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Abstract

Today the most recent standard for mobile communications is
known as LTE-Advanced (LTE-A), developed and organized by the 3rd

Generation Partnership Project. As a 4th generation system for mobile
communication, LTE-A offers high flexibility in terms of deployment
aspects and resource allocation as well as high spectral efficiency. To
achieve these main features, sophisticated link level access schemes,
such as orthogonal frequency division multiplexing and Multiple-Input
Multiple-Output (MIMO) technologies, are employed.

For such a wireless communication system, coherent detection at
the receive side is essential to obtain intended overall performance.
This requires knowledge of the wireless channel, making channel esti-
mation not only necessary but a very important task within the signal
processing chain.

In LTE-A reference symbols, which are known to the receiver, are
multiplexed with the transmitted data to enable channel estimation.
In uplink MIMO transmissions, these pilot symbols are multiplexed
on the same time-frequency positions for all spatial layers, making
separation of estimated MIMO channels necessary. Many existing
estimation methods aim for separation in time domain, exploiting the
reference symbols’ code-domain orthogonality. These algorithms suffer
from overlapping Channel Impulse Responses (CIR) when estimating
frequency selective channels, referred to as CIR leakage.

In my work I present channel estimation algorithms that aim to
separate all estimated MIMO channels in frequency domain. These
methods do not suffer from CIR leakage and achieve a significantly
lower estimation error when estimating frequency selective channels.
Further, I introduce and compare several interpolation methods that
enable to obtain channel coefficients in between pilot positions, making
estimation of doubly selective MIMO channels possible. I compare and
discuss performance of presented estimation methods in terms of mean
square error and resulting bit error ratio as obtained by simulations,
in the context of single-user and multi-user MIMO.
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Kurzfassung

Der aktuellste Standard für mobile Kommunikation heutzutage ist
als LTE-Advanced (LTE-A) bekannt, und wird vom 3rd Generation
Partnership Project entwickelt und verwaltet. Als ein mobiles Kom-
munikationsystem der 4ten Generation bietet LTE-A hohe Flexibilität
im Bezug auf Einsatzmöglichkeiten und Ressourcen Verteilung, so
wie hohe spektrale Effizienz. Um diese Hauptmerkmale zu erreichen
werden ausgereifte Zugriffsverfahren auf der physikalischen Netzwerk-
schicht, wie Orthogonal Frequency Division Multiplexing (OFDM)
und Multiple-Input Multiple-Output (MIMO), verwendet. Für solche
drahtlosen Kommunikationssysteme ist kohärente Detektion auf der
Empfängerseite essentiell um die angestrebte Leistungsfähigkeit zu
erreichen. Dies erfordert Kenntnis des Übertragungskanals, was Ka-
nalschätzung nicht nur notwendig, sondern zu einer wichtigen Aufgabe
innerhalb der Signalverarbeitungskette macht.

In LTE-A werden Referenzsymbole, welche dem Empfänger bekannt
sind, mit den Daten kombiniert übertragen, um Kanalschätzung zu
ermöglichen. Bei Uplink MIMO Übertragungen werden diese Referenz-
symbole aller räumlichen Datenströme auf den gleichen Zeit-Frequenz
Positionen übertragen, weswegen eine Separation der geschätzten
MIMO Kanäle notwendig ist. Viele bekannte Schätzmethoden zielen
auf eine Separation im Zeitbereich ab, bei welcher die Orthogonalität
der Referenzsymbole im Code-Bereich genützt wird. Diese Algorith-
men leiden unter der Überlappung der Kanalimpulsantworten bei der
Schätzung von frequenzselektiven Kanälen.

In meiner Arbeit entwerfe ich Algorithmen zur Kanalschätzung, wel-
che auf die Separation der MIMO Kanäle im Frequenzbereich abzielen.
Diese Methoden leiden nicht unter der Überlappung der Kanalimpul-
santworten und erzielen signifikant reduzierte Kanalschätzfehler bei
der Schätzung von frequenzselektiven Kanälen. Weiters zeige und ver-
gleiche ich verschiedene Interpolationsmethoden welche es ermöglichen
Kanalkoeffizienten zwischen Referenzsymbol Positionen zu erlangen,
um die Schätzung von Zeit-Frequenz selektiven Kanälen zu ermöglichen.
Ich beschreibe und vergleiche die Leistungsfähigkeit der präsentierten
Methoden zur Kanalschätzung anhand des mittleren quadratischen
Kanalschätzfehlers und der resultierenden Bitfehlerrate durch Simula-
tionen, sowohl für Single-User als auch Multi-User MIMO.
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1 Outlook and Contributions

In this work I consider the problem of estimating the wireless channel at the
receive side of an LTE-Advanced (LTE-A) uplink Multiple-Input Multiple-
Output (MIMO) transmission. Estimating all MIMO channels is especially
challenging when the channel is time and frequency selective. I show that
in this case, implications for channel estimation do not arise due to the
Single-Carrier Frequency Division Multiplexing (SC-FDM) physical layer
access scheme but mainly due to the specific allocation pattern of reference
symbols in the LTE-A uplink. Within this thesis I introduce algorithms to
estimate and interpolate the wireless channel for the purpose of demodulation,
exploiting the special code-domain orthogonality of reference symbols.

In Section 2 and Section 3, a general introduction to the LTE-A uplink is
given. In this context a system model in vector notation, capable of describing
Single-User MIMO (SU-MIMO) SC-FDM transmissions, is derived. These
chapters mainly rely on our work in [1].

The unique properties of reference signals in the LTE-A uplink are ex-
plained in Section 4. Based on my contributions in [2], their specific allocation
scheme and the implications for channel estimation are presented. The code-
domain structure of reference symbols introduced in this section is heavily
exploited throughout my thesis.

Based on my work in [3], novel methods for channel estimation that
operate entirely in frequency domain are introduced in Section 5. These
algorithms show superior capability of separating estimated MIMO channels,
leading to lower estimation errors compared to well-known Discrete Fourier
Transform (DFT) based estimation methods.

In Section 6, a system model for Multi-User MIMO (MU-MIMO) trans-
missions that is derived from the Single-User (SU) system model in a straight
forward manner is presented, as done in our work [4]. As it is possible to
obtain code-domain orthogonality between users by means of signaling, esti-
mation methods derived for SU-MIMO are also applicable in the MU-MIMO
case.

To obtain channel coefficients in between pilot positions and to enable
doubly-selective channel estimation, various channel interpolation methods
are discussed and compared in Section 7. Storing and considering estimated
channel coefficients from previous subframes significantly improves channel
estimation under certain circumstances, as we also considered in our work
in [1].
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Figure 1: Illustration of the LTE-A resource grid for multiple spatial layers.

2 Introduction to the LTE-A Uplink

The 3rd Generation Partnership Project (3GPP) Universal Mobile Telecom-
munication System (UMTS) successor, UMTS Long Term Evolution (LTE),
was introduced in 2008 (3GPP Rel.8), offering data rates of up to 300 Mbit/s
in the downlink and 75 MBit/s in the uplink. High spectral efficiency was
reached by employing Orthogonal Frequency Division Multiplexing (OFDM)
as the physical layer access scheme and by allowing for 4× 4 MIMO transmis-
sions in the downlink. However, the first release meeting 3GPP’s requirements
for 4th generation mobile communication systems [5] was 3GPP Rel. 10 in
2011, namely LTE-A. Since then, MIMO transmissions are possible in the
LTE-A uplink as well.

While OFDM is employed in LTE-A as physical layer access scheme for
downlink, SC-FDM is employed for uplink in order to achieve a low Peak-to-
Average Power Ratio (PAPR). In both cases, radio resources are organized
in a time-frequency grid, as shown in Fig. 1. Here the frequency is given in
OFDM subcarriers k while time scaling is given in OFDM symbol indices n.
A single time-frequency grid position is referred to as Resource Element (RE),
containing one modulated symbol. In 3GPP LTE, resources are partitioned
into frames within time domain. A radioframe with a duration of 10 ms
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consists of 10 subframes, each of 1 ms length.1 A subframe, which is exactly
one Transmission Time Interval (TTI), is further split into two slots of 0.5 ms
each, as illustrated in Fig. 1. In case of normal Cyclic Prefix (CP) length,
each slot contains 7 OFDM symbols, while it contains only 6 OFDM symbols
if an extended CP length is employed. REs are clustered into so called
Resource Block (RB)s with a time duration of one slot and a frequency span
of 12 subcarriers. Given a 15 kHz OFDM subcarrier spacing2, a RB therefore
comprises 180 kHz in frequency domain and 0.5 ms in time domain. It is the
smallest unit of resources in terms of user allocation.

For a mobile communication system such as LTE-A, channel estimation is a
crucial factor for overall system performance. At the receive side, equalization
and detection is carried out, based on the estimated channel. The quality of
Channel Estimation (CE) therefore directly influences the Bit Error Ratio
(BER) and rate of data transmission. For the purpose of CE, pilot symbols, or
reference signals, are employed in LTE-A. By inserting these known symbols
at predefined positions in the time-frequency resource grid at the transmit
side, the channel can be estimated by the receiver. Pilot aided CE is a
well established method for OFDM systems [6–9]. Estimation algorithms
can be directly adopted for the LTE-A downlink, in the Single-Input Single-
Output (SISO) as well as in the MIMO case. In the LTE-A uplink however,
the allocation of reference symbols in case of MIMO transmissions prohibits
direct application of OFDM CE methods. Due to the allocation of reference
signals from different spatial layers on the same REs, the pilot symbols
interfere with each other. In order to separate reference signals of different
layers at the receiver, a special orthogonal reference symbol structure is
employed in LTE-A [10–12]. Unfortunately, orthogonality is destroyed by
transmission over a frequency selective channel.

The most common approach for channel estimation in the LTE uplink is
DFT or Discrete Cosine Transform (DCT) based channel estimation [13–17]
which is also known from OFDM systems [18]. For LTE-A, when Closed Loop
Spatial Multiplexing (CLSM) is employed, these methods aim to separate the
estimated Channel Impulse Response (CIR)s from all active spatial layers
in time domain. For a frequency flat channel, the orthogonality of reference
signals is preserved and channel estimation is similar to the SISO case [19].
However, when estimating frequency selective channels of multiple spatial
layers in time domain, CIRs may overlap and cannot be separated any more,
which is referred to as CIR leakage [20–22]. Therefore, much effort was put

1In this thesis I only consider the frequency division duplexing frame structure of
LTE-A.

2In the LTE-A uplink, this is the only standardized subcarrier spacing whereas there is
also a 7.5 kHz subcarrier spacing defined in the downlink.
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into the improvement of DFT or DCT based CE methods [13, 15, 16, 23, 24].
Still, CIR leakage is inevitable when a user is assigned only a small portion
of the uplink bandwidth and the wireless channel has a non negligible delay
spread.

If not only a single user is transmitting, i.e. SU-MIMO, but several users
are allocated the same resources, i.e. MU-MIMO, similar implications for
CE apply [16, 20, 24–26]. In that case, reference signals on different spatial
layers, originating from multiple users, overlap and need to be separated at
the receiver. Therefore, transmissions over frequency selective channels again
lead to CIR leakage in MU-MIMO transmissions, as in the SU-MIMO case.

When the channel is not only frequency selective but also time variant, i.e.,
doubly selective, CE is even more challenging. For a fast time-varying scenario,
the channel coefficients of an OFDM system are no longer constant during
the duration of an OFDM symbol, leading to Inter-Carrier Interference (ICI).
In terms of channel estimation, these effects can be captured by the channel
estimator, or ICI is mitigated after CE [7, 27, 28]. However, the occurring
ICI is dominant only at very high speeds [29], making LTE-A robust in high
mobility environments. Assuming the channel to be constant for the duration
of an OFDM symbol as approximation, the estimated channel has to be
interpolated in between pilot positions in order to obtain a complete channel
estimate for the whole time-frequency grid.

In my thesis I first introduce a SU-MIMO SC-FDM system model in matrix
notation in Section 3, capable of describing relations between subcarriers
due to the DFT spreading of data and reference symbols. In Section 4 I
describe the allocation and structure of employed reference symbols in the
LTE-A uplink for CE. For the purpose of comparison I introduce DFT based
CE and Minimum Mean Square Error (MMSE) estimation in the beginning
of Section 5, which is followed by the main contribution of my work: two
Least Squares (LS) based estimation methods. Based on the solution of an
LS estimation problem, I derive two versions of CE by post-processing in
frequency domain, leading to low complexity CE algorithms. Both of these
methods show advantages over DFT based estimation, especially for a small
transmission bandwidth. In Section 6 the introduced methods are generalized
to the case of MU-MIMO transmissions, where challenges in CE are very
similar to SU-MIMO transmissions. In order to obtain estimated channel
coefficients also on data positions, I consider interpolation in time domain
for time varying channels in Section 7. Finally, I compare performance of
introduced estimation and interpolation methods in Section 8, where also
conclusions and possibilities for future work are discussed.
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Figure 2: The LTE-A uplink MIMO system model.

3 Single-User-MIMO System Model

SC-FDM is DFT spread OFDM. This means, each transmit symbol is
spread across all subcarriers by means of a layer-wise DFT, as illustrated
in Fig. 2 by DFT matrix D on the very left, leading to the single-carrier
like characteristic of this modulation method. Due to the OFDM processing,
subcarriers are indeed orthogonal. However, DFT spreading is carried out
across all subcarriers such that transmit signals on different subcarriers are
not independent any more. A system model on subcarrier basis, as it is often
seen for MIMO OFDM systems, is not the method of choice to describe such
a system. Instead, for a SC-FDM model, all subcarriers k at one symbol time
n are represented in vector notation as in [30]. In terms of a MIMO system
model, these vectors will be stacked to describe an SC-FDM system for each
spatial transmission layer or receive antenna. This leads to a linear system
description exploiting block-wise Toeplitz, circulant and diagonal structured
matrices as done in [31, 32]. To reveal this structure, the system model
is introduced in an inside-out fashion, starting with the convolution of the
transmit signal with the CIR.

