature, since it was previously related to x and

not w in [Tos06]. We must also emphasize that the main di�erence

with [PT14] lies in the fact that we allow interaction between agents for

the exchange of information, whereas Pareschi and Toscani used the

interaction a given background of information with a mean-�eld point

of view.

Since x′ and y′ are clearly convex combinations of x and y, the know-

ledge bounds are preserved at the microscopic level, i.e. [x′, y′] ⊂ [x , y].
There should eventually be a knowledge concentration e�ect inside the

population, if there is no other phenomenon taken into account for the

knowledge variable. Note that, nevertheless, there are no reasons for

this concentration to go to the initial average knowledge. Indeed, the

microscopic post-collisional total knowledge

x′ + y′ � x + y + (κ(v) − κ(w))(x − y)

can be larger than x + y if we simultaneously have x > y and v > w,

ensuring that the exchange process is pro�table to everyone when a

wealthy well-informed agent interacts with the rest of the population.

As we can see, this whole behaviour remains quite simplistic from

the modelling point of view, but it has the mathematical bene�t that the

collision rule (4.1) is invertible: both x and y can be expressed in terms

of x′ and y′, since the Jacobian JK (v , w) of (4.1), which does not depend

on x and y, writes JK (v , w) � κ(v) + κ(w) − 1, and clearly remains

negative for any v, w, by assumption on κ. We can also add to (4.1) a

threshold e�ect, which is probably more realistic. The model then relies

on a bounded-con�dence assumption, i.e. the knowledge interaction is

forbidden between agents (x , v) and (y , w) when |v − w | ≤ ω, where

ω > 0 is given. This assumption is very common in the literature of

opinion dynamics, see [DNAW00, HK02] for instance.

Let us now focus on thewealth binary exchange process, and consider

again two agents (x , v) and (y , w). Their wealth values v′ and w′ after
interaction are given by the collision rule{

v′ � [1 −Ψ(x)γ]v +Ψ(y)γw ,
w′ � Ψ(x)γv + [1 −Ψ(y)γ]w ,

(4.2)

where γ ∈ (0, 1) is �xed and Ψ : R∗
+
→ (0, 1] is a non-increasing

continuous function of the knowledge variable, for instance, Ψ(x) �

(1 + x)−β, with β > 0. The collision rule (4.2) is exactly the one used in

[PT14] without the random risk parameter, and was �rst proposed in a

simpli�ed version in [CPT05]. This is a real modelling choice, since we

believe that the saving and risk propensities of each agent are directly

linked. That is why we choose, in this work, to treat them with the

sole quantity γΨ(x), which can then be understood as the saving/risk-

taking propensity of agent (x , v). The monotonicity ofΨ implies that
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the more an agent has knowledge, the less risky is the wealth exchange

for him. Note that, for thewell-posedness result detailed in Section 4.1.3,

we need a stronger assumption on the lower bound ofΨ.

Moreover, it is clear that the microscopic total wealth is conserved

during the exchange process: v′ + w′ � v + w. We also emphasize that

v′ and w′ are not convex combinations of v and w, but satisfy some

relevant properties, such as the following one. Assuming that x > y,
which implies thatΨ(x) ≤ Ψ(y), we then have

v′ ≥ v + (w − v)Ψ(x)γ.

That ensures that the interaction of an agent with another one, richer

but less informed, is pro�table to the �rst one. Of course, there is an

arguable situation when both y and w are respectively smaller than

x and v. In such a case, agent (x , v) may not want to interact with

(y , w), since he would have nothing to win in the wealth exchange.

Consequently, a wealth threshold e�ect should also be investigated in

the latter case. This will be more precisely discussed in the numerical

experiments.

Eventually, we must point out a mathematical issue: the collision

rule (4.2) may not be invertible. Indeed, we can check that the Jacobian

JW of (4.2), which does not depend on v and w, satis�es, for any x, y,

JW (x , y) � 1 − γ(Ψ(x) +Ψ(y)) ∈ (1 − 2γ, 1).

SinceΨ is continuous, the previous bounding of JW (x , y) can be zero if

γ > 1/2 for some values of x and y. This range of values of γ is realistic

at the microscopic level, see [PT14] for more details. Nevertheless, for

mathematical reasons, we choose γ ≤ 1/2 to ensure the invertibility of

(4.2).

