

Technische Universität Wien
A-1040 Wien ▪ Karlsplatz 13 ▪ Tel. +43-1-58801-0 ▪ www.tuwien.ac.at

Goal Driven Software Project Risk
Management: Designing A
Domain Model Aligned To

COSO-II-ERM-Framework

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur/in

im Rahmen des Studiums

Wirtschaftsinformatik

eingereicht von

Christoph Schiessl
Matrikelnummer 0826016

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung
Betreuer/in: Univ.-Prof. Dr. Walter Schwaiger

Wien, 03.04.2016

 (Unterschrift Verfasser/in) (Unterschrift Betreuer/in)

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

 Introduction

Page 1

Erklärung zur Verfassung der Arbeit

„Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die

verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen

der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder

dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe

der Quelle als Entlehnung kenntlich gemacht habe.“

Ort, Datum, Unterschrift

 Introduction

Page 2

Acknowledgements

I would like to thank Prof. Schwaiger for the possibility of writing the master thesis at the

institute for management science at the TU Vienna with his outright advise the entire time of

creation. All time long Prof. Schwaiger was available for meetings and gave professional and

adequate consult and support. As expert in financial control and risk management he made

helpful suggestions an recommendations about thesis finding, definition of the research

question, general advise about risk management, the COSO risk management framework

understanding and many more. Therefore Prof. Schwaiger contributed an essential part for

the successful completion of this master thesis.

 Introduction

Page 3

Abstract

Risk management in software projects is crucial for success but also a very complex issue.

Software project managers face multiple difficulties to manage software risks in an adequate

manner. Different software risk management frameworks exist in literature to support

software project managers in their business. Some of them also provide conceptual models

which can be used to build a better understanding of the framework as well as provide a

basis for further implementations in software development i.e. automated risk management

tools.

This work takes up a goal-driven software project risk management framework (GSRM) with

the aim to answer the research question about how to design and align a GSRM domain

model concerning COSO-II-ERM Framework components and methods.

The methodological approach starts with an analysis of a state-of-the-art GSRM domain

model about missing concepts in alignment to COSO-II-ERM-Framework components and

enhances the model to fulfill those requirements. Further a database is implemented

according to the designed domain model and deals as basis for a proof of concept approach.

The results of this work show that the designed GSRM domain model in alignment to COSO-

II-ERM Framework is valid and applicable for further implementations and supports software

managers in the task of manage software risks in a successful way.

Risikomanagement in Softwareprojekten ist essenziell für den Erfolg, aber auch eine sehr

komplexe Angelegenheit. Softwareprojektmanager sehen sich mit einer Vielzahl von

Schwierigkeiten in Bezug auf das adäquate Managen von Software Risiken konfrontiert. Es

existieren verschiedenste Frameworks im Bereich des Software Risikomanagements, welche

Softwareprojektmanager in deren Tätigkeit unterstützen. Einige dieser Frameworks stellen

konzeptionelle Modelle zur Verfügung, welche zur Verständnisgenerierung der Frameworks

aber auch für weitere Softwareentwicklungen, wie z.B. automatisierte Risikomanagement-

Tools, verwendet werden können.

Diese Masterarbeit greift das Zielgetriebene Softwareprojekt Risikomanagement Framework

(GSRM) auf und hat zum Ziel die Forschungsfrage, wie ein Domänenmodell für GSRM

erstellt und in Bezug auf die Komponenten des COSO-II-ERM-Frameworks, angepasst

werden kann.

Die methodische Ansatz beginnt mit einer Analyse eines State-of-the-Art GSRM

Domänenmodell und Identifiziert fehlende Konzepte unter der Betrachtung des COSO-II-

ERM-Frameworks. In weiterer Folge wird das Model um die fehlenden Konzepte erweitert

um im Anschluss daran zur Datenbankmodellierung herangezogen werden. Abschließend

wird die Datenbank für einen konzeptionellen Beweis verwendet.

 Introduction

Page 4

Das Ergebnis dieser Masterarbeit beweist sowohl die Validität dieses, unter Betrachtung des

COSO-II-ERM-Frameworks, erstellten GSRM Domänenmodells als auch die Verwendbarkeit

des Modells für weiterführende Implementierungen und zur Unterstützung von

Softwareprojektmanagern in der erfolgreichen Durchführung deren Aufgaben im

Softwarerisikomanagement.

 Introduction

Page 5

Table of contents

1. Introduction .. 7

1.1 Motivation and Problem Statement .. 7

1.2 Aim of the work .. 8

1.3 Methodological Approach ... 8

1.4 Structure of the work ...10

2. State of the art / analysis of existing approaches ..11

2.1 Literature Studies ..11

2.2 Comparison and analysis of existing approaches ..13

3. Methodology ...14

3.1 Used Concepts ...14

3.1.1 Software Risk ...14

3.1.2 Risk Event and Likelihood ..14

3.1.3 Risk Management ...14

3.1.4 Domain Model ..15

3.2 Methods and models ...15

3.2.1 Generic Risk Management Methods and models..16

3.2.2 Specific Risk Management Methods and models..19

3.3 Languages ..26

3.3.1 UML object diagram ...27

3.3.2 UML activity diagram ..27

3.4 Design methods ..28

3.4.1 Design Methods for Risk Management Domain Model ...28

3.4.2 Database Design Methods ...29

3.5 Analysis methods ..32

4. Suggested solution/implementation ..35

4.1 Analysis of current goal-driven software project risk management domain model with
respect to COSO-II-ERM-Framework ...35

4.2 Enhancement of the goal-driven software project risk management domain model
considering the Generic Cybernetic Management Framework ..39

4.2.1 Enhancement related to Internal Environment ..39

4.2.2 Enhancement related to Objective Setting ..40

4.2.3 Enhancement related to Event Identification ...40

4.2.4 Enhancement related to Risk Assessment..41

4.2.5 Enhancement related to Risk Response ...41

4.2.6 Enhancement related to Control Activities ..42

4.2.7 Enhancement related to Information and Communication42

4.2.8 Enhancement related to Monitoring ..42

 Introduction

Page 6

4.2.9 Enhanced GSRM Domain Model ..43

4.2.10 Domain Model Details...44

4.3 Database Modeling ...48

4.3.1 Goal-PlanRule-RiskFactor concept ...48

4.3.2 Event-Impact-Risk-Opportunity concept ...49

4.3.3 Risk-MeasureRule-RiskLimit-ActRule-Opportunity-Treatment concept51

4.3.4 Agent responsibility concept ...52

4.4 Validation proof ...53

5. Critical reflection ...62

5.1 General open issues ...62

5.2 Database restrictions ..63

6. Summary and future work...64

7. Appendix ..65

7.1 Appendix A: Test data samples from concepts ...65

8. Bibliography..69

 Introduction

Page 7

1. Introduction

 1.1 Motivation and Problem Statement

[Isla09] investigated the problems current software development projects face. Therefore he

mentioned that one out of five software development projects failed and almost half of those

projects had problems in their budget, time and function achievement. He analyzed the main

reasons for those problems which are of technical nature but much more a reason of poor

management of people.

Risk Management in Software Projects became more and more important in the last

decades. Failure in controlling uncertainties such as time-to market, budget, schedule

estimations, technology and stakeholder’s expectations imposed potential risks [Isla11].

Because of the increasing complexity and demands of Software Projects Risk Management

has become a vital part in managing Software Projects [Bro95]. Several risk management

methods exist in the literature. [Isla11] draws attention on the importance of integrating

software risk management in the early development phase and in requirements engineering.

They detected lacks in the literature about this integration and therefore designed a

promising approach of goal-driven software risk management (GSRM).

According to the wide-spread use of COSO ERM Framework and the advance for enterprise

risk management the COSO ERM Framework can be also used to support Software Risk

Management [COSO]. In [Schw12] a cybernetic management framework is designed which

translates management into actions. Among others this framework is aligned to COSO ERM

framework and can be applied to risk management process.

[DHMM10] focuses on Information System Security Risk Management (ISSRM) and

addresses also the importance of risk management in early management phase. They

mentioned the poor modeling support of recent and common risk management methods.

Therefore they designed a domain model as conceptual model for ISSRM supporting risk

managers in understanding and comparing several risk management methods.

Such ontologies can also be used for implementation of risk management tools. Zachman

invented in [Zach87] the so called Zachman’s Framework which describes enterprise

architecture and the related views. Described in this framework such ontology is assigned to

the designer’s perspective which is the interface between the owner and the

builder/manufacturing engineer.

Focusing on the design of a domain model the designer has to consider both views the user

and programmer's view. Because GSRM can be seen as the state-of-the-art for software

 Introduction

Page 8

project risk management as well as COSO ERM Framework as standard for enterprise wide

risk management literature lacks in an adequate domain model from GSRM considering both

user's and programmer's view as well as COSO II ERM Framework's components. The

actual GSRM domain/meta model shows problems for both views.

The research question therefore is framed as follows:

"How can a domain model for a GSRM process be designed in alignment to the operations
view of COSO II Framework ?"

 1.2 Aim of the work

The aim of this work is to design a conceptual model as domain model of state-of-the-art

goal-driven software project risk management processes. The model should be aligned to

COSO II ERM framework by highlighting the operations view. Therefore the activities in the

cybernetic MGT framework are used. As proof of concept a MSSQL-DB, representing the

designed domain model will be implemented with MSSQL Management Studio. To proof the

domain model under usage of the data base test data is applied from the literature. To

finalize the work the statement of validity and utilization of the model and database should be

made.

 1.3 Methodological Approach

The methodological approach consists of the following steps:

1. Literature Analysis with respect to goal-driven software project's risk management

methods:

Current goal-driven software project risk management is analyzed starting from initially

contributed risk management frameworks introduced in [BoRo89] to a state-of-the-art goal-

driven software development risk management in [Isla11].

2. Analysis of current goal-driven software project risk management domain model with

respect to COSO-II-ERM-Framework:

After a literature analysis a goal-driven software project risk management domain model,

representing the starting point of analysis, is matched against COSO-II-ERM-Framework’s

 Introduction

Page 9

components [COSOII04] with the result to identify the missing concepts and relationships of

the model dealing as basis for further alignment.

3. Enhancement of the goal-driven software project risk management domain model under

consideration of the analysis results from step2 with respect to the Generic Cybernetic

Management Framework:

After an analysis of the GSRM domain model and identification of missing concepts and

relations and further elements the model is aligned and enhanced due to the approach

relating Generic Cybernetic MGT Framework in [ScAb13] to result in an accurate, complete,

conflict-free and non-redundant goal-driven software project risk management domain model

fulfilling all COSO-ERM requirements as well as including all COSO-ERM components.

4. Database modeling:

To acquire an adequate analysis basis and starting point for the further proof of concept and

validity of the designed GSRM domain model from the previous steps in the methodological

approach a database has to be modeled. For database model design MSSQL Management

Studio is used. The database is modeled according to the designed domain model and

enriched with test data from the literature which in further consequence is used for analysis

and validation proof of the model.

5. Proof of concept:

The designed database model with test data is then applied for further use case evaluation

defined in a previous sub step. Therefore the final statement should be made ensuring the

validity of the designed domain model by proofing the utilization of the database model.

The applicability for further implementation i.e. in software development should also be made

but is in detail not covered in this work.

 Introduction

Page 10

The steps are shown in the following figures:

 Figure 1 - Methodological Approach

 1.4 Structure of the work

The structure of this work is, in a raw point of view, segmented in an introduction of the work,

a state of the art analysis and analysis of existing approaches, the methodology introducing

the used concepts, methods and models, the suggested solution representing the

implementation, a critical reflection and a conclusion of the work in general as well as an

prospect for future work finalizing in the bibliography.

Section 1 will give an introduction of the work including problem statement and motivation,

aim of the work and a short overview of the methodological approach which is separated in

five subsections.

Section 2 is about the state of the art analysis starting with a literature studies about risk

management frameworks continuing with an analysis and comparison of existing approaches

with respect to the aim and in general the superior topic of this work.

Section 3 covers the methodology which is divided in an definition of used concept with

respect to software risks, events and likelihood, risk management in general and the concept

of a domain model. The next subsection provides background information about methods

and models which are essential for the methodological approach of this work. This

 2. State of the art / analysis of existing approaches

Page 11

subsection distinguishes between generic risk management methods and models and

specific risk management methods and models. Another subsection is addressing the major

modeling language used in this work which is UML and cuts into UML object diagram and

UML activity diagram. The section also includes a subsection listing the primary design

methods which are separated in general domain model design methods, design methods for

risk management domain models and database design methods. Finalizing this section the

substantially analysis method for model validation of the designed domain model are

presented.

