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Kurzfassung

Viele industrielle Anwendungen existieren für das Packen von kleineren Objekten in
größere Behälter, so-genannte Bins, sodass die Anzahl der verwendeten Bins minimal ist.
Beispiele sind die Holz, Metall oder Glass Industrien, in der die Kundenbestellungen aus
größeren Stücken Lagermaterial zugeschnitten werden müssen. Wenn sowohl Bins, als auch
die kleineren Objekte, so-genannte Elements, rechteckig sind, ist vom 2-dimensionalem
Bin Packing Problem (2BP) bzw. dem 2-dimensionalem Cutting Stock Problem (2CS)
die Rede. In dieser Diplomarbeit werden weiters nur so-genannte Guillotinenschnitte
erlaubt, was orthogonale Schnitte von einer Seite des Bins zur anderen sind. Diese Schnitte
haben zur Folge, dass man das 2CS weiters über ihre Anzahl an Stages definieren kann,
die mit K bezeichnet wird. Ein Stage ist hier eine Reihe paralleler Schnitte. Das Ziel
dieser Diplomarbeit ist es, eine neue Variante von Column Generation für das 2-staged
und 3-staged 2CS zu präsentieren, die auf der Generation von so-genannten Strips
basiert.
Zuerst wird das Problem formal definiert, und das Prinzip der Column Generation genauer
erläutert. Darauf folgt eine Untersuchung der Litertur über das 2CS. Literatur zu dem
Knapsack Problem wird auch vorgestellt, da es sich dabei um ein relevantes Subproblem
der Column Generation handelt. Dies beinhaltet Varianten für das Unbounded als
auch für das Bounded Knapsack Problem (UKP und BKP). Danach wird das Stage
Shifted Column Generation (SSCG) präsentiert. Dazu gehören Definitionen für das
Master Problem als auch für die relevanten Pricing Probleme für den Fall K = 2
und K = 3. Das Master Problem wird als ILP formuliert, genauer einem Set Covering
Problem, während die Pricing Probleme Varianten eines Knapsack Problems darstellen.
Für das UKP wird der effiziente algorithmus EDUK implementiert, während für das
BKP ein neuer Algorithmus vorgestellt wird, der den gesamten Knapsack immer Element
für Element bearbeitet, und BKP-Generator heißt. Für K = 3 wird BKP-Generator
adaptiert, und DP-Generator genannt. Zwei Heuristiken, die auf der Randomisierung von
DP-Generator beruhen, werden ebenfalls vorgestellt. Es wird außerdem eine Integrality
Heuristic vorgestellt, da die Ergebnisse des Master Problems meist nicht integral sind.
Die verschiedenen Pricing Probleme werden experimentell miteinander, und mit einer
Insertion Heuristic als auch einer Dynamic Programming Implementation verglichen.
Die Resultate zeigen gute Lösungen für die LP Relaxierung, und auch die integralen
Lösungen können teils besser als die vorherigen Implementationen sein.
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Abstract

Several industrial applications exist for packing non overlapping objects, called elements,
into larger objects, called bins, such that the total number of used bins is minimal.
Examples are wood, metal and glass industries, where the customers’ orders must be cut
from larger pieces of stock material. Particularly when high volumes of stock material are
used, even small improvements can directly increase profitability. Assuming both elements
and bins are rectangular, the problem is called the 2-dimensional bin packing problem
(2BP) or cutting stock problem (2CS), both of which are NP-hard. Only guillotine cuts
are allowed, which are orthogonal cuts from one side to another. This leads to a further
specification of the 2CS, which is the number of stages it allows, denoted by K. A stage
is a series of parallel cuts. The aim of this thesis is to present an efficient implementation
of a new strip-based column generation approach for the 2-staged and 3-staged 2CS with
guillotine cuts.
First, the problem and column generation are introduced and formally defined. This is
followed by a study of relevant literature concerning the 2CS and 2BP. Literature for the
knapsack problem is also studied, as this is a relevant subproblem of column generation.
This includes variants of dynamic programming both for the unbounded and bounded
knapsack problem (UKP and BKP). After that, the Stage Shifted Column Generation
(SSCG) is presented. This entails both definitions for the master problem and the
relevant pricing problems for K = 2 and K = 3. The master problem is formulated as
a set covering problem, while the pricing problems are variants of knapsack problems.
EDUK is an efficient implementation for the UKP, while a new algorithm is developed
for the BKP, called BKP-Generator. It essentially processes the entire knapsack element
by element. For K = 3, BKP-Generator is adapted, and called DP-Generator. Two
heuristic algorithms are also presented, which rely on randomizing DP-Generator. Finally,
an integrality heuristic is introduced, as the master problem offers possibly fractional
results. The different pricing problems are experimentally tested and compared to an
insertion heuristic and a dynamic programming implementation. The results show good
LP relaxed solutions, and integral results are competitive with previous implementations.
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CHAPTER 1
Introduction

The two-dimensional bin packing problem (2BP) is an NP-hard problem, and occurs
in many real world industries. It consists of packing objects of different sizes into a
finite number of bins without overlap, minimizing the number of bins used. There are
many applications, from efficiently packing transportation vehicles or storage containers
to designing integrated circuits or solving scheduling tasks. A common problem in the
wood, metal, glass or paper industries is to cut standard pieces of stock material (such
as metal or glass sheets) into smaller customer ordered elements, while minimizing waste.
This specific kind of 2BP is referred to as the two-dimensional cutting stock problem
(2CS). Industrial applications of cutting stock problems are particularly relevant when
the stock material is produced in large rolls or sheets in high volumes and are then further
cut into smaller units. Even small improvements in how the elements are cut lead to
reduced waste, which can directly increase profitability by reducing wasted cutting time,
energy, or wasted stock material. Due to the nature of NP-hard problems, some solution
approaches are better at solving certain instances than others. This thesis presents an
algorithm for solving instances with few different elements types, but many copies of
the same element type. We first introduce the problem formally. This is followed by
an explanation of column generation. The main part of the thesis focuses on the new
strip-generating algorithm, followed by a chapter on the results. Finally, conclusions are
drawn and future work is discussed.

1.1 Problem Definition

The 2CS is defined as follows. Given n rectangular element types E = {1, . . . , n}, each
i ∈ E having height hi ∈ N+, width wi ∈ N+ and demand bi ∈ N+, the objective is
to cut them out from a minimal number of identical sheets, each with height H > 0
and width W > 0. A cutting pattern is a pattern for how elements are to be cut from
the sheet, see Figure 1.4a. A special requirement on the cutting patterns is that only
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1. Introduction

orthogonal guillotine cuts are allowed, which means pieces are only to be cut horizontally
or vertically from one border to the one opposite (see Figure 1.1). Since only guillotine
cuts are allowed, a 2CS problem can be further specified by its number of stages. Each
stage consists of a series of parallel cuts. In a K-2CS then, K is the number of times
the cuts alternate between being horizontal and vertical, where w.l.o.g. the first stage is
always horizontal. A strip is the result of the 1st stage of cuts, and a stack is the result
of the 2nd stage of cuts. Therefore, a feasible solution to the 3-staged 2CS consists of
patterns, each pattern consists of a set of strips, each strip consists of a set of stacks,
and each stack consists of a set of elements of equal width. An example of a 4-staged
pattern, including strips and stacks, can be seen in Figure 1.2. Typically, both sheets
and elements can be rotated. The objective function Z is a function of the used sheets,
minus the largest strip of waste. If all cutting patterns are in normal form (see section
1.1.2), and sorted by their largest unused strip, then the objective function is

Z = N − H − cl
H

(1.1)

where cl is the height of the last strip, and N is the number of used sheets.

(a) A cutting pattern with guillotine cuts. (b) A cutting pattern not using guillotine cuts.

Figure 1.1: Guillotine cuts

Several state-of-the-art methods for solving the 2CS are of heuristic nature employing
a framework based on a set covering integer linear programming formulation. Such a
model uses the set of all possible sheet patterns.

1.1.1 Restrictions

Given the basic problem definition of the K-2CS, we assume the following restrictions in
the context of this thesis:
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1.1. Problem Definition

strip1

strip2

strip3

strip4

Figure 1.2: A sheet cutting pattern. The white element is done after the 1st stage of
cuts, the blue elements after the 2nd stage, the green elements form a stack and are cut
in the 3rd stage. The red elements require a 4th stage.

• Patterns must only contain guillotine cuts.

• The objective function is simply the number of sheets used.

• Only K = 2 and K = 3 are considered.

• Rotation of elements and sheets is ignored.

1.1.2 Solution

A solution to the 2CS is represented by a cutting tree (figure 1.4). A cutting tree
consists of a root node, which represents all patterns, and contains all used sheet cutting
patterns as subpatterns. Each sheet cutting pattern is then represented by a number
of subpatterns, which are strips, called horizontal compounds (K=2). These horizontal
compounds are each further represented by a number of subpatterns, which are stacks,
called vertical compounds (K=3). Every compound always stores the contained waste.
A feasible sheet cutting pattern is a pattern which fits into the sheet, and can be cut in
the given stages using guillotine cuts. This is assured bottom up, as every compound
must be feasible (must fit into a higher compound). A sheet cutting pattern is always
represented in normal form. This is achieved by moving each element into its uppermost
and leftmost position. The following must hold true:

• Waste material only appears at the bottom and right side of each stack, strip and
pattern.

3



1. Introduction

• The order of stacks in a strip is descending by height from left to right.

An example of normal form can be seen in figure 1.3.

Figure 1.3: A cutting pattern in normal form. The grey area is waste.

root

... sheet
waste: w1

strip

stack

e2 e4 e3

e1

strip
waste: w2

e5 e6

...

(a) Cutting tree.

e2

e4

e3

e5 e6

w1

w2

e1

(b) Corresponding cutting pattern.

Figure 1.4: Cutting tree
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1.2. Column Generation

1.2 Column Generation
Column generation is a technique used to efficiently solve large linear programming
problems, originating from the Dantzig-Wolfe decomposition [DW60]. The general idea
is that many large linear programs are too large to consider all variables. Variables that
are non-basic and 0 in the optimal solution theoretically do not need to be considered
when solving the problem. Column generation leverages this idea in cases where there
are many of these variables, by solving the problem for a small subset of variables,
and iteratively increasing the number of (promising) variables. Gilmore and Gomory
[GG61] first published a paper in which they used column generation for the cutting
stock problem. One big benefit of column generation is that when formulating a problem,
the master problem (section 1.2.2) and pricing problem (section 1.2.3) structure allows
for formulations that are very intuitive and succinct. This is especially true for the Stock
Cutting Problem, in which standard Integer Linear Programming models become very
large with increasing K.

1.2.1 Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition is a standard way to decompose an integer programming
model into a master problem and one or several pricing (sub-) problems. Assume we are
given the following integer programming model:

z = min
n∑
i=1

(ci)Txi (1.2)

n∑
i=1

(Aijxi) = bj for j = 1 . . .m (1.3)

xi ∈ Xi for i = 1 . . . n (1.4)

where ci is the cost vector and Aij is the constraint matrix. Since we are dealing with
integer subproblems, the Xi can be equivalently seen as a finite integer set:

Xi = {xpi|p = 1, . . . , P}.

We can now alternatively write Xi as a set of convex combinations

Xi = {xi|xi =
P∑
p=1

λpxpi,
P∑
p=1

λpi = 1, λpi ∈ {0, 1} for all λpi}. (1.5)

We can now plug the above equation (1.5) into the integer program (1.2), which means
introducing xi ⇒

∑P
p=1 λpixpi and the constraint

∑P
p=1 λpi = 1, where P is the cardinality

of the corresponding integer set.
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1. Introduction

1.2.2 Master Problem

As a result of the Dantzig-Wolfe decomposition from above, and following LP relaxation,
we get the Linear Programming Master Problem (LMP):

zLPM = min
n∑
i=1

P∑
p=1

((ci)Txpi)λpi (1.6)

n∑
i=1

P∑
p=1

(Aijxpi)λpi = bj for j = 1 . . .m (1.7)

P∑
p=1

λpi = 1 for i = 1 . . . n (1.8)

λpi ≥ 0 for i = 1 . . . n and p = 1 . . . P (1.9)

Constraints (1.7) are called the linking constraints, while the constraints (1.8) are referred
to as convexity constraints. The names originate from the fact that the linking constraints
link the variables together, while the convexity constraints form a convex set (where P is
the cardinality of the associated integer set when λpi is integral, i.e. λpi ∈ {0, 1}).

Suppose we have a subset of the columns, such that for each i = 1, . . . , n we have at least
one column from the LPM such that the solution is feasible for the LPM. Then we can
define a feasible restricted linear master problem Restricted Linear Programming Master
Problem (RLPM):

zRLPM = min c̄T λ̄ (1.10)
Āλ̄ = b̄ (1.11)
λ̄ ≥ 0 (1.12)

where the matrix Ā is a submatrix of the constraint matrix, λ̄ denotes the restricted set
of variables we chose and c̄ is the corresponding restricted cost vector of those variables.
The associated optimal solution is λ̄∗, which is found using for example the Simplex
method. Let (π, µ) be the corresponding dual solution (which is an optimal solution
to the dual problem due to the strong duality theorem). λ̄∗ is feasible also for LPM
because the solution can easily be emulated: copy over the λp from the optimal solution
of the RLPM, and set all other λp to zero. Let πk, k = 1, . . . ,m be the dual variables
for the linking constraints, and µi, i = 1, . . . , n be the dual variables for the convexity
constraints, then we have

zRLPM =
m∑
k=1

bkπk +
n∑
i=1

µi ≥ zLPM (1.13)

6



1.2. Column Generation

1.2.3 Pricing Problem

The dual problem gives a lower bound to the master problem (primal problem). Formu-
lating the dual problem of the LPM in the standard way gives the Linear Programming
Pricing Problem (LPP):

max
m∑
k=1

bkπk +
n∑
i=1

µi (1.14)

πT (Aix) + µi ≤ (ci)Tx ∀x ∈ Xi, for i = 1, . . . , n (1.15)

And therefore the corresponding reduced cost RCi for each x ∈ Xi

RCi = ((ci)T − πTAi)x− µi (1.16)

Note that the columns are now rows. The reduced cost gives an estimate of the improve-
ment on the objective function an increase in the associated variable gives. In other
words, an optimistic suggestion to the master problem [PSWB11]. That means we want
to check for each x ∈ Xi for i = 1, . . . , n if we have a negative reduced cost, i.e. check if

((ci)T − πTAi)x− µi < 0 (1.17)

If we find an x for which (1.17) holds, that equivalently means that (1.15) does not hold,
making the dual problem infeasable, and we need to add this x to the RLPM and search
for a new optimal solution λ̄∗ for the new RLPM. If all constraints for the LPP are
satisfied, the optimal solution to the LPP is feasible, making it, by the strong duality
theorem, also the optimal solution to the LPM. Ultimately, because of the statement
from [PSWB11], saying that a smaller reduced cost is probably more beneficial to the
objective function, we want to find the smallest RCi. Instead of going through each
reduced cost one by one, we can instead solve n optimization problems, one for each
i = 1, . . . , n:

RCi = min ((ci)T − πTAi)x− µi
where x ∈ Xi.
Because we are working with bounded sets, for each of the n optimization tasks, there
are 2 possible outcomes:

RCi > 0 and RCi ≤ 0. (1.18)

• Case 1: RCi < 0 for some i ∈ {1, . . . , n}. Then x∗i is the optimal solution of the
optimisation for this value of i. The corresponding column has a maximal negative
reduced cost. This means we found a variable for which the LPP is infeasible (as
the constraint is not satisfied), so we must consider it in the RLPM. We introduce
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1. Introduction

the new column

 (ci)Txi
Aixi
ei

. This leads to a new Restricted Linear Programming

Master Problem, which is reoptimized by simplex.

