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Abstract

Abstract

Using Workflow Systems for Machine Learning provides a scalable and efficient way to
process data to create models which can be used for data-driven decisions and predictions.
This thesis examines concepts for improving the verification and repeatability of such
workflows. The covered topics include Data Provenance and Dynamic Data Citation.
It investigates how provenance information can be collected during workflow execution
and properly represented with a model. Furthermore it is analyzed how the citation
of dynamic data can be realized in form of a workflow. To show the feasibility of the
elaborated concepts some practical implementations are created in a high-performance,
cloud-based machine learning environment. The final implementation is generically
designed so the construction approach can be used for other workflow management
systems. In addition recommendations for machine learning applications for supporting
the discussed topics are proposed. The created concepts and recommendations can be
used for improving the verifiability and repeatability of workflows.

Kurzfassung

Das Verwenden von Workflow Systeme für Machine Learning ermöglicht es Daten skalier-
bar und effizient zu verarbeiten, um daraus Modelle herzustellen, die für datengetriebene
Entscheidungen und Vorhersagen verwendet werden können. Diese Masterarbeit unter-
sucht Konzepte für die Verbesserung der Verifikation und Wiederholbarkeit von Workflows.
Die behandelten Themen sind Data Provenance und Dynamic Data Citation. Es wird un-
tersucht wie Provenance Information während der Ausführung eines Workflow gesammelt
und dargestellt werden kann. Des Weiteren wird analysiert wie das Zitieren von dynamis-
chen Daten mit Hilfe von Workflows umgesetzt werden kann. Um die Durchführbarkeit
der ausgearbeiteten Konzepte zu zeigen, wurden eine praktische Implementierung in einer
cloud-basierten Machine Learning Umgebung durchgeführt. Die fertige Implementierung
wurde möglichst generisch konstruiert damit man die Vorgehensweise auch auf andere
Workflow Management Systeme anwenden kann. Zusätzlich wurden Empfehlungen für
Machine Learning Applikationen erstellt, um die behandelten Themen besser unter-
stützen zu können. Der Einsatz der ausgearbeiteten Konzepte und Empfehlungen dieser
Masterarbeit verbessern die Verifizierbarkeit und Wiederholbarkeit von Workflows.
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CHAPTER 1
Introduction

1.1 Motivation
With the growing amount of information available today, simple statistics and database
queries alone are not enough to identify the complicated relations hidden within this
data. Hence, more complex analytical methods from the field of Machine Learning are
necessary to fully utilize the potential of this enormous amount of information. Because
of this the popularity of workflows increased drastically in the last decade.

Using Workflow Management Systems for Machine Learning provides a scalable and
efficient way to process data by creating models which can be used for data-driven
decisions and predictions. These are essential tools for data-centric science because
they offer a systematic and transparent way to routinely analyze complex data. With
such systems workflows can be created and changed dynamically by combining standard
components in new ways to get more insight in specific scientific questions. The finished
workflows can be shared and reused by other data analysts [9].

Machine Learning is not just used by researchers but also found its way into industry. In
the markets of today one could argue that the most valuable resource is information. In
the last few years many companies collected as much data as possible from their business
processes. By analyzing it they want to improve their processes and products and thus
giving them an advantage over their competitors.

An example would be Amazon which is one of the most successful companies today. One
big part of this success story is the usage of data generated from users to improve their
recommendation models. Such recommendation models can of course be modeled with
the help of workflow systems [10].

Even though the software applications for creating workflows already offer a lot of features
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and get easier to use, there are still issues present when using such automated analysis
processes. One problematic issue of these workflows is the verification of the results
generated. By using standard components which are provided through services or libraries
the user loses control and insight of the internal computation. Even a small update can
change the internal handling of these components and lead to different results. It is
difficult to detect the systematic bias introduced by such changes and particularly to
determine if the new results are more accurate or just incorrectly calculated. Locating
the cause of such computation differences is tough because a workflow usually consists of
several process steps, which all have their own input and output. Checking every step
manually takes a lot of time, especially when a large amount of data is involved.

Another important topic is the repeatability of workflow experiments which is necessary
to verify and use the knowledge gained from earlier work of other analysts. Even if
the newest workflow software products are well documented and offer standard building
blocks, most workflows are not built to be reusable over a long period of time. Great
amounts of effort have already been raised to combat this problem of Workflow Decay
[11] [12] [13].

1.2 Research Questions
The goal of this thesis is to create concepts and recommendations to improve the verifia-
bility and repeatability of high-performance, cloud-based machine learning environments.
To prove their feasibility the created concepts will be implemented in the Microsoft Azure
Machine Learning Studio 1. This platform is chosen because it is a new cloud-based service
for creating workflows. In addition it offers good documentation and great usability.

To achieve this goal a couple of related topics from literature were selected. The first
technique for improving repeatability is called Dynamic Data Citation. It is used to
reproduce the results of experiments even if the input data used is constantly evolving.
The following states a suitable description: "Dynamic data citation provides tools and
methods which allow referencing a specific state of a subset, which was derived from an
evolving data source." [14].

A concept related to data citation which is important for ensuring the repeatability of
and establishing trust in process execution is the concept of data provenance. Data
provenance can be defined as: "The provenance of a data item includes information about
the processes and source data items that lead to its creation and current representation"
[15, p. 1]. This means it comprises information about the origin of the data and every
change applied to it which led to the current state of a data item. It can improve the
repeatability by recording information during the execution of a workflow.

Through these selected topics the following Research Questions can be derived:
1https://studio.azureml.net
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• How can a model for the documentation of data provenance be applied to a
cloud-based ML environment?

• Which provenance information can be collected automatically during a workflow
process execution in a cloud-based ML environment?

• How can dynamic data citation be integrated in workflow-driven analysis processes?

The remainder of this thesis is organized as follows. Chapter 2 discusses related literature
on the topics Data Provenance and Data Citation as well as some of practical applications.

Chapter 3 investigates the first two research questions. It analyses how provenance data
can be collected and modeled. It also documents the implementation of a system for
recording provenance information of data-driven workflows.

Chapter 4 focuses on the third research question. This is done by the implementation of
a workflow which uses the concept of dynamic data citation.

The final chapter summarizes the obtained results and created recommendations. In
addition a number of directions for future work are mentioned.

The appendix contains documents which were used or created during the practical work.
In addition several scripts which are part of the final implementation are listed.
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CHAPTER 2
Related Work

This chapter takes a look at scientific work on the topics Data Provenance and Data
Citation in general or in combination with workflows management systems. By analyzing
theoretical concepts about data provenance, insights are gained for the practical part.
It is also interesting how provenance information is recorded and handled in different
software products. Since a Provenance Model has to be used for the implementation
in Microsoft Azure Machine Learning the most prominent models are discussed. The
most recent theoretical developments and commonly used practices for Data Citation are
also discussed. Especially work focusing on managing the citation of dynamic data is
interesting for the third research question.

2.1 Workflow Management Systems

The first challenge of this thesis is to choose a workflow management system for the
practical implementation. This section provides an overview of several established
workflow management system applications. Some of their features are analyzed in
subsequent sections.

A prominent example is the Taverna Workbench which uses its own workflow language
Taverna 1 to construct experiments for analyzing data. It is a Java based open source
tool developed by the myGrid Project2. Taverna is successfully used in several scientific
domains like bioinformatics, astronomy, medical research and life science[16]. The Figure
2.1 shows an example workflow created with the Taverna Workbench.

Kepler 3 is also an open source tool which is used in several multi-disciplinary fields. A
1http://www.taverna.org.uk/
2http://www.mygrid.org.uk/
3https://kepler-project.org
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key feature is a web service extension which enables the use of workflows as a remote
resource. It also provides an actor-oriented modeling method and offers several extensions
[17]. Another workflow management system frequently used for scientific projects is
Pegasus [18]. The special usage of distributed resources allows this system to be executed
in distributed environments.

The state-of-the-art of these applications evolves fast and recently launched cloud services
like Amazon Machine Learning 4 and Microsoft Azure Machine Learning 5 show that
the big players of the software industry also see a high potential in automated analysis
processes.

Figure 2.1: Workflow created with Taverna [1]

But these are not the only software products created for cloud environments. SciCumulus
is a middleware for the distribution, execution and monitoring of workflows on the
cloud. It uses a three-layer architecture for transferring the locally created workflows
to a distributed environment consisting of virtualized machines where they are parallel
executed [5].

All of these systems are legitimate choices for the implementation. However many aspects
of established applications like Taverna and Kepler are already examined in a variety
of publications. Focusing on a newer technology which is not already covered in depth
is more interesting for this thesis. Cloud-based applications are a good choice because
their flexible scalability allows the processing of variable sized of data. Even if only
smaller amounts of data are used during implementation it is easily possible to increase
the computational power. This way even information on the scale of big data can be
managed. The Microsoft Azure Machine Learning service offers great usability and a
comprehensive documentation. It also includes a feature which makes it easy to share

4http://aws.amazon.com/de/machine-learning
5https://studio.azureml.net
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created workflows with other users by publishing them as web services. This allows users
to use their created workflows over the internet through RESTful API calls and integrate
them into their software. Because of these reasons the Microsoft Azure Machine Learning
service is chosen for the practical part.

2.2 Research Objects
A major problem of workflows is their inability to produce the same results over time
because of changing resources and components, which is called Workflow Decay [12].
Zhao et al. created an empirical study with Taverna workflows to identify the cause
of this decay. The workflows were taken from the myExperiment repository which is a
platform for sharing and exchanging workflows 6. One finding was that about 50% of the
workflows showed decay as a result of unavailable third party resources. A recent study
for workflow re-execution by Mayer et al. [19] shows that workflow decay is even more
problematic. Their results show that out of 1443 workflows only 29.2% were re-executable.
As a countermeasure to workflow decay both studies proposes a minimal set of auxiliary
information that should be bundled to the workflow. This set of information is defined
as a Research Object.

Research Objects are aggregations of resources that encapsulate all the information
necessary to share and reuse knowledge. The definition of a workflow-centric Research
Object is proposed in [2]. The usage of these objects is designed for workflow languages
and systems like Taverna, Triana 7 or Kepler. Such objects consist of the following
elements:

• Workflow template for defining the workflow

• Provenance information of the results obtained

• Artifacts that are relevant (papers for description, datasets used)

• Annotations that semantically describe the other elements

Figure 2.2 shows an example of a workflow template (b) containing two processes. When
this workflow is executed with a workflow engine the result is a workflow run which contains
the provenance information (c). This information consists of processes which use artifacts
as input through the used association and create artifacts with the wasGeneratedBy
association. The abstract workflow template (a) contains all the abstract processes of
the workflow, including their input and output, which are semantically labeled to specify
to steps performed. The goal of this thesis is to apply concepts to a workflow system
that can be integrated into their automatic execution of processes. The provenance part
of the Research Objects can be generated during a workflow execution. Hence, only this

6 http://www.myexperiment.org
7http://www.trianacode.org
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part will be of interest as it is a key component for understanding the results obtained
and thus can improve the repeatability of the workflow.

Figure 2.2: Example of abstract workflow, template and provenance information [2]

2.3 Provenance of Data

The Wf4Ever project8 also proposes extensive use of provenance information and research
objects to achieve workflow preservation [20]. In this paper a workflow using a database
and a web service as data sources is illustrated. Since both of these sources are subject to
changes the results can change as well. Hence, it is important to document the provenance
of the workflow output. This provenance information can be used to backtrack the original
workflow in case some steps are no longer executable. It is also mentioned that provenance
can be used to verify if evolved resources are still consistent with a workflow.

The whole system snapshot exchange (WSSE) is an approach for improving repeatability
through the use of cloud based computing [21]. The general idea of this method is to
create a digital image which contains the entire environment of a workflow. This image
contains the operating system, software and databases used. Because the size of an image
could by several terabytes the method proposes that this system is available as a service
through cloud computing. The virtualized system could be shared or copied between
data analysts. Cloud providers offer the technology to create large databases that can
be used as a shared resource which offers a better consistency than keeping a copy of
the database on a local system. The costs for such databases could be shared among
all groups which are using them. It is interesting that the new cloud-based machine
learning services of Microsoft and Amazon, which were not available when this work
was published, already offer the possibility to realize this idea. The WSSE approach

8http://www.wf4ever-project.org
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cannot be used for the practical part because it is a higher-level concept but this thesis
contributes to the general idea of such systems.

Davidson and Freire provide a survey which compares how provenance is documented in
different workflow system solutions [22]. They mention that for a provenance management
solution there are three key components necessary: capturing, modeling and storing.
The capturing of provenance information during execution is already supported by some
workflow systems which will be examined in a later section. The information also has to
be mapped into a suitable provenance model. The last component is a system for storing
and querying the provenance information. This thesis will focus mainly on the first two
components.

Deelman et al. [23] identify the necessary information for documenting the provenance
of a workflow. It consists of the source data, the intermediate data products of each step,
as well as the following items for each component of the process chain:

• Time Stamp

• Program Version Number

• Component Version Number

• Execution Host

• Library Version

• Data Source

Some of this information will not be available in a cloud-based environment. It is also
stated that it is important to track the provenance of the workflow as it changes over
time to get a better understanding how the workflow was created.

2.3.1 Provenance Models

For the first research questions a suitable provenance model has to be chosen for the
provenance documentation. Some of these models with a workflow focus were already
published a decade ago [24] [25] [18]. They are the result of the first and second provenance
challenge commenced in June and December 2006 [26]. These challenges created the
foundation for the Open Provenance Model (OPM) 9.