Section 4 comprises the suggested implementation methods and solution of the previously

mentioned problem statement. Starting with an analysis of current goal-driven software

project risk management domain model with respect to COSO-II-ERM-Framework, the

enhancement of the goal-driven software project risk management domain model under

consideration of the analysis results from the previous subsection with respect to the Generic

Cybernetic Management Framework, the database design for the succeeding proof of

concept.

Section 5 gives a critical reflection including a summary of existing approaches as well as a

discussion of open issues.

Section 6 summarizes the work and discusses the utilization and view for future approaches

and works in the context of goal driven software project risk management, the designed

domain model and the implemented database.

Section 7 lists the main figures in an appendix.

Section 8 consists of a bibliography referencing the sources of the literature on which the

work is based.

2. State of the art / analysis of existing approaches

 2.1 Literature Studies

The main focus of this literature studies are software risk management frameworks to be

geared towards GSRM.

[Isla11] did a detailed literature analysis of risk management frameworks contributing to the

design of the state of the art approach of a goal driven software project risk management

framework. The main frameworks leading to this approach are mentioned as follows.

Boehm [Boe91] initially did a contribution to software risk management frameworks. who

designed the first software risk management framework called Boehm’s risk-driven Spiral

Model in which he integrated risk management iteratively in the software development life

cycle.

 2. State of the art / analysis of existing approaches

Page 12

This approach is followed by Software Engineering Institute’s (SEI) framework for risk

evaluation [SJ94] which includes identification, analysis, communication and mitigation for

software risk management and is central based on risk taxonomy and questionnaire from

[CKM+93] consisting of the most important software development process elements as well

as elements relating to management process and methods. In [ADH+96] the SEI Continuous

Risk Management Guidebook, practical techniques for continuous risk management in all

phases of the software development life cycle are provided.

In [Kar95] the Software Engineering Risk Model framework is proposed considering

technology as well as business perspectives. Therefore software development is defined

under the view of just-in-time approach. 81 risk factors are taken under account in

combination with three main risk elements declared as technology, cost and schedule. These

risk factors are associated with a risk measure and question utilizing a probability tree driven

from calculating risk factor values.

Kontio [Kon01] also considers goals or expectation in his approach of a conceptual

framework for risk management called Riskit methodology where risks represent threats over

the course of reaching these goals. It is a model based approach in which risks are modeled

and documented qualitatively under analysis of risk factors, risk events, risk effect sets and

utility loss. This approach ranks risks by the Pareto ranking technique and supports

managers from risk identification and analysis of risks through to monitoring and controlling

them.

An integrated risk management process is proposed by Prokaldnicki in [EPYA06] especially

for global software development (GSD). In [PNJE06] a reference model is developed

consisting of four phases including new project, project allocation, project development,

evaluation and feedback with an individual process for each phase. Starting with project

identification followed by risk assessment, which assists offshore development, further to

communication of risks and decisions continuing to the operational level.

S. Islam [Isla11] designed a goal-driven risk management approach for software

development. He focuses on goals in software risk management, main goals relating to

schedule, cost and quality as well as goals like offshore, security, safety, compliance,

business process and cultural diversity relating goals. Considering the fact that fixing errors

in later phases of software development are much more cost intense and effortful as in

earlier development phases he designed a goal-driven software risk modeling (GSRM)

framework which aims in integrating risk management activities within the requirement

engineering phase.

He considered and adopted existing modeling techniques and goal modeling languages like

KAOS and i*/ Tropos to construct a GSRM framework contemplating technical as well as

non-technical development components. KAOS and i*/Tropos [BPG+04] are commonly used

 2. State of the art / analysis of existing approaches

Page 13

methodologies for Goal-oriented Requirements Engineering (GORE) in the RE process

where KAOS (Keep All Objective Satisfied) is the main foundation of his work and aims to

model every aspect of requirements (what, how, why, who, and when) [DvLF93, vL09]. Goals

in KAOS can be descriptive or prescriptive, soft or hard, functional or non functional and

should be satisfied by the cooperation of the system's agents. The goal model, where each

goal is represented graphically, consists of higher-level goals and lower-level goals their

relation and conflicts among them.

 2.2 Comparison and analysis of existing approaches

Except Islam's GSRM approach from [Isla11] most of the frameworks are not using particular

processes to assess and manage risks. They often follow the same outdated process i.e.

checklists or expert analysis. There is also an overall emphasis of integration of risk

management as early as possible in the software project phase but unfortunately detailed

instructions and activities for this integration are mostly missing. The GSRM approach takes

up this omission and integrates risk management in requirements engineering in reference to

a goal-risk model. Based on the circumstance that most software risk management

framework focus on limited goals like in general related to schedule, cost and quality GSRM

also mentions the importance of other goal instances as well like safety, compliance,

maintenance, supporting business processes and coordination of projects under diverse

circumstances in culture and location. Therefore GSRM is an effective approach for software

risk management and its consideration in the early development phase. It also shows the

importance of analyzing not only the technical perspective but also non-technical issues as

well which are often overlooked in software development. But GSRM is limited i.e. to the

scale of projects and the increasing amount of goals in large projects which are more difficult

to manage in large-scaled projects. GSRM also depends on the context of projects because

the estimation of specific goals and their importance can differ in stakeholder's opinions. A

more conceptual approach of GSRM by elaborating a domain model aiming to integrate this

in further development methods is also missing.

Therefore this work should help to decrease those limitations and design such a model.

 3. Methodology

Page 14

3. Methodology

3.1 Used Concepts

This section covers the main concepts which will be used in this work. The concepts will refer

to Software Risk Management as it is the main underlying topic but also to more generic

ones.

 3.1.1 Software Risk

According to the ISO-Guide 73:2009 risk is the "effect of uncertainty on objectives" [ISO-09,

Ch.1.1], where an effect is defined as deviation from the expected and can be positive and/or

negative. Risks are associated with other basic concepts like events, consequences and

likelihood. Software risk is a special form of risk. In [Isla11] it is defined as, "the possibilities

of suffering a loss such as budget or schedule over-runs, customer dissatisfaction, poor

quality and passive customer involvement due to an undesirable event and its consequences

during the life cycle of the project." [Isla11, P.12]

 3.1.2 Risk Event and Likelihood

Events can sometimes be referred to an “incident” or “accident” and are defined as

“occurrence or change of a particular set of circumstances” [ISO-09, Ch.3.5.1.3] whereas an

event can have multiple occurrences and is not exclusively depended on something

happening but can also consist of a missing eventuation.

Likelihood is defined as the “chance of something happening” [ISO-09, Ch.3.6.1.1]. It is

related to the mathematically used term “probability” and in risk management used in

combination with events. Therefore likelihood is defined, measured or determined in the

objectively or subjectively way as well as qualitatively or quantitatively.

 3.1.3 Risk Management

An abstract point of view of the definition of risk management is “coordinated activities to

direct and control an organization with regard to risk” [ISO-09, Ch.2.1]. Risk Management is

 3. Methodology

Page 15

always related to a risk management process including activities like risk identification, risk

analysis, risk evaluation and treatment as well as risk monitoring. Also important to consider

are terms like risk management policy and risk management plan. Therefore risk

management frameworks are used to continually improve risk management through the

organization and provide certain “foundations and organizational arrangements” [ISO-09,

Ch.2.1.1] for risk management including among others policy, objectives, plans, processes,

etc. These frameworks are also embedded in the organization’s strategic and operational

policies and practices.

 3.1.4 Domain Model

A model in general abstracts the real world and can have different character. A domain

model in particular is "an object model of the domain that incorporates both behavior and

data" [Fow03, P.116]. A domain model combines both data and process and consists of

object with multiple and various attributes. They are related to other objects and form

complex associations. Objects represent both data in the business as well as business rules

which describe the behavior of the model. Domain models also use inheritance. Their aim to

solve certain problems (i.e. software design, implementation) or as they represent reality they

can be used for communication in a non-technical manner. In order to implement or design

such models UML [UML11] Unified Model Language is applied combining objects and

activities in UML activity diagrams.

In this work a domain model is represented as data model for further implementation.

According to the Zachman Framework [Zach87] this kind of model is associated with a

Logical Data Model or System Model belonging to the Designer's perspective which inherits

the role of an architect lying in between of the Owner's perspective and the Builder's

perspective.

 3.2 Methods and models

In this section important methods and models are investigated which are relevant for this

work. As this work consists of different kinds of models in their structure and use like domain

models or process models as well as different kinds of areas this section is subdivided.

[JIL15] defined in their research about effective software risk management processes three

different kinds of risk management process models which are General Software

Development Risk Management Processes and Specific Process Oriented Risk

Management Models. In this thesis these definitions will be adapted in a similar way.

 3. Methodology

Page 16

 3.2.1 Generic Risk Management Methods and models

According to [JIL15] this section covers the generic risk management methods relevant in

this work under the premise that they “…can be applied to all types of projects related to a

specific industry.” [JIL15, P.838]:

Generic risk management models and methods are researched in [SMJ14] where they

identified four major approaches of risk management in software projects which encompass

risk list, risk-action list, risk-strategy model and risk-strategy analysis. A risk list is a collection

or list of prioritized risk items supporting the project manager in assessing risks. In this

approach risk items are classified in system items, which occur in most software projects and

specific items, which are related to project characteristics and organizational context.

Although risk lists are easy to use they do not help identifying relevant actions which is

obtained through risk-action lists where every risk item are prioritized and associated with

resolution actions. The advantage is also the easy use, buildup and modification but as this

approach focuses on isolated pairs of risk items it does not emphasize on a risk addressing

policy.

Risk-strategy models relate collective risk items to aggregate resolution actions. They arrive

a risk profile through extraction of risk categories, and afterwards through abstraction of

action categories they arrive at a general risk strategy. They are easy to use and facilitate

managers understanding the risk profile. Nevertheless such models are difficult to build up

and modify because complete comprehension of influencing factors in risk profiles is needed.

Risk-strategy analysis is a stepwise process of linking risks to a complete risk management

strategy. It is similar to risk-strategy model but with a looser coupled relationship of

aggregate risk items and aggregate resolution actions. Because of this it's easier to modify

than risk-strategy model.

As basic risk management process they mention also a model proposed by Software

Engineering Institute (SEI) shown in the following figure:

 3. Methodology

Page 17

Figure 2 – Risk Management Process [SMJ14, P.848]

These functions represent continuous activities in a project life cycle.

The study results in the conclusion that each of these approaches is suitable for different

kind of software projects. They also mention the fact that because of the complexity of

software projects and the interlinkage of software project's stages risk management is

important in every one of them.

The COSO-II-ERM Framework was introduced by the Committee of Sponsoring

Organizations of the Treadway Commission in 2004 [COSOII04]. COSO embedded risk

management in the enterprise management context. In the Enterprise risk management an

enterprise therefore faces in all its entities uncertainties which influence the targeted value

and value creation. Those uncertainties are called events which can have negative impact

representing risks and positive impact representing opportunities.

Enterprise risk management is process oriented in detail it's defined as:

"Enterprise risk management is a process, effected by an entity’s board of directors,

management and other personnel, applied in strategy setting and across the enterprise,

designed to identify potential events that may affect the entity, and manage risk to be within

its risk appetite, to provide reasonable assurance regarding the achievement of entity

objectives." [COSOII04, P.2].

Additional ERM has effects on every level of the organization including the human resources

and is also applied in strategizing activities.

Figure 3 shows the COSO-Cube which includes the components of enterprise risk

management, the achievement of objectives and the relationship of objectives and

components representing the three dimensions of the matrix or cube:

 3. Methodology

Page 18

Figure 3 - COSO-Enterprise Risk Management Framework – COSO Cube [COSOII04, P.5]

COSO derives the components in eight interrelated elements derived from management

activities:

 Internal Environment: This component incorporates the basic assumptions how risk

is managed in an organization. Laying the foundation of ERM in a philosophical,

ethical, environmental and cultural (risk and organization) manner.