• Case 2: RCi ≥ 0 for all i = 1, . . . , n. This means the dual solution (π, µ) we
get from RLPM(1.10) is also feasible for LPP(1.14). However, LPP has not been
reduced, meaning by the strong duality theorem that (π, µ) is the optimal solution
for LPM as well. So we can adapt (1.13) to

z̄LPM ≥
m∑
k=1

bkπk +
n∑
i=1

µi = c̄T λ̄∗ = z̄RLPM ≥ z̄LPM . (1.19)

Thus the current λ̄∗ is optimal for LPM(1.6) and we can terminate.

Since λ̄∗ is only optimal for LPM , we are not done yet, as this is the LP-relaxed problem.
If LPM is not integral, an option is to start branching (→ branch and price, see Figure
1.5). Generally, it is best to branch on the original variables. Branching on say λp tends
to have the problem that pricing will suggest the variable again. A common form of
branching in the stock cutting problem is dividing the solution space into two parts: One
where element i1 and i2 are on the same bin, and one where they aren’t. Heuristics may
also be used to reach an integral solution, such as rounding the optimal LP solution, and
then repairing the solution to feasibility.

1.2.4 Cutting Stock Problem

We can directly formulate the 2CS as a set covering problem, which also takes the form
of a master problem in column generation:

min
∑
p∈P

xp (1.20)

∑
p∈P

xpA
p
i ≥ bi ∀i = 1, . . . , n (1.21)

xp ∈ {0, 1} ∀p ∈ P (1.22)

Where P is the set of all feasible sheet cutting patterns, xp decides if we use pattern
p ∈ P and Api equals the number of times pattern p contains element i. There is no
associated cost to the decision variable xp, as we want to use the minimal number of
patterns, where one pattern uses one bin. The complexity of the problem lies in the size
of 2P , i.e. it is exponential in the size of P . Then we take the following steps:

8



1.2. Column Generation

Figure 1.5: Outline of branch & price, adapted from [MAS].

• Create an initial feasible solution with a subset of patterns P ′ ⊂ P , reducing the
number of columns. The initial patterns are most commonly found using some
simple heuristic, such as variants of First Fit.

• Search for a pattern yielding negative reduced cost

This formulation of the master problem leaves us with the responsibility to find good
sheet cutting patterns as the pricing problem. Finding entire sheet cutting patterns can
be done in any number of ways, using heuristics (first fit is popular), metaheuristics
(evolutionary algorithms see[PR04]), using dynamic programming or comprehensive ILP
models. The dual problem is

max
n∑
i=1

biπi (1.23)

n∑
i=1

Api πi ≤ 1 ∀p ∈ P (1.24)

π ≥ 0 (1.25)

where πi are the dual variables of the LP-relaxed master problem. The reduced cost of a
pattern p is given by

RCπp = 1−
n∑
i=1

Api πi (1.26)
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1. Introduction

The goal now is to find a pattern for which the reduced cost is negative, and then add
said pattern to P ′, and reoptimize the master problem. Note that finding a negative
reduced cost is the same as checking the dual problem for feasibility. This process is
iterated until no more patterns with negative reduced cost can be found. At this stage,
the LP-relaxed problem has been solved optimally, given all pattern have been checked.

1.3 Motivation and aim of the work
Even small improvements in solution quality can have a large impact on production costs
in industry. So although there are many algorithms for solving not only the 2CS for
2 and 3 stages, but for arbitrarily many stages, there is a demand for algorithms that
solve specific kinds of instances particularly well. The aim of this thesis is to present an
efficient implementation of a new strip-based column generation approach, which hopes
to find improved solutions for instances of many elements, but few different element
types.
The strip generating idea basically entails two things

• The restricted master problem becomes more complex. Essentially, one stage gets
removed from the pricing problem, and pushed onto the master problem, i.e. the
first cutting stage is considered in the master problem.

• Since the master problem becomes more complex, the pricing problem becomes
easier to solve.

As the pricing problems become easier to solve, algorithms based on exact techniques
such as dynamic programming become more realistic for fast implementations, and as
such are more likely to yield solutions with a negative reduced cost. The now more
complex master problem may still be solved efficiently given heuristically good columns,
leading to better overall solutions to the LP relaxed master problem. As a disadvantage,
it is expected that this new column generation variant will require more pricing iterations
to finally solve the LP relaxation of the master problem. However, in a heuristic context,
when the restricted set of columns is compiled from existing promising solutions, this
aspect might not be that important, as the solution might be reached quickly.
The thesis first states the problem formally and introduces the reader to basic ideas
and notions common in solving the 2CS. A literature review follows, describing different
other algorithms, some of which will be used as comparisons to the strip-based column
generation. The subsequent chapters focus on the methodology and implementation of
column generation in general and specifically the algorithms for solving the 1-staged and
2-staged pricing problems. The thesis concludes with the experiments, a short summary
and a chapter on future work.

10



CHAPTER 2
Related Work

2CS belongs to the general class of cutting and packing problems (C&P). Because of
their similarity, 2CS and 2BP can almost be used interchangeably, leading literature
to refer to pieces of stock as either bins or sheets, and solutions as either packings or
patterns. As previously mentioned, the 2CS is an NP-hard problem, and is reducible
to the knapsack problem. A topology of C&P was done by Dyckhoff [Dyc90] and later
adapted by Wäscher et al.[WHS07]. A distinction is made between the Single Stock-Size
Cutting Stock Problem (SSSCSP), having a single size of stock sheets, and the Multiple
Stock-Size Cutting Stock Problem (MSSCSP), having multiple different sizes of stock
sheets. We refer to the MSSCSP as the Cutting Stock Problem with V ariable Bin Size
(2CSV) and to the SSSCSP as the 2CS.
The 2-staged 2CS was first considered by Gilmore and Gomory in a series of papers
[GG61] [GG63] [GG65], who formulated it as a set covering problem, and solved it using
delayed column generation (column generation). Many state-of-the-art solutions to the
2CS, both heuristic and exact, use a set covering formulation based on their work, usually
differing in the respective solution approaches to the pricing problem. Oliveira and
Ferreira [OF94] presented the fast delayed column generation, which solves the 3-staged
2CS using a greedy heuristic on the pricing problem. Monaci and Toth [MT06] also create
patterns using a greedy heuristic, and solve the set covering formulation heuristically.
Alvarez-Valdes et al. [AVPT02] proposed a method involving GRASP or tabu search to
solve the pricing problem. They also improve the results using a path-relinking algorithm,
as first introduced by Glover [Glo97]. A hierarchy of different approaches to the pricing
problem is used by Puchinger and Raidl [PR07] [PR04] and Puchinger et al. [PRK04].
The hierarchy consists of a fast greedy construction heuristic, an evolutionary algorithm,
and finally an ILP model to generate columns. The idea is to minimize the use of the
computationally more expensive methods by previously using the faster, cheaper ones.
Since the pricing problem of the 2CS consists of a 2-dimensional knapsack problem, a
promising method for pricing is dynamic programming. Methods including dynamic
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2. Related Work

programming are demonstrated by Cintra et al. [CMWX08] and Morabito et al.[MP10].
Cintra et al. [CMWX08] also demonstrate that both 3-staged and 4-staged sheet patterns
offer similarly good results, sometimes even being optimal. This suggests the 3-staged
2CS offers sufficiently good solutions compared to unbounded many stages. This is
compounded by the real world restrictions that glass cutting machines impose, often only
being capable of 3 stages.

In [Cui13], Cui presents a dynamic programming algorithm for finding sheet patterns for
the 3-staged 2CS. Such a problem is formally called Single Large Object P lacement
Problem (SLOPP) [WHS07], or also Constrained Two Dimensional Cutting (CTDC).
Gilmore and Gomory [GG66] introduced two-dimensional knapsack functions and a
dynamic programming approach for the SLOPP. Herz [Her72] used an exact recursive
procedure using discretization points. Scheithauer [Sch97] further reduces the possibil-
ities with his definition of so-called reduced raster points. Beasley [Bea85] built upon
the algorithm by Gilmore and Gomory using the discretization points from Herz. Other
approaches to the SLOPP have been proposed by Hifi et al. [HM05] and Cui et al.
[CHH04] [CWL05].

A recent survey of 2-dimensional bin packing was done by Lodi et al. [LMM02], and an
approach to the 2-staged 2BP was described by Lodi and Martello [LMV04]. A good
overview of current construction heuristics, such as first-fit decreasing height and
finite first-fit, can be found in the paper by Lodi and Martello [LMV02]. A closer look
is taken in the following sections. In [Fle13], Fleszar presents three insertion heuristics.
The heuristics pack one element at a time, either into an existing sheet, or if that is not
possible, into a new sheet, akin to the fit-decreasing and best-fit-decreasing heuristics
from [MT90b], making it a one-phase algorithm.

Dusberger and Raidl [DR14] [DR15b] present a Variable Neighbourhood Search algorithm
using Very Large Neighborhood structures based on the "ruin-and-recreate" principle.
Literature on the 2CSV (multiple different sheet sizes) is rather scarce. Dusberger and
Raidl [DR15a] introduce an approach for the K-2CSV that scales well to instances that
are large in terms of the total demand over all elements. In this approach, the patterns
are computed using a construction heuristic that exploits congruencies resulting from
the large number of identical elements. A meaningful selection of sheet types to be
used is realized by a beam-search approach. Hong et al. [HZL+14] use fast construction
heuristics for sheet patterns, and uses backtracking for sheet selection.

Cui and Liu [CL08] suggest T -shape homogenous block patterns as a different type of
pattern, as opposed to staged patterns. Here, a sheet consists of homogenous blocks,
which consist of homogenous strips, which are strips containing only one element type.
They propose a dynamic programming recursion to generate blocks, and solve knapsack
problems to place the blocks on the sheets. T -shape patterns are a super set of 2-stage
patterns, but not of 3-stage patterns.

A common problem in certain industries is stock with defects. Resources like wood or
leather naturally come with defects such as knotholes for wood or areas of inferior quality
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for leather, areas which a solution should avoid. Afsharian et al. [ANW14] propose
a dynamic programming algorithm for solving the SLOPP with defects, in which the
defects are approximated by rectangles.

2.0.1 One Dimensional Bin Packing

2BP is an NP-hard problem which can be approximated using greedy heuristics. Approx-
imation algorithms are useful to understand the complexity of a problem, therefore some
greedy approximation algorithms are presented for the 2BP. Greedy means every decision
is final, i.e. no backtracking is allowed. For the validity of the approximation qualities
discussed here, all heights of the elements are normalized, such that maxj{hj} = 1.
Approximation algorithms for the 1-dimensional bin packing problem (1BP) are also used
for the 2BP, so a quick overview is given here. Coffman, Garey and Johnson [CJGJ96]
give an overview of approximation algorithms for the 1BP. OPT (I) refers to the optimal
solution of instance I.

• Next F it (NF) tries to put the current element into the current bin. If this is not
possible, the next bin is started, becoming the new current bin, and the element is
placed into it. For all instances I we have NF (I) ≤ 2OPT (I)− 1.

• First F it attempts to put the current element into the first possible bin. If the
element does not fit into any of the started bins, a new bin is started, and the element
placed into it. For all instances I we have FF (I) ≤

⌈
17
10OPT (I)

⌉
[GGJY76].

• Best F it tries to add the current element to the current best bin, which is the bin
which is filled the most, where the current element fits. If it fits in none of the bins,
a new bin is started, and the element is added to it. The approximation quality is
the same as for FF .

• First F it Decreasing (FFD) first sorts the elements by size, and then applies FF .
We have FFD(I) ≤ 11

9 OPT (I) + 4.

• Best F it Decreasing (BFD) also sort the elements by size, and then applies BF .
BFD has the same approximation quality as FFD [JDU+74].

2.0.2 Two Dimensional Strip Packing

Two dimensional strip packing (2SP) refers to the problem of filling a bin with finite
width, but infinite height, and minimizing the used height. Here, the bin is called strip,
although this should not be confused with a strip from the 2CS. They are also level
algorithms, which means that elements are placed into the bin from left to right, each
row called a level. These levels are equivalent to the strips known from the 2CS with
K = 2, with trimming allowed. This means each strip or level can contain elements of
varying heights, with the strip or level height defined by the highest element. These
algorithms are also used in the approximation algorithms for the 2BP, so an overview is
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given. This section and the next orientate themselves by the two papers by Lodi et al.
[LMV02] and Lodi et al. [LMV04].

• Next F it Decreasing Height (NFDH) tries to put the current element into the
current level. If this does not work, a new level is started, and the element added
to it. For all instances I we have NFDH(I) ≤ 2OPT (I) + 1 [CGJT80].

• First F it Decreasing Height (FFDH) attempts to add the current element into
the first level that it fits into. If it fits into no level, a new level is initialized
with the current element. For all instances I we have FFDH(I) ≤ 17

10OPT (I) + 1
[CGJT80].

• Best F it Decreasing Height (BFDH) tries to put the current element into the
best level it fits. The best level is the one with the least remaining horizontal space.
A new level is initialized if the element does not fit into any other levels.

2.0.3 Approximation Algorithms for the 2BP

The following approximation algorithms for the 2BP are all greedy heuristics. Moreover,
the heights are normalized, as previously stated. They built upon the solutions from the
2SP and the 1BP. Two distinct families can be observed. The first are the one-phase
algorithms, in which the elements are packed directly into the bins. In the two-phase
algorithms, first levels are created using a 2SP algorithm, which are then placed into the
bins using some 1BP algorithm.

• Hybrid F irst F it is present by Chung et al. in [CGJ82]. It is a two phase algorithm.
In the first phase the 2SP is solved using FFDH. The different levels from the
resulting strip packing are then sorted by height, and are then used to solve the
2BP using FFD. The second phase is a 1BP. The approximation quality is given as
HFF (I) ≤ 17

8 OPT (I) + 5, however this bound is not tight.

• Finite Best Strip (FBS) is presented by Berkey and Wang [BW87]. It uses BFDH
in the first phase, and BFD in the second phase.

• Frenk and Galambos [FG87] analyzed another variation, Hybrid Next F it (HNF).
It uses NFDH in the first phase, and NFD (Next F it Decreasing for the 1BP) in
the second phase. They show that the bound is HNF (I) ≤ 3.382 . . . OPT (I) + 9,
where 3.382 . . . is an approximation of a tight but irrational bound.