This model is technology independent and is used in many workflow system applications.
The core model uses the nodes Artifacts, Processes and Agents and their dependencies
are displayed as directed edges. The five types of edges used are called WasGenerat-
edBy (WGB), WasDerivedFrom (WDF), WasControlledBy (WCB) and WasTriggeredBy

9http://twiki.ipaw.info/bin/view/Challenge/WebHome

9

http://twiki.ipaw.info/bin/view/Challenge/WebHome


(WTB). Together they form a directed acyclic graph which represents the provenance
information of a data result [27]. Figure 2.3 shows the relations between the nodes and
edges of the model. The OPM also includes a XML Schema (OPMX) a Vocabulary
(OPMV) and an Ontology (OPMO) for improving the representation [3]. This format is
used in several workflow applications like Taverna, Kepler and Activiti [28].

Figure 2.3: OPM Nodes and Edges Relationship [3]

Taverna offers the possibility to export provenance information in the OPM format or the
more detailed Janus format. Janus is specifically designed to fit to the execution model of
Taverna [4]. This domain-aware model extends the previous Taverna provenance model
Provenir with semantic annotations. In combination with a query infrastructure it offers
a query language for accessing the stored provenance data.

The PROV Model

The first official standard for provenance documentation is the PROV model. It was
published in April 2013 by the World Wide Web Consortium [29]. It incorporates
key requirements and design decisions identified by previous efforts [26] in addition to
an elaborated documentation. Because of these features this model is chosen for the
provenance documentation part of this thesis.

This standard is already supported by several applications 10 which allows the exchange
of provenance information over the web. An interesting example is the tool Git2PROV.
It extracts versioning information from a version control system like Github 11 and maps
it to the PROV model [30].

10http://www.w3.org/TR/prov-implementations
11http://www.github.com
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The PROV standard consists of twelve documents which describe this inter-operable
model for interchanging provenance information [8]. The most interesting documents
are the recommendations PROV-DM, PROV-O, PROV-N and PROV-XML. A detailed
description of the data model is defined in PROV-DM. The PROV-O document describes
the PROV ontology with the OWL2 language which can be used to map a model to the
RDF format. PROV-N and PROV-XML define a humanly readable notation and a xml
schema respectively.

Figure 2.4: Basic PROV concept

Figure 2.4 shows the basic elements of the model and their relationships. An Entity
represents all physical, digital or conceptual things. This element can be used for the
source and result data as well as the intermediate data between the single steps of a
workflow. Activities can create or change entities and represent the single execution steps
used for a workflow. An Agent can be a person, software or even an organization and
always has a responsibility for one or more Entities and Activities. The workflow system
software will thus be an agent for the workflow because it enables its execution.

The PROV model has in many aspects a resemblance with the OPM model. Both use the
insights gained during the provenance challenges for their design. The basic elements of
their ontology definition are quite similar. Both use an Agent node, the PROV elements
Entity and Activity represent the basic idea of the Artifact and Process nodes from OPM.
The definition of the PROV model is however more complex as it also provides subtypes
for each element and additional concepts like Locations, Plans and Derivations.

The OPM standard is still supported by many applications like VisTrails, Taverna or
Karma 12. It is however slowly replaced by the PROV model as it is an official standard.
The W3C provides a comprehensive list of implementations using the PROV model 13.

12http://openprovenance.org/
13https://www.w3.org/TR/prov-implementations/
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Provenance Capturing in other Workflow Systems

This section looks at various workflow engines and how they support the provenance of
data. Not only are the details on which information is captured during the execution of
a workflow of interest, but also which provenance models and formats are used. Mayer et
al. compare the provenance capturing of some prominent workflow management systems
[28]. The authors designed a scientific workflow, implemented it in each workflow system
and analyzed which provenance data is recorded during the execution.

The Taverna Workbench14 can capture every individual step executed during a workflow.
This also includes the exact execution time and the data exchanged between each step.
All the information captured is stored in a database. The Open Provenance Model format
[27] can be used to export the recorded information but excludes the input data that is
processed by the workflow. This data is included when exported in the Janus format
which is specifically designed for Taverna workflows [28]. Janus extends its predecessor
Provenir with subclasses in order to describe a workflow run in greater detail [4].

Figure 2.5: Janus Ontology [4]

Capturing the intermediate results of a workflow can lead to an extensive use of storage
space. It is reasonable if only small amounts of data are used but not for bigger data sizes.
The PROV model also is not intended to save the data itself. Hence, only metadata of
the intermediate results will be recorded in the practical part.

The Kepler Scientific Workflow System15 uses a special module called Provenance Recorder
to record provenance data. The recorded information is stored in a relational database

14http://www.taverna.org.uk/
15http://www.kepler-project.org/
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which can be queried by using the Database Manager of Kepler. Like for Taverna an
export option is available to get the data into a XML file by using the OPM format.
Unlike for Taverna this output also includes time stamps which help understanding the
execution sequence of the workflow [28].

When looking at the table specification of the provenance database a similarity to the
PROV model can be identified. The agent, activity and entity elements are called
director, actor and entity respectively. For each actor the input and output ports are
stored describing the relation between the single elements. In the PROV model relations
like used and wasGeneratedBy serve this purpose. The storing of context information
of a workflows execution is also a reasonable feature. In addition the changes of a
workflow by users are also stored [31]. Recording the evolution of a workflow is also
interesting for cloud-based workflow management systems and would definitely increase
their repeatability.

Pegasus tracks provenance with its own lightweight job monitoring program called
Kickstarter. Since this workflow system is used for disturbed environments it needs to
record additional information:

• intial arguments and exitcode of a task

• start time and duration

• hostname of the host on which the task ran and the directory in which it executed

• stdout and stderr

• environment that was set up for the job on the remote node

• machine information about the node that the job ran on (architecture, operating
system, number of cores, memory)

The kickstarter process writes this information directly into an xml with a Pegasus
specific format. Another process maps and transfers the data into a relational database.
The Pegasus dashboard uses this information to display reports about a workflow. An
option for exporting this information using the OPM format is currently in development
[32].

SciCumulus has the additional challenge of capturing the provenance of a distributed
environment. Each of its three architecture layers has special components to be able to
merge the whole provenance information of a single workflow run together. Figure 2.6
illustrates this architecture.

The capturing starts in the Execution Layer during the execution of activities in each
virtualized instance. Once all are finished the Distribution Controller located in the
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Figure 2.6: SciCumulus Architecture [5]

Distribution Layer collects and merges the data from each instance and invokes the Data
Summarizer which creates the final results of the workflow. After the execution all the
results, including the provenance information, are transferred to the Desktop Layer where
the Provenance Catpurerer stores the provenance data in a local repository using the OPM
model. Detailed information about the results of each virtual instance can be queried
from the repository. If Azure Machine Learning wants to provide information about the
execution environment additional components like in the architecture of SciCumulus will
be necessary.

2.4 Data Citation
Tracing provenance during each step of an experiment helps understanding how specific
results are created. However the provenance trail is completely different if another set
of initial data is used for a workflow. Generating the same results while repeating a
workflow, whether shared from other analysts or self created, is only possible by using
the same dataset as in the original experiment. Data citation allows to verify the data
used during an experiment and thus can improve its repeatability.

Altman et al. [6] explains how data citation evolved during the last decades. Four
development phases shown in 2.7 were identified. Each phase facilitates different core
principles.

The first three phases focus on established practices which are commonly used, like citing
author, title of a work and research data used. During the third phase global persistent
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Figure 2.7: Data Citation Phases [6]

identifiers like Digital Object Identifier (DOI) 16 or Handle emerged. These services
provide a permanent link which resolves to a website and thus grant access to the desired
data. If the website location changes the DOI resolves to the new source providing a
long-term accessibility. For the current phase several challenges were identified. Examples
are the usage of provenance for the citation text or handling big, complex and dynamic
data [6]. Callaghan [33] also identifies several open questions regarding data citation. The
citation of datasets which are continuously updated is still an issue. Another important
topic is the attribution of all contributors to a specific set of data.

The accomplishments from each described phase shaped how data is cited today. For a
data reference the following minimum information is needed: author, title, date, publisher,
identifier and access information. The easiest form of depositing a dataset is through
providing an URL. However websites can go offline or change their location, hence it is
not a stable reference. Therefore the already mentioned persistent identifiers (PIDs) were
introduced. A PID has to be requested from special Registration Authorities (RA). They
manages the link between data and the identifier [34].

One of these RAs is the DataCite agency which was founded through a collaboration of
several scientific institutes. This agency offers the services of assigning DOIs to datasets.
The metamodel of DataCite as well as their recommendation for citing data is explained
in [35].

16https://www.doi.org/
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Even if services like DataCite work well there is still a platform needed for storing datasets.
This task can be carried by data repositories. The open-source project Dataverse 17 is one
of the repositories that already generate data citations automatically when a dataset is
uploaded. They store the combination of data files and metadata as a so-called dataverse.
For each of these instances the visibility, ownership and access rights can be managed
separately. The platform supports Handle and DOIs as a method for citation but is not
designed for dynamic data[36].

There are various groups which try to address the remaining challenges with recom-
mendations and examples of best practice. These include the Research Data Alliance’s
Working Group on Data Citation (WG-DC) 18, the CODATA-ICSTI Task Group 19 and
DataCite 20, to name a few.

In a combined effort they created the Joint Declaration of Data Citation Principles [37]
as the Data Citation Synthesis Group 21. It consists of eight principles that serve as
recommendations and best practices for citing all kind of data. This declaration is widely
embraced by the scholarly community and represents a great accomplishment. Especially
the seventh principle has an affinity with the goals of this thesis.

1. Importance, Data should be considered legitimate, citable products of research.
Data citations should be accorded the same importance in the scholarly record as
citations of other research objects, such as publications

2. Credit and Attribution, Data citations should facilitate giving scholarly credit
and normative and legal attribution to all contributors to the data, recognizing
that a single style or mechanism of attribution may not be applicable to all data

3. Evidence, In scholarly literature, whenever and wherever a claim relies upon data,
the corresponding data should be cited

4. Unique Identification, A data citation should include a persistent method for
identification that is machine actionable, globally unique, and widely used by a
community

5. Access, Data citations should facilitate access to the data themselves and to such
associated metadata, documentation, code, and other materials, as are necessary
for both humans and machines to make informed use of the referenced data

6. Persistence, Unique identifiers, and metadata describing the data, and its dispo-
sition, should persist – even beyond the lifespan of the data they describe

17http://dataverse.org/
18https://rd-alliance.org/groups/data-citation-wg.html
19http://www.codata.org/task-groups/data-citation-standards-and-practices
20https://www.datacite.org
21https://www.force11.org/datacitation/workinggroup
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7. Specificity and Verifiability, Data citations should facilitate identification of,
access to, and verification of the specific data that support a claim. Citations or
citation metadata should include information about provenance and fixity sufficient
to facilitate verfiying that the specific timeslice, version and/or granular portion of
data retrieved subsequently is the same as was originally cited

8. Interoperability and Flexibility, Data citation methods should be sufficiently
flexible to accommodate the variant practices among communities, but should not
differ so much that they compromise interoperability of data citation practices
across communities

2.5 Dynamic Data Citation

As already mentioned in the last section handling dynamic data is one of the imminent
challenges of data citation [6] [33]. Dynamic data has the property of changing over time,
whether done by adding new measures or modifying and deleting old ones. If data is
cited by only referring to a current version of the dataset, it is not possible to verify or
reproduce the results obtained if this data changes. To guarantee that the cited data is
always in the same state each time is hard to achieve. This is especially true when using
a database as source.

Most experiments do not need all the information provided by a dataset. Sometimes only
a certain timeframe or specific columns are analyzed. Re-using the exact same subset
is an additional challenge when it comes to dynamic data. For the final solution this
important aspect also has to be considered.

An example for changing data is the updating of weather data time series with the
newest measurements or the tracing of twitter tweets over time. The dynamic part of
such datasets is that they are constantly enlarged with new entries. However old entries
are not a subject to change which makes the citation slightly easier. An example for
the modification of old entries is the Argro Program 22. Its goal is the measurement of
ocean temperatures with sensors planted on buoys. Such a buoy has a cycle of different
float depth and can only transmit their measurements to satellites when they float on
the surface. This can of course lead to transmission errors which are corrected each
time there is a strong connectivity. Because their sensors have to deal with temperature
changes, induced through different float depth, their measurements can contain a thermal
lag error. Older measurements are constantly adjusted by the buoy and changes are
transmitted every time the buoy reaches the surface. The correction of old entries and
addition of new ones results in a constantly changing dataset [38].

The RDA Data Citation Working Group 23 focuses on providing solutions and reference
22http://www.argo.ucsd.edu/
23https://rd-alliance.org/groups/data-citation-wg.html
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implementations for citing dynamic data. They created a document containing 14
recommendations for making evolving data citable [39]. To ensure that an implementation
can be created with any technology they are generically designed. Since the goal of the
third research question is to create a systems which supports dynamic data citation these
recommendations can be used to realize a solution in Microsoft Azure.

The core principles revolve around the use of versioned and time stamped data and the
recording of each executed query [14]. They are structured into four sections necessary
for creating a system which allows the citation of dynamic data. The first section is
about adapting the data store to support versioning and time stamps as well as creating
a Query Store. The Query Store is necessary to save query metadata like the query
itself, a unique persistent identifier (PID) and the timestamp of the execution. Saving
the whole information of the result subset is no longer necessary since the query can
be repeated with this information. The second section deals with how specific datasets
can be persistently identified. The third section explains how a request for a specific
PID has to be handled. The last section describes the steps necessary to deal with
modifications to the infrastructure. Besides enabling dynamic data citation this also
enables the verification of an experiment since it allows the reproduction of the exact
subset used.

The foundation for these recommendations is the model introduced in by Pröll and
Rauber [34]. This model is designed for citing data stored in a relational database. A
relational database management system offers many requirements necessary for this
model out of the box. Unique identifiable data records, a query language for referencing
subsets of these record and some other requirements are necessary. It is also mentioned
that this model is not limited to databases and lists all the requirements for other data
models.