Assuming the channel to be constant in time, for the duration of one
OFDM symbol with symbol time index n, convolution of the transmit sig-
nal with the discrete CIR hn,r,t ∈ CNh×1 from transmit antenna t to re-

ceive antenna r is denoted by multiplication with Toeplitz matrix H
(toep)
n,r,t ∈
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C(NFFT+NCP)×(NFFT+NCP) defined by

H
(toep)
n,r,t =




hn,r,t[1]
hn,r,t[2] hn,r,t[1]

... hn,r,t[2]
. . .

hn,r,t[Nh]
...

. . . . . .

hn,r,t[Nh]
. . . . . .

. . . . . . . . .

hn,r,t[Nh] . . . hn,r,t[2] hn,r,t[1]




,

(3.1)
where square brackets denote vector entries. In order to describe a MIMO
system, with NT transmit and NR receive antennas, this matrix is then stacked
to obtain a block-wise Toeplitz matrix

H(toep)
n =




H
(toep)
n,1,1 . . . H

(toep)
n,1,NT

...
. . .

...

H
(toep)
n,NR,1

. . . H
(toep)
n,NR,NT


 ∈ C(NFFT+NCP)NR×(NFFT+NCP)NT .

(3.2)
Exploiting this block-wise Toeplitz structured matrix for convolution describes
the channel as Linear Time Invariant (LTI) system within each OFDM symbol
period.

Further assuming the CP length to be at least the CIR length, i.e.,
NCP ≥ Nh, this Toeplitz matrix is first block-wise circularized by adding and
removing the CP, represented by

PaddCP =

(
0 INCP

INFFT

)
∈ R(NFFT+NCP)×NFFT , (3.3)

and
PremCP =

(
0 INFFT

)
∈ RNFFT×(NFFT+NCP) , (3.4)

respectively, leading to 3

H(circ)
n = (INR ⊗PremCP) H(toep)

n (INT ⊗PaddCP) ∈ CNFFTNR×NFFTNT . (3.5)

Further, applying a DFT of size NFFT, represented by matrix DNFFT
,

and an Inverse Discrete Fourier Transform (IDFT), the channel matrix is

3Please note, that in the case of insufficient CP length, the block-wise Toeplitz matrix
H(toep) will not get circularized. The matrix H(circ) will therefore not have a block-wise
circulant structure and as a consequence, H(diag) will not have a block-wise diagonal
structure [32].
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block-wise diagonalized, yielding

H(diag)
n =

(
INR ⊗DNFFT

)
H(cir)
n

(
INT ⊗DH

NFFT

)
∈ CNFFTNR×NFFTNT . (3.6)

The block-wise diagonal channel matrix H
(diag)
n ∈ CNFFTNR×NFFTNT is a matrix

of channel coefficients for each subcarrier. Still assuming sufficient CP length,
this matrix is constructed by applying DFTs on the CIRs

H(diag)
n =




Diag
(
DNFFT

h̄n,1,1
)

. . . Diag
(
DNFFT

h̄n,1,NT
)

...
. . .

...
Diag

(
DNFFT

h̄n,NR,1
)

. . . Diag
(
DNFFT

h̄n,NR,NT
)


 (3.7)

with the zero padded time domain CIR vector h̄n,r,t =
(
hTn,r,t, 0, . . . , 0

)T ∈
CNFFT×1, as explained in Appendix A.1.

Including the localized subcarrier mapping, described by4

M =




0
INSC

0


 ∈ RNFFT×NSC , (3.8)

finally the effective channel matrix is obtained as

Hn =
(
INR ⊗MH

)
H(diag)
n

(
INT ⊗M

)(
Fn ⊗ INSC

)
∈ CNSCNR×NSCNL , (3.9)

with precoding matrix F ∈ CNT×NL according to the LTE-A codebook [10].
To obtain the same transmit power for any number of employed spatial layers
NL, the precoder is normalized such that it’s squared Frobenius norm is one,
i.e., trace{FHF} = 1.

The OFDM signal processing, meaning the IDFT and DFT transform, CP
addition and removal and the localized subcarrier mapping and demapping, is
shown by the blocks OFDM TX and OFDM RX in Fig. 2 at the transmitter
and receiver, respectively.

Transmit symbols of layer l ∈ {1, . . . , NL} at OFDM symbol time n of all
NSC subcarriers are described by vector xn,l ∈ ANSC×1 with symbol alphabet
A. Data symbols are assumed to be of power Px and statistically independent,
i.e., E{xn,lxHn,l} = PxINSC

. In terms of the full MIMO SC-FDM system model,
the transmit symbols xn,l of all spatial layers l ∈ {1, . . . , NL} are stacked in
a similar way as the MIMO channel matrices to obtain

xn =




xn,1
xn,2

...
xn,NL


 ∈ A

NSCNL×1 . (3.10)

4This subcarrier mapping implicitly assumes a single user that is scheduled on all NSC

available subcarriers.
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Exploiting this symbol vector and introducing the linear receiver G ∈
CNSCNL×NSCNR , the symbol estimates on the receiver side x̂n ∈ CNSCNL×1

are given by5

x̂n =
(
INL ⊗DH

NSC

)
GnHn (INL ⊗DNSC

) xn

+
(
INL ⊗DH

NSC

)
Gn

(
INR ⊗MHDNFFT

PremCP

)
z̃n︸ ︷︷ ︸

zn

=
(
INL ⊗DH

NSC

)
GnHn (INL ⊗DNSC

) xn +
(
INL ⊗DH

NSC

)
Gnzn , (3.11)

with the independent and identically distributed white Gaussian noise vector
z̃n ∼ CN (0, σ2

zI(NFFT+NCP)NR).

5Please note, that within this context, substituting the DFT spreading and de-spreading
by the identity function, a MIMO OFDM model would be obtained, i.e., x̂n = GnHnxn +
Gnzn.
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4 Reference Symbols

In LTE-A, CE is pilot aided. For this reason, reference signals are multiplexed
with data at certain positions of the resource grid. Based on the knowledge
of pilot symbols, channel coefficients can be estimated at pilot positions at
the receiver side. In order to obtain channel estimates on data positions, the
estimated channel is then interpolated in between pilot positions.

There are two different types of reference signals defined in the LTE-A
uplink, namely Demodulation Reference Signal (DMRS) and Sounding Refer-
ence Signal (SRS). DMRS are employed for CE for the purpose of coherent
detection and span the whole user assigned bandwidth in a Physical Uplink
Shared Channel (PUSCH) transmission. SRS are transmitted on the whole
available uplink bandwidth for the purpose of channel sounding. Channel
estimates obtained from SRS are utilized for calculation of link adaptation
parameters, such as Precoding Matrix Indicator (PMI), and scheduling [33].
To enable precoder selection based on SRS CE, these reference signals are
inserted after the precoder, as shown in Fig. 2, meaning there is one SRS
for each transmit antenna. DMRS on the other hand, are inserted before
the precoder, meaning there is one DMRS per spatial layer, to enable for
estimation of the effective channel.

The reference symbols are defined in [10] and are explained in more detail
in [11, 12, 23]. As shown in Fig. 3, DMRS are multiplexed in the resource grid
at OFDM symbol times n = {4, 11} for normal CP length, and at symbol
times n = {3, 10} for extended CP length.6 In a PUSCH transmission of the

6I will implicitly assume normal CP length in the remainder of this work since all
methods adapt in a straight forward manner to the case of extended CP length.
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Table 1: Dependence of n
(2)
DMRS,l and the OCC wl on the cyclic shift field.

Cyclic Shift Field
n

(2)
DMRS,l wT

l

l=1 l=2 l=3 l=4 l=1 l=2 l=3 l=4
000 0 6 3 9 (1 1) (1 1) (1 -1) (1 -1)
001 6 0 9 3 (1 -1) (1 -1) (1 1) (1 1)
010 3 9 6 0 (1 -1) (1 -1) (1 1) (1 1)
011 4 10 7 1 (1 1) (1 1) (1 1) (1 1)
100 2 8 5 11 (1 1) (1 1) (1 1) (1 1)
101 8 2 11 5 (1 -1) (1 -1) (1 -1) (1 -1)
110 10 4 1 7 (1 -1) (1 -1) (1 -1) (1 -1)
111 9 3 0 6 (1 1) (1 1) (1 -1) (1 -1)

LTE-A uplink, a DMRS occupies all scheduled subcarriers. While this specific
multiplexing scheme of reference symbols for uplink transmissions was chosen
in order to achieve a low PAPR [34], reference symbols are allocated on the
same resources for all spatial layers, meaning they are completely overlapping
in the time-frequency grid, in order to save transmission overhead. In LTE-A,
DMRS of different transmission layers in the same slot are therefore orthogonal
in terms of Frequency Domain Code Division Multiplexing (FD-CDM) [11],
to make them separable at the receiver. This is obtained by a cyclic shift of
a base sequence. A DMRS therefore consists of a base sequence and a layer
dependent cyclic shift.

The base sequence of a DMRS on NSC subcarriers for one slot is denoted
by r̄ ∈ CNSC×1. I assume the user is assigned NSC subcarriers starting at 1,
i.e., k ∈ {1, 2, . . . , NSC}. For NSC ≥ 36 the base sequence is given by a Zadoff-
Chu (ZC) sequence, while it is a computer generated constant amplitude zero
autocorrelation sequence for NSC < 36 [11]. In either case, the base sequence
r̄ is a complex exponential sequence, lying on the unit circle and therefore
fulfils

|̄r[k]| = 1 ∀k ∈ {1, . . . , NSC} . (4.1)

Further, the base sequence depends on cell specific group and sequence
indices to reduce inter-cell interference in multi-cell scenarios. The group and
sequence indices are not indicated in (4.1) since only a single cell is considered
in this work.
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Similar to [26], a DMRS on layer l for one slot is given by7

Rl = Diag (rl) = Tl Diag (r̄) , (4.2)

with the cyclic shift operator

Tl = Diag
(
ej0, . . . , ejαl(k−1), . . . , ejαl(NSC−1)

)
, (4.3)

where the operator Diag(·) yields a diagonal matrix from a vector. The layer
dependent cyclic shift αl is defined by

αl =
2πncs,l

12
(4.4)

with
ncs,l =

(
n

(1)
DMRS + n

(2)
DMRS,l + nPN

)
mod 12 . (4.5)

Parameter n
(1)
DMRS is given by higher layers and nPN a cell specific pseudo-

random sequence. The only layer dependent term in (4.5) is n
(2)
DMRS,l. This

value is signalled in terms of the uplink related Downlink Control Information
(DCI) format, in which a field of three bits is reserved for this purpose, namely
the Cyclic Shift Field (CSF) [10, 34]. The relation between this CSF from

DCI signalling and n
(2)
DMRS,l is given by Table 1 which originates from Table

5.5.2.1.1-1 in [10]. Although this implies a dependence of DMRS on the CSF,
this dependence is not considered until Section 6 as it does not affect any of
the proposed schemes for SU-MIMO.

Since (4.5) leads to values n
(1)
DMRS ∈ {0, 1, . . . , 11}, (4.4) yields αl ∈

{0, 2π
12
, . . . , 112π

12
}. Choosing the cyclic shift to be a multiple of 2π

12
corresponds

to the minimum number of 12 subcarriers assigned to a user. Therefore fre-
quency domain orthogonality can be ensured even if a User Equipment (UE)
is scheduled only a single RB.

As I will explain in Section 5, the inner product of two DMRS is the factor,
determining the inter-layer interference. It is therefore crucial to analyse
how the FD-CDM orthogonality can be exploited in order to cancel this
interference. Exploiting (4.1), the product of two DMRS from layers l and p
with l, p ∈ {1, . . . , NL}, becomes

RH
l Rp =TH

l Tp Diag (r̄)H Diag (r̄)

= Diag
(
ej0 . . . ej∆αl,p(k−1) . . . ej∆αl,p(NSC−1)

)
I , (4.6)

7Please note, that the concept of OCC [10] is not introduced here since it does not
affect the CE methods described in the following. Definition of DMRS will be augmented
by OCC in Section 6.
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with ∆αl,p = αp − αl being the cyclic phase shift between DMRS of two
different spatial layers. The FD-CDM orthogonality can therefore be exploited
as

trace
(
RH
p Rl

)
= rHp rl =

{
NSC for p = l

0 for p 6= l
, (4.7)

which implies that Rl is a unitary matrix, i.e., RH
l = R−1

l . After transmission
over a frequency selective channel, this orthogonality has to be exploited to
separate all effective MIMO channels at the receiver.
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Figure 4: Comparison of DMRS allocation in LTE-A for two spatial layers.

5 Channel Estimation

In this section I consider CE for coherent detection based on DMRS. Since
these reference signals are inserted prior to precoding, cf. Fig. 2, the effective
channel (3.9) (including the precoder) is estimated. Also, the reference symbols
are not DFT spreaded at the transmitter, and CE is carried out way before de-
spreading at the receiver. The actual single carrier characteristic of SC-FDM
does therefore not apply for CE. The main difference to CE in the LTE-A
downlink, or to any other MIMO OFDM system, is the specific allocation
of pilot symbols and their structure, as shown in Fig. 4. In the uplink,
DMRS are multiplexed on the same resources for all active spatial layers
in order to reduce overhead for uplink MIMO transmissions and to reduce
the PAPR. Therefore they interfere with each other when being transmitted
over a MIMO channel.8 Exploiting the frequency domain orthogonality, the
reference signals then have to be separated at the receiver in order to obtain
channel estimates for all MIMO channels. Unfortunately this orthogonality
is generally destroyed by a multipath channel and sophisticated estimation
algorithms have to be applied. In this context it is obvious, that the problem
of inter-layer interference is only present for transmission over a frequency
selective MIMO channel. This complication neither arises on a frequency flat
MIMO channel, as in [19], nor for SISO transmissions on a frequency selective
channel [14]. Further, this effect is unique for uplink transmissions, since pilot
symbols are multiplexed on distinct REs in the downlink, as shown in Fig. 4a.

8Due to the standardized precoder codebook [10], the inter-layer interference is actually
caused by the MIMO channel rather than by the precoder, since there is only one data
stream transmitted per transmit antenna.
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5.1 System Model for Channel Estimation

As shown in Fig. 2, the DMRS are inserted after the DFT spreading, right
before the precoding. As CE takes place right before the equalizer, the system
model for CE reduces to an OFDM model, as there is no DFT spreading or
de-spreading involved. The original model (3.11) therefore simplifies and the
signal received at the channel estimator is

yn = Hnrn + zn , (5.1)

where the data xn was substituted by the reference symbol rn. As explained
in Section 4, DMRS are multiplexed at OFDM symbol times n = {4, 11}
in case of normal CP length. As (5.1) is therefore only exploited at these
symbol times indices, the time index n will be omitted in the remainder of
this section.