Remark 16. The microscopic property [x′, y′] ⊂ [x , y] clearly implies that,
if f in has a compact support in the knowledge variable, so has f at any time.

4.1.2 Collision operators and governing equation

In order to take into account those microscopic collision rules (4.1)–

(4.2) in the time evolution of the distribution function f , we need to

write the related collision operators QK and QW . As we already stated,

there is a possible issue on the non-invertibility of (4.2). Moreover, the

rules may not di�eomorphisms from R∗
+
onto itself. Then, to overcome

those di�culties, as explained in [BS09, p.511], the natural framework

consists in writing the collision operators under weak forms.

For a suitable test-function φ of (x , v), we write the weak form of the

collision operator QK ( f , f ), acting on the knowledge variable, as

〈QK ( f , f ), φ〉

� νK

"
R∗
+

4

f (t , x , v) f (t , y , w)
(
φ(x′, v) − φ(x , v)

)
dx dy dv dw

�
νK

2

"
R∗
+

4

f (t , x , v) f (t , y , w)(
φ(x′, v) + φ(y′,w) − φ(x , v) − φ(y , w)

)
dx dy dv dw , (4.3)
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where νK > 0 denotes the interaction frequency in the population for

the knowledge exchange. Both expressions of QK ( f , f ) in (4.3) are

equal, thanks to the change of variables (x , y , v , w) 7→ (y , x , w , v),
whose Jacobian equals 1. In the same way, for the collision operator

QW ( f , f ), which acts on the wealth variable, we write, for any suitable

test-function φ,

〈QW ( f , f ), φ〉

� νW

"
R∗
+

4

f (t , x , v) f (t , y , w)
(
φ(x , v′) − φ(x , v)

)
dx dy dv dw

�
νW

2

"
R∗
+

4

f (t , x , v) f (t , y , w)(
φ(x , v′) + φ(y , w′) − φ(x , v) − φ(y ,w)

)
dx dy dv dw , (4.4)

where νW > 0 denotes the interaction frequency in the population for

the wealth exchange.

Let us set, for any w > 0,

DK (w) � {(x , x′) ∈ R2 | 0 < (1 − κ(w))x < x′} ⊂ R∗
+

2

and, for any x > 0,

DW (x) � {(v , v′) ∈ R2 | 0 < (1 − γΨ(x))v < v′} ⊂ R∗
+

2.

It is then easy to check that the transformations (x , y) 7→ (x , x′) for
a �xed w > 0 and (v , w) 7→ (v , v′) for a �xed x > 0 are bijections,

respectively DK (w) → R∗
+

2

and DW (x) → R∗
+

2

. Both weak forms (4.3)–

(4.4) can be written as the di�erence between the weak form of gain

terms Q+

K ( f , f ), Q+

W ( f , f ), and loss terms Q−K ( f , f ), Q−W ( f , f ), which

do not use the post-collisional variables at all. More precisely, we have,

for any test-function φ,

〈Q+

K ( f , f ), φ〉 �
"
R∗
+

4

νK1DK (w) (x′, x)
κ(w)

(4.5)

f (t , x′, v) f
(
t ,

x − (1 − κ(w))x′

κ(w)
, w

)
φ(x , v) dx dx′ dw dv ,

〈Q+

W ( f , f ), φ〉 �
"
R∗
+

4

νW1DW (x) (v′, v)
γΨ(y)

(4.6)

f (t , x , v′) f
(
t , y ,

v − ((1 − γΨ(x)))v′

γΨ(y)

)
φ(x , v) dv dv′ dy dx ,

〈Q−K ( f , f ), φ〉 � νK

"
R∗
+

4

f (t , x , v) f (t , y , w)φ(x , v) dx dy dv dw ,

(4.7)

〈Q−W ( f , f ), φ〉 � νW

"
R∗
+

4

f (t , x , v) f (t , y , w)φ(x , v) dx dy dv dw ,

(4.8)

where 1E denotes the characteristic function of any subset E of R∗
+

2

.

The gain terms quantify the exchanges of knowledge/wealth between

individuals which produce, after the interaction with another agent, an

agent (x , v). The loss terms take into account the exchanges of know-

ledge/wealth where an agent (x , v) is involved before the collisional

process.