Their efforts to create a model for solving the issue of citing evolving data are continued
in [40]. The paper proposes several implementation strategies and describes the steps
necessary to extend an existing relational database system to support dynamic data
citation. It also contains a use case that follows its application to a sensor network data
store. This work is very detailed and is definitely usable for the implementation of a
workflow in the practical part.

Pröll et al. [41] examine the privacy issues that can arise when citing sensitive data
by means of a use case in eHealth. They point out how such data can affect data
citation, provenance generation and experiment execution by using workflows. Methods
for protecting privacy and still providing repeatability of experiments are described. As
a solution they extended the dynamic data citation framework [40] with measures to
ensure anonymity.
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2.6 Summary
This chapter provides an overview of related work of topics which are relevant for this
thesis. Out of the discussed workflow management systems the Microsoft Azure Machine
Learning Studio is chosen for the practical implementation.

After looking at the origination of the provenance concept some provenance models are
examined. As a result the PROV model is chosen to document the workflow executions of
the cloud-based Machine Learning Studio. We also describe some cases on how provenance
is recorded and used by other workflow management systems. The insights gained are
important for the implementation of the provenance recording.

The subsequent section investigates the state of the art of data citation. One of the
current challenges of this field is how to handle dynamically changing data. The current
approaches to overcoming this challenge are discussed. A very promising solution are the
recommendations published by the RDA Working Group on Data Citation. Therefore
they are used as a guideline for implementing a workflow system which supports the
dynamic data citation concept.

19





CHAPTER 3
Provenance Documentation of

Azure Workflows

This chapter investigates how data provenance of Microsoft Azure Machine Learning
workflows can be collected, represented and documented. In the first section the pos-
sibilities of the Machine Learning Studio as well as the created method for recording
provenance information are explained. The PROV modeling section defines how the
recorded information is mapped to the PROV model. During the implementation part
generic python scripts are created and used to extend a Machine Learning Studio ex-
periment. The generic scripts are used afterwards on another experiment to test the
efficiency of the method. In the final part the results are discussed.

3.1 Microsoft Azure Machine Learning

Azure Machine Learning offers the possibility to build, test and publish a predictive
analysis model. To accomplish this, the first step is to create a machine learning
experiment which is a blank canvas in the beginning. Workflow elements like datasets
and analysis modules can be drag-and-dropped onto this interactive canvas. Each of
those elements has specific settings which can be modified. By connecting certain input
and output ports of the modules the dataflow is defined and the experiment becomes
runnable.

An example of such a training experiment is illustrated in Figure 3.1. It shows the Car
Price Prediction experiment which will be extended to capture provenance information.
Every component used in this experiment is explained to show some of the features
offered by Azure Machine Learning. The first element (a) is a sample dataset, which is
provided by the Machine Learning Studio. It contains data of different cars and their
respective prices. For creating a machine learning model the size of the dataset is rather
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Figure 3.1: Car Price Prediction Experiment

small but still sufficient for the purposes of this work. The Studio offers the following
options for defining a data input source.

• Dataset uploaded and stored on Azure

• Url file reference

• Hive Query

• SQL Database

• Azure Table

• Azure Blob Storage

• Data feed provider

The next few steps are necessary to preprocess the data before it can be analyzed. The
Project Columns module allows to select a subset of the columns. Since the ’normalized-
losses’ column contains a lot of empty entries it is excluded in (b). After this the whole
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Figure 3.2: Car Price Dataset

dataset left is cleaned (c) by removing all rows which contain missing data. The last
step of the preprocessing is the selection of every column which should influence the
price. Some features like height of the car will not add much new information to the
model and can be removed. The columns chosen for predicting the price are make,
body-style, wheel-base, engine-size, horsepower, peak-rpm, highway-mpg and are selected
with the Project Columns module (d). Since a car price can be any numerical value,
a linear regression (f) is used for creating the model. As any other module the Linear
Regression Module offers properties which can be changed, but for this example the
default properties are used. There are also other supervised machine learning techniques
available like classifications, SVMs or clustering. The Split module (e) divides the dataset
into a training set and a test set. The first output port of this module is used for training
the model (g). The result of the Train Model component is already the complete Car
Price Prediction model. To verify the quality of this model it is tested with the test
set from (e) in the Score Model module (h) which tries to predict the prices of each
test entry by using the created model. The last module (i) shows how well the model
performed and offers feedback if changes to the model, like different feature selection, are
an improvement. The second input port of the Evaluate Model component can be used
to compare two models.

After the creation of a training model is finished, it can be converted into a Scoring
Experiment. Through this conversion the model can be published as a web service and
used with other data. Users can send their data with appropriate format to the scoring
web service and get back the prediction results. By clicking the Create Scoring Experiment
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Figure 3.3: Car Price Prediction Scoring Experiment

button the following three steps get performed automatically. The created model is saved
as its own Train Model component which can be reused for other experiments. Modules
which are not necessary for a scoring run are removed. For the Car Price Prediction
model this includes the Split, Train Model and Evaluate Model components because they
were only needed during the creation of the model. In the last step web service input
and output modules get added. Figure 3.3 shows the Car Price Prediction model after
the conversion.

3.1.1 Recording Provenance Data

Most of the components offered by Azure Machine Learning are closed modules. The
only customization is possible by changing some properties. But the functionality of two
modules can be completely defined by the user, the Execute Python Script and Execute R
Script components. The basic idea of these modules is to offer a possibility to incorporate
existing code of older workflows which only consist of scripts, to the Machine Learning
Studio. For this thesis this intention is changed by using the Execute Python module for
other activities.

The basic design of the Execute Python module is shown in the left side of Figure 3.4.
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Figure 3.4: Execute Python Module [7]

Its properties only consist of a single text field which can be used to insert python script
language. The text field offers python code highlighting but no detection of compiler
errors. It must contain an azure_ml function so it can be executed by the Anaconda 1

based backend.

The first two input ports of this module are optional and require the Pandas DataFrame
format. Pandas is an open source python library which provides data structures and data
analysis tools 2. A DataFrame is a two dimensionally labeled data structure which can
contain columns with different types. This is a limitation to the practical part because
the recorded provenance information must be inserted into a DataFrame structure. The
python module only allows to return one data frame as output which is the return value
of the azure_ml function. The second output provides the console output of the python
interpreter. It also can be used to display PNG images.

Another limitation for the implementation is that each module is a closed unit. This
means that the settings and parameter cannot be extracted or changed by the python
script since there is no port available for this task. These settings can only be changed
manually in the canvas of the Machine Learning Studio. As a result a workaround is
necessary to get provenance information from the modules. For this purpose the Zip
bundle port can be used. This port offers the possibility to use a compressed file which
can contain a custom python library. The library created for the implementation contains
functions for each module. The purpose of these functions is to provide the python
module with setting information of a specific module. Of course this requires some manual
effort because the information for every module has to be inserted into the library.

For every module used in the workflow at least one python script has to be present to
1https://store.continuum.io/cshop/anaconda/
2http://pandas.pydata.org/
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create provenance information. Since the Python Script module has only one output port
the whole information has to be forwarded from one module to the next. The second
input port is therefore receiving the created information of the previous module. After
the python script module has appended an additional PROV element the whole data
will be forwarded via the output port as a pandas DataFrame to the next module. The
first port will mainly be used to get information like the size of a dataset or the time
of a specific execution. All the python scripts created are designed to be as generic as
possible to minimize the customization needed. The python script modules encase the
whole workflow and are a framework for recording the provenance data of an experiment.

3.2 PROV Modeling
The first task of the modeling is to choose a format for the provenance data. The available
formats are used in an example documented in 3.2.2 to get a better understanding of
the elements of PROV. The following section 3.2.3 defines how each PROV element is
mapped to an Machine Learning Studio module.

3.2.1 PROV Annotations

As already mentioned there are three options to notate the PROV data model shown in
Listing 3.1, 3.2 and 3.3. Since the most readable option is the PROV-N notation it is
chosen for the representation of the provenance information generated in the practical
part.

Listing 3.1: RDF using TURTLE notation

exg:dataset1 a prov:Entity .
exc:regionList a prov:Entity .
exc:composition1 a prov:Entity .
exc:chart1 a prov:Entity .

Listing 3.2: PROV-N expression

entity(exg:dataset1)
entity(exc:regionList)
entity(exc:composition1)
entity(exc:chart1)
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Listing 3.3: PROV-XML

<prov:document>
<prov:entity prov:id="exg:dataset1"/>
<prov:entity prov:id="exc:regionList1"/>
<prov:entity prov:id="exc:composition1"/>
<prov:entity prov:id="exc:chart1"/>

</prov:document>

3.2.2 PROV Example

Listing 3.2 defines several generic elements which originate from the PROV Model Primer
document 3 . They serve as the initial objects of this example. These include an entities
data set (exg:dataset1), a list of regions (exc:regionList), data aggregated by region
(exc:composition1) and a chart (exc:chart1). The generic namespace prefixes are used to
label where the element is created. The next step is the definition of some activities and
some used and wasGeneratedBy relations shown in Listing 3.4.

Listing 3.4: PROV Element Definition

activity(exc:compose1)
activity(exc:illustrate1)
used(exc:compose1, exg:dataset1, -)
used(exc:compose1, exc:regionList1, -)
wasGeneratedBy(exc:composition1, exc:compose1, -)
used(exc:illustrate1, exc:composition1, -)
wasGeneratedBy(exc:chart1, exc:illustrate1, -)

The activity compose1 uses the dataset1 and regionList1 to generate a composition1.
This composition is used by the activity illustrate1 to generate a chart1. This simple
PROV data is visualized in Figure 3.5. The usage and generation are relations between
entities and activities and point from the future to the past.

Figure 3.5: PROV Example [8]

Every element can of course contain more attributes. One of them is the time attribute
which is crucial for documenting the workflow steps. The following lines are an example
for the use of this attribute.

3https://www.w3.org/TR/prov-primer/
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wasGeneratedBy(exc:chart1, exc:compile1, 2012-03-02T10:30:00)
wasGeneratedBy(exc:chart2, exc:compile2, 2012-04-01T15:21:00)
activity(exg:correct1, 2012-03-31T09:21:00, 2012-04-01T15:21:00)

3.2.3 PROV Element Mapping

The example of the last section showed the basic use of the PROV elements. The next
task is to define how each Machine Learning Studio module is mapped to a PROV
element. To get a starting point the Car Price Prediction Experiment explained in 3.1 is
extended with python scripts from the top to the bottom. For the identifier of the used
elements the namespace ml is used which represents the Machine Learning studio.

Entity element

The first module is a datasource which contains a matrix of information for different cars
and their prices. This dataset can be represented with the Entity element. According
to the official PROV-DM definition [42] an entity needs an identifier (id) and can have
optional attributes. One of them is the type attribute provided by the PROV namespace.
Since the dataset is a matrix the row and column count can also be used as an attribute.
The resulting entity element can be used for any dataset which is used or generated
during the execution of the workflow.

entity(ml:datasetid, prov:type="dataset", colsize=##, rowsize=##)

Activity element

The Project Column and Clean Missing Data modules modify the input dataset and
thus can be represented as an Activity element. The following lines show the PROV-DM
definition of this element.

An activity, written activity(id, st, et, [attr1=val1, ...]) in PROV-N, has:

• id: an identifier for an activity;

• startTime: an OPTIONAL time (st) for the start of the activity;

• endTime: an OPTIONAL time (et) for the end of the activity;

• attributes: an OPTIONAL set of attribute-value pairs ((attr1, val1), ...) represent-
ing additional information about this activity.

Once again it contains an identifier and optional attributes. A machine learning module
contains several settings which can be modified. The most important non-default settings
can be saved as optional parameters. As already explained in section 3.1.1 the parameter
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information of a module cannot be extracted directly. As a workaround a manually
created zip bundle is necessary which contains the information. The python script module
can access this information through the zip bundle port. A big difference to the entity
element are the startTime and endTime attributes. Because the execution time of a
module also cannot be read directly a workaround is needed for these attribute as well.
The simple way would be to just record the system time for both time attributes when
the activity element is created in the python script module. But since the python script
module is executed after the activity it cannot represent the true execution time.

Figure 3.6: Recording execution time for activity

A more accurate option is illustrated in Figure 3.6. It shows two python script modules
A and C which are placed before and after a module of the original workflow. Their
only task is to record the system time during their execution. The dataset received is
forwarded unchanged in the Output 1 port on the bottem right of the module. This
way the original experiment is not modified by the time extraction. Since the python
script only has one return value which is send to the Output 1 port, the time value is
forwarded as a console message with the Visualization port on the bottom right of the
python script module.

The Visualization port can only forward simple string values. Hence, another python
script B is used to create the activity element. It receives the time value of A and C as
well as the information about the project column module provided by the library in the
zip bundle (E). The final activity element of such a module looks like this:

activity(ml:project1, prov:startedAtTime=’2015-07-17 09:27:08’,
prov:endedAtTime=’2015-07-17 09:27:50’,
exclude=’normalized-losses’)

The startedAtTime and endedAtTime attributes are once again taken from the PROV
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namespace. The exclude attribute is a custom attribute which states that the project
column modules excluded the ’normalized-losses’ column of the dataset. This information
is the config parameter of the Project Columns module (D) and is read from the workflow
config zip bundle (E).

Usage & Generation element

The Usage element represents the link between the activity and its entity used. The
identifiers of both are saved as attributes in the element as well as the usage time
(startedAtTime from activity).