In order to reveal the stacked structure, (5.1) is expanded to



y1
...

yNR


 =




H1,1 . . . H1,NL
...

. . .
...

HNR,1 . . . HNR,NL







r1
...

rNL


+




z1
...

zNR


 . (5.2)

Considering one row of this stacked model, the received signal on antenna i
reads as

yi = (Hi,1, . . . ,Hi,NL)




r1
...

rNL


+ zi

= (R1, . . . ,RNL)




hi,1
...

hi,NL


+ zi , (5.3)

where the block-wise diagonal structure of the effective channel matrix is
exploited to form the channel vector hi,l = diag (Hi,l), where the operator
diag(·) yields a column vector from a matrix diagonal. Similarly the reference
symbols are written as matrix Rl = Diag (rl).

To perform channel estimation on this received signal in order to estimate
the complete channel vector, (5.3) can be compactly written as

yi = Rhi + zi , (5.4)

with

R =
(
R1 . . .RNL

)
∈ CNSC×NSCNL , (5.5a)

hi =
(
hTi,1 . . .h

T
i,NL

)T ∈ CNSCNL×1 . (5.5b)
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5.2 Minimum Mean Square Error Estimation

In this section a Linear MMSE (LMMSE) estimator is introduced. As it leads
to the best performance in terms of Mean Square Error (MSE) among all
linear estimators, it will serve as a lower bound on the CE MSE for all other
estimation methods. To obtain this best estimator, the complete channel
vector hi from (5.4) is estimated.

The LMMSE estimator A ∈ CNLNSC×NSC for estimating the channel vector
ĥi from the received signal as

ĥi = ALMMSEyi , (5.6)

is obtained by solving

ALMMSE = arg min
A

E
{∥∥Ayi − hi

∥∥2

2

}
. (5.7)

As shown in Appendix A.2 the solution of this optimization problem is given
by

ALMMSE = ChyC−1
y , (5.8)

with the correlation matrices Chy = E{hyH} and Cyy = E{yyH}. Inserting
the system model (5.4) and assuming h and z to be statistically independent,
these correlations work out as

Cy =E
{
yyH

}

=E
{

(Rh + z) (Rh + z)H
}

=RChRH + σ2
zINSC

, (5.9)

and

Chy =E
{
hyH

}

=E
{

h (Rh + z)H
}

=ChRH . (5.10)

Inserting (5.9) and (5.10) into (5.8) yields the LMMSE estimator

ALMMSE = ChRH
(
RChRH + σ2

zINSC

)−1
. (5.11)

Combining (5.6) and (5.11), the estimated channel is obtained by

ĥ
LMMSE

i = ChRH
(
RChRH + σ2

zINSC

)−1
yi . (5.12)
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Inserting the expanded notation (5.5), the correlation matrix is

Ch =E








hi,1
...

hi,NL



(
hHi,1, . . . ,h

H
i,NL

)




. (5.13)

Due to the stacking of channels from all layers into h as described in (5.5),
the correlation of h can be written as

Ch = C
(s)
h ⊗C

(f)
h , (5.14)

with the channel frequency correlation matrix C
(f)
h ∈ CNSC×NSC and spatial

correlation matrix C
(s)
h ∈ CNL×NL .

The frequency correlation matrix describes the correlation between sub-
carriers and is given by

C
(f)
h = E

i,l
{hi,lhHi,l} . (5.15)

The spatial correlation matrix describes the spatial correlation of the effec-
tive channel, this spatial correlation depends on the precoder F ∈ CNT×NL as
described in the following.9 The stacked channel, including channel coefficients
from NSC subcarriers of all NL layers to receive antenna i, hi ∈ CNSCNL×1

from (5.5) is an effective channel including the precoder. Considering (3.9) it
can be written as

hi = (F⊗ INSC
)T h′i , (5.16)

where h′i ∈ CNSCNT×1 denotes the channel without precoder and hi denotes the
effective channel. Since the precoder F is constant over subcarriers k, (5.16)
can be written on subcarrier basis as

[hi]k = FT [h′i]k , (5.17)

where [·]k selects the kth subcarrier of the individual stacked vectors, as

[hi]k =




hi,1[k]
...

hi,NL [k]


 , (5.18)

and

[h′i]k =




h′i,1[k]
...

h′i,NT [k]


 . (5.19)

9I only describe spatial correlation at the transmitter side here. Since I assume the
receive antennas to be spatially uncorrelated, the LMMSE estimator described in this
section is still optimal in the LMMSE sense.
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Assuming the channel to be spatially uncorrelated, i.e., E{[h′i]k [h′i]
H
k } = INT ,

the correlation matrix of the effective channel is given by

C
(s)
h = E{[hi]k [hi]

H
k } = FTF? , (5.20)

which essentially means that the precoder introduces spatial correlation on the
effective channel. Due to the semi-unitary LTE-A codebook from [10], FHF
is a diagonal matrix in any case and further, FHF = 1/NLINL if NT = NL

which means that no correlation is introduced if the number of layers equals
the number of transmit antennas.

5.3 Least-Squares Based Estimation

For an other method of estimation, a LS criterion is applied on (5.4) to obtain
a channel estimate by solving

h̃i = arg min
hi

∥∥yi −Rhi
∥∥2

2
. (5.21)

As R ∈ CNSC×NLNSC is a fat matrix, there is no unique solution to the
underdetermined problem (5.21). Choosing the least-norm solution of hi, the
right pseudo-inverse of R is exploited to obtain

h̃i = RH
(
RRH

)−1
yi , (5.22)

as shown in Appendix A.3. Inserting (5.5) in (5.22) and exploiting (4.6) leads
to 


h̃i,1

...

h̃i,NL


 =




RH
1
...

RH
NL



(

NL∑

l=1

RlR
H
l

)−1

︸ ︷︷ ︸
1/NLI

yi . (5.23)

Considering the lth row yields the LS channel estimate for the effective channel
from transmit layer l to receive antenna i

h̃i,l =
1

NL

RH
l yi , (5.24)

showing, that LS estimation of all effective MIMO from any spatial layer l to
a single receive antenna i is a decoupled problem.

Directly applying a layer-wise LS estimation for the channel hi,l from layer
l to receive antenna i is expressed by the minimization problem

h̃i,l = arg min
hi,l

∥∥yi −Rlhi,l
∥∥2

2
. (5.25)
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Figure 5: An exemplary snapshot of the initial channel estimate.

Since Rl ∈ CNSC×NSC , this problem is solved by the left pseudoinverse as
shown in Appendix A.4.10 Again exploiting (4.6) leads to

h̃i,l =
(
RH
l Rl

)−1
RH
l yi = RH

l yi . (5.26)

which shows to be identical to (5.24), obtained by solving a LS problem for
all effective MIMO channels at once, up to a factor 1

NL
. Further this solution

can be interpreted as follows. The effective MIMO channel from layer l to
receive antenna i is obtained by multiplying the received signal on antenna i
with the corresponding reference signal from layer l. (5.26) is therefore the
initial step in LS based estimation and will be referred to as initial channel
estimate in the sequel.

To further investigate on the initial estimate, the system model (5.3) is
inserted in (5.26), yielding

h̃i,l =RH
l

NL∑

p=1

Rphi,p + RH
l zi (5.27)

=hi,l +

NL∑

p=1
p 6=l

RH
l Rphi,p

︸ ︷︷ ︸
inter-layer interference

+ži .

10In this special case matrix Rl is actually invertable and the conventional inverse also
solves the estimation problem.
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Here ži has the same distribution as zi since RH
l is unitary and introduces

phase changes only. Due to the allocation of DMRS on the same time and
frequency resources on different spatial layers, the initial estimate of one
MIMO channel suffers from interference of other layers. This is expressed in
the second term of (5.27) and will be referred to as inter-layer interference.
An example of this initial estimate is shown in Fig. 5, illustrating that the
interference in (5.26) is quite strong. The initial estimate is not directly
applicable for coherent detection but requires further processing.

In this context it is obvious why inter-layer interference is not an issue on
a frequency flat channel, i.e., Hi,l = hi,lI. For this special case code-domain
orthogonality is directly exploited as in (4.7), where evaluating the trace is
exchanged by multiplication with the DMRS in vector form. In this manner,
a channel estimate of a frequency flat channel is obtained by

ĥi,l =
rHl yi
rHl rl

. (5.28)

This estimated channel coefficient is then valid for all subcarriers k. Insert-
ing (5.27) and exploiting (4.7) yields

ĥi,l =
1

NSC

NL∑

p=1

rHl Hi,prp +
1

NSC

rHl zi

=hi,l +
1

NSC

rHl zi . (5.29)

This way, an estimate of a non frequency selective channel is obtained by
directly applying DMRS orthogonality (4.7). With this method a single
coefficient is estimated, meaning it leads to high estimation error when
applied for estimating a channel with significant delay spread. In this case,
methods exploiting DMRS code-domain orthogonality in a more sophisticated
(piecewise) manner have to be utilized.

5.3.1 Discrete Fourier Transform based Estimation

A well known approach for CE in LTE-A uplink is DFT based estimation [23],
which aims to separate the MIMO channels contributing to (5.27) in time
domain. For this the individual cyclic shift of each DMRS is exploited.
Applying a DFT on the receive signal, the individual phase shifts will translate
into a shifts in time domain. This makes a separation of CIRs from different
MIMO channels possible by windowing. Applying an IDFT on the initial
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Figure 6: CIR separation in time domain for NL = 2.

estimate yields

h̃
(t)
i,l =DH

NSC
h̃i,l

=DH
NSC

NL∑

p=1

TH
l TpDNSC

h
(t)
i,p + DH

NSC
z̃i

=

NL∑

p=1

Π∆Nh
(t)
i,p + DH

NSC
z̃i , (5.30)

with the permutation matrix Π which is obtained by cyclically left shifting
the identity matrix as in [26]. The power of the permutation matrix is
∆N = ∆αl,pNSC/2π and depends on the difference in phase shift between

layers p and l from Section 4. The time domain estimate h̃
(t)
i,l consists of

NL CIRs, from all NL active layers to receive antenna i. An example of h̃
(t)
i,l

for two active spatial layers, and therefore |∆α1,2| = π, is shown in Fig. 6a.

The two contributing CIRs, h
(t)
i,1 from layer one and h

(t)
i,2 from layer two, are

illustrated in red and blue respectively. Due to the cyclic shift of DMRS, these
NL contributions are shifted relative to each other such that the distance
in time between them is maximized. The intended CIR, from layer one, is
centred around the origin and can be separated by windowing. In case of
a narrow transmission bandwidth or a long CIR, the time domain MIMO
channels overlap, cf. Fig. 6b, which is referred to as CIR leakage. DFT
based CE therefore leads to inferior performance for small scheduled user
bandwidths or channels with high delay spread.

To separate the different MIMO channels, windowing with window size
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2β is carried out

ȟ
(t)
i,l [s] =

{
h̃

(t)
i,l [s] for s < β or s > NSC − β

0 otherwise ,
(5.31)

where β is chosen to be the CP length NCP. To yield a frequency domain CE,
a DFT is applied on the separated CIR

ĥDFT
i,l = DNSC

ȟ
(t)
i,l . (5.32)

5.3.2 Averaging

When CIRs are separated in time domain, and the CIR length is big compared
to the scheduled user bandwidth, CIR leakage occurs as described above.
The idea I introduced in [3] is to cancel inter-layer interference in the initial
estimate (5.26) by post processing in frequency domain. In this section the
method of interference cancellation by averaging is explained.
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Figure 7: The inter-layer interference on the unit circle is cancelled when
summed over all points.

Concluding from (4.6), the interference in (5.27) is characterized by a
rotation on the unit circle in the complex plane as illustrated in Fig. 7.
The phase shift between two adjacent points in frequency is determined
by ∆αp,l and the number of distinct points on the unit circle is given by
γ = 2π/∆αp,l. The phase shift ∆αp,l = αp − αl and therefore the periodicity
γ of the interference is dependent on the two layers p and l. Exploiting (4.4)
and (4.5) in combination with Table 1, a relation between ∆αp,l and the two
layers l and p is found, as illustrated in Fig. 8. This figure is interpreted
as follows: By selecting two vertices of different layers l, the label of the
corresponding edge connecting these two vertices gives the phase shift ∆αp,l
between these layers. This relation turns out to be independent of the actual
cyclic shift field from uplink related DCI.

When estimating all MIMO channels exploiting (5.27) all possible combi-
nations of p, l ∈ {1, . . . , NL} appear and therefore different values of ∆αp,l will
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Figure 8: Layer dependent phase shift.

occur in the inter-layer interference term. In order to cancel all interference
terms at once the sum over the largest possible number of points on the unit
circle, i.e., the largest possibly occurring periodicity, has to be calculated.
This periodicity is determined by the minimum phase shift between two
different layers which is given by

∆αmin =





minl,p∈{1,...,NL}
l 6=q

|∆αp,l| for 2 ≤ NL ≤ 4

2π for NL = 1
. (5.33)

As explained in Section 5.3.1, this phase shift determines MIMO channel
component separability. When ∆αmin is small, e.g. when four transmission
layers are active, frequency selective channels are unlikely to be separable
and inter-layer interference is inevitable.

The corresponding (maximum) periodicity is then

γ̄ =
2π

∆αmin

. (5.34)

From Fig. 8 it is obvious that γ̄ = 4 as soon as more than two spatial layers are
active, i.e., for NL ≥ 3. The corresponding values of γ̄ are listed in Table 2.

Concluding from this, the sum of γ̄ consecutive elements in (4.6) will eval-
uate to zero, independent of the actual layers p and l. In terms of interference
cancellation the key observation is, that the sum of γ̄ consecutive elements
in (4.6) will evaluate to zero. Therefore, averaging (5.26) over a complete
turn on the unit circle will cancel the interference, as indicated in Fig. 7. For
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Table 2: Phase shift for possible numbers of layers NL.