 Objective Setting: To identify risks or events enterprises must set objectives in the

first place. Objective setting includes defining an organization's risk appetite which

has to be aligned with shareholders (i.e. stakeholder, key employees, suppliers,

customers, etc.).

 Event Identification: The identification of events whether they are intern or extern,

risks or opportunities is an important part in Enterprise Risk Management.

Opportunities therefore effect also the enterprise's strategy reactively. Risk

categories are helpful and can be used to react forgetting important risks.

 Risk Assessment: This component includes the probability and impact analysis of an

event which requires an adequate precedent event identification.

 Risk Response: Obviously this is the most important component because of the

impact the decision of an organization has whether to avoid, reduce, accept or to

share a risk. An organization has to calculate with the consequences each risk

management activity has (i.e. reducing a risk means to implement control activities

and therefore consume resources).

 3. Methodology

Page 19

 Control Activities: In COSO II ERM Framework control activities enlarge traditional

ones which is not only about reducing probability or frequency of risks (preventive)

but also about reducing cost impacts (detective).

 Information & Communication: Effective information systems and communication

channels in an organization is a crucial part in ERM Frameworks. Timely information

in order to make appropriate management decisions are essential.

 Monitoring: Monitoring is an important activity not only in the context of ERM. In ERM

organization's use it to make decisions about expanding the framework (i.e.

performing separate risk assessments, refining and response to them).

The objectives, representing another dimension in the cube, can be separated in different

risk categories and corresponding types of risk [COSOII04, BH05]:

 Strategic: High-level goals and objectives which include risks in the context of

governance, strategic objectives, business models, external forces, etc.

 Operations: Objectives for the efficient use of an organization's resources (i.e. risks

of business processes, value chains, financials, etc.). This part of risks is also under

main consideration of this work.

 Reporting: Objectives in reliability to reporting enforcing risks i.e. in the context of

information technology, financials, internals, reputations, etc.

 Compliance: Means objectives treating with applicable laws and regulations, i.e.

environmental, legal and contractual risks.

The third dimension of the cube represents the relationship between objectives and

components as four different organizational levels of Enterprise Risk Management focusing

"..on the entirety of an entity’s enterprise risk management, or by objectives category,

component, entity unit, or any subset thereof" [COSOII04, P.5].

 3.2.2 Specific Risk Management Methods and models

This section mentions a few risk management process plans in the field of software

development risk management but also in general. Their intention is to make current

practicesof risk management more effective and therefore add or invent new practices in the

field of (software) risk management:

[Schw12] in further consequence of the integration of risk management in enterprise

management designed the cybernetic management framework in alignment to risk

management called cybernetic risk management framework. Therefore the three cybernetic

 3. Methodology

Page 20

principles are used: feedback principle and control and communication principle introduced

by Wiener [Wiener48] and the double loop principle established by Foerster [Foer03]. The

cybernetic management framework translates management into action by modeling

management processes in an UML activity diagram. Giving a mental meta-model for any

kind of managers, the framework can be used in different management domains e.g.

strategic management processes in a way that risk management consideration are included.

For the integration and translation of risk management into action, [Schw12, p.428] used

three different risk management frameworks:

 BCBS-risk management framework,

 ISO-risk management framework and

 COSO-enterprise risk management framework

While the measurement of risks (financial and operational risks) is adopted from the Basel

Committee on Banking Supervision (BCBS) [Basel2-06], risk management process is

implemented according to ISO-Risk Management Process [RMS09, p.14]. Also the Plan-Do-

Check-Act (PDCA) cycle, the operating principle of ISO's management system standards is

used as cybernetic feedback principle. [ISO-MSS11]

Figure 3 - ISO PDCA Cycle [ISO-MSS11]

The enterprise wide language for risk management is used from COSO-enterprise risk

management framework [COSOII04, P.2] which:

 is process oriented,

 relates to strategic, operations, reporting and compliance objectives and

 is relevant for all organizational units of the enterprise

Using these frameworks and after translation of management into action first a cybernetic

management framework (single and double loop) followed by a generic cybernetic

framework have been designed. And finally a cybernetic risk management process as a

supervised closed double loop is developed shown in Figure 5:

 3. Methodology

Page 21

Figure 5 - Cybernetic Risk MGT Process – Supervised Closed Double Loop MGT [Schw12, P.438]

In a more generic context the model consists of eight managerial activities, which are:

 Plan-activity

 Measure-activity

 Check-activity

 Corrective Act-activity

 Adapting Act-activity

 Process related Supervision-activity

 Control related Supervision-activity

 System related Supervision-activity

 3. Methodology

Page 22

The Plan-activity related to risk management consists of setting objectives in form of risk

limits and defining rules for multiple elements like planning, measuring, controlling (adaption

as well as check) and do-rules for operating processes.

The Measure-activity is the central part of the risk assessment which outputs in the actual

risk which is then compared in the Check-activity to the risk limit defined in the Plan-activity.

The deviation represents the output of the Check-activity in detail the difference between the

actual risk and the risk limit.

According to the double loop character the Act-activity is spitted in Corrective Act-activity and

the Adapting Act-activity.

While the Corrective Act-activity outputs in the instructions to reduce the risk in the business

process, the Adaptive Act-activity defines instructions to take adaptive actions in the Plan-

activity.

The Supervision-activities are divided in process related supervision, control related

supervision and overall system related supervision. Those activities represent the information

processes and exception handling actions corresponding to the relating system areas.

A more detailed correlation between the cybernetic risk management framework and the

COSO II ERM framework [COSOII04] can be done with the usage of the COSO II cube

shown in figure 3. Relating to the eight components of the COSO II cube described in section

3.2.1 activities of the cybernetic risk management framework can be matched to as follows:

Risk management planning defined in [Schw12] can be associated to several components

from the COSO II cube. Internal environment, objective setting and risk identification are all

covered in this activity. By definition of plan-, do-, measure- and control-rules the elements of

internal environment are satisfied. Objective setting is related to the similar called information

entity objective which is one of the outputs of the plan activity. Risk identification is indirectly

included in the planning process and aims in the definition of control rules especially in the

checking rules for which risks have to be identified in the first place.

The risk assessment component is based in the checking activity as well as the

measurement activity where the deviation is determined which is a crucial part of risk

assessment.

In further consequence risk response and preventive control activities can both be found in

the corrective and adaptive act activities. The most important part of risk management is the

choice of decision how to act on different outcomes of risk assessment which then serves as

corrective or adaptive instructions closing the double loop framework.

The information and communication component consists of the different kinds of information

entities of the cybernetic risk management framework i.e. all kind of rules, deviation,

 3. Methodology

Page 23

objective, performance and control inputs which are processed in the context of the closed

double loop management.

Finally the monitoring component can be related to the supervisory activities of the

framework in which also the detective part of the control activity component is based.

An integration approach of this framework is done in [ScAb13] where the cybernetic

management framework is integrated into the REA business ontology which allows the

semantic design and implementation of accounting-based management information systems.

The REA accounting framework introduced by McCarthy [McC82]where R stands for

economic resources, E for economic events and A for economic agents was then extended

by Geerts and McCarthy [GeMc02] to the REA business ontology including also future

related information and business policy considerations. The relationship between the three

elements and the policy infrastructure which builds the REA business ontology is shown in

the following figure:

Figure 6 - REA Business Ontology [ScAb13, P.347]

After integration of the cybernetic management framework introduced by Schwaiger

[ScAb13] and mentioned before in figure 6 they call it probabilistic REA management

ontology extended by business and management policy and probabilistic events like plan

and risk events resulting in the probabilistic policy infrastructure:

 3. Methodology

Page 24

Figure 7 - Probabilistic REA Management Ontology [ScAb13, P.350]

“The probabilistic event type is represented in the simplest case as probabilistic binary tree

and it is used to specify future events.” [ScAb13, P.350] Plan and risk events represent future

events which both inherit the probabilistic nature possessing values for the likelihood of their

occurrence. Important is that the plan events are explicitly distinguished from the economic

events in the REA business ontology. Plan events contain objectives in the planning process

while risk events are used in the risk management systems. The probabilistic REA

management ontology “…allows the consistent design and implementation of accounting-

based management information systems which include advanced management concepts in

form of rational planning and stochastic optimal control systems” [ScAb13, P.350-351].

A goal-driven Software Development Risk Management Model was designed in [Isla11].

They defined a layer based concept of four layers with the advantage of separation and

therefore the performing tasks without affecting the other. These layers are:

Goal, risk-obstacle, assessment and treatment layer. The model is shown in the following

figure:

 3. Methodology

Page 25

Figure 8 - Goal-driven software development risk management model [Isla11, P.65]

The goal layer contains the identification, elaboration and modeling of goals in the

perspective of project success including meeting business objectives, completion in budget,

time and function as well as customer satisfaction. The goal management is also contained

in this layer which means achievement, maintainment, ensurance and improvement of these

goals. Goals are therefore classified in different levels of abstraction defined as sub-goals

which satisfaction attains the main goal.

Obstacles defined in the so called risk-obstacle layer are potential software development risk

factors which negatively influence the goals. They can influence multiple goals and are

identified through e.g. checklists, questionnaires or brainstorming.

Analyzing risk events caused by the identified risk factors from the risk-obstacle layer. These

risk events are characterized with two properties: likelihood and severity. As in the previous

layer where one goal can be influenced by more than one risk factor, the same risk factor

can pose multiple risk events. Bayesian subjective probability is used to determine the

likelihood of the individual risk event. Considering only risk events with negative impact to

goals implies that improbable risk events relate to a high goal fulfillment.

 3. Methodology

Page 26

The treatment layer contains the risk control action and the performance of them. The aim is

the properly attainment of the goals. Treatment actions are connected to risk obstacles as

well as to goals as goal contribution respectively obstacle obstruction.

 3.3 Languages

The design of the domain model in form of a data model is done by Unified Modeling

Language [UML11] which is well known in the context of modeling and therefore widely used.

UML defines a set of various modeling concepts as well as their semantics, the interpretation

of a computer and how it is readable by humans. The usage of UML is very broad therefore

only a subset of modeling techniques and concepts will be applicable in this work.

Using UML as a general purpose modeling language has significant advantages because of

the existence of an adequate support infrastructure and therefore the high practical value

also due to the economic incentive of implementing tools for support in contrast to highly

specialized modeling languages. [Sel07] Another reason for general purpose modeling

languages is the availability of well trained programmers and experts which is much more

difficult the more complex and specialized to a certain domain the language is. Also the

availability of pre-packaged program libraries for general purpose languages is a

considerable benefit of the same.

[Sel07, P.2] provides a systematic approach of defining UML profiles in the context of domain

specific modeling languages. Therefore they mention the key challenges for designing

modeling languages:

 The need to simultaneously support different levels of precision:

Here, UML can be of advance due to its usage in different varieties and its simple

syntax and loose semantics.

 The need to represent multiple different but mutually consistent views of certain

 elements of the model:

 According to the complexity of most systems and the variety of different perspectives

 modeling languages should complementary and mutually be consistent in their

 problem and implementation oriented approach.

 The graph-like nature of most modeling languages:

Graphical representations of complex systems are better understandable and

implementable than linear text-based representation.

The usage of UML is able to face these challenges and in further consideration can be used

to model a domain specific language (DSML) which is more prudent than design a brand-

new one. In the three methods of defining a DSML identified in [Sel07] UML can be applied

 3. Methodology

Page 27

in two of them which are: "Refinement of an existing more general modeling language by

specializing some of its general constructs to represent domain-specific concepts."[Sel07,

P.2] and "Extension of an existing modeling language by supplementing it with fresh domain-

specific constructs." in opposition to "Definition of a new modeling language from scratch."

[Sel07, P.2]

In this work UML is used as object or class diagram as well as activity diagram. The main

characteristics of each and the major differences between those two areas of application are

reviewed in the following two subsections.

 3.3.1 UML object diagram

UML object diagrams or class diagrams are common used for a quantity of applications in

data modeling and software engineering. UML object diagrams find their basis in

mathematical concept of relations supported by Entity Relationship diagrams. In further

development, UML finds usage in Object-Oriented data modeling and supports data

querying. [AkBo01]

According to [Bell04] the basics of these kinds of diagrams are to show the types being

modeled within the system including types like classes, interfaces, data types and

components. Those elements can have attributes and are connected via associations which

can in particular also model generalizations/aggregations and inheritances.