Note that the collision rules and operators about the knowledge

variable do not imply the possibility of a time delay in the learning
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process. The way how the agents gather knowledge is an intricate

process and modelling it remains di�cult.

Let T > 0. The previous considerations allow to eventually write

down the integro-di�erential equation of Boltzmann type, satis�ed, in

a weak sense, by the distribution function f , that is, for any suitable

test-function φ of (x , v) and almost every t ∈ [0, T],∫
R∗
+

2

∂t f (t , x , v)φ(x , v) dx dv � 〈QK ( f , f ), φ〉+ 〈QW ( f , f ), φ〉, (4.9)

with initial condition f (0, ·, ·) � f in

, where the nonnegative function

f in

∈ L1(R∗
+

2) is given.
The conservation of the total number of agents in the population is a

straightforward consequence of the weak formulations (4.3)–(4.4). We

have the following

Proposition 17. Let f ∈ L∞(0, T; L1(R∗
+

2)) solving (4.9). Then we have, for
a.e. t,

‖ f (t , ·, ·)‖L1(R∗
+

2) � ‖ f in

‖L1(R∗
+

2) .

Proof. We just have to choose φ ≡ 1 in (4.9) and use (4.3)–(4.4) for that

test-function. �

Some a priori estimates on the collision operators and the well-

posedness of the Boltzmann equation (4.9) is investigated in the follow-

ing Section.

4.1.3 Well-posedness of the problem

We �rst need a priori estimates on the collision operators.

Lemma 18. Assume that Ψ is lower-bounded by a constant δ > 0. Let
g ∈ L1(R∗

+

2). Then Q±K (g , g) and Q±W (g , g) also lie in L1(R∗
+

2), and the
following estimates hold:

‖Q+

K (g , g)‖L1(R∗
+

2) ≤
νK

α
‖g‖2

L1(R∗
+

2)
,

‖Q−K (g , g)‖L1(R∗
+

2) ≤ νK ‖g‖2L1(R∗
+

2)
,

‖Q+

W (g , g)‖L1(R∗
+

2) ≤
νW

γδ
‖g‖2

L1(R∗
+

2)
,

‖Q−W (g , g)‖L1(R∗
+

2) ≤ νW ‖g‖2L1(R∗
+

2)
.

Proof. This lemma is a straightforward consequence of (4.5)–(4.8) with

φ ≡ 1 and Prop. 17. �

Remark 19. The additional hypothesis onΨ in Lemma 18 is not that limiting.
It is enough, for instance, to replace it by an assumption stating that g is com-
pactly supported in x, see Remark 16. That implies thatΨ is straightforwardly
lower bounded by δ on that compact support, sinceΨ is continuous.

Theorem 20. Assume again thatΨ is lower-bounded by a constant δ > 0.
Let f in a nonnegative function in L1(R∗

+

2). Then there exists a nonnegative
f ∈ L∞(0, T; L1(R∗

+

2)) which weakly solves (4.9) for almost every t, with
initial datum f in.
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Proof. We follow the same kind of strategy as in [BS09], but without

any di�usion term. Set

ρ �

∫
R∗
+

2

f in(x , v) dx dv.

and de�ne ( f n)n∈N by induction with f 0 ≡ 0, solving, for any t ∈ [0, T],

∂t f n+1
+ σ f n+1

� Q+

K ( f n , f n) + Q+

W ( f n , f n), (4.10)

with the initial condition f n+1(0, ·, ·) � f in

, where we set σ � ρ(νK +

νW ) > 0. Existence of solutions to (4.10) is straightforward, since f n+1

is not involved in the right-hand side of (4.10) (which we know is in

L1(R∗
+

2)), and we also have f n+1
∈ C0([0, T]; L1(R∗

+

2)).
Let us �rst prove by induction that f n

is nonnegative for any n. It
is clear for n � 0. Assume now that f n

≥ 0. We want to prove that

f n+1
≥ 0. From (4.10), we immediately get∫

R∗
+

2

∂t f n+1φ dx dv + σ

∫
R∗
+

2

f n+1φ dx dv ≥ 0

for any nonnegative test-function φ. Multiplying by eσt
allows to prove

that, for any nonnegative test-function φ,∫
R∗
+

2

f n+1φ dx dv ≥ e−σt
∫
R∗
+

2

f inφ dx dv ≥ 0,

which leads to the nonnegativity of f n+1
.