NL ∆αmin γ̄ ∆αp,l
1 2π 1 {2π}
2 π 2 {±π, 2π}
3 π

2
4 {±π

2
,±π, 2π}

4 π
2

4 {±π
2
,±π, 2π}
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Figure 9: An exemplary snapshot of the averaged channel estimate for γ̄ = 2.

the averaging CE method the sum, or average, over γ consecutive elements
of h̃i,l is calculated. This is identical to saying the FD-CDM orthogonality
is preserved when the channel is assumed to be constant on γ̄ consecutive
subcarriers [34]. The channel estimate is obtained by piecewise averaging the
initially obtained estimate over γ̄ adjacent elements as

ĥAV
i,l [k] =

1

γ̄

d k
γ̄
eγ̄∑

j=d k
γ̄
eγ̄−γ̄+1

h̃i,l[j] . (5.35)

This results in a piecewise averaged channel estimate that is constant on γ̄
consecutive subcarriers as shown in Fig. 9.

On a frequency flat channel, piecewise averaging is not an issue since
there is no frequency selective shape that has to be preserved. In this special
case averaging over the whole scheduled bandwidth is carried out to obtain
the channel coefficient of the frequency flat channel. Applying this average
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on (5.27) yields

ĥi,l =
1

NSC

trace

(
RH
l

NL∑

p=1

Rphi,p + RH
l zi

)

=
1

NSC

NL∑

u=1

rHl Hi,prp +
1

NSC

rHl zi

=hi,l +
1

NSC

rHl zi (5.36)

where (4.7) was exploited and the frequency flat channel is inserted as Hi,l =
hi,lINSC

. However, that is exactly the solution obtained by (5.28). This means,
in the case of a frequency selective channel, this orthogonality is exploited in a
piecewise manner, assuming the channel coefficients on γ̄ adjacent subcarriers
to be equal, while orthogonality can be exploited directly on a frequency flat
channel.

For interference cancellation it suffices to sum over all points of interference
on the unit circle while it actually does not matter where the summation
starts and stops as illustrated in Fig. 7. The method of averaging is therefore
augmented to a sliding average. Here, the averaging window of size γ̄ is
shifted subcarrier by subcarrier over the scheduled bandwidth. The sliding
average is given by11

ĥSAV
i,l [k] =

1

γ̄2

k∑

t=k−γ̄+1

t+γ̄−1∑

j=t

h̃i,l[j] for γ̄ ≤ k ≤ NSC − γ̄ + 1 . (5.37)

Here, the second sum describes the averaging of γ̄ elements while the first sum
describes the shift of the averaging window. Exploiting the sliding average,
the channel estimate is not piecewise constant any more and changes from
subcarrier to subcarrier as shown in Fig. 10. Further, as more elements of
h̃i,l are averaged to obtain one coefficient of ĥSAV

i,l , compared to (5.35), noise
influence is suppressed more effectively.

As complexity of both, averaging and sliding averaging, is asymptotically
linear, i.e., O(NSC), and the performance of sliding averaging is superior for
reasons explained above, the method of averaging is considered as intermediate
step to sliding averaging.

11Please note that in this definition the range of subcarriers k is limited to a region
of subcarriers k, where the averaging window is not limited by band borders in order to
increase readability. An equation for sliding averaging including band borders, i.e., for
k ∈ {1, . . . , NSC}, is given in Appendix A.5.
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Figure 10: An exemplary snapshot of the sliding averaged channel estimate.

5.3.3 Quadratic Smoothing

The estimation method described in the previous section shows that applying a
sliding averaging to the initial channel estimate, obtained as the solution to an
LS estimation problem, yields a well performing channel estimation method [1,
3, 35]. Similar effects are achieved when the initial LS problem is augmented
by a smoothing regularization. By applying Quadratic Smoothing (QS) [36],
the difference in channel coefficients of neighbouring subcarriers is penalized
within the minimization problem. This regularization is justified since adjacent
subcarriers will be correlated in a frequency selective channel.

The quadratic smoothing is expressed with the matrix Q ∈ R(NSC−1)×NSC

Q =




−1 1
−1 1

. . . . . .

−1 1


 , (5.38)

capturing the regularization on the difference between neighbouring channel
coefficients. The regularized LS problem is then given by

ĥQS
i,l = arg min

hi,l

∥∥yi −Rlhi,l
∥∥2

2
+ λ
∥∥Qhi,l

∥∥2

2
, (5.39)

with the trade-off, or frequency smoothing parameter λ. The solution to this
optimization problem from [36] is

ĥQS
i,l =

(
INSC

+ λQHQ
)−1

RH
l yi︸ ︷︷ ︸
h̃i,l

, (5.40)
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as shown in Appendix A.6. The smoothing parameter λ reflects the frequency
selectivity of the channel. A high value of λ lies emphasis on the smoothing,
leading to a good performance at low Signal to Noise Ratio (SNR). If however,
smoothing is chosen too dominant, a very frequency selective channel will be
smoothed out, leading again to a high estimation MSE. The optimal value
of smoothing parameter λ is therefore crucial for the performance of the QS
estimator. As finding a suited value λ is dependent on the actual frequency
selectivity of the channel, the smoothing parameter can be interpreted as a
prior about the channel [37].

Further, as explained in Section 4, the inter-layer interference, and espe-
cially its periodicity, is dependent on the number of active spatial layers. As
already explained in Section 5.3.2, when two layers are employed, averaging
is carried out over two consecutive subbarriers, and for three or four active
spatial layers, the channel estimate is averaged over four adjacent subcarri-
ers. For QS estimation this means, that the smoothing parameter not only
depends on the channel’s frequency selectivity but also on the number of
employed spatial layers NL. The smoothing parameter λ therefore influences
the trade-off between smoothing the channel estimate while preserving its
frequency selective nature, as well it influences the reduction of inter-layer
interference.

One way of choosing the smoothing parameter proposed by [36] is finding
the optimal trade-off between

∥∥yi −Rlhi,l
∥∥

2
and

∥∥Qhi,l
∥∥

2
. This yields a λ,

leading to a balance between the original LS term and the regularization
term in (5.39). This is however not equal to minimizing the estimation MSE
with respect to λ. To obtain a smoothing parameter that ideally leads to a
minimum MSE for channels with a wide range of delay spread, I compare
CE MSE dependent on λ on a Pedestrian A (PedA), Typical Urban (TU)
and Vehicular B (VehB) channel [38, 39], as listed in Table 3. Here the
fundamental relation between channel coherence bandwidth Bcoh and Root
Mean Square (RMS) delay spread τRMS is known [40] to be

Bcoh ≈
1

2πτRMS

. (5.41)

Simulation results in terms of MSE dependent on λ for all three proposed
channel models are shown in Fig. 11. Since the smoothing parameter depends
on the number of employed layers, two spatial layers are employed in Fig. 11a
while four spatial layers are active in Fig. 11b. A clear optimum for λ is
observed for the TU channel. Too little smoothing leads to insufficient noise
cancelling, too much smoothing destroys the frequency selective channel. In
case of the PedA there is no such optimum. Since the channel is almost
frequency flat, there is no over-smoothing. In case of VehB, the assumption
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Table 3: RMS delay spread and coherence bandwidth of employed channel
models.

Channel Model τRMS Bcoh

PedA 45 ns 3536.8 kHz
TU 500 ns 318.3 kHz
VehB 4000 ns 39.8 kHz
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(a) With two active spatial layers.
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(b) With four active spatial layers.

Figure 11: Smoothing parameter choice.

of uncorrelated subcarriers is not fulfilled as it has a very small coherence
bandwidth, c.f. Table 3.12 For higher λ somehow the channel estimate is
smoothed out and the mean is fitted to the actual channel, therefore the MSE
is decreasing slowly with λ.

Based on this results, I chose λ = 8 for NL = 2 and λ = 15 for NL =
{3, 4}. Of course when only a single spatial layer is active, λ is set to zero
to obtain a plain LS estimator. Since there is no inter-layer interference
in this case, there is also no need for averaging or smoothing. In this
way the smoothing parameter is fixed irrespective of the actual channel
characteristics in order to obtain an estimation method that does not require
prior channel knowledge, although an adaptive value of λ would improve
the overall estimation performance. Also in [28], where quadratic averaging
is employed in a different context, authors claim that λ is approximately
constant.

Similar to (5.37), QS can be interpreted as another way to cope with the

12Please note that simulation results for VehB were obtained with extended CP length
as the CIR exceeds the normal CP length. Although a VehB’s CIR is even slightly longer
than the extended CP length, the resulting interference is negligible.
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Figure 12: An exemplary snapshot of the quadratically smoothed channel
estimate.

inter-layer interference in (5.27) by post processing. This method does not use
the DMRS structure explicitly but suppresses the interference by smoothing.
It is therefore not able to cancel the complete inter-layer interference as
depicted in Fig. 12.

5.3.4 Approximate Quadratic Smoothing

Although the smoothing parameter within the QS estimator is fixed such that
this algorithm does not require any prior about the channel, (5.40) requires a
matrix inverse leading to high asymptotic complexity of O(N3

SC). To reduce
the computational complexity I exploit the strong structure within this matrix
inverse and thereby propose an approximate quadratic smoothing estimator
in this section.

The matrix to be inverted for QS estimation (5.40) is a symmetric tri-
diagonal matrix and given by

B = INSC
+ λQHQ =




1 + λ −λ
−λ 1 + 2λ −λ

. . . . . . . . .

−λ 1 + 2λ −λ
−λ 1 + λ




. (5.42)

By approximating the first and last element of the main diagonal, i.e., B[1, 1]
and B[NSC, NSC] respectively, a symmetric tri-diagonal Toeplitz matrix B̃ is
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obtained as

B̃ =




1 + 2λ −λ
−λ 1 + 2λ −λ

. . . . . . . . .

−λ 1 + 2λ −λ
−λ 1 + 2λ




. (5.43)

For such a matrix, expressions for the matrix inverse are known [41]. Whether
this approximation leads to an approximate inverse B̃−1 that is significantly
different from B−1 depends on the size of B, given by NSC, and the smoothing
factor λ. However, assuming a user is scheduled at least one RB, NSC is at
least 12 subcarriers. In this worst case, only two out of 34 non-zero elements
in B are modified to obtain B̃.

Since B̃ is now a tri-diagonal Toeplitz matrix, the inverse can be calculated
analytically as described in Appendix A.7. Exploiting (A.25) to calculate the
inverse of B̃ leads to

B̃−1 [i, j] =

{
1
λ

Ui−1(d)UN−j(d)

UN (d)
for i ≤ j ,

1
λ

Uj−1(d)UN−i(d)

UN (d)
for i > j ,

(5.44)

with d = 1 + 1
2λ

. The matrix inverse is a symmetric matrix and reads as

B̃−1 =
1

λUN




U0UN−1 U0UN−2 U0UN−3 ... U0U2 U0U1 U0U0

U0UN−2 U1UN−2 U1UN−3 ... U1U2 U1U1 U1U0

U0UN−3 U1UN−3 U2UN−3 ... U2U2 U2U1 U2U0

...
...

...
...

...
...

...
U0U2 U1U2 U2U2 ... UN−3U2 UN−3U1 UN−3U0

U0U1 U1U1 U2U1 ... UN−3U1 UN−2U1 UN−2U0

U0U0 U1U0 U2U0 ... UN−3U0 UN−2U0 UN−1U0




, (5.45)

where the argument of the Chebyshev polynomial U(d) was omitted for
readability.

Since all Chebyshev polynomials have to be evaluated for the same ar-
gument d, calculating the function values U0(d), . . . , UNSC

(d) is sufficient for
determining the complete matrix. These values are determined in a recursive
fashion, exploiting the recurrence relation

U0(x) = 1

U1(x) = 2x

Un(x) = 2xUn(x)− Un−1(x) . (5.46)

Further one observes that diagonals of B̃−1 are approximately equal. This
is intuitive because the smoothing of the initial channel estimate should
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not depend on the actual subcarrier, which means that the applied post
processing matrix should be close to a symmetric and Toeplitz structured
matrix. Considering this observation, matrix B̃−1 is approximated by a
Toeplitz matrix that is determined by the first column (or first row) of B̃−1,
c.f. (5.45), which yields

Ǎ =
U0

λUN




UN−1 UN−2 . . . . . . U1 U0

UN−2 UN−1 UN−2 U1
... UN−2 UN−1 UN−2

...
...

. . . . . . . . .
...

U1 UN−2 UN−1 UN−2

U0 U1 . . . . . . UN−2 UN−1




, (5.47)

where the scaling factor U0 was pulled in front of the matrix. To obtain
a matrix that represents an averaging function, the rows of Ǎ have to be
normalized. This yields the approximate quadratic smoothing estimator

AAQS[i, j] =
Ǎ[i, j]∑N
n=1 Ǎ[i, n]

∀n ∈ {1, . . . , NSC} . (5.48)

A channel estimate is then obtained by

ĥAQS
i,l = AAQSh̃i,l . (5.49)

To evaluate the quality of this approximation, simulations are carried out.
Figure 13 shows MSE over SNR for two and four active spatial layer obtained
with QS and approximate QS. Results show that the obtained estimation
error is almost the same for these two methods. For NL = 4, approximate
QS even attains a slightly lower MSE floor at high SNR.

By avoiding the computation of a matrix inverse, the complexity of ap-
proximate QS estimation is reduced to O(N2

SC), compared to cubic complexity
to the initial QS scheme. The complexity is reduced even further, when lower
order Chebyshev polynomials are neglected compared to the higher order
polynomials in (5.47), yielding a band-diagonal matrix. The computation of
such a matrix, as well as multiplying the initial channel estimate with this
matrix leads to an asymptotic linear complexity, i.e., O(NSC).

5.4 Simulation Results

In this section, the introduced CE methods are further analysed and com-
pared by means of simulation results in terms of MSE and BER. Computer
simulations were carried out with the Matlab based Vienna LTE-A Uplink
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Figure 13: Comparison of quadratic smoothing and approximate quadratic
smoothing for NL = 2 and NL = 4 on a TU channel.