Unfortunately according to [AkBo01], a UML class diagram does not sufficiently support all

aspects of specification which therefore Object Constraint Languages can be used. They did

a further approach in their work.

In this work the concept of UML object diagrams is used to design the conceptual domain

model and in a further approach, use this model to implement the database prototype for the

model evaluation.

 3.3.2 UML activity diagram

An introduction of UML activity diagrams is given in [Bell03] in which the purpose of those

diagrams is defined as “..to model the procedural flow of actions that are part of a larger

activity” [Bell03, P.1] In contrast to UML class diagrams, activity diagrams contains action or

activity elements and states as well as flows. They focus on the sequential execution and

triggering of actions by conditions. An important element of those diagrams is the

 3. Methodology

Page 28

communication of information which in further perspective allows i.e. to model business

processes and helps managers to get a better understanding of the system and how it works.

UML activity diagrams show parallels to workflow specifications. An usage of UML activity

diagrams and adequacy for certain kinds of workflow patterns is examined in [DuHo01].

This work will use UML activity diagrams in a more process oriented way for to consider all

the important elements for the design of the conceptual domain model.

 3.4 Design methods

This section covers general information about domain modeling as well as design

approaches for risk management domain model and database modeling as proof of concept

and describes the methodologies used for such an implementation. It shows the relevance

and practicability for development methods. The section is therefore separated in design

methods for conception of a domain model for risk management and the design methods for

the implementation of a database as prototype of this domain model.

3.4.1 Design Methods for Risk Management Domain Model

An insight into the design of a risk management domain model or ontology is provided by

[DHMM10]. They proposed and applied a rigorous approach to build an ontology for

information system security risk management which can be used furthermore to “..compare,

select or otherwise improve security risk management methods.” [DHMM10, P.289]

They mention the increasing demand of risk management in information systems and the

benefits of risk management ontology for aligning a company’s business strategy with its

information technology strategy. They split their overall research method into four steps:

 Step1-Concept alignment: Which starts by investigating the state of the art in

information system security risk management (ISSRM) identifying the core concepts

and harmonizing the terminology. As a result of step 1 they obtain a concept

alignment table, which highlights the core concepts and indicates synonymy and

other semantic relationships and a glossary of the found terms.

 Step 2-Construction of the ISSRM domain model: Based on the results from step 1

they defined a conceptual model of the ISSRM domain using UML notation (UML

class diagram).

 Step 3-Comparison between ISSRM domain model and security-oriented languages:

This step consists of the comparison or confrontation of the ISSRM domain model

 3. Methodology

Page 29

and prominent security-oriented RE languages including e.g. extended KAOS

[vLam04], Abuse Cases [LNIJ04] and Secure-Tropos [MGMP02]. The investigation

was about whether and which concept is fully supported, partially supported or

missing in the ISSRM domain model.

 Step 4-Definition of ISSRM language support: The last step and the final goal of this

work was "to provide ISSRM-compliant versions of common RE languages.”

[DHMM10, P.292]. They also addressed the formal definition of syntax and

semantics including "softer" properties like graphical symbols and structuring

mechanisms.

As a result of Step 2-Construction of the ISSRM domain model they designed the ISSRM

domain model shown in Figure 9 which is of great importance for this work and explained in

more detail later.

Figure 4 - ISSRM domain model [DHMM10, P.300]

3.4.2 Database Design Methods

Data modeling or database design is a formal process or technique used in software

engineering aiming in the analysis of data requirements to the creation of a data model and

finally in the implementation of a database [SGWG05].

In [CoBe02] a database system development lifecycle, shown in Figure 10, is described

representing the different steps of database design as well as planning, implementation and

maintenance. As database design is not the main aim of this work and therefore not every

element of the lifecycle is covered, only the important ones are highlighted here.

 3. Methodology

Page 30

The preliminary steps of database design are database planning, system definition and

requirements collection and analysis. Database planning is basically an important a

management activity to realize the database in the most effective way where defining

mission statement and mission objectives is taking part. In this work database planning

means to consider about the usage of the database and the main aim which is the validation

of the conceptual domain model. System definition includes the description of scope and

boundaries as well as the main user views. Therefore some different kinds of user views are

applied in context of the designed database of this work like described in [Zach87] the

Owner's who wants to proof if its requirements are fulfilled, the Designer's view who's main

aim is the validation proof of the designed model and the Builder's view who uses the

database for further implementations. In [CoBe02] requirements collection and analysis is

about information gathering and analyzing regarding requirements which means in this thesis

information from GSRM [Isla11] and management activity diagram [Schwa12]. Also

identifying requirements for future use of the database is included in this element of database

system development lifecycle [CoBe02] which is not considered in this work.

The design process of a database supporting organization's mission statement and

objectives is covered in the database design section in [CoBe02].

According to [SGWG05] this process therefore distinguishes three different types of data

models are produced. Initially a conceptual data model is created meeting the business

requirements and stakeholder’s needs. This model is technologically independent and can

be used to discuss and adapt according to stakeholder’s requirements. By translation of the

conceptual data model a logical data model is designed which is a more accurate model

representing organization’s data and documenting the data structure including all necessary

elements and relations. For the organization of the database and the data into tables a

further translation of the logical data model into a physical data model is done. In this

approach as well as for continuing implementation typically top-down principle is used. In

contrast to bottom-up where the model is a result of reengineering and starting with existing

data structures, top-down means to implement the database due to data models which

therefore are results from analyzing and documenting different business requirements.

DBMS selection is an optional element of the lifecycle which is about to choose the most

adequate DMBS for database design. In this work Microsoft SQL Server Management Studio

2014 [MSMS14] is used according to the common usage and open source availability.

Application design [CoBe02] therefore is about to design the user interface and application

programs which is not covered in this work.

 3. Methodology

Page 31

 Figure 10- Database system development lifecycle [CoBe02, P. 284]

Database prototyping is important in software development and aims in building a working

model and in [CoBe02] is segmented in requirements prototyping in which the prototype is

discarded after completing the requirements and evolutionary prototyping which is used for

further implementations. Prototyping in general helps to understand system requirements in

a more accurate way, leads to more usable software and supports the development and

maintenance of such applications [BiGr02]. In [BiGr02] different database prototyping

approaches are discussed as well as their further usability in information system

development processes. Database prototype is defined as "any database used to model

 3. Methodology

Page 32

(part of) the data and/or the semantics of another database" [BiGr02, P.448]. The results are

two significant database prototypes which are sample databases and test databases. Test

databases use synthetic values in the context of prototyping. Those databases often do not

support information system development processes as good as sample databases but they

are applied when there is no operational database to sample data from. Test databases find

utilization in requirements analysis, when it is important to gain better understanding of user

requirements, as well as database design, for experimenting different design alternatives and

improve understanding in completeness and correctness of data. Another area of usage of

test databases is software testing, in detail testing functionality, performance and back-to-

back testing. For sample databases prototypes a sample of an original database or

consistent sample database is taken which is therefore more valuable for further analysis

and can be used for user training, legacy migration (testing, target system development),

approximate query evaluation and data mining as well.

The finalizing elements of the database development lifecycle [CoBe02] cover the

implementation, data conversion and loading, testing and operational maintenance. These

steps represent the parts of the lifecycle which are about the physical realization of the

database, the transferring of data from the existing database to the new developed one as

well as testing to find errors and monitoring and maintenance. As in this work database

prototyping to validate the designed conceptual model is the final aim a sustainable

implementation of a database is not covered.

 3.5 Analysis methods

For the analysis methods a proof of concept or proof of principle is used showing that the

designed and aligned domain model is feasible. The main goal is to prove whether the

conceptual model has the potential of being used in the implementation context or not.

As appropriate analysis of the designed conceptual/domain model the implemented

prototype in form of a test database sample is used. The validation of a conceptual model

means that it is designed in accordance to the domain and represents all the important

elements. [STW03] mentions the use of ontologism to proof whether a certain conceptual

model is faithful in its representation of the focal domain which should be its main goal.

Therefore they list the most relevant attributes a conceptual model has to fulfill to justify to be

called valid:

 Accuracy: The accuracy of a domain model is one of the major attributes which

incorporates how exactly the semantics of a domain model represents the real world.

There are certain approaches to measure the accuracy of a model. [STW03]

 3. Methodology

Page 33

mentions the incorporation of stakeholder's to proof if the model fits their

requirements which is a similar approach to the proof by experts. A more technical

approach in the context of UML models can be done with Object Constraint

Language (OCL) which is introduced in [WK98]. OCL can support the conceptual

modeler in proofing model validation by enriching the model with constraints to query

the accuracy of the model.

 Completeness: Completeness is the attribute which predicates that a model includes

all the necessary concepts. [STW03] proofs this attribute in association with

stakeholder's requirements once more. Another and more computational approach

are Natural Language Approaches [Kop12]. In their opinion "completion is a

communication process between end users and designers" [Kop12, P.33] and

furthermore a domain model has to be checked about completeness on an ongoing

basis. They list some items which have to be fulfilled to call a domain model

complete: Appearance of every relevant classes, attributes and relationships in the

model, necessary data types for each attribute, specified multiplicities for each

association as well as multi-valued attribute and if necessary definitions for default

values of attributes, mandatory or optionally of an attribute as well as unique values

and values for certain formats of attributes are defined. Finally there must not be any

open task or question related to the classes and attributes in the model. For natural

language query analysis therefore linguistic instruments called tagging and chunking

are used. "A tagger is a tool, which takes as input a text and returns a list of

sentences with tagged words" [Kop12, P.38]. Chunking on the other hand is to group

words together that can be seen as a phrase.

 Conflict-free: Semantics of a domain model should not contradict one another under

the assumption those semantics can be separated in different parts. Concurrency in

domain models should be avoided from the very first beginning.

 No redundancy: Similar to conflict-free semantics, semantics of domain models

shouldn’t include redundancy as well. Redundancy can therefore arise from conflicts

if semantics are subsequently updated. In domain models redundancy refers to

situations where different entities own similar or same information and therefore the

domain or the context cannot be clearly separated. Automatically this problem is

passed on to the database model in the context of implementation and should

therefore be eliminated in the first place.

For the validation of conceptual models according to [STW03] “unfortunately, little is known

about how to validate conceptual models effectively and efficiently” [STW03, P.89].

 3. Methodology

Page 34

Nevertheless they introduced an approach for model validation under involvement of

stakeholder’s at the outset. Unfortunately in this work there is no stakeholder to involve.

Therefore the requirements are driven from expertise found in [Isla11] where information is

gathered about goal-driven software risk management and the resulting model as well as

from [Schw12] where certain information about requirements for the management activity

diagram is used. Both are combined to simulate stakeholder’s requirement and further

validate the model.

[STW03] also mentions three important issues in context of model validation which have to

be considered. They are scope, involvement of peoples in the process and methodology. If

the conceptual model has to represent a large scope domain there is often the approach to

just validate a certain part of the model also because of cost-effective reasons. A second

issue is the involvement of different people in the process of model validation i.e.

stakeholder’s professionals or independent individuals. The third issue to consider is

methodology which can have several approaches like reviewing and evaluate the model by

participants, questioning participants about the domain being modeled, problem solving

using the conceptual model (reflecting use cases or scenarios) and transaction testing where

events are used to determine if they are faithfully represented in the conceptual model.

Nevertheless they mention the support of ontologies which are “theories about the structure

and behavior of the real world in general” [STW03, P.86] for model validation and highlight

the importance of choosing the best fitting conceptual modeling grammar for model

designing representing specific domain phenomena. As important is that model designers

are making sense about of ambiguous semantics of the conceptual model. In the context of

ontologies those theories are also derived from the main sources about GSRM [Isla11] and

management activity diagram [Schwa12] in this work.

 4. Suggested solution/implementation

Page 35

4. Suggested solution/implementation

 4.1 Analysis of current goal-driven software project risk management
domain model with respect to COSO-II-ERM-Framework

This section covers the analysis of a current GSRM domain model's concepts, relationships

and attributes considering the components of the COSO-II-ERM-Framework [COSOII04].