In the same way, we can prove that ( f n) is non-decreasing. We of

course have f 1 ≥ f 0 ≡ 0. Suppose that f n
≥ f n−1

, for a given n ≥ 0.

The di�erence f n+1
− f n

satis�es the following equation, for any φ,∫
R∗
+

2

∂t ( f n+1
− f n)φ dx dv + σ

∫
R∗
+

2

( f n+1
− f n)φ dx dv

� 〈Q+

K ( f n , f n), φ〉 − 〈Q+

K ( f n−1 , f n−1), φ〉

+ 〈Q+

W ( f n , f n), φ〉 − 〈Q+

W ( f n−1 , f n−1), φ〉.

The right-hand side of the previous equality is nonnegative because

f n
≥ f n−1

. Consequently, we can write, for any nonnegative φ,

d

dt

(
eσt

∫
R∗
+

2

( f n+1
− f n)φ dx dv

)
≥ 0.

Noticing that the initial datum for f n+1
− f n

is zero, that allows to

conclude that ( f n) is non-decreasing. In particular, that ensures that∫
R∗
+

2

f n
dx dv ≤

∫
R∗
+

2

f n+1
dx dv. (4.11)

We can then prove, by induction, that∫
R∗
+

2

f n
dx dv ≤ ρ. (4.12)
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Wecanwrite, from (4.10), thanks to the invariance properties ofQK ( f n , f n)
and QW ( f n , f n),

d

dt

(∫
R∗
+

2

f n+1
dx dv

)
� (νK + νW )



(∫
R∗
+

2

f n
dx dv

)
2

− ρ

∫
R∗
+

2

f n+1
dx dv


.

Using (4.11) and the inductive hypothesis, we observe that the right-

hand side of the previous equality is non-positive, which allows to

recover (4.12) for f n+1
.

Because of themonotonicity and the uniformbound (4.12) of ( f n), the
monotone convergence theoremensure the existence of f ∈ L∞(0, T; L1(R∗

+

2))
such that ( f n) converges towards f almost everywhere, and in L1(R∗

+

2),
for almost every t.
We conclude that f solves (4.9) in the distributional sense in time

and in a weak sense in L1(R∗
+

2), exactly in the same way as in [BS09].

�

Note that, in the numerical experiments, which are described in the

next section, we endeavour to keep this conservation property true.

4.2 numerical experiments

In this section, we brie�y discuss the numerical method and the com-

putational tools. Then we present some numerical experiments on the

model on various situations, including the quasi-invariant knowledge

asymptotics.

4.2.1 Numerical values, computational strategy

The main issue here is to deal with both variables involved, wealth

and knowledge, i.e. to discretize a two-dimensional model. We use a

standard particle method [Bir95]. That means that f is approximated

as a sum of Dirac masses:

f (t , x , v) '
2N∑
p�1

δ(xp (t),vp (t)) (x , v),

where 2N is the total number of agents in the numerical simulation,

and xp (t), vp (t) are respectively the knowledge and wealth of an agent

p at time t. The set of agents p with 1 ≤ p ≤ 2N, is representative,

from a statistical viewpoint, of the population. In what follows, N is

chosen equal to 1000. As usual in a particle method, we have to compute

afterwards an average between M � 30 di�erent simulations. The �nal

computational time T is chosen accordingly to the speed of convergence

of each experiment.

To de�ne the microscopic collision rules (4.2)–(4.1), we need κ, γ and

Ψ: κ(v) � [1− (1− 2α)e−2v
]/2 with α � 0.05 or κ constant, γ � 0.21 and

Ψ(x) � (1 + x)−β with β � 1.

The initial data we investigate are chosen with compact supports in

both variables making a random selection from a uniform law.