Link Level Simulator [1, 42, 43] with simulation parameters as listed in Ta-
ble 4. Since up to know only estimation of frequency selective channels is
discussed, a block-fading assumption was made for simulations in this section,
meaning the channel does not vary in time for the duration of a subframe.
The channel is estimated, exploiting the introduced estimation algorithms,
at pilot positions. Coefficients of the estimated channel in between refer-
ence symbol positions are obtained by extrapolating/repeating the estimated
channel, which is obtained at symbol time n = {4, 11}, for the rest of the
corresponding slot, which is expressed as

ĥn[k] =

{
ĥ4[k] for n ∈ {1, . . . , 7},
ĥ11[k] for n ∈ {8, . . . , 14}, ∀k ∈ {1, . . . , NSC} . (5.50)

The CE MSE is then calculated as explained in Appendix A.8.
A performance comparison of estimation algorithms described in this

section is shown in Fig. 14, where Fig. 14a and Fig. 14b show estimation MSE
for two and four active spatial layers, respectively while Fig. 14c and Fig. 14d
show the corresponding BER.

LMMSE estimation, as described in Section 5.2, serves as a performance
reference as is achieves the lowest MSE of all linear estimators and is denoted
by MMSE. Due to this purpose, second order channel and noise statistics are
assumed to be perfectly known. Further, considering its asymptotic cubic
complexity, i.e., O(N3

SC), and the fact that second order statistics need to be
estimated render the LMMSE estimator rather impractical.
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Table 4: Simulation parameters.

Parameter Value
Simulated Subframes 1000

Channel Model TU
Time-Fading Model Block-Fading

Bandwidth 1.4 MHz (NSC = 72)
Symbol Alphabet 16 QAM

Antenna Configurations 2× 2, NL = 2
4× 4, NL = 4

Equalizer MMSE

Estimation based on DFT, as introduced in Section 5.3.1, aims to sepa-
rate all MIMO CIRs in time domain. The corresponding simulation results
in Fig. 14 are labelled DFT. In terms of MSE, results show that frequency
selective channels cannot be fully separated in time domain and severe CIR
leakage manifests in a rather high MSE floor. Comparing Fig. 14a and Fig. 14b
this effect is even more pronounced when more than two spatial layers are
active, since the shift between individual CIRs is significantly smaller. In
either case, the MSE floor results in a high BER floor for DFT based CE.
This estimation algorithm is therefore not applicable for MIMO transmissions
over frequency selective channels.

Sliding average CE is described in Section 5.3.2 and labelled SAV. As
this methods aims to cancel inter-layer interference of the initial estimate,
results show a LS like performance up to high SNR. Only when the MSE
is not dominated by noise contributions at very high values of SNR, the
residual interference causes an MSE floor. This effect is more dominant for
four transmission layers as there are more inter-layer interference components.
Again this leads also to a non vanishing BER in the high SNR region for
NL = 4, however, the BER saturates at a low value.

CE according to Section 5.3.3 is referred to as quadratic smoothing and
is labelled QS. This estimator is the solution to a regularized LS problem
where the parameter λ determines the regularization trade-off or the degree of
smoothing. The smoothing property means that more than just two our four
channel coefficients (compared to sliding averaging estimation) of the initial
estimate are averaged to obtain a single post processed channel coefficient.
This is obvious from the estimator (5.40), which is determined by a matrix
inverse that leads to a matrix containing only non-zero elements. Performance
in the low SNR region is therefore very good in terms of MSE and BER as
the smoothing leads to noise cancellation. At a high SNR region however,
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(a) MSE for NL = 2.
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(b) MSE for NL = 4.
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(c) Uncoded BER for NL = 2.
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(d) Uncoded BER for NL = 4.

Figure 14: Comparison of estimation methods for SU-MIMO on a TU channel
and 16QAM.

quadratic smoothing results in a high residual MSE since this estimation
method does actually not consider the reference symbol structure. It is
therefore not able to cancel the inter-layer interference sufficiently which
results in a MSE and BER floor.

For further investigation on the ability of MIMO channel separation, I
compare sliding averaging estimation, quadratic smoothing estimation and
DFT based CE for different transmission bandwidths. In Fig. 15 estimation
MSE for two different bandwidths, obtained with before mentioned estimation
methods is shown. A large bandwidth is chosen by assigning a user all
6 RBs, which corresponds to NSC = 72 and a small bandwidth here means
a user is scheduled 2 consecutive RBs, corresponding to NSC = 24. Results
show that sliding averaging estimation performs equally for a wide and a
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Figure 15: Comparison of estimation methods for different scheduled user
bandwidths for a 2× 2 transmission with NL = 2.

narrow transmission bandwidth. The impact of bandwidth in quadratic
smoothing estimation also shows to be very small. For DFT based estimation
however, the MSE significantly increases when the bandwidth is reduced. This
corresponds to the fact that CIR leakage increases with decreasing bandwidth
and channel separation in time domain is deteriorated. DFT based CE results
in a high error floor when a narrow transmission band is employed [20].
Both other introduced estimation algorithms show robust behavior on narrow
transmission bands, as they do not separate MIMO channels in time domain.
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6 Multi-User MIMO Channel Estimation

For SU-MIMO transmissions, as considered up to now, resources are assigned
to a single user exclusively. This UE then transmits up to four spatial layers
in the LTE-A uplink. For this mode of operation, a user is required to have
more than one transmit antenna and as many transmitter chains, meaning
complex and power hungry UE hardware. Further, antenna correlation has
strong impact on MIMO gain [44] and integrating multiple antennas into a
small hand-held device is challenging.

When the number of receive antennas at the Base Station (BS) exceeds the
number of transmit antennas at the UE, improvements in sum throughput are
reached when MU-MIMO operation is employed for uplink transmissions [45,
46]. In this case, multiple users are assigned the same resources and therefore
transmit on the same time-frequency resources simultaneously. Exploiting
multiple receive antennas, the BS then separates the received signals in the
spatial domain.

In terms of detection, SU-MIMO and MU-MIMO are very similar, since
the receiver has to separate and detect multiple spatial streams. Since these
spatial layers stem from different UEs in the MU-MIMO case, the problem
of CE is different from SU-MIMO operation in the LTE-A uplink. When
received spatial streams, and also received DMRS correspondingly, originate
from different users, orthogonality of reference signals has to be ensured not
only between layers of the same user but also between different UEs. For this,
the DMRS structure is further exploited and signalling of DCI from BS to
the UE plays a key role.

CE for MU-MIMO transmissions in the LTE uplink was considered by
many authors [16, 20, 24–26], where again DFT and DCT based estimation
methods are very popular but suffer from CIR leakage. Corresponding changes
of the DMRS are discussed in [11, 12] while the method of OCC is shown
in [24].

In this section I first introduce a MU-MIMO system model, based on the
model from Section 3. Then possibilities of separating received DMRS in
time and frequency domain are discussed, focusing on the case of user with a
single transmit antenna. Finally CE for UEs equipped with more than one
transmit antenna is discussed.

6.1 System Model

For MU-MIMO I assume Nu users that are assigned the same NSC subcarriers
within a slot. Further, each UE is equipped with a single transmit antenna,
enabling transmissions on a single spatial layer only. A system model is
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therefore very similar to the model introduced in Section 3.
The modulated symbols at OFDM symbol time n, for all NSC subcarriers

of user u are described by vector xn,u ∈ ANSC×1. Stacking data vectors from
all users u ∈ {1, . . . , Nu} yields

xn =




xn,1
xn,2

...
xn,Nu


 ∈ A

NSCNu×1 , (6.1)

similar to (3.10). In the case of a single transmit antenna per UE, the system
model (3.11) is adopted for MU-MIMO by substituting the layer index l with
user index u as well as the number of layers NL with the number of users Nu

accordingly. A transmission model therefore reads as

x̂n =
(
INu ⊗DH

NSC

)
GnHn (INu ⊗DNSC

) xn +
(
INu ⊗DH

NSC

)
Gnzn , (6.2)

with the block-wise diagonal channel matrix

Hn =
(
INR ⊗MH

)
H(diag)
n

(
INu ⊗M

)
∈ CNSCNR×NSCNu . (6.3)

The block-wise diagonal channel matrix H(diag) ∈ CNFFTNR×NFFTNu , consisting
of OFDM channel coefficients on the diagonals of the block matrices, includes
all channels from Nu users to NR receive antennas, similar to (3.7) . Channel
matrix (6.3) is obtained similarly as the effective channel matrix from (3.7)-
(3.9). For the Multi-User (MU) system model however, the channel is not
called an effective channel as the precoding matrix of each user collapses to a
scalar, i.e., F = 1, since there is no precoding when a single spatial layer is
transmitted per user.

As explained in Section 5, for the purpose of CE this model simplifies to
an OFDM model. Similar to (5.1), a system description for CE is obtained
by substituting the data vector xn with the reference symbol vector r̃n and
removing the DFT spreading and de-spreading in (6.2). This leads to the
stacked model for MU-MIMO CE, given by

yn = Hnr̃n + zn . (6.4)

Considering the ith row of (6.4), the received signal on receive antenna i yields

ym,i =
(
R̃S1
m,1, . . . , R̃

SNu
m,1

)



hm,i,1
...

hm,i,Nu


+ zm,i , (6.5)
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similar to (5.3). Here the time index n is substituted by the slot index
m ∈ {1, 2} since this model is only valid for OFDM symbol times where
DMRS are multiplexed. Compared to (6.4), slot index m = 1 corresponds to
symbol time n = 4 and slot m = 2 corresponds to time n = 11 respectively.
Also the layer index l is set to l = 1 as each user only employs a single spatial
layer. A definition of reference symbols R̃Su

m,l for MU-MIMO is given in the
following.

6.2 Time Domain Orthogonality

For CE in MU-MIMO transmissions, DMRS are augmented by OCC com-
pared to (4.2). This leads to additional orthogonality in time domain, as
shown in [24]. While the already explained frequency domain orthogonality
is reached by cyclic shifts, the concept of OCC leads to time domain orthogo-
nality, allowing more flexibility in scheduling for MU-MIMO transmissions.
While separating received reference signals in frequency domain by exploiting
different cyclic shifts requires users to be scheduled on the same subcarriers,
orthogonality in time domain is independent on scheduling in frequency do-
main [24]. The drawback of this method is, that similar to the frequency
domain orthogonality, a time selective channel destroys orthogonality in
general.

DMRS from (4.2) are augmented by the OCC wS
l ∈ {−1, 1}2×1

R̃S
m,l = wS

l [m]TS
l Diag (r̄) , (6.6)

with the slot index m ∈ {1, 2}. Further, dependence on the CSF from uplink
related DCI format is indicated by CSF S. Comparing with Table 1, a DMRS
R̃S
m,l now depends on the CSF S, the slot index m and the layer index l.

Assuming a block fading channel, meaning the channel is constant for
the duration of a subframe, OCC can be exploited to separate two users in
MU-MIMO transmissions. On such a channel, the vector hm,i,u from (6.5)
does not depend on the slot index m, which is therefore omitted in the
following. Further, I assume two users, i.e., Nu = 2, both with a single
transmit antenna. User u = 1 is assigned CSF S1 and transmits on channel
hi,1 and user u = 2 is assigned CSF S2 and transmits on channel hi,2 to
receive antenna i. As an example, the orthogonal sequences are chosen as

wS1
1 = (1, 1)T , (6.7a)

wS2
1 = (1,−1)T , (6.7b)

with
(
wS1

1

)T
wS2

1 = 0.13 The received signal in slot m = 1 and m = 2 is

13As an example, this is obtained by S1 = 000 and S2 = 001, c.f., Table 1.
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denoted by y1,i and y2,i respectively. Utilizing (6.5) the received signals are
given by

y1,i =wS1
1 [1]TS1

1 Diag (r̄) hi,1 + wS2
1 [1]TS2

1 Diag (r̄) hi,2 + z1,i ,

y2,i =wS1
1 [2]TS1

1 Diag (r̄) hi,1 + wS2
1 [2]TS2

1 Diag (r̄) hi,2 + z2,i . (6.8)

Inserting the chosen OCCs from (6.7) yields

y1,i =TS1
1 Diag (r̄) hi,1 + TS2

1 Diag (r̄) hi,2 + z1,i ,

y2,i =TS1
1 Diag (r̄) hi,1 −TS2

1 Diag (r̄) hi,2 + z2,i . (6.9)

The OCC are then exploited by building the sum and the difference of received
signals from slots m = 1 and m = 2, which yields

y1,i + y2,i = 2TS1
1 Diag (r̄) hi,1 + z1,i + z2,i , (6.10)

and
y1,i − y2,i = 2TS2

1 Diag (r̄) hi,2 + z1,i − z2,i . (6.11)

A LS channel estimate is then obtained by

ĥi,1 =
(
TS1

1 Diag (r̄)
)H y1,i + y2,i

2
,

ĥi,2 =
(
TS2

1 Diag (r̄)
)H y1,i − y2,i

2
. (6.12)

Please note, that (6.12) is very similar to (5.26) as the received signal, which
is the sum or the difference of the received signals in (6.12), is multiplied
with the conjugate transpose of the reference signal (base sequence and phase
shift) as the solution to LS estimation. In the case of MU-MIMO and time
domain separation however, there is no inter-user interference left in (6.12)
compared to (5.26), since it was cancelled in time domain already.

The underlying assumption for this method of separation in time domain
is that the channel is not changing in time between transmission of DMRS
in the first slot and transmission of DMRS in the second slot, meaning
approximately 500µs. Even if this assumption is satisfied, with this method
DMRS originating from only two different users can be separated, as there
are only two reference signals multiplexed within one subframe and the OCC
wS
l is a length two sequence.

