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Abstract

EMF Profiles is an adaptation of the well-known Unified Modeling Language (UML) profile
concept to Domain Specific Modeling Languages (DSML). Profiles have been a key enabler
for the success of UML by providing a lightweight language-inherent extension mechanism
which is expressive enough to cover an important subset of adaptation scenarios. Thus, we
believe a similar concept for DSMLs provides an easier extension mechanism that has been so
far neglected by current metamodeling tools.

The Profile mechanism is based on a profile definition comprised of stereotype definitions.
Stereotypes are used to annotate model elements in order to refine their meta-classes by defining
supplemental information in form of additional meta attributes, also known as tag definitions.
Instances of tag definitions are known as tagged values and they are used for the provision of
new informations to existing models.

With EMF Profiles, users can apply profiles within graphical modeling editors that are cre-
ated using the Graphical Modeling Framework (GMF). Applied stereotypes are visualized using
icons that are attached to shapes that represent the model elements to which stereotypes are ap-
plied. However, in many scenarios, visualization methods going beyond simple icons are helpful
for locating and grasping the applied stereotypes and to allow for more domain-specific deco-
rations according to the domain of the applied profile. For instance, highlighting a shape by
a specific background color or enriching the shape with adornments and informations from a
stereotype application reflects the meaning of the stereotype application more adequately than a
simple icon.

This thesis aims at providing decoration methods for applied stereotypes in EMF Profiles go-
ing beyond simple icons. Therefore, we investigate the decoration facilities in GMF and Graphiti
and provide a decoration description language to allow users to define specific decorations for
stereotypes. Once a specific decoration is defined, the goal is that the applications of these
stereotypes are visualized using the defined decorations in any GMF-based and Graphiti-based
modeling editor. The results and benefits of the extensions developed in this thesis are evaluated
in the context of a case study. In particular, we assess how the runtime information of executable
models can be visualized appropriately and dynamically updated during the execution with EMF
Profiles.
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Kurzfassung

EMF Profiles ist eine Adaptierung von dem wohlbekannten Unified Modeling Language (UML)
Profil-Konzept für domänenspezifische Modellierungssprachen (DSML). Profile haben sehr viel
zu dem UML Erfolg beigetragen, da sie einen leichtgewichtigen, sprachinhärenten Erweite-
rungsmechanismus darstellen. Deswegen glauben wir, dass genau so ein Konzept einen nütz-
lichen Erweiterungsmechanismus für DSML bringt, welcher bis jetzt von den Metamodellie-
rungswerkzeugen vernachlässigt wurde.

Der Profil-Mechanismus basiert auf Profildefinitionen, die Stereotypendefinitionen bein-
halten. Stereotypen erweitern Metamodellklassen mit zusätzlichen Informationen in Form von
Meta-Attributen, auch bekannt als Tag-Definitionen. Instanzen der Tag-Definitionen, sogenannte
Tagged Values, erweitern dadurch die Modelle mit den Informationen, die sie beinhalten.

Die Benutzer von EMF Profiles können Profile auf Modelle anwenden, indem sie dafür gra-
phische Modellierungseditoren verwenden, die mit dem Graphical Modeling Framework (GMF)
erstellt wurden. Angewendete Stereotypen sind im Editor anhand von Icons ersichtlich, die auf
dem jeweiligen Shape des Modellelements angezeigt werden, auf welchem der Stereotyp an-
gewendet wurde. In vielen Situationen können Visualisierungen, die über einfache Icons hin-
ausgehen, sehr hilfreich sein, um die angewendeten Stereotypen besser auffinden und erfassen
zu können, sowie um zusätzliche, an die Domäne des angewendeten Profils angepasste De-
korationen zu ermöglichen. Beispielsweise könnte die Hervorhebung eines Shapes durch eine
bestimmte Hintergrundfarbe oder zusätzliche Verzierungen und Informationen aus der Stereoty-
panwendung auf dem Shape mehr zum Verständnis des angewendeten Stereotyps beitragen als
ein einfaches Icon.

Ziel dieser Diplomarbeit ist es, zusätzliche Dekorationsmechanismen, die über einfache
Icons hinausgehen, zu ermöglichen. Daher werden wir die Dekorationsmöglichkeiten von GMF
und dem Graphiti-Framework untersuchen und anhand der gewonnenen Informationen eine
Sprache zur Beschreibung der Dekorationen bereitstellen, welche den Benutzern der EMF Pro-
files ermöglichen soll, die Beschreibung der Dekorationen für entsprechende Stereotypen zu
definieren. Sobald eine bestimmte Dekoration definiert ist, ist das Ziel, dass die Anwendungen
dieser Stereotypen mit ihren definierten Dekorationen in jedem GMF-basierten und Graphiti-
basierten Modellierungseditor visualisiert werden. Die Ergebnisse und die Vorteile der in dieser
Arbeit entwickelten Erweiterungen werden im Rahmen einer Fallstudie ausgewertet. Dabei wird
die Laufzeitinformation von ausführbaren Modellen mit EMF Profiles adäquat visualisiert und
dynamisch aktualisiert.
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CHAPTER 1
Introduction

The introduction part is meant to give the reader an overall information about this work. We
begin with motivating reasons for this master’s thesis and then tackle the problems still en-
countered in the research field, after which we will present the aim of the thesis, what kind of
methodological approach is used, and at the end give an overview of the structure of this work.

1.1 Motivation

When we think about software engineering as a discipline to create executable software artifacts,
we probably think of it as a task of writing source code in one of the myriads of programming
languages out there, e.g., C, Java, C#, Ruby, Haskell, JavaScript, etc. This approach can be
classified as code-centric, where a software engineer writes the source code in a tool of his/her
choice, be it a simple text editor or a full-blown integrated development environment (IDE).

The complexity of creating software artifacts can directly relate to the complexity of tasks
that one tries to overcome through the usage of the information technology (IT). However, that
is certainly not the only complexity software engineers have to deal with. Today, we can cer-
tainly say that working as a software engineer is not a one man job, as someone might imagine.
It is usually a team work with team sizes spanning from just a few colleagues to hundreds of
persons involved in the software engineering process. So, managing the process and the people
involved in it can also be a very demanding task. Software engineering is a process comprised
of analyzing the problems we need a solution for, which leads to the definition of requirements
we must-have a working solution for — and those that could make the solution more appealing
to work with, also known as nice-to-have requirements. Having the requirements, we design an
architecture for the solution-to-be, e.g., Model-View-Controller (MVC) [10], and also make the
more granular designs of the system in form of different modeling diagrams. For example, to
design the structure of components in the system we might employ a component diagram; to
design an interaction between the elements in the system we might model a sequence diagram.
After the design phase, software engineers start with an implementation in a programming lan-
guage and frameworks of their choice. Following the implementation phase is the verification &
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testing phase — not necessarily after the implementation phase, because this can also be done
in parallel — for verification and validation purposes of the product. At the end of the process,
as the last phase, is the product deployment & maintenance phase, which lasts as long as the
product is in use. Building upon the solution further, such as adding new functionalities to it —
inspired by new ideas — would lead to repeating the process.

We could imagine the software engineering process as a continuous cycle depicted in Fig-
ure 1.1. So, doing a bad job in the beginning of the process will most certainly end in more

DesignIdea

Analysis & Requirements Implementation

Testing & VerificationDeployment & Maintenance

Figure 1.1: Software Engineering Process.

complexity in later steps. Bad design decisions or no design at all can make the work of a soft-
ware engineer very difficult. Without a way to convey the clear and comprehensible information
of what is to do, the whole undertaking of building a software product may be doomed.

In 1997 Object Management Group (OMG)1 standardized Unified Modeling Language
(UML) [23] a general-purpose modeling language in the field of software engineering for visual-
izing and documenting the design of an information system [46]. With usage of many different
modeling diagrams — as, e.g., previously mentioned component and sequence diagrams, and
also class diagram, use case diagram, etc. — we can model structure, behavior and interaction
of the system.

The notion of Model Driven Engineering (MDE) [6,31] emerged in November 2000 with the
OMG publicly announcing MDA (Model Driven Architecture) [49] initiative. The idea behind
MDE was that the models are to play the central role in developing executable software, and
not, as before, to provide only visualization and documentation purposes. Models, as first-class
citizens, provide information and specification for the software which is generated by the usage
of transformation techniques. For example, information in models is transformed into a specific
programming language source code which in turn is compiled for a specific platform on which
the software will be executed. MDE promotes the model-based practices apposed to the code-
centric. For more information about the MDE go to Chapter 2.

Because UML was designed to be general purpose notation, in certain situations this brought
much complexity when modeling particular domains, for which specialized languages could

1Object Management Group. http://www.omg.org
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have been more appropriate. UML gained even more traction when OMG introduced UML pro-
files [20] which addressed exactly the afore mentioned problem. UML profiles are a lightweight
language extension mechanism allowing to adapt the metamodel (i.e., the language definition of
UML) for different technological platforms and domains without requiring modifications of the
UML modeling tools.

The focus of this master thesis is exactly on the extension of modeling languages without
the need for the modification of modeling tools.

1.2 Problem Statement

As previously mentioned, Model Driven Engineering (MDE) is a discipline of software engi-
neering which promotes the use of software models for the development of software artifacts.
The practices of MDE have proved to increase efficiency and effectiveness in software develop-
ment, as stated by various quantitative and qualitative studies [2, 9].

As models build the basis in MDE for generating executable software, they have to conform
to well-defined modeling languages in terms of an abstract syntax and a concrete syntax. To
define the abstract syntax of a modeling language, we build metamodels as an abstraction of
models that conform to the defined modeling language. This process is also known as meta-
modeling [9]. One prominent metamodeling language is Ecore, from the Eclipse Modeling
Framework (EMF)2, which is a core technology in Eclipse3 for model driven engineering. EMF
not only provides facilities to define metamodels, but also tools, such as editors and views to
visualize or manipulate concrete instances of metamodels, inside the Eclipse environment. Even
more, there are frameworks which support the creation of the concrete syntax — graphical or
textual — for the concrete concepts of new languages, based on EMF and GEF4. Graphical
concrete syntax, and the creation of editors that can support it, can be specified and built using
frameworks such as the Graphical Modeling Framework (GMF)5 or Graphiti6.

Extension of modeling languages

As a rule of life, most things are susceptible to change — due to new conditions introduced
with the passage of time — so are modeling languages not the exception to the rule. In some
situations, modeling languages have to be extended beyond their original specification to accom-
modate the changes, e.g., new requirements of stakeholders or new concern-specific information
must be introduced to the language, thus, modification and extension of the language, to meet the
new criteria, is immanent. Consider you have a generic data modeling language that is designed
to be independent from any specific database management system (DBMS) and users need to

2The EMF project is a modeling framework and code generation facility for building tools and other applications
based on a structured data model. http://www.eclipse.org/modeling/emf

3Eclipse is a platform that has been designed for building integrated development tooling. It supports rapid
development of integrated features based on a plug-in model. http://www.eclipse.org

4Graphical Editing Framework (GEF) provides technology to create rich graphical editors and views for the
Eclipse Workbench UI. http://www.eclipse.org/gef

5Graphical Modeling Framework. http://www.eclipse.org/modeling/gmp
6Graphiti project. http://www.eclipse.org/graphiti
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add DBMS-specific features, such as dedicated storage engines, to enable the full generation of
all SQL scripts.

To enable the extension of modeling languages, there are two possibilities, as mentioned
in [39]:

The heavyweight extension of modeling languages denotes the modification and extension of
the modeling language’s metamodel. Adapting modeling languages in this way to the
changing needs of the domain they represent is a time-consuming and tedious task, be-
cause not only their abstract and concrete syntax but also all related artifacts as well as
all language-specific components of the modeling environment have to be re-created or
adapted each and every time. This can, indeed, be considered as a heavyweight approach.

The lightweight extension introduces new language concepts into modeling languages not by
modifying and extending their metamodels, but through other dedicated extension mecha-
nisms that do not affect the modeling language’s metamodel. The lightweight extension is
an approach that tries to ease the pain of extending modeling languages by circumventing
many hardships common to the heavyweight approach. One such approach is based on
EMF Profiles [39].

EMF Profiles are an adaptation of the UML profile concept to the realm of Domain-Specific
Modeling Languages (DSMLs). As already mentioned, UML profiles played a major role in the
success and widespread uses of UML by providing a lightweight, language-inherent extension
mechanism [48], which also lead to the standardization of several UML profiles by OMG. The
Profile mechanism is based on a profile definition comprised of stereotypes, which are used to
annotate model elements. Stereotypes are the specialization of metaclasses defined in metamod-
els. They can also define additional meta attributes (tagged values) for the provision of new
informations to existing models.

EMF Profiles provide an extension mechanism for existing DSMLs with following benefits
[39]:

• Lightweight language extension. EMF Profiles provide the ability to systematically intro-
duce further language elements without having to recreate the whole modeling environ-
ment, such as editors, transformations, and model APIs.

• Dynamic model extension supports dynamic extension of already existing models by in-
troducing additional profile information, without the need to recreate extended model el-
ements.

• Preventing metamodel pollution. Information coming from the outside of the modeling
domain can be represented by additional profiles without polluting the actual domain
metamodels. Also, that information is kept separated from the model, so there is no
pollution of actual model instances.

• Model-based representation. Information introduced to the model, through profile appli-
cation, is accessible and processable such as any other model information. Thus, model
engineers can use familiar model engineering technologies to process profile information.
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Although EMF Profiles provide a neat way of extending a modeling language, they support
model engineers only by providing an extension mechanism for the abstract syntax, and do not
offer any means, except for simple icons, to extend the concrete syntax.

Problem of the graphical concrete syntax extension

At the moment the extension of the graphical concrete syntax is not supported thoroughly
in EMF Profiles. With EMF Profiles, users can apply profiles within graphical modeling edi-
tors that are created in GMF. Applied stereotypes are visualized using icons that are attached to
shapes representing the model elements, to which stereotypes are applied. However, in many
scenarios, visualization methods going beyond simple icons are helpful for locating and grasp-
ing the applied stereotypes and to allow for more domain-specific decorations according to the
domain of the applied profile. For instance, a specific background color or a dedicated shape
reflects the meaning of a stereotype application more adequately than a simple icon.

The extension of the graphical concrete syntax — the visual shapes representing model
elements — can span from simple highlighting of shapes, by means of, say, changing their
background color, changing their border type, or attaching icons to them, and similar; to, say,
a shape is changed in its form that it looks like a completely different shape. So, how feasible
the extension of the graphical concrete syntax through the means of the lightweight language
extension is, depends very much on the underlying technologies for the specification of the
graphical concrete syntax and their extension mechanisms.

1.3 Aim of the Thesis

This master’s thesis has the following goal:

Adaptation/Extension of the graphical concrete syntax of a modeling language to reflect

the information added through a lightweight language extension mechanism.

More concretely, the aim of this thesis is to provide decoration methods for applied stereo-
types in EMF Profiles going beyond simple icons. Therefore, we investigate the visual dec-
oration facilities in GMF and Graphiti and use the gained information to design a decoration
description language allowing users to define specific decorations for stereotypes. The decora-
tion description language also provides means of restricting the activation of decorations based
on the comparison of tagged values contained in stereotypes against concretely specified values.
Once a specific decoration is defined, applications of these stereotypes are visualized using the
defined decoration descriptions in any GMF-based and Graphiti-based modeling editor.

The solutions elaborated in this thesis are tailored to EMF Profiles but the concept could also be
adapted easily to UML profiles.
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1.4 Methodological Approach

This master’s thesis follows the guidelines from the methodological approach based on the de-
sign science paradigm [27]:

1. Problem identification and its relevance. In a nutshell — there are no known means
to extend the graphical concrete syntax in the area of the lightweight language extension.
Adapting the graphical concrete syntax of a model element to reflect a newly added infor-
mation introduced through the lightweight extension mechanism and an easy specification
of visual adaptations through the means of visual decorations would bring a lot for locat-
ing and grasping the newly added information.

2. Literature Analysis. We do an extensive literature analysis and the evaluation of the pre-
vious research work done in the field of heavyweight vs. lightweight language extensions.
Especially, the differences of those approaches are evaluated in the way how they address
the extension of the graphical concrete syntax.

3. Design as a search process. We look for already existing approaches for a lightweight
language extension and their mechanisms for supporting the graphical concrete syntax
extension. Upon that knowledge we build a new solution.

4. Design as an artifact. Upon the knowledge gained from the search process we build a
new solution addressing our requirements. This means we do following:

• Adopt already existing implementation of EMF Profiles and its API to introduce an
adequate architecture and an implementation to accommodate our requirements.

• Design and implement a decoration description language and an interpreter of the
language.

• Provide implementations for the decorators which address the underlying technology
in which the graphical concrete syntax is defined for the particular DSML — the
scope of this work is limited to GMF and Graphiti.

5. Evaluation. After completing the solution, we undertake the evaluation of the results and
benefits of the extensions developed in this thesis in the context of a representative case
study for our problem statement. In particular, we are interested to assess how the run-
time information of executable models can be visualized appropriately and dynamically
updated during the execution with EMF Profiles.

Finally, in the last step we provide a critical reflection and a discussion of our design choices
and the functionality of our solution. Especially, this means a discussion about trade-offs and
limitations of our approach against a heavyweight approach where the complete rebuild of a
modeling language and its artifacts must be done.

6



1.5 Structure of the Thesis

This master’s thesis is organized as follows.

Chapter 2 gives a general introduction to the topics of Model Driven Engineering (MDE), mod-
eling language development, graphical syntax development within EMF, and the extension of
modeling languages — the extension of abstract and concrete syntax respectively — as well as
related work to it.

Chapter 3 provides a common ground for better grasping and understanding of informations pre-
sented in this thesis by introducing a running example that illustrates the need for the adaptation
of the graphical concrete syntax in the case of the extension of a modeling language through the
mechanism of EMF Profiles. In this chapter we also specify the requirements for our solution.

In the Chapter 4 we present a decoration description language. It is a domain specific mod-
eling language (DSML) for describing decorations of stereotypes that influence the graphical
representation of modeling language elements to which stereotypes are applied.

The Chapter 5 gives an overview on how decoration descriptions, specified in the decoration
description language, manifest themselves on model elements in an editor at runtime.

In the Chapter 6 we provide an overview of the architecture of our solution and we describe few
relevant components in some detail.

A case study is presented in Chapter 7 that we have used to assess our solution for which we
have set research questions based on our requirements. In particular, we assess how the run-
time information of executable models can be visualized appropriately and dynamically updated
during the execution with EMF Profiles. We also provide critical reflection and discussion on
limitations we encountered while developing decorators for our targeted technologies GMF and
Graphiti.

The final Chapter 8 gives a conclusion and an outlook on future work.
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CHAPTER 2
Background and Related Work

Modeling language development is a part of Model Driven Engineering (MDE) approach, which
we describe in some detail. After that we concentrate on the development of modeling lan-
guages, i.e., development of their abstract and concrete syntax. We handle the development of
the concrete syntax within Eclipse Modeling Framework (EMF)1, especially of graphical con-
crete syntax, since this work is concerned with the extension of graphical concrete syntax based
on EMF technologies. Next topic is the extension of modeling languages — the extension of
their abstract and concrete syntax respectively. We present different approaches for the extension
of modeling languages and as part of the search for related work done for this master’s thesis,
we provide the comparison of these approaches, especially on how and to what extent do they
address the extension of the graphical concrete syntax.

2.1 Model Driven Engineering

Model Driven Engineering (MDE) [6, 31] as a notion emerged in November 2000 when the
Object Management Group (OMG)2 publicly announced Model Driven Architecture (MDA)3

initiative [49]. MDE denotes another approach in software engineering that, as opposed to code-
centric approach, represents a model-centric approach in building software artifacts. This means
that models in MDE play the central role and are not only used for design, communication or
documentation purposes, as it is the case within the code-centric approach, where the models
are used as guidelines or blueprints to implement a solution. We might say that MDE brings
the models to life because it bridges the gap between the design phase and the implementation
phase of the software engineering process (cf. Figure 2.1), which means that out of the models
we can generate an executable software. To achieve this, MDE encompasses different kind of

1The EMF project is a modeling framework and code generation facility for building tools and other applications
based on a structured data model. http://www.eclipse.org/modeling/emf

2Object Management Group. http://www.omg.org
3Model Driven Architecture. http://www.omg.org/mda
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DesignIdea

Analysis & Requirements Implementation

generate

Testing & VerificationDeployment & Maintenance

Figure 2.1: The gap in the traditional software engineering process: Generating the implemen-
tation from system designs.

techniques, such as language engineering and transformation techniques, and leverages tool sets
build around them, such as generators, views and editors, to provide efficient means to use and
bridge them all together.

Before we go into any details, let us also say that nowadays the MDE notion is broader in
the sense of its activities because not only it is set around software development paradigm, as it
is in the case of MDA, but it encompasses other model-centric tasks of a complete software en-
gineering process, such as, the model-based evolution of the system or the model-driven reverse
engineering of a legacy system [9, 28].