For the knowledge variable, it is quite clear that it is possible to have

a compact support, since the post-collisional knowledge values are

bounded by the pre-collisional ones, as stated in 4.1.1. Therefore, we
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assume that x lies in [0,X] with X � 1. It is not a restrictive hypothesis

from the computational viewpoint (although it is from the modelling

one). Indeed, in principle, we just have to select the M populations

and take the maximal possible value of x as the upper bound and

renormalize the knowledge variables so that they all lie in [0, 1]. We

proceed in the same way for the wealth variable, noticing that, this time,

the wealth is only conserved at the whole population level. Hence, the

initial data for v are chosen such that any wealth value lies in [0,V],

with V � 10. But in fact, at least after a few time steps, it is enough to

choose the maximal value of v equal to 2. Consequently, most graphics

presented below are shown for (x , v) ∈ [0, 1] × [0, 2]. Moreover we do

not need to impose any boundary conditions thanks to the collisional

rules. We use a regular subdivision (x0 , ..., xH ) for the variable x and

(v0 , ..., vK) for the variable v. In the simulation we �x H � K � 100.

Thus for each agent we get a certain value xp and vp for p � 1, ..., 2N
such that xp ∈ (xi , xi+1) and vp ∈ (v j , v j+1).
Since we normalised the total number of agents to one, the contri-

bution of each individual is 1/(2NM) and we want to distribute the

agents on the grid [0, 1]× [0, 2]. For each time step tn
we check in which

cell (xi , xi+1) × (v j , v j+1) the value (xp , vp) is located and we add the

quantity 1/(2NM) in the corresponding cell:

f (tn , xi+1/2 , v j+1/2) �
2N∑
p�1

M∑
m�1

1

2NM
δ(xi ,xi+1)×(v j ,v j+1) (xp , vp).

In particular the time tn � n∆t, where ∆t is the time step size (and we

choose ∆t � min(1/νK , 1/νW )).
The collisions in x and v are independent, so the interactions for

the wealth and the knowledge can simultaneously happen, but involve

di�erent agents, which are of course randomly chosen. Moreover, since

we are interested in the case when there is no predominance of one

kind of collision, we �x νK � νW � 1.

So, at each time step using a slightly modi�ed Bird scheme [Bir95],

we solve the two collisional parts

∂t f � QK ( f , f ), and ∂t f � QW ( f , f )

according to the interaction rules (4.1)–(4.2).

After the collisions we obtain new values for the knowledge and the

wealth and for each time step we can always reconstruct f as before.

The whole computational strategy is embedded in a numerical code

written in C.

We can check that it exactly conserves the total number of agents,

recovering the property from Proposition 17.

4.2.2 Basic tests

Let us �rst start with a constant κ � 0.34 and an initial datum which

is uniformwith respect to to (x , v) on [0, 1]×[0, 1], as seen on Figure 19a.

The collision operators have a concentration e�ect which does not de-

pend on the initial datum. Consequently, if t is large enough, f (t , ·, ·)
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Figure 19: (a) Initial uniform distribution of 2000 agents on [0, 1] × [0, 1]; (b)
distribution at �nal time.

should behave like a Dirac mass. Since κ is constant, the concentration

happens at the average values of x and v at initial time, which both

equal 0.5, see Figure 19b. Note that if κ is not constant, the concentration

also happens, but not necessarily at the average value of x, since the col-
lision rule (4.1) for x does not conserve the total knowledge. It should be

possible to prove that f (t , ·, ·) converges to a Dirac mass exponentially

fast in time, when t goes to +∞. Nevertheless, this large-time result

is not realistic from the modelling viewpoint: a society where all the

individuals exactly share the same wealth and knowledge is utopian.
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Figure 20: Pro�le of f at �nal timewith only information exchanges: (a) agents

distributed along a vertical line (one draw); (b) averaged result.

In the same way, if we only consider one type of collisions, we can

observe the e�ect of the corresponding operator in the numerical simula-

tions. For instance, we take again the same initial datum as in Figure 19a.

The distribution at �nal time demonstrates a concentration e�ect, but

on a line (since the other variable has no in�uence).

The knowledge collision rules (4.1) induce concentrating the agents

at the average knowledge value, 0.5 on Figure 20, with no e�ect on the

wealth distribution. The situation with the wealth collision rule (4.2)

is di�erent, as shown on Figure 21. When time grows, all the agents

are on the same line, but they do not have the same wealth, because

the less informed agents become poorer, and the more informed richer,

which somehow seems more realistic.
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Figure 21: Pro�le of f at �nal time with only wealth exchanges: (a) agents

distributed along a non-horizontal line (one draw); (b) averaged result.