The Generation element is very similar. It shows the connection between the activity and
the entity generated as a result of the activity. The generation time is the endedAtTime
from the activity. The following lines show an example of such elements.

used(u1, ml:project1, ml:dataset1, 2015-07-17 09:27:08)
wasGeneratedBy(g1, ml:dataset2, ml:project2, 2015-07-17 09:27:30)

Agent element

There are two agents involved during the execution of the workflow. The person starting
the workflow and the Machine Learning Studio environment the workflow runs in. Since
the studio is the software which runs on behalf of the user, a actedOnBehalfOf relation
is needed between them. Both have to be created in the beginning of the workflow since
every activity has a wasAssociatedWith relation with the software agent. Since there is no
access to the user name this information is once again gained through the custom python
library as an init() function. Listing 3.5 shows the agent elements and their relations.
All of these elements only have to be created once, except for the wasAssociatedWith
element which is needed for every activity.

Listing 3.5: PROV Definition

agent(user, prov:type=’prov:Person’, foaf:givenName=’User name’)
agent(mlstudio, prov:type=’prov:Software Agent’)
actedOnBehalfOf(act, delegate=mlstudio, responsible=user)
wasAssociatedWith(aw1, activity=projection1, agent=mlstudio)

Elements not used

The PROV model offers many other elements and parameters which can be useful for
the right situation, but not all of them are suited to describe a data-driven workflow.

The Role parameter can be applied for the usage element to specify the function an
entity fulfilled during an activity or how an agent was involved in an activity. These
roles are application specific and thus not defined in PROV. The usage of a dataset
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is always the same for each module of a workflow. Including a Role parameter would
only add redundant information. The software agent specified in the last section always
just executes the modules. Hence, the role parameter is not used for the provenance
documentation.

An agent can execute an activity according to a set of instructions. In PROV this is
described as a Plan. The instructions which describe a plan are an entity on its own. As
already mentioned above, the software agent always performs the same task and thus
this element is also not used.

The Revision element describes the change of a single entity through time. This makes
sense for documents which go through multiple revisions. In a workflow, however, the
datasets are always newly generated. The only dataset which could change through
user manipulation over time is the first dataset in the workflow which usually contains
a large amount of data. However the initial dataset will not change during a workflow
execution which makes this PROV element obsolete. The Derivation element is very
similar because it describes if an entity is derived from another entity. An example would
be if a chart is derived from a dataset. This element can be used for document entities
and is not needed for workflows.

There are several other elements described in PROV-DM (Quotation, Communication)
but they are only useful for specific use cases and are thus excluded from the provenance
framework implementation.

3.3 Implementation

After looking at the possibilities offered by the Machine Learning Studio for recording
provenance information and how it can be modeled, the implementation can be conducted.
For the first implementation the Car Price prediction experiment shown in Figure 3.1 is
used. The desired result is a trail of provenance data automatically generated during
the execution of this workflow. This information describes the creation of the Car Price
Prediction Model and also its evaluation results. In order to create repeatable results
Python scripts, written as generic as possible, are created during this implementation.

For the second implementation the Scoring Experiment of the Car Price Prediction model
3.3 is chosen. The generic python scripts created during the first experiments are used.
To evaluate the efficiency of the implementation with these scripts the time necessary for
adapting the implementation is measured.

3.3.1 Car Price Prediction Experiment

Figure 3.7 shows the final workflow with the added python scripts. The square in the top
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Figure 3.7: Recording Provenance Information

zooms into the the first two modules of the original workflow. The first information is
generated in the (a) python module on the right side. At first it creates the person and
software agents with information provided by the config zip bundle (x). After this the
first entity is created with the dataset information received through the first input port.

As already explained in section 3.2.3 there are python modules used before (e) and after
(f) each workflow module to record the execution time of the module. It should be
noted that there can be a delay between the time recording and the execution of the
module. Hence, the true time is between the recorded points of time. The (b) python
module creates the activity element, which represents the Project Column module, and
the wasAssociatedWith relation.

The (c) python module creates the usage element and forwards the information to the
python module (d). This in turn creates the entity for the dataset, created through
the Project column module, and the respective generation element. The three python
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modules to the right side already show how the provenance information is parallely passed
through to the workflow. The output port of the (f) python module leads to the next
workflow module and also is used as the start time for the next activity.

The described approach is used to modify the whole Car Price prediction experiment.
Almost all the modules used in the experiment can be interpreted as an activity, expect
for the Linear Regression module. This module can be documented as an entity element
which is used by the Train Model activity. The specific parameters used for training the
model are appended as parameters to the PROV elements, again read from the config
zip bundle (x) as work-around.

The Split module divides the flow of the experiment by creating the training and testing
dataset. Because of this the activity, representing the Score Model module, uses two
entities. The first is the model entity created through the Train Model module and the
second is the testset entity. Since the second port of the python script is always used for
receiving the previous results, an additional python script is necessary to combine both
paths after the Score Model activity. As shown in the bottom square of Figure 3.7 this
script takes the PROV elements from each path and combines them into a single data
frame.

The modified experiment creates a list of PROV elements during execution. They
represent the provenance trail of the model and also of its evaluation. Those elements
are still encapsulated in a pandas data frame. The left side of Figure 3.8 shows the first
few entries of the PROV elements. Since this data has to be still available after the
execution to verify the workflow it has to be stored. To extract the information out of
the Machine Learning Studio the Writer Module is used. This module can write the
content of a data frame into an Azure SQL database. The right side of Figure 3.8 shows
the used properties, consisting of information for connecting to the database and how
the entries are mapped to the database schema.The database only consists of one table
which contains the type, id and parameters of the PROV element.

Using the web service module is also an option for receiving the provenance trail. This
can be done by publishing the workflow and calling it by using a REST request. However,
this method seems to have an internal problem with the extensive use of python scripts
before a web service output module. The response of the call always deviates from the
provenance output displayed in the Machine Learning Studio GUI. A bug report has
been filed to inform the development team of the Machine Learning Studio.

Once again a python script is used to extract the data out of the database into a viewable
format. The script reads all database entries, sorts them by type and converts the
information into the PROV-XML format. The output is an xml document shown in
Listing A.1 in the appendix. The ml namespace represents an Machine Learning Studio
namespace and can be adapted to any other preferred namespace policy.
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Figure 3.8: Result Data Frame, Writer Property List

Figure 3.9 shows the content of the xml file consisting of the different PROV elements
and their relations. Since the purple rectangles represent the activities of the workflow
their sequence is equal to the modules of the workflow. The yellow elements are entities
which are either already available in the Machine Learning Studio or are generated during
the workflow execution. The orange elements represent the agents respectively. Each
element possesses additional information like shown for the ml:Projection activity or the
ml:linearReg1 entity.

3.3.2 Car Price Prediction Scoring Experiment

After finishing a model in the Azure Machine Learning Studio it can be converted into a
Scoring Experiment. This allows the evaluation of new data with the previously created
model. The Car Price Prediction Scoring Experiment, illustrated in 3.3, is the conversion
result of the Car Price Prediction Experiment. The output of this Scoring Experiment is
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Figure 3.9: Provenance Trail of Experiment

a score value the model achieved with new data. When recording provenance information
during the execution of this experiment it should be noted that it does not describe the
provenance of the model itself but rather the provenance information of the scoring result
created during the scoring experiment. The provenance of the model creation was already
recorded during the Car Price Prediction Experiment described in the last chapter.

Since the model is already available as a module, the scoring experiment needs fewer
components. For the modification of this workflow the following steps are performed. At
first the zip bundle with the parameter properties of each workflow module is created.
This is done manually as this information cannot be read from the closed modules. For
the timestamp capturing system python script modules are added before and after each
workflow module. By using the generic Python scripts additional Python Script modules
are created to generate the PROV elements. To whole modification of the workflow for
recording the provenance information was finished in 35 minutes. The web service
modules were excluded since they only transport and not change the input and output
data. The modified experiment is shown in Figure 3.10.

The purple modules represent the original workflow without the web service modules.
The orange module to the upper right is the python library containing the information
about the configuration of the modules. The blue and green modules are all python
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Figure 3.10: Car Price Prediction Scoring Experiment & Provenance Recording

scripts. The blue modules record a timestamp before and after each activity. Each green
module creates at least one PROV element. The green modules between the blue ones
receive the timestamps and create the activity elements. The remaining modules on the
right side create one of several PROV elements, append them to the received data frame
and pass it to the next module.

3.4 Discussion

Recording provenance information allows to verify if a workflow with evolved resources
or components is still consistent. By using a common standard like the PROV model
this data can be interchanged between data analysts and results can be reproduced
with workflow management systems running in different environments, thus improving
the repeatability of workflows. Hence, an implementation for recording provenance
contributes to the goals of this work.

To answer the first research question the possibilities of the Microsoft Azure Machine

36



Learning studio were examined. The used method involves the extension of a workflow
with additional modules for recording provenance data. The resulting implementation
approach offers a way to document the creation process of results with the help of data
provenance. Another challenge was to map the available information into a suitable
format. The PROV model offers a lot of possibilities for describing the execution of a
workflow. By investigating the second research question the necessary information which
can be collected was identified. The representation of the information collected by the
chosen PROV elements describes the workflow execution in great detail.

After the generic scripts for recording the workflow provenance were created during the
first implementation part, the extension of the Car Price Prediction Scoring Experiment
was not much effort. However it still involves manual work increasing proportionally with
the size of a workflow.

There are some limitations through the design of the Machine Learning Studio. The
use of the Python Script module for recording information about the workflow is not
intended by design. Python Script modules can only receive and forward DataFrames, a
special format from the pandas library. In each script module the recorded information is
combined into a newly created frame to enable forwarding. In addition the Python Script
module has only one standard output port and two input ports. This limitation results
in a huge number of extra modules which makes the structure of a modified workflow
very confusing.

The biggest restriction is that a workflow module is a closed unit. This means that
configuration information cannot be extracted automatically during runtime. As a
workaround the properties of each used module were manually combined into a zip
bundle. This bundle is used to provide the information to each provenance generating
module during workflow execution. The execution time of the workflow components
could not be extracted as well. The final solution uses additional Python Script modules
before and after each workflow component to record timestamps. The real execution
start and end lies between those timestamps.

When activating the workflow via API a strange behavior of the Python Script module was
encountered. If several of these scripts are connected in a row only the first script module
is executed. Since the created solution heavily uses the consecutively place modules
the provenance does not work when the workflow is called via API. This behavior was
reported in the official Azure ML Studio forum. The developers responded that they are
aware of this issue and are working on it.

Recording information about the environment the workflow was executed in, like offered
by Kepler and Pegasus, was also not available in this cloud-based environment. Such
information is a crucial part of the provenance trail. Another aspect of the workflow
which could not be observed was the evolution of the workflow itself. Such information
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has to be collected on a higher level than the workflow execution which is not possible
without software development access.

The following points are recommended if Microsoft Azure wants to offer the possibility
to record provenance information in the Machine Learning Studio:

• Enable automatic capturing of provenance information by collecting meta data
internally.

• Display provenance via GUI or web service.

• Offer provenance export as XML or into a database.

A change of these modules is not necessary if the data is recorded automatically in
the background of the workflow execution. It is reasonable to log information for each
execution step like start and end time, module parameters and metadata of intermediate
results and map them to a provenance model. The information is present in the software
implementation and needs to be formatted, merged and provided to the user through the
GUI or web service.

Providing information about the environment of a workflow execution, like program
version, component version or library version, also enables users to verify if an error
during a run was caused through the change of the environment.

A desirable use case would be if a user could, after activating provenance tracing, export
the information directly out of the studio as an XML. When calling the workflow through
a web service an additional parameter could to be used to also receive the provenance
data as a JSON.

For complete provenance support there also should be an option for saving the data in a
database. This data could either be saved directly in the cloud or in a database specified
by the user.
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CHAPTER 4
Workflow Support for Dynamic

Data Citation

This chapter investigates the design or ways to provide dynamic data citation services
as part of the ML Studio. The implementation presented in this chapter consists of a
workflow and a modified database. The workflow is used as an interface for accessing
data and enables the possibility to reproduce the exact results of a query which was
executed when the database was in a different state. At first the basic design of the
system is explained. The next section analyses which steps are necessary to realize the
recommendations presented in [39]. The resulting implementation of a system consisting
of a database and a workflow created in Microsoft Azure Machine Learning is documented
in the subsequent section. The last part deals with the evaluation of the system and
discusses the results obtained.

4.1 Initial System Design
The first main component of the initial system is a database which contains weather data.
Since the database can change over time with each insert, update or delete command it
represents the dynamic attribute of the system. The weather data is a sample dataset
available in the Azure Machine Learning Studio. The entries were measured between
April and October 2013 from airport weather stations in the United States 1. As shown
in Figure 4.1 it contains over 400.000 rows with 26 different attributes.

For the database schema the Fahrenheit values are excluded since they provide the
same information as the Celsius values. The following attributes of the dataset are
used for the definition of the database schema: AirportID, Year, Month, Day, Time,
TimeZone, SkyCondition, Visibility, WeatherType, DryBulbCelsius, WetBulbCelsius,

1https://azure.microsoft.com/en-us/documentation/articles/machine-learning-use-sample-datasets/
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DewPointCelsius, RelativeHumidity, WindSpeed, WindDirection, ValueForWindCharac-
ter, StationPressure, PressureTendency, PressureChange, SeaLevelPressure, RecordType,
HourlyPrecip, Altimeter

Figure 4.1: Weather Dataset

The primary key wID (weather data id) is added which is automatically incremented
with each insert. The final table schema is shown in Listing A.2 in the appendix. For the
DBMS the cloud-based Azure SQL Server is chosen because it can be directly accessed
in a machine learning workflow with the Reader and Writer module of the ML Studio.
The later is used to insert the whole dataset into the database.

Figure 4.2: Generic Experiment using Weather Dataset

The second part of the initial system is generic Azure ML experiment shown in Figure
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4.2 that accesses the database. The starting point of the workflow is the querying of the
database executed in the Reader module. The query used is the only input parameter of
the workflow and can be seen as the definition of a subset of the whole dataset.