Model Driven Architecture

MDA itself is not a separate OMG specification but rather an approach or a guideline to system
development which is enabled by existing OMG standards and specifications [9, 42]. A formal
definition of MDA was provided in the year 2001 by the OMG and current guideline is from
2003 (cf. MDA guide in [42]). Because it relies on OMG standards, which are well adopted by
industry, it is seen as a very good example or the conceptional reference of the MDE approach.
Some standards and specifications it combines at its core are, e.g., Unified Modeling Language
(UML)4, Meta-Object Facility (MOF)5, Common Warehouse Metamodel (CWM)6 and XML
Metadata Interchange (XMI)7 among others.

The core idea of the MDA approach is the strict separation of the operational specification
of a software system from the details of the way how it is implemented for a specific platform on
which it will be executed. This is done trough different abstraction levels that can be specified

4Unified Modeling Language. http://www.omg.org/UML
5Meta-Object Facility. http://www.omg.org/mof
6Common Warehouse Metamodel. http://www.omg.org/spec/CWM
7XML Metadata Interchange. http://www.omg.org/spec/XMI
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through modeling. By separating the specifications into a general and specific ones, the general
specification can be used repeatedly to create specific specifications of the system for different
platforms and execution environments. An example would be a general specification of a system
in the form of models specifying business data and business logic and from that general speci-
fication of the system we can create more specific models of the system for particular platforms
(e.g., Java EE, .NET) on which the system will be running.

Let us first introduce few basic definitions and assumptions that MDA defines at its core [9,
42]:

• System denotes the subject of any MDA specification. It represent some existing or
planned system that may include anything, e.g., a program, combination of parts of dif-
ferent systems, people, an enterprise, etc.

• Model is a description of the system and its environment.

• Model-Driven in MDA means that models are the driving force for the system develop-
ment.

• Problem Space (or Domain) is the context or environment where the system operates.

• Solution Space is the spectrum of possible solutions that satisfy the system requirements.

• Architecture represents the architecture of the system in the form of the specification of
the parts and connectors of the system and the rules for the interactions of the parts using
the connectors.

• Platform provides a set of subsystems and technologies that expose coherent set of func-
tionalities through interfaces and specified usage patterns that can be used by any sup-
ported applications without the concern of knowing how those functionalities are imple-
mented by the platform.

• Viewpoint represents a technique for abstraction using a selected set of architectural con-
cepts and structuring rules to only focus on particular concerns within a system.

• View is a model of a system seen from the perspective of a chosen viewpoint.

• Model Transformation is the process of converting one model to another model of the
same system.

• Application is a concept used to refer to a functionality being developed. A system is
described in terms of one or more applications supported by one or more platforms.

MDE definitions are perfectly in line with these definitions [9]. Based on these definitions,
OMG defines a modeling approach which encompasses methods, language engineering, trans-
formation engineering and different modeling levels. As a relevant part for this master’s thesis
we will focus more on language engineering in the Section 2.2.
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Modeling Levels

The benefit of reusing existing software models on different platforms is an important aspect
in MDA. That is why MDA defines different abstraction levels that only contain information
from different viewpoints. A computation independent viewpoint focuses on the environment
of the system and the requirements for the system, thus, leaving the details of the structure and
the processing of the system undefined [42]. A platform independent viewpoint focuses on the
operation of the system while hiding the details necessary for a particular platform, hence it rep-
resents the specification of the system which does not change regardless of any target platforms
on which the system may run [42]. A platform specific viewpoint combines the platform inde-
pendent viewpoint with an additional detailed specification of the use of a specific platform by
the system [42]. For these three different viewpoints on the system MDA defines three different
views or models to specify the details of the system at these abstraction levels [9, 42]:

1. Computation Independent Model (CIM)

This model represents the highest abstraction specification of a system. It holds the details
that describe the purpose and the requirements of the system, but at the same time it hides
any implementation related concerns, such as underlying data structures. The assumption
is that the CIM is primarily specified by the experts on the domain of the system, which
do not necessarily need to be software engineering experts. This abstraction level can be
seen as a bridge between two different expert groups, namely those knowledgeable about
the domain and its requirements, and those who are experts in realizing software artifacts
satisfying the domain requirements. The CIM is also referred to as a business model or
domain model.

2. Platform Independent Model (PIM)

At the next abstraction level is the model that holds all detailed information on the behav-
ior and structure of a developed application. In other words, the requirements specified
in the CIM are taken, for which a software-based solution will be built, and out of these
a model is specified covering structure and operations of the components comprising the
solution, but at the same time, as the name already suggests, it omits implementation de-
tails needed to run the application on a specific platform. At this level we have models
that describe our system completely as a software solution independent of any specific
platform. Specification of a platform independent model requires for a specific modeling
language. More information about modeling languages can be found in Section 2.2.

3. Platform Specific Model (PSM)

A platform specific model combines the specification of a system from a PIM instance and
additional information covering necessary details on how to run the system on a specific
platform. This limits any PSM to one specific target platform, which means that we can
have many instances of PSMs for one PIM. At this level, software engineers have all the
necessary information to implement the software application out of the PSM specification.

The structure of modeling levels described in MDA is depicted in Figure 2.2.
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Figure 2.2: MDA modeling levels and related engineering disciplines (based on [9, 44]).

Between each abstraction level there exist a set of mappings so that each subsequent one can
be defined through model transformations [9]. For example, every CIM can map to different
PIMs, which in turn can map to different PSMs, and PSMs can map to application code.

In practice, and as stated in [44], it is not always possible to clearly distinguish between a
CIM and PIM. Furthermore, current transformation tools mostly provide standardized solutions
for transformations from a PIM to a PSM but no mechanisms for transforming a CIM into a
PIM [30, 44]. There are also attempts and proposals on how to automate the transformation of
the specification from a CIM into a PIM, cf. [13,32,53], but these approaches mostly work only
in certain scenarios and are not widely accepted yet. This means that because of the difficulty to
automate the CIM to PIM transformation, and this resulting in specifying them both manually,
would lead to more additional effort without clear benefits. To be more efficient, this mostly
leads to omitting the modeling of the system specification in a CIM and doing it in a PIM right
away, treating it as the highest abstraction level.

In order to specify aforementioned models the OMG recommends its technologies. For
example, the CIM and PIM can be specified with the usage of the UML. Transforming the
specification from one model into another and mapping the related elements between each other
can be done with the usage of a standard set of languages for model transformation defined by the
OMG under the name Query/View/Transformation (QVT)8. However, this is only a suggestion
and not a requirement, which means that there are also other relevant modeling languages and

8OMG Query/View/Transformation. http://www.omg.org/spec/QVT
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technologies — not related to the OMG organization — that we can use to specify and develop
our system following the MDE approach.

Aims of the Model Driven Engineering

Now that we have introduced MDE and some basic concepts of MDA, we will list few aspects
of software engineering process that MDE aims to improve [7, 35, 44]:

• Software development at hight level of abstraction

Using models as a driving force in Model Driven Engineering in general and in Model
Driven Architecture in particular guaranties for the higher level of abstraction. For ex-
ample, the PIM, PSM and application code represent artifacts from different steps in the
software engineering process. But, more importantly, they represent the same system
specification at different abstraction levels. The ability to transform a high level PIM into
a PSM raises the level of abstraction at which a software engineer can work, thus, enabling
him to cope with more complex systems with less effort.

• Productivity

If we consider traditional way of software engineering process where we use our designs
— from the design phase — only as guidelines or blueprints to manually implement the
solution, and comparing that to the generation of the implementation out of the designs,
as emphasized in the MDE approach, we can clearly recognize the productivity boost.

• Portability and Reusability

Having an abstraction level where the specification of a system is independent of any un-
derlying technology or any platform, as it is the case with the PIM, gives us the means to
use the same specification and transform it into specifications tailored for specific tech-
nologies and platforms. For example, having already the solution for our system realized
with the Java programming language and the Java EE platform as its execution environ-
ment, we could port our solution to the C# programming language and .NET platform by
reusing the PIM of our solution and writing new dedicated transformations.

• Interoperability

Nowadays, it is common to have software systems as the conglomerate of smaller sys-
tems built on top of diverse technologies, old and new. Many systems are dependent on
each other and to function properly the communication and interoperability is of essence.
MDE approaches the interoperability issue in the way that if we have PIMs of the sys-
tems and their related PSMs then we have all the information needed to generate so-called
interoperability bridges [35] between the systems.

• Documentation and Maintenance

In a traditional software engineering process, creating and maintaining the documentation
is a tedious task — from the software engineer’s point of view, of course. But, as hard
as it is to accept, providing up-to-date documentation is essential part of every software
engineer’s job. Luckily, there are tools to generate documentation out of the code. This,
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consequently, provides only the low level documentation. The high level documentation
(text, diagrams) of the system still must be maintained by hand.
In the MDE approach, however, changes to the specification of a system is done not on
the code level but on the higher level of abstraction, e.g., in the PIM. Naturally, this means
that the documentation at the high level of abstraction is always available.

2.2 Modeling Language Engineering

Providing a concrete solution, in the field of computer science, for a problem at hand would
traditionally mean implementing or developing the solution in some kind of a programming
language, or simply a language that allows us to give instructions to a machine. There are
many languages to chose from because over the time the languages in computer science have
been designed to address different approaches on how to provide instructions for a machine, but
also some language designs are more concentrated around the spectrum of a problem domain,
providing language constructs that can be used generally or only in a specific context. We can
say that the languages in computer science are tools to specify the solution for a problem, and in
most cases they have a textual representation.

Same way, as an integral part of the MDE approach we have modeling languages as tools to
define a concrete representation of a conceptual model for a solution, which may have graphical
representations or textual representations, or both [9].

A language, be it for example, a programming language or a modeling language can be
classified into [9]:

Domain Specific Language (DSL) is specifically designed to address a specific problem do-
main, context, or company with the goal to ease the task of people that need to describe
things in that domain. For example, HTML is a DSL to define the structure of a web page,
CSS is a DSL to define the styling of elements of a web page, or in a modeling realm Ob-
ject Constraint Language (OCL)9 is a DSL to specify constraints on objects of a modeling
language.

General Purpose Language (GPL) is designed to provide concepts which can be applied to
any particular domain, which makes it generally applicable — as the name suggests. For
example, in computer science we have GPLs, such as Java, C#, Ruby, Python, Haskell —
just to name the few — and the most popular modeling language, which falls under the
GPL, is the Unified Modeling Language (UML).

All languages — generally speaking this involves also languages that we use to communicate
with each other — have certain characteristic that are common to them all.

Language Characteristics

Every language has some kind of a structure and also some kind of a representation in order to
convey a meaning. That is also the case with modeling languages. The structure of a modeling

9Object Constraint Language. http://www.omg.org/spec/OCL/
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Figure 2.3: The three core ingredients of a modeling language and their relationships [9].

language, its representation and the meaning of its concepts can be characterized as the three core
ingredients of a modeling language as depicted in the Figure 2.3 and described as following [9,
34, 44]:

1. Abstract Syntax is the definition of the structure of a modeling language. The language
that is defined is an artificial one and the designer of the language needs to define its valid
phrases and how they can be combined with each other. Thus, an abstract syntax describes
the elements of a language and the relationships between them, in other words, it is the
grammar of the language.

2. Concrete Syntax is the visual representation or notation of the language elements defined
in an abstract syntax. A user of a modeling language is usually only involved in working
with the concrete syntax. For one modeling language, i.e., for its abstract syntax, we can
create an arbitrary number of concrete syntaxes.
We can differentiate between graphical and textual concrete syntax.
Graphical concrete syntax means that the language elements are visualized as graphical
shapes in an graphical (diagramming) editor, where language elements are created by
placing the corresponding shapes on a diagram, and connections between them are usu-
ally visualized by drawing connection paths between shapes accordingly.
Textual concrete syntax is created by specifying the keywords for the elements defined in
an abstract syntax. The connections between elements, in a textual syntax, can be spec-
ified, for example, by referencing elements by their name or an ID. The keywords are
usually highlighted — color or font style highlighting — in a dedicated textual editor in
order to easily differentiate them from other parts of the textual syntax. Most program-
ming languages have a textual concrete syntax.

3. Semantics is a part of a language definition describing the meaning of the language ele-
ments and the meaning of different ways of combining those elements. Precise specifica-
tion of the language semantics is very important in order to understand what the language
constructs imply. In order to successfully use a language the user must familiarize himself
with its semantics.
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What we see in the Figure 2.3 is that the semantics defines the meaning of the abstract syntax
and, indirectly also, the meaning of the concrete syntax, whereas the concrete syntax is a rep-
resentation of the abstract syntax — to note, there can be many concrete syntax representations
for the same abstract syntax.

These three core ingredients are mandatory for every modeling language, be it a GPL or
a DSL, and if any of them is missing or incomplete then a modeling language is not well de-
fined [9].

Meta language

In order to create an artificial language, be it a textual or model-based, we need to have means for
the precise definition of it. Having a language which exact purpose is to define another language
is generally referred to as a meta language [44]. In very early days of computer science (in the
middle 1950’s), computer scientist were all about designing high-level programming languages
as formal languages and building compilers for them [43]. To formalize the syntax of ALGOL
programming language John Backus devised a notation that was simple, powerful and could be
used to specify the syntax of any programming language, which was later revised and popu-
larized by Peter Naur. Using such a notation, both a programmer and compiler can determine
whether a program is syntactically correct - whether it adheres to the grammar and punctuation
rules of the specified programming language [43]. In their honor, this notation is known as
Backus-Naur Form (BNF). Widely-used variant of that notation (or meta language) is known as
Extended Backus-Naur Form (EBNF). With EBNF we specify the grammar and the syntax of
a language by using so-called production rules which describe how a non-terminal symbol ex-
pands to a valid combination of non-terminal and terminal (alphanumeric characters) symbols.
Through the specification of the combination of production rules we specify valid sentences of
a programming language. Consequently, in EBNF there is no strict separation between the ab-
stract and concrete syntax of the language because the EBNF specification combines both of
them, which means that we can use it only to specify textual languages — as most programming
languages are. An example of an EBNF grammar specification for a Mini-Java programming
language can be found in [47].

However, in MDE, as we know it by now, we use models at different abstraction levels to
develop our software systems. For this, MDE employs modeling languages anchored at different
abstraction levels and for different purposes. In this work we concentrate on a metamodel-centric
language design (cf. Figure 2.4) concerning the task of developing a new modeling language.
The term meta language is in MDE also known as the metamodeling language. Terms such as
model, metamodel and meta-metamodel will be explained in the following.

Model, Metamodel and Meta-Metamodel

Models play the key role in Model Driven Engineering. They are the driving force behind it and
in the MDE ideology “everything is a model” [9]. So, what is a model?
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Figure 2.4: Metamodel-centric language design [9].

Model

The simplest definition of the term would be “a model is an abstraction of reality”. Abstracting
reality is nothing new for us humans, we do it all the time. We do it, for example, in order to
simplify our cognitive processes.
The term model has many definitions, we will name the few, such as one from [38] defining it as
following “a model is an abstraction of a (real or language- based) system allowing predictions
or inferences to be made”, and another definition found in [29] (based on [3]) goes as following
“a model is a description or specification of a system and its environment, intended for a specific
purpose, and is represented by a combination of drawings and text”. There are many more
definitions, but in the context of software engineering, simply put, a model is used to describe
the software system under development and its environment.

Models may have also different purposes. In early days of using models in software engi-
neering, they were used as sketches or blueprints to describe the software systems under devel-
opment. In MDE models are first-class citizens, as we described it in the Section 2.1, and are
used to produce executable software artifacts.

The model holds only relevant parts of the system definition and is therefore regarded as
the abstraction of the system under development [44]. The OMG’s four-layer metamodeling
stack illustrated in Figure 2.5 shows different modeling layers. The layers are ordered from
lowest to highest and named M0, M1, M2 and M3. The instances of a model or snapshots
of a system are found on the lowest layer M0. Artifacts found on M0 level conform to their
abstract specification or models found, consequently, on the next higher level M1. The variety
of elements that comprise a model must also conform to a more abstract formal specification of
them, found on the next higher layer M2, and that specification is known as a metamodel.

Metamodel

Among different ways to specify languages one way is by means of a metamodel, which rep-
resents the abstract syntax of a language [33] — we already described what abstract syntax is,
above in the Language Characteristics. A metamodel is exactly the starting point for language
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Figure 2.5: The four-layer metamodeling stack (based on [9, 44]).

designers to begin their work on specifying a new modeling language. Within a metamodel
we specify language concepts, their properties and their interconnections. This process is also
know as metamodeling [9]. Therefore, a model is an instance of a metamodel, consequently, the
elements of a model are instances of the elements of a metamodel [4]. Metamodels are defined
with the usage of so-called metamodeling languages, as illustrated in Figure 2.5. Metamodels
bring certain advantages as the means for designing modeling languages, as described in [9,44]:

1. Metamodels, as already mentioned, hold the concise definition of model elements. This
means that only these language constructs, which are defined in a metamodel, are valid in
derived models. Consequently, this leads to better common understanding of the specified
modeling domain.

2. Similarly, because metamodels define model elements, models can be checked for syntac-
tic validity as they have to conform to their respective metamodels. This makes metamod-
els together with corresponding constraint specifications — e.g., in OCL — an efficient
control mechanism in specifying valid models for a software system.
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3. Another important aspect of a metamodel is that it is not necessarily a rigid construct that
can not be modified or extended at a later stage. There are different kinds of mechanism to
extend or adapt an already existing modeling language. Since this master’s thesis is con-
cerned with exactly these tasks in MDE, we provide more information about the extension
of modeling languages in Section 2.5.

As it is the case with a metamodel being the abstraction of a model, providing the formal
specification of the model, also, one can only expect to find an abstraction of the metamodel as
a formal specification of it too. Indeed, there is one, and its name is the meta-metamodel.

Meta-metamodel

Looking at the Figure 2.5 we can recognize that the same way a metamodel specifies the abstract
syntax of a model, so does a meta-metamodel specify the abstract syntax of the metamodel.
The meta-metamodel can be found on the highest level M3 of the metamodeling stack. The
Figure 2.5 also illustrates that the meta-metamodel defines a metamodeling language, in other
words it defines a modeling language for defining another modeling languages. The elements
of the meta-metamodel specification are used to specify the elements of a metamodel. Conse-
quently, this means that the model elements of a metamodel conforms to the model elements of
a meta-metamodel.

The two most widely acceptable metamodeling languages are:

• MOF

Meta Object Facility (MOF) Specification [25] is the OMG’s standard metamodeling lan-
guage. MDA principles were mostly influenced by MOF specification. It is the basis for
all modeling concepts done by OMG. For example UML is specified with MOF.

• Ecore

The metamodeling language that is part of the Eclipse Modeling Framework (EMF) [50].
It is based on the essential subset of MOF (Essential MOF or EMOF), which is designed
to match the capabilities of object oriented programming languages and mappings to in-
terchangeable formats [25] such as XMI10. Most notably, Ecore provides a Java-based
implementation of most important concepts from EMOF. Ecore and EMF in particular
are very well integrated within Eclipse technologies and provide to a language designer
tools such as editors, views, and generators. Ecore is well suited and used mostly for the
specification of DSLs.
We concentrate our work around EMF technologies and modeling languages specified
with Ecore.

Both MOF and Ecore are heavily based on the core of structural object-oriented modeling
languages. In other words, the syntax of these languages is similar to that of an UML class
diagram. So, most notable concepts of these languages are classes, attributes and associations.
These concepts are very simple in their nature which makes them generally applicable, even

10OMG’s XML Metadata Interchange (XMI). http://www.omg.org/spec/XMI/
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Figure 2.6: Overview of Ecore’s main language concepts [9].

for they own specification. That is exactly the reason why M3 level in the metamodeling stack
is the highest one (cf. Figure 2.5). A meta-metamodel is reflexively specified with its own
language constructs, in other words it defines itself and renders any higher level of abstraction
unnecessary. An overview of Ecore modeling concepts can be viewed in Figure 2.6.

2.3 Transformation Engineering

The fact that in MDE a model of a software system is not only a pretty representation of the
system in form of a picture but rather a formal specification of the system that conforms to a
modeling language formal specification, known as abstract syntax or metamodel, allows us to
leverage that formal information in order to transform the elements of a model conforming to
one modeling language into the elements of another model conforming to another modeling
language. Transforming the elements of a model into a formal syntax of some programming
language is also possible.

Transformation engineering is concerned with exactly these tasks, and it plays the pivotal
part in MDE and modeling languages based on the metamodel-centric language design (cf. Fig-
ure 2.4). The information from models and their metamodels is usually all the information we
need to specify transformation rules. A transformation, in general sense, is a program that takes
as input one or more models, does transformations based on some logic, and produces one or
more output models. We can differentiate between two types of transformations [40]:

Model-to-Model (M2M) transformation has different use cases, such as, transforming mod-
els from one modeling language into models of another modeling language, which is also
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known as exogenous transformation, and transformation of models into the models within
the same modeling language — merging different models, refactoring models, etc. —
which is known as endogenous transformation.