4.2.3 Thresholds and clusters

Let us now some more realistic situations. As we already explained,

interaction thresholds are often used in both knowledge and wealth ex-

changes, see [DNAW00, HK02, CCC07] for instance. Those thresholds

usually induce cluster formations.

Let us take a smooth initial datum, with a lot of individuals with low

values of knowledge and wealth, and a few agents with higher values

of knowledge and/or wealth, as seen on Figure 22.
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Figure 22: A more realistic initial datum for the distribution function.

For the threshold, we suppose that people usually interact with other

agents which have more or less the same level of wealth and/or know-

ledge, for socio-professional networking reasons.

Hence, for this �rst experiment, we assume that a wealth exchange

between agents (x , v) and (y ,w) can only occur when |v − w | ≤ 0.5,
while the information exchange only occurs if both agents have the same

level of knowledge and wealth. The �rst restriction has been introduced

because the interaction takes place between people who have more or

less the same cultural level, and the second one takes into account the

fact that someone who owns a lot often does not want to share what he

knows. The distribution obtained at �nal time with these thresholds is

shown in Figure 23.

In the second experiment, with the same initial datum as in Figure 22,

we provide a simpler threshold e�ect, which was already discussed
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Figure 23: Experiment 1 (with thresholds): distribution at �nal time for one

simulation (on the left), and averaged on 30 computations (on the right).

in Subsection 4.1.1. Two agents (x , v) and (y , w) can only exchange

information when their respective wealth values are close, for instance

|v − w | < ω, with ω � 0.1. The distribution function at �nal time is

shown in Figure 24.
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Figure 24: Experiment 2 (with thresholds): distribution at �nal time for one

simulation (on the left), and averaged on 30 computations (on the right).

4.2.4 Quasi-invariant knowledge

The knowledge exchange seems to be the key mechanism of the whole

process, in the sense that there is no way to get signi�cantly richer

without information. In this subsection, we consider the quasi-invariant

knowledge case, i.e. we assume that the function κ which appears in

the knowledge collision rule (4.1) is of order ε with 0 < ε � 1. That

means that κ is replaced in (4.1) by a function εκ̃, where κ̃ is of order 1

and has the same form as κ.

Let us �rst perform an experiment with a piecewise constant initial

datum f in

. We choose γ � 0.21, α � 0.05 in the expression of κ̃, and
ε � 0.1. Figure 25 shows the evolution of the the distribution function

f for one numerical simulation.

The average on 30 simulations at time t � 25 is presented in Figure 26.

We observe that f seems to be, when time grows, supported by a straight

line, as in Figure 21.
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Figure 25: Quasi-invariant knowledge: time evolution of f at times (a) t � 0,

(b) t � 5, (c) t � 10, (d) t � 15.

0

0.5

1

0

1

2
0

1

2

x 10
5

xv

Figure 26: Quasi-invariant knowledge: distribution function at time t � 25

averaged on 30 simulations.

It is not really surprising. Indeed, when ε goes to 0, the term QK ( f , f )
becomes negligible with respect to QW ( f , f ). Choosing a test-function

φ(x , v) � ax + bv, where a, b ∈ R, allows to state that

d

dt

∫
R∗
+

2

f (t , x , v)φ(x , v) dx dv � 0,

since both total knowledge and wealth are conserved in the wealth ex-

change (4.2). That implies that any distribution function with a straight

line support solves the Boltzmann equation (with QW ( f , f ) only) in a

distributional sense.
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In this last chapter we present the open questions and the further works

for each model we investigated.

5.1 cross-diffusion herding

So far, relatively little attention has been devoted to the study of the

parameter space interfaces of di�erent mathematical methods. We have

analysed as an example a cross-di�usion herding model to understand

where, and how, the global nonlinear analysis approach via entropy

variables is connected to bifurcation analysis techniques from dynam-

ical systems. We have shown that both approaches encounter similar

problems regarding the degeneracy of the di�usionmatrix andwewere

able to cover di�erent parameter regimes by combining the results of

the two methods.

The result presented in chapter 2 is only a �rst starting point. Here

we shall just mention a few ideas for future work.