This setup does, of course, not support the repeatability of experiments if the database
is altered. The final workflow should enable the possibility of reusing the exact same
subset of an earlier experiment even if the database has changed in the meantime. The
workflow is thus extended with additional Azure ML modules which replace the Reader
module in the intial workflow. The input parameter is once again the query to generate
a subset from the database. The workflow’s task is to process this query and to provide
the data for the actual experiment. The final implementation should be useable for any
experiment created in the Azure ML Studio.

4.2 Guidelines for Making Data Citable

The recommendations of the RDA Data Citation Working Group for making dynamic
data citable are used as a foundation for the implementation in this chapter. The Working
Group provides a detailed description as well as examples for implementation in [43]. As
already mentioned in the related work chapter 2.5 the core principle is storing executed
queries in a database. The system needs to be modified according to the recommendations
to support dynamic data citation. After each recommendation is examined the necessary
changes are explained.

4.2.1 R1: Data Versioning

R1 Recommendation: ’Apply versioning to ensure earlier states of data sets can be
retrieved.’

The first task for this recommendation is to decide how the database versioning should
be implemented. Pröll et al. suggests three approaches on how to change the database
to support versioning [40]. One solution suggests the usage of a separate history table
which is a feature included in the ISO SQL:2011 standard. However, this standard is
not supported by the Microsoft SQL Server 2014 which is used for this work. It will
be available for the SQL Server 2016 version in the form of Temporal Tables 2. This
system-versioned table would be the perfect solution for any future implementation
because the database covers the versioning automatically.

A good alternative is the direct integration approach explained in [40]. This solution
keeps the data storage needed and query complexity for retrieving subsets low. Since
the database is not in a productive state the schema can easily be changed to meet
the requirements. The database schema is extended by the version attribute vID. To

2https://msdn.microsoft.com/en-us/library/dn935015.aspx
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still guarantee unique entries the Primary Key also needs to be changed to include this
attribute.

The most common operations on a time series, like the weather dataset used, are insert
statements. But with this assumption no versioning would be necessary in the first place.
To completely support the recommendation the correct handling of update and delete
operations still needs to be ensured.

If a database entry is updated the original row should be left unchanged. Instead a
new entry with the same wID and a higher version needs to be created. The attributes
should still be the same except for columns changed by the update statement. This
requirement is solved by the creation of a SQL trigger weatherdata_update. The trigger
is executed after each update of the weatherdata table. It saves all the attributes of
the updated row into temporary variables and then rolls back the changes made by the
update. The attributes have to be saved because they cannot be accessed after the
rollback. Afterwards a new entry is created with the same wID, a higher version ID and
the data saved in the variables. The Isolation Level of the Azure SQL server must be set
to Serializeable to ensure atomicity during the execution of the update statement. The
complete create statement of the trigger is shown in Listing A.3 in the appendix.

For delete operations a similar solution is used. The attribute deleted, which shows if an
entry is marked as deleted, is added to the table definition with the type bit. The bit
type is the Microsoft SQL Server’s version of a Boolean and can either be 1 or 0. Once
again another SQL trigger weatherdata_delete is executed after each delete operation.
Instead of deleting the desired row it creates a new entry with the same attributes of the
original row, a higher version number and the deleted field set to 1. The trigger definition
is shown in Listing A.4 in the appendix.

Because of these triggers several versions with the same wID can exist in the database.
For each request only the most recent version is of interest. Hence, each query used in
the system needs to be modified as shown in Listing 4.1.

Listing 4.1: Modified Select Statement

SELECT * FROM weatherdata t1
WHERE windspeed = 10
AND vid = (SELECT MAX(vid)

FROM weatherdata t2
WHERE t2.wid = t1.wid)

AND deleted = 0

This query only returns the most recent entry if it is not deleted. It must to be noted
that the additional sub-query does influence the performance of the database.
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4.2.2 R2: Timestamping

R2 Recommendation: ’Ensure that operations on data are timestamped, i.e. any
additions, deletions are marked with a timestamp.’

To fulfill this recommendation the attribute tmstmp is added to the table definition:

tmstmp DATETIME NOT NULL DEFAULT current_timestamp

As default the exact execution time of the creation operation is used. Every update and
delete operations get transformed into an insert statement. The timestamp of the new
entry always specifies the execution time of the given operation. Since this attribute is
not meant to be changed afterwards, this simple modification of the schema covers all
eventualities.

The new attribute allows to select only data elements available at a in a specific point in
time. Each query needs to be extended by an additional WHERE clause like the example
shown below:

Listing 4.2: Select Statement with Timestamp Clause

SELECT * FROM weatherdata t1
WHERE windspeed = 10
AND vid = (SELECT MAX(vid)

FROM weatherdata t2
WHERE t2.wid = t1.wid)

AND deleted = 0
AND tmstmp < ’2012-01-25 16:51:44’

This query returns only entries which were available before the given timestamp. Together
with the changes made for the R1 recommendation the exact reproduction of an earlier
subset request is possible.

4.2.3 R3: Query Store Facilities

R3 Recommendation: ’Provide means for storing queries and the associated metadata
in order to re-execute them in the future.’

Storing duplicates of data subsets would be a costly endeavor. Instead the Data Citation
Working Group proposes a Query Store as an alternative. As mentioned earlier a query
can be seen as the definition of a data subset. Hence, only this queries need to be saved
in the query store. In addition it has to contain additional information to re-execute the
query. The recommendation includes a list of metadata information with references to
some other related recommendation:
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• The original query as posed to the database

• A potentially re-written query created by the system (R4, R5)

• Hash of the query to detect duplicate queries (R4)

• Hash of the result set (R6)

• Query execution timestamp (R7)

• Persistent identifier of the data source

• Persistent identifier for the query (R8)

• Other metadata (e.g. author or creator information) required by the landing page
(R11)

This query store is realized as an additional table for the database. Each item of the
list is discussed in the respective recommendation section. From the above list the table
schema shown in Listing 4.3 is created.

Listing 4.3: Query Store Table Schema

create table querystore (
qid INTEGER IDENTITY(1,1) NOT NULL PRIMARY KEY,
query VARCHAR(200) NOT NULL,
qsort VARCHAR(200) NOT NULL,
qhash VARCHAR(50) NOT NULL,
rhash VARCHAR(50) NOT NULL,
tmstmp DATETIME NOT NULL DEFAULT current_timestamp,

)

The qid serves as the unique primary key and is incremented each time a new query is
stored. If a specific subset needs to be re-generated this key can be used as an input
parameter for the workflow. The query attribute contains the original query string as
sent to the workflow. The explanation for the other defined attributes can be found in
4.2.4 and 4.2.5. The reasons for excluding the PID information of the data source can be
found in 4.2.7. The workflow should be designed to only store completely new queries.
This means the workflow has to check for each query if it is already stored.

4.2.4 R4: Query Uniqueness, R5: Stable Sorting

R4 Recommendation: ’Re-write the query to a normalized from so that identical
queries can be detected. Compute a check-sum of the normalized query to efficiently
detect identical queries.’
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Detecting identical queries can be a hard task since they can be expressed in different
forms. Since complex transforming of queries is not the goal of this thesis an assumption
for the input query of the workflow needs to be defined. The assumption is that a user
does not directly access the workflow. Using a standard interface consisting of a form
page and JavaScript would ensure the creation of standardized queries. Sorting the
parameter name and value pairs alphabetically, like suggested in the recommendation,
would be a simple method for standardization. Creating such a form page is not part of
the implementation.

The workflow still needs to modify the input query because of the changes of the weather
table to support versioning. These modifications are already defined in the sections 4.2.1
and 4.2.2. They extend the query to only select the newest version of an entry and
exclude deleted rows. The final query string is saved in the query store as the qsort
attribute.

The second part of the R4 recommendation is the checksum computation of the query.
To compute a checksum the python library hashlib 3 is used in a Python Script Module
which is part of the workflow. The hash function generates an md5 hash string of length
32 which can be used for duplicate detection. This value is saved as qhash attribute in
the query store.

R5 Recommendation: ’Ensure that the sorting of the records in the data set is
unambiguous and reproducible.’

The sequence of the records can have an influence on the experiment result. To make them
reproducible a stable sorting of the input dataset is necessary. For this recommendation
the same sorting strategy is used as described in the example of the RDA Guidelines.
The result subset always is sorted by the weather id column in descending order followed
by the sorting rules defined by the user. Even if the primary key also includes the version
id, it can be ignored because only the highest version is selected. Since the qsort attribute
of the query store is the extended query with all additional modifications it also contains
this sorting clauses. This way a re-execution does not require any new modifications. An
example for such an extended query is shown in Listing 4.4

3https://docs.python.org/2/library/hashlib.html
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Listing 4.4: Query Transformation
Original Query:

SELECT * FROM weatherdata
WHERE drybulbcelsius = 15
ORDER BY drybulbcelsius ASC

Extended Query:

SELECT * FROM weatherdata t1
WHERE drybulbcelsius = 15
AND vid = (SELECT MAX(vid)

FROM weatherdata t2
WHERE t2.wid = t1.wid)

AND deleted = 0
AND tmstmp < ’2012-01-25 16:51:44’
ORDER BY wid DESC, drybulbcelsius ASC

4.2.5 R6: Result Set Verification

R6 Recommendation: ’Compute fixity information (also referred to as checksum or
hash key) of the query result set to enable verification of the correctness of a result upon
re-execution.’

Creating a hash key of the result allows verifying if the re-generated subset has changed
in any way. To keep the computation of this hash time efficient only the column names,
weather ID and version ID of the result are used instead of the whole subset. These
values are combined in a single string and used as input for an md5 hash function. The
result hash is stored as the rhash attribute in the query store.

It is especially important to compare the resulting hash after the database has changed.
We assume that an already executed query is saved in the query store. If the same query
applied to the most current state of the database yields a different result two implications
follow. It means the database has changed during the execution time of the two queries
and that the query needs to be stored again with a new timestamp and different result
hash. However if the original query is reproduced by using the query store entry with
the original timestamp, the same result hash has to be obtained.

4.2.6 R7: Query Timestamping

Recommendation: ’Assign a timestamp to the query based on the last update to the
entire database (or the last update to the selection of data affected by the query or the
query execution time).’
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In the RDA Guidelines different ways of assigning a query timestamp are presented.
In order to ensure privacy the time of the last table change can be used as timestamp.
Another option is to use the timestamp of the last change of only the subset. Since both
methods require at least an additional query and privacy concerns can be neglected for
this thesis the simplest solution is used.

The final implementation just uses the execution time of the query as timestamp. This
time value is stored as the tmstmp attribute in the query store. Since this value should
always be set during an insert the default value current_timestamp, defined in Listing
A.2, is never used during the entry creation.

When re-executing a query this timestamp is used for an additional WHERE clause in
the SQL statement:

SELECT * FROM weatherdata
WHERE windspeed = 10
AND tmstmp < querytimestamp

The final workflow should also offer the possibility to re-execute a stored query with the
current timestamp. This is realized by an additional Boolean input parameter which is
explained in detail in the implementation section. If the results are the same as for the
original query no new entry has to be stored since the query hash is identical. However if
the result hash is different a new entry with the same query and the new timestamp is
created.

4.2.7 R8: Assigning Query PID, R9: Store the Query

R8 Recommendation: ’Assign a new PID to the query if either the query is new or if
the result set returned from an earlier identical query is different due to changes in the
data. Otherwise, return the existing PID of the earlier query to the user.’

Since the final system is only a prototype implementation, no real PID systems like DOIs
or ARKs are used. Instead the primary key qid of the query store is used as unique
identifier. This ID can be used as an input for the final workflow to re-execute older
queries. There is also no PID used for the data source since only one dataset is used for
the implementation.

To decide if a new query store entry needs to be created the same approach as described
in the example of the R8 recommendation is used. When a new query is received its
hash is searched in the query store. If it does not exist a new entry with all the needed
information is created. If the hash does exist the result hash is checked as well. In case
of a match both queries are identical and no new entry is needed.
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R9 Recommendation: ’Store query and metadata (e.g. PID, original and normalized
query, query and result set checksum, timestamp, superset PID, data set description,
and other) in the query store.’

If a new query is identified the following information is stored in the query store of the
system. Some of the values recommended in the RDA Guidelines are excluded. The
reasons are described in the respective subsection of this chapter.

• Unique Identifier (qid)

• Original Query

• Normalized and sorted query

• Hash of the query

• Hash of the result set

• Query execution timestamp (R7)

The R9 recommendation also presents an isolation principle for storing the query. In
order to ensure atomicity during the subset creation the data table must be locked for
any other operations. This table lock is assured by setting the Isolation Level of the
Azure SQL server to Serializeable which prevents any anomalies.

4.2.8 Remaining Recommendations R10-R14

R10 - Automated Citation Text Generation: ’Generate citation texts in the format
prevalent in the designated community for lowering the barrier for citing and sharing the
data. Include the PID into the citation text snippet. ’

R11 - Landing Pages: ’Make the PIDs resolve to a human readable landing page that
provides the data (via query re-execution) and metadata, including a link to the superset
(PID of the data source) and citation text snippet. ’

R12 - Machine Actionability: ’Provide an API / machine actionable landing page to
access metadata and data via query re-execution.’

The above recommendations describe a platform that should use the created workflow
and database tables to allow users to easily cite data. Creating such a platform is does
not fit the focus of this thesis but is interesting for future work. For completeness the
necessary steps for realizing each recommendation still will be discussed.

The R10 recommendation is about making the citation of data easier for users by
generating citation texts out of the query store automatically. It is also mentioned that
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users should be able to specify information during the subset creation which should be
stored as additional metadata in the query store. This could be done by creating an
interface in form of a website for accessing the content of the query store and also uses
the data citation workflow for subset creation.