Further, please note, that I assumed the cyclic shift operator TS
l as well

as the base sequence r̄ in (6.6) to be independent of the slot index m,
meaning they do not change within a subframe. For this, certain hopping
mechanisms [10] have to be disabled.
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6.3 Frequency Domain Orthogonality

Although users’ channels can be separated exploiting time domain orthogonal-
ity obtained by OCCs, this method encounters severe problems as mentioned
above. For MU-MIMO transmissions, orthogonality of DMRS can still be
ensured in frequency domain by exploiting cyclic shift of reference symbols as
in the SU-MIMO case. For this method a DMRS modification is proposed
in [11] in order to obtain orthogonality not only between spatial layers of a
single user but between streams originating from several UEs. This modifi-
cation therefore applies on the calculation of the cyclic shift (4.5), which is
substituted by

ñcs,u =

(
ncs,1 +

12

Nu

(u− 1)

)
mod 12 , (6.13)

where ncs,1 is the original value of ncs,l from (4.5) for a certain CSF value and
layer l = 1 in order to ensure backwards compatibility. For a number of users
Nu that is a fraction of 12, each employing a single spatial stream, (6.13)
maximizes the minimum phase shift (5.33) between users leading to good
separability of frequency selective channels. In this sense, it is the ideal
modification of DMRS for MU-MIMO transmissions. However, modifying
phase shifts according to (6.13) is not possible in a straight forward manner,
as signalling of ncs is limited according to the LTE-A standard. Instead I will
introduce a method of achieving DMRS orthogonality between users within
the limits of the 3GPP standard.

Assigning each UE a certain value of ncs,l from (4.5), which corresponds
to a certain phase shift according to (4.4), is done by means of DCI signalling.
The dependence of ncs,l on the signalled CSF within the DCI is given in Table 1.
As I assume each user to employ a single spatial stream, only column l = 1
of this table is exploited. To obtain a maximum cyclic shift between DMRS
of distinct UEs, the CSF has to be selected according to a specific mapping
for each user. To further investigate on such a mapping function, different
numbers of users Nu are distinguished.

For Nu ≤ 4, the CSF is chosen according to the mapping function S = Γ(u)

as given in Table 5. Comparing values of n
(2)
DMRS,l in first row of Table 1 with

the last column of Table 5, it is obvious that cyclic shifts between reference
symbols of different users, in case of MU-MIMO, are identical to cyclic shifts
between spatial layers, in case of SU-MIMO. This mapping from user index
u to CSF S also fulfils (6.13) for Nu = 2 and Nu = 4, as is gives ncs,l = {0, 6}
and ncs,l = {0, 3, 6, 9}, respectively.14 When the CSF is assigned by exploiting

14Please note, that the mapping in Table 5 satisfies (6.13) only in the sense that the
cyclic shift between users is uniform and maximum.
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Table 5: Relation between user index u and the CSF.

Γ−1(S) Γ̂−1(S) CSF S n
(2)
DMRS,1

1 1 000 0
2 4 001 6
3 7 010 3

3 011 4
2 100 2
5 101 8
6 110 10

4 8 111 9

Γ(u), all channel estimation methods discussed in Section 5 are applicable
for MU-MIMO, when the layer index l is substituted by the user index u and
the number of layers NL is substituted by the number of scheduled users Nu.

If the number of users exceeds four, i.e., Nu > 4, extending the mapping
Γ(u) from Table 5 to eight users is not the best choice in terms of minimum
phase shift between DMRS. While the minimum difference in ncs,1 between
any two users is three for the mapping function Γ(u), this minimum difference
decreases to one as soon as another user is added to this mapping, cf. Table 1.
Instead, a different user index to CSF mapping Γ̂(u) is exploited when Nu > 4
as given in Table 5. With this, the minimum difference in ncs,1 between users
is two for Nu = 5, 6 and only decreases to one for Nu = 7, 8. For MU-MIMO
transmissions the maximum number of scheduled users Nu is eight, since the
CSF within the DCI signalling is a three bit field [10]. The mapping Γ̂(u)
given by Table 5 satisfies (6.13) for Nu = 6 in the sense that the cyclic shift
between users is uniform and maximum.

6.4 Multiple Transmission Layers

When each user u is allowed to have more than just a single spatial layer, but
NL(u) layers, orthogonality between DMRS has to be obtained in between
spatial layers of each user and between all layers of different users simultane-
ously. The introduced modification (6.13) for cyclic shift values now has to
be even augmented to a layer and user dependent shift as

ñcs,lu,u =

(
n

(1)
DMRS + nPN +

12

N tot
L

(
lu − 1 +

u−1∑

u′=1

NL(u′)

))
mod 12 (6.14)
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with N tot
L being the total number of active spatial streams

N tot
L =

Nu∑

u=1

NL(u) , (6.15)

and the user specific layer index lu ∈ {1, . . . , NL(u)}. The total number of
layers has to be chosen as a fraction of 12 to enable maximization of cyclic
shifts between layers and users. However, enforcing (6.14) by DCI signalling
of a suitable CSF according to Table 1 is not straight forward. As an example,
for Nu = 2 with NL(u) = 2 ∀u = {1, 2}, the best choice is S1 = 000 and
S2 = 111, c.f., Table 1. This results in a cyclic shift of ∆α = π/2 between
any two layers, which is the maximum value for a total number of N tot

L = 4
as already listed in Table 2. Similarly, optimal CSF values have to be found
for other number of users and layers.

6.5 Simulation Results

Again computer simulations were carried out with the LTE-A Uplink Link
Level Simulator [1, 42, 43] with simulation parameters as listed in Table 6. As
explained previously, by applying a user to CSF mapping, estimation methods
as explained in Section 5 are applicable for MU-MIMO transmissions as well.
Therefore I will not show simulation results for all presented estimators again
in this section, as results will show the same behaviour and properties as for
SU-MIMO.

Table 6: Simulation parameters.

Parameter Value
Simulated Subframes 4000

Channel Model TU
Time-Fading Model Block-Fading

Bandwidth 1.4 MHz (NSC = 72)
Symbol Alphabet 16QAM

Antenna Configurations 4× 4 (SU-MIMO)
1× 4 (MU-MIMO)

Receiver MMSE
CE Method sliding averaging

For verification, I show simulation results in terms of MSE for SU-MIMO
with NT = NL = NR = 4 and MU-MIMO with Nu = NR = 4 in Fig. 16.
As expected, results for SU-MIMO and MU-MIMO perfectly overlap when
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Figure 16: Channel estimation comparison for MU-MIMO.

the precoder is chosen as the identity matrix, i.e., F = I. For a standard
compliant precoder from the LTE-A uplink codebook [10], which is given by
F = 1

2
I for NT = NL = 4, a difference in MSE floor at high SNR occurs, as I

will explain in more detail later in this section. What is more struggling about
the results shown in Fig. 16 is the fact that the estimation error seems to
be independent on the squared precoder’s Frobenius norm, i.e., trace

(
FHF

)
,

over a wide range of SNR. I explain this effect in more detail presently.
In case of MU-MIMO transmissions, only estimation of the effective

channel, meaning actual channel and precoder, is possible exploiting DMRS,
as these pilot symbols are multiplexed prior to precoding, c.f., Fig. 2. On
the receive side, the actual channel cannot be calculated from the estimated
effective channel in general, not even when the employed precoding matrix is
perfectly known, because the dimension of the effective channel is reduced
by the precoder if NL < NT . It is therefore not possible to calculate an
average estimation error other than the MSE of the effective channel, which
includes the precoder. Since the precoding matrix F is considered as part
of the estimated effective channel, also the precoder scaling is part of the
channel. When calculating the MSE, this scaling does actually not influence
the estimation error.

Thinking of trace
(
FHF

)
as a transmit power then leads to the unphysical

interpretation of results shown in Fig. 16, i.e., transmitting pilot symbols with
higher power, also referred to as pilot boosting, does not lead to a smaller
channel estimation error. In the context of estimation of the effective channel
however, this power definition does not make sense but just leads to a scaling
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of the channel. Instead, pilot boosting has to be accounted for in the DMRS
itself.

To explain the effect of a precoder dependent error floor at high SNR,
the estimation error is further analysed. Defining the estimation error vector
εi,l = hi,l − ĥi,l and the linear estimator A which is applied on the initial

estimate h̃i,l, which is the sliding averaging method in case of Fig. 16, the
MSE is mainly determined by

εi,l =hi,l − ĥi,l

=hi,l −Ah̃i,l

=hi,l −Ahi,l −A

NL∑

p=1
p 6=l

RH
l Rphi,p −ARH

l zi , (6.16)

where ĥi,l = Ah̃i,l and (5.27) was inserted for h̃i,l. Considering the high SNR
region, i.e., ARH

l zi ≈ 0, the MSE is determined by two effects. When the
channel is not sufficiently frequency flat, first, the term hi,l −Ahi,l does not
vanish and second, the interference term is not completely cancelled. This
causes the MSE floor in Fig. 16. Since hi,l is actually the effective MIMO
channel component including the precoder F, the precoder directly affects the
residual error term at high SNR. While standard compliant precoders from
the codebook are semi-unitary, i.e., trace

(
FHF

)
= 1, exploiting the identity

matrix as precoder results trace
(
FHF

)
= NL, similar to the MU-MIMO case,

and therefore in a higher error floor.
Another difference from MU-MIMO to SU-MIMO is the maximum number

of users or layers. In the LTE-A uplink up to for spatial layers are exploited
for SU-MIMO transmissions, leading to a minimal cyclic shift of ∆αmin = π

2

between MIMO channels. For MU-MIMO the number of users is limited by
the number of CSF and a corresponding mapping between users and CSF
values, as shown in Table 5, leading to a maximum of Nu = 8. In this case the
minimum cyclic shift in between user channels is ∆αmin = π

6
. Separation of

user channels is therefore only possible for channels of low RMS delay spread,
or differently, only few users should be scheduled on channels with high delay
spread.

To emphasize this relation, simulations of MU-MIMO transmissions with
Nu = {1, 2, 4, 6, 8} and NR = 8 were carried out on a TU channel. For channel
estimation, sliding averaging with γ̄ = {1, 2, 4, 6, 8} for Nu = {1, 2, 4, 6, 8}
users was chosen, respectively. Simulation results in Fig. 17 obviously show
the previously explained effect. As the number of users grows, on a channel
with moderate RMS delay spread, the MSE floor at high SNR rises, as shown
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Figure 17: MU-MIMO channel estimation comparison for different number
of users.
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in Fig. 17a. The resulting BER, as shown in Fig. 17b, reveals the effect
of receive diversity. As the number of receive antennas is fixed to NR = 8,
an essential SNR gain is achieved when less than 8 users are transmitting.
Results show that in the case of Nu = 6 a very low residual BER is reached
due to receive diversity, even when the MSE floor appears high compared to
cases with less users.

Still, for Nu = 6 the residual MSE at low noise is already quite high.
Therefore, a high number of users, such as Nu = 6 or Nu = 8 is only
applicable on a channel with low RMS delay spread, as the user separation
has to be seen in relation to frequency selectivity. While Nu = 8 does not
lead to a vanishing BER on the TU channel, 8 users are likely separable on a
PedA channel. On the other hand, a number of users Nu = 6 leads to very
low BER at high SNR in this specific example while it will most likely lead
to very high BER on a more frequency selective channel such as the VehB.
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7 Channel Interpolation

So far, several methods of channel estimation were introduced and discussed.
All of them aim to obtain channel estimates at pilot symbol positions. For
demodulation and detection of course the channel needs to be estimated
at all time-frequency positions at which data is transmitted. Therefore the
estimated channel has to be interpolated in between channel estimates.

Considering the allocation of DMRS within the time-frequency resource
grid, as for example shown in Fig. 3, no interpolation in frequency domain has
to be carried out as there are channel estimates available for all subcarriers
already. Interpolation is only carried out in time domain for each subcarrier
k and each spatial layer l (or each user u) individually. Although the dense
allocation of reference symbols in frequency domain eliminated the need for
frequency domain interpolation or even 2D interpolation, the loose allocation
in time domain implies difficulties for channel interpolation, especially on a
time variant channel. Comparing the LTE-A uplink DMRS allocation to the
downlink case, as shown in Fig. 4, there are pilot symbols allocated at four
different symbol times in the downlink while there are DMRS at only two
symbol times in the uplink. As DMRS are multiplexed at OFDM symbol
times n = 4 and n = 11 in every subframe, the channel is interpolated between
channel estimates at these positions, i.e., for n ∈ {5, . . . , 10}. In order to
obtain the channel estimate for the whole subframe, the channel needs to be
extrapolated for symbol times before the first and after the second DMRS
of a subframe, i.e., for n ∈ {1, . . . , 4, 12, . . . , 14}. Further, interpolation of
time variant channels is challenging with the LTE-A uplink DMRS allocation
as there are only two channel estimates per subframe. Considering a single
subframe, at most an interpolation function of order one, i.e., a linear function
can be fit to these two points. To incorporate more points of the estimated
channel in an interpolation scheme, also previous and subsequent subframes
are considered in [47] in order to obtain a better fit to a time variant channel.

In this chapter I will describe different methods of channel interpolation
for time variant channels. I assume the channel to be sufficiently flat in time,
such that the introduced system model is still valid. To verify this assumption,
the fundamental relation between coherence time Tcoh and Doppler frequency
fD is considered. It is known [40] to be

Tcoh ≈
1

fD
, (7.1)

with Doppler frequency

fD = fc
v

c0

, (7.2)
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where c0 is the speed of light, v is the user’s speed and fc is the center
frequency of uplink transmission. Combining (7.1) and (7.2), assuming a
center frequency of fc = 1.9 GHz and inserting LTE-A’s OFDM symbol
duration of approximately 71µs as coherence time, yields a maximum user
speed of

v =
c0

Tcohfc
=

3 · 108 m
s

71µs · 1.9 GHz
≈ 2255.6

m

s
. (7.3)

This shows, that assuming the channel to be constant for the duration of an
OFDM symbol is a justified assumption up to very high speeds. Of course,
on a time-variant channel the system model introduced in Section 3 is only
an approximation as it assumes the channel to be time constant. However,
the occurring ICI is negligible, as shown in [48].

Further I consider exploiting channel estimates from previous subframes
in order to fit higher order (cubic) interpolation functions for interpolation
of time variant channels. As exploiting channel estimates originating from
subsequent subframes inherently introduces a processing delay, I only consider
the current subframe together with estimates from previous subframes. As
interpolation is carried on the estimated effective channel (for SU-MIMO),
considering past points is therefore only possible if the number of layers
does not change in time, as this means that also channel matrix dimensions
change in time. Interpolation on the actual (non-effective) channel cannot be
performed, as the actual channel cannot be recovered from the effective one if
NL < NT as the precoder reduces the effective channel’s dimension compared
to the actual channel. For MU-MIMO the dimension of the channel is also
time variant, meaning it changes from subframe to subframe, as the schedule
changes with time. Considering a previous estimated channel coefficient when
interpolating the channel on a certain layer (for a certain user) is only possible
if this layer (user) did also exist in the previous subframe.