The next step is to analyse the regime α → 0 and to check whether

the limitation in (2.8) on α can be improved, or not. In this regard,

one also has to consider in which sense the forward problem should

be interpreted for moderate and small values of α and for δ < δd.
Recent work [Lio15] suggests that one should not only use the notion of

Petrovskii ellipticity for the stationary problem [SW09] but also consider

it in the parabolic context; see the classical survey [AV64].

The next step is to expand the approach to other examples. In partic-

ular, many reaction-di�usion systems as well as other classes of PDEs

have natural entropies, which can be used to study global existence

and convergence properties. In the nonlinear case, one frequently can

also employ approaches from dynamical systems to understand the

dynamics of the PDE. Using a similar approach as we presented here

could be illuminating for other examples. For example, it is natural to

conjecture that there are examples in applications, which exhibit the

following characteristics:

(Z1) There exists one �xed parameter region in which the entropy

method yields global decay. Upon variation of a single parameter,

the validity boundary of the entropy method coincides precisely

with an isolated local supercritical bifurcation point.

(Z2) There exists one �xed parameter region in which the entropy

method yields global decay. Upon variation of a single parameter,

the validity boundary of the entropy method does not coincide

with a local bifurcation point. Instead, the obstruction is a global

bifurcation branch in parameter space with a fold point precisely

at the validity boundary.

In this work, we apparently found a more complicated case as shown

in Figure 1. However, it seems plausible that the cases (Z1)-(Z2) should

occur even in classical problems without cross-di�usion, i.e. reaction-

di�usion equations with a diagonal positive-de�nite di�usion matrix.
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Determining whether this is true for several classical examples from

applications is an interesting open problem.

Regarding the entropy method [CJM
+
01, DF06], it would be interest-

ing to investigate in more detail parametric scenarios for its validity

regime. For example, the question arises whether it is possible to �nd

criteria for the validity range that are computable for entire classes of

PDEs. The entropy approach relies on upper bounds. Although the

bounds we present here turn out to be sharp in the sense of global

decay dynamics in a suitable singular limit, this may not always be

easy to achieve as demonstrated by the α → 0 case discussed above.

It would be relevant to estimate a priori, which regime in parameter

space one fails to cover if certain non-optimal upper bounds are used.

As above, carrying this out for several examples could already be very

illuminating.

Regarding the analytical and numerical bifurcation analysis, there

are multiple strategies to deal with the problem of mass conservation,

or more generally with higher-dimensional solution manifolds. For

example, one may try to compute the entire solution family of steady

states parametrized by the mass numerically [Hen02, DS13], which

yields a numerical continuation problem for higher-dimensional man-

ifolds and not only curves. Furthermore, we have focused on the nu-

merical problem in the one-dimensional setup and computing the two-

and three-space dimension cases could be interesting [Kue14, UWR14].

Regarding analytical generalizations, a possible direction is to view δ∗

as a singular limit and phrase the problem as a perturbation problem

[Ni98, Fif73, AK15].

5.2 kinetic model for herding and rationality

In chart analysis, the bandwidth is employed to identify a band squeeze.

When the asset value leaves the interval [R− , R+
], this situation may

indicate a change of direction of the prices. Clearly, this interpretation

cannot be directly applied to the situation presented in Chapter 3. On

the other hand, the Bollinger bands are an additional tool to identify

large changes in themean asset value, for instancewhen the background

value W (t) is no longer deterministic but driven by some stochastic

process. We leave this generalization for future work.

5.3 wealth distribution model

In the last part of Chapter 4, we proved that any distribution func-

tion with a straight line support solves the Boltzmann equation in a

distributional sense.

The straight lines depend on the initial datum, in a way we still have

to understand, but the numerical simulations from Figure 27, where f in

is chosen as constant on the indicated domain and zero elsewhere, show

an interesting behaviour: all the lines are concurring at the same point

(−1, 0) in Figure 27b. Unfortunately, for the time being, we still have

to understand how the equation of the straight line can be computed

from the data of the problem.
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Figure 27:Distribution functions obtainedwith di�erent initial data with large

time.

Moreover it would be interesting to study the quasi invariant limit

obtaining a Fokker-Planck equation and compare the numerical results

that we obtained for the Boltzmann equation with the numerics for the

Fokker-Planck.
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