Model-to-Text (M2T) transformation is about generation of textual fragments populated with
informations provided in models. These transformations are usually used for automating
several software engineering tasks such as the generation of programming code, docu-
mentation, deployment scripts, and so forth.

Transformation engineering and writing transformation rules involves formal languages com-
monly known as transformation languages. For example, for M2M transformations we have
OMG’s Query/View/Transformation (QVT)11 standard set of transformation languages, or for
models constructed within EMF using modeling languages specified with Ecore we can use
ATLAS Transformation Language (ATL)12. In general, these languages provide declarative or
imperative language constructs — or both — for definition of transformation rules.

Transformation engineering is very crucial to the MDE approach, but since this master’s
thesis is not involved in transformation engineering we will not go into any more details on the
subject. The work done in [44] has more information, if you are interested to learn more.

2.4 Concrete Syntax Development

In order to effectively use a newly designed language we need to specify an adequate concrete
syntax for that language. The concrete syntax must be intuitive, concise and suited to the domain
concepts for which the language was build. To be successfully employed, the concrete syntax of
a language must support its user by providing a way to easily spot and grasp the most relevant
domain concepts. As we already mention it in the Language Characteristics section, we can
specify a Textual Concrete Syntax (TCS) or a Graphical Concrete Syntax (GCS). Which one is
more suitable to represent domain concepts of the language is probably the one that provides
more expressiveness and ease the creation and manipulation of model elements — but, mostly
it is a matter of a user’s personal opinion. Sometimes it is also suited to provide both concrete
syntax specifications for a language, leaving the choice of which one is preferable to the user.

For a user of a language the textual concrete syntax provides a one-dimensional view on
a model. A model is specified with textual notations describing or specifying elements of the
model in a top-down fashion — a vertical view, from top to bottom. In contrast to the textual con-
crete syntax, a graphical concrete syntax provides a spacial view on the elements of a model —
a two-dimensional view. We can, for example, order the graphical representations of the model
elements in arbitrary horizontal and vertical position on a canvas, which allows, for example,
to structure and place the elements of the model based on some special meaning in grouping or
layering them together in order for user to easily grasp what the model specifies. The graphical
concrete syntax mostly looks like graphs, with graphical nodes representing model elements and
edges between them to describe the relationships between model elements.

11OMG’s Query/View/Transformation. http://www.omg.org/spec/QVT
12ATLAS Transformation Language. http://www.eclipse.org/atl
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The process of specifying concrete syntax for a language, regardless of the kind of con-
crete syntax, is defined by mapping the modeling concepts described in the metamodel of the
language to their visual notation. In other words, visual notations introduce symbols, be it tex-
tual or graphical symbols, which allow to visualize models as textual or graphical elements in a
diagram [9] (cf. Figure 2.7).

Metamodel

Model

Visual Notation

Diagram/Text

«conformsTo» «conformsTo»

◭ symbolizes

◭ visualizes

Figure 2.7: Visual notation: introducing symbols for modeling concepts [9].

The end product of a concrete syntax specification that a user of a language uses and that a
language designer builds is a tool commonly known as an editor — a textual editor or a graphical
editor, depending on which concrete syntax it is created for. In the following we will go more
into detail about specification of the concrete syntax for a modeling language. We concentrate
here on technologies and frameworks that are part of the Eclipse Platform, and designed to work
in conjunction with EMF framework and technologies based on it.

Textual Syntax Development

Modeling languages, especially in the beginning of MDE, were considered to be solely graphical
languages, mainly influenced by precursors of UML and “a picture is worth a thousand words”
reasoning. In the meantime we know that having a textual concrete syntax (TCS) for a modeling
language increases its usefulness, especially if its users are more familiar working with textual
documents to specify domain information. Due to powerful frameworks, emerged in the last few
years, specifying TCS and creating textual editors for it has became much user-friendly, which
changed the view at modeling languages (being solely graphical) fundamentally.

Informations described with textual languages are constructed by a collection of textual
symbols. Not every symbol or wording constructed out of them, as well as their placement
in the text is valid — surely we recognize this from programing languages. To define valid
symbol sequences and their grouping grammar specifications are used. The grammar of the
TCS enables domain data in textual form to be parsed into model data, and also the other way
around, rendering model data into textual representation.

Readability and usability of the textual concrete syntax can be much improved if the syntax
specification supports the designer of TCS in, for example, specifying language-specific key-
words or some other syntactic sugar. In order to enable this, textual languages must support the
language designer in specification of following concepts [9]:

• Model information: That the textual concrete syntax should support model information
such as model element name or attribute type, goes without saying.
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• Keywords: They are special words in the syntax conveying a concise meaning of the
language constructs, and are used, for example, to denote different elements of a modeling
language.

• Scope borders: All element descriptions that are conceptually part of another element de-
scription should be grouped or syntactically enclosed between so-called scope borders. A
good example of symbolizing scope borders are curly brackets, known from programming
languages, such as, e.g., C or Java.

• Separation characters: They are needed, for example, to separate language constructs
from each other when they are syntactically grouped as part of another language construct.
An example, also coming from programming languages, would be using semicolons to
separate programming expressions or comma to separate the elements of a collection.

• Links: Linking or referencing a model element from another one is in textual syntax
achieved by referencing the unique name (an ID) specified for that element. This is exactly
how it is done in, e.g., object oriented programming languages, where every class must
have a unique name in its name space.

From the point of view at the development of TCS we can differentiate between two differ-
ent approaches, namely having either a generic TCS or a language specific TCS.
The generic TCS, as it is in the case of the specification for serialization of model data into its
textual form, and vice versa (e.g., XMI specification) the generic TCS is well suited to be con-
sumed by a machine, but not so well by a human.
For language specific TCS engineering approaches, also two approaches can be distinguished [9]:

• Metamodel first approach is about specifying the metamodel of a modeling language
first, and considering it as the central language artifact, upon it the textual production
rules are defined for the elements of the metamodel. Thus, the concrete syntax is specified
on top of the abstract syntax. This approach is followed by different projects such as
Textual Concrete Syntax (TCS) project13 — uses text production rules similar to EBNF
— and EMFText14.

• Grammar first approach is inspired by EBNF approach in the way that the language
designer first specifies the grammar of the language — the abstract and concrete syntax
are specified together as textual production rules in the grammar. Following grammar
specification, the metamodel of the language is automatically inferred from the grammar
by dedicated metamodel derivation rules. A very powerful framework designed with this
approach in mind is Xtext15. Actually, Xtext can be used both ways, either by starting
with grammar specification or metamodel specification for which we can generate default
grammar specification and further refine.

With ether approach, at the end we have the same language artifacts — the metamodel of
the language and its TCS specification.

13Textual Concrete Syntax (TCS) project. http://www.eclipse.org/gmt/tcs
14EMFText project http://www.emftext.org
15Xtext Eclipse project. http://www.eclipse.org/Xtext
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Graphical Syntax Development

In contrast to text-based language engineering and also the specification of the abstract syntax
of a language — as these processes are supported by formal definitions, e.g., EBNF grammar; or
a standard such as OMG’s MOF standard — in the case of specifying graphical concrete syntax
there is only one OMG standard available, namely the Diagram Definition (DD) [24] specifi-
cation. DD specification provides basis for modeling and interchanging graphical notations —
specifically node and arc style diagrams. This specification replaced the OMG’s Diagram In-
terchange (DI) [22] specification, which goal was to provide smooth and seamless exchange of
graphical concrete syntax model representations between different software tools. For example,
the Graphical Modeling Framework implements DI specification. Having the formal definition
of the graphical concrete syntax allows us to leverage other advanced tools such as automatic
generation of editor code, for example. Without formal definition we would most probably have
to manually implement editors supporting visual notations of the language, which would require
much effort and high investments in realizing a MDE environment [9].

Nowadays, there are frameworks, which leverage formal definitions and provide, for exam-
ple, their own domain specific languages for the specification of the graphical concrete syntax.
Not all frameworks adhere to the OMG’s specification but have rather their own specifications
for visual notations representing modeling concepts. This may lead to different visual notations
of the same modeling concepts at runtime depending on which framework we used to specify
graphical concrete syntax. We will introduce some frameworks later on, but first, let us elaborate
on the anatomy of the graphical concrete syntax, as described in [9].

Anatomy of graphical languages. Typically, a graphical concrete syntax is composed of fol-
lowing parts: (1) graphical symbols such as lines, shapes or complete figures, and labels rep-
resenting textual information (e.g., the name of the modeling element); (2) compositional rules

that define how the graphical symbols can be combined to create more complex visual repre-
sentation for a modeling element. These rules also define, for example, positioning and styling
of different graphical symbols inside the compartment of a figure; (3) mapping of the graphical
symbols to their counterparts found in the abstract syntax, which they represent. For example,
a rectangle shape could represent some key modeling element, and a label placed inside of that
rectangle might be mapped to the name of that modeling element or any other of its attributes.

An editor built to support GCS provides a modeling canvas that allows positioning of model
elements in a two-dimensional raster. For this purpose, every visual notation has an assigned
x, y coordinate as the mean of specifying the position of its top-left corner from the top-left
corner of the visual notation that contains it. Modeling elements are usually arranged in form of
a graph contained within the modeling canvas. This arrangement, in form of a graph, is usually
called a diagram, and it represents the graphical view on the model. In order not to overload
the diagram with every detailed information of modeling elements, but rather to provide a more
concise view on the model, only most relevant information can be visualized in the diagram
Other information is then visualized and accessible in dedicated tools known as views.

To further elaborate on the anatomy of GCS and its specification, Figure 2.8 illustrates a
small excerpt of a generic metamodel for graphical concrete syntaxes [9]. We can see that a
Diagram is a collection of different DiagramElements, which can be nodes, edges, labels
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and compartments. Most modeling languages only need these diagram elements to provide
sufficient visual representation of its models. Nodes are visualized as shapes, edges as lines,
compartments are usually shapes that allow nesting of other diagram types, and labels allow
to annotate, for example, nodes and edges with additional information. Actually, all these are
concrete parts of the illustration itself.
To state the relationship between the modeling concepts and their visual representations we
employ a mapping between abstract syntax and concrete syntax elements.

Abstract
Syntax
(AS)

(AS2CS)

Concrete
Syntax
(CS)

Diagram Diagram Element

Mapping

Metamodel
Element

Association

Attribute

Class

Edge Label

Node Compartment

1..*

1..1

1..1

1..*

Figure
1..1

ShapeLine
Compound

Figure

EllipseRectangle . . .

1..*

Figure 2.8: A generic GCS metamodel [9].

Approaches to GCS development. The Eclipse platform and its graphical environment are
governed by toolkits (as described in [45]) such as Standard Widget Toolkit (SWT)16 and JFace.
SWT provides portable access to user interface facilities of the underlying operating system and
JFace provides helper classes for SWT to solve common UI problems which are implemented
following the Model-View-Controller (MVC) paradigm.
For drawing and layout of graphical components on the two-dimensional SWT canvas the Draw2d17

framework is responsible. Draw2d also provides facilities for event handling such as listening
to focus, keyboard or mouse events.

16Standard Widget Toolkit for Java. http://www.eclipse.org/swt/
17Draw2d is a layout and rendering toolkit building on top of SWT http://www.eclipse.org/gef/

draw2d/
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Building upon them we have the Graphical Editing Framework (GEF)18 — nowadays also con-
sidered to be low-level — for developing graphical editors. GEF is designed with MVC archi-
tecture in mind, separating data model from its respective graphical representations and linking
them together through the controller. Furthermore, GEF controller — also known as EditPart
in GEF jargon — besides mapping both model and view together also has the responsibility of
updating, e.g., the view if the data model changes, or the other way around if user makes changes
on the view it updates the data model. GEF does not set any restrictions about the models to be
used with it, which makes it well suited for GCS development of a modeling language.

Currently there are few different Eclipse projects for specification of GCS tailored for mod-
eling languages based on EMF, and are built upon GEF. They can be differentiated in their
approach on how to specify and develop the graphical concrete syntax of a modeling language,
as stated in [9]:

API-centric GCS. This approach is about providing more powerful and easier to learn and use
API than what GEF offers. The user programs against the dedicated API in order to
develop GCS of a modeling language. The most notable protagonist of this approach is
Graphiti19 project. More about Graphiti later on.

Mapping-centric GCS. The protagonists of this approach provide dedicated modeling lan-
guages for the GCS specification and mapping between abstract and concrete syntax el-
ements [9]. The most notable protagonist of this approach is the Graphical Modeling
Framework (GMF)20. GMF provides different modeling languages and graphical editors
for them in order to specify GCS and mapping. From the created descriptions in form of
models GMF provides code generation facility which transforms these descriptions into
editor code. Later we provide more details on GMF.
Another notable protagonist of the mapping-centric approach is the Spray21 project. It
also provides different modeling languages for GCS and mapping specification. The only
difference compared to GMF is that it uses textual editors (textual modeling languages).
The goal of Spray project is to simplify description of a modeling language GCS against
the Graphiti runtime, and provide code generation to create the boilerplate code for real-
izing the implementation against the Graphiti framework.
In both GMF and Spray, realizing graphical modeling editors is achieved by applying
MDE techniques.

Annotation-centric GCS. Annotating the metamodel of a modeling language with descriptions
of visual representations for the model elements is what this approach propagates. The
most notable protagonist of this approach is EuGENia22. EuGENia is all about abstract-
ing and simplifying the GCS specification as it can be done with GMF. The GCS infor-
mation necessary for the implementation of a graphical editor is captured by embedding

18Graphical Editing Framework (GEF) provides technology to create rich graphical editors and views for the
Eclipse Workbench UI. http://www.eclipse.org/gef

19Graphiti project. http://www.eclipse.org/graphiti
20Graphical Modeling Framework. http://www.eclipse.org/modeling/gmp
21Spray project. http://eclipselabs.org/p/spray
22EuGENia. http://www.eclipse.org/epsilon/doc/eugenia/
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high-level annotations in the Ecore based metamodel of a modeling language [36]. Then,
by model transformations EuGENia produces GMF models and reuses GMF facilities to
generate editor code. Consequently, by abstracting upon GMF EuGENia hides the com-
plexities of GMF.
EuGENia as well as aforementioned Spray project are very useful in helping a developer
to jump-start the specification of GCS of a modeling language and development of GMF-
based and Graphiti-based editors, respectively.
In fact, we use these frameworks for our case study in Chapter 7.

In following we provide more information on GMF and Graphiti framework.

Graphical Modeling Framework

The Graphical Modeling Framework is an open source framework for development of diagram
editors. It is the prime example of MDE (and MDA of course) approach because it leverages
modeling languages and strictly separates PIMs, PSMs and code [26], as can be seen in Fig-
ure 2.9. GMF is a composition of three different components [21]:

1. The GMF Tooling provides a model-driven approach for generating graphical editors. This
is the component that as a language designer we are most interested with.

2. The GMF Runtime is an industry proven application framework for creating graphical
editors using EMF and GEF. It provides a set of common features such as printing, actions,
toolbars, image export, and more. It bridges command frameworks, such as those of
EMF and GEF, and provides extendibility that allows graphical editors to be open and
extendable at runtime.

3. The GMF Notation provides the standard EMF notation metamodel with standard means
and purpose of persisting diagram information separately from the domain model. It is
based on OMG’s DI specification and therefore can also be used as basis for diagram
interchange.

GMF brings a set of four modeling languages, a transformator that maps PIMs to PSMs, a
code generator that turns PSMs into code, and the runtime platform on which the generated code
relies [26]. As a designer of the graphical concrete syntax for a modeling language we would
usually only work with modeling languages from GMF Tooling. For a domain model — the
metamodel of our modeling language — we use the gmfgraph language for describing graphical
elements such as nodes and edges in the diagram, the tooldef language to describe tools avail-
able to the user of the diagram, and the mappings language to produce a mapping model that
combines the other three views to an overall view which maps the graphical elements from the
graphical definition model and the tools from the tool definition model onto the domain model
elements from the domain model. From the mapping model the transformator generates a dia-
gram generation model that conforms to the gmfgen language. This generated model can further
be augmented by the designer and at the end it holds enough information that can eventually be
consumed by a set of model-to-text transformations in order to generate the Eclipse plug-ins that
contain the actual Java code that implements the editor.
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Figure 2.9: Languages involved in the Graphical Modeling Framework [26].

Graphiti

As opposed to GMF, Graphiti does not use any code generation facilities for creating diagram
editors. It solely provides its API for definition of the graphical concrete syntax, as well as for
EMF-based domain models as for Java-based domain models. For its usage and development of
GCS, Graphiti provides following benefits [16]:

• Low-entry-barrier: it hides platform specific technologies such as GEF and Draw2d.

• Incremental development: provides fast-payoffs by using default implementations, thus
shorter development cycles.

• Homogeneous editors: editors on top of Graphiti look and behave similarly.

• Optional support of different platforms: diagrams are defined platform independently, thus
if GEF and Draw2d would be replaced with other underlying platform technologies, the
same diagram definitions could be rendered on different platforms without any necessary
adaptations.
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Graphiti has a big advantage as opposed to GMF, and the reason is while in Graphiti one
programs against plain old Java interfaces and all adaptations for an editor are done directly in
the code, in GMF one must manipulate generated sources to adapt the editor, which can cause
headaches when regenerating [16]. The architecture of Graphiti is solely runtime oriented in
contrast to GMF having also a generative component.

x

Rendering
Engine

Interaction
Component

Graphiti runtime

Screen R

R

Diagram Type
Agent

Pictogram
Model

Domain
Model

Link
Model

Figure 2.10: Graphiti architecture (based on [16]).

Graphiti architecture, depicted in Figure 2.10, shows that the communication between a
Graphiti-based tool and a user happens over the screen and the user generates events, e.g., key-
board or mouse events, that are registered by the Interaction Component as specific user
requests. The Rendering Engine is the part of the framework responsible for rendering
the current data on the screen. Interaction Component and Rendering Engine form together the
Graphiti runtime. Technically the runtime is based on GEF and Draw2d, but the Graphiti pro-
gramming interfaces are self-contained, meaning no knowledge of or access to underlying tech-
nologies is necessary. Similarly, Graphiti defaults ensure similar look and feel of all Graphiti
based tools.

Handling of the registered user requests is done by a Diagram Type Agent. This is
the component that a developer must manually provide by building it upon various services and
default implementations that the framework provides.

Domain model is the metamodel of our modeling language. Pictogram model contains
the complete data from domain model as well as information how these data is represented
in a diagram. As a consequence the pictogram model contains redundant data which allows
simultaneous manipulation of domain model by Graphiti and any other tools. Redundant data is
then synchronized with usage of so-called Update Features. Link model connects the elements
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of the domain model with the elements of their graphical representations in pictogram model.
GMF and GEF are based on Model-View-Controller paradigm, however Graphiti is not.

It employs so-called features which encompass all concepts found in MVC such as creation,
deletion and changing of domain model elements, as well as creation, deletion and updating of
visual elements.

Graphiti, at the moment of writing this thesis, is still in its incubation phase as an Eclipse
project, meaning it is still in the phase of becoming a fully-functioning open-source project.

2.5 Extending Modeling Languages

In Chapter 1 we already gave an introduction to the topic of the extension of modeling languages,
as well as to two possible ways on how to approach it, namely the heavyweight vs. lightweight
language extension. In this section we go straight to describe the concepts of EMF Profiles —
as they are at the core of our work in this master’s thesis — and in the subsequent related work
Section 2.6 we introduce other approaches for extending modeling languages in the lightweight
manner.

EMF Profiles

EMF Profiles, a solution to the extension of modeling languages based on EMF technology was
proposed in the work of Langer et al. in [39]. EMF Profiles are an adaptation of the UML profile
concept to the realm of Domain-Specific Modeling Languages (DSMLs) and they provide a
lightweight language extension mechanism.

The Profile mechanism is based on a profile definition comprised of stereotype definitions.
Stereotypes are used to annotate model elements in order to refine their meta-classes by defining
supplemental information in form of additional meta attributes, also known as tag definitions.
Instances of tag definitions are known as tagged values and they are used for the provision of
new informations to existing models.

The metamodel of the EMF Profiles definition language is illustrated in package Standard
EMF Profile depicted in Figure 2.11. The precise definitions of the terms profile, stereotype and
tagged value are given in the following.

Profile

A Profile is a package of related and coherent extensibility elements in form of stereotypes and
tagged values [9]. These extensions are usually covering some particular requirements or pur-
poses and profiles are used for grouping them together into their domain-specific extensions. A
profile is usually denoted in a diagram by the keyword «profile» followed by its name. In the
EMF Profile language definition (cf. Figure 2.11) we can see that the class Profile inherits
from the Ecore meta-metamodel class EPackage. The Profile class has a base reference
to an EPackage, which at the instantiation time is set to point to the package of a modeling
language which elements will be extended through stereotyping. The EMF Profiles implemen-
tation uses for instantiation and application of a profile the Profile Application metamodel (cf.
Figure 2.11). Its purpose is to weave the necessary concepts for a profile application into a profile
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Figure 2.11: EMF Profile Metamodel [39].

model [39]. The class Profile Application denotes the root element for all stereotype
applications in a profile application model.