In order to gain from exploiting past points in channel interpolation,
practically one has to assume that channel dimensions, meaning the number
of spatial layers for SU-MIMO and scheduled users for MU-MIMO, to change
slowly over time, i.e., to be constant for several consecutive subframes. To
show possible gains, I assume the number of layers (user) to be constant in
my simulations.

7.1 Methods

In this section I introduce interpolation methods of different complexity and
compare their ability to fit the time-variant channel. Within this description
I refer to the subframe with OFDM symbol time indices n ∈ {1, . . . , 14} as
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Figure 18: Comparison of interpolation methods.
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the current subframe and to the subframe with OFDM symbol time indices
n ∈ {−13, . . . , 0} as the previous subframe.

7.1.1 Flat Interpolation

The easiest way to obtain channel estimates in between pilot positions is
re-using the estimated channel coefficients from these positions also for all
remaining time-frequency grid positions in a RB, meaning within the same
slot. I refer to this method as flat interpolation as the estimated channel
is constant in time for each slot as shown in Fig. 18a. It is obvious, that
knowledge of channel estimates from the previous subframe does not improve
this estimation method at all. This method is of very low complexity, however,
it is not able to track the channel’s time variation in case of high user mobility.

7.1.2 Linear Interpolation

A method of slightly higher complexity than flat interpolation is linear inter-
polation. In this case the interpolated channel is obtained by fitting a linear
function through the channel estimates at pilot positions within a subframe,
as shown in Fig. 18b. This curve fitting is actually straight forward as there
are exactly two known channel estimates in a subframe. Although linear
interpolation is able to describe channel variations in time for a slowly fading
channel, approximating a rapidly time-variant channel with a linear function
leads to high estimation errors in general. As one observes in Fig. 18b, the
linear interpolation differs from the true channel significantly, especially for
symbol times lying not in between the pilot positions. In order to reduce this
effect, the estimated channel coefficient from the second slot of the previous
subframe is considered in the linear interpolation, which now includes three
estimated points. In this case the interpolated channel between DMRS posi-
tions of the current subframe are obtained as before, whereas the interpolated
channel for n ∈ {1, 2, 3} is obtained by fitting a linear function from the
estimated channel of the second slot in the previous subframe (n = −3) to
the estimated channel in the first slot of the current subframe (n = 4), as
shown in Fig. 18c. It is obvious, that including further channel estimates
from previous subframes does not have an impact on the interpolated channel
of the current subframe.

7.1.3 Spline Interpolation

In order to obtain an interpolated channel that is not piecewise flat or
approximates the time-variant channel by piecewise linear functions, higher
order interpolation functions have to be exploited. In this sense, a very
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common method for interpolation is cubic spline interpolation, to which I will
refer just as spline interpolation in this work. This methods aims to fit pieces
(splines) of cubic polynomials to the estimated channel values obtaining a
two times continuously differentiable function [49].

Since this method is implemented by the Matlab build in function
interp1 [50], spline interpolation automatically degenerates to linear inter-
polation when only two points of the estimated channel are considered. In
order to fit a cubic interpolation function to the estimated channel, at least
three points are required for interpolation. As Matlab employs so called
not-a-knot boundary conditions for spline interpolation, a single cubic inter-
polation function is fit through three sample points. However, this is not
considered a cubic spline interpolation since in this special case only a single
cubic function is utilized instead of actual cubic splines. To obtain a real cubic
spline interpolation in this sense, at least four sample points are required.

By including also channel estimates from previous subframes into spline
estimation, higher order polynomials are fit through the estimated channel,
as shown in Fig. 18d. In this case, a time-varying channel is interpolated by
a smooth function leading to decreased channel estimation error compared to
flat and linear interpolation.

7.1.4 Interpolation using DPSS

Basis expansion models are commonly exploited for estimation of frequency
selective channels [51]. Dependent on the basis, these methods lead to channel
estimates that are not only linear functions in time, as for example with
linear interpolation, also when only two sample points are available. In [52]
authors consider Discrete Prolate Spheroidal Sequence (DPSS) for estimation
of time-variant channels. As DPSS are orthogonal over a finite set as well
as on an infinite set making them especially suited for CE because there is
no windowing necessary as for example with Fourier basis aided estimation.
They are sequences which are band limited in [−νD, νD] and simultaneously
most concentrated in time, as found by Slepian in [53]. The set of time indices
in this context is given by an LTE-A subframe, i.e., n ∈ {1, . . . , 14}. Here νD

denotes the normalized Doppler frequency and is given by

νD = fDTs , (7.4)

where Ts is the OFDM symbol duration and fD is the Doppler frequency
from (7.2). The index limited DPSS are denoted by uj ∈ R14×1 and defined
as eigenvectors of matrix V ∈ R14×14, fulfilling

Vuj = λjuj , (7.5)
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with

V[k, l] =
sin(2π((k − 1)− (l − 1)))νDmax

π((k − 1)− (l − 1))
k, l ∈ {1, . . . , 14} . (7.6)

The interpolated channel is then obtained by basis expansion

ĥn,i,l[k] =
D−1∑

k=0

uj[n]ρ[j] i ∈ {1, . . . , NR}, l ∈ {1, . . . , NL} , (7.7)

with the signal space dimension D. From this description it is obvious that
the basis depends on the user speed v as well as on the subframe length.

In [52] authors describe that the eigenvalues λi decrease rapidly such that
the signal space dimension D can be chosen small compared to the number of
sample points (pilot positions). As there are only two reference symbols per
subframe in the LTE-A uplink, I chose the signal space dimension equal to
the number of pilot positions, e.g., D = 2, for a 2 point DPSS interpolation.

Defining the vector

fn =




u0[m]
...

uD−1[m]


 , (7.8)

and the correlation matrix

Cf =
∑

n∈{4,11}

fnf
H
n , (7.9)

the basis expansion parameters ρ̂ = (ρ̂[0] . . . , ρ̂[D − 1])T are estimated (ac-
cording to [52]) as

ρ̂ = C−1
f

∑

n∈{4,11}

ĥn[k]f?n . (7.10)

7.1.5 2D MMSE Estimation

As a performance reference a 2D MMSE estimator of window size two is
introduced, meaning the channel is estimated on all time-frequency positions
at once. In order to enable for description of channel correlations by correlation
matrices, the stacked channel vectors hn,i at OFDM symbol time n from (5.5)
are again stacked to include all symbol times n ∈ {1, ..., 14} into vector

h̄i =




h1,i

h2,i
...

h14,i


 ∈ C14NSCNL×1 . (7.11)
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Defining the channel vector at the reference symbol positions to be

h̄Ri =

(
h4,i

h11,i

)
∈ C2NSCNL×1 , (7.12)

and similarly including reference symbols Rn of OFDM symbol time n =
{4, 11} into a matrix

R̄ =

(
R4

R11

)
∈ C2NSC×2NSCNL , (7.13)

the received signal at receive antenna i in terms of a vectorized system model
is given by

ȳi =

(
y4,i

y11,i

)
= R̄h̄Ri + z̄i . (7.14)

Similar to Appendix A.2 the MMSE estimator is then given by

ALMMSE = Ch̄ȳC−1
ȳ , (7.15)

with correlation matrices Cȳ ∈ C2NSC×2NSC and Ch̄ȳ ∈ C14NSCNL×2NSC given
by

Cȳ =E{ȳȳH}
=E

{(
R̄h̄R + z̄

) (
R̄h̄R + z̄

)H}

=R̄Ch̄RR̄H + σ2
zI2NSC

, (7.16)

and

Ch̄ȳ =E
{
h̄ȳH

}

=E
{

h̄
(
R̄h̄R + z̄

)H}

=Ch̄h̄RR̄H . (7.17)

Similar to (5.14) the correlation matrices can be written in terms of Kronecker
products as the channel is vectorized

Ch̄R = C
(t)

hR
⊗C

(s)
h ⊗C

(f)
h , (7.18)

with the channel time auto-correlation matrix C
(t)

hR
∈ C2×2 describing the

channel correlation at symbol times where reference symbols are multiplexed,
i.e., n = {4, 11}. Similarly

Ch̄h̄R = C
(t)

hhR
⊗C

(s)
h ⊗C

(f)
h , (7.19)
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with the channel time cross-correlation matrix C
(t)

hhR
∈ C14×2 describing

the channel correlation between symbol times of reference symbols, i.e.,
n = {4, 11}, and all other symbol times n = {1, . . . , 14} as in [54].

Although the MMSE estimator is described for a window size of two,
meaning two reference symbols of the current subframe, it extends easily
by including the channel of previous subframes in (7.11) and (7.12) and
modifying all reference symbol and correlation matrices accordingly. In this
way, a 2D MMSE estimator for arbitrary window sizes is obtained.

7.2 Simulation Results

As previously, simulations were carried out employing the Vienna LTE-A
Uplink Link Level Simulator [1, 42, 43]. Main simulation parameters are listed
in Table 7. To obtain a doubly-selective channel, the channel is generated time
variant according to [55], where fast-fading means, the channel is changing
even within an OFDM symbol. To investigate performance of introduced
interpolation methods, channel estimates at pilot positions are obtained by
MMSE estimation according to Section 5.2. Further, I assume the number of
layers to be fixed to NL = 2, such that the effective channels’ dimension is
constant for all subframes. This allows considering channel estimates obtained
in previous subframes.

Simulation results of the 2D MMSE estimator serve as performance ref-
erence. Although this seems unfair in terms of comparison since all other
schemes are 1D, performance of 2×1D MMSE estimation is virtually the
same as 2D MMSE estimation [56].

Simulation results are shown in Fig. 19 in terms of MSE over user ve-
locity v. Figure 19a and Fig. 19b show results obtained by considering the
current subframe only, meaning two channel estimates, at low and high SNR,
respectively. Similarly, Fig. 19c and Fig. 19d show results obtained when an
additional channel estimate from the previous subframe is taken into account
for interpolation, for low and high SNR, respectively. In any case, the MSE
of 2D MMSE interpolation for a certain number of points is shown, where the
number of sample points corresponds to the window size of MMSE estimation.

As one would expect, flat interpolation, as the interpolation method of
lowest complexity, shows a severe performance gap to all other interpolation
schemes. Even at low user speeds, this method is not able to track the
time variant channel which leads to increased MSE. Only at a very low
SNR for very low velocities, flat interpolation is superior to linear and spline
interpolation. Fitting the time variant channel fails at low SNR when linear
or spline interpolation is applied as rather the noise than the actual channel
is fit by the interpolating function.
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Linear interpolation shows good performance at low velocity but gets
worse at higher speeds as this method cannot describe time variations of
the channel accurately. When three sample points of channel estimates are
considered, linear interpolation even outperforms cubic spline interpolation
at low SNR. Although in the linear as in the spline case, the noise has a
significant impact on the interpolation, cubic spline interpolation seems to
suffer even more from this effect.

In a high SNR region, spline interpolation performs better than linear
interpolation in terms of MSE for a wide range of user velocity. At user
speeds above approximately 300 km/h however, there is no more gain of spline
interpolation over 3pt. linear. When the channel is rapidly varying with time,
neither 3pt. linear nor 3pt. spline interpolation is able to fit the channel
coefficients and both result in a very high estimation MSE.

Interpolation exploiting DPSS, which I will refer to simply as DPSS
interpolation, shows a very impressive overall MSE performance. Since these
basis functions are obtained by an eigenvalue decomposition where eigenvalues
rapidly decay, the basis expansion requires only very few coefficients. This
means, that the interpolation based on basis expansion is able to describe
the time-variant nature of the channel with a very limited number of sample
points. DPSS interpolation is therefore very close to the MMSE performance.
However, one has to keep in mind, that calculating the basis functions requires
knowledge of the exact user speed, which is assumed to be perfectly known
in my simulation.

Table 7: Simulation parameters.

Parameter Value
Simulated Subframes 1000

Channel Model TU
Time-Fading Model Fast-Fading

User Velocity 5− 400 km/h
Bandwidth 1.4 MHz (NSC = 72)

Antenna Configurations 2× 2, NL = 2
CE Method MMSE

Another comparison of estimation MSE for different numbers of exploited
sample points is shown in Fig. 20, where Fig. 20a shows results for low SNR
and Fig. 20b shows results for high SNR, respectively. Results show that it is
not necessarily beneficial to exploit more points for interpolation in general.
While 3pt. linear clearly performs better than 2pt. linear, exploiting more
than two points also decreases MSE for DPSS interpolation at high speeds.
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(c) SNR=7dB, 3 points.
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(d) SNR=30dB, 3 points.

Figure 19: Comparison of interpolation methods.
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Figure 20: Comparison of interpolation methods for different number of
sample points.

This is however not true for spline interpolation. At low and at high SNR,
3pt. spline shows higher MSE than 2pt. spline at high velocities. Although
3pt. spline outperforms 2pt. spline in certain speed ranges, considering an
additional point does not seem to pay of with cubic spline interpolation in
general. This is contrary to DPSS, where adding channel estimation sample
points also decreases the estimation MSE at high speed. At low speed however,
both, DPSS and spline, loose against linear interpolation. In this region of
operation these methods try to fit a channel variation that is actually not
present. Instead the high noise contribution leads to a wrong interpolation
result. Again, here this effect is more dominant than with linear interpolation.
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8 Conclusion

In my work I consider the problem of doubly selective channel estimation for
LTE-A uplink transmissions. A major difference in the pilot based channel
estimation from downlink to uplink transmissions is the special way of multi-
plexing DMRS with the data. In order to reduce overhead for uplink MIMO
transmissions, reference symbols are multiplexed on the same time-frequency
positions for all spatial streams, originating from one or more users. Another
big difference is, that SC-FDM is employed as physical layer access scheme
in the uplink while OFDM is employed in the downlink. Although this has
major impacts on system performance, in terms of throughput and BER,
challenges in CE occur due to the special pilot allocation pattern rather than
due to the single-carrier character of uplink transmissions.