In [Isla11, P.65] a meta-model is designed according to the GSRM framework described in

Section 3.2.2 Figure 8. The GSRM meta-model will serve as basic foundation of the

suggested solution of this work. Figure 11 shows the meta-model for goal-driven risk

management:

 Figure 11- Meta-model for a goal-driven risk management [Isla11, P.66]

The meta-model is designed as UML class diagram and deals as conceptual abstraction

including all concepts (i.e. goals, obstacles, risks, agents, etc) and relationships between

them (derive, affect, monitor, obstruct, etc). Meta attributes like goal description and event

likelihood are also covered. According to [Isla11, P.65-66] goals are declared as the main

part similar to the process model. Goals have certain attributes and can be refined by sub-

goals and obstructed by obstacles. Development components involve the description of

goals as well as obstacles in indirect way as risk description where in the one hand the

perspective of desirable properties of the development process is described and on the other

hand undesirable circumstances. Risks are therefore defined as software development risks

with corresponding attributes. Risk factors in this model represent causes where risk events

are similar to consequences which have a negative impact or association to the goal whether

 4. Suggested solution/implementation

Page 36

it’s a single goal or is separated into multiple sub-goals. They define treatment as support of

goal satisfaction and risk obstruction and to a certain part controlling and monitoring of the

risks which is done by different types of agents.

As meta-models in a conceptual view or class diagrams don’t distinguish between

information flow and activity flow we can see that in this model actor as well as information

and activity are all defined as classes in the same way and with similar character. Actors in

this model are represented by different types of agents which can be humans, technical

agents or development components. They are responsible for tasks and execute activities

like controlling and monitoring risks. Activities on the contrary are figured as concepts or

classes and relationships between them as well. An example is the treatment concept which

is not clearly separated and defined while on the other hand control and monitor are both

depicted as relationships. Classical information elements like risks, goals, obstacles, tasks

etc. are represented as concepts as well. Where a mature activity diagram distinguishes

between these elements a class diagram in the conventional way does not.

Under consideration of COSO II ERM [COSOII04] and more particular in relation to the

COSO ERM Cube some further coherencies can be derived:

According to COSO ERM Framework the first component “internal environment” incorporates

the basis for all enterprise risk management frameworks and therefore influences the whole

process and in this case the conceptual model in a more indirect way than other

components. It is about risk philosophy from enterprises broken down into software

development and provides structural directives for actions according to this process. A clear

definition in form of a concept in the meta-model is missing. A rule or guideline as an output

of the planning phase which deals as inputs for further components would be an appropriate

integration of this ERM component.

“Objective setting” is about defining objectives in different aspects like strategy, operations,

compliance and reporting where in this work the focus lies on operational objectives which

are associated with the business process and the related success. It serves as precondition

for the event identification component which is described further. In the GSRM meta-model

objective setting is embodied in the goal concept as output and in the description of goals in

the development component. Risk appetite, in qualitative as well as quantitative aspect, is

aligned to objectives and is a major driver for risk tolerance [CSAT04]. Hence there is a need

to define the frame of risk tolerance/risk limit in different levels which can be done by

integration as input information for further components like risk measurement and risk

response activities in the conceptual model.

Using “Objective setting” as precondition for the next ERM component “Event Identification”

is to a certain part well covered in the GSRM process and the corresponding meta-model.

Nevertheless COSO defines events not only with negative impact on an objective but also

 4. Suggested solution/implementation

Page 37

with positive impact in form of opportunities. While the GSRM process also uses the concept

of events, concepts namely factors and obstacles are embodied in this ERM component vice

versa. What is missing in the meta-model is another kind of event which has positive impact

for goal achieving and triggering different actions in the controlling of risks should be used,

i.e. a concept called opportunity.

The following ERM component “risk assessment” is also pictured in the meta-model in form

of the concept of an impact and the event attribute likelihood. According to COSO in this

component likelihood and impact are assigned to events and in further activity risk are

assessed which is also covered in the GSRM meta-model. Nevertheless it should be stated

that an risk respective an opportunity can be a composition of multiple events and impacts as

well.

The next component "risk response" is according to COSO ERM Framework associated with

management activities like risk avoidance, reduction, sharing and acceptance. Those

response actions are chosen under consideration of bringing risks within desired risk

tolerances. Decisions about risk response actions are made as results of the assessment of

the effects on risk likelihood and impact as well as costs and benefits. In the GSRM meta-

model this component and the corresponding activities are settled in the treatment concept

which is in this case a very extensive concept due to the additional inclusion of controlling

and monitoring activities. Therefore a clear distinction should be made about risk response,

risk controlling and risk monitoring concepts as well as a guideline for risk measuring should

be made.

"Control activities" by definition of COSO incorporates policies and procedures in relation to

risk response activities and their execution. But they are also associated with control

activities throughout all components and therefore include different kind of activities as well.

According to [CSAT04] the control activities component can also serve as risk response in

case of reporting objectives. The meta-model incorporates this component at most in the

treatment concept but an overall control mechanism is missing. A comprehensive controlling

information or policy in form of a rule influencing different concepts should be integrated in

the model.

Commonly known, "information and communication", which is another COSO component, is

needed in all levels of risk management. Information also needs to be identified, captured

and communicated. To effectively execute risk management's actions information and the

communication thereof is essential. Information can have different shapes in risk

management and particular in goal driven software risk management. In the first place

attributes of concepts like name, description of goals and respectively of risks but also

objectives like goals, their related obstacles and identified events embodies information. In

general inputs or outputs which are generated by certain activities represent information. The

 4. Suggested solution/implementation

Page 38

meta-model contains information in form of concepts and attributes and the communication

in form of relationships as well but to complete the model in a more appropriate way of

COSO ERM Framework in context of information, policies for certain kind of concepts should

be used i.e. rules for risk measuring, risk response, etc.

"Monitoring“, in COSO means an ongoing management procedure, a frequented evaluation

of risk management by assessing the presence and functioning of risk management

activities. It is important for further analysis and aims in generating reports for top

management. The GSRM process, as well as the meta-model, lacks in monitoring concepts

which could be integrated as supervisory elements across the entire process and model.

Concluding, the GSRM meta-model does integrate the main components of the COSO ERM

Framework Cube although there are some particular elements missing ,mainly the concept of

events with positive impact on goal satisfaction in form of opportunities or a planning activity

and the corresponding rules for certain parts of the risk management process. Basically it

has to be said that it is not the aim of this work to change, adapt or optimize the GSRM

process but in more particular to construct a conceptual domain model under adoption of the

GSRM meta-model for further implementation of a database supporting managers to perform

software risk management in consideration of a goal driven approach.

The conclusion of this analysis is shown in figure 12 in which the relations to the COSO-II-

ERM Framework components are highlighted in red. The figure is redesigned on basis of

figure 11 which is the GSRM meta model from [Isla11,P.66]. In further sections the model

from figure 12 is used to redesign and align the GSRM meta model with respect to the

results from the analysis of this section.

 4. Suggested solution/implementation

Page 39

 Figure 12- Relations to COSO-II-ERM-Framework and GSRM meta model from [Isla11,P.66]

 4.2 Enhancement of the goal-driven software project risk management
domain model considering the Generic Cybernetic Management Framework

This subsection addresses the enhancement of the GSRM meta model [Isla11] analyzed in

section 4.1. The conclusion of this analysis is incorporated in Figure 12. This section is

separated in different topics according to the COSO-II-ERM components [COSOII04] in

which every component is dealt as an individual subsection. The enhancement is made

according to the results of the previous section as well as to components of the Generic

Cybernetic Management Framework [Schwa12] which is shown in Figure 5 as well.

 4.2.1 Enhancement related to Internal Environment

Internal Environment must be covered in the planning phase preceding the objective setting.

As is it not applicable to include a planning activity in the domain model the outputs of this

activity is integrated. Therefore three different plan outputs are defined as rules for certain

concepts: plan rules, measure rules and act rules.

Plan rules influence the goal concept considering the comprehensive strategy among other

things by prioritization of different goals, define dependencies to other goals, etc.

 4. Suggested solution/implementation

Page 40

Measure rules regulate the risk measuring according to the planning phase which includes

the rules for measurement of the deviation between the actual risk and the risk limit

definition.

Internal Environment incorporates also rules for risk response activities in form of act rules

which therefore influence the treatment actions by specifying guidelines if risks exceed a

certain tolerance level/risk limit.

 4.2.2 Enhancement related to Objective Setting

To keep it simple the distinction between soft or hard goal as well as the corresponding

refinement concept is not used any more in the enhanced domain model. The description of

a goal by a certain software development component has also been removed aiming in

complexity reduction. The essential information therefore is included in the goal concept by

adding attributes instead. The risk appetite specification which is a result of objective setting

activity is covered in the act rule concept as well as the risk tolerance/risk limit which is

realized by a individual concept relating to a particular risk. Additionally the concept of

obstacles is removed because of the neutral characteristics of the risk factor concept and

incorporation in those as well which will be explained in succeeding sections.

 4.2.3 Enhancement related to Event Identification

Risk events according to [Isla11] are implied by risk factors and lead to impacts which are

solely of negative nature meaning they obstruct goals by constituting an obstacle. Based on

the character of COSO [COSOII04] events can also have positive impact which generates

opportunities hence there is the need to integrate events with positive impact as well. This

integration is done by specifying the concept of an impact in negative impact and positive

impact whereby negative impact is related to risks and positive impact is connected to

opportunities. Although the risk factor is still the cause of an event it is not anymore related

with exclusively negative aspects.

In contrast to exclusively negative defined risk factors and risk events in [Isla11] this model

will use the concept of uncertainty events therefore the option is given to derive positive

impacts which are incorporated in opportunities.

 4. Suggested solution/implementation

Page 41

 4.2.4 Enhancement related to Risk Assessment

In this component risks are assessed by definition of the likelihood of uncertainty events and

their impact on the goal reaching process which can be positive and negative and have

different kinds of severity. Therefore risks and opportunities can be derived from these

concepts. Both are characterized as combinations of uncertainty events and impacts. They

are modeled as aggregations of those two concepts where impacts however are realized as

interfaces inherited by negative and positive impacts. There exists uncertainty events which

are not assessable in detail therefore it should be possible to define the likelihood in a more

general way i.e. low, medium, high and specifically in a value of percentage.

 4.2.5 Enhancement related to Risk Response

Risk Response is nearly completely covered in the concept of treatment and in order to not

differ to much from the underlying GSRM process [Isla11] the concept is not changed in its

sense. But to bring some clearance in the concept an enumeration of risk response

categories or treatment decisions is integrated listing the itemsavoiding and reducing for risk

treatment decisions, exploiting and improving for opportunity treatment as well as transferring

and accepting for both concepts.

The model also contains a risk limit concept which deals as output of the objective setting

component and characterizes the tolerance level embodying the risk appetite specification

for each risk.

The result of this component in form of relations and outputs of the treatment concept are

contributing the goal concept exclusively in positive meaning by mitigating risks or seizing

opportunities.

Considering Schwaiger's Generic Cybernetic Management Activity Framework [Schwa12]

the treatment activities can be of different nature like corrective and adaptive activities which

therefore influence different kinds of software project management activities i.e. corrective

actions affect the development process itself and adaptive actions have impact on the

preliminary goal definition. They are also regulated from a preceding output of the planning

phase called act rules.

The former concept of risk status with an attribute for countermeasures is not needed

anymore because all the relevant information is covered in the control action concept now.

 4. Suggested solution/implementation

Page 42

 4.2.6 Enhancement related to Control Activities

Control activities according to [COSOII04] ensure risk response decisions to be carried out in

an appropriate way. The activities therefore are chosen depending on the different treatment

decision based on the respective risk response decision.

The control actions are also assigned to an agent concept which is responsible for execution

of those tasks. The agent concept is therefore carried over from the GSRM meta model

[Isla11] because of the meaningfulness of mapping a task to an individual agent.

 4.2.7 Enhancement related to Information and Communication

Information and communication is underlying and incorporated in the whole domain model

mostly as attributes of different concepts but also as concepts itself and relationships

between them. This model also includes rules i.e. goal definition rules, measure rules, and

control rules which deal as information concepts.

Information flows according to [CSATII04] are included in every stage or component of the

ERM Framework i.e. risk management philosophy and risk appetite (internal environment),

objectives/goals, risk tolerance (objective setting), inventory of risks (event identification),

assessed risks and opportunities (risk assessment), risk responses (risk response) and

control outputs, reports (control activities and monitoring).

The different attributes of each concept are addressed in another subsection.