Stereotype

Stereotypes play the main part in EMF Profiles and, as already said, they are used to annotated
elements of a modeling language in order to specialize their meta-classes with respect to some
domain, platform or some specific functionality [5,44]. By applying a stereotype to a metaclass,
the metaclass gets bound to a defined purpose or a usage context [44]. In a diagram a stereo-
type definition is usually denoted by the keyword «stereotype». In the EMF Profile language
definition (cf. Figure 2.11) we can see that the class Stereotype is a specialization of the
EClass. Consequently, that brings a nice side effect with it, namely reusing the EAttribute
and EReference elements to represent tagged values. To specify the applicability of stereo-
types to metaclasses, the class Stereotype has a reference to the class Extension. Hence,
the class Extension is used to denote the base metaclass and also the applicability bounds.
For example, setting the loverBound of the Extension class to 1 would mean that the
stereotype must be applied to each instance of the base metaclass, in order to obtain a valid
profile application. Stereotypes, when applied, need to have a reference to the model elements
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to which they are applied. As in the case of profiles, the EMF Profiles implementation uses the
Profile Application metamodel to instantiate and apply a stereotype to a base class. For this pur-
pose the Profile Application metamodel contains the StereotypeApplication class which
holds the appliedTo reference pointing to an arbitrary EObject. Consequently, whenever
a profile is saved, the StereotypeApplication is automatically added as the superclass
to each specified stereotype — this is possible because the Stereotype is an EClass and
the EClass can have a superclass. Due to the fact that the Stereotype inherits from the
EClass, the stereotype can be defined as the specialization of a different stereotype, thus we
can use inheritance when defining stereotypes. To visualize the application of a stereotype usu-
ally an icon is placed as an adornment in the upper-left corner of the visual representation of
the model element to which the stereotype is applied. The iconPath property in the class
Stereotype is meant to be used for this purpose.

Tagged Value

Tagged values are nothing else then a tag-value pair that can be attached as an attribute or a
reference to a stereotype [9], hence a property of a class. Consequently, we can specify the name
and the type of the tagged value. The type can be a simple data type, such as String, Integer or
Boolean; or it can be a complex data type, such as a user defined data type. Their purpose, as
already said, is to allow the designer to specify additional information to the base metaclasses,
which may be necessary to accomplish another modeling tasks such as model transformations,
execution of a model, or adding project management data to model instances.

Besides the Standard EMF Profile the EMF Profile Metamodel also contains the Generic
Profile and Meta Profile specifications. These represent the two novel techniques introduced in
the EMF Profiles [39], for reusing profile definitions. Generic profiles are defined independently
of any specific modeling languages in mind and may be bound at later point to several user-
defined modeling languages. Meta profiles fall in the category of those profile definitions that
can be immediately reused for all modeling languages — of course, the requirement is that these
modeling languages are based on the Ecore metamodeling language.

An example of how EMF Profiles implementation technically represent profiles and their
profile application can be found in Figure 2.12. The example depicts an Entity-Relationship
(ER) model [11] and a simplified version of an well-known EJB profile — more information
on EJB can be found in Chapter 3. The illustration in Figure 2.12(a) depicts the definition of
EJB profile with the stereotype Bean, which extends the metaclass Entity from the ER meta-
model, and two concrete subclasses of the Bean called SessionBean and EntityBean.
Furthermore, the profile defines another stereotype IDAttribute extending the metaclass
Attribute to denote the ID of an Entity.
Figure 2.12(b) depicts internal representation of the profile application. At the moment of instan-
tiation of (i.e., applying) the EJB profile, a root element of the type ProfileApplication
is created, which contains possible stereotype applications as depicted in Figure 2.12(c).
Also, very important to note is that the EJBProfileApplication model resides in a separate file
and not in the original ER model file denoted with BaseModel in Figure 2.12. This keeps the
original model unchanged and allows for arbitrary profile applications at the same time.
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EJBProfileApplication

<<stereotype>>
EntityBean

isUserManaged : EBoolean

<<metaclass>>
ER::Entity

<<stereotype>>
IDAttribute

<<metaclass>>
ER::Attribute

<<stereotype>>
SessionBean

isStateful : EBoolean

<<profile>> EJB

: ProfileApplication

: EntityBean

isUserManaged : true

appliedTo
1 : Entity

appliedTo

: SessionBean

isStateful : true

: IDAttribute

2 : Attribute

appliedTo

: IDAttribute

appliedTo

BaseModel

(a)

(c)

ER

<<import>>

(b)

ProfileApplication
0..*

appliedTo : EObject

StereotypeApplication
stereotypeApplications

<<stereotype>>
EntityBean

<<stereotype>>
IDAttribute

<<stereotype>>
SessionBean

<<profile>> EJB

StereotypeApplication

<<merge>>

Entity Attribute
0..*

ProfileApplication

<<instanceOf>>

<<instanceOf>>

name : Affiliationname : Person

name : EString name : EString

3 : Attribute

name : RegNo

4 : Entity

name : 
PersonSearchService

5 : Attribute

name : URI
appliedTo

1..1

0..1

<<stereotype>>
Bean

Figure 2.12: EMF Profiles by Example: (a) Profile Definition User-View, (b) Internal Profile
Representation, (c) Profile Application [39].

The EMF Profiles, as the acronym suggests, is an Eclipse project. The implementation
brings a dedicated graphical editor for specifying new profiles. It also ships with a dedicated
Profile Application View to visualize applied profiles and their stereotype applications on the
model that is currently displayed in the modeling editor. Furthermore, in order to manipulate the
tagged values of applied stereotypes the implementation provides a dedicated implementation of
the Eclipse properties view. Besides these mentioned components the solution implements also
other tools, such as for the purpose of managing profiles and profile applications, a helper tools
for creating a profile definition project or applying a profile to a model instance.

At the moment, addressing the extension of the graphical concrete syntax of a model diagram
with EMF Profiles does not go beyond the mentioned icon decoration.
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2.6 Related Work

For extending a modeling language in a lightweight manner by means of an annotation mecha-
nism there are several alternative approaches besides the EMF Profiles.

For example, in Fritzsche et al. an approach is presented that leverages the model weaving
mechanism [19]. With such a mechanism it is possible to compose different separated models,
and thus, could be used to compose a core model with a concern-specific information model in a
non intrusive manner. However, as mentioned in [39], although this is a powerful mechanism, it
is also counter-intuitive for manually annotating models with weaving models, because this was
not their intended purpose.

Another approach, called Model Decorations [37], addresses a very similar goal as EMF
Profiles [39]. Additional information is attached (or decorated) by means of text fragments
embedded in GMF’s diagram notes. In order to extract or inject decorations from or into a
model, a user must write transformations for each target model to enable the translation of the
text-fragments in the notes into a separate model and vice versa. Important to note is that this
approach can only be applied on models visualized in GMF diagrams. EMF Profiles do not have
this restriction.

EMF Facet [14] represents a complementary extension direction compared to EMF Profiles.
With EMF Facet a user can dynamically extend models with additional transient information
computed from existing model elements by model queries expressed in, e.g., Java or Object
Constraint Language (OCL) [52]. In contrast to EMF Facet, with EMF Profiles a user can add
new information — not only derived one as in case of EMF Facet — and persist it in a separate
file.

Meta-packages [12] is a concept for the lightweight extension of the structural modeling lan-
guage XCore, which is based on packages, classes and attributes. Compared to meta-packages,
EMF Profiles are more generic, because not only one modeling language may be extended, but
any Ecore-based modeling language [39].

Although these approaches provide a lightweight language extension, they are centered
around the extension of the abstract syntax. None of them addresses the extension of the concrete
syntax in a way we would like to have.

In our search for related work, we could not find any work that tackles the problem of
extending not only the abstract syntax but also the concrete syntax of modeling languages. To
the best of our knowledge, there are only approaches for specifying the concrete syntax from
scratch, which are summarized in the following:

• Graphical Modeling Framework (GMF) and Graphiti framework from the Eclipse Graph-
ical Modeling Project (GMP) [15] provide a set of generative components and runtime
infrastructure for developing graphical editors based on EMF and GEF. GMF and Graphiti
framework have been introduced in Section 2.4.

• EuGENia [36] builds upon GMF by raising the level of abstraction. Their approach is
annotating the domain model elements in the metamodel with the information of the con-
crete syntax representation. This is, however, contradictory to the separation of concern
paradigm, because the domain model is polluted with the concrete syntax description.
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• YTUNe [51] is an approach very similar to EuGENia. In YTUNe the elements of the
concrete syntax are included in the abstract syntax.

• Spray [1] aims to provide one or more Domain Specific Languages (DSL) to describe
Visual DSL Editors against the Graphiti runtime, and provide code generation to create
the boilerplate code for realizing the implementation against the Graphiti framework.

All of them have the same goal, which is to provide a simpler way for defining the graphical
concrete syntax for DSMLs, with respect to how it can be done with GEF only.

Although, our approach is not about defining the concrete syntax for a DSML — but rather
the extension of an already defined one — information provided in these related works can be
beneficial to our work, because we also need to define language concepts for describing the
extension of the graphical concrete syntax.
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CHAPTER 3
Running Example and Requirements

In this chapter we establish a common ground for better grasping and understanding the infor-
mation we provide in this work later on. Topics addressing difficulties that may occur when
extending a modeling language, or how the specification of a decoration in decoration descrip-
tion language will manifest itself graphically in an editor, and so on. So, whenever needed we
use the following example as our running example throughout this work.
In the second section of this chapter we specify the requirements for our solution.

3.1 Running Example

The Eclipse Modeling Framework (EMF)1 contains in its arsenal the meta-modeling language
Ecore, which in itself is nothing more than a subset of the UML class diagram for modeling the
structure of a domain in the form of packages, classes, attributes and relationships. EMF brings
also a default implementation of the graphical concrete syntax — an editor — for Ecore, which
is realized with GMF2. We are going to reuse that editor to model our running example, because
the class diagram is the most used modeling diagram out there [8] and most users are familiar
with its graphical concrete syntax.

Please take a look at the model of our running example depicted in Figure 3.1. It is a
model of a Simple Blog application. The model is of a very naive design and incomplete —
this is on purpose, as you will see later why — but sufficiently simple for us to show you
few interesting cases why we would like to extend the domain language with supplementary
information through the simple annotation mechanism rather than extending the language itself
(its meta-model) and adapting its tools to reflect introduced changes to the language.

First, let us examine the contents of the running example model. We see two packages con-
taining classes. The data package contains our data model, i.e., User, Adress, Post and

1The EMF project is a modeling framework and code generation facility for building tools and other applications
based on a structured data model. http://www.eclipse.org/modeling/emf

2Graphical Modeling Framework. http://www.eclipse.org/modeling/gmp
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Figure 3.1: Simple Blog application – the model of our running example.

Comment classes — modeled as simple POJOs3 — hold within their properties business data
which is relevant for the Simple Blog application. The services package contains classes
which implement the business logic of the application, such as creation, manipulation and re-
trieval of the business data. PostsManager and CommentsManager hold the business logic
for creation and manipulation of posts and comments by Simple Blog users. PostOfTheDay
class is responsible for retrieval of a post of the day previously specified through some criterion
or by an administrative user. If the creator of a post wants to be notified, say, by email, when
some other user has left a comment on the post, he can be notified by the service provided in
the PostCommentedNotifier class when such an event occurs. And the TopTenPosts
class will provide an implementation for retrieval of the ten most visited posts.

After explaining the contents of the model, let us introduce two cases when and why we
would like to extend such a modeling language.

Case One: Annotating model elements with Java EE specific information. The Java plat-
form Enterprise Edition (Java EE) extends the standard edition of the Java programming lan-
guage with API and runtime environment for developing and running enterprise applications.
These applications have to satisfy the needs of larger user groups, such as organizations, rather
than a single user. To properly develop a software that will be used by many users, the software
has to satisfy different characteristics — reliability, scalability, accessibility, security, etc., just to
name the few — common to all enterprise applications. Rather than reinventing the wheel each
and every time, developers can concentrate on the business data and logic of a developed appli-
cation and at a later time introduce, say, security or reliability to the application by the means of

3Plain Old Java Object. http://en.wikipedia.org/wiki/Plain_Old_Java_Object
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configuration. For more detailed information about the Java EE platform we recommend reading
the Java EE technical documentation4 where you can find introduction to the Java EE platform,
tutorials, and API documentation.

Among all Java EE specifications we are going to concentrate only on Enterprise JavaBeans
(EJB) — a server-side component architecture for specifying the components that encapsulate
the business logic of an application — and on the Java Persistence API (JPA) for specifying
which classes hold the business data, also known as Entities. The properties of an Entity class
are mapped by the underlying framework to a relational database schema. This process is also
known as Object/Relational Mapping (ORM). EJB components can be differentiated into: Ses-
sion Beans and Message-Driven Beans. Session Beans can in turn be differentiated between
three types:

• Stateful – Track the state of a client through a session. One instance of the business object
per client.

• Stateless – Do not track the state of a client. The client’s requests can be handled by
different instances of the business object.

• Singleton – For all clients there is only one instance of the business object.

Message-Driven Beans just allow the communication between a client and a business object to
be message-driven rather than through method calls as it is the case with session beans.

Figure 3.2: EJB_Profile.

Now, we are going to extend the Ecore language so that we can introduce these new concepts
into the language. For this purpose we have created the EJB_Profile, as depicted in Figure 3.2,

4Java Platform, Enterprise Edition (Java EE) Technical Documentation. http://docs.oracle.com/

javaee/
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containing stereotype specifications for aforementioned concepts, and also an additional stereo-
type specification for special attributes such as primary keys and attributes having unique values.
Applying these stereotypes to the running example model would produce the graphical concrete
syntax as depicted in Figure 3.3.

Figure 3.3: Running example model annotated with stereotypes from EJB_Profile.

A stereotype applied to a model element is visualized by an icon decoration, which is still
the case in the current implementation of EMF Profiles. For example, the icon on User,
Address, Post and Comment denotes that these are entities. Some attributes of the enti-
ties are decorated with the icon meaning that they are special attributes. PostsManager,
CommentsManager, TopTenPosts and PostOfTheDay are Session Beans
and PostCommentedNotifier is a Message-Driven Bean .

But, in order to know if the persistence of an entity is managed by a container — an ap-
plication server, also known in JEE as the container — or by the application itself is not clear
from the look at the extended graphical concrete syntax. What kind of specialization is meant
for the annotated attributes? Are they meant to represent primary keys in a relational database
schema or should a database system only insure uniqueness amongst the values of an attribute?
It is unclear. We also do not know, for example, if our session beans are stateless, stateful or
singleton — it all depends on the type assigned in the tagged value of a stereotype application.

In this concrete setting, the extension of the graphical concrete syntax, with icon decorations,
does not help much to quickly grasp what model elements belong to the one or the other specific
specialization. For small models, such as our running example, we might be able to comprehend
it by looking at the structure and naming of model elements, but if we consider models with
more than few dozen elements, this becomes an issue. In order to know it for sure what kind of
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specialization a model element has we would have to look at the tagged values of a stereotype
application. For larger models this would be very cumbersome and time consuming, because
to list the tagging values we would have to select the stereotype application in its Eclipse IDE
View and look for them in the Eclipse IDE Properties View.

The Figure 3.4 depicts the extension of the graphical concrete syntax with advanced decora-
tions that we would like to have. With first glimpses at the model diagram we can much quicker
grasp and comprehend the special information introduced to the model elements through stereo-
type applications. For example, looking at the User element we know it to be an Entity class
and now we also see that its persistence will be managed by the JEE container (CMP in the
upper left corner of the class visualization stands for Container-Managed-Persistence). Also the
background color helps in quickly identifying other classes with the same specialization infor-
mation. It is also clearer that all id attributes of entity classes are primary keys and that
the User.username is a unique attribute . In services package, we know now much
clearer which session beans are stateless, stateful or singleton.

Figure 3.4: Running example model annotated with EJB_Profile showing advanced decorations.

One way to accomplish advanced decoration, as emphasized in this thesis, is through exten-
sion mechanism provided by the EMF Profiles. But, besides our approach there are also other
possibilities to achieve a similar goal, such as:

• A naive approach, where we just add additional attributes to the domain model elements
to hold the technology specific information needed to generate the platform specific code
later on. This is a very bad approach, because it pollutes the model with the technology
specific information. It also does not really provide a more comprehensible look at the
model, rather the opposite. What happens if we want to use the same model to generate
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software artifacts for completely different platform and technology? Adding even more
attributes to the model? This might be the worst approach you can choose to add platform
specific information to the model.
With profiles you could just swap the profile definition tailored for another specific tech-
nology, say, .NET platform. This way the model stays generic and additional information
can be attached as needed.

• Another approach would be adapting the Ecore language by introducing new concepts in
the meta-model of the language. Doing this, we would have adapted the class diagram
modeling language with new concepts and constructs to express the technology specific
information, e.g., the EJB specific data for the Java EE platform. For that we need to
adapt the default Ecore editor implementation in order to be able to create and visualize
these new concepts in the editor. Well, doing it once may be not a big problem. But, what
happens if you at a later point in time decide you want to use your modeling language for
some other specific platform. Suddenly, you are faced with even more adaptations — not
only to the meta-model and the editor but all dependent tooling.

Case two: Annotating model elements with model review information. We have already
talked about the design phase in Chapter 1. We said that it is an integral part of the software
engineering process in which we design our application by modeling its components, their be-
havior and interaction, and also how the user interacts with the application and vice versa. So,
the models we design will certainly undergo some revisions and refinements. It would be very
convenient, for example, to be able to add review information directly to the model elements
in the editor that we use to make our design. That way we could communicate the information
to our fellow designers more precisely — considering it that the review information is attached
directly to a visual representation of a model element.

But, we would like to keep that information in a separate file from our model file. Thus,
making it possible to visualize the review information on the model simply by loading it from a
resource file, do revisions, and hide them by unloading them from the model.

One solution can be found in an EMF profile that can be used with any domain specific lan-
guage (DSL) — in our case created with Ecore and EMF — also known as the meta profile [39].

The Figure 3.5 shows the Model Review meta profile. The ReviewDecision stereo-
type extends the ENamedElement from the Ecore meta-model and that makes it possible to
apply review decision stereotypes to model elements that are subtypes of it. Many model el-
ements are, e.g., packages, classes, attributes, operations, references, enumerations, etc. The
ReviewDecision is an abstract stereotype definition having two tagging values (reviewer
and reviewDate) common to all review decisions and from there we have three concrete
stereotype specializations: Approved, Rework and Declined; where some of them contain
additional tagging values.

Applying Model Review profile to our running example model with the current implementa-
tion of EMF Profiles would produce similar graphical concrete syntax as in Figure 3.3 extending
the syntax only by icon decorations. An example of the graphical concrete syntax extension we
would like to have can be seen in Figure 3.6.
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Figure 3.5: Model Review meta profile.

The icon and the solid line indicate Approved review decision, attached to the
model element, whereas the icon and the dashed line indicate Declined review de-
cision, and the icon and the doted line indicate Rework review decision.

Another useful feature would be to see the detailed information of the review decision at-
tached to a model element in the editor. For example, placing the mouse pointer over the icon
decoration indicating applied stereotype would show a tooltip with the information containing
text combined with actual tagging values of the stereotype application. The Figure 3.7 exempli-
fies such a feature.

Figure 3.6: Running example model annotated with Model Review profile showing advanced
decorations.
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(a) approved

(b) declined (c) rework

Figure 3.7: Model review decision tooltip examples.

3.2 Requirements

We devised following requirements:

1. It must be possible to specify decorations that only change visual properties of the model
element visual shape to which a stereotype is applied. Properties such as background
and foreground colors. And if the visual shape is bordered or constructed as a line (such
as connections between elements), then changing its properties, such as color, width and
style, must be possible.

2. Specification of decorations must be possible to add additional visual adornments to a
model element visualization such as images (icons) and boxes (text-boxes).

3. Specification of arbitrary number of image and box decorations for the same stereotype
must be possible, as well as their arbitrary placement relative to the visual shape of the
model element they decorate.

4. For additional adornments, such as, image and box decorations, it must be possible to
create tooltips that are shown when the user hovers with the mouse pointer over such a
decoration. Tooltip is constructed from a simple text combined with tagging values of the
stereotype application for which the decoration is specified. The actual content of a tooltip
is dynamically created and updated at runtime.

5. It must be possible to specify activation rules for all decoration descriptions of a stereo-
type, or any single decoration description to provide us with control mechanism to make
decisions when and which decoration should be visualized or not. Activation rules are
expressions, which when evaluated return boolean values true or false. They are
constructed from tagging values of simple data types, such as String, Number, Boolean,
and Enumeration, compared against concrete specific values. It should also be possible
to specify activation rules using OCL5 invariant expressions in the context of the applied
stereotype.

5Object Constraint Language. http://www.omg.org/spec/OCL/
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6. As we want to evaluate our solution in a model execution case study, every change/update
of a tagged value at runtime should trigger the reevaluation of the activation rules of
that stereotype application and refresh its visual decorations in the editor where they are
visualized.