Fur the purpose of MIMO CE, all MIMO channels need to be separated
at the receiver. For this reason, code-domain orthogonality of DMRS is
exploited. Many common methods from literature transform the received
pilot symbols in frequency domain and then separate CIRs by windowing,
which is referred to as DFT based estimation. For channels with a certain
frequency selectivity, which corresponds to a long CIR, these methods suffer
from CIR leakage. This means that CIRs are too long and actually overlap
in time domain. It is therefore not possible to apply simple windowing.

Concluding from this, separability of MIMO CIRs depends on the number
of MIMO channel components, meaning either the number of spatial layers
in SU-MIMO or the number of users in MU-MIMO, and on the frequency
selectivity of the channel. If either of these figures of merit is high, the
channel components cannot be separated at the receiver sufficiently well. In
this context, the minimum cyclic shift between spatial layers ∆αmin is a direct
measure of distance between MIMO channel components and therefore highly
related to separability.

Separating all MIMO channel components is equivalent to estimating a
desired MIMO channel, from a certain layer to a certain receive antenna, and
cancelling the inter-layer interference, originating from DMRS of all other
MIMO channel components. I introduce two LS based CE methods that
aim to cancel this interference entirely in frequency domain. Both methods,
namely sliding averaging and quadratic smoothing, apply post-processing on
an initial estimate obtained by LS estimation. While the initial estimate is
not suited for demodulation purposes as it contains severe inter-layer inter-
ference, both methods cancel inter-layer interference sufficiently, such that
a channel estimate suitable for demodulation is obtained. Although these
schemes do not separate CIRs in time domain and therefore do not suffer from
CIR leakage, inter-layer interference cancellation is more challenging if the
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channel has a higher delay spread. As the DMRS code-domain orthogonality
is destroyed when transmitted over a frequency selective channel, interfer-
ence cancellation is deteriorated. Still, proposed CE methods achieve lower
estimation MSE than conventional DFT based estimation methods over wide
ranges of SNR, especially when a narrow transmission band is employed. This
means, proposed CE methods show superior separation capabilities compared
to DFT based estimation algorithms.

QS estimation shows a quite high error floor at high SNR and sliding
averaging estimation results in a very poor performance at low SNR. Contrary,
QS estimation performs well at low SNR while sliding averaging has a much
worse MSE in that SNR region. As a further step in terms of CE, a smoothing
that consists of a convex weighting of these two post-processing schemes can be
applied on the initial estimate. Making the convex weighting SNR dependent
will lead to a estimation method that shows good performance in the whole
SNR region of interest.

Further I show that MU-MIMO and SU-MIMO operations are very similar
in terms of uplink. Besides the precoding matrix, there is virtually no change in
the transmission model from the SU to the MU case. For CE however, certain
implications with respect to the DMRS structure have to be considered. While
for SU-MIMO, code-domain orthogonality is obtained by cyclic shifts between
several transmission layers of a single user, for MU-MIMO orthogonality has
to be obtained by cyclic shifts in between spatial streams from several different
users. This has to be ensured by means of signalling. Although some authors
consider the problem of CE in the context of LTE-A uplink MU-MIMO,
literature does not provide a clear strategy for choosing cyclic shifts such that
channels originating from different users are separable. I introduce a way of
signalling cyclic shift values to users such that code-domain orthogonality is
obtained similar to the SU-MIMO case. With this proposed mapping between
users and cyclic shift values, all introduced estimation methods are applicable
in the MU case as well.

To obtain channel estimates at time-frequency positions where no pilot
symbols are multiplexed, interpolation in between these positions is performed.
Since the reference symbol allocation is as dense as possible in frequency
domain, meaning there are pilot symbols on every subcarrier, interpolation is
only carried out in time domain. When the channel to be estimated is time-
selective, this implies difficulties. As there are only two symbol time indices
where DMRS are scheduled, there are only two channel estimates available for
interpolation within a subframe. Without any other prior knowledge about
the channel, this naturally only allows for linear interpolation between these
two estimates. For a fast time-varying channel, this interpolation scheme is
obviously not capable of describing the channel’s time variations.
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In my work I consider and compare various interpolation methods that
aim to interpolate a time-variant channel sufficiently well. A first option to
improve interpolation performance is to take more than two channel estimates
into account for interpolation. While requiring storing of previous channel
estimates, this allows to fit splines between sample points. When one previous
channel estimate is considered, meaning three points in total, linear splines
can be fitted. When at least two previous estimates are taken into account,
cubic splines can be exploited for interpolation.

As a second option for improving interpolation, a basis expansion model
of suited basis functions is exploited. For this purpose I chose DPSS for
interpolation in my work. Although these basis functions are capable of
describing channel variations over time very accurately, they already depend
on the actual user velocity. A prior knowledge about the user speed is therefore
necessary to apply this interpolation method.

I show by simulations that the choice of interpolation scheme has minor
effect on the estimation MSE at low speeds, meaning less than 50 km/h at a
carrier frequency of fc = 1.9 GHz. For low SNR, higher complexity of spline
interpolation does not pay off compared to linear interpolation. Even at very
high SNR, taking into account more points with spline interpolation reduces
estimation errors only in a certain velocity range.

Interpolation with a DPSS basis expansion achieves low estimation MSE
in general. This superior performance however, comes at the cost of prior
knowledge of user speed. For a practical implementation in a mobile com-
munication system this prior knowledge of course needs to be estimated. A
further investigation of the influence on estimation errors of user velocity on
the channel estimation error is therefore an interesting research question.
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A Appendix

A.1 Circulant Matrices

A circulant matrix

C =




c0 cN−1 . . . c2 c1

c1 c0 cN−1 c2
... c1 c0

. . .
...

cN−2
. . . . . . cN−1

cN−1 cN−2 . . . c1 c0



∈ CN×N (A.1)

that is fully described by its first column vector c = (c0, c1, . . . , cN−1)T ∈ CN×1

gets diagonalized by applying the unitary DFT DN ∈ CN×N

C = DH
N Diag (DNc) DN . (A.2)

Applying this theorem on the block-wise circulant channel matrix (3.5),
that can be written as

H(circ) =




H
(circ)
1,1 . . . H

(circ)
1,NT

...
. . .

...

H
(circ)
NR,1

. . . H
(circ)
NR,NT


 , (A.3)

leads to the block wise diagonal channel matrix (3.6)

H(diag) =




DNFFT
H

(circ)
1,1 DH

NFFT
. . . DNFFT

H
(circ)
1,NT

DH
NFFT

...
. . .

...

DNFFT
H

(circ)
NR,1

DH
NFFT

. . . DNFFT
H

(circ)
NR,NT

DH
NFFT


 (A.4)

=




Diag
(
DNFFT

h̄1,1

)
. . . Diag

(
DNFFT

h̄1,NT

)
...

. . .
...

Diag
(
DNFFT

h̄NR,1
)

. . . Diag
(
DNFFT

h̄NR,NT
)


 (A.5)

where (A.2) was exploited.

A.2 The Minimum Mean Square Error Estimator

From the received signal

y = Rh + z , (A.6)
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with noise z ∼ CN (0, σ2
zINSC

), the channel vector h is estimated exploiting
the linear estimator A as

ĥ = Ay . (A.7)

To obtain the LMMSE estimator, the mean squared error has to be minimized,
leading to

ALMMSE = arg min
A

E
{∥∥Ay − h

∥∥2

2

}

= arg min
A

E
{

(Ay − h)H (Ay − h)
}

= arg min
A

E
{

trace
{

(Ay − h) (Ay − h)H
}}

= arg min
A

trace
{
ACyAH −ChyAH −ACyh + Ch

}
, (A.8)

with the auto covariance matrix Ch = E{hhH} and the cross covariance
matrix Chy = E{hyH} where h and z have zero mean, i.e., E{h} = 0 and
E{z} = 0. This minimization problem can be solved by

∂A

{
ACyAH −ChyAH −ACyh + Ch

}
=0

CyAH −Cyh =0 , (A.9)

finally yielding
ALMMSE = ChyC−1

y . (A.10)

A.3 The Least-Norm Solution for Underdetermined
Problems

In general the minimization problem

ĥ = arg min
h

∥∥y −Rh
∥∥2

2
. (A.11)

with R ∈ Rm×n and n > m has no unique solution. Choosing the least-norm
solution for h is equivalent to minimizing

minimize
h

‖h‖2
2

subject to y = Rh
(A.12)

which can solved by introducing Lagrange multiplier λ ∈ Rm×1 [36], yielding

L(h,λ) = hHh + λH(Rh− y) . (A.13)
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The minimization is therefore solved by

∂hL(h,λ) =Rh− y = 0 , (A.14a)

∂λL(h,λ) =2hH + λHR = 0 . (A.14b)

Substituting (A.14b) into (A.14a) yields y = −1
2
RRHλ. Inserting this

into (A.14b) finally yields the least-norm solution

ĥLN = RH
(
RRH

)−1
y . (A.15)

A.4 The Least Squares Solution for Overdetermined
Problems

The overdetermined LS minimization problem

ĥLS = arg min
h

∥∥y −Rh
∥∥2

2

= arg min
h

(y −Rh)H (y −Rh) , (A.16)

with R ∈ Cm×n and m ≥ n is solved by

∂h

{
(y −Rh)H (y −Rh)

}
=0

−yHR + hHRHR =0 . (A.17)

This leads to the solution

ĥLS =
(
RHR

)−1
RHy . (A.18)

A.5 Sliding Averaging

The sliding averaging estimation method is given by (5.37). For the purpose
of readability, this equation is limited to values of k for which the averaging
window is not limited by the lower and upper boarder of the transmission
band. A full channel estimated for all subcarriers k ∈ {1, . . . , NSC} is obtained
by

ĥSAV
i,l [k] =

1

γ̄β

k−(k−(NSC−γ̄+1))+∑

t=(k−γ̄)++1

t+γ̄−1∑

j=t

h̃i,l[j] (A.19)

with the number of elements in the first sum given by β = k − (k − (NSC −
γ̄ − (k − γ̄)+. Here the function (·)+ yields only the positive values of the
argument, as

(x)+ =

{
x for x ≥ 0

0 for x < 0
. (A.20)
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A.6 The Quadratic Smoothing Estimator

The QS minimization problem

ĥQS = arg min
h

∥∥y −Rh
∥∥2

2
+ λ
∥∥Qh

∥∥2

2

= arg min
h

(y −Rh)H (y −Rh)− λ (Qh)H (Qh) , (A.21)

is solved by

∂h

{
(y −Rh)H (y −Rh)− λ (Qh)H (Qh)

}
=0

−yHR + hHRHR + λhHQHQ =0 . (A.22)

This leads to the solution

ĥQS =
(
INSC

+ λQHQ
)−1

RHy . (A.23)

A.7 Inverse of a tri-diagonal Toeplitz Matrix

The inverse of the tridiagonal Toeplitz matrix

A =




a b
c a b

. . . . . . . . .

c a b
c a



∈ RN×N (A.24)

is explicitly known [41] to be

A−1 [i, j] =





(−1)i+j bj−i

(
√
bc)

j−i+1

Ui−1(d)UN−j(d)

UN (d)
for i ≤ j ,

(−1)i+j ci−j

(
√
bc)

i−j+1

Uj−1(d)UN−i(d)

UN (d)
for i > j ,

(A.25)

with d = a/(2
√
bc) and Un(x) being the Chebyshev15 polynomials of second

kind and order n.

15Please note, that there are many different versions of this name commonly in use.
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A.8 Mean Square Error Calculation

As an simulation metric, the empirical CE MSE is calculated as the average
MSE over all scheduled subcarriers k = {1, . . . , NSC} and OFDM symbol
times n = {1, . . . , 14} for all effective MIMO channels from active spatial
layer l = {1, . . . , NL} to receive antenna i = {1, . . . , NR}. Therefore the MSE
is obtained by

MSE =
1

NRNL14NSC

NR∑

i=1

NL∑

l=1

14∑

n=1

NSC∑

k=1

∣∣∣hn,i,l[k]− ĥn,i,l[k]
∣∣∣
2

, (A.26)

with the actual channel h and the estimated channel ĥ. In case of MU-MIMO
transmission, spatial layers l have to be substituted by users u ∈ {1, . . . , Nu}.



70 List of Figures

List of Figures

1 Illustration of the LTE-A resource grid for multiple spatial layers. 3
2 The LTE-A uplink MIMO system model. . . . . . . . . . . . . 7
3 The LTE-A uplink reference symbol allocation in two slots

(one subframe). . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Comparison of DMRS allocation in LTE-A for two spatial layers. 15
5 An exemplary snapshot of the initial channel estimate. . . . . 20
6 CIR separation in time domain for NL = 2. . . . . . . . . . . . 22
7 The inter-layer interference on the unit circle is cancelled when

summed over all points. . . . . . . . . . . . . . . . . . . . . . 23
8 Layer dependent phase shift. . . . . . . . . . . . . . . . . . . . 24
9 An exemplary snapshot of the averaged channel estimate for

γ̄ = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
10 An exemplary snapshot of the sliding averaged channel estimate. 27
11 Smoothing parameter choice. . . . . . . . . . . . . . . . . . . . 29
12 An exemplary snapshot of the quadratically smoothed channel

estimate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
13 Comparison of quadratic smoothing and approximate quadratic

smoothing for NL = 2 and NL = 4 on a TU channel. . . . . . . 33
14 Comparison of estimation methods for SU-MIMO on a TU

channel and 16QAM. . . . . . . . . . . . . . . . . . . . . . . . 35
15 Comparison of estimation methods for different scheduled user

bandwidths for a 2× 2 transmission with NL = 2. . . . . . . . 36
16 Channel estimation comparison for MU-MIMO. . . . . . . . . 44
17 MU-MIMO channel estimation comparison for different number

of users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
18 Comparison of interpolation methods. . . . . . . . . . . . . . . 51
19 Comparison of interpolation methods. . . . . . . . . . . . . . . 58
20 Comparison of interpolation methods for different number of

sample points. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



List of Tables 71

List of Tables

1 Dependence of n
(2)
DMRS,l and the OCC wl on the cyclic shift field. 12

2 Phase shift for possible numbers of layers NL. . . . . . . . . . 25
3 RMS delay spread and coherence bandwidth of employed chan-

nel models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . 34
5 Relation between user index u and the CSF. . . . . . . . . . . 42
6 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . 43
7 Simulation parameters. . . . . . . . . . . . . . . . . . . . . . . 57



72 References

References
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