 4.2.8 Enhancement related to Monitoring

Monitoring covers the reporting activities of the comprehensive risk management process

and is realized as separate monitoring concept in the domain model. Agents therefore are

responsible for those actions like in the control action concept and monitor risks as well as

opportunities. The monitoring concept does not only cover reports but documentation as well

and evaluates the software development risk management process in its entirety.

 4. Suggested solution/implementation

Page 43

 4.2.9 Enhanced GSRM Domain Model

Agent Control Action

Treatment

Risk

Goal

Factor

<<Interface>>

Impact

responsible

contribute

influence
cause

1

0..*

treat

lead to

Monitoring Action
responsible

Negative Impact Positive Impact

Opportunity
0..1

1..*

1

1..*

1

1..*

0..1

M3

1..*

Event

control

Risk Limit

0..*

relate to

1

0..*

treat

plan

identify

perform

define

measure

0..*

1..*

0..*1..*

1

1..*1..*

1..2

0..*

1

1 0..*

0..*

1

0..*

0..*

0..*

1

1

1

0..*

0..*

1

0..*
0..*

1..*

influences

Measure Rule

Plan Rule
Act Rule

check

0..*

0..*

1

influences

influences

0..*

0..*

0..*

0..*

0..*

 Figure 13- Enhanced GSRM domain model

The model from Figure 13 incorporates all the necessary concepts mentioned in the previous

subsections of the enhancement chapter. To get a better overview the attributes of the

different concepts are not included here and are discussed in the following. In contrast to the

previous existing GSRM meta model from Figure 11 [Isla11] this model is applicable serving

as a foundation for database design considering the essential requirements from section 3.5.

The GSRM meta model lacked in a clear distinction of associations between the concepts as

well as appropriate multiplicities. The focus was set on the differentiation of several kinds of

goals and the obstruction by obstacles as on feasibility for database design and further

implementations. The GSRM meta model incorporated also a unclear boundary of treatment,

control and monitoring actions.

Considering the enhanced domain model some definitions have to be made. The factor

concept in this model does now represent the different risk factors according to [Isla11,P.81]

including the software development component. The risk factor in combination with the

uncertainty event influences the goal in an inherent way. Former risk events are now called

uncertainty events which derive from risk factors and are an aggregation of multiple risk

factors. An essential change in definitions is the risk-opportunity concept which are both an

aggregation of multiple uncertainty events and impacts where risk consist of negative

impacts and opportunities of positive ones. The measurement of risks is also a new definition

which is incorporated in the risk concept as actual measured risk and is measured in

 4. Suggested solution/implementation

Page 44

consideration of the measurement rule with an risk limit defined in the planning phase. On

this basis the treatment action should be chosen considering an act rule which is also an

output of the planning phase and further contributes to the goal as residual risk.

Opportunities as they are not meant to derive in the first place of risk factor identification are

not measured to a certain limit. Nevertheless the treatment concept does also include

activities to handle them too. The agent is now a concept representing an actor who is

responsible for several activities which are modeled as relations to other concepts like

planning goals, measuring risks, perform treatment activities as well as control and monitor

activities.

 4.2.10 Domain Model Details

In this subsection the details of the domain model are discussed considering the details of

each concept with respect to the related attributes. The concepts are depicted as class of

UML [UML11] notation and a short description of each attribute is given in addition.

Goal concept:

GoalID: A unique ID for each goal.

Name: A string which represents the name of the goal.

Description: An optional additional description of the
goal.

Component: A component which relates to the
components in [Isla11, p.136] which are Project
execution, Process, Product, Human and Environment.

Type: The several goal types related to [Isla11, p.73]
which are goals of the type of information, satisfaction,
maintain, improve, reduce and product quality factors.

 Figure 14- Goal concept

AgentID: The agentID relates to an agent who planned each particular goal in the planning
phase.

Priority: Represents the goal priority from 1-10 where 1 is the highest priority and 10 the
lowest priority.

RiskFactor concept:

FactorID: A unique ID for each RiskFactor.

Name: A string which represents the name of the
RiskFactor.

Component: A component which relates to the
components in [Isla11, p.136] which are Project
execution, Process, Product, Human and
Environment.

Figure 15- RiskFactor concept

 4. Suggested solution/implementation

Page 45

Uncertainty Event concept:

EventID: An unique ID for each Event.

Name: A string which represents the name of the
Event.

Description: An optional additional description of an
event.

LikelihoodGeneral: The general likelihood of an event
which is defined with low, medium or high. This
likelihood is also used for uncertainty events which
likelihood attribute cannot defined in percentage.

LikelihoodDetail: The detailed likelihood is optional and
ranges between 0-100% where 0% means the event is
not likely to occur and 100% means the event is certain
to occur.

 Figure 16- Event concept

RiskID: The riskID relates to a risk from which the event is part of.

OpportunityID: the opportunityID relates to an opportunity from which the event is part of.

AgentID: The agentID relates to the agent who identified the particular uncertainty event
including the likelihood and impact assessment.

Impact concept:

ImpactID: An unique ID for each impact
which relates in a 1:1 notation to the causing
event.

Severity: The severity of an impact which is
related to [Isla11, p.78] which can be low,
medium or high.

Each kind of impact (either negative or
positive) is related to the corresponding
uncertainty event by the impactID.

Risk concept:

RiskID: An unique ID for each risk.

Detail: A non-optional detail description for each risk.

TreatmentID: The treatmentID relates to the
corresponding treatment for each particular risk.

ActualRisk: Represents the actual risk as output of the
measurement activity. It can either be a value of
percentages or amounts or be of informational manner
like grades.

MeasuringAgentID: The agentID relates to the agent

 Figure 17- Impact concept

 Figure 18- Risk concept

 4. Suggested solution/implementation

Page 46

who is responsible for measuring a particular risks.

CheckingAgentID: The agentID relates to the agent who is responsible for checking a
particular risk.

RiskLimit concept:

RiskLimitID: An unique ID for each risk limit.

Description: A non-optional description for each risk
limit.

GoalID: The goalID relates to the goal from which the
risk limit has been driven.

 Figure 19- RiskLimit concept

Opportunity concept:

OpportunityID: An unique ID for each opportunity.

Detail: A non-optional detail description for each
opportunity.

TreatmentID: The treatmentID relates to the
corresponding treatment for each particular
opportunity.

Treatment concept:

TreatmentID: An unique ID for each treatment.

Description: A non-optional description for each
treatment.

TreatmentCategory: The treatment category describes
the individual type of each treatment whether is it
accepting, transferring, risk avoiding, risk reducing,
opportunity exploiting or opportunity improving.

AgentID: The agentID relates to the agent who is
responsible for the risk response action.

ControlAction concept:

ControlActionID: An unique ID for each control action.

Description: A non-optional description for each control
action.

AgentID: The agentID relates to the agent who is
responsible for the control action.

 Figure 22- ControlAction concept

 Figure 21- Treatment concept

 Figure 20- Opportunity concept

 4. Suggested solution/implementation

Page 47

MonitoringAction concept:

MonitoringActionID: An unique ID for each control
action.

Description: A non-optional description for each
monitoring action.

AgentID: The agentID relates to the agent who is
responsible for the monitoring action.

Agent concept:

AgentID: An unique ID for each agent.

Name: A string representing the name of an agent.

Role: The role of a particular agent.

AgentType: Representing the agent type relating to
[Isla11, p.88] which distinguishes between human
agent and technical agent. The component agent is
included in the technical agent as well.

ActRule concept:

ActRuleID: An unique ID for each act rule.

Detail: A non-optional detailed description for each act
rule.

MeasuringRule concept:

MeasuringRuleID: An unique ID for each measuring
rule.

Detail: A non-optional detailed description for each
measuring rule.

PlanRule concept:

PlanRuleID: An unique ID for each plan rule.

Detail: A non-optional detailed description for each plan
rule.

 Figure 24- Agent concept

 Figure 23- MonitoringAction concept

 Figure 25- ActRule concept

 Figure 26- MeasruingRule concept

 Figure 27- PlanRule concept

 4. Suggested solution/implementation

Page 48

4.3 Database Modeling

For database design Microsoft SQL Server 2014 Management Studio [SSMS14] has been

used. The database has been designed considering UML class diagram notation [UML11].

The aim of this database is to proof the validity of the designed domain model from the

previous section. Therefore a test sample of data is used to make applicable analysis. This

section is separated in different subsection representing important subparts of the database

to gain a better overview of the database as a whole.

4.3.1 Goal-PlanRule-RiskFactor concept

The goal-planRule-riskFactor concept is separated in two subconcepts.

This goal-riskFactor concept shows the relation between goals and risk factors incorporated

in a junction table where goalID and factorID are used as keys which means there can be

multiple goals related to multiple risk factors representing a classical many to many

relationship. The testsample is used considering the top ten risk factors table from the results

of case study 1 [Isla11, p.110]. Where the goals are mainly used from this table representing

sub goals as well as main goals, the risk factors are altered in a more neutral way to be able

to derive events with a positive impact as well. Figure25 shows the concept in database

diagram notation of SQL Management Studio 2014 [MSMS14].

For the IDs of each table unique identifier are taken which are generated automatically.

There are also some restrictions included in the concept, i.e. a check-constraint which

ensures that only priority values between 1 and 10 can be chosen.

 4. Suggested solution/implementation

Page 49

 Figure 28- Goal-PlanRules-RiskFactor concept

Figure29 shows the goal table filled with the described test sample.

 Figure 29- Goal Table

The goal-actRule concept is based on the same principle. A junction table is used

incorporating the goalID and planRuleID. Similar to goals and riskFactors, goals and

planRules are related in a many-to-many connection as well.

4.3.2 Event-Impact-Risk-Opportunity concept

The following Figure30 shows the event -impact-risk-opportunity concept. The event, which

was already mentioned, is designed as an uncertainty event not exclusively a risk event.

Deriving from a risk factor which is connected through an EventRiskFactorJunction, similar

 4. Suggested solution/implementation

Page 50

to the previous described GoalRiskFactorJunction, events are associated in a many to many

relation as well. An event is related to an impact in a one to one-two relation which is a

special case and means that an event can be associated to at least one and at most two

impacts therefore one negative and one positive impact, i.e. high project complexity which

can have negative impact in case of risks to overrun budget or positive impact to increase

staffs availability for complexity handling. The test sample for events are to a certain part,

which represents the negative events, taken from Table 6.4 "Identified Risk Factors and

Events" in [Isla11, p.117] but similar to them complemented with potential positive events.

 Figure 30- Event-Impact-Risk-Opportunity concept

Positive and negative impacts are related one-to-one to impacts therefore they are identified

with the same ID. The concepts also include some check constraints like severity (low,

medium, high), likelihoodGeneral (low, medium, high) and likelihoodDetail (only values

between 0 and 100 are allowed representing procentual values). Risks and opportunities are

connected via one-to-many relations to events representing aggregations therefore each

event incorporates the riskID respectively the opportunityID.

 4. Suggested solution/implementation

Page 51

4.3.3 Risk-MeasureRule-RiskLimit-ActRule-Opportunity-Treatment concept

The following figure represents the Risk-MeasureRule-RiskLimit-ActRule-Opportunity-

Treatment concept. Risks and opportunities are connected via a one-to-many relationship

where the ID of each treatment is included in the related risks respectively opportunity.Each

treatment contributes to a goal in a many-to-many relationship therefore another junction

table is needed with goalID and treatmentID.

 Figure 31- Risk-RiskLimit-Opportunity-Treatment concept

Treatment categories are restricted via a check constraint allowing only the defined values

from section 4.2.10. Each treatment is also controlled by a control action also via a many-to-

many relation. An agent is responsible for a certain treatment therefore a one-to-many

association is used similar to risks and agents relationships which embodies the

measurement and checking activity. Risks are connected via a RiskMeasureRulesJunction to

measure Rules as well as treatments and actRules. The measurement is dependent on the

risk limit driven from a particular goal implemented via a one-to-many relationship. Because

there exist multiple risk limits for a particular risk and vice versa these connection is realized

via a many-to-many association incorporated in a RiskLimitRisksJunction table.

 4. Suggested solution/implementation

Page 52

4.3.4 Agent responsibility concept

Figure32 shows the concept of agents and their responsibility. As already mentioned in the

domain model design particular agents are responsible for certain tasks. An agent can be

responsible for defining rules which are incorporated in particular concepts like measurement

rule, plan rule or act rule.