7. The graphical concrete syntax extension must be transient. Which means that any change
to the graphical concrete syntax of a modeling language at runtime will not be persisted
when we save the model diagram to a file.

8. The graphical concrete syntax extension solution must be independent from the underlying
technology in which the original graphical concrete syntax of a modeling language was
created, e.g., GMF, Graphiti.

9. The specification of the graphical concrete syntax extension, i.e., decoration description
specifications, must be kept separately from the profile definition and the extended mod-
eling language. That means the decoration descriptions must be persisted in a separate
file.

10. A domain specific language must be devised in order to simplify the process of creation
and description of graphical decorations for applied stereotypes. For this language an
editor must be constructed which supports the syntax of the language and provides features
such as syntax highlighting and content assist.
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CHAPTER 4
Decoration Description Language

One of our requirements, as specified in Chapter 3, is about devising a domain specific language
with the goal to simplify the process of creation and description of graphical decorations for ap-
plied stereotypes. In this chapter we give the most relevant informations on how we approached
this task and also describe few components that were created in the process of specifying the
decoration description language and building the tools to support it.

4.1 Decoration Description Language Engineering

In order to accommodate our requirements on decoration description specifications from Chap-
ter 3 we have decided to build a textual modeling language. This means we would create a
modeling language that has the textual concrete syntax (TCS) — for more information about
modeling language engineering and concrete syntax development, please take a look at Chap-
ter 2. To build our language we have decided to employ the Xtext1 framework. To specify the
metamodel and TCS of our language we have decided to follow the grammar first approach —
Xtext supports language designers with both grammar first as well as metamodel first approach.

The grammar specification in Xtext is similar to that of EBNF 2 but with additional features
to achieve more expressiveness with respect to metamodeling language Ecore [9]. Out from the
grammar specification Xtext generates the metamodel for the language, a model-to-text serial-
izer, a text-to-model parser, and a text-based editor that supports features such as syntax high-
lighting, content assist for code completion, jump to declaration, and reverse-reference lookup
across multiple files [17, 18]. The generated tooling can be further customized, for example to
adjust linking of elements, code formatting, syntax coloring, and static error checking enhanced
by custom validation checks and quick fixes.

Xtext-grammars are comprised of so-called text production rules and in particular three types
of production rules are distinguished [9]:

1Xtext Eclipse project. http://www.eclipse.org/Xtext
2Extended Backus–Naur Form (cf. [43])

47

http://www.eclipse.org/Xtext
http://www.eclipse.org/Xtext


• Type rules in the grammar represent classes in the metamodel, which can be seen as their
counterparts. They are used for defining modeling concepts. Hence, in the generated
metamodel the contained classes will be produced from the type rules. The names of
the generated classes in the metamodel correspond to the names of the type rules in the
grammar. Type rules are constructed of terminals and non-terminals. Terminals represent
the keywords, scope borders, and separation characters of the language syntax. Non-
terminals are differentiated between assignments and cross-references. Assignments are
mapped to attributes or containment references of the corresponding class in the meta-
model, and cross-references are mapped to non-containment references. In other words,
non-terminals of a type rule represent the features of the corresponding metamodel class.
To define multiplicities of assignments in Xtext, the grammar syntax specifies several dif-
ferent assignment operators for setting the multiplicities of features in the metamodel.

• Terminal rules simply return a specific value, i.e., a sequence of characters — similar to
EBNF terminal rules except that Xtext terminal rules may have an assigned return type
such as EString or EBoolean.

• Enum rules are used, as the name suggests, for defining value enumerations. Conse-
quently, when the metamodel is generated the corresponding EEnums are generated out
of them.

Let us now describe how we specified the grammar for the decoration description language.

4.2 Grammar Specification

The complete grammar specification of the decoration description language can be found in Ap-
pendix A, which contains the listing of the complete grammar (cf. Listing A.1) and the railroad
visualization of the grammar syntax in Section A.2. The diagram of the generated metamodel is
depicted in Figure 4.1.

We are now going to tackle few type rules of the language grammar, which we find most
relevant to comprehend how the language is designed and meant to be used. Afterwards, we
also mention few customizations on the generated editor that we have undertaken to achieve
more user-friendliness.

The first 5 lines of the grammar code are instructions to Xtext framework, which specify
the name of our language, and inclusion of other languages and their element types, such as the
Ecore metamodel and the EMF Profiles metamodel (cf. Listing 4.1).

Listing 4.1: Specifying language name and importing metamodels of supported languages.
1 grammar org.modelversioning.emfprofile.decoration.

EMFProfileDecorationLanguage with org.eclipse.xtext.common.Terminals

2

3 generate decorationLanguage "http://www.modelversioning.org/emfprofile/

decoration/EMFProfileDecorationLanguage"

4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

5 import "http://www.modelversioning.org/emfprofile/1.1" as profile
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Figure 4.1: The metamodel of the decoration description language.
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The DecorationModel type rule in Listing 4.2 represents the root element of our language,
containing different expressions that comprise the rule. The line 8 specifies the import resource
statement for the profile definition model, which is mandatory because we must specify where
the specific profile definition model is located. If our decoration description model is at the
same location as the profile definition model then simply specifying the resource name will suf-
fice. The line 9 specifies the optional namespace declaration. If we consider that the profile
definition model contains one root element, say EJB_Profile (it would normally be an in-
stance of an EPackage), which in turn contains stereotype definitions, such as Entity and
SessionBean, specifying the namespace in the decoration description model would mean that
we do not need to specify the complete qualified name to reference a stereotype but simply stat-
ing the name of the stereotype would suffice. Otherwise, not specifying the namespace, e.g., in
the following form profile EJB_Profile, would mean that we would need to provide the
complete qualified name when referencing a stereotype, e.g., EJB_Profile.SessionBean
instead of simply SessionBean. After that, an arbitrary number of decoration descriptions is
possible — actually we created the restriction that only one decoration description per stereotype
instance is allowed, as shown in Listing 4.13.

Listing 4.2: The root element of our language.
7 DecorationModel:

8 "import resource" importURI = STRING

9 (namespace=Namespace)?

10 decorationDescriptions+=DecorationDescription*
11 ;

The DecorationDescription type rule in Listing 4.3 represents the declaration of decoration
descriptions for a stereotype and it begins with the keyword decoration which is followed
by the name of a stereotype — content assist can be activated to get stereotype names for which
no decoration description declaration exists. After the stereotype name is given, the opening of
scope border is specified with the left curly bracket (end of line 18), and closed with right curly
bracket (line 23). Enclosed within scope border definition, the statement at line 20 specifies that
at least one concrete decoration description is expected, and the statement at line 21 specifies an
optional activation specification — activation specifications are explained later on — that will
be evaluated at runtime in order to infer if all decorations of the stereotype should be activated
or not.

Listing 4.3: DecorationDescription type rule.
17 DecorationDescription:

18 ’decoration’ stereotype=[profile::Stereotype|QualifiedName] ’{’

19 (

20 decorations+=(AbstractDecoration)+

21 & (activation=Activation)?

22 )

23 ’}’

24 ;

We defined several concrete decoration description type rules, which are explained in the
following.
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Concrete Decoration Description Type Rules

Let us go straight to the most complex type rule, and introduce the box decoration, because it
combines many features other decoration descriptions have too.

Box Decoration

The BoxDecoration type rule, found in Listing 4.4 begins with the simple box keyword and
encompasses all its features between curly brackets — to note, every decoration description
specification has its scope borders denoted with curly brackets. There are three mandatory fea-
tures of the box decoration, namely the width (line 53), height (line 54), and text (line 52). Width
and height are specified as integer numbers denoting the size of the box decoration in pixels. The
text is specified by the user, and can be constructed of simple user text (String) combined with
tagged values of the corresponding stereotype. Text fragments are combined with + sign be-
tween them. The text is mandatory because the box decoration resembles a text box, but because
it can contain more than just a text, it is simply called a box.

Listing 4.4: BoxDecoration type rule.
47 BoxDecoration :

48 {BoxDecoration}

49 ’box’ ’{’

50 (

51 // mandatory

52 (’text’ ’=’ text=Text)

53 & (’width’ ’=’ width=INT)

54 & (’height’ ’=’ height=INT)

55

56 // optional

57 & (image=BoxImage)?

58 & (’border’ ’{’ border=Border ’}’)?

59 & (’foregroundColor’ ’=’ foregroundColor=Color)?

60 & (’backgroundColor’ ’=’ backgroundColor=Color)?

61 & (direction=Direction)? // default value for node = NORTH_WEST; for

edge = CENTER

62 & (margin=Margin)? // default value -1 on nodes, 50 for connection (

for connection margin is interpreted as percentage)

63 & (’contentDirection’ ’=’ contentDirection=Directions)? // default

is CENTER

64 & (’tooltip’ ’=’ tooltip=Text)?

65 & (activation=Activation)?

66 )

67 ’}’

68 ;

An optional image is possible (line 57). The special type rule for BoxImage is found in
Listing 4.5. The user must provide a valid URI3 to the image resource, and specify the placement
of the image relative to the text. Specification of the image placement inside the box is optional.

3Uniform Resource Identifier.
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The default value is WEST, which means the image is placed on the left side relative to the text.
Other possible values for placement are: NORTH, EAST, and SOUTH.

Listing 4.5: BoxImage type rule.
128 BoxImage :

129 {BoxImage}

130 ’image’ ’{’

131 (

132 (’uri’ ’=’ location_uri=STRING)

133 & (’placement’ ’=’ placement = BoxImageOrientation)? // default

value is WEST

134 )

135 ’}’

136 ;

The box decoration can have an optional border (line 58), based on the Border type rule.
An explanation on how a border visualization can be specified is given further in text, in the
description of the BorderDecoration type rule.

The text inside the box decoration is per default in black color, but we can change the color
of the text by setting the foreground-color (line 59). Different ways on how to specify a concrete
color are described further in text, in the description of the ColorDecoration.

The box decoration is normally placed over the shape that is decorated. The background of
the box decoration is normally transparent. However, we can make its background opaque and
color it by setting the background-color (line 60).

The direction (line 61) of the box is the direction relative to the decorated shape where the
box decoration is going to be placed. If the decorated shape is a node shape, then the default
direction is NORTH_WEST. However, if the decorated shape is an edge shape, the box decoration
is per default centered over the shape, and setting any different value would not change the
position. Decorations on node and edge shapes behave somewhat differently, as we will see
when specifying the margin value.

The margin (line 62) is the space, in himetric4 units, between the edge of a decorated shape
and the decoration. A positive margin places the figure outside the shape in the north-west
direction from the top-left corner of the shape, and a negative margin places the decoration inside
the shape in the south-east direction, also from the top-left corner of the shape. However, this
only applies if the decorated shape is a node shape. For an edge shape the margin is interpreted as
the percentage of the distance from the starting-point to the end-point of the edge. For example,
the margin value of 0 places the decoration at the starting point of the edge; the value of 50 at
the middle distance, between start and end point; and the value of 100 at the end-point of the
edge.

The content-direction (line 63) is the specification of the content placement inside the bound-
aries of the box decoration — just to clarify, text and image represent the content of the box
decoration. Per default the content is centered. All possible values for content direction are:
CENTER, NORTH, SOUTH, WEST, EAST, NORTH_EAST, NORTH_WEST, SOUTH_EAST, and
SOUTH_WEST.

4Himetric is a metric measurement of length, used in computing, which is independent of the display or screen
resolution.
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The tooltip (line 64) for the box decoration can be specified, which is constructed from sim-
ple text and tagged values of the corresponding stereotype application. Indeed, the specification
of the tooltip is the same as the mandatory text specification (line 52). The only difference is
that the tooltip is visualized only when the user hovers with the mouse over the box decoration.

Finally, the last feature of the box decoration that can be set is the activation specification
(line 65). Each individual decoration of a stereotype can have its own activation specification,
which is evaluated at runtime. Normally, the activation specification of the DecorationDescrip-
tion rule supersedes the individual ones only if its evaluation is negative, otherwise the individual
activations are evaluated.

Image Decoration

The ImageDecoration type rule, found in Listing 4.6, is nothing more than a stripped-down
box decoration. It has the mandatory specification of the location of an image resource, and
optional direction and margin specification for the placement of the image decoration relative to
the decorated shape. Also, a tooltip and an activation specification is possible. The same rules
described for box decoration apply also here, thus, no need to repeat what was already said.

Listing 4.6: ImageDecoration type rule.
34 ImageDecoration:

35 {ImageDecoration}

36 ’image’ ’{’

37 (

38 (’uri’ ’=’ location_uri=STRING)

39 & (direction=Direction)? // default value for the node = NORTH_WEST,

and for edge = CENTER

40 & (margin=Margin)? // default value -1 on nodes, 50 for connections

(for connections margin is interpreted as a percentage)

41 & (’tooltip’ ’=’ tooltip=Text)?

42 & (activation=Activation)?

43 )

44 ’}’

45 ;

Color Decoration

The ColorDecoration type rule, found in Listing 4.7, is the decoration description that tries to
change visual color properties of the decorated shape. The background color (line 85) and the
foreground color (line 86) of the decorated shape can be influenced.

The color can be specified based on type rules in Listing 4.8. The user can either specify a
constant color or provide a concrete color specification. Constant colors are an enumeration of
values such as ORANGE, YELLOW, and CYAN (cf. enum Colors specification in Listing A.1,
lines 240 − 244). The concrete color can be specified as an RGB or HexColor. The RGB
specification has the syntax such as RGB(255,255,255), which translates to white color.
The HexColor uses different syntax to specify red, green, and blue color components, expressed
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as the hexadecimal numbers, preceded by the # character. For example, #00FF00 translates to
green color.

Listing 4.7: ColorDecoration type rule.
81 ColorDecoration:

82 {ColorDecoration}

83 ’color’ ’{’

84 (

85 (’background’ ’=’ background=Color)?

86 & (’foreground’ ’=’ foreground=Color)?

87 & (activation=Activation)?

88 )

89 ’}’

90 ;

Listing 4.8: Color specification type rules.
154 Color:

155 {Color}

156 value=ColorConstant | concrete = ConcreteColor

157 ;

158

159 ConcreteColor:

160 RGB | HexColor

161 ;

162

163 RGB:

164 ’RGB’ ’(’ red=INT ’,’ green=INT ’,’ blue=INT ’)’

165 ;

166

167 HexColor:

168 hexCode = HEX_COLOR

169 ;

170

171 ColorConstant:

172 value=Colors

173 ;

Border Decoration

The BorderDecoration type rule, found in Listing 4.9, besides the optional activation specifi-
cation, must have the border specification, described by the Border type rule in Listing 4.10.
Border decoration influences direct visual properties of the decorated shape, which means that
it only can have an effect on node shapes — or shapes that have a border.

The size of the border can be specified as a positive integer number, which corresponds to
the border line thickness, expressed in pixel units. Also, the color and the style of the border
line can be specified. Possible values for the line style are: SOLID, DOTS, DASH, DASHDOT,
and DASHDOTDOT. The default value for the size is 1; for the style is SOLID; and for the color
is BLACK.
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Listing 4.9: BorderDecoration type rule.
70 BorderDecoration:

71 {BorderDecoration}

72 ’border’ ’{’

73 (

74 (border=Border)

75 & (activation=Activation)?

76 )

77 ’}’

78 ;

Listing 4.10: Border type rule.
120 Border:

121 {Border}

122 ( (size=Size)? // default value is 1

123 & (’color’ ’=’ color=Color)? // default value is BLACK

124 & (style=Style)?// default value is SOLID

125 )

126 ;

Connection Decoration

The ConnectionDecoration type rule, found in Listing 4.11, as its name suggests, has an effect
only on edge shapes. In the same way the border line of a node shape can be influenced, so can
the edge shape line be influenced by specifying its size (line 96), style (line 97), and color (line
98). The same default values from the border decoration apply to the connection decoration.

Listing 4.11: ConnectionDecoration type rule.
92 ConnectionDecoration:

93 {ConnectionDecoration}

94 ’connection’ ’{’

95 (

96 (size=Size)?

97 & (style=Style)?

98 & (’color’ ’=’ color=Color)?

99 & (activation=Activation)?

100 )

101 ’}’

102 ;

Activation Specifications

Activation specification is the mean to govern over the set of decorations specified for a stereo-
type. With activation specifications we can control which decorations are visualized and which
are not.

The Listing 4.12 shows the type rules that comprise the activation specification. The user
specifies so-called condition expressions which are evaluated at runtime, and return boolean

55



values true or false — which stand for activated or deactivated. Conditions can also be
logically combined into groups by the logical operators ALL and ANY (cf. CompositeCondition
type rule, lines 192 − 193) — the LogicalOperator is an enum rule found in Listing A.1, lines
230 − 232. ALL means that all condition expression must evaluate to true in order to acti-
vate the corresponding decoration. Similarly, ANY operator requires only one expression that
evaluates to true.

Listing 4.12: Activation specification type rules.
175 Activation:

176 ’active when’ condition=AbstractCondition

177 ;

178

179 AbstractCondition:

180 Condition | CompositeCondition | OclExpression

181 ;

182

183 OclExpression:

184 ’ocl’ ’(’ expression = STRING ’)’

185 ;

186

187 Condition:

188 attribute=[ecore::EAttribute|QualifiedName] operator=ComparisonOperator

value=Type

189 ;

190

191 CompositeCondition:

192 operator=LogicalOperator ’(’ conditions += (AbstractCondition )+ ’)’

193 ;

Condition expression can be specified as an OclExpression (lines 183−185) or as a concrete
Condition (lines 187 − 189). OCL5 expression is simply provided as a String, which will be
evaluated at runtime. The current editor implementation does not provide syntax validation for
OCL expressions. If during the evaluation, the OCL syntax is found wrong, the expression
will be excluded from the evaluation. Therefore, the user must be sure that he has provided
syntactically correct OCL expression.

The concrete Condition, on the other hand, supports the user by syntax validation based on
the type of the tagged value that is part of the condition expression. At the moment, the current
implementation supports only following tagged value types: integer and real numbers, String,
Boolean, and Enumeration type. Also, these tagged values can only be compared against the
concrete user specified values. If these values do not fit to the data type of the tagged value, then
a syntax validation error is displayed in the editor.
The ComparisonOperator is an enum rule (cf. Listing A.1, lines 225 − 228). The comparison
in a condition expression can be based on: equality ==, inequality !=, greater than >, greater or
equal than >=, lower than <, and lower or equal than <=. If the comparison operator makes no
sense, based on the comparing data type, then a syntax validation error is issued. For example,

5Object Constraint Language. http://www.omg.org/spec/OCL/
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all these comparison operators make sense when comparing numbers. However, comparing
Strings, only equal or unequal operators make sense.

Important to note is, that condition expressions are reevaluated each time the change in the
underlying data model occurs.

Customizations

Just to exemplify few editor customizations that are possible through Xtext customization fa-
cilities, we describe some validation checks, specified to validate the concrete syntax of the
decoration description language.

Xtext generates the so-called Validation Provider that can be augmented to introduce custom
language syntax validation checks. Validation checks that can not be adequately specified in the
grammar — e.g., some semantic validations — must be provided as additional custom valida-
tions. The Validation Provider is generated as an Xtend6 class, and the validation checks are
specified as the new methods of that class. Validation methods must be annotated with @Check
annotation and implemented in the Xtend syntax.

The Listing 4.13 shows an implementation of the validation method, which purpose is to
check that there is only one declaration of the decoration descriptions for the same stereotype.
If there are more than one, then a validation error is produced, highlighting the error occurrence
in the editor.

Listing 4.13: Validating that only one decoration description per stereotype instance exists.
1 @Check

2 def checkThatThereIsOnlyOneDecorationDescriptionForSameStereotype(

DecorationDescription decorationDescription) {

3 if ((decorationDescription.eContainer as DecorationModel).

decorationDescriptions.exists[

4 it != decorationDescription && it.stereotype == decorationDescription.

stereotype])

5 error(’’’Decoration description already defined for the «

decorationDescription.stereotype.name»’’’,

6 decorationDescription, DecorationLanguagePackage.Literals.

DECORATION_DESCRIPTION__STEREOTYPE)

7 }

Another example of a custom validation, as shown in Listing 4.14, insures that the user of
the language provides valid values for red, green, and blue color components of the RGB model
element (cf. type rule definition in Listing A.1, lines 163 − 165). The values must be in range
between 0 and 255.

6Xtend, a flexible and expressive dialect of Java, which compiles into readable Java 5 compatible source code.
http://www.eclipse.org/xtend
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Listing 4.14: Validating that RGB color values are in range.
1 @Check

2 def checkRGB(RGB color) {

3 if (color.red < 0 || color.red > 255) {

4 error(’’’Color values must be in range 0 - 255’’’, color,

DecorationLanguagePackage.Literals.RGB__RED)

5 } else if (color.green < 0 || color.green > 255) {

6 error(’’’Color values must be in range 0 - 255’’’, color,

DecorationLanguagePackage.Literals.RGB__GREEN)

7 } else if (color.blue < 0 || color.blue > 255) {

8 error(’’’Color values must be in range 0 - 255’’’, color,

DecorationLanguagePackage.Literals.RGB__BLUE)

9 }

10 }

We have done more customizations on the generated editor than here indicated. Customiza-
tions such as adaptations to the so-called Scope Provider for specifying the linking of model
elements, customizations to the content assist, and also additional validation checks. However,
we will not go here into any detailed explanation of them. The reader may find more information
on how to customize generated editor code on the Xtext documentation site7.