• Berkey and Wang [BW87] further propose the Finite Next F it (FNF), which is
essentially the same algorithm as HNF. Although HNF is a two-phase algorithm
and FNF is a one-phase algorithm, using NFD for the second phase equates to
to immediately filling the current or next, new bin, making it technically also
one-phase. Both papers were published in the same year.
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2.0.4 Approximation Algorithm for the UKP

Lawler presents a fully polynomial-time approximation scheme (FPTAS) for the UKP in
[Law77]. It is an adaption from the KP. A FPTAS is an approximation algorithm with a
full guarantee on the optimal solution within a parameter, meaning the solution can be
arbitrarily close to the optimal solution, at the cost of runtime. Given the parameter ε,
for which (0 < ε ≤ 1) holds, the runtime is bounded by a polynomial of the input size
and in a parameter 1/ε, in this case O(n+ 1/ε3). Let OPT be the optimal solution to an
arbitrary maximization problem, and APP the solution given by the FPTAS, then the
guarantee is given by equation 2.1

OPT −APP = εOPT. (2.1)

This means the solution given by the FPTAS is a factor of (1 − ε) from the optimal
solution. The fundamental idea of this approach is to only use the most efficient items,
the number of which is defined by the parameter ε.

2.0.5 Branch & Bound Algorithm for the UKP

Branch & Bound algorithms consist of enumerating all possible solutions while updating
upper and lower bounds. The lower bound is given by the current global best solution,
while the upper bound is the best future solution possible in the current branch. If the
upper bound is smaller or equal to the current lower bound, the current branch can be
abandoned (pruned). Branch & Bound has the optimal solution when all branches are
finished or pruned. The most efficient Branch & Bound algorithms for the unbounded
knapsack problem [KPP04] are MTU1 and MTU2, both by Martello and Toth [MT77,
MT90a], where MTU2 improves on MTU1. Both use the same calculation for the upper
bound, U2, which calculates the profit using the three most efficient items. Assuming the
elements are sorted by increasing efficiency (pi/wi), the LP-relaxation yields the trivial
bound

U1 := ULP = bzLP c =
⌊
p1

c

w1

⌋
. (2.2)

This can be further built upon by considering the residual capacity cr := c − w1
⌊
c
w1

⌋
which is left over after packing the maximal number of element 1 into the knapsack. We
can pack the residual capacity with element type 2, given by β2 := bcr/w2c. Now we
distinguish between two cases. The first is where we pack exactly β2 copies of element 2
into the residual capacity, and the now remaining capacity is filled with element 3. The
other case is where we pack exactly β2 + 1 copies of element 2 into the knapsack, and
fix the number of copies of element 1 accordingly. This yields the upper bound used in
MTU1 and MTU2 [MT90a]:

U2 := max

{⌊
p1

⌊
c

w1

⌋
+ p2β2 + (cr − w2β2) p3

w3

⌋
, (2.3)
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⌊
p2(β2 + 1) + p1β1 + (c− w2(β2 + 1)− w1β1) p2

w2

⌋}
.

where β1 :=
⌊
c−w2(β2+1)

w1

⌋
, describing the amount of copies of element 1 can be used in

the second case. After sorting the elements by descending efficiency (p1/wi), the recursive
MTU1 algorithm proceeds roughly as follows:

• Fill the current knapsack with the current most efficient item.

• Update lower and upper bounds.

• Check for optimality or pruning of the current branch.

• Call MTU1 with the next element as starting element and the new capacity.

Once the knapsack is full, MTU1 proceeds to exchange the previously more efficient
elements with less efficient ones, updating the upper bound at each replacement, thereby
covering the entire search space. MTU2 builds upon MTU1 by using the core concept.
The idea of the core concept is that elements with high efficiency are more likely to be
included in an optimal solution than those with lower efficiency. Therefore, MTU1 only
needs to be executed with a core of relevant items. When that is done, elements can
be added to the core, and the process can be repeated. MTU2 is done once the upper
bound equals the current solution, or all elements have been added to the core or have
been eliminated. To eliminate an item, MTU2 adds one copy of an element not in the
core and calculates the upper bound with the remaining knapsack. If that upper bound
is worse than the current solution, that element can be eliminated.

2.0.6 Transformation of BKP to KP

One popular approach to the BKP is to define an appropriate binary knapsack problem
(KP) which consists of one distinct element for every copy of every element type in the
BKP. Since every element type i gives rise to bi items, the resulting KP has

∑n
i=1 bi items.

A more efficient approach involving coding the number of copies of every element type i
in a binary format can be found in [KPP04], resulting in a KP of size n+

∑n
i=1 blog bic.

Given the upper bound for bi from 3.14, this leaves the number of elements in the
transformed KP instance in the order of O(n log c). This means that especially in the
case of large capacities, as is usually the case in our instances, this is seems to be an
unfavorable technique.

2.0.7 Approximation Algorithm for the BKP

FPTAS for the BKP have been suggested by transforming the problem into a KP. This
results with the capacity present in the worst case time complexity, something we wish
to avoid. Dedicated FPTAS for the BKP are not present in literature [KPP04] [MJ07]
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however. A FPTAS for the Bounded Set-up Knapsack problem (BSKP) is presented in
[MJ07] with a runtime of O(n ∗ 1/e2), which can be adapted to the BKP. A BSKP is a
generalisation of the BKP in which each element type is associated with a set-up weight
and set-up value. These values are applied to the objective function if any copies of that
element type are in the knapsack. In [KPP04] a FPTAS based on the FPKP algorithm
in [KP04] is suggested, resulting in a time complexity of O(n ∗ 1/ε4 + n logn ∗ 1/ε3)
and a space complexity of O(n ∗ 1/e3), the currently best [MJ07]. The idea behind this
FPTAS is to first greedily calculate a lower bound zl of the objective function. Then the
elements are split into small and large items, with all element types satisfying pi ≤ zlε
being small items. Dynamic programming is then applied to the large element types.
Using this solution, for each candidate profit value we check the corresponding dynamic
programming function, and greedily fill the remaining capacity with small items.

2.0.8 Branch & Bound Algorithm for the BKP

According to [KPP04], research into B&B algorithms halted because of the observation
that B&B applications for the transformed KP (section 2.0.6) outperformed B&B algo-
rithms customized for the BKP. The most promising Branch & Bound algorithms for
the bounded knapsack problem [KPP04] then are MTB1 and MTB2, close relatives of
MTU1 and MTU2 described in section 2.0.5 both by Martello and Toth [MT77, MT90b],
where MTB2 improves on MTB1. Both use the same calculation for the upper bound,
U2, which calculates the profit similarly to the unbounded case. Assume the element
types are sorted by decreasing efficiencies. The LP-relaxation yields the trivial bound

ULP = bzLP c =

s−1∑
j=1

pjbj +

c− s−1∑
j=1

wjbj

 ps
ws

 . (2.4)

Considering the residual capacity cr := c −
∑s−1
j=1 wjbj which is left over after greedily

packing elements of types 1 to s− 1 into the knapsack, there are again two options. We
can either pack exactly βs =

⌊
cr
ws

⌋
into the knapsack, and the remaining capacity is filled

with element type s+1. In the other case, βs + 1 elements of type s are put into the
knapsack, reducing the number of elements s− 1. This yields the upper bound used in
MTB1 and MTB2 [MT77]:

U2 := max


s−1∑
j=1

pjbj + psβs + (cr − wsβs)
ps+1
ws+1

 , (2.5)

s−1∑
j=1

pjbj + ps(βs + 1) + (cr − ws(βs + 1)) ps−1
ws−1

 .
The recursive MTB1 algorithm proceeds roughly as follows:
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• Fill the current knapsack with the current most efficient element (while the demand
lasts).

• Update lower and upper bounds.

• Check for optimality or pruning of the current branch.

• Call MTB1 with the next element as starting element and the new capacity.

Once the knapsack is full, MTB1 proceeds to exchange the previously more efficient
elements with less efficient ones (branching), updating the upper bound at each replace-
ment, thereby covering the entire search space. This is identical to the case of the UKP,
with the exception that the current most efficient element can only be added while the
demand lasts, i.e. exchanging elements can happen before the knapsack is full. MTB2
builds upon MTB1 by using the core concept, identical as in section 2.0.5. As a matter of
fact, MTB2 transforms the BKP into a KP. Although claimed possible [KPP04], directly
applying MT2 (the underlying algorithm for the KP) on the BKP was not done in the
publication.
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CHAPTER 3
Stage Shifted Column Generation

The fundamental idea behind the algorithm Stage Shifted Column Generation (SSCG),
compared to standard column generation implementations, is to shift the computational
burden of one stage from the pricing problem onto the master problem. The name for
the algorithm is therefore chosen to reflect the shifted complexity of both the master
and pricing problem. In other words, this means that the pricing problem generates
a new strip with each successful iteration. This is in contrast to the standard column
generation, where entire cutting patterns are generated.

3.1 Insertion Heuristic
Column generation requires an initial set of columns from an initial feasible solution. For
the SSCG, this is achieved by use of an insertion heuristic. In [Fle13], Fleszar presents
three insertion heuristics. Dusberger and Raidl [DR15a] present an insertion heuristic
based on the critical-fit insertion heuristic used by Fleszar. This insertion heuristic is used
to find a preliminary feasible solution for the master problem. An outline is described
below:

1. Order all element types by decreasing area and let bri ∈ N be the residual demand
of element type i.

2. Determine the undominated element types for which there is a demand, i.e. bri > 0.
An element type i ∈ E dominates another type j ∈ E if wi ≥ wj and hi ≥ hj .

3. Determine the element ic from the undominated element types which fits in the
least amount of sheets.

4. Either insert ic in the best sheet possible, or insert it in a new sheet. Reduce the
remaining demand, i.e. reduce bric .
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3. Stage Shifted Column Generation

5. If ∃bi > 0 go to step 2.

A further consideration is made in regards to the insertion. Given the structure of the
cutting tree (see section 1.1.2), there are multiple types of insertions into the cutting
tree, which need to be differentiated. When inserting an element into a compound c, two
possibilities can be considered:

• Inserting the element as a sub-node of c

• Inserting the element in parallel to c’s subpatterns.

Finally, in order to consider inserting multiple instances of one element type, a fitness
criterion is used which depends on the vertical and horizontal slack after the insertion of
a number of elements. The optimal quantity and position for inserting the elements is
then determined by maximizing the fitness function.

3.2 Master Problem
The master problem for the SSCG is formulated as an integer linear program, similarly
to the set covering formulation described in section 1.2.4. Since this model does not
restrict the types of strips used, both the 2-staged and 3-staged 2CS can use the same
master problem. The model requires an upper bound n of the number of sheets used,
which is provided by a preliminary run of an insertion heuristic 3.1.

Let P be the set of all feasible cutting patterns for a strip. For each strip pattern p ∈ P
and element type i ∈ E, let constants api ∈ N+

0 denote how many instances of element
type i are contained in pattern p and constant hp denote the height of pattern p.

Let variables yj ∈ {0, 1}, j = 1, . . . , n indicate if sheet j is used, and variables xpj ∈ N+
0 ,

p ∈ P, j = 1, . . . , n indicate the number of strips of type p assigned to sheet j.

We can then define the master problem as follows:

min
n∑
j=1

yj (3.1)

s.t.
∑
p∈P

n∑
j=1

apixpj = bi ∀i ∈ E (3.2)

∑
p∈P

hpxpj ≤ Hyj ∀j = 1, . . . , n (3.3)

∑
p∈P

hpxpj ≤
∑
p∈P

hpxpj−1 ∀j = 2, . . . , n (3.4)

Each element must be packed according to its demand bi (3.2). Inequalities (3.3) state
that the total height of the strips packed in each sheet j must not exceed H. Furthermore,
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3.2. Master Problem

these constraints also enforce the linking between the x- and y-variables. Inequalities (3.4)
are symmetry breaking constraints, which are not necessary for the validity of the model,
but strengthen it by enforcing the order of the sheets in a cutting pattern according to
the normal form. The pseudo code for the master problem used in the SSCP can be seen
in algorithm 3.1.

Algorithm 3.1: Master Problem
Input: 2CS instance file
Output: 2CS solution

1 readInstance;
2 solution = insertionHeurisict.solve();
3 model = buildILP(solution);
4 model.solve();
5 duals = model.getDuals();
6 pricing = new pricingProblem();
7 while pricing.solve(duals) do
8 newColumn = pricing.getSolution();
9 model.add(newColumn);

10 model.solve();
11 duals = model.getDuals();
12 end
13 integralityHeuristic();
14 return model.getSolution();

3.2.1 Pricing Problem

The pricing problem for both the 2-staged and 3-staged 2CS can be formally described
as follows. Let µi, πj and ϕj,j′ be the dual variables corresponding to constraints (3.2),
(3.3) and (3.4), respectively.

We do not want explicitly consider all variables xpj , p ∈ P, j = 1, . . . , n as there are
exponentially many of them. Therefore we only start with few and price in more via
delayed column generation. Variable xpj has reduced costs

cpj = −
∑
i∈E

apiµi + πjhp + ϕj(j−1)hp − ϕ(j−1)jhp (3.5)

= −
∑
i∈E

api + γj · hp (3.6)

with
γj = πj + ϕj(j−1) − ϕ(j−1)j . (3.7)

The pricing subproblem consists of finding a variable xp∗j∗ , i.e., a strip pattern p∗ ∈ P
for packing in a sheet j∗ ∈ {1 . . . , n} having smallest reduced cost cp∗j∗ . If cp∗j∗ are
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3. Stage Shifted Column Generation

negative, the variable is added to the reduced master problem, which is then resolved;
otherwise, the column generation can stop as the LP-relaxation of the master problem
has been solved to optimality.

The sheet j is only found in the second term of (3.6), in γj , and independent of the
pattern p, the sheet leading to the lowest reduced costs always is

j∗ = argminj=1,...,nγj . (3.8)

Let variables ai ≥ 0, i ∈ E, indicate the number of elements of type i that are packed
in the strip pattern p and h(p) > 0 denote the height of the strip pattern. The pricing
problem can then be formulated as

max
∑
i∈E

µiai − γj∗h(p) (3.9)

(a, h(p)) ∈ (K − 1)-2KP (3.10)
ai ≥ 0 ∀i ∈ E (3.11)
h(p) ≥ 0 (3.12)

(K − 1)-2KP refers to the set of feasible solutions of the (K − 1)-stage two-dimensional
knapsack problem, i.e., all feasible (K − 1)-stage patterns of maximum width W and
maximum height H with the first stage being vertical cuts, expressed here by the vector
a of numbers of elements packed from each element type and the pattern height h(p).

According to the objective function (3.9), each element type has associated a profit µi and
we are looking for a strip pattern that maximizes the total profit of all packed elements
reduced by a linear “penalty” γj∗h(p) for the strip’s height. Thus, we have to deal here
with a special variant of the (K − 1)-2KP.

In more detail, for (K−1)-2KP we may either consider the unbounded knapsack problem
variant, where from each element type an arbitrary number of elements may be packed in
principle, or the bounded variant, were the number of elements is limited to the demands
bi, i ∈ E. Both variants are valid and will in the end yield the same LP-bound for the
master problem. On the one hand, the bounded knapsack problem might occasionally
avoid less meaningful patterns, may save pricing iterations, and may yield less fractional
solutions. On the other hand, the unbounded knapsack problem is typically easier to
solve.

3.3 The 2-Staged 2CS
We will first study the K = 2 case. Feasible patterns are strips of maximum width W ,
where only elements of the same height hp are placed from left to right next to each
other. This means patterns that require trimming are not allowed. Trimming in this
case refers to using elements of lower height than hp, which would require their excess
material to be trimmed.
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Let {E1, . . . , Eη} be the partitioning of all element types from E into the subsets of element
types having the same height hl, i.e., E1 ∪ . . . ∪ Eη = E, ∀l = 1, . . . , η, i ∈ El : hi = hl,
∀l = 1, . . . , η − 1, l′ = l + 1, . . . , η, i ∈ El, i′ ∈ El′ : hi 6= hi′ .