 Figure 32- Agent responsibility concept

Agents are responsible for identifying goals and events, measuring and checking risks,

performing treatments as well as control and monitoring actions. Each of these relationships

is implemented via a one-to-many relationship embodied as unique agentID in each of these

concepts. Nevertheless there is no restriction that an agent which is responsible for a

treatment also has to be responsible for the control action controlling this treatment analog to

risk checking and measurement. It is most likely that control and monitoring actions are

performed via technical agents i.e. automated tools.

 4. Suggested solution/implementation

Page 53

4.4 Validation proof

The validation proof should show that the domain model satisfies all the validation

requirements from section 3.5. More precise, the designed database is used for certain

analysis representing reports for risk managers, simple and more complex queries as well as

insert queries. They should contribute not only to a better understanding of the domain model

but much more to serve risk managers in case of applications and proof the domain model of

its validity. Therefore Microsoft SQL Server Management Studio [MSMS14] is used and in

more detail stored procedures are created to ensure a repeatedly execution applicable by

different programming languages.

The first example shows a simple report of all events which are part of risks which again are

treated by a treatment of a chosen category. Figure33 illustrates this stored procedure in

programming code as simple SQL query consisting of select, from and where clause.

Figure 33- Stored Procedure ReportEvent Coding

The stored procedure as well as the query can be executed on its own and results in an

output of the database sample. The “select” clause defines which attributes of which concept

or table should be considered in the output or report. Important attributes therefore are

eventID, name of each event, description of each event, ID and detail of each risk and the

chosen treatmentCategory. The concept tables which are relevant for the report are listed

and connected in the “from” clause which are events, risks and treatments. The connection

between them are coded via join commands. The “where” clause embodies the filter which in

this case only samples are chosen and included in the output which treatment category

equals the input of the user.

The following Figure34 shows the output of the complete database sample which fits these

requirements. In this case the output consists of two different events of which each has a

 4. Suggested solution/implementation

Page 54

unique identifier. The return value is zero, stating for an error free query respectively stored

procedure. Therefore the stored procedure proofs the validation of the domain model

considering the addressed conceptions and tables of the database.

Figure 34- Stored Procedure ReportEvent Execution

Another procedure proofs the validation of agents, goals and risk factors concepts. Figure35

shows the coding of the ReportGoalsIdentifiedByActualAgentDerivedByChosenRiskFactors

procedure.

The procedure outputs the goals influenced by a chosen risk factor type/component and

identified by a particular agent which is in this case an agent identified by the a chosen

agentID. This would be automatically be chosen in software implementations when a user

who is logged in has a specific ID which is transported in the procedure in the background of

the application.

 4. Suggested solution/implementation

Page 55

 Figure 35- Stored Procedure ReportGoal Coding

The "select"-clause embodies attributes like agentID, name of each agent, name of each

goal, description of each goal as well as name and component of each risk factor. Tables

and concepts which are necessary for this procedure are incorporate in the "form"-clause like

agents, goals and risk factors. Because goals and risk factors are associated with an junction

table this table is also included in the "form-clause via a joined command. The "where"-

clause therefore embodies the filter which is in this case the agentID having the value of the

chosen agentID defined by the user at the procedure's execution and the risk factor

component which equals similar to the agentID a user defined risk factor component.

 4. Suggested solution/implementation

Page 56

 Figure 36- Stored Procedure ReportGoal Execution

Figure36 represents the output after execution of the procedure. By execution the user

defines the value of the agentID with "2" and the riskFactorComponent with "Human". The

output shows that the data sample exists of four goals which are derived by human risk

factors and identified of the specific agent with the name "Maier" and ID "2".

The next procedure incorporates an insert query. The coding and insert inputs are displayed

in Figure37. The coding embodies the insert attributes including their types and default

values if necessary i.e. agentID is valued with "2" which can be automatically defined by

software applications i.e. based on userID transitioned in the background of the application.

 4. Suggested solution/implementation

Page 57

 Figure 37- Stored Procedure InsertGoal Coding

The procedure also includes values for each attribute which has to be defined by the user i.e.

the risk manager. In this case a new goal is defined called "quality product" with goal-specific

attributes like name, description, component, type and priority.

The following Figure38 shows the execution of this insert procedure and further the result of

this execution which can be retrieved by a simple query outputting all the goals in the data

base. Therefore the first list states for the goals before insertion and the second list for

afterwards. The new defined goal has been inserted via the stored procedure from Figure37

with respect to the attribute values chosen from the user. The goalID is defined as an

identifier in the database therefore this attribute is automatically designed and an incremental

value. The new defined goal is listed as last because it is sorted by ascending goalIDs on a

default basis. Therefore the inserting of goals states for another valid concept of the domain

model.

 4. Suggested solution/implementation

Page 58

 Figure 38- Stored Procedure InsertGoal Execution

Another stored procedure represents the update of a particular risk after exceeding the

related risk limit. In this case it has to be assumed that the risk manager gets a notification

about the exceeding of the risk i.e. via automated specifically checking tools as part of a

comprehensive software application.

Nevertheless in this case it is necessary to define the riskID and the riskLimitID related to the

exceeding. Afterwards the actual risk has to be remeasured and redefined in the database.

Figure 39 shows the coding of such an update procedure including the coding of two lists

which embodies the important risk and riskLimit attributes corresponding this exceeding

before and after the update query.

 4. Suggested solution/implementation

Page 59

 Figure 39- Stored Procedure Update Risk coding

The update query only updates a specifically defined risk in the risks table by defining a new

value for the attribute actualRisk.

The following Figure40 shows represents the execution of this procedure and shows the

update of the defined risk as well as the output of the queries before and after the update. At

the beginning the actualRisk of the risk "Negative project execution" exceeds the related risk

limit of allowed 20% difference to the estimated budget, whereas afterwards the actualRisk

fulfills this criteria. The profound business processes and workflows are not addressed here.

Tasks like risk treatment and risk re-measurement have to be done beforehand.

 4. Suggested solution/implementation

Page 60

 Figure 40- Stored Procedure UpdateRisk Execution

The previous stored procedures are essential for a validation proof of the domain model.

Nevertheless the focus of this validation lies on the proof of the domain model not specifically

on the validation of the database which in most cases implies this fact though. These four

scenarios represent a sample of a more comprehensive field of application of the domain

model and the implemented database. Their aim is to contribute to the support of project

managers tasks corresponding to risk management in software project.

 4. Suggested solution/implementation

Page 61

According to section 3.5 of this work and in more detail mentioned in [STW03] the domain

model has to incorporate certain characteristics and fulfill criteria like accuracy,

completeness, conflict-free and no-redundancy.

The accuracy validation of the model defines the real world representation of the model.

Therefore stakeholder's or expert's proof would fulfill this criteria in the best way by checking

the model against their requirements. Unfortunately for this thesis no stakeholders or experts

are given. Nevertheless the accuracy check has been done by implementing the database

according to the case study results of [Isla11] i.e. goals, risk factors and events. Also check

constraints and simple "null value not allowed"-constraints are used to ensure that there must

not exist a particular concept i.e. goal which is not accurate.

Completeness validation can also be proofed best by checking the model against

stakeholder's requirements and in more detail if all the necessary concepts, attributes and

relationships are embodied in the domain model. In this thesis the database implementation

ensures that there exists no concept table without the appropriate attributes and relationships

to associated concepts. The attributes are chosen to fulfill the completeness criteria at least

by its minimum i.e. ID, name, related concept's IDs, etc. For relationship's completeness all

the multiplicities are implemented by defining primary keys and foreign keys in the relevant

concept tables and junction tables with embodied keys of the associated concept tables.

The database implementation also ensures the conflict-free criteria of the model as there

exists no concept table which is in concurrency of any other.

Non-redundancy can also be proofed by the implemented database as there is no particular

concept table which incorporates similar information of any other concept table. Each

concept table exists on its own with exclusively assigned attributes and relations.

 5. Critical reflection

Page 62

5. Critical reflection

This section includes a critical reflection of the relevant items of this thesis and discusses

indentified open issues of this work. In more detail the domain model and database

implementation are analyzed about open issues which has to be addressed and discussed to

ensure future work's success. The section is separated into a subsection about general open

issues and another subsection pointing out the database restrictions.

 5.1 General open issues

The domain model includes now all the relevant relationships and concepts for the defined

tasks. More important every relationship is defined at its name and multiplicities which are

necessary to ensure that the model is valid. Some concepts has been neglected in this

domain model i.e. different goal concepts like hard or soft goals and the abstraction of sub

goals which are assumed and aligned in this thesis and in the database implementation as

goal concept. Also the concept of obstacles isn't considered in this thesis according to the

nature defined in [Isla11]. The reason is that in [Isla11] only events with negative impact are

considered whereas in this thesis events can also have positive impacts and therefore risk

factors cannot be driven exclusively from obstacles which characterization it is to hinder

goals.

Another open issue is that the database implementation isn't able to ensure every semantic

constraint and further issues is incorporated like the automatically insertion of the agentID in

certain concepts i.e. goal's attribute "agentID" has to be defined by the database engineer

which aims to generate a new goal and store it in the database. Such issues can only be

considered in further software implementations where the software is responsible to transmit

the particular ID and save it i.e. in a new defined goal object.

The non existence of stakeholder's or experts for a more adequate proof of validation of the

model is also an open issue. Nevertheless the thesis is able to ensure the validation without

stakeholders and experts by implementing a database prototype considering data samples

from literature and author's expertise. This lack of stakeholder's existence reflects in the

issue of use case definitions i.e. reports and insert queries which are implemented as stored

procedures in section 4.4. More adequate use cases could be defined with expert's

knowledge.

More test data sample can also be defined as open issue. The actual test data is taken from

case study results of [Isla11] also to ensure the adequacy of the sample as basis for the

implementation of the database prototype. Because of the small quantity of the case study

 5. Critical reflection

Page 63

results some further assumptions had to be made to fulfill the criteria of accuracy and

completeness of the model.

 5.2 Database restrictions

Simple constraints like attribute values and value range can be implemented via database

creation without any restrictions. Unfortunately not every feature and constraint of the model

is able to be implemented and incorporated in the database model. Not only to consider all

those issues but also to embody the business logic in a more accurate way software

implementations have to be developed and capture them completely. Further on a list of

database restrictions which are both concept specific and concept overlapping is shown and

discussed.

User Interface: The user interface, meaning the fields of data inputs, is not implementable in

database design and in the prototype as such. For catching illegal inputs as well as

displaying error messages user interfaces are essential because such features cannot be

integrated and considered in database implementation. But not only error messages should

be displayed. All the activities a user is integrated like goal planning//definition, risk

measuring, risk checking and performing treatments, the user should be informed about

depending concepts like particular rules and risk limits as well as messages when a certain

risk is exceeding the corresponding risk limit.

Backend: The software backend has to incorporate the business logic which means

restrictions not only about attribute values but more important about logically accurate inputs.

Most important logical restrictions are about risks and opportunities definition. Because in the

designed GSRM domain model risks and opportunities in their definition cannot be restricted

only to negative respectively positive impacts. Another important issue is the consideration

about deleting elements in the database. There are relations to other tables and concepts

which has to be considered when deleting a certain element. Although this issue is

considered also in the database implementation, the user should be informed about

dependencies to other elements and in dropping a whole table the backend should have

embodied a order of dropping tables which are depended and should be dropped first. The

backend has also to transmit certain IDs in each action the user performs. For example in

activities like goal definition, risk measuring, risk checking or performing treatments the

user's ID should be transmitted in the background to define database elements' attributes like

agentID with the corresponding userID.

 6. Summary and future work

Page 64

6. Summary and future work

The thesis incorporates the design of a goal-driven software project risk management

(GSRM) domain model on the basis of previous research from [Isla11]. The domain model is

aligned to COSO's ERM Framework components [COSOII04] considering the activities and

elements of the Cybernetic Management Framework [Schwa12]. For validation proof the

domain model is prototyped as a database implementation with relevant test data mainly

from case study results of [Isla11]. The designed domain model has been proofed of

validation using Microsoft SQL Server Management Studio [MSMS14] and the concept of

stored procedures. Those stored procedures the conceptual model and the database

prototype ensure the further usage for risk managers or software project manager as well as

for software engineers.

For future work the domain model can be used as basis for software implementations to help

software project managers and risk managers working in this context to manage their risks

and reach project success. Nevertheless the domain model is not restricted to goal-driven

software project risk management and can, under alignment of different contexts and use

cases, be used for other kinds of risk management as well.