4.3 Summary

Let us note that these decorations will take effect on the visual representations of model elements
only if it is possible to access the right visualization properties of the elements. In other words,
if the visual representations are constructed in the way that deviates a lot from how the creators
of graphical frameworks suggest it, then they might not influence the right visualization parts.
This mostly considers decorations that try to change direct properties of the visual representation
such as background and foreground color, border style and its thickness. Other decorations that
add new adornments, such as box and image decorations, are not affected by this. In any case,
if the decoration can not take the right effect on the visualization, it will fail gracefully.

Another important thing to note is that our decoration descriptions are independent of the un-
derlying technologies that are used for the specification of the graphical concrete syntax and for
building editors that support it. Let us here just say that decoration descriptions are interpreted
by dedicated graphical decorators, constructed for each supported graphical editor technology.
How this really works is explained in the architecture overview of the most important compo-
nents in our solution (cf. Chapter 6).

7Xtext documentation site. http://www.eclipse.org/Xtext/documentation.html
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CHAPTER 5
Decorating Graphical Modeling

Languages at Runtime

In this chapter we describe how decoration descriptions are specified in the concrete syntax of
the decoration description language, and how they are manifested in the graphical model editor
at runtime. We base this description on our running example from Chapter 3.

5.1 Eclipse IDE Tooling Environment around EMF Profiles

Let us first describe the Eclipse IDE tooling environment centered around using EMF Pro-
files. The documentation on how to install EMF Profiles can be found on the project’s website
https://code.google.com/a/eclipselabs.org/p/emf-profiles.

After following the instructions on how to create a new EMF profile project, e.g., to create
an EJB_Profile, the Eclipse presents us with the new project in the Eclipse Project Explorer, and
with the project structure as illustrated in Figure 5.1a.

The file profile.emfprofile_diagram when opened presents us with the diagramming editor
to model our profile — as we already said, we use our running example, so the EJB_Profile
diagram looks like in Figure 3.2.

The file profileapplication.decoration contains our decoration descriptions for the stereo-
types of the EJB_Profile. When opened it presents us with the dedicated textual editor un-
derstanding the textual concrete syntax of the decoration description language, as depicted in
Figure 5.1b. The file is not created empty. It already contains few code fragments such as
mandatory import resource statement pointing to the profile definition model file, and an op-
tional profile namespace specification — in our case importing the root element of the profile
definition model, which is the package EJB_Profile, so that its stereotypes can be directly
referenced in the decoration description declarations without the need to prefix the stereotype
name with the package name.
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(a) EJB_Profile project structure.

(b) The profileapplication.decoration file.

(c) EMF Profile Application View showing ap-
plied EJB_Profile.

(d) Applying stereotype.

(e) EMF Profile Application View showing ap-
plied stereotype.

(f) Properties View showing tagged values of the Entity stereotype.

Figure 5.1: Eclipse IDE tooling environment around EMF Profiles.

When we apply the EJB_Profile to our Simple Blog running example (cf. Figure 3.1), the
profile application can be visualized in the dedicated EMF Profile Application View as depicted
in Figure 5.1c.

Now we are ready to apply the stereotypes from the EJB_Profile to the model elements of
the Simple Blog. For example, we select the User element in the diagram and in the context
menu we click at Apply Stereotype. This opens the pop-up window, as depicted in Figure 5.1d,
with the purpose to select the desired stereotype and apply it to the model element. Selecting the
Entity stereotype and clicking on OK applies the stereotype. The application of the stereotype
is visible in the EMF Profile Application View, as depicted in Figure 5.1e

By selecting the applied stereotype in the EMF Profile Application View we can display its
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tagged values in the Eclipse Properties View, as depicted in Figure 5.1f. The properties view
allows the manipulation of tagged values.

These are the tools that the user gets to work with when extending a modeling language
through the mechanism of EMF Profiles.

5.2 Decoration Description and its Manifestation

To demonstrate how decoration descriptions manifest them self graphically in an editor when
a stereotype is applied to a model element we now present the decoration description specifi-
cations, in the concrete syntax of our decoration description language, that we created for our
running example for EJB_Profile and Model Review profile. Furthermore, we give few concrete
illustrations on how some of these decoration descriptions extend the graphical concrete syntax
of a model element when the corresponding stereotype is applied to it.

Decoration Descriptions of the EJB_Profile

The complete decoration description specifications for the EJB_Profile is found in Listing 5.1.
Based on this specification the Figure 3.4 exemplifies how the graphical concrete syntax of the
Simple Blog running example model is influenced when stereotypes are applied to it.

Listing 5.1: Decoration descriptions for stereotypes of the EJB_Profile.
1 import resource ’profile.emfprofile_diagram’

2

3 profile EJB_Profile

4

5 decoration Entity {

6

7 // All Entity Beans

8 image {

9 uri = "platform:/resource/EJB_Profile/icons/db_table_16.png"

10 margin = 0

11 }

12

13 // BEGIN Container Managed Persistence

14 box {

15 active when managedBy == CONTAINER_MANAGED_PERSISTENCE

16 text = "CMP"

17 foregroundColor = GRAY

18 width = 26

19 height = 13

20 margin = -2

21 tooltip = "Container-Managed-Persistence"

22 }

23 color {

24 active when managedBy == CONTAINER_MANAGED_PERSISTENCE

25 background = #8AC6FB //RGB(245, 245, 245) // White Smoke 245-245-245

26 }

27 // END Container Managed Persistence

28
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29 // BEGIN Application Managed Persistence

30 box {

31 active when managedBy == APPLICATION_MANAGED_PERSISTENCE

32 text = "AMP"

33 foregroundColor = GRAY

34 margin = -2

35 width = 26

36 height = 13

37 tooltip = "Application-Managed-Persistence"

38 }

39 color {

40 active when managedBy == APPLICATION_MANAGED_PERSISTENCE

41 background = #F5FF88 //RGB(250, 235, 215) // Antique White

250-235-215

42 }

43 // END Application Managed Persistence

44 }

45

46 decoration SpecialAttribute {

47

48 // BEGIN Primary Key Decoration

49 image {

50 active when attributeType == PRIMARY_KEY

51 uri="platform:/resource/EJB_Profile/icons/key_16x16.png"

52 }

53 color {

54 active when attributeType == PRIMARY_KEY

55 foreground = GREEN_DARK

56 }

57 // END Primary Key Decoration

58

59 // BEGIN Unique Attribute Decoration

60 image {

61 active when attributeType == UNIQUE

62 uri="platform:/resource/EJB_Profile/icons/unique_16.png"

63 }

64 color {

65 active when attributeType == UNIQUE

66 foreground = #FF6C00

67 }

68 // END Unique Attribute Decoration

69 }

70

71

72 decoration SessionBean {

73

74 // All Session Beans

75 image {

76 uri = "platform:/resource/EJB_Profile/icons/coffee_bean_16.png"

77 margin = 0

78 }

79

80 // BEGIN Singleton Decoration
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81 image {

82 active when sessionBeanType == SINGLETON

83 uri = "platform:/resource/EJB_Profile/icons/Singleton_16.png"

84 direction = NORTH

85 margin = 3

86 }

87 color {

88 active when sessionBeanType == SINGLETON

89 background = #E667AF

90 }

91 // END Singleton Decoration

92

93 // BEGIN Stateless Decoration

94 image {

95 active when sessionBeanType == STATELESS

96 uri = "platform:/resource/EJB_Profile/icons/Stateless_16.png"

97 direction = NORTH

98 margin = 3

99 }

100 color {

101 active when sessionBeanType == STATELESS

102 background = #FF7373

103 }

104 // END Stateless Decoration

105

106 // BEGIN Stateful Decoration

107 image {

108 active when sessionBeanType == STATEFUL

109 uri = "platform:/resource/EJB_Profile/icons/Stateful_16.png"

110 direction = NORTH

111 margin = 3

112 }

113 color {

114 active when sessionBeanType == STATEFUL

115 background = #67E667

116 }

117 // END Stateful Decoration

118

119 }

120

121 decoration MessageDrivenBean {

122 image {

123 uri = "platform:/resource/EJB_Profile/icons/mdb_16.png"

124 margin = 3

125 direction = NORTH

126 tooltip = "Message-Driven Bean"

127 }

128 color {

129 background = #FFB273

130 }

131 }
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For example, if we take the User model class from the running example and apply the
Entity stereotype to it — CONTAINER_MANAGED_PERSISTENCE is set to the managedBy
tagged value — and apply SpecialAttribute stereotype to the id and username at-
tributes — the attributeType tagged value for the first is set to PRIMARY_KEY and for
the latter to UNIQUE — the graphical concrete syntax is extended as illustrated in Figure 5.2.
The decoration descriptions responsible for the graphical changes of the User class are found
in Listing 5.1 on lines 5− 26, and for its id and username attributes on lines 46− 69.

(a) Before stereotype applica-
tions. (b) Applied Stereotypes.

(c) After stereotype applica-
tions.

Figure 5.2: Stereotype applications to the User model class.

Decoration Descriptions of the Model Review Profile

The complete decoration description specifications for the Model Review profile (cf. Figure 3.5)
is found in Listing 5.2. Based on this specification the Figure 3.6 and Figure 3.7 exemplify how
the graphical concrete syntax of the Simple Blog running example model is influenced when
stereotypes are applied to it.

Listing 5.2: Decoration descriptions for stereotyes of the Model Review profile.
1 import resource ’profile.emfprofile_diagram’

2

3 profile ModelReview

4

5 decoration Approved {

6 image {

7 active when ocl ("let o:ecore::EObject = appliedTo in o.oclIsKindOf(

ecore::ETypedElement) or o.oclIsKindOf(ecore::EEnumLiteral)")

8 direction = WEST

9 uri="platform:/resource/ModelReview/icons/yes_16.png"

10 tooltip = "Approved by \"" + reviewer + "\"\nOn " + reviewDate

11 }

12 image {

13 active when ocl ("appliedTo.oclIsKindOf(ecore::EClassifier)")

14 direction = NORTH_EAST

15 uri = "platform:/resource/ModelReview/icons/yes.png"

16 tooltip = "Approved by \"" + reviewer + "\"\nOn " + reviewDate

17 }
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18 border {

19 color = GREEN_DARK

20 size = 2

21 }

22 color {

23 foreground = GREEN_DARK

24 }

25 connection {

26 color=GREEN_DARK

27 size = 2

28 }

29 }

30

31 decoration Declined {

32 image {

33 active when ocl ("let o:ecore::EObject = appliedTo in o.oclIsKindOf(

ecore::ETypedElement) or o.oclIsKindOf(ecore::EEnumLiteral)")

34 direction = WEST

35 uri="platform:/resource/ModelReview/icons/no_16.png"

36 tooltip = reason + "\nReviewed by \"" + reviewer + "\"\nOn " +

reviewDate

37 }

38 image {

39 active when ocl ("appliedTo.oclIsKindOf(ecore::EClassifier)")

40 direction = NORTH_EAST

41 uri="platform:/resource/ModelReview/icons/no.png"

42 tooltip = reason + "\nReviewed by \"" + reviewer + "\"\nOn " +

reviewDate

43 }

44 border {

45 color=RED

46 lineStyle=DASH

47 size = 2

48 }

49 color {

50 foreground = RED

51 }

52 connection {

53 color=RED

54 lineStyle=DASH

55 size = 2

56 }

57 }

58

59 decoration Rework {

60 image {

61 active when ocl ("let o:ecore::EObject = appliedTo in o.oclIsKindOf(

ecore::ETypedElement) or o.oclIsKindOf(ecore::EEnumLiteral)")

62 direction = WEST

63 uri="platform:/resource/ModelReview/icons/wip_16.png"

64 tooltip = reason + "\nAssigned to \"" + assignedTo + "\"\nBy reviewer

\"" + reviewer + "\"\nOn " + reviewDate

65 }

65



66 image {

67 active when ocl ("appliedTo.oclIsKindOf(ecore::EClassifier)")

68 direction = NORTH_EAST

69 uri="platform:/resource/ModelReview/icons/wip.png"

70 tooltip = reason + "\nAssigned to \"" + assignedTo + "\"\nBy reviewer

\"" + reviewer + "\"\nOn " + reviewDate

71 }

72 border {

73 color=ORANGE

74 lineStyle=DOTS

75 size = 2

76 }

77 color {

78 foreground = ORANGE

79 }

80 connection {

81 color=ORANGE

82 lineStyle=DOTS

83 size = 2

84 }

85 }

If we take, for example, the Comment model element and apply Declined stereotype to
it, we would change its appearance as illustrated in Figure 5.3.

(a) Before stereotype applica-
tion. (b) Applied Stereotype.

(c) After stereotype applica-
tion.

Figure 5.3: Stereotype application to the Comment model class.

The responsible decoration description for Declined stereotype is found in Listing 5.2, on
lines 31−57. The first image decoration (lines 32−37) is activated only in the case a stereotype
is applied to a model element which is a feature or enumeration literal — expressed as an OCL
constraint. The second image decoration (lines 38− 43) is activated only if a model element is
of type EClassifier — also expressed as an OCL constraint. The reason for differentiation
is that we wanted to display a smaller image on features such as attributes, references, and
enumeration literals — which is the case with the first — and a bigger image on classes —
which is the case with the latter.

For that reason, we provide another example of applying Approved stereotype to the ref-
erence address between User and Address model classes. The process of visual change is
illustrated in Figure 5.4.

The decoration descriptions responsible for visual change are those bound to the declaration
for Approved stereotype (cf. Listing 5.2, line 5). The image decoration (lines 6 − 11) places
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(a) Before stereotype applica-
tion. (b) Applied Stereotype.

(c) After stereotype applica-
tion.

Figure 5.4: Stereotype application to the address reference between User and Address model
classes.

the image on the connection line, and connection decoration (lines 25−28) specifies the change
in line thickness and line coloring to the dark green color.

As already mentioned in Chapter 3, our running example is based on the default Ecore editor.
Hence, the responsible component, for the interpretation and the manifestation of decoration
descriptions, is the GMF Decorator. If it were the case that the graphical editor was based
on Graphiti, then the Graphiti Decorator would have been the responsible component for the
interpretation.

The overview of the most important components and the architecture of our solution can be
found in Chapter 6.
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CHAPTER 6
Architecture

The previous chapters have provided you with enough information about extending a modeling
language. We have presented the new means on how to extend its graphical concrete syntax. By
now you already know that this is done by specifying the decoration descriptions for stereotypes,
which are used to annotate model elements. We also provided concrete examples of decoration
descriptions and their manifestations.

However, what is still missing is the description of the technical solution. What kind of
components are there, involved in applying stereotypes, and extending and adapting the graphi-
cal concrete syntax of the model elements in a diagram?
Well, this chapter gives exactly that, the description of the most important components that
comprise the solution. In other words, the description of the architecture of the solution.

6.1 Architecture of the Solution

The overview of the architecture is illustrated in Figure 6.1, and is comprised of following com-
ponents:

• EMF Profile is the component that contains the metamodel specification for profile defi-
nition and profile application, together with their generated Java interfaces and implemen-
tation classes. Of course, EMF generates other components such as the Edit component
that contains helper classes for better integration of model data within the Eclipse tool-
ing, and Editor component that contains the implementation of a simple tree-based editor.
However, such components that are not relevant to better grasp the solution were excluded
from the architecture overview.

• Profile Registry component exercises the role of a “register office” for profile definitions.
The Eclipse projects can be tagged by a specific project natures, as it is the case, for
example, with Java projects, or profile definition project. At runtime, Profile Registry
searches for profile definition projects in Eclipse’s plug-ins directory and in the workspace
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EMF ProfileEMF Profile

Profile DecorationProfile Decoration

Profile RegistryProfile Registry

Profile Registry UIProfile Registry UI

Profile DiagramProfile Diagram

Profile Application RegistryProfile Application Registry Profile Application Registry UIProfile Application Registry UI

GMF DecoratorGMF Decorator

Graphiti DecoratorGraphiti Decorator

Decorator

Decorator

Figure 6.1: Architecture of the solution — the overview of the most important components.

directory. For every profile definition found, a record of it is created by the registry. This
makes it very convenient to use the registry to query for profile definitions and to get an
instance of them.

• Profile Registry UI component provides the implementation of a simple tree-view user
interface for displaying profile definitions that the Profile Registry has a record of. It has
the dependency on — in other words, it uses — the Profile Registry to get the information
on profile definitions that are displayed in the view — dependency is indicated by the
dashed line pointing from the Profile Registry UI to the Profile Registry.

• Profile Diagram component is the implementation of the graphical concrete syntax for
profile definition modeling language. It is implemented with GMF and has the concrete
syntax, with which we are already familiar with, illustrated in profile definitions created
for our running example in Chapter 3 (cf. Figure 3.2 and Figure 3.5).

• Profile Decoration component comprises the specification of the decoration description
language and the implementation of the components that realize its tools, e.g., the textual
editor that supports its textual concrete syntax. The Chapter 4 can be consulted to get the
informations on how this language was engineered and realized with Xtext, and Chapter 5
for description of its usage.
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• Profile Application Registry UI component provides, similarly to the Profile Registry
UI, the implementation of the tree-view user interface (cf. Figure 5.1e). However, in this
case the view displays profile definitions that are applied at runtime to the model instance
currently opened in an active editor. In other words, it displays profile applications and
stereotype applications that the user applied to the model and its model elements. Fur-
thermore, this component provides the implementation of the Eclipse Properties View for
displaying and manipulating tagged values of applied stereotypes. The component de-
pends on the Profile Application Registry which is explained in the next section.

The components Profile Application Registry, GMF Decorator, and Graphiti Decorator are
explained in more detail in following sections.

6.2 Profile Application Registry

As in the case of the Profile Registry, this component also acts as a “register office”. It keeps
the record of the profile applications that a user has created or loaded for the models that are
currently opened in corresponding editors in Eclipse. The excerpt of the Profile Application
Registry metamodel is depicted in Figure 6.2. The classes from the metamodel represent the
application programming interface (API) of the Profile Application Registry, which is visible
outside the component (the plug-in in Eclipse terms) and can be used by client programs to
apply a profile to a model and to apply the stereotypes of the profile definition to the elements
of the model. An example of the client that uses the API is the Profile Application Registry UI
component.

How a client uses the API to create a profile application and to apply stereotypes to model
elements can be explained as the process described in the following steps:

• Step 1: Provided that the client has specified on which components it depends, the client
gets hold of the singleton instance of the ProfileApplicationRegistry class.

• Step 2: Using the ProfileApplicationRegistry instance, the client then re-
quests an instance of the ProfileApplicationManager by calling the method
getProfileApplicationManager(). The client must provide an instance of the
ResourceSet and the Editor ID as its parameters. Both can be obtained from the editor
in which the model is opened. The Editor ID is used to easily identify on which technol-
ogy is the editor implementation based on, e.g., GMF, Graphiti, or some other technology.
The ProfileApplicationManager object is bound to the model instance and exists
as long the model is in use by the user.

• Step 3: The ProfileApplicationManager is used to create new profile applica-
tions or to load existing ones for the model. In any case, the profile application manager
returns an instance of the ProfileApplicationWrapper for each applied profile or
loaded profile application. The ProfileApplicationWrapper essentially wraps an
instance of the ProfileApplication to provide additional functionalities for conve-
nient usage that go beyond offered functionality of the ProfileApplication object.
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Figure 6.2: Excerpt of the Profile Application Registry metamodel.

• Step 4: The ProfileApplicationWrapper is then used to apply stereotypes to
model elements, set tagged values, remove stereotype applications, and so forth. Further-
more, the user can inquire the status of the model resource, e.g., to see if it is modified,
and also save the current state of the profile application to the file.

• Step 5: When the user is finished working with the model, for example, the latest moment
would be when the user closes the model editor, the client program should dispose the
ProfileApplicationManager in order to release all resources that it holds, hence
to perform a cleanup.

These steps describe how a client can extend a model by applying profiles and stereotypes.
However, the explanation on how and when the graphical decoration of model elements occurs,
is still missing.

When we look at the architecture overview in Figure 6.1, we see that the Profile Application
Registry uses the Profile Decoration component for some purpose, and that it also specifies the
required interface Decorator. The Decorator interface is, in Eclipse terms, the specification
of an extension point, which is used to make a component open for extensibility in terms of
specifying the required interface that other plug-ins can provide an implementation for — in
jargon of the UML Component Diagram the implementation of required interface is know as
the provided interface. Moreover, there can be many provided interfaces for a required one,
and they can be used interchangeably. GMF Decorator and Graphiti Decorator com-
ponents contribute the implementation for the Decorator interface. The concrete Java interface
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that decorator components must implement is the EMFProfileApplicationDecorator
interface (cf. Figure 6.2).