We can then approach the pricing problem by solving an individual classical one-
dimensional knapsack problem for each El, l = 1, . . . , η with element profits µi, element
weights wi, and maximum capacity W . From all those η knapsack solutions, we finally
take the one that maximizes the objective function (3.9) considering also the pattern
height hl.

3.3.1 Unbounded Knapsack

In instances where there are more elements of each element type than can fit in the
width of a strip, a simplification is to consider the knapsacks in the pricing problem
as unbounded knapsack problems (UKPs). This means that each element type in N
can be used unrestrictedly, even if more elements are placed into the knapsack than
there is demand. This should rarely be the case in the previously mentioned instances.
Although the UKP is still an NP hard problem, there exist efficient methods to solve it
optimally. One such approach, a special purpose dynamic programming (DP) solution is
claimed to be the most efficient solution [KPP04] to the UKP, and is explained in section
3.3.4. It exploits the dominance relations of elements to solve the UKP, and is called
"Efficient Dynamic Programming for the Unbounded Knapsack Problem" (EDUK). Other
approaches include an approximation algorithm as seen in section 2.0.4 and a Branch &
Bound algorithm investigated in section 2.0.5.

3.3.2 Dominance

If two elements i and j are compared pairwise, and element i is at most as profitable
and at least as heavy as element j, then element i is never used as it is always better (or
at least not worse) to replace it by one or more copies of j without decreasing the total
profit. This simple dominance was observed as early as 1963 [GG63], and can be seen
in Figure 3.1a. Element j simply dominates element i since wj ≤ wi and pj ≥ pi, where
wi is the weight of element i and pi is the profit of element i.

Further extensions of dominance can be found in literature [APR00]. An element i is
said to be multiply dominated by an element j if bwi/wjc ≥ pi/pj , meaning it is always
better to replace one copy of element i by bwi/wjc copies of element j. In Figure 3.1b
the three copies of element j dominate one copy of element i.

Another dominance relation is called threshold dominance. An element i is threshold
dominated by a set of elements J if for α ∈ N and y ∈ N|J | we have αwi ≥

∑
j∈J yjwj

and αpi ≤
∑
j∈J yjpj , meaning it is always better to replace α copies of element i by

some combination of elements of the set J . The case where only one copy is dominated,
α = 1 is called collective dominance. Both collective and threshold dominance can be
seen in Figure 3.1c and Figure 3.1d respectively.
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In [KPP04] the following proposition can be found:

Proposition 1 For every instance of UKP there always exists an optimal solution not
containing any simply, multiply or collectively dominated element types.

That means all simply, multiply or collectively dominated element types can be safely
discarded without affecting the optimal solution, reducing the search space. Since
elements that are only threshold dominated might be used in an optimal solution, they
must be considered in the solution vector until the calculation reaches a capacity of the
threshold dominance, at which point the element can be discarded.

(a) Simple Dominance: element j simply
dominates element i.

(b) Multiple Dominance: element j mul-
tiply dominates element i.

(c) Collective Dominance: element set
{j, k} collectively dominates element i.

(d) Threshold Dominance: element set
{j, k} threshold dominates element i.

Figure 3.1: Dominance relations.

3.3.3 Periodicity

Periodicity is a property specific to the UKP. The special structure of unbounded
knapsack problems, the so called periodicity for increasing capacity values, was detected
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by Gilmore and Gomory as early as 1966, and shown in [KPP04]. It states that for
capacities larger than some capacity C∗, the remaining knapsack is only filled with the
most efficient element b, where efficiency is defined as pb/wb. The equation used in
dynamic programming is then

z(C) = z(C∗) +
⌈
C − C∗

wb

⌉
pb (3.13)

where z(C), the solution vector, gives the optimal solution (i.e. maximum profit) for
the capacity C.

3.3.4 EDUK-Generator

As previously mentioned, EDUK (Efficient Dynamic Programming for the Unbounded
Knapsack Problem) is considered the most efficient algorithm for the UKP [KPP04],
and as such was chosen for the UKP approach to the 2-staged pricing problem. Our
implementation of EDUK, called EDUK-Generator is shown in algorithm 3.2. EDUK
consists of a reduction phase and a standard phase.

• In the reduction phase, simply, multiply and collectively dominated elements are
filtered out, and all other elements are added to the list F of undominated items.
Since it is a dynamic programming implementation, it also calculates the optimal
solutions up to the capacity of the heaviest item.

• The standard phase is a dynamic programming implementation that also considers
threshold dominance and periodicity. Once there is only 1 undominated element
left, we know we have achieved periodicity and the remaining knapsack can be
filled with the most efficient element (i.e. the last undominated item).

Here z[d] is the solution vector, storing the value of the optimal solution for a knap-
sack of capacity d. The helper array l[i] is used for threshold dominance detection.
It stores the last capacity at which element i was used in an optimal solution, i.e.
l[i] = d iff z[d− wi] + pi > z[d].
The idea of slices is introduced as an optimization to reduce the calls to the threshold
dominance function. Another optimization in the implementation is the idea of discretiza-
tion points [Her72]. Since many knapsacks are very large with elements of similarly large
weights, instead of going through each capacity, it is more efficient to calculate all the
different possible linear combinations of weights of the items, and then only calculate
knapsacks of those sizes. Similar implementations of these two optimization approaches
are used in the original publication of EDUK[APR00].

The two loops on lines 4 and 5 create "slices", meant to reduce the calls of the threshold
check on line 20. Lines 6 to 14 can be seen as a standard implementation of dynamic
programming, only using elements from the list F and going from the previous item’s
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Algorithm 3.2: EDUK-Generator
1 getDiscretizationPoints;
2 sort elements in ascending order by weight;
3 F = ∅;
// reduction phase

4 foreach item slice do
5 foreach item j in current slice do
6 foreach capacity d in discretizationPoints ∈ (wj−1, wj ] do
7 z[d] := 0;
8 foreach item f in F do
9 if z[d− wf ] + pf > z[d] then

10 l[f ] := d;
11 z[d] := d[d− wf ] + pf ;
12 end
13 end
14 end
15 if z[wj ] ≤ pj then // j not dominated by F
16 z[wj ] := pj ;
17 F := F ∪ {j};
18 end
19 end
20 checkThresholdDominance;
21 end

// standard phase
22 foreach capacity slice in discretizationPoints do
23 if |F | = 1 then
24 periodicity;
25 end
26 foreach capacity d in current slice do
27 z[d] := 0;
28 foreach item f in F do
29 if z[d− wf ] + pf > z[d] then
30 l[f ] := d;
31 z[d] := z[d− wf ] + pf ;
32 end
33 end
34 end
35 checkThresholdDominance;
36 end
37 retrieveSolution;
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capacity (excluding) to the current item’s capacity (including), only using the discretiza-
tion points. Line 10 stores the fact that element f was used at the current capacity
d. On line 15, z[wj ] has been optimally calculated without using the current element
j, which of course perfectly fits into the knapsack of size wj . If pj ≥ z[wj ] that means
that element j is not dominated by a collection of smaller items, therefore adding it
to F . The standard phase is essentially the same as the reduction phase, just that all
capacities from the discretization points are done, and no elements are added to F . Since
the reduction phase solved the knapsack problem up to the heaviest item, the standard
phase can start with that capacity. If periodicity is detected in line 23, the algorithm
simply fills the rest of the knapsack with the remaining element (which is also the overall
most efficient item), otherwise it finishes the knapsack using the dynamic programming
implementation. For retrieving the solution, it is required so store the solution for each
discretization point, and store the currently best discretization point.

Algorithm 3.3: checkThresholdDominance
1 d :=last capacity calculated;
2 foreach f in F do
3 if l[f ] < d− wf then
4 remove f from F ;
5 end
6 end

The threshold dominance shown in Algorithm 3.3 check makes use of the vector l which is
defined above. For a capacity d which has been optimally calculated, it takes all formerly
undominated elements and checks if the distance in capacity between the last use and the
current optimal solution is greater than wf . If that’s the case, clearly another element
or combination of elements dominated element f , making it dominated and removing
it from F . This algorithm is essential in reaching periodicity, and also reduces the run
time of both the reduction phase and standard phase, if an element can be removed from
F . However, since checking at each capacity might waste computation time, slices are
introduced to control the number of calls to checkThresholdDominance. The worst case
run time for Algorithm 3.3 is O(n).

Discretization Points

Since only integer weights and capacities can be used with a dynamic programming
implementation, it is often the case that capacities and weights are unnecessarily large,
because they are simply multiplied by an integer to make all weights and capacities
integral. Therefore, only looking at the discretization points, which are just the linear
combinations of the weights of the items, can dramatically reduce runtime in practice.
Algorithm DPEE (Discretization Points by Explicit Enumeration)3.4 generates the
discretization points naively by creating all integer conic combinations of element heights,
i.e. by explicit enumeration. In line 8 the algorithm goes through all points (= weights)
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added in the previous run, starting with 0. If the points plus the current item’s weight
wi fit into the knapsack in line 9, the new point is added in line 10 to points, and later
to discretizationPoints. This is done from 0 to the capacity C, for all items. The
worst case runtime for algorithm 3.4 is therefore O(Cδ), where δ is the number of conic
combinations of element heights.

Algorithm 3.4: DPEE
1 changed = true;
2 discretizationPoints = ∅;
3 oldPoints = 0;
4 while changed do
5 changed = false;
6 points = ∅;
7 foreach item i in N do
8 foreach point p in oldPoints do
9 if p+ wi < C then

10 add (p+ wi) to points;
11 changed = true;
12 end
13 end
14 end
15 add points to discretizationPoints;
16 oldPoints = points;
17 end
18 reduceDP;

To avoid a potential enumeration taking exponential time, Cintra et al. [CMWX08] use
what they call DDP (Discretization Using Dynamic Programming). Our implementation
can be seen in algorithm 3.5. The idea behind this algorithm is to set the profits pi for
each element i = 1, . . . , n to match its respective weight wi, such that pi = wi. What
follows is solving a knapsack problem of capacity C using dynamic programming in the
standard way. Since all elements have the same efficiency of pi/wi = 1, any capacity d
for which z[d] = d holds is then a discretization point.

A final optimization in regards to the discretization points is a reduction of the points, as
demonstrated by Scheithauer [Sch97]. The idea he proposes is that not every discretization
point needs to be considered. More precisely, he removes those discretization points
which separate themselves from another only by unusable knapsack capacity. In this
sense, unusable knapsack capacity means a capacity too small for an improvement to
take place. Let us demonstrate this by the use of a small example. Let n = 3 with
w1 = 3, w2 = 7 and w3 = 8, and let C = 10. The set of discretization points then is
P = {0, 3, 6, 7, 8, 9, 10}. Note, however, that the points {8, 9, 10} are all "final", in the
sense that none are used as the basis of an improvement, and as such are in competition
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Algorithm 3.5: getDiscretizationPoints
1 discretizationPoints = ∅;
2 foreach capacity d in C do
3 z[d] = 0;
4 end
5 foreach item i in N do
6 foreach capacity d in C do
7 if z[d] < z[d− wi] + pi then
8 z[d] = z[d− wi] + pi;
9 end

10 end
11 end
12 foreach capacity d in C do
13 if z[d] = d then
14 discretizationPoints = discretizationPoints ∪ {d};
15 end
16 end
17 reduceDP;

Algorithm 3.6: reduceDP
1 reducedPoints = ∅;
2 dp = discretizationPoints.end();
3 foreach point p in discretizationPoints do
4 lim = sheetWidth− p;
5 while lim < dp && dp != discretizationPoints.begin() do
6 dp--;
7 end
8 reducedPoints = reducedPoints ∪ {dp};
9 end

with each other for the optimal solution. In other words, both points 8 and 9 are solutions
with an unused capacity, which given the items, is unusable. Points 6 and 7 share a
similar relation, since they are both the basis only to adding i = 1 to the solution.
Scheithauer now suggests removing the points with the unusable capacity, since their
solution can be stored in the respectively larger capacities. Our implementation can be
seen in algorithm 3.6.

As a consequence of reducing the discretization points, a point can no longer be directly
retrieved. Instead, the nearest point can be efficiently looked up, using the algorithm
findNextPoint 3.7. The run time of this algorithm is O(log(C)), increasing the overall
worst case. In practice however, the reduction in discretization points is well worth
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Algorithm 3.7: findNextPoint
Input: the int point to which we want to find the closest reduced point

from the vector reducedPoints
Output: The reduced point for the given point

1 left = 0;
2 right = reducedPoints.size()− 1;
3 while left < right do
4 middle = (left+ right)/2;
5 if point < reducedPoints[middle] then
6 right = middle− 1;
7 else
8 left = middle+ 1;
9 end

10 end
11 return reducedPoints[l − 1];

the increased look up computation time. Although this algorithm is always used in
conjunction with reduced points, its application is omitted from the pseudo code here for
better readability.

Parameters

The parameters of Algorithm 3.2 consist of

• t - the size of element slices in the reduction phase

• q - the size of capacity slices in the standard phase

At the end of each slice, threshold dominance is tested. If the slices are too small, domi-
nance is tested too often. However, if the slices are too large, the list F of undominated
elements might remain unnecessarily large for too long. In practice this means increasing
the parameter size in case the knapsack capacity C is large in comparison to the number
of elements n, and decreasing the parameter size if the opposite is the case.

Complexity

The run time of our EDUK-Generator depends both on the capacity C and the number
of elements n, and on algorithm 3.5, with a run time of O(Cn). Because the number of
executions of Algorithm 3.3 is limited by the parameters, its contribution to the worst
case run time is only O(qn+ tn). The entire algorithm can be seen as computing a C ×n
table, and as such the worst case run time is O(Cn), since C is obviously larger than both
q and t. This is only the case when all points are discretization points, and periodicity is
never reached. Moreover, since we are using reduced discretization points, each look up
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requires an additional O(log(C)) time, resulting in an overall run time of O(Cn log(C)).
As a pricing problem, this algorithm will be run for every available strip height, i.e.
discretization point in the sheet height, giving the overall pricing problem per execution
a run time of O(WHn log(W )), where H is the sheet height, and W is the sheet width.
Since the solution vector is two dimensional, the space requirement is O(Cn), although
the solution can also be reconstructed by backtracking a one dimensional solution vector,
requiring O(Cn) additional time.

3.3.5 Bounded Knapsack

In contrast to the UKP discussed in section 3.3.1, when the demands of the element
types bi in E play a role, the knapsacks in the pricing problem are bounded knapsack
problems (BKPs). This means that each element can be used only as often as needed.
This leads to the assumption that

bi ≤
⌊
c

wi

⌋
, j = 1, . . . , n (3.14)

as any excessive demand can immediately be reduced. The BKP is an NP hard problem,
but there exist efficient methods to solve it optimally. A popular approach is transforming
the BKP to a binary knapsack problem (KP), and then solving the KP, see 2.0.6. A
branch & bound algorithm is described in Section 2.0.8, while an approximation algorithm
is investigated in Section 2.0.7. A dynamic programming algorithm is be presented in
Section 3.3.6, which is the basis for algorithm BKP-Generator (Section 3.3.7).