The addressed open issues from section 5.1 should also be considered in future work. In

further researches some more adequate evaluation can be done by integrating stakeholders

and experts to define more particular use cases as well as additional test data samples.

Further software development have to be used to implement constrains and restriction as

well as general features which could not be taken into account in the database prototype due

to the lack of design features of the used database modeling tool or general database

capabilities.

A more semantically issue for further approaches and future works would be the

consideration of opportunity measuring. This thesis is designed in consideration of

measuring only risks as opportunities are not assumed to eventuate in the first place.

 7. Appendix

Page 65

7. Appendix

The appendix shows the database structure in detail and incorporates the used test sample

of each concept extracted from the SQL Management Studio 2014 database. The last row of

each sample shows the input parameters for a new element which is pre-described with

NULL values.

 7.1 Appendix A: Test data samples from concepts

 Figure 41- Goal test sample

 Figure 42- RiskFactor test sample

 Figure 43- Agents test sample

 7. Appendix

Page 66

 Figure 44- Events test sample

 Figure 45- Risks test sample

 Figure 46- Opportunities test sample

Figure 47- Impacts test sample

 7. Appendix

Page 67

Figure 48- Negative Impacts test sample

Figure 49- Positive Impacts test sample

 Figure 50- RiskLimit test sample

 Figure 51- ActRules test sample

 7. Appendix

Page 68

 Figure 52- MeasureRules test sample

 Figure 53- PlanRules test sample

 Figure 54- ControlActions test sample

 Figure 55- MonitoringActions test sample

 8. Bibliography

Page 69

8. Bibliography

Alberts C. J., Dorofee A. J., Higuera R., Murphy R. L., Walker J. A. and R., Williams

C. [ADH+96]: Continuous Risk Management Guidebook. Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, PA., 1996.

Akehurst D.H. and Bordbar B. [AkBo01]: On Querying UML Data Models with OCL.

University of Kent at Canterbury. In: M. Gogolla and C. Kobryn (Eds.): UML 2001,

LNCS 2185, pp. 91-103, 2001. Springer-Verlag Berlin Heidelberg 2001.

Basel Committee on Banking Supervision [Basel2–06]: International Convergence of

Capital Measurement and Capital Standards – A Revised Framework –

Comprehensive Version, http://www.bis.org/publ/bcbs128.htm, June 2006.

Bell D. [Bell03]: UML Basics: Part II: The activity diagram. The Relational Edge. E-Zine for

the rational community. 2003.

Bell D. [Bell04]: UML Basics: The class diagram. An introduction to structure diagrams in

UML 2. IBM Corporation, developerWorks, Technical topics. 15 September 2004.

Ballou B., Heitger D. [BH05]: A building-block approach for implementing COSO's Enterprise

 Risk Management Integrated Framework. Management Accounting Quarterly Winter

 2005 Vol.6 No.2.

Bisbal J., Grimson J. [BiGr02]: Consistent database sampling as a database prototyping

approach. J. Softw. Maint. Evol.: Res. Pract. 2002; 14:447–459

(DOI: 10.1002/smr.263). 2002.

Boehm B. W. [Boe91]: Software risk management: Principles and practices.

IEEE Software, 8(1):32–41, 1991.

Boehm B. W., Ross R. [BoRo89]: Theory-W Software Project Management Principles and

Examples, IEEE Transactions on Software Engineering, v.15 n.7, p.902-916, July

1989.

Bresciani P., Perini A., Giorgini P., Giunchiglia F., and Mylopoulos J. [BPG+04]: Tropos: An

 agent-oriented software development methodology. Autonomous Agents and Multi-

 Agent Systems, 8:203–236, 2004.

BrooksF.P. [Bro95]: The Mythical Man-Month: Essays on Software Engineering,

Addison-Wesley Professional, 1995.

Carr M., Konda S., Monarch I., Ulrich C., and Walker C. [CKM+93]: Taxonomy based risk

identification (cmu/sei-93-tr-6, ada266992). Technicalreport, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh, PA., 1993.

Connolly, T. and Begg, C. [CoBe02]: Database Systems: A Practical Approach to

 Design, Implementation, and Management, 3rd Ed. Addison-Wesley,

 Harlow, England, 2002.

http://dl.acm.org/citation.cfm?id=69645&CFID=727647182&CFTOKEN=17631638
http://dl.acm.org/citation.cfm?id=69645&CFID=727647182&CFTOKEN=17631638
http://dl.acm.org/citation.cfm?id=69645&CFID=727647182&CFTOKEN=17631638

 8. Bibliography

Page 70

Committee of Sponsoring Organizations of the Treadway Commission [COSOII04]:

Enterprise Risk Management – Integrated Framework, September 2004, http://

www.coso.org/-ERM.htm.

Committee of Sponsoring Organizations of the Treadway Commission [CSAT04]:

Enterprise Risk Management – Integrated Framework Application Techniques,

 September 2004.

Dubois E., Heymans P., Mayer N., Matulevicius R. [DHMM10]: A systematic approach to

 define the domain of information system security risk management, S. Nurcan, C.

 Salinesi, C. Souveyet, J. Ralyte (Eds.), Intentional perspectives on information

 systems engineering, Springer Berlin Heidelberg (2010), pp. 289–306.

Dumas M. and ter Hofstede A. [DuHo01]: UML Activity Diagrams as a Workflow

Specification Language. Cooperative Information Systems Research Centre

Queensland University of Technology. In: M. Gogolla and C. Kobryn (Eds.): UML

2001, LNCS 2185, pp. 76-103, 2001.Springer-Verlag Berlin Heidelberg 2001.

Dardenne A., van Lamsweerde A., and Fickas S. [DvLF93]: Goal-directed requirements

 acquisition. Science of Computer Programming, 20(1-2):3– 50, 1993.

Evaristo R., Prikladnicki R., Yamaguti M. H., Audy J. L. N. [EPYA06]: Risk management in

 distributed it projects: Integrating strategic, tactical, and operational levels.

 International Journal of e-Collaboration, 2:1–18, 2006.

Foerster H.v. [Foer03]: Cybernetics of Cybernetics, in: Foerster H.v.: Understanding

Understanding – Essays on Cybernetics and Cognition, Springer, New York, 2003,

283–286.

Fowler, M. [Fow03]: Patterns of Enterprise Application Architecture. Addison-Wesley

 Longman Publishing Co., Inc. Boston, MA, USA, 2002.

Geerts G., McCarthy W.F. [GeMc02]: An ontological analysis on the economic primitive of

 the extended REA enterprise information architecture. International Journal of

 Accounting Information Systems. 3, 1-16. 2002.

Islam S. [Isla09]: Software Development Risk Management Model – A Goal Driven

 Approach. ESEC/FSE Doctoral Symposium '09 Proceeding of the doctoral

 symposium for ESEC/FSE Doctoral Symposium. P.5-8. New York, NY, USA. 2009.

Islam S. [Isla11]: Software Development Risk Management Model- a goal-driven approach.

Diss. Technische Universität München, Institute für Informatik, 2011.

 https://mediatum.ub.tum.de/doc/1002328.

ISO-Management System Standards [ISO-09]:

 https://www.iso.org/obp/ui/#iso:std:iso:guide:73:ed-1:v1:en:term:1.1

ISO-Management System Standards [ISO-MSS11]: Download – November 2011

http://www.iso.org/iso/iso_catalogue/management_and_leadership_standards/

 8. Bibliography

Page 71

management_system_basics.

Jaafar J., Iqbal U., Lai F. [JIL15]: Software Effective Risk Management: An Evaluation of Risk

Management Process Models and Standards. In: K.J. Kim (ed.), Information Science

and Applications, Lecture Notes in Electrical Engineering 339, pp. 837-844. Springer

Verlag Berlin Heidelberg 2015.

Karolak D.W. [Kar95]: Software Engineering Risk Management. IEEE Computer Society

Press, 1995.

Kontio J. [Kon01]: Software Engineering Risk Management: A Method, Improvement

 Framework and Empirical Evaluation. PhD thesis, Helsinki University of Technology,

 2001.

Kop C. [Kop12]: Checking Feasible Completeness of Domain Models with Natural Language

 Queries. Proceedings of the Eighth Asia-Pacific Conference on Conceptual

 Modeling (APCCM 2012), Melbourne, Australia. P.33-42. 2012.

Lin L, Nuseibeh B, Ince D, Jackson M [LNIJ04]: Using Abuse Frames to Bound the Scope of

Security Problems. In: Proceedings of the 12th IEEE International Conference on

Requirements Engineering (RE '04), pp. 354-355, IEEE Computer Society. 2004.

McCarthy W. [McC82]: The REA Accounting Model – A Generalized Framework for

Accounting Systems in a Shared Data Environment. The Accounting Review, LVII(3),

554-578. 1982.

Mouratidis H, Giorgini P, Manson GA, Philp I [MGMP02]: A Natural Extension of Tropos

Methodology for Modeling Security. In: Proceedings of the Agent Oriented

Methodologies Workshop (OOPSLA'02). 2002.

Prikladnicki R., Nicolas A., Jorge L., and Evaristo R. [PNJE06]: A reference model for global

 software development: Findings from a case study. In ICGSE ’06: Proceedings of the

 IEEE international conference on Global Software Engineering, pages 18–28,

 Washington, DC, USA, 2006. IEEE Computer Society.

Risk Management Standard [RMS09] (ISO 31000:2009): Risk Management – Principles

and guidelines, 1st edition, 2009–11–15.

Schwaiger W., Abmayer M. [ScAb13]: Accounting and Management Information Systems: A

Semantic Integration, International Conference on Information Integration and Web-

based Applications & Services (iiWAS2013), pp.346-353, Association for Computing

Machinery, Vienna (2013).

Schwaiger W.S. [Schw12]: Risk Management: Comprehensive Integration into the Enterprise

 Management. In Frick R., Gantenbein P. and Reichling P. (editors),

Asset Management. Haupt, Berlin, Stuttgart and Vienna, pp. 420-459.

 8. Bibliography

Page 72

Selic B. [Sel07]: A Systematic Approach to Domain-Specific Language Design Using UML

 IBM Canada. In: Proceedings of the 10th IEEE International Symposium on Object

 and Component-Oriented Real-Time Distributed Computing (ISORC'07). 2007.

Simsion, Graeme. C. & Witt, Graham. C. [SGWG05]: Data Modeling Essentials.3rd Edition.

 Morgan Kauffman Publishers. ISBN 0-12-644551-6, 2005.

Sisti F. and Joseph S. [SJ94]: Software risk evaluation method version 1.0.

Technical report, SEI, Carnegie -Mellon University, 1994.

Sehrawat, Munsi, Jain [SMJ14]: Risk Management in Software Projects. IJCSMC, Vol. 3,

Issue. 10, October 2014, pg.845 – 849 2014.

SQL Server 2014 Management Studio [SSMS14]:

 https://msdn.microsoft.com/en-us/library/ms188430.aspx. Microsoft® 2014.

ShanksG., Tansley E., Weber R. [STW03]: Using Ontology to validate conceptual model.

 Communication of the ACM Vol.46, No.10, P.85-89. October 2003.

Unified Modeling Language [UML11]: Superstructure, Version 2.4.1, 2011–08–06,

 www.uml.org.

van Lamsweerde A. [vL09]: Requirements Engineering: From System Goals to UML Models

 to Software Specifications. Wiley, 2009.

van Lamsweerde A [vLam04]: Elaborating Security Requirements by Construction of

Intentional Anti-Models. In: Proceedings of the 26th International Conference on

Software Engineering (ICSE '04), pp 148-157, IEEE Computer Society. 2004.

Wiener N. [Wiener48]: Cybernetics: Or the Control and Communication in the Animal

 and the Machine, MIT-Press, Cambridge, 1948.

WarmerJ., Kleppe A. [WK98]: The Object Constraint Language: Precise Modeling With Uml.

 Addison-Wesley Object Technology Series. 13 October 1998.

Zachman J. A. [Zach87]: A framework for information systems architecture. In: IBM Systems

Journal. 26, Nr. 3, 1987, S. 277-293.

https://en.wikipedia.org/wiki/Graeme_Simsion
https://en.wikipedia.org/wiki/Special:BookSources/0126445516
http://www.uml.org/