As it is obvious by now, the Profile Application Registry is the component that manages
not only the profile applications for models but also the graphical decorations of their model
elements, which are based on decoration description specifications. How does the component
manage graphical decorations is described in the following:

• At the startup of the Eclipse platform, the Profile Application Registry component re-
quests from the platform all registered components that provide the implementation of
the Decorator interface. After that, the Profile Application Registry inquires the decorator
components for Editor IDs that they support. Out of that information an internal mapping
is created to easily obtain the instance of the decorator for a specific Editor ID.

• When a client program request an instance of the ProfileApplicationManager,
as previously described in Step 2, the client must also provide an Editor ID. The Profile
Application Registry uses that Editor ID to bind an adequate instance of a decorator, which
is used consequently to add or remove graphical decorations from model elements.

• At the moment the client sets on to apply a profile definition or to load an already exist-
ing profile application, which corresponds to previously described Step 3, the decoration
descriptions model resource is looked up at the same location the profile definition model
resource is located. When found, the component then uses the parser and the validator of
the decoration description language, found in the Profile Decoration component, to get an
instance of the decoration descriptions model.

• Now, for every stereotype application its decoration descriptions are collected, and in the
next step, their activation conditions are evaluated in order to determine if the correspond-
ing graphical decorations should be visualized or not.

• The GraphicalDecorationDescriptions (cf. Figure 6.2) are created for each
stereotype application containing all relevant informations, previously collected and cal-
culated, to be relayed to the concrete decorator component that can handle graphical dec-
orations in the editor of the model.

Concrete decorator components provide the implementation to interpret the informations
provided in the GraphicalDecorationDescription objects, and also use the facilities
of their supported graphical frameworks to influence the graphical concrete syntax of model
elements in the editor.

Furthermore, the Profile Application Registry observes the model data for changes such as
that of a profile application model or a decoration descriptions model. For every change event
that is observed, adequate measures are taken in order to update graphical decorations of model
elements in the editor. This normally leads to reevaluating the activation conditions of decoration
descriptions to reflect the changes caused by the model modification.

This allows, for example, for instant feedback of decoration descriptions manifestation in
the editor. The user only needs to apply a profile and stereotypes to the model, and then can start
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Profile DecorationProfile Decoration
Profile Application RegistryProfile Application Registry

GMF DecoratorGMF Decorator

Graphiti DecoratorGraphiti Decorator

Parser

Validator

ConditionEvaluator

DecorationStatus

ProfileApplicationNotificationObserver

DecorationNotificationDispatcher

DecorationsDescriptionsChangeListener

GraphicalDecoration

GraphicalDecorationDescription

DecorationDescriptionsReader

DecorationLanguageResourceChangeListener

GMFProfileDecoratorProvider

ColorDecorator

BorderDecorator

DecoratorsProvider

ColorDecorator

BorderDecorator

Decorator

Figure 6.3: Excerpt of the classes involved in processing decoration descriptions.

to specify decoration descriptions for the applied stereotypes — or modify existing ones until
the desired graphical decoration is achieved. Every time the decoration descriptions model is
saved in its editor, that triggers a notification to the observer, which then relays the notification
to the responsible handler class.

To portray some of aforementioned features, Figure 6.3 depicts an excerpt of the implemen-
tation classes involved in processing decoration descriptions and relaying the relevant informa-
tion, for graphical decoration of model elements, to responsible graphical decorators.

6.3 GMF Decorator

The GMF Runtime framework offers different kind of diagram extension services such as the
Layout Service, the Palette Service, and — most important to us — the Decoration Service.

The Decoration Service is designed to provide a simple way of annotating an existing shape,
where the provider of the decoration does not even need to know the implementation of that
specific shape. This is true if we just want to adorn the shape with some other graphical elements
such as an icon for example. However, if we want to change some visual properties of the
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Figure 6.4: Excerpt of the GMF Notation metamodel.

GMF RuntimeGMF Runtime

GMF-based EditorGMF-based Editor
GMF DecoratorGMF Decorator

DecoratorService

GMFProfileDecoratorProvider

IDecoratorProvider

Figure 6.5: GMF DecorationService and IDecoratorProvider contribution.

shape, then we have to go deeper and take appropriate steps, which are shape-implementation
dependent. Luckily, the Notation Metamodel, as illustrated in Figure 6.4, is used to describe
graphical figures, and it only has few different shape definitions, namely, the Node, the Edge, and
the Diagram. The Diagram contains nodes and edges, which correspond to, e.g. a rectangular
shapes denoting model elements and line shapes denoting relations between model elements.

As previously said, the GMF Runtime framework offers the Decoration Service, which uti-
lizes the Eclipse extension point and extension contribution mechanism. Thus, the GMF runtime
specifies the required interface IDecoratorProvider and our GMF Decorator provides an
implementation for it, as illustrated in Figure 6.5. This is exactly what enabled us to provide a
general solution to extending the graphical concrete syntax (GCS) of modeling languages, which
GCS is based on GMF framework.
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6.4 Graphiti Decorator

The Graphiti framework, sadly, does not provide a decoration service as GMF does. Thus,
no general solution to the extension of the graphical concrete syntax based on Graphiti frame-
work is possible. Each newly created editor, based on Graphiti, must be modified. We tried
to keep this modification minimal as possible. The dependency of components is illustrated in
Figure 6.6. The editor must specify the dependency to the Graphiti Decorator and use its API
— the DecoratorsProvider class — to register every graphical element that is directly
related to a model element, so that at later time when a stereotype is applied to a model ele-
ment the Graphiti Decorator can decorate its graphical representation according to decoration
descriptions. This approach was designed to mimic the approach realized in the GMF Decora-
tion Service.

Graphiti RuntimeGraphiti Runtime

Graphiti-based EditorGraphiti-based Editor

Graphiti DecoratorGraphiti Decorator

DecoratorsProvider

ColorDecorator

BorderDecorator

Figure 6.6: The Graphiti-based editor dependencies for supporting GCS extension.

Graphiti framework supports the lightweight extension of the graphical concrete syntax by
providing following decoration facilities:

• Border Decorator enables adding a border to the visualization of a shape. The border
can be styled by color, line-style and line-thickness.

• Color Decorator can be used to modify foreground and background color of a shape.

• Image Decorator adds an image to the visualization of a shape.

• Text Decorator can be used to add a text to the visualization of a shape.

In order to collect the decorators of the visual shape of a model element, the Graphiti runtime
places the call to the IToolBehaviorProvider.getDecorators(PictogramElement)
method of the class implementing it. Normally, every Graphiti-based editor must provide an
implementation of the IToolBehaviorProvider interface. Consequently, this is exactly
the place where that call must be redirected to the DecoratorsProvider class, from the
Graphiti Decorator component, in order to enable the graphical concrete syntax extension in the
editor.
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CHAPTER 7
Evaluation

In this chapter we evaluate how well our solution is applicable to the graphical concrete syntax
extension of a modeling language. The evaluation is based on the case study of visualizing
model execution. Thus, for the purpose of the evaluation, we create the language for modeling
Petri nets [41], and provide two graphical concrete syntax specifications, based on both GMF
and the Graphiti framework respectively. Then, we provide the Petri Net Execution Profile for
extending Petri net model elements with the information on the model execution state, and build
a simple Execution Simulator that uses the EMF Profiles API to apply the stereotypes from the
execution profile, in order to simulate the execution. Finally, we run the execution simulation
on a Petri Net model visualized first in its GMF-based GCS and then run it again for the same
model visualized in its Graphiti-based GCS. For each of them, the evaluation of the solution is
discussed.

7.1 Case Study

The purpose of the case study is to evaluate if the requirements, specified in Chapter 3, are
satisfied by our solution for the extension of modeling languages — the special focus here is
on the extension of the graphical concrete syntax of a modeling language. In Chapter 1, we
said that we will base the evaluation of our solution on a representative case study, and that
we are particularly interested to assess how the runtime information of executable models can
be visualized appropriately and dynamically updated during the execution with EMF Profiles.
Hence, the following research questions can be deduced:

• Is it possible, at runtime, to place decorations on model elements so that they reflect the
information on the execution of the model? Or in a more granular form:

– Can we change the color of an element, highlight it somehow, in order to grasp where
the execution is actually occurring?
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– Can we add additional visual elements, that are part of the execution visualization
and not of the modeling language itself?

– Can we extend the graphical concrete syntax of a model element so that concrete
values from the profile can also be visualized?

• Another very important question: Can these decorations be dynamically changed and
updated based on the runtime information of the execution model?

We will ascertain the answers to these research questions, but first let us introduce our case
study modeling language.

Petri Net Modeling Language

Petri nets are a graphical and mathematical modeling tool that can be applied to different mod-
eling domains [41]. They are well suited for describing and studying the information systems
that are characterized, for example, as being concurrent, asynchronous, distributed, parallel, and
nondeterministic [41]. The modeling concepts of the Petri net language are illustrated in Fig-
ure 7.1. A Petri net consists of places, transitions, and arcs. Arcs are used to connect the places
with transitions, and vice versa. The connections between places, and between transitions are
not possible. The places from which an arc is pointing to a transition are called the input places
of the transition, and the places to which an arc is pointing from a transition are called the out-
put places of the transition. Furthermore, places in the Petri net diagram can hold any discrete
number of tokens. Their distribution over the places represent the configuration of the net and it
is called a marking of the net.

Place Transition Arc Token

Figure 7.1: Petri net modeling concepts.

The transitions of a Petri net may fire if they are enabled. This firing act, which is atomic1 in
its nature, may occur if all input places of a transition contain sufficient tokens, hence enabling
the transition. If the firing of a transition occurs, it consumes the required tokens from the
input places and creates tokens in the output places. The execution policy of the Petri net is
nondeterministic, which means that if many transitions are enabled at the same time, any of them
may fire. This makes Petri nets very useful for modeling the concurrent and parallel behavior of
distributed systems.

Our Petri net model instance, which we use to evaluate our solution, describes exactly such
a scenario — in parallel computing known as the fork-join model — where an execution process

1Atomic refers to a single non-interruptible step in the execution process.
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branches off (forks) in parallel and concurrent executions that are merged (joined) at a subse-
quent point, whereafter the process resumes sequential execution. The scenario is illustrated
in Figure 7.5. The model instance also describes a concurrent execution scenario where two
threads of execution are competing for access to mutually shared data. The access to the mu-
tually shared date should be exclusive to only one thread at the same point in time — this is
denoted as the critical section place in the model. To ensure mutual exclusion a locking mecha-
nism is employed that allows entrance to only one thread and blocks all other competing threads
entering the critical section, as long it is occupied.

Figure 7.2: Petri net metamodel.

The metamodel of our case study Petri net modeling language is depicted in Figure 7.2. To
note is that this Petri net language specification does not foresee the marking of the net. With
this language we can model a Petri net, but we can not specify its configuration because there is
no language concept for tokens. Tokens are introduced as the extension of the language through
profiling — of course, by using EMF Profiles.

Execution Profile and the Model Execution Simulator

The execution profile for the Petri net modeling language is depicted in Figure 7.3. From the
profile specification we can see that the Place modeling element can be extended with the
Token stereotype, when applied to it. The Token stereotype contains the amount tagged
value for specifying discrete number of tokens residing in a place. Likewise, we see that mod-
eling elements Transition and Arc can have the Activation stereotype applied to them.
The Activation stereotype contains activated tagged value (of Boolean type) that can
be set to true or false.

When stereotypes are applied to model elements, the graphical concrete syntax of the model
elements should be extended based on the decoration descriptions specification listed in List-
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Figure 7.3: Execution profile for our Petri net modeling language.

ing 7.1. For example, when the Token stereotype is applied to a place, it should be highlighted
by changing its foreground color to dark green, and the token image should be placed in the
middle of it with the current token amount displayed above the token image. Also, when the
Activation stereotype is applied to a transition or an arc, they should be highlighted in red
or green color, based on the current value of the activated tagged value.

Listing 7.1: Decoration descriptions for stereotypes of the Petri net execution profile.
1 import resource ’profile.emfprofile_diagram’

2

3 profile PetriNet_ForkJoinProfile

4

5 decoration Token {

6 box {

7 image {

8 uri = "platform:/resource/ForkJoin_PetriNet_ExecutionProfile/icons/

token.png"

9 placement = SOUTH

10 }

11 direction = CENTER

12 width = 20

13 height = 30

14 text = amount

15 foregroundColor = BLUE

16 tooltip = amount + " Token(s)"

17 }

18

19 color {

20 foreground = GREEN_DARK

21 active when ALL // just to demonstrate the compsite condition type

rule

22 (

23 amount > 0

24 amount < 4

25 )

26 }

27 color {

28 active when amount == 0

29 background = ORANGE
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30 }

31 }

32

33 decoration Activation {

34 color {

35 active when activated == true

36 background = GREEN_DARK

37 foreground=GREEN_DARK

38 }

39 color {

40 active when activated == false

41 foreground=RED

42 background = RED

43 }

44

45 connection {

46 active when activated == true

47 color = GREEN_DARK

48 }

49 connection {

50 active when activated == false

51 color = RED

52 }

53 }

As previously said, we have created a simple model execution simulator to evaluate the ap-
plicability of our solution to the visualization of model execution. The simulator was designed
to emulate a model execution engine, however, it is only applicable to the model instance illus-
trated in Figure 7.5. The simulator, of course, uses the EMF Profiles API in order to apply the
execution profile to the model, and likewise to extend model elements by applying stereotypes
from the profile.

Figure 7.4: Model Execution Simulator user interface.

The simulator is implemented as an Eclipse plug-in with the user interface contribution
depicted in Figure 7.4. The Start/Stop Simulation button applies or removes the application of
the execution profile to or from the model instance currently opened in the graphical editor. The
Next Step button, when clicked repeatedly, plays through the execution steps of the scenario that

81



is specific to our model instance.

7.2 Evaluation of the Extension of the Graphical Concrete Syntax

based on GMF

In order to create the GMF-based graphical concrete syntax for our Petri net modeling language
(cf. Petri net metamodel in Figure 7.2) we decided to employ the EuGENia2 project, as already
mentioned in Chapter 2. In short, EuGENia is very useful to jump-start the creation of the GCS
for a modeling language. The developer annotates the metamodel elements with concrete syntax
descriptions in form of textual annotations, as we can see it in the Listing 7.2. The listing shows
the metamodel in the textual notation of the Emfatic3 language. From the textual specification,
by the means of model transformations, EuGENia generates GMF models that otherwise would
have to be manually specified by the developer. After that, GMF code-generation facilities are
used to generate the implementation of the editor supporting the graphical concrete syntax of
our Petri net modeling language. Figure 7.5 exemplifies the GMF-based GCS.

Listing 7.2: Petri net metamodel with graphical concrete syntax specifications in Emfatic textual
notation.
1 @namespace(uri="http://petrinet", prefix="PetriNet")

2 package petrinet;

3

4 @gmf.diagram(foo="bar")

5 class PetriNet {

6 val Element[*] elements;

7 }

8

9 abstract class Element {

10 attr String name;

11 }

12

13 abstract class Node extends Element {

14 }

15

16 @gmf.node(label.icon="false", label="name", figure="rectangle", color="

0,0,0", label.placement="external",size="40,15")

17 class Transition extends Node {

18 }

19

20 @gmf.node(label = "name", label.icon="false", figure = "ellipse", border.

width="2", border.style="solid",label.placement="external",size="40,40

", color="20,20,20")

21 class Place extends Node {

22 }

23

24 abstract class Arc extends Element {

25 }

2EuGENia. http://www.eclipse.org/epsilon/doc/eugenia/
3Emfatic - A textual syntax for EMF Ecore (meta-)models. http://www.eclipse.org/emfatic/
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26

27 @gmf.link(target.decoration="arrow", source="from", target="to", incoming=

"false", label.icon="false",label = "name", target.decoration="

filledclosedarrow", color="20,20,20")

28 class OutputArc extends Arc {

29 ref Transition[1] from;

30 ref Place[1] to;

31 }

32

33 @gmf.link(target.decoration="arrow", source="from", target="to",incoming="

false", label.icon="false", label = "name", target.decoration="

filledclosedarrow")

34 class InputArc extends Arc {

35 ref Place[1] from;

36 ref Transition[1] to;

37 }

Figure 7.5: Fork-Join model in Petri net language.
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Performing Execution Simulation

In the following, we are going to illustrate the changes in the GMF-based graphical concrete
syntax of our Petri net language that come into effect when model execution simulation pro-
gresses. We are not going to illustrate all the execution steps, since this would take to much
space, but still enough of them so that the execution steps can be comprehended.

The visual changes in the editor can be reasoned as following: When a transition and arcs
that connect it with its input and output places are colored in red, it means that the transition is
enabled and that it might fire in the subsequent step; Otherwise, if they are colored in green, it
means that the transition has fired, which as a consequence consumes tokens from input places
and creates tokens in output places, which is visible in the subsequent execution step.

The illustrations that show few execution steps of the simulation begin with Figure 7.6 and
end with Figure 7.12.

(a) Diagram. (b) Applied Stereotypes.

Figure 7.6: Execution simulation on GMF-based GCS – Step 1.
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(a) Diagram. (b) Applied Stereotypes.

Figure 7.7: Execution simulation on GMF-based GCS – Step 2.

(a) Diagram. (b) Applied Stereotypes.

Figure 7.8: Execution simulation on GMF-based GCS – Step 3.
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(a) Diagram. (b) Applied Stereotypes.

Figure 7.9: Execution simulation on GMF-based GCS – Step 4.

(a) Diagram. (b) Applied Stereotypes.

Figure 7.10: Execution simulation on GMF-based GCS – Step 5.
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(a) Diagram. (b) Applied Stereotypes.

Figure 7.11: Execution simulation on GMF-based GCS – Step 6.

(a) Diagram. (b) Applied Stereotypes.

Figure 7.12: Execution simulation on GMF-based GCS – Step 7.
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7.3 Discussion of the GMF-based GCS Extension

From the illustrations of the model execution simulation (cf. Figure 7.6 to Figure 7.12) we
can say that all our research questions can be answered with yes, and that all our requirements,
defined in Chapter 3, that we set to accomplish, were indeed fully satisfied. The Graphical
Modeling Framework (GMF) has been well designed to support GCS extensibility.
The only thing that we might criticize is the lack of or insufficient documentation on how to use
the framework — this we experienced while we were implementing the solution for our problem
domain.

7.4 Evaluation of the Extension of the Graphical Concrete Syntax

based on the Graphiti Framework

Although, creating the graphical concrete syntax for a modeling language in Graphiti is API-
centric, we have decided — as already mentioned in Chapter 2 — to use the mapping-centric
approach to get an editor implementation that uses the Graphiti runtime. Therefore, we have
decided to employ Spray4 project for the specification of the Graphiti-based graphical concrete
syntax for our Petri net modeling language. Spray project aims to provide few textual DSLs
for the description of GCS, and the mapping between model elements and their visualization
representations. Based on GSC description and mapping specification, Spray generates the boil-
erplate code for realizing the implementation against the Graphiti framework [1].

GCS description is known as the Shape model, and the mapping specification is known as
the Spray model. The Shape model for our Petri net modeling language is listed in Listing 7.3,
and respective Spray model is listed in Listing 7.4

Listing 7.3: Definition of graphical figures for Petri net language using Spray’s Shapes language.
1 shape PlaceShape {

2 stretching (horizontal=false, vertical=false) proportional=true

3 ellipse {

4 position (x=0, y=0)

5 size (width=40, height=40)

6 style (line-color=RGB (20, 20, 20) line-width=1)

7 }

8 }

9

10 shape TransitionShape {

11 stretching (horizontal=false, vertical=false) proportional=true

12 rectangle {

13 position (x=0, y=20)

14 size (width=40, height=15)

15 style (background-color=black)

16 }

17 }

18

19 connection ArrowConnectionShape {

4Spray project. http://eclipselabs.org/p/spray
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20 style (line-width=1)

21 placing {

22 position (offset=1.0)

23 polygon {

24 point (x=-15, y=-10)

25 point (x=0, y=0)

26 point (x=-15, y=10)

27 style (background-color=black)

28 }

29 }

30 placing {

31 position (offset=0.1, radius=10, angle=0)

32 text {

33 position (x=0, y=0)

34 size (width=40, height=14)

35 id = sourceText

36 }

37 }

38 placing {

39 position (offset=0.5, radius=10, angle=180)

40 text {

41 position (x=0, y=0)

42 size (width=40, height=14)

43 id = arcName

44 }

45 }

46 placing {

47 position (offset=0.9, radius=10, angle=180)

48 text {

49 position (x=0, y=0)

50 size (width=40, height=14)

51 id = targetText

52 }

53 }

54 }

Listing 7.4: Mapping definition between Petri net metamodel elements and their graphical rep-
resentations using Spray language.
1 import petrinet.*
2

3 diagram Mypetrinet for PetriNet style PetrinetDefaultStyle

4

5 class Place {

6 shape PlaceShape {

7 }

8 behavior {

9 create into elements palette "Elements" askFor name;

10 }

11 }

12

13 class Transition {

14 shape TransitionShape {
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15 }

16 behavior {

17 create into elements palette "Elements" askFor name;

18 }

19 }

20

21 class OutputArc {

22 connection ArrowConnectionShape {

23 name into arcName

24 }

25 {

26 from ^from;

27 to ^to;

28 }

29 behavior {

30 create into elements palette "Arcs";

31 }

32 }

33

34 class InputArc {

35 connection ArrowConnectionShape {

36 name into arcName

37 }

38 {

39 from ^from;

40 to ^to;

41 }

42 behavior {

43 create into elements palette "Arcs" ;

44 }

45 }

Performing Execution Simulation

The following illustrations (cf. Figure 7.13 to Figure 7.18) show the manifestations of the
Graphiti-based graphical concrete syntax changes, which occur when we run through few steps
of our execution simulator on a model instance. The model instance resembles the model in-
stance in Figure 7.5 in every respect. The only difference is in the graphical concrete syntax,
which in this case is Graphiti-based.