3.3.6 Dynamic Programming

In publications, there is one more advanced dynamic programming algorithm which
heavily makes use of multiple elements of the same type [Pfe99], referred to as Improved-
DP. In principle, the idea is similar to the transformation to a KP, since each copy of an
element is added separately to an existing partial solution. However, all copies of the same
element type are added together in an efficient way. To be more precise, after processing
element types 1, . . . , j−1 we try to add a new element of type j to every solution attached
to an entry of the dynamic programming solution. If zj(d + wj) = zj−1(d) + pj , i.e.
adding element j to the previous solution improves that solution, we immediately try to
add another copy of the same element type to zj−1(d), therefore attempting to improve
zj−1(d+ 2wj). In this way, we chain elements of the same type together for as long as
there are elements (at most bj), there is capacity or of course there is an update. If a
sequence of elements is terminated because all bj copies of element j were successfully
added, we must consider the possibility that a chain might be added at a later point
than d, such that a capacity value higher than d+ bjwj can possibly be improved. The
most promising starting point for a new chain of elements j then lies somewhere between
d + wj and d + bjwj , and can be computed by keeping track of the previous update
sequence. Simplified pseudo code for the Improved-DP is shown below in Algorithm 3.8,
adapted from [KPP04].
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Algorithm 3.8: Improved-DP
1 zj(d) := 0 for d = 0, . . . , C and j = 0, . . . , n;
2 sort elements in ascending order by efficiency (pj/wj);
3 foreach item j do
4 initialize auxiliary array;
5 for r := 0, . . . , wj − 1 do // all residual values of C/wj
6 d0 := r;
7 d := r + wj ;
8 l := 1;
9 while d ≤ C do

10 if zj−1(d) < zj−1(d0) + lpj then
11 zj(d) := zj−1(d0) + lpj ;
12 insert d in auxiliary list;
13 d := d+ wj ;
14 if l < bj then
15 l := l + 1;
16 else
17 set d0 as best candidate from auxiliary list;
18 l := (d− d0)/wj ;
19 end
20 else
21 zj(d) := zj−1(d);
22 d0 := d;
23 l := 1;
24 d := d+ wj ;
25 delete auxiliary list
26 end
27 end
28 end
29 end

The variable d0 is used as the starting capacity for a sequence, and is only changed in
a current run in line 17 if all elements of type j are used, i.e. l = bj . d is used as the
capacity for a considered update operation, and the variable l is the number of copies
of element j are added to the capacity d0. The most relevant line to note is line 5. For
each element j we iterate over all residual values c/wj , and at each of these values we
chain the current item. Line 10 checks for an improvement, and then line 11 does the
update. Since the process of keeping the auxiliary list up to date does not change the
fundamental logic of the algorithm, the details of lines 4 and 17 are omitted.
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Complexity

The run time depends both on the capacity C and the number of elements n. Firstly
the algorithm runs over all elements in the for loop in line 3, giving a time complexity
of O(n). The second relevant loop is in line 5, where we run over the remainders r of
each element type j. Each of the wj executions has a run time of O(C/wj), given by
the while loop in line 9. That means line 5 has a time complexity of O(C), resulting in
a total worst case run time of O(Cn). The space requirement for storing the solution
vector is O(Cn), as a vector zj(d) for each element type must be stored.

3.3.7 BKP-Generator

Algorithm 3.8 has one issue concerning the implementation, and that is that it is not
particularly suited to using discretization points, as used in algorithm 3.2. Although
discretization points could be used to reduce the number of residual values, we would have
to take the residual values of all discretization points for each item, thereby introducing
new discretization points altogether. This is because otherwise linear combinations of 2
or more elements would be ignored. Moreover, as a consequence of each newly introduced
discretization point in the residual values, potentially new discretization points follow.
For a simple example, let n = 2 with w1 = 3, w2 = 7 and C = 10. The initial set of
discretization points is then P = {0, 3, 6, 7, 9, 10}. The residual values for i = 1 would
then have to be r = {0, 1} for the chain to reach the discretization point p4 = 7. Already
we see that the chain in this case passes point p = 4, which, like point p = 1 is not one of
the discretization points. Unfortunately, this natural incompatibility just gets worse the
larger an instance is, and the more relevant optimizations become. Since our instances
and element types have very large capacities and weights, the use of discretization points
is paramount to reduce computation time. Therefore we introduce a new dynamic
programming algorithm, based on the idea in Improve-DP to work through the solution
vector item-wise, which is more suited to work with discretization points. The basic
idea is to fill the knapsack with each item, always checking the discretization points
for a possible improvement. It is done item-wise so a separate vector, l(d) can be kept
to update the uses of the element at a specific discretization point (capacity). This
essentially means that a sequence of element j is either continued at each discretization
point, or started. The pseudo code for algorithm 3.9 is below.

The algorithm begins by sorting the elements by decreasing efficiency pi/wi. This means
that the algorithm starts by packing the most efficient element first. Initially, the amount
of uses of the current element at each discretization point is set to 0, over the loop on line
8 and 9. Line 11 and 12 are standard dynamic programming, in which for each capacity
we check if the current element produces an improvement. Line 13 and 22 represent the
BKP, since a distinction is made between adding an element or not, based on demand.
If another element can be added to the solution, its usage is increased by 1 for that
capacity (line 15), and the solution value is also updated (line 14). If the demand has
been reached however, we either update without adding an item, or we don’t update at
all because the old value is better without adding a new item.
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Algorithm 3.9: BKP-Generator
1 z(d) := 0 for d = 0, . . . , C;
2 pointToSolution = ∅;
3 bestCapacity = 0;
4 bestValue = 0;
5 sort elements in descending order by efficiency (pj/wj);
6 getDiscretizationPoints;
7 foreach item j do
8 foreach capacity d in discretizationPoints do
9 l(d) := 0;

10 end
11 foreach capacity d in discretizationPoints do
12 if z(d) < z(d− wj) + pj then
13 if l(d− wj) < bj then
14 z(d) := z(d− wj) + pj ;
15 l(d) := l(d− wj) + 1;
16 pointToSolution(d) = pointToSolution(d− wj) ∪ {j};
17 if z(d) > bestV alue then
18 bestV alue = z(d);
19 bestCapacity = d;
20 end
21 else
22 if z(d) < z(d− wj) then
23 z(d) := z(d− wj);
24 l(d) := l(d− wj);
25 pointToSolution(d) = pointToSolution(d− wj);
26 end
27 end
28 end
29 end
30 end

Let n = 2 with w1 > w2 and p1/w1 > p2/w2. Figure 3.2 shows a possible updating
scenario of algorithm 3.9. After all computations for element i = 1 are done, here called
e1, one possible solution is shown in figure 3.2a. In the next step of the algorithm, element
e2 is placed in the first possible discretization point where it increases the solution value,
as shown in figure 3.2b. However, the algorithm has no ability to retroactively increase
the value of each successive placement of e1, which were calculated in the previous
iteration. This problem is solved by the fact that using the equivalent solution in figure
3.2d, the algorithm can update the solution vector correctly. Indeed, the solution seen in
3.2b is still calculated iteratively, using the parts from figure 3.2c. This is due to the fact
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Figure 3.2: Equivalent solutions for the BKP.

that all solutions have an equivalent one which is "flushed left", i.e. compact such that
all of the unused space is at the end of the knapsack. Sorting the elements by efficiency
is necessary so that after one element is finished computing, the next element can only
improve on the previous compacted solutions if it uses up some previously unused space.
For retrieving the solution, it is required to store the solution for each discretization
point, and store the currently best discretization point.

Complexity

The run time depends both on the capacity C and the number of elements n. As discussed
previously, the time complexity of algorithm 3.5, getDiscretizationPoints, is O(Cn). Line
7 has a complexity of O(n), and in the case that all points are discretization points, the
inner loop has a worst case run time of O(C), resulting in O(Cn) run time. Similarly to
EDUK, the use of reduced discretization points increases the final worst case run time to
O(Cn log(C)). As a pricing problem, this algorithm will be run for every available strip
height, i.e. discretization point in the sheet height, giving the overall pricing problem
per execution a run time of O(WHn log(W )), where H is the sheet height, and W is
the sheet width. Since the solution vector is two dimensional, the space requirement is
O(Cn), although the solution can also be reconstructed by backtracking a one dimensional
solution vector, requiring O(Cn) additional time and O(C) space instead.

3.4 The 3-Staged 2CS

Whereas in the case of K = 2 the elements are separated by their respective heights,
in the case of K = 3 a strip has access to all elements. The pricing problem is now a
special variant of a 2-staged two-dimensional knapsack problem. The literature in this
case focuses more on the SLOPP producing entire sheets, not on the strip characteristic
of the problem, i.e. the linear cost coefficient of the height variable. As such, we present
our own algorithms to solve the 2-staged strip generating pricing problem. One algorithm
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is a dynamic programming approach with a focus on returning the best possible strip
(section 3.4.1), while two heuristic variants are presented in section 3.4.2.

3.4.1 Dynamic Programming Generator

Our dynamic programming implementation, called DP-Generator, borrows heavily from
algorithm 3.9. It is essentially the same algorithm, simply upgraded for two stages.
Whereas BKP-Generator solves one knapsack per available height, DP-Generator is
separated into two stages. In the first, a knapsack is solved for every available width, i.e.
after all elements are separated by width, the corresponding knapsack problem is solved.
This results in an optimal solution for every element width and strip height, called stacks.
In the second stage, these results are used to calculate the optimal solution for every
strip height. The parallels between BKP-Generator and DP-Genertaror in this stage are
that while algorithm 3.9 uses a set of elements with equal height to the strip height hp,
DP-Generator uses the best stack to fit into the given strip height, i.e. hs ≤ hp where hs
is the stack height. The pseudo code can be seen in algorithm 3.10.

The algorithm first calculates the discretization points for the sheet width, as seen in algo-
rithm 3.5. During that process, it also groups elements by width, called widthToElements.
This is a process that only has to be done once, meaning following calls to DP-Generator
do not need to recalculate the discretization points for the width. The next step is to
generate the relevant stacks in algorithm 3.16, seen at the end of this chapter, sorted
by profit. This can be seen as solving BKP-Generator once for every width. Algorithm
getDynProgStacks (3.16) also returns the relevant strip heights, i.e. the discretization
points of the sheet height, one for each stack. After generating the stacks, the algorithm
iterates over all strip heights. The algorithm 3.11 is called to choose the best stack for
every width, and sorts them by efficiency pj/wj . The remaining algorithm is the same
as algorithm 3.9. One point to note however, is the meaning of bj in the context of
the 2-staged knapsack problem. While in BKP-Generator it was clearly the demand of
element j, here it is the "demand" of a stack j. The demand of stack j is defined here as
the lowest demand to cost ratio for all elements in stack j (rounded down to the nearest
integer), where the cost of element i is the number of times element i appears in stack
j. This is possible because for every width, only one stack is chosen per strip, so that
keeping track of individual element demands is unnecessary.

Complexity

The run time complexity of algorithm 3.10 depends on the sheet height H, sheet width
W , and number of elements n. Algorithm 3.16 needs to solve a knapsack with capacity
H in the worst case for each width in W . The time complexity of solving a bounded
knapsack was already established as O(Cn), so algorithm 3.16 has a worst case time
complexity of O(WHn). The remainder of algorithm 3.10 also solves a bounded knapsack
with a capacity of W for each height H. This results in the same run time of O(WHn),
although in practice it is much closer to this than getDynProgStacks.
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Algorithm 3.10: DP-Generator
1 getDiscretizationPoints() ; // for stacks and width, only once
2 separateItems() ; // only done once
3 getDynProgStacks();
4 foreach int currentHeight in heightDPs do
5 z(d) := 0 for d = 0, . . . , c;
6 getCandidateStacks(currentHeight);
7 foreach stack j in candidateStacks do
8 foreach capacity d in discretizationPoints do
9 l(d) := 0;

10 end
11 foreach capacity d in discretizationPoints do
12 if z(d) < z(d− wj) + pj then
13 if l(d− wj) < bj then
14 z(d) := z(d− wj) + pj ;
15 l(d) := l(d− wj) + 1;
16 else
17 if z(d) < z(d− wj) then
18 z(d) := z(d− wj);
19 l(d) := l(d− wj);
20 end
21 end
22 end
23 end
24 end
25 end

Algorithm 3.11: getCandidateStacks
1 candidateStacks = ∅;
2 foreach width w in widthToStacks do
3 foreach stack s in w do
4 if hs < currentHeight then
5 add s to candidateStacks;
6 break;
7 end
8 end
9 end

10 sort candidateStacks by efficiency (pi/wi);
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3.4.2 Heuristic-Generator

Most literature on sheet based heuristics considers the height of the sheet fixed. That
means an adaption to strip generation either adds another heuristic aspect, the strip height,
or we need to solve the heuristic for every available height. Given these considerations,
we present our own heuristic variants of our dynamic programming implementation. Note
that both heuristics call DP-Generator after sufficiently many failed attempts at finding
a strip with negative reduced cost.

The first heuristic uses algorithm 3.10, but randomizes the strip height. As a variable,
the number of random strip heights is given, where each strip height is taken from a
distinct set of heights. Our implementation of the first variant of the Heuristic-Generator
can be seen in algorithm 3.12.

Algorithm Heuristic-Generator takes advantage of the structure of algorithm 3.10 to
randomize the heights. The strategy followed here is of separating the heights into sectors,
and choosing one height per sector. This minimizes the randomness in direct correlation
with an increase of variable heuristic. Lines 5 to 10 randomize the available heights.
Essentially, the set of discretization points is separated into "heuristic" many subsets of
equal size, each of which then give one height candidate. This is done to avoid occurrences
where all random heights offer particularly bad results. Furthermore, a weighted function
is kept to ensure an overall even selection of heights, i.e. to distribute the random heights
more evenly over all strip heights. Also note the use of a different stack generating
algorithm in line 3, described in algorithm 3.13. Instead of using dynamic programming
to generate just the best stacks, this algorithm generates all possible stacks, meaning
all combinations of items, and therefore more possible strip heights. This opens the
heuristic up to solutions otherwise not available to algorithm 3.10. Moreover, this means
the stacks must only be generated once, and every subsequent call of Heuristic-Generator
simply needs to update the profit values of each stack.

Although algorithm getStacks can fall victim to a combinatorial explosion, in practice
this is unlikely. Especially in cases where we hope to achieve good results, i.e. instances
of few different element types, the combinatorial explosion is of little concern. Given
these considerations, it is not surprising that benchmarks show that updating a larger
list of stacks performs better than recalculating the stacks, as is done in algorithm 3.10.
However, recalculating has the added benefit of a much smaller list of heights.