This website could also include the landing pages for providing the data like described in
recommendation R11. Such a page would have to display the information stored in the
query store including all the metadata stated during uploading. The download button
would have to trigger the machine learning workflow by a RESTful API call with the
PID of the subset as attribute. To complete the functions of the website it should also
provide an API to allow query re-execution like described in recommendation R12.

R13 - Technology Migration: ’When data is migrated to a new representation (e.g.
new database system, a new schema or a completely different technology), migrate also
the queries and associated fixity information. ’

R14 - Migration Verification: ’Verify successful data and query migration, ensuring
that queries can be re-executed correctly. ’

The two recommendations describe the tasks necessary if the data is migrated to a new
database system to ensure long term compatibility. Such a change would definitely require
a modification of the workflow as well. But since such a migration will not be carried out
during this thesis these recommendation require no additional implementation tasks.

4.3 Workflow Implementation

This section describes the final workflow developed according to the RDA guidelines
shown in Figure 4.3. The modules in the blue rectangle present the original weather data
experiment shown in 4.1.

The first module (A) provides the necessary input parameters. The first Execute Python
Script module (C) processes them and identifies if an old subset from the query store
needs to be re-generated or the request is a new query. In both cases the query string is
transferred to the Reader module (B) which fetches the desired subset from the weather
database table.

The Machine Learning Studio has only closed modules, which means that it is not possible
to transmit the query to a Reader module. As a workaround the query string output
from the Python module has to be copied by hand into the Reader (D) query field. This
is shown in Figure 4.3 by the additional dashed line which does not exist in the real
workflow. Because this is not possible during runtime this workflow needs to be executed
twice. The first time the connection from module (C) to the second Python module (E)
has to be removed and the query field of the reader (D) must be empty. Only this way
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Figure 4.3: Workflow for Dynamic Data Citation

the final query is generated and then the workflow stops automatically. For the second
run the query has to be copied into the Reader module (D) and the Python modules
have to be reconnected.

Now the Reader (D) provides the requested subset to the actual experiment (I). The first
module of the experiment removes the wid, vid and tmstmp attributes as they do not
belong to the actual dataset. The experiment used for the workflow is generic and can be
replaced by any other experiment. It is also possible to use a Web Service Output module
instead. This way the subset can be received as a JSON and used for other applications
like described in 4.2.8.

The remaining modules of the workflow have to check if the executed query needs to
be saved in the query store. If this is the case, ambiguous information is generated and
a new entry is inserted into the store. In the opposite scenario the query is already in
the store and thus nothing has to be saved. The tasks of each module are described in
greater detail in the respective section of this chapter.
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4.3.1 Input Parameter Module (A)

The first module (A) of the workflow provides the initial parameter of the workflow. These
parameters are entered manually in the property field of the module. If the workflow
should be executed by a RESTful API call this module has to be replaced with a Web
Service Input module. The input parameters of the module have the specification shown
in Listing 4.5

Listing 4.5: Input Parameter Definition (A)
Input Type: DataFrame
Input Parameter:

Name Type Description Allowed Values
query String query for subset generation SQL query syntax
qid Integer for re-execution of existing query >= 0
originalts Boolean use original timestamp true,false

The query parameter represents the SQL query for the subset creation. This query is
assumed to be in a standardized form like described in the R4 recommendation 4.2.4.
The qid parameter is used for re-executing a specific query if the value is bigger than
0. If this is the case the first parameter is ignored and the workflow tries to re-execute
the query with the specified id. The originalts parameter only is checked in case of a
query re-execution. If it is ’true’ the original timestamp of the stored query is used. In
the other case no timestamp is used and the old query is applied to the current state of
the database.

4.3.2 Process Parameter Module (C)

Listing 4.6: Input Port Definition (C)
Input DataFrame1
Description: Output of Input Parameter Module (A)

Input DataFrame2
Description: Entries from query store provided by Reader module (B)

Name Description
qid query ID
qsort modified query
timestmp query execution timestamp

The parameters are passed forward as a pandas DataFrame 4 to an Execute Python Script
module (C). The main task of this script is to check the parameters and to identify if a
completely new query is used or an old query is re-executed.

4http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html
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For the first case the new query is modified to ensure a stable sorting to fulfill the R5
recommendation. In addition the WHERE clause is extended to exclude older versions
and deleted entries like described in 4.2.1. The modified query is used as input for a
hash function which generates an md5 hash string like described in 4.2.4. The output
DataFrame shown in Listing 4.7 is created and is sent to the next module:

Listing 4.7: Output Port Definition (C)

Name Description
query original query
qsort modified query
qhash query hash

In case of a re-execution the entry with the qid parameter is received from the query
store. Typically it is possible to access a database directly in a python script which
would greatly simplify the whole workflow. However, this would require an internet
connection and since the modules of the Machine Learning Studio are closed units, direct
access is not possible. Because of this the necessary attributes of the query store have
to be extracted with a Reader module (B). The module sends all the stored queries,
their qid and the timestamp to the second input port of the python module. If the
originalts input parameter is ’true’ the script selects the query with the right qid, adds
the timestamp in the WHERE clause and sends the query to the next module which
executes the query. This implies that there is no new query that is inserted in the query
store. An empty DataFrame is forwarded to the next module in this situation. This
signalizes the remaining modules to skip their tasks and forward the empty DataFrame
which results in no further actions.

If the originalts parameter is ’false’ the same approach as for a new query is used. The
old query is forwarded and is executed on the current state of the weather data table.
The final script for this module is shown in Listing A.5 in the appendix.

4.3.3 Query Metadata Module (E)

Listing 4.8: Input Port Definition (E)
Input DataFrame1
Description: Resultset generated by Query

Input DataFrame2
Description: DataFrame from Process Parameter Module (C)

After the query is executed in the Reader module (D) and the result subset is sent to the
experiment some additional metadata has to be captured. In this module the result hash
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is computed with an md5 function which uses the column names, all the weather IDs
and versions IDs of the dataset as input as described in 4.2.5.

To fulfill R7 4.2.6 the execution time of the query is needed. The closed modules of the
Machine Learning Studio however make it impossible to get the exact timestamp of the
execution. Hence, the time directly after the execution module is recorded. Even if the
timestamp does not resemble the true execution time and this can lead to inconsistencies,
it is the only viablel solution in Azure ML.

The python script used for this module is shown in Listing A.6 in the appendix. The
generated information is added to the received DataFrame. The final output frame shown
in Listing 4.9 and is forwarded to the next module (G).

Listing 4.9: Output Port Definition (E)

Name Description
query original query
qsort modified query
qhash query hash
rhash result hash
tmstmp query execution timestamp

4.3.4 Hash Compare Module (G)

Listing 4.10: Input Port Definition (G)
Input DataFrame1
Description: Output of Query Metadata Module (E)

Input DataFrame2
Description: Entries from query store (F)

Name Description
qhash query hash
rhash result set hash

In the final Python script module the result set verification described in 4.2.5 is performed.
Once again the specific entry of the query store cannot be requested directly in the
module. Hence, all the query and result hashes are requested by a Reader module (F)
and received in input port 2. The module checks if an entry with the same query hash
and result hash already exists in the query store. Both values have to be checked since a
query can have different results if the database has changed. If no entry is stored yet, the
whole DataFrame received in input port 1 is sent to a Writer module (H). It inserts this
information as a new entry into the query store. The options of this module are shown
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Figure 4.4: Writer Module (F) Options

in Figure 4.4. If an entry matches the executed query an empty DataFrame is forwarded
and no entry is created. The used script is shown in Listing A.7 in the appendix.

4.4 Evaluation
After the implementation several use cases are tested to evaluate if the workflow works as
expected. As explained in the previous section the workflow always needs to be executed
twice. The first time is needed to create the query which is manually copied to the Reader
module. This is not explicitly mentioned for the following use cases of this chapter.

4.4.1 Subset Creation

For the first run the initial parameters (P1) shown in Listing 4.11 are used to create a
subset S1:

Listing 4.11: Parameters P1
Parameter Value
query SELECT * FROM weatherdata WHERE drybulbcelsius = 28.3
qid 0
originalts false

These parameters are inserted into the Input Parameter module manually before the
workflow is started. The first Python Script module creates the query shown in Listing
4.12.
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Listing 4.12: Normalized Query from P1

select * from weatherdata wd
where vid = (select max(vid) from weatherdata xd

where wd.wid = xd.wid)
and deleted = 0
and drybulbcelsius = 28.3
order by wid DESC

The S1 subset created by this query through executing it in the Reader module has 7770
rows. Since this is the first query an entry is created in the query store illustrated in
Listing 4.13. This entry represents the subset definition of S1.

Listing 4.13: Query Store Entry 1
Attribute Value
qid 1
query select * from weatherdata where drybulbcelsius = ’28.3’
qsort select * from weatherdata wd where...
qhash 77b1070e32268ce385fe915ff17191a1
rhash e297b690d14510de000fcf41d695cdeb
tmstmp 2016-01-10 10:36:53

4.4.2 Update Dataset Entries

When repeating the query from the last section the Hash Compare module identifies that
the query is already stored and forwards an empty DataFrame. In order to alter the
requested subset the first subset entry is changed with the following SQL statement:

UPDATE weatherdata
SET windspeed=10
WHERE wid = 404393

This update invoked the weatherdata_update trigger and creates a new version of the
entry with the updated windspeed attribute. When querying the database directly the
results showen in Figure 4.5 contain both versions with different timestamps.
After this change the workflow is once again executed with the parameter set P1. The
obtained results are different even if the same query is used. Since the result hash is
different a new entry shown in Listing 4.14 is created in the query store. Compared to
the first entry it contains a different result hash and a new timestamp.
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Figure 4.5: Weatherdata Table Entries

Listing 4.14: Query Store Entry 2
Attribute Value
qid 2
query select * from weatherdata where drybulbcelsius = ’28.3’
qsort select * from weatherdata wd where...
qhash 77b1070e32268ce385fe915ff17191a1
rhash 49489e4a71a74acdc072d1d7b453d897
tmstmp 2016-01-10 10:43:20

4.4.3 Remove Dataset Entries

To create a different subset which does not contain any entry from the first subset the
parameters (P2) shown in Listing 4.15 are used.

Listing 4.15: Parameters P2
Parameter Value
query SELECT * FROM weatherdata WHERE drybulbcelsius = 27.7
qid 0
originalts true

The resulting subset S2 contains only seven entries 4.6.

The workflow once again identifies a new subset definition. Listing 4.16 contains the
query store entry created.
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Figure 4.6: Subset S2

Listing 4.16: Query Store Entry 3
Attribute value
qid 3
query select * from weatherdata where drybulbcelsius = ’27.7’
qsort select * from weatherdata wd where...
qhash c12934eb678f080f42399b28ffd2a9c2
rhash 7b868cff93dfb84a07cadb2f94bb9ccc
tmstmp 2016-01-10 11:32:46

To modify the subset S2 the first row is deleted with this statement:

DELETE FROM weatherdata
WHERE wid = 363939 AND vid=1

This SQL delete statement invokes the weatherdata_delete trigger. The trigger performs
a rollback and instead of deleting the row, a new version is created with the deleted flag
set to 1. Figure 4.7 shows both versions stored in the weatherdata table.

The workflow is executed again with the parameters P2 from Listing 4.15. Figure 4.8
contains the changed results (S3) of the workflow run. The new subset (S3) is saved by
creating a query store entry with a different result hash and timestamp.

57



Figure 4.7: Weatherdata Table Entries

Figure 4.8: S3 - originated from S2 after delete

4.4.4 Query Re-Execution 1

To re-execute a subset creation a qid stored in the query store is set as an initial parameter.

Listing 4.17: Parameters P3
Parameter value
query none
qid 1
originalts true

With the parameter set P3 shown in Listing 4.17 the first query of the evaluation is
re-executed. Because the originalts parameter is set to ’true’ the query is extended with
the original timestamp by the Process Parameter module. The workflow extracts the
query from the qsort attribute from query store entry shown in Listing 4.13. This query
is modified with an additional timestamp check to request the state former state of the
database. Listing 4.18 shows the final query executed by the workflow.
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Listing 4.18: Normalized Query with Original Timestamp

select * from weatherdata wd
where tmstmp < ’2016-01-08 15:36:53’ and
vid = (select max(vid) from weatherdata xd

where tmstmp < ’2016-01-08 15:36:53’
and wd.wid = xd.wid)

and deleted = 0 and drybulbcelsius = ’28.3’
order by wid DESC

The result shown in Figure 4.9 is the original S1 subset with the unchanged version of
the first row (wid = 404393). Since this is an exact re-execution the Process Parameter
module does not forward any DataFrame and thus only the experiment section of the
workflow is still executed.

Figure 4.9: Re-generated S1 Subset

4.4.5 Query Re-Execution 2

The other type of re-execution is done by using an old query on the current state of the
database by setting the originalts parameter to ’false’. With the next initial parameters
(P4) shown in Listing 4.19 the query for creating subset S2 is re-executed.

Listing 4.19: Parameters P4
Parameter value
query none
qid 3
originalts false

Since this request can be a new subset, the workflow checks if the same query with a
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identical result hash is already stored in the query store. Because the query and the
result hash matches the entry responsible for creating S3 no new entry is created.

To verify that a new entry is created, when the result set is different, the year attribute
of the first row from subset S3 is updated. After this the same parameters (P4) are used
once again which lead to the results with the changed attribute shown in Figure 4.10.

Figure 4.10: Re-execution with current timestamp

Since the result hash is different a new query store entry shown in Listing 4.20 is created.