The visual changes in the editor are to be reasoned in the same way as previously described
in the model execution simulation performed for the model instance opened in the GMF editor.
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(a) Diagram. (b) Applied Stereotypes.

Figure 7.13: Execution simulation on Graphiti-based GCS – Step 1.

(a) Diagram. (b) Applied Stereotypes.

Figure 7.14: Execution simulation on Graphiti-based GCS – Step 2.
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(a) Diagram. (b) Applied Stereotypes.

Figure 7.15: Execution simulation on Graphiti-based GCS – Step 3.

(a) Diagram. (b) Applied Stereotypes.

Figure 7.16: Execution simulation on Graphiti-based GCS – Step 4.
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(a) Diagram. (b) Applied Stereotypes.

Figure 7.17: Execution simulation on Graphiti-based GCS – Step 5.

(a) Diagram. (b) Applied Stereotypes.

Figure 7.18: Execution simulation on Graphiti-based GCS – Step 6.
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7.5 Discussion of the Graphiti-based GCS Extension

We see from the illustrations of the execution steps (cf. Figure 7.13 to Figure 7.18) that, for
example, token images are missing — only the token amount is visible on a place model element.
The reason for missing token images is due to a shortcoming of the Graphiti framework, which
will be explained shortly.

The color decorations on the connection lines do not have the desired effect. We see that the
connection lines do not change their color, based on ConnectionDecoration values. However,
the text color of connection names do change their color. It seems that decorating connection
lines is not thoroughly implemented in the Graphiti framework.

Furthermore, we see that the color decorations on the place and transition model elements
do not show the desired effect. Indeed, they are not coloring the correct figure. This is, in
fact, due to how Spray generates figure objects for shape definitions. Instead of generating the
code against the Graphiti runtime that instantiates a figure object resembling the figure form,
Spray generates pictures of the shapes and draws them in a containing graphical node element
at runtime. That is why, for example, the background color on a transition model element looks
like it is leaking from behind — the visual properties of the container figure are changed. This
is an excellent example of the problem we discussed in the summary of Chapter 4.

Based on our experience, we came to the following conclusion: Extending the graphical
concrete syntax of any modeling language, implemented with Graphiti, through a general im-
plementation of a decorator, as we intended to provide, has proven to be impossible with the
current implementation of the Graphiti framework. The reason is mainly in few shortcomings
of the framework we encountered as we started to implement our Graphiti decorator.

The first problem is that the Graphiti framework does not provide the necessary means of
extending the original editor implementation through additional plug-ins. Normally, this is done
in Eclipse platform through so-called extension points, where one plug-in defines them — ana-
logically this would be equivalent to defining an interface in Java without an implementation
— and another plug-ins may provide an implementation for them. The original plug-in then
gets the hold of an extension point implementation through the means that the Eclipse platform
provides. This is obviously one very convenient feature, and as a matter of fact, this is exactly
how GMF addresses the decoration of graphical elements, but as already said, Graphiti does not
provide such a feature.

Despite of that shortcoming, we went on and tried to see what would be the minimal code
extension of the original editor implementation to use our Graphiti decorator. We found that,
although with only few additional code lines and few small changes to the original implemen-
tation, decorating graphical elements did not function as intended or expected. One problem,
for example, was that as soon as we changed some graphical properties of an element they were
immediately overwritten with original values by the Graphiti runtime. We found that one way
to prevent this from happing was by deactivating the so-called Update Adapter of a diagram
behavior. At least that way it was possible for us to see the extension of the graphical concrete
syntax in the graphical editor.

Another shortcoming of the framework is in supporting image decorations. Graphiti uses
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so-called Image Providers with which all images that one wants to display in an editor needs
to be registered at the editor initialization time and must physically reside in the plug-in where
image provider is implemented. An editor gets one instance of an image provider through the
means of an extension point that the Graphiti framework defines, however, dynamically adding
additional set of images to the image provider of the editor at runtime, from other plug-ins, is
not possible. The fact is that this is exactly the way how profiles contribute their additional set
of images, when they are applied to a modeling language. Hence, the way how Graphiti handles
images is just not compatible with a lightweight language extension mechanism introduced by
EMF Profiles.

Consequently, this means that, at the moment, the only feasible way to extend the concrete
graphical syntax, implemented with Graphiti framework, is by adapting the original code imple-
mentation to reflect the new information added to a modeling language, hence, the heavyweight
language extension approach.

We would like to note that Graphiti is still in its incubation phase, as an Eclipse project,
and new features and improvements are to be expected with future releases. The version we
experimented with is 0.10.2.
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CHAPTER 8
Conclusion and Future Work

8.1 Conclusion

This work describes an effort to address the extension of modeling languages, in particular the
extension of their graphical concrete syntax (GCS).

We based our work on employing the following technologies:

• Eclipse Modeling Framework (EMF): is the framework that supports the definition and
creation of new domain specific modeling languages (DSMLs).

• Graphical Modeling Framework (GMF) and Graphiti: are frameworks designed to support
the specification of the graphical concrete syntax for a modeling language (created with
EMF), and the creation of an editor implementation that supports it.

• EMF Profiles: is a lightweight language extension approach for extending EMF-based
DSLs by a mechanism known as profiling.

Due to the fact that, until now, EMF Profiles supported model engineers only by providing
an extension mechanism for the abstract syntax, and did not offer any means, except for simple
icons, to extend the graphical concrete syntax, we took upon the task to broaden the realm of the
EMF Profiles extension mechanism to include this missing part.

This was done by executing the following tasks:

• Specification and development of the decoration description language, which is a DSL
with the textual concrete syntax designed for the description of graphical decorations that
are visualized when the corresponding stereotype is applied to a model element. These
decoration descriptions are designed to be independent of any specific underlying tech-
nologies that are used for the specification of the graphical concrete syntax and for build-
ing editors that support it. Furthermore, the language supports the specification of condi-
tions that govern the activation state of the corresponding decorations.
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• Adapting the EMF Profiles architecture to support the pluggable contributions to the
framework by the provision of the dedicated decorators for specific graphical editor tech-
nologies. This means that developers only need to provide the contribution implementa-
tion for our Decorator extension point in order to enable the use of the EMF Profiles ex-
tension mechanism for modeling languages with GCS created in another yet unsupported
graphical editor technology.

• In order to support dynamic (more reactive behavior) of the decoration descriptions in the
editor, we had to revamp the EMF Profiles core implementation to support event-driven
notifications that are fired based on model data changes.

• Implementation of the dedicated decorators for the GMF-based and Graphiti-based graph-
ical modeling editors.

We evaluated the result of our work with a case study. The case study was designed to test the
support of the dynamic behavior, and, of course, the extension of the GCS for our targeted graph-
ical editor technologies, namely the Graphical Modeling Framework and the Graphiti frame-
work. The case study was performed in the form of a model execution scenario.

Considering our requirements defined in Chapter 3, and the evaluation based on the case
study, we can conclude that our aspiration to provide a general solution for the extension of
the graphical concrete syntax of any GMF-based and Graphiti-based modeling editor was, in
the case of the first, successfully accomplished, and for the latter, not possible. It is due to the
GMF maturity and its excellent support for the extension that we were successful in providing
a general solution here. In the case of the Graphiti framework the failure to provide the same
was primarily due to the lack of the needed extensibility of the framework. So, Graphiti-based
modeling editors, at the moment, can only be extended in a heavyweight manner, by adapting the
original code implementation. However, since the Graphiti framework is still in its incubation
phase this might change with future releases.

When it comes to the extent of the graphical concrete syntax extension itself, based on our
experience, we can argue that as long the GCS extension does not go beyond adornments or
changes to the simple visualization properties of model elements the lightweight extension of
the graphical concrete syntax, in its general application to any modeling language, is feasible.
Desiring more extensive decoration facilities, such as changing the form of a shape and adapting
its structure in order to better reflect the newly added information to a model element, proves
to be a complicated task when considering a general solution for the GCS extension. In such a
case, we might argue that this is the time when one must decide to consider the adaptation to the
original editor implementation, hence, to perform the heavyweight language extension.

8.2 Future Work

During the writing of this thesis on the 26th of June, 2014, a new version of Eclipse, codename
Luna, was released. With it also, a new technology, known under the name Sirius1, for the spec-

1Sirius project. http://projects.eclipse.org/projects/modeling.sirius
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ification of the graphical concrete syntax for modeling languages. The project leverages Eclipse
Modeling technologies, including EMF and GMF. The graphical concrete syntax is specified
through configuration descriptions that are dynamically interpreted at runtime by the Eclipse
IDE, so no code generation is involved. This is a big leap forward in creation of the graphical
concrete syntax, because the user does not need to have comprehensive technical knowledge
of the Eclipse, and the instant feedback support while specifying the syntax simplifies the cre-
ation tremendously. The standard Ecore editor was replaced with a new editor implementation
created with Sirius. In order to support the extension of the graphical concrete syntax created
with this new technology, a new decorator must be implemented. Since Sirius is based on GMF
we anticipate that decorating models should be technically very similar to the GMF decorator
implementation.

The decoration description language at the moment does not have a dedicated syntax format-
ter. An implementation for it could improve user-friendliness of the editor, thus, helping the user
to format the textual specification of decoration descriptions most accordingly to the language
specifics.

When specifying activation conditions for decorations, the current implementation of the dec-
oration description language does not provide the syntax validation for OCL expressions, which
could be improved. Also, the specification of a concrete condition could be improved by allow-
ing a comparison between the tagged values of a stereotype, and extending the support for more
data types. Moreover, if the OCL syntax gets good editor support, one might also decide to use
only OCL expressions for specifying the activation conditions.

Adding animations to the set of decoration descriptions is also pursuable. At the moment this
might be a complicated task since the underlying technology (e.g., GEF and Draw2D, which are
based on SWT) does not provide dedicated API for animations, hence, the algorithms for the
animations would have to be manually implemented. However, work is currently being invested
to develop JavaFX-based core of GEF. When this is done, a new set of APIs, including those for
animations, will be at disposal to technologies that are based on GEF, such as GMF and Graphiti.

The fact that, in our opinion, specifying decorations that are designed to change the form of the
original shape presents a complicated task (keeping it in mind that a general solution is required),
and that in such cases one should opt for heavyweight extension approach, nevertheless, this is
just an opinion and not based on actual research. Thus, it needs to be properly assessed.
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APPENDIX A
Grammar of the Decoration

Description Language

A.1 The Grammar Specification in Xtext

Listing A.1: The Xtext Grammar of the Decoration Description Language.
1 grammar org.modelversioning.emfprofile.decoration.

EMFProfileDecorationLanguage with org.eclipse.xtext.common.Terminals

2

3 generate decorationLanguage "http://www.modelversioning.org/emfprofile/

decoration/EMFProfileDecorationLanguage"

4 import "http://www.eclipse.org/emf/2002/Ecore" as ecore

5 import "http://www.modelversioning.org/emfprofile/1.1" as profile

6

7 DecorationModel:

8 "import resource" importURI = STRING

9 (namespace=Namespace)?

10 decorationDescriptions+=DecorationDescription*
11 ;

12

13 Namespace:

14 ’profile’ profile=[profile::Profile|QualifiedName]

15 ;

16

17 DecorationDescription:

18 ’decoration’ stereotype=[profile::Stereotype|QualifiedName] ’{’

19 (

20 decorations+=(AbstractDecoration)+

21 & (activation=Activation)?

22 )

23 ’}’

24 ;

25
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26 // In Decorations that have optional values some default value will be

used. See comments below.

27

28 AbstractDecoration:

29 ImageDecoration | BoxDecoration | ColorDecoration // has an effect on

both nodes and edges

30 | BorderDecoration // has an effect only on nodes

31 | ConnectionDecoration // has an effect only on edges

32 ;

33

34 ImageDecoration:

35 {ImageDecoration}

36 ’image’ ’{’

37 (

38 (’uri’ ’=’ location_uri=STRING)

39 & (direction=Direction)? // default value for the node = NORTH_WEST,

and for edge = CENTER

40 & (margin=Margin)? // default value -1 on nodes, 50 for connections

(for connections margin is interpreted as a percentage)

41 & (’tooltip’ ’=’ tooltip=Text)?

42 & (activation=Activation)?

43 )

44 ’}’

45 ;

46

47 BoxDecoration :

48 {BoxDecoration}

49 ’box’ ’{’

50 (

51 // mandatory

52 (’text’ ’=’ text=Text)

53 & (’width’ ’=’ width=INT)

54 & (’height’ ’=’ height=INT)

55

56 // optional

57 & (image=BoxImage)?

58 & (’border’ ’{’ border=Border ’}’)?

59 & (’foregroundColor’ ’=’ foregroundColor=Color)?

60 & (’backgroundColor’ ’=’ backgroundColor=Color)?

61 & (direction=Direction)? // default value for node = NORTH_WEST; for

edge = CENTER

62 & (margin=Margin)? // default value -1 on nodes, 50 for connection (

for connection margin is interpreted as percentage)

63 & (’contentDirection’ ’=’ contentDirection=Directions)? // default

is CENTER

64 & (’tooltip’ ’=’ tooltip=Text)?

65 & (activation=Activation)?

66 )

67 ’}’

68 ;

69

70 BorderDecoration:

71 {BorderDecoration}
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72 ’border’ ’{’

73 (

74 (border=Border)

75 & (activation=Activation)?

76 )

77 ’}’

78 ;

79

80

81 ColorDecoration:

82 {ColorDecoration}

83 ’color’ ’{’

84 (

85 (’background’ ’=’ background=Color)?

86 & (’foreground’ ’=’ foreground=Color)?

87 & (activation=Activation)?

88 )

89 ’}’

90 ;

91

92 ConnectionDecoration:

93 {ConnectionDecoration}

94 ’connection’ ’{’

95 (

96 (size=Size)?

97 & (style=Style)?

98 & (’color’ ’=’ color=Color)?

99 & (activation=Activation)?

100 )

101 ’}’

102 ;

103

104 /**
105 * The text which we can include in the visualization, e.g., the hover

text over an image decoration.

106 * It can be build out of Strings and tagged values of the applied

stereotype.

107 */

108 Text:

109 SimpleText | ComplexText

110 ;

111

112 SimpleText:

113 text=STRING | attribute=[ecore::EAttribute|QualifiedName]

114 ;

115

116 ComplexText:

117 left=SimpleText ’+’ right=Text

118 ;

119

120 Border:

121 {Border}

122 ( (size=Size)? // default value is 1
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123 & (’color’ ’=’ color=Color)? // default value is BLACK

124 & (style=Style)?// default value is SOLID

125 )

126 ;

127

128 BoxImage :

129 {BoxImage}

130 ’image’ ’{’

131 (

132 (’uri’ ’=’ location_uri=STRING)

133 & (’placement’ ’=’ placement = BoxImageOrientation)? // default

value is WEST

134 )

135 ’}’

136 ;

137

138 Style:

139 ’lineStyle’ ’=’ value=LineStyle

140 ;

141

142 Size:

143 ’size’ ’=’ value=INT

144 ;

145

146 Direction:

147 ’direction’ ’=’ value=Directions

148 ;

149

150 Margin:

151 ’margin’ ’=’ value=SignedInteger

152 ;

153

154 Color:

155 {Color}

156 value=ColorConstant | concrete = ConcreteColor

157 ;

158

159 ConcreteColor:

160 RGB | HexColor

161 ;

162

163 RGB:

164 ’RGB’ ’(’ red=INT ’,’ green=INT ’,’ blue=INT ’)’

165 ;

166

167 HexColor:

168 hexCode = HEX_COLOR

169 ;

170

171 ColorConstant:

172 value=Colors

173 ;

174
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175 Activation:

176 ’active when’ condition=AbstractCondition

177 ;

178

179 AbstractCondition:

180 Condition | CompositeCondition | OclExpression

181 ;

182

183 OclExpression:

184 ’ocl’ ’(’ expression = STRING ’)’

185 ;

186

187 Condition:

188 attribute=[ecore::EAttribute|QualifiedName] operator=ComparisonOperator

value=Type

189 ;

190

191 CompositeCondition:

192 operator=LogicalOperator ’(’ conditions += (AbstractCondition )+ ’)’

193 ;

194

195 Type:

196 SignedInteger | SignedDouble | STRING | BOOLEAN | ID

197 ;

198

199 SignedDouble returns ecore::EDouble :

200 ’-’? INT ’.’ INT

201 ;

202

203 SignedInteger returns ecore::EInt:

204 ’-’? INT

205 ;

206

207 QualifiedName returns ecore::EString:

208 ID (’.’ ID)*
209 ;

210

211 terminal BOOLEAN returns ecore::EBoolean:

212 ’true’ | ’false’

213 ;

214

215 terminal HEX_COLOR:

216 ’#’

217 ((’a’..’f’|’A’..’F’|’0’..’9’) (’a’..’f’|’A’..’F’|’0’..’9’) (’a’..’f’|’A’

..’F’|’0’..’9’))?

218 (’a’..’f’|’A’..’F’|’0’..’9’) (’a’..’f’|’A’..’F’|’0’..’9’) (’a’..’f’|’A’

..’F’|’0’..’9’)

219 ;

220

221 enum BoxImageOrientation:

222 WEST | NORTH | EAST | SOUTH

223 ;

224
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225 enum ComparisonOperator:

226 EQUAL=’==’ | UNEQUAL=’!=’ | GREATER=’>’ |

227 GREATEROREQUAL=’>=’ | LOWER=’<’ | LOWEROREQUAL=’<=’

228 ;

229

230 enum LogicalOperator:

231 ALL | ANY

232 ;

233

234 enum LineStyle:

235 LINE_SOLID = ’SOLID’ | LINE_DOT = ’DOTS’ |

236 LINE_DASH = ’DASH’ | LINE_DASHDOT = ’DASHDOT’ |

237 LINE_DASHDOTDOT = ’DASHDOTDOT’

238 ;

239

240 enum Colors:

241 RED | BLACK | WHITE | GREEN | GREEN_LIGHT | GREEN_DARK |

242 BLUE | BLUE_LIGHT | BLUE_DARK | GRAY | GRAY_LIGHT |

243 GRAY_DARK | ORANGE | YELLOW | CYAN

244 ;

245

246 enum Directions:

247 CENTER | NORTH | SOUTH | WEST | EAST | NORTH_EAST |

248 NORTH_WEST | SOUTH_EAST | SOUTH_WEST

249 ;

A.2 Railroad Visualization of the Grammar Syntax

DecorationModel rule (lines 7− 11)

DecorationDescription rule (lines 17− 24)

Namespace rule (lines 13− 15) QualifiedName rule (lines 207−209)
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AbstractDecoration rule (lines 28− 32)

Text rule (lines 108− 110)

SimpleText rule (lines 112− 114)

ComplexText rule (lines 116− 118)

Border rule (lines 120− 126)

BoxDecoration rule (lines 47− 68)

ImageDecoration rule (lines 34− 45)
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BorderDecoration rule (lines 70− 78)

ColorDecoration rule (lines 81− 90)

ConnectionDecoration rule (lines 92− 102)

BoxImage rule (lines 128− 136)

Activation rule (lines 175− 177)

Style rule (lines 138− 140)

Size rule (lines 142− 144)

Direction rule (lines 146− 148)

Margin rule (lines 150− 152)

Color rule (lines 154− 157)

ConcreteColor rule (lines 159−161)

RGB rule (lines 163− 165)

HexColor rule (lines 167− 169)

ColorConstant rule (lines 171−173)
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AbstractCondition rule (lines 179− 181)

CompositeCondition rule (lines 191− 193)

OclExpression rule (lines 183− 185)

Condition rule (lines 187− 189)

SignedDouble rule (lines 199− 201)

SignedInteger rule (lines 203− 205)

Type rule (lines 195− 197)

BoxImageOrientation rule (lines
221− 223)

ComparisonOperator rule (lines
225− 228)

LogicalOperator rule (lines 230 −

232)
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Colors rule (lines 240− 244)

LineStyle rule (lines 234− 238)

Directions rule (lines 246− 249)
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