Heuristic-Generator 2

After randomizing the height, another aspect that can be taken into consideration are
the profit values for the elements (the duals). The idea behind the second heuristic
is to attempt to predict how the dual variables change, based on the selected strip
in the previous iteration. This basically means reducing the profit of the used stacks
directly, while leaving the other stacks unaffected, mostly because the real dual values
vary "arbitrarily", due to the dependence on the resolved master problem. Because the
effect is similar to the previous heuristic, in that the resulting algorithm will distribute
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3.4. The 3-Staged 2CS

Algorithm 3.12: Heuristic-Generator
Input: how many heights should be calculated; heuristic

1 getDiscretizationPoints() ; // width and height, only once
2 separateItems() ; // only done once
3 getStacks(); // only done once
4 randomheights = ∅;
5 foreach int i in heuristic do
6 min = (sheetHeight/heuristic) ∗ i+ 1;
7 max = (sheetHeight/heuristic) ∗ (i+ 1);
8 height = random(min,max);
9 randomHeights = randomHeights ∪ {height};

10 end
11 foreach int currentHeight in randomHeights do
12 z(d) := 0 for d = 0, . . . , c;
13 getCandidateStacks(currentHeight);
14 foreach item j in candidateStacks do
15 foreach capacity d in discretizationPoints do
16 l(d) := 0;
17 end
18 foreach capacity d in discretizationPoints do
19 if z(d) < z(d− wj) + pj then
20 if l(d− wj) < bj then
21 z(d) := z(d− wj) + pj ;
22 l(d) := l(d− wj) + 1;
23 else
24 if z(d) < z(d− wj) then
25 z(d) := z(d− wj);
26 l(d) := l(d− wj);
27 end
28 end
29 end
30 end
31 end
32 end

its selection of strips over different heights evenly, the thinking can be "inverted". Instead
of promoting unused stacks by lowering the profit of used stacks, an iteration of real dual
variables can produce multiple random height strips. This means leaving the profit values
unchanged for more than one strip. The result is two contrasting strategies: Heuristic-
Generator produces one hopefully good strip per set of duals, while Heuristic-Generator
2 produces multiple random strips per set of duals. In other words, a higher number of
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3. Stage Shifted Column Generation

Algorithm 3.13: getStacks
1 discretizationPoints = ∅;
2 foreach vector 〈item〉 width in widthToElements do
3 changed = true;
4 oldStacks = 0;
5 while changed do
6 changed = false;
7 newStacks = ∅;
8 foreach item i in width do
9 foreach stack s in oldStacks do

10 if hs + hi < H then
11 if newStacks not contains s ∪{i} then
12 add s ∪ {i} to newStacks;
13 add (hs + hi) to heightPoints;
14 changed = true;
15 end
16 end
17 end
18 end
19 add newStacks to stacks;
20 oldStacks = newStacks;
21 end
22 sort stacks by profit pi;
23 add stacks to widthToStacks;
24 end

lower quality strips are produced, offloading computational complexity from the pricing
problem onto the master problem.
Due to the algorithmic similarities between the two, pseudo code for Heuristic-Generator
2 is not explicitly shown. Instead, in algorithm 3.14, the update function is shown.

Algorithm updateDuals essentially does two checks. If the previous strip did not lead
to an improvement in the master problem, the dual variables and stacks are updated.
Otherwise, if the average absolute deviation from each dual value is larger than the given
heuristic value, the stacks are also updated.

3.5 Integrality Heuristic
Since the model described in section 3.2 only solves the LP relaxed problem, the resulting
solution contains possibly fractional values for not only variable yj , but also for the
values of xpj . Algorithm 3.1 therefore calls an integrality heuristic to make the fractional
solution integral. This heuristic is in place of a more elaborate branch & price algorithm,
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3.5. Integrality Heuristic

Algorithm 3.14: updateDuals
Input: current objective value, new dual values, variable heuristic

1 if prevObj = curObj then
2 updateStacks;
3 end
4 calDeviations() ; // calculate avg deviation
5 if deviation > heuristic then
6 updateStacks;
7 end
8 prevObj = curObj

for which we expect better results, albeit at greater computational cost. Cintra et al.
[CMWX08] propose a heuristic for their sheet based algorithm, on which our heuristic is
based. Pseudo code for our integrality heuristic can be seen in algorithm 3.15.

The single largest difference between our heuristic and that of Cintra et al. is represented
in line 8. After every variable that is fixated (line 6), the model is resolved, whereas
Cintra et al. [CMWX08] round down all variables, and solve for the induced remaining
problem. Solving after every fixation does not cost much computation time, thanks to
the "warm start" attribute of simplex. This leads to dramatically better results, due
to the fact that the solution remains feasible throughout. The infeasibility is caused in
part by the symmetry breaking constraint, or any other ordering, which break when
some sheets can be arbitrarily reduced far more than others. Moreover, it is obvious that
less restraining leads to a better result. Setting yj = 1 in line 7 helps the algorithm fill
partially filled sheets first. If we know a strip will be in the sheet, optimally the entire
sheet should be used. Without this distinction, starting a new sheet or remaining in the
same sheet would contribute equally to the objective function, i.e. setting yj = 1 creates
unused, "free" space for the column generation to use. The final point to note is that in
line 5 we select only values greater or equal to 1 to round down to. The logic behind this
decision is that disallowing a strip just prompts the pricing problem to either generate
the exact strip in another sheet, or generate an almost identical one in the same sheet. It
further promotes infeasible ILP models, since the strips that are used less than once are
typically also the most necessary to make the solution feasible. This leads to solutions
of algorithm 3.15 that are not yet integral, in the sense that there are patterns with
0 < xpj < 1. In these cases, the insertion heuristic from section 3.1 is used to insert the
remaining elements into the almost integral solution. Further variations are investigated
in chapter 5.

Complexity

The run time complexity of algorithm 3.15 depends on the upper bound of the number
of sheets n, and the number of strips assigned per sheet |P |, resulting in O(n|P |) time.
The worst case of the number of strips per sheet can be exponential in the number of
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3. Stage Shifted Column Generation

Algorithm 3.15: integralityHeuristic
Input: Fractional 2CS solution model, pricing problem pricing, variable

tries
Output: Integral 2CS solution model

1 attempts = 0;
2 while attemps++ < tries do
3 for j = 1 to n do
4 foreach p ∈ P do
5 if xpj ≥ 1 then
6 xpj = bxpjc ; // fixate value
7 yj = 1; // fixate value
8 model.solve();
9 end

10 end
11 end
12 if !fractional then break;
13 duals = model.getDuals();
14 while pricing.solve(duals) do
15 newColumn = pricing.getSolution();
16 model.add(newColumn);
17 model.solve();
18 duals = model.getDual();
19 end
20 end
21 solution = insertionHeuristic(); // insert remaining items
22 return solution;

elements there are, however.
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3.5. Integrality Heuristic

Algorithm 3.16: getDynProgStacks
Input: map of widths to vector of elements with equal widths

(widthToElements), map of widths to discretization points
(widthToDiscretizationPoints)

Output: map of widths to vector of stacks sorted by profit, discretization
points of sheet height

1 widhtToStacks = ∅;
2 foreach vector 〈item〉 width in widthToElements do
3 discretizationPoints = widthToDiscretizationPoints(width);
4 widthToStacks(width) = ∅;
5 z(d) := 0 for d = 0, . . . , C;
6 foreach item j in width do
7 pointToStack = ∅;
8 foreach capacity d in discretizationPoints do
9 l(d) := 0;

10 pointToStack(d) = ∅;
11 end
12 foreach capacity d in discretizationPoints do
13 if z(d) < z(d− wj) + pj then
14 if l(d− wj) < bj then
15 z(d) := z(d− wj) + pj ;
16 l(d) := l(d− wj) + 1;
17 pointToStack(d) = pointToStack(d− wj) ∪ {j};
18 else
19 if z(d) < z(d− wj) then
20 z(d) := z(d− wj);
21 l(d) := l(d− wj);
22 pointToStack(d) = pointToStack(d− wj);
23 end
24 end
25 end
26 end
27 end
28 currentBest = 0;
29 foreach capacity d in discretizationPoints do
30 if z(d) > currentBest then
31 widthToStacks = widthToStacks ∪ pointToStack(d);
32 currentBest = z(d);
33 heightDPs = heightDPs ∪ {d};
34 end
35 end
36 end
37 sort heightDPs;
38 return widthToStacks;
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CHAPTER 4
Implementation

The SSCG is implemented in C++ and compiled using gcc 4.8.4. It can also be compiled
using Visual Studio 2013 or 2012. The ILP was modeled and solved using IBM Cplex
12.6. It is built on a framework by Frederico Dusberger [DR15b] [DR15a], which provides
the insertion heuristic used for the initial set of columns, as well as all input/output
management and data handling.
The program can be called using a number of input values. An example program call
would look like the following:

k2csv pfile /home1/e0826666/inst/221.cut
alg 1 K 3 heur 0 symmetry 1 heur2 0 runs 3
allow_elem_rotation 0 allow_sheet_rotation 0

In this case, "pfile" refers to the instance file, "alg" refers to the algorithm to be used, "K"
refers to the number of stages, while "heur" is the number of strips Heuristic-Generator
should generate, 0 meaning not to use it at all. The "alg" input value refers to the
algorithm of the framework, in which 1 refers to the SSCG. Finally, "symmetry" refers
to whether or not to use the symmetry constraints, "heur2" refers to using Heuristic-
Generator 2 or not, and "runs" is the number of times the integrality heuristic tries
to add new columns after finishing rounding all values. More specifically, if runs= 3,
the combination of adding columns and running the integrality heuristic on the result
repeats 3 times. Given the way the generators are implemented, all input variables can
be used at the same time. This means technically, Heuristic-Implemenation 2 can be run
while generating the best strip out of 5 (heuristic = 5), with or without the symmetry
constraints. The final two input values are necessary, since the framework supports
rotated elements, SSCG however does not. This is relevant in detecting feasible instance
files, and a consequence of the initial feasible solution.

45



4. Implementation

Concerning the structure of the program, it follows the structure of the framework.
The class consisting of the SSCG is called ColumnGeneration and inherits from the
Algorithm class. All pricing problems inherit from the new class PricingProblem, which
holds most relevant data for the generators. This includes the constructor, an update
function which is used to update the duals, and the solve function, which returns true if
a strip with negative reduced cost is found, and false otherwise. Finally, if a solution
is found, it is returned using the getSolution function of the PricingProblem class.
It is also of note that like in Section 3.2.1, the pricing problem is implemented as a
maximization problem, meaning the signs of the dual variables are reversed.
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CHAPTER 5
Results

All experimental tests were run on the Sun Grid Engine (SGE), version 6u2, on the
computation grid of the Algorithms and Complexity Group at the Technical University
of Vienna. It uses a Quad Core Intel Xeon E5649, with 2.53 GHz.
A popular benchmark for bin packing problems in literature is presented below. There
are 10 classes, each of which having 5 subclasses with n ∈ {20, 40, 60, 80, 100}. The
benchmark therefore consists of 50 unique random instance types.
The first four classes were proposed by Martello and Vigo [MV98], and are based on
generating four different element types:

• Type 1: wj uniformly random in [2
3W,W ], hj uniformly random in [1, 1

2H].

• Type 2: wj uniformly random in [1, 1
2W ], hj uniformly random in [2

3H,H].

• Type 3: wj uniformly random in [1
2W,W ], hj uniformly random in [1

2H,H].

• Type 4: wj uniformly random in [1, 1
2W ], hj uniformly random in [1, 1

2H].

Each class k (k ∈ {1, 2, 3, 4}) is then obtained by generating an element of type k with a
probability of 70%, while the remaining 3 element types have a probability of 10% each.
In these classes, the sheet size is W = H = 100.
The following six classes were proposed by Berkey and Wang [BW87]:

• Class 5: W = H = 10, with wj and hj uniformly random in [1, 10].

• Class 6: W = H = 30, with wj and hj uniformly random in [1, 10].

• Class 7: W = H = 40, with wj and hj uniformly random in [1, 35].

• Class 8: W = H = 100, with wj and hj uniformly random in [1, 35].
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5. Results

BKP-Gen EDUK-Gen
Class n t Cls LP Sol Heur t Cls LP Sol

1

4 48.7 0.8 1060.7 1262.0 1259.0 46.7 0.8 1060.7 1262.0
8 166.8 51.0 1949.2 2340.7 2328.3 179.9 51.0 1949.2 2340.7

12 495.8 114.8 2786.0 3158.7 3143.1 428.6 114.8 2786.0 3158.7
16 1093.4 368.6 4075.6 4866.5 4857.1 887.6 368.6 4075.6 4866.5
20 972.8 290.2 4395.7 5225.2 5187.5 802.8 290.2 4395.7 5225.2

2

4 61.6 0.1 1085.3 1181.7 1165.4 53.7 0.1 1085.3 1181.7
8 217 0.1 1995.4 2134.5 2097.4 222.7 0.1 1995.4 2134.5

12 537.3 0.5 3074.7 3261.6 3222.9 561.9 0.5 3074.7 3261.6
16 1049.9 1.1 4107.5 4329.2 4260.8 1112.1 1.1 4107.5 4329.2
20 1336.2 0.6 4610.0 4875.8 4714.2 1154.0 0.6 4610.0 4875.8

3

4 343.1 0.3 2322.3 2885.7 2851.6 345.2 0.3 2322.3 2885.7
8 942.1 0.8 4416.4 5816.0 5799.0 1061.5 0.8 4416.4 5816.0

12 NaN NaN NaN NaN NaN 1723.2 0 6587.5 7916.0
16 NaN NaN NaN NaN NaN NaN NaN NaN NaN
20 NaN NaN NaN NaN NaN NaN NaN NaN NaN

4

4 24.4 0.6 770.3 855.3 849.5 28.7 0.6 770.3 855.3
8 188.9 15.3 1683.4 2036.5 1969.8 195.9 15.3 1683.4 2036.5

12 271.1 41.1 2255.9 2578.4 2536.4 278.0 41.1 2255.9 2578.4
16 543.4 64.8 2987.5 3366.6 3226.0 558.9 64.8 2987.5 3366.6
20 806.1 79.9 3641.7 4132.2 3974.6 764.9 79.9 3641.7 4132.2

Table 5.1: Average results for BKP-Generator and EDUK-Generator for Classes 1 through
4, for each n ∈ {20, 40, 60, 80, 100}. NaN refers to timeouts or out of memory exceptions
in all 10 instances.

• Class 9: W = H = 100, with wj and hj uniformly random in [1, 100].

• Class 10: W = H = 300, with wj and hj uniformly random in [1, 100].

For each class and value of n, ten instances are generated, resulting in 500 instances
overall. We adapted these instances to better fit our demand of few types, but many
items. Firstly, for all instances, the sheet and element sizes were multiplied by 100, i.e.
Hnew = 100H and Wnew = 100W . Also, the number of element types was reduced, such
that for each n ∈ {20, 40, 60, 80, 100} we have nnew = n

5 . Finally, a constant demand
D = 1000 was added to each item.