Listing 4.20: Query Store Entry 5
Attribute value
qid 5
query select * from weatherdata where drybulbcelsius = ’27.7’
qsort select * from weatherdata wd where...
qhash c12934eb678f080f42399b28ffd2a9c2
rhash 9c0ffae8d2527c08bed792e6885ae22e
tmstmp 2016-01-10 17:15:30

4.5 Discussion

The starting point of this chapter was an initial workflow which received the whole
dataset from a SQL database and used it to conduct an experiment. The workflow
and the database are modified according to the recommendations created by the RDA
Working Group on Dynamic Data Citation [43]. The final implementation of this workflow
supports the data citation of an evolving database. This makes it possible to repeat an
experiment with the exact data subset even if the data source has changed.

By setting an initial query the workflow creates a subset which is used in an experiment.
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For this subset a query store entry is created which contains the query, additional
metadata and the execution timestamp. The workflow can detect subset duplicates by
comparing hash strings. It can also re-generate the exact same subset by setting the
corresponding query id from the query store as initial parameter. Since the database
supports versioning the query is applied to the state the database was during the original
query execution.

By using web service modules the workflow could be accessible by RESTful API calls.
By removing the generic experiment the workflow could be directly used by a dynamic
data citation application for subset generation.

The workflow is designed to support any dataset as long as it is stored in a database
supporting data versioning. The versioning solution used for the database keeps the
query complexity and storage space needed low. This is only possible because a time
series dataset is used which only consists of one table. If the database would consist of
several tables the versioning approach must be adapted. The ISO SQL:2011 standard
introduces a versioning solution which can replace the custom approach used. However
during the implementation no DBMS supporting this standard is available.

One drawback of using the Azure Machine Learning Studio is that recording the exact
execution time of the query is not possible. Like for the provenance implementation the
timestamp is recorded in the following module. This solution is not optimal but there
are no alternatives possible in Azure ML.

Another issue is that there is no way to dynamically change properties of modules. This
is once again a result of the closed unit concept of the Azure ML Studio. There is no
way to transfer the modified subset query into a Reader module. As a consequence the
citation workflow has to be executed two times in order to work properly. The first
execution is necessary to generate the modified subset query. This query has to be copied
manually to the Reader module which accesses the Query Store.

Another implication of this issue is that all the rows of the query store are extracted
instead of just the rows needed. This is necessary because it would require an additional
manual step to copy a more specific query into the Reader modules which access the query
store. But since only a part of the attributes are retrieved by the Reader module and
the query store should not have a huge amount of entries the performance is acceptable.

The Reader and Writer module are the only way to access a database. They only support
SELECT and INSERT statements. It is not possible to properly lock or unlock the
database after a change. Typically it is possible to access a database directly in a
python script. This would greatly simplify the whole workflow structure as no additional
Reader and Writer modules would be necessary. However, this would require an internet
connection. Since the Python Script module is a closed units, direct access is not possible.
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This is also the case for databases hosted by Azure.

The Microsoft Azure Machine Learning Studio could benefit from supporting repeatable
experiments with a changing data source. The following points and their description are
recommended to support such a feature.

• Offer a Database Management System with a versioning support

• Offer Modules for repeatable experiments (Read Subset, Evaluate Subset)

• Manage subsets in an internal Query Store

The modules of the workflow shown in 4.3 can be combined which would reduce the
module amount greatly. The first modules (A,B,C) can be combined into a Read Subset
module. Using a database with versioning is still required. This database could also be
provided through a cloud service of Azure. The module has the following properties:

• Method

• Query or QID

• Data Source connection details

• Additional Information (optional)

For the Method property the options to define a new subset or reuse an existing subset
are possible. Depending on this choice the next property is a text field for inserting the
query or the qid of a stored query. The next property contains the connection details
for the data source. The last property is a text field for specifying some custom details
about the subset which would be saved in the query store if a new entry is created.

The query store could be implemented as a central database which is managed internally.
It could contain entries from different users since the structure of the query store is the
same for different data sources. The user only needs to receive the generated qid of his
subset and an interface for searching in the query store running in the background. The
module would need two output ports. The first port sends the query to a Reader module
which executes the query. The Reader module (D) would need an additional input port
in this case. The second port would send the query and additional metadata to the new
Evaluate Subset module.

The Evaluate Subset module is a combination of the remaining modules (E,F,G,H) from
the workflow shown in 4.3. Using this module is only necessary if a user wants to store
their subset in the query store. Since the query store is handled by Azure the modules for
accessing it the modules (F,H) would no longer be necessary. Since all the information is
send by the Read Subset module no properties are required. The function of this module
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is to identify if the executed query already exists in the query store. If this is not the
case a new entry is created. In both cases the output of this module is the information
of the corresponding query store entry.

The implemented workflow documented in this chapter makes it possible to re-generate
an earlier created dataset. This makes it possible to verify experiments by repeating
them with the exact same dataset. Since the data can be reused even if the data source
has changed the workflow supports dynamic data citation. Hence, the goal of improving
the repeatability of data-driven workflows was achieved.
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CHAPTER 5
Summary

The general goal of this work is to improve the verifiability and repeatability of data-
driven workflows. In the first chapter the motivation for choosing this topic was presented.
Three research questions were defined to achieve this goal. They deal with the concepts
of Data Provenance and Dynamic Data Citation and how they can be applied to machine
learning environments. We also pointed out that a practical implementation is necessary
for researching the defined questions.

In the next chapter we provided an overview of the related work. This includes the most
recent scientific work about Data Provenance and Data Citation. It is also investigated
how these topics are used by some established workflow management systems. This
was useful to decide which technologies and models to use for the following chapters.
Researching these topics also provided crucial insights for the structure of the practical
implementation.

The next two chapters investigate the research questions by developing ways to incorporate
the researched concepts into a high-performance, cloud-based workflow environment.
The Microsoft Machine Learning Studio is used to apply the created approaches. It
offers the possibility to create, test and publish predictive analysis models in the form of
workflows. To use the full potential of this workflow management system all the offered
functionalities, possibilities as well as their limitations had to be analyzed. To prove
the feasibility of the created concepts Azure ML workflows which support the created
concepts are developed.

The third chapter is focused on the first two research questions. The first objective was to
identify which provenance information can be collected in the cloud-based environment.
Therefore the possibilities offered by the Machine Learning Studio had to be analyzed.
The next task was to map the collected information into a data model. For this the
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PROV model was used which offers the proper tools and methods for documenting each
step of a workflow execution.

The implementation of this chapter involved the extension of a generic workflow with
additional components. These components are modules containing Python scripts which
collect provenance information during workflow execution. This information is combined
into a Provenance trail and saved in a database. The generically designed scripts were
used to extend a second workflow to test the efficiency of the created approach.

The resulting implementation approach offers a way to document the result creation
process of a workflow with the help of data provenance. Since the used scripts are
generically designed the method can be applied to any workflow created in the Microsoft
Azure Machine Learning Studio. The created implementation approach can be used for
other workflow management systems as well.

The generated provenance data helps to understand the creation process of the results.
Since the used PROV model is a common standard, the recorded data can interchanged
and compared between different workflow environments. The provenance information
can also be used to verify if results are still consistent after components or resources of a
workflow have changed. Thus we can say that the created implementation corresponds
with the general focus of this thesis.

In the fourth chapter the last research question is covered. It investigates how the Azure
ML Studio can incorporate dynamic data citation as a service. As a starting point
a system consisting of a simple workflow experiment which uses an SQL database as
source was used. The database provides the dynamic component to this system as it is a
constantly changing data source.

During the research a solution approach for handling dynamic data was found. The
guidelines published by the RDA Working Group for Data Citation offered the fundament
for the created implementation. The steps necessary to realize each recommendation in
the Azure ML Studio were analyzed. By realizing these steps the system was modified
to support the Dynamic Data Citation concept. For this a versioning system was
implemented for the database. The initial generic experiment was also modified with a
set of modules. These modules identify if a new subset of the database is used or an older
query is re-executed. The requested subset is retrieved from the database and provided
to the actual experiment. The final implementation was thoroughly tested to ensure that
the system works as intended. The created Python scripts and design methods can be
used to extend other Azure ML experiments as well. The only requirement is to have a
database with versioning.

The final solution makes it possible to repeat experiments with the exact same dataset,
even if the database has changed in the meantime. By supporting data citation it offers a
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mechanism for verifying the results of an experiment. Hence, the created implementation
contributes to the goal of this thesis.

5.1 Azure Limitations and Recommendations

The Microsoft Azure Machine Learning Studio was a great environment to work with.
It offers a lot of possibilities for the development of the implementation. Since the ML
Studio is mainly intended for creating machine learning experiments we encountered
some limitations. As a result the components of the Studio were sometimes used in other
ways than intended.

The following list summarizes all the issues and limitations encountered and how they
were handled. This does not mean that some features of the Azure ML studio have an
unsatisfactory design, but rather that their intended function did not fit for the tasks
conducted during this work. Each point is described in detail in the discussions of chapter
3.4 and 4.5.

• Most modules can only communicate by using DataFrames. In order to forward a
simple string a complex data object has to be generated.
Workaround: Create DataFrame in Python Script.

• The Python Script module has only two input ports and one output port.
Workaround: The data output of only two modules could be combined by a
Python Script modules. Additional modules were necessary to combine provenance
information from several modules.

• Modules are closed units, there is no way to dynamically extract or change proper-
ties.
Workaround: Combining property information into a ZIP bundle which can be
accessed during runtime.

• The execution time of a module cannot be extracted directly from a module.
Workaround: Additional Modules (Python Scripts) for time recording were used
before and after each module of interest.

• Different Python Script behavior when activating a workflow via API, instead of
using the Machine Learning Studio. If several Script modules are connected in a
row only the first module is executed.
This was reported to Azure ML developers. They are aware of the issue and are
working on it.

• Recording information about the environment the workflow was executed in was
not available in this cloud-based environment. Such information has to be collected
on a higher level and was not possible without developer access.
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• Setting a modified query for a Reader module was not possible during runtime.
Workaround: As a consequence the citation workflow must be executed twice.

• The only way to access a database is the usage of SELECT and INSERT statements
with a Reader or Writer module. It is not possible to manually lock or unlock the
database during crucial changes.

• Since the Python Script modules are executed in a closed environment they cannot
access Azure databases.
Workaround: Extensive use of Reader and Writer modules.

The cloud-based Azure platform could benefit from supporting the methods presented
in this thesis. Therefore the following recommendations were created for improving the
verifiability and repeatability of workflows created in their machine learning environment:

General

• Offer a possibility for dynamically changing module properties (setting query for
Reader Module during runtime).

• Option for recording the execution time of a module.

• Extend the port number of Python Script modules.

• Offer a way to send specific sql commands to a database.

• Provide information about the execution environment.

Data Provenance

• Enable automatic capturing of provenance information by automatically collecting
meta data during workflow execution.

• Using the PROV model for describing the Provenance information[29].

• Display provenance information via GUI or web service.

• Offer provenance data export as XML or into a database.

Data Citation

• Offer a Database Management System with versioning support.

• Offer modules for repeating experiments with the same data (Read Subset, Evaluate
Subset).

• Manage subsets in an internal Query Store by implementing the data citation
functionality as a service centrally within the Azure ML Studio.
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5.2 Future Work

Finally, we give the following suggestions for further research:

The applicability of the created method for recording data for other workflow management
systems needs to be further investigated. The creation process of such applications works
in a similar way. By using the same structure of the approach presented in this thesis it
should be possible to record provenance information in other workflow environments. It
should be possible to create almost the same provenance data in different applications.
Researching this matter could help to further improve the verification of data-driven
experiments.

Also the provenance implementation could be extended with a method for answering
provenance related queries. The recorded provenance information is currently only stored
in a single database table. The focus of this thesis was to create a method for record this
data during workflow execution. But a system which fully supports data provenance also
requires a convenient method for accessing the stored information.

Finally the remaining RDA guidelines for making dynamic data citable could be realized.
The necessary steps for each recommendation are discussed in 4.2.8. This basically
comprises the extension of the data citation implementation. This includes the imple-
mentation of an interface for triggering the created data citation workflow and accessing
the query store.
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APPENDIX A
Appendix

A.1 Provenance XML
Description: Provenance information collected during the execution of the Car Price
Prediction Experiment 3.3.1.

Listing A.1: Provenance XML

<?xml version="1.0" encoding="UTF-8"?>
<prov:document xmlns:prov="http://www.w3.org/ns/prov#" xmlns:ml="http://machinelearning.example.

com/" xmlns:dct="http://purl.org/dc/terms/" xmlns:foaf="http://xmlns.com/foaf/0.1/">

<!-- Entities -->

<prov:entity prov:id="ml:cardataset">
<ml:colsize>26</ml:colsize> <ml:rowsize>205</ml:rowsize>

</prov:entity>
<prov:entity prov:id="ml:dataset1">

<ml:colsize>25</ml:colsize> <ml:rowsize>205</ml:rowsize>
</prov:entity>
<prov:entity prov:id="ml:datasetclean">

<ml:colsize>25</ml:colsize> <ml:rowsize>193</ml:rowsize>
</prov:entity>
<prov:entity prov:id="ml:dataset2">

<ml:colsize>10</ml:colsize> <ml:rowsize>193</ml:rowsize>
</prov:entity>
<prov:entity prov:id="ml:testdata">

<ml:colsize>10</ml:colsize> <ml:rowsize>48</ml:rowsize>
</prov:entity>
<prov:entity prov:id="ml:traingdata">

<ml:colsize>10</ml:colsize> <ml:rowsize>145</ml:rowsize>
</prov:entity>
<prov:entity prov:id="ml:linearReg1">

<ml:params method="OLS" regulationWeight="0.001"
interceptTerm="true" allowUnknownLevels="true"/>

</prov:entity>
<prov:entity prov:id="ml:model"/>
<prov:entity prov:id="ml:scoredata">

<ml:colsize>11</ml:colsize> <ml:rowsize>48</ml:rowsize>
</prov:entity>
<prov:entity prov:id="ml:evaldata">

<ml:mae>1755.564342</ml:mae> <ml:rmse>2488.708654</ml:rmse>
<ml:rae>0.29321</ml:rae> <ml:rse>0.091937</ml:rse>
<ml:detCoeff>0.908063</ml:detCoeff>
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</prov:entity>

<!-- Activities -->

<prov:activity prov:id="ml:projection1">
<prov:startTime>2015-09-23T09:21:11</prov:startTime>
<prov:endTime>2015-09-23T09:21:36</prov:endTime>
<ml:params exclude="normalized-losses"/>

</prov:activity>
<prov:activity prov:id="ml:cleanmissing">

<prov:startTime>2015-09-23T09:21:36</prov:startTime>
<prov:endTime>2015-09-23T09:22:06</prov:endTime>

</prov:activity>
<prov:activity prov:id="ml:projection2">

<prov:startTime>2015-09-23T09:22:06</prov:startTime>
<prov:endTime>2015-09-23T09:22:37</prov:endTime>

<ml:params include="make,body-style,wheel-base,engine-size,
horsepower,peak-rpm,highway-mpg,price,fuel-type,drive-wheels"/>

</prov:activity>
<prov:activity prov:id="ml:split">

<prov:startTime>2015-09-23T09:22:37</prov:startTime>
<prov:endTime>2015-09-23T09:22:59</prov:endTime>
<ml:params trainingfraction="0.75"/>

</prov:activity>
<prov:activity prov:id="ml:trainmodel">

<prov:startTime>2015-09-23T09:23:02</prov:startTime>
<prov:endTime>2015-09-23 09:23:43</prov:endTime>
<ml:params column="price"/>

</prov:activity>
<prov:activity prov:id="ml:scoremodel">

<prov:startTime>2015-09-23T09:22:59</prov:startTime>
<prov:endTime>2015-09-23T09:23:43</prov:endTime>

</prov:activity>
<prov:activity prov:id="ml:evalmodel">

<prov:startTime>2015-09-23T09:23:43</prov:startTime>
<prov:endTime>2015-09-23T09:24:15</prov:endTime>

</prov:activity>

<!-- Usage and Generation -->

<prov:used prov:id="u1">
<prov:activity prov:ref="ml:projection1"/>
<prov:entity prov:ref="ml:cardataset"/>
<prov:atTime>2015-09-23T09:21:11</prov:atTime>

</prov:used>
<prov:wasGeneratedBy prov:id="g1">

<prov:entity prov:ref="ml:dataset1"/>
<prov:activity prov:ref="ml:projection1"/>
<prov:atTime>2015-09-23T09:21:36</prov:atTime>

</prov:wasGeneratedBy>
<prov:used prov:id="u2">

<prov:activity prov:ref="ml:cleanmissing"/>
<prov:entity prov:ref="ml:dataset1"/>
<prov:atTime>2015-09-23T09:21:36</prov:atTime>

</prov:used>
<prov:wasGeneratedBy prov:id="g2">

<prov:entity prov:ref="ml:datasetclean"/>
<prov:activity prov:ref="ml:cleanmissing"/>
<prov:atTime>2015-09-23T09:22:06</prov:atTime>

</prov:wasGeneratedBy>
<prov:used prov:id="u3">

<prov:activity prov:ref="ml:projection2"/>
<prov:entity prov:ref="ml:datasetclean"/>
<prov:atTime>2015-09-23T09:22:06</prov:atTime>

</prov:used>
<prov:wasGeneratedBy prov:id="g3">

<prov:entity prov:ref="ml:dataset2"/>
<prov:activity prov:ref="ml:projection2"/>
<prov:atTime>2015-09-23T09:22:37</prov:atTime>

</prov:wasGeneratedBy>
<prov:used prov:id="u4">

<prov:activity prov:ref="ml:split"/>
<prov:entity prov:ref="ml:dataset2"/>
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<prov:atTime>2015-09-23T09:22:37</prov:atTime>
</prov:used>
<prov:wasGeneratedBy prov:id="g4">
<prov:entity prov:ref="ml:testdata"/>
<prov:activity prov:ref="ml:split"/>
<prov:atTime>2015-09-23T09:22:59</prov:atTime>

</prov:wasGeneratedBy>
<prov:used prov:id="u5">
<prov:activity prov:ref="ml:scoremodel"/>
<prov:entity prov:ref="ml:testdata"/>
<prov:atTime>2015-09-23T09:22:59</prov:atTime>

</prov:used>
<prov:wasGeneratedBy prov:id="g5">
<prov:entity prov:ref="ml:trainingdata"/>
<prov:activity prov:ref="ml:split"/>
<prov:atTime>2015-09-23T09:22:59</prov:atTime>

</prov:wasGeneratedBy>
<prov:used prov:id="u6">
<prov:activity prov:ref="ml:trainmodel"/>
<prov:entity prov:ref="ml:linearReg1"/>

</prov:used>
<prov:used prov:id="u6">
<prov:activity prov:ref="ml:trainmodel"/>
<prov:entity prov:ref="ml:trainingdata"/>
<prov:atTime>2015-09-23T09:23:02</prov:atTime>

</prov:used>
<prov:wasGeneratedBy prov:id="g5">
<prov:entity prov:ref="ml:model"/>
<prov:activity prov:ref="ml:trainmodel"/>
<prov:atTime>2015-09-23T09:23:43</prov:atTime>

</prov:wasGeneratedBy>
<prov:used prov:id="u7">
<prov:activity prov:ref="ml:scoremodel"/>
<prov:entity prov:ref="ml:model"/>
<prov:atTime>2015-09-23T09:22:59</prov:atTime>

</prov:used>
<prov:wasGeneratedBy prov:id="g6">
<prov:entity prov:ref="ml:scoredata"/>
<prov:activity prov:ref="ml:scoremodel"/>
<prov:atTime>2015-09-23T09:23:43</prov:atTime>

</prov:wasGeneratedBy>
<prov:used prov:id="u8">
<prov:activity prov:ref="ml:evalmodel"/>
<prov:entity prov:ref="ml:scoredata"/>
<prov:atTime>2015-09-23T09:23:43</prov:atTime>

</prov:used>
<prov:wasGeneratedBy prov:id="g7">
<prov:entity prov:ref="ml:evaldata"/>
<prov:activity prov:ref="ml:evalmodel"/>
<prov:atTime>2015-09-23T09:24:15</prov:atTime>

</prov:wasGeneratedBy>

<!-- Agents and Responsibility -->

<prov:agent prov:id="ml:user">
<prov:type>prov:Person</prov:type>
<foaf:givenName>Doe</foaf:givenName>

</prov:agent>
<prov:agent prov:id="ml:studio">
<prov:type>prov:SoftwareAgent</prov:type>

</prov:agent>
<prov:actedOnBehalfOf>
<prov:delegate prov:ref="ml:studio"/>
<prov:responsible prov:ref="ml:user"/>

</prov:actedOnBehalfOf>
<prov:wasAssociatedWith>
<prov:activity prov:ref="ml:projection1"/>
<prov:agent prov:ref="ml:studio"/>

</prov:wasAssociatedWith>
<prov:wasAssociatedWith>
<prov:activity prov:ref="ml:cleanmissing"/>
<prov:agent prov:ref="ml:mlstudio"/>

</prov:wasAssociatedWith>
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<prov:wasAssociatedWith>
<prov:activity prov:ref="ml:projection2"/>
<prov:agent prov:ref="ml:mlstudio"/>

</prov:wasAssociatedWith>
<prov:wasAssociatedWith>

<prov:activity prov:ref="ml:split"/>
<prov:agent prov:ref="ml:studio"/>

</prov:wasAssociatedWith>
<prov:wasAssociatedWith>

<prov:activity prov:ref="ml:trainmodel"/>
<prov:agent prov:ref="ml:mlstudio"/>

</prov:wasAssociatedWith>
<prov:wasAssociatedWith>

<prov:activity prov:ref="ml:scoremodel"/>
<prov:agent prov:ref="ml:mlstudio"/>

</prov:wasAssociatedWith>
<prov:wasAssociatedWith>

<prov:activity prov:ref="ml:evalmodel"/>
<prov:agent prov:ref="ml:mlstudio"/>

</prov:wasAssociatedWith>
</prov:document>
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A.2 WeatherData Schema
Description: Table schema definition of the weather data which is used as a data source
for the Workflow for supporting dynamic data citation.

Listing A.2: Weatherdata Table Schema
create table weatherdata (
wid INTEGER IDENTITY(1,1) NOT NULL,
vid INTEGER DEFAULT 1 NOT NULL,
tmstmp DATETIME NOT NULL DEFAULT current_timestamp,
airportID INTEGER,
year INTEGER,
month INTEGER,
day INTEGER,
time INTEGER,
timezone INTEGER,
skycondition VARCHAR(50),
visibility FLOAT,
weathertype VARCHAR(50),
drybulbcelsius FLOAT,
wetbulbcelsius FLOAT,
dewpointcelsius FLOAT,
relativehumidity INTEGER,
windspeed INTEGER,
winddirection VARCHAR(20),
valueforwindcharacter INTEGER,
stationpressure FLOAT,
pressuretendency FLOAT,
pressurechange INTEGER,
sealevelpressure FLOAT,
recordtype VARCHAR(20),
hourlyprecip VARCHAR(20),
altimeter FLOAT,
PRIMARY KEY (wid, vid)
)
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A.3 WeatherData Update Trigger

Description: This trigger is necessary for the versioning solution of the database used
in chapter 4. Instead of updating a row this trigger creates a new entry with the changed
attributes.

Listing A.3: Update Trigger

CREATE TRIGGER weatherdata_update
ON weatherdata
AFTER UPDATE
as
begin
DECLARE @wid int, @vid int,
@airportID INTEGER,
@year INTEGER,
@month INTEGER,
@day INTEGER,
@time INTEGER,
@timezone INTEGER,
@skycondition VARCHAR(50),
@visibility FLOAT,
@weathertype VARCHAR(50),
@drybulbcelsius FLOAT,
@wetbulbcelsius FLOAT,
@dewpointcelsius FLOAT,
@relativehumidity INTEGER,
@windspeed INTEGER,
@winddirection VARCHAR(20),
@valueforwindcharacter INTEGER,
@stationpressure FLOAT,
@pressuretendency FLOAT,
@pressurechange INTEGER,
@sealevelpressure FLOAT,
@recordtype VARCHAR(20),
@hourlyprecip VARCHAR(20),
@altimeter FLOAT

SET @wid = (SELECT wid FROM inserted)
SET @VID = (SELECT vid FROM inserted) + 1
SET @airportID = (SELECT airportID FROM inserted)
SET @year = (SELECT year FROM inserted)
SET @month = (SELECT month FROM inserted)
SET @day = (SELECT day FROM inserted)
SET @time = (SELECT time FROM inserted)
SET @timezone = (SELECT timezone FROM inserted)
SET @skycondition = (SELECT skycondition FROM inserted)
SET @visibility = (SELECT visibility FROM inserted)
SET @weathertype = (SELECT weathertype FROM inserted)
SET @drybulbcelsius = (SELECT drybulbcelsius FROM inserted)
SET @wetbulbcelsius = (SELECT wetbulbcelsius FROM inserted)
SET @dewpointcelsius = (SELECT dewpointcelsius FROM inserted)
SET @relativehumidity = (SELECT relativehumidity FROM inserted)
SET @windspeed = (SELECT windspeed FROM inserted)
SET @winddirection = (SELECT winddirection FROM inserted)
SET @valueforwindcharacter = (SELECT valueforwindcharacter FROM inserted)
SET @stationpressure = (SELECT stationpressure FROM inserted)
SET @pressuretendency = (SELECT pressuretendency FROM inserted)
SET @pressurechange = (SELECT pressurechange FROM inserted)
SET @sealevelpressure = (SELECT sealevelpressure FROM inserted)
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SET @recordtype = (SELECT recordtype FROM inserted)
SET @hourlyprecip = (SELECT hourlyprecip FROM inserted)
SET @altimeter = (SELECT altimeter FROM inserted)

rollback transaction
set identity_insert weatherdata on
insert into weatherdata(wid, vid, airportID, year, month, day, time, timezone ,

skycondition, visibility, weathertype ,drybulbcelsius, wetbulbcelsius,
dewpointcelsius, relativehumidity, windspeed, winddirection,
valueforwindcharacter, stationpressure, pressuretendency, pressurechange,
sealevelpressure, recordtype, hourlyprecip, altimeter)

values(@WID, @VID, @airportID, @year, @month, @day, @time, @timezone ,@skycondition,
@visibility, @weathertype ,@drybulbcelsius, @wetbulbcelsius, @dewpointcelsius,
@relativehumidity, @windspeed, @winddirection, @valueforwindcharacter,
@stationpressure, @pressuretendency, @pressurechange, @sealevelpressure,
@recordtype, @hourlyprecip, @altimeter)

set identity_insert weatherdata off
end
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A.4 WeatherData Delete Trigger

Description: This trigger is necessary for the versioning solution of the database used
in chapter 4. Instead of deleting a row this trigger creates a new entry with the deleted
attribute set to 1.

Listing A.4: Delete Trigger

CREATE TRIGGER weatherdata_delete
ON weatherdata
AFTER DELETE
as
begin
DECLARE @wid int, @vid int,
@airportID INTEGER,
@year INTEGER,
@month INTEGER,
@day INTEGER,
@time INTEGER,
@timezone INTEGER,
@skycondition VARCHAR(50),
@visibility FLOAT,
@weathertype VARCHAR(50),
@drybulbcelsius FLOAT