In Tables 5.1 and 5.2, t is the average time measured in seconds, Cls is the average
number of columns added, LP is the average optimal LP solution after adding the
columns, while Sol is the average final solution. Heur refers to the average solution of
the insertion heuristic.
Looking at Tables 5.1 and 5.2, we can see that both algorithms have identical results.
This is not surprising given the extremely high demand of the items. There exists no case
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BKP-Gen EDUK-Gen
Class n t Cls LP Sol Heur t Cls LP Sol

5

4 82.3 6.9 1493.0 1665.9 1654.5 85.7 6.9 1493 1665.9
8 419.6 33.0 2509.7 2776.1 2705.6 476.3 33.0 2509.7 2776.1

12 1009.9 72.3 3916.4 4268.1 4217.6 1091 72.3 3916.4 4268.1
16 1274.6 130.8 4535.3 4976.2 4831.2 1364.8 130.3 4535.3 4976.2
20 1381.3 3.5 4491.7 4889.5 4564.5 1489.6 3.5 4491.7 4889.5

6

4 0.1 25.2 144.5 149.9 148.0 0.2 25.2 144.5 149.9
8 0.5 39.3 239.3 250.8 245.8 0.5 39.3 239.3 250.8

12 1.7 77.0 437.3 458.9 447.2 1.6 77.0 437.3 458.9
16 2.4 79.1 519.2 543.5 530.4 2.5 79.1 519.2 543.5
20 8.6 165.3 677.8 709.3 688.0 10.2 165.3 677.8 709.3

7

4 45.7 2.0 1039.9 1223.4 1208.1 45.9 2.0 1039.9 1223.4
8 257.7 81.6 1760.8 2110.9 2060.9 250.2 81.6 1760.8 2110.9

12 717.7 12.2 3323.2 3934.6 3817.6 711.4 12.2 3323.2 3934.6
16 734.4 31.0 3480.9 4071.1 3900.9 695.1 31 3480.9 4071.1
20 1043.2 34.0 4015.5 4480.0 4303.0 933.1 34.0 4015.5 4480.0

8

4 0.2 0.3 150.3 162.8 159.0 0.2 0.3 150.3 162.8
8 0.7 18.1 242.3 257.0 252.4 0.7 18.1 242.3 257.0

12 2.2 42.3 460.6 488.0 474.1 2.1 42.3 460.6 488.0
16 3.2 76.4 541.4 579.4 559.7 3.1 76.4 541.4 579.4
20 10.2 154.7 695.2 734.2 713.4 9.8 154.4 695.2 734.2

9

4 86.5 3.0 1347.3 1606.2 1588.6 78.7 3.0 1347.3 1606.2
8 272.3 6.0 2215.9 2616.2 2548.8 255.2 6.0 2215.9 2616.2

12 754.9 8.6 3856.6 4400.1 4273.8 670.1 8.6 3856.6 4400.1
16 1065.5 37.5 4300.8 5021.5 4763.5 1040.4 37.5 4300.8 5021.5
20 1277.2 1.7 4475.8 4815.0 4710.3 1265 1.7 4475.8 4815.0

10

4 0.1 0.9 126.2 133.8 132.2 0.1 0.9 126.2 133.8
8 0.4 4.7 200.7 213.3 209.9 0.4 4.7 200.7 213.3

12 1.3 7.6 393.0 412.4 403.7 1.2 7.6 393.0 412.4
16 2.1 39.3 465.6 498.0 486.1 2.0 39.3 465.6 498.0
20 3.9 50.1 609.4 643.7 625.4 3.8 50.1 609.4 643.7

Table 5.2: Average results for BKP-Generator and EDUK-Generator for Classes 5 through
10, for each n ∈ {20, 40, 60, 80, 100}.
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5. Results

where EDUK would find an actually infeasible strip. Also to note is the fact that the best
results, i.e. the ones closest to the solution from the Insertion Heuristic, are those with
the fewest amounts of added columns. This is due to the integrality heuristic going back
to the original Insertion Heuristic solution, if the master problem does not change too
much. The Insertion Heuristic is never beaten, which is also not surprising. The pricing
problem cannot produce very many columns worth adding, given the stage restriction.
The LP relaxation seems good, however. We can also see that class 3 is practically not
solvable. Upon closer inspection, most elements require an entire sheet, blowing up the
ILP model. Overall, classes 1 through 4 all end up putting more computational burden
on the master problem than the pricing problem in the 2 staged case, due to the relatively
large element size.

3 Stages

Given the results for K = 2, the benchmarks do not seem promising for the case of K = 3.
When K = 2 we already get a multitude of unfinished instances due to the memory
consumption of Cplex. This is evident not just in class 3 ("NaN" refers to instance that
never finished), but in a number of other classes as well. The problem gets exacerbated
when the pricing problem starts adding many columns to the model, as is expected
in the 3 staged problem. Indeed, first tests did not return good results, with a great
deal not finishing. As such, we chose another set of popular instances from literature.
Alvarez-Valdes et al. [AVPT02] uses a selection of instances randomly generated, or taken
from other literature. Although they are used not for the 2CS, but as an optimization
packing problem, i.e. every element has a value vi, over which a maximum is tried to
be packed. H is given by Herz [Her72], HZ1 is given by Hifi and Zissimopoulos [HZ96],
M1-M5 appears in Morabito et al. [MAA92]. UU1-UU10 are randomly generated in
Fayard et al. [FHZ98] as follows. The dimensions of the sheets are random in [500, 4000],
the dimensions of the pieces are in intervals [0.01H, 0.7W ], and the number of element
types is random in [25, 60]. To make the instances a 2CS problem, we added a demand
of 50 to each element type.
Further instances, these constrained (i.e. the element types have an upper bound, which
we use as demand), include OF1 and OF2 from Oliveira and Ferreira [OF90] and W
from Wang [Wan83]. Instances CU1-CU11 are generated as follows. The dimensions
of the sheet are random in [100, 1000], the dimensions of the pieces are in the intervals
[0.01H, 0.7W ], and the number of element types is again between [25, 60]. The demand
bi for element i is max{1,min{10, random(γ)}}, where γ = bH/hic bW/wic.
ATP30-ATP39 are again taken directly from Alvarez-Valdes et al, which are randomly
generated large scale test problems. The number of element types is in the interval
[30, 60], the sheet size is in [1500, 3000], and the dimensions of the piece wi and hi in the
intervals of [0.05W, 0.4W ] and [0.05H, 0.4H] respectively.
The remaining instances are from Cung et al. [CHC00]. The CHL and Hchl instances are
both randomly generated. For these, the dimensions are as follows. element dimensions
hi and wi are [0.1H, 0.75H] and [0.1W, 0.75W ], respectively. The demands are such that
bi = min{ρ1, ρ2}, where ρ1 = bH/hic bW/wic and ρ2 is in the interval [1, 10].
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Symmetry = 0 Symmetry = 1
Instance t Cls LP LPCG Sol t Cls LP LPCG Sol

2s 0.04 11 2.29 1.70 3 0.03 11 2.29 1.70 3
3s 0.12 2 20.94 20.86 28 0.12 7 20.94 20.86 26
A1s 0.30 34 19.78 17.98 25 0.29 35 19.78 17.98 25
A2s 0.35 40 11.47 10.47 13 0.45 50 11.47 10.47 13
A3 0.50 45 7.79 6.82 8 0.40 37 7.79 6.84 8
A4 1.18 59 4.34 4.03 5 1.23 60 4.34 4.03 5
A5 1.78 70 4.85 3.76 6 1.62 63 4.85 3.77 6
ATP30 209.40 181 10.17 7.90 10 210.42 179 10.17 7.90 10
ATP31 1001.43 268 15.75 13.19 15 925.57 253 15.75 13.19 16
ATP32 194.24 297 13.90 11.84 14 184.02 283 13.90 11.82 14
ATP33 123.94 213 13.89 11.61 15 120.10 212 13.89 11.62 14
ATP34 91.68 106 6.23 5.14 7 71.98 94 6.23 5.14 6
ATP35 121.90 110 7.85 7.07 8 110.22 108 7.85 7.07 8
ATP36 54.06 124 9.69 7.13 9 61.71 139 9.71 7.13 9
ATP37 228.88 189 13.63 10.68 13 259.70 205 13.63 10.67 12
ATP38 280.36 187 11.37 9.82 11 266.16 198 11.37 9.82 12
ATP39 79.03 122 12.68 10.81 13 87.09 135 12.68 10.81 13
CHL1s 6.21 110 6.86 5.08 7 6.64 117 6.86 5.07 7
CHL2s 0.09 22 2.45 2.25 3 0.09 22 2.45 2.25 3
CHL5 0.03 14 3.45 2.60 3 0.03 14 3.45 2.60 3
CHL6 9.38 127 5.79 4.88 7 9.86 131 5.79 4.88 6
CHL7 9.58 146 5.99 5.17 7 9.73 153 5.99 5.17 7
CU1 214.30 393 41.86 37.16 44 213.2 394 41.86 37.16 45
CU10 25.30 130 15.77 13.72 16 23.36 128 15.77 13.72 16
CU11 188.27 210 14.27 12.50 15 189.14 212 14.27 12.50 15
CU2 2.67 81 14.78 13.56 16 3.11 82 14.78 13.56 16
CU3 6.91 123 22.21 19.92 23 6.93 126 22.21 19.91 23
CU4 16.12 126 17.28 15.65 18 15.48 128 17.28 15.65 18
CU5 14.36 135 21.52 19.34 23 18.3 140 21.52 19.38 22
CU6 9.67 121 19.99 17.36 20 10.95 128 19.99 17.35 20
CU7 1.69 64 10.40 9.14 11 1.60 61 10.40 9.14 11
CU8 4.46 98 15.31 13.49 16 3.87 88 15.31 13.50 16
CU9 1.83 63 15.08 13.22 15 1.64 62 15.08 13.22 15

Table 5.3: Results of DP-Generator with and without the symmetry breaking constraint,
part 1.
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5. Results

In all tables, "t" refers to time in seconds, "Cls" refers to the number of columns added,
"LP" is the solution to the LP relaxation, while "LPCG" is the solution to the LP relaxation
using the added columns. Finally, "Sol" is the integral solution.
In Table 5.3 and 5.4 we can see the results of the column generation using DP-Generator
as a strip generator. In the early stages of testing, the symmetry breaking constraints
3.4 from section 3.2, seemed to hinder the integrality heuristic, promoting infeasible
solutions. The reason behind this is because the integrality heuristic makes each strip
integral step-wise. In cases where a sheet might have more parts that are fractional, and
hence cut, as the following sheet, an infeasibility happens (due to the ordering of the
sheet patterns by height). As such, a new ordering is implemented when the algorithm is
run without the symmetry breaking constraints.

yj ≤ yj−1 ∀j = 2, . . . , n

referred to as soft symmetry breaking constraints. Although it seems the symmetry
breaking constraints perform better most of the time, there are instance where the inverse
holds true, as well.

In Table 5.5 and 5.6 the results for the Heuristic-Generator 1 are shown. The variable
heuristic in this context is set to 1 and to 5, meaning the amount of heights that
are checked before the best is returned. The run time for cases when heuristic = 5
can increase substantially, as seen in the ATP instances, although usually it does not
make a large difference. The LPCG for heuristic = 5 is always at least as good as
for heuristic = 1, although this does not always translate to a better overall solution.
Overall the LPGC is competitive with DP-Generator, beating it especially in computing
time.

For the Heuristic-Generator 2 algorithm, the LP relaxed solutions are competitive with
the Heuristic-Generator 1. However, both for the run time and for the integral solutions,
the results vary. Interestingly, the number of columns added by Heuristic-Generator 2 is
not significantly greater than for Heuristic-Generator 1.

The final results can be compared in Table 5.8. The dynamic programming implementation
used here is an adaption from the SLOPP solution presented by Cintra et al. [CMWX08].
DP-Imp performs better than dynamic programming in most cases. The exception here
are the randomly generated UU7s, UU8s, and UU9s instances, where DP-Generator
does not perform well. In the case of the insertion heuristic, however, results vary. There
are many cases in which DP-Generator finds a better solution, however there are cases
where the insertion heuristic is much better.

Figure 5.1 and Figure 5.2 show the average gap between the integral solution Sol and
LPGC for all 3-staged variants. DP-0 refers to DP-Generator with symmetry= 0, DP-1
to DP-Generator with symmetry= 1, Heur-1 to Heuristic-Generator with heuristic= 1,
Heur-5 to Heuristic-Generator with heuristic= 5, and finally Heur2 to Heuristic-Generator
2. The two graphs are separated in the same manner as the tables, to keep consistency.
Moreover, the instances are separated by difficulty this way as well. The gap shows
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Symmetry = 0 Symmetry = 1
Instance t Cls LP LPCG Sol t Cls LP LPCG Sol

Hchl3s 0.86 28 3.00 2.67 4 0.67 27 3.00 2.67 4
Hchl4s 0.46 27 2.65 1.75 2 0.46 27 2.65 1.75 2
Hchl5s 10.31 96 4.02 3.40 5 10.55 97 4.02 3.40 5
Hchl6s 4.73 73 4.97 4.32 5 5.29 80 4.97 4.32 6
Hchl7s 39.34 182 7.76 6.44 9 42.38 191 7.76 6.44 8
Hchl8s 0.12 20 1.40 1.24 2 0.12 20 1.40 1.24 2
Hs 0.06 23 16.48 15.44 18 0.10 21 16.48 15.44 18
HZ1s 0.10 9 28.90 28.68 33 0.09 9 28.90 28.68 34
M1 0.45 79 76.58 72.36 84 0.42 77 76.58 72.36 85
M2 0.58 45 61.87 61.06 66 0.56 41 61.87 61.06 66
M3 0.64 112 84.08 75.11 91 0.67 116 84.08 75.11 91
M4s 0.56 92 76.53 72.41 84 0.51 80 76.53 72.41 80
M5 0.61 87 79.02 74.14 92 0.66 89 79.02 74.14 88
OF1 0.08 24 3.68 3.21 5 0.07 20 3.68 3.21 5
OF2 0.05 22 4.32 3.44 5 0.05 24 4.32 3.44 5
STS2s 1.96 89 12.56 11.19 13 2.32 81 12.56 11.20 13
STS4s 1.42 59 5.06 4.54 6 1.72 69 5.06 4.54 6
UU10 412.05 872 517.69 483.04 574 409.85 881 517.69 483.04 587
UU1s 5.13 195 304.46 293.12 362 7.37 246 304.46 293.05 356
UU2s 18.38 280 300.00 283.86 356 18.19 273 300.00 283.86 334
UU3s 16.49 395 247.56 231.86 297 24.53 397 247.56 231.86 292
UU4s 57.25 516 372.39 352.16 467 54.25 502 372.39 352.26 450
UU5s 187.89 618 494.33 468.35 603 205.12 662 494.33 468.02 589
UU6s 48.86 494 393.04 378.55 477 52.41 494 393.04 378.55 459
UU7s 374.45 699 478.99 442.05 547 329.81 727 478.99 442.06 536
UU8s 305.77 771 550.72 522.18 658 320.87 800 550.74 522.18 642
UU9 547.42 865 656.04 618.78 822 406.47 885 656.04 618.78 808
W 0.64 63 18.58 17.16 23 0.57 58 18.58 17.16 23

Table 5.4: Results of DP-Generator with and without the symmetry breaking constraint,
part 2.
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5. Results

Heuristic = 1 Heuristic = 5
Instance t Cls LP LPCG Sol t Cls LP LPCG Sol

2s 0.02 17 2.29 1.65 3 0.04 14 2.29 1.65 3
3s 0.06 3 20.94 20.86 28 0.08 3 20.94 20.86 28
A1s 0.13 52 19.78 17.98 24 0.61 154 19.78 17.98 24
A2s 0.11 64 11.47 10.47 13 0.53 105 11.47 10.47 13
A3 0.16 78 7.79 6.81 9 3.11 415 7.79 6.81 8
A4 0.23 70 4.34 4.03 5 0.53 76 4.34 4.03 5
A5 0.45 84 4.85 3.75 6 0.86 88 4.85 3.75 6
ATP30 28.06 289 10.17 7.90 10 273.16 485 10.17 7.90 10
ATP31 78.38 489 15.75 13.19 15 223.12 745 15.75 13.19 15
ATP32 227.96 1652 13.90 11.78 14 755.23 2079 13.90 11.78 14
ATP33 75.27 615 13.89 11.60 14 240.11 955 13.89 11.60 14
ATP34 15.67 242 6.23 5.13 6 67.09 401 6.23 5.13 6
ATP35 19.44 174 7.85 7.07 9 51.65 385 7.85 7.07 9
ATP36 8.09 178 9.69 7.11 10 34.25 950 9.69 7.11 9
ATP37 174.9 1623 13.63 10.66 13 388.76 1107 13.63 10.66 13
ATP38 35.02 295 11.37 9.82 12 254.46 908 11.37 9.82 12
ATP39 10.82 228 12.68 10.77 13 24.07 331 12.68 10.77 13
CHL1s 1.28 174 6.86 5.06 7 1.99 136 6.86 5.06 7
CHL2s 0.05 24 2.45 2.25 3 0.08 28 2.45 2.25 3
CHL5 0.03 34 3.45 2.60 3 0.47 283 3.45 2.60 4
CHL6 1.49 177 5.79 4.88 6 2.78 161 5.79 4.88 6
CHL7 1.67 251 5.99 5.15 7 4.04 201 5.99 5.15 7
CU1 23.66 511 41.86 37.13 45 36.85 489 41.86 37.12 44
CU10 3.71 156 15.77 13.72 16 4.09 150 15.77 13.72 16
CU11 19.76 285 14.27 12.47 16 32.43 271 14.27 12.47 15
CU2 0.57 129 14.78 13.52 16 0.93 99 14.78 13.52 16
CU3 1.04 164 22.21 19.85 24 2.02 163 22.21 19.85 23
CU4 2.44 150 17.28 15.65 19 2.69 135 17.28 15.65 18
CU5 1.19 168 21.52 19.29 22 10.79 295 21.52 19.29 23
CU6 1.76 152 19.99 17.26 20 1.81 131 19.99 17.26 20
CU7 0.45 84 10.40 9.14 11 0.56 77 10.40 9.14 11
CU8 0.38 101 15.31 13.48 15 0.99 102 15.31 13.47 15
CU9 0.33 83 15.08 13.22 16 0.42 66 15.08 13.22 16

Table 5.5: Results of Heuristic-Generator 1 generating 1 and 5 different heights, part 1.
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Heuristic = 1 Heuristic = 5
Instance t Cls LP LPCG Sol t Cls LP LPCG Sol
Hchl3s 0.33 38 3.00 2.67 4 0.27 28 3.00 2.67 4
Hchl4s 0.20 36 2.65 1.75 2 0.29 34 2.65 1.75 2
Hchl5s 2.24 149 4.02 3.36 5 3.67 142 4.02 3.36 5
Hchl6s 0.95 128 4.97 4.26 5 2.12 122 4.97 4.26 6
Hchl7s 5.61 277 7.76 6.40 8 9.38 261 7.76 6.40 8
Hchl8s 0.08 35 1.40 1.21 2 0.14 26 1.40 1.21 2
Hs 0.05 22 16.48 15.44 17 0.07 21 16.48 15.44 18
HZ1s 0.09 12 28.90 28.68 32 0.12 17 28.90 28.68 35
M1 0.29 86 76.58 72.36 83 0.37 126 76.58 72.36 81
M2 0.49 57 61.87 61.06 66 0.67 55 61.87 61.06 67
M3 0.54 137 84.08 75.11 89 0.43 136 84.08 75.11 88
M4s 0.39 82 76.53 72.41 84 0.36 114 76.53 72.41 82
M5 0.33 109 79.02 74.14 89 0.39 105 79.02 74.14 94
OF1 0.03 26 3.68 3.24 4 0.08 30 3.68 3.26 4
OF2 0.03 26 4.32 3.43 5 0.05 29 4.32 3.43 5
STS2s 0.32 119 12.56 11.09 13 0.92 98 12.56 11.09 13
STS4s 0.51 80 5.06 4.53 6 0.75 74 5.06 4.53 6
UU10 125.65 1149 517.69 482.91 589 97.44 1119 517.69 482.74 581
UU1s 3.27 307 304.46 293.08 359 2.59 249 304.46 293.07 361
UU2s 8.72 394 300.00 283.86 348 5.43 294 300.00 283.86 349
UU3s 7.90 570 247.56 231.86 290 4.81 488 247.56 231.86 287
UU4s 19.23 733 372.39 350.28 451 11.64 623 372.39 350.23 460
UU5s 44.64 1001 494.33 466.31 591 58.18 1203 494.33 466.31 599
UU6s 15.97 722 393.04 378.55 495 27.36 736 393.04 378.55 489
UU7s 50.71 998 478.99 442.04 553 45.15 924 478.99 442.04 557
UU8s 67.77 1068 550.72 522.18 665 294.40 2506 550.72 522.18 667
UU9 110.47 1226 656.04 618.78 803 139.07 1068 656.04 618.78 789
W 0.16 63 18.58 17.16 24 0.26 57 18.58 17.16 24

Table 5.6: Results of Heuristic-Generator 1 generating 1 and 5 different heights, part 2.
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5. Results

Heuristic-Generator 2
Instance t Cls LP LPCG Sol Instance t Cls LP LPCG Sol

2s 0.02 20 2.29 1.65 2 CU8 0.76 131 15.31 13.47 16
3s 0.05 5 20.94 20.86 28 CU9 0.41 81 15.08 13.22 15
A1s 0.08 57 19.78 17.98 25 Hchl3s 0.37 37 3.00 2.66 4
A2s 0.14 91 11.47 10.47 13 Hchl4s 0.23 36 2.65 1.75 2
A3 0.10 82 7.79 6.81 8 Hchl5s 2.47 203 4.02 3.36 4
A4 0.23 81 4.34 4.02 5 Hchl6s 1.04 134 4.97 4.27 6
A5 0.36 104 4.85 3.75 6 Hchl7s 5.55 351 7.76 6.40 9
ATP30 46.81 338 10.17 7.90 10 Hchl8s 0.07 41 1.40 1.20 2
ATP31 335.79 448 15.75 13.19 16 Hs 0.05 26 16.48 15.44 17
ATP32 827.55 1732 13.90 11.80 15 HZ1s 0.09 16 28.90 28.68 33
ATP33 23.96 610 13.89 11.6 14 M1 0.34 109 76.58 72.36 79
ATP34 51.36 723 6.23 5.13 7 M2 0.65 53 61.87 61.06 66
ATP35 23.63 287 7.85 7.07 9 M3 0.54 143 84.08 75.11 87
ATP36 7.24 221 9.69 7.11 10 M4s 0.40 117 76.53 72.41 81
ATP37 153.52 746 13.63 10.66 13 M5 0.53 118 79.02 74.14 92
ATP38 31.93 297 11.37 9.82 12 OF1 0.04 24 3.68 3.25 5
ATP39 12.15 260 12.68 10.77 13 OF2 0.03 28 4.32 3.43 5
CHL1s 1.39 189 6.86 5.06 8 STS2s 0.42 153 12.56 11.09 13
CHL2s 0.04 28 2.45 2.25 3 STS4s 0.55 88 5.06 4.53 6
CHL5 0.03 32 3.45 2.60 3 UU10 150.96 1370 517.69 482.79 572
CHL6 3.02 197 5.79 4.88 6 UU1s 2.60 303 304.46 293.12 363
CHL7 1.24 246 5.99 5.15 7 UU2s 6.63 420 300.00 283.86 344
CU1 20.06 608 41.86 37.13 44 UU3s 12.63 498 247.56 231.86 295
CU10 4.54 192 15.77 13.73 16 UU4s 12.51 804 372.39 350.31 461
CU11 15.25 315 14.27 12.47 15 UU5s 45.74 1074 494.33 466.31 600
CU2 0.70 135 14.78 13.52 16 UU6s 24.00 774 393.04 378.55 475
CU3 1.17 236 22.21 19.86 24 UU7s 48.54 1119 478.99 442.04 571
CU4 1.95 194 17.28 15.65 18 UU8s 71.76 1261 550.72 522.18 660
CU5 1.58 213 21.52 19.29 22 UU9 148.37 1245 656.04 618.78 820
CU6 2.47 188 19.99 17.26 20 W 0.28 79 18.58 17.16 24
CU7 0.45 106 10.40 9.14 11

Table 5.7: Results of Heuristic-Generator 2
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Instance InsHeur DynProg DP-Gen Instance InsHeur DynProg DP-Gen
2s 3 3 3 CU8 16 15 16
3s 23 28 26 CU9 16 15 15
A1s 23 26 25 Hchl3s 4 4 4
A2s 12 12 13 Hchl4s 3 3 2
A3 8 8 8 Hchl5s 5 4 5
A4 5 7 5 Hchl6s 6 6 6
A5 6 5 6 Hchl7s 8 8 8
ATP30 11 10 10 Hchl8s 2 2 2
ATP31 16 16 16 Hs 18 17 18
ATP32 14 14 14 HZ1s 30 31 34
ATP33 14 14 14 M1 82 80 85
ATP34 7 7 6 M2 67 74 66
ATP35 8 9 8 M3 90 100 91
ATP36 10 10 9 M4s 82 80 80
ATP37 14 12 12 M5 85 108 88
ATP38 12 12 12 OF1 4 4 5
ATP39 13 13 13 OF2 5 5 5
CHL1s 7 6 7 STS2s 13 12 13
CHL2s 3 3 3 STS4s 6 6 6
CHL5 4 4 3 UU10 540 602 587
CHL6 6 6 6 UU1s 326 387 356
CHL7 7 7 7 UU2s 312 342 334
CU1 13 13 14 UU3s 258 260 292
CU10 17 16 16 UU4s 398 456 450
CU11 15 15 15 UU5s 527 542 589
CU2 16 15 16 UU6s 410 424 459
CU3 24 21 23 UU7s 499 515 536
CU4 18 17 18 UU8s 580 625 642
CU5 23 22 22 UU9 695 773 808
CU6 21 19 20 W 24 28 23
CU7 11 10 11

Table 5.8: Solutions from Dynamic Programming, the Insertion Heuristic and DP-
Generator with symmetry = 1
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5. Results

DP-0 DP-1 Heur-1 Heur-5 Heur2
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Figure 5.1: Average gap between Sol and LPGC (Sol/LPGC) for all 3-staged variants on
instances up to CU9.
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Figure 5.2: Average gap between Sol and LPGC (Sol/LPGC) for all 3-staged variants on
instances from Hchl3s.

58



that on average, using the symmetry constraints consistently outperforms DP-Generator
without the symmetry constraints. It also appears that the more random nature of
using heuristic= 1 performs best on more complex instances, while performing worst
on the smaller, easier instances. This suggests that choosing the strip with the least
negative reduced cost plays a factor in easier instances, but is a potential weakness in
more complex instances. The differences are marginal, however. There seems to be no
difference between Heuristic-Generator with heuristic= 5 and Heuristic-Generator 2. The
conceptual difference is that Heuristic-Generator 2 generates multiple strips per set of
dual variables, whereas Heuristic-Generator only chooses the best (out of 5, in case of
heuristic= 5). There is therefore a higher likelihood that they share similar strips.
Figure 5.3 shows two solutions to the instance CU9. Figure 5.3a is the solution from
DP-Generator with symmetry constraints, whereas Figure 5.3b is the solution from the
Insertion Heuristic. In the solution of DP-Generator, Pattern 14 (second to last) is of
note. It consists only of one large strip, almost the size of the sheet itself.
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5. Results

Pattern 1: sheet S (id: 0), 1x Pattern 2: sheet S (id: 0), 1x Pattern 3: sheet S (id: 0), 1x Pattern 4: sheet S (id: 0), 1x Pattern 5: sheet S (id: 0), 1x

Pattern 6: sheet S (id: 0), 1x Pattern 7: sheet S (id: 0), 1x Pattern 8: sheet S (id: 0), 1x Pattern 9: sheet S (id: 0), 1x Pattern 10: sheet S (id: 0), 1x

Pattern 11: sheet S (id: 0), 1x Pattern 12: sheet S (id: 0), 1x Pattern 13: sheet S (id: 0), 1x Pattern 14: sheet S (id: 0), 1x Pattern 15: sheet S (id: 0), 1x

(a) Solutiont to instance CU9 using DP-Generator, with symmetry = 1.
Pattern 1: sheet S (id: 0), 1x Pattern 2: sheet S (id: 0), 1x Pattern 3: sheet S (id: 0), 1x Pattern 4: sheet S (id: 0), 1x Pattern 5: sheet S (id: 0), 1x

Pattern 6: sheet S (id: 0), 1x Pattern 7: sheet S (id: 0), 1x Pattern 8: sheet S (id: 0), 1x Pattern 9: sheet S (id: 0), 1x Pattern 10: sheet S (id: 0), 1x

Pattern 11: sheet S (id: 0), 1x Pattern 12: sheet S (id: 0), 1x Pattern 13: sheet S (id: 0), 1x Pattern 14: sheet S (id: 0), 1x Pattern 15: sheet S (id: 0), 1x

Pattern 16: sheet S (id: 0), 1x

(b) Solution to instance CU9 using the Insertion Heuristic.

Figure 5.3: Solutions to instance CU9
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CHAPTER 6
Conclusions and Future Work

Column generation based on strip generation clearly has potential, as can be seen in the
LP relaxed solutions. In some cases, the rather naive integrality heuristic manages to
beat more classical approaches, such as dynamic programming or an insertion heuristic.
It does not consistently beat them, however, even with substantially longer run times.

The strip generating algorithms offer expected solutions. They reach the LP relaxed
optimum in most cases, including both heuristics. However, results start to spread
concerning integral solutions. Although, for example, Heuristic-Generator 1 offers similar
LP relaxed solutions, the integrality heuristic can not translate that into a solution as
good as with DP-Generator. This suggests that the strips generated heuristically are
only used fractionally by the master problem, where xpj < 1. The gaps between the
integral solution and the LP relaxed solutions give a good insight into the importance of
choosing the strip with the most negative reduced cost, versus choosing the first random
strip with negative reduced cost. In particular, it seems dependent on the instance which
generator should be used. The larger and more complex the instance, the more random
the choice of strip appears to work better.
In the case of K = 2, strip generation does not fare so well. The number of available
strips that can be generated is too small to take advantage of the column generation
framework. This means a lot of computing time solving the initial ILP is wasted. The
strip generators in this case do not allow trimming, i.e. using a smaller element in a
larger strip, therefore requiring to trim the wasted material. This severely limits the
number of possible strips, and plays a role in its performance.

The overall run time of the SSCG is not a problem, whereas the space requirements
are. Cplex manages to find solutions using up to around 6000 sheets. Instances that
require more sheets cannot be solved, and throw memory exceptions. Although this
could be managed with a larger allotment of memory, the run times in these cases also
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6. Conclusions and Future Work

become increasingly large. It stands to reason That the SSCG can realistically handle
no more than 5000 sheets. This is because although we see solutions with almost 6000
sheets, these are in cases of few added columns, where the model remains an equal size
throughout the entire run.

Future Work

Given the integral results, the most potential seems to be in improving the integrality
heuristic. This could be done using a more refined heuristic, such as making elements
integral, as opposed to strips, and repacking them. Branch and Price is an approach that
promises even better results, as it can be used to find the optimal integral solution. Both
approaches demand significant computing time, however. In any case, it appears to be
worth exploring further.
Another avenue worth exploring might be allowing trimming in the case of K = 2, and
reevaluating the results. It is expected that the increased number in potential strips
produces better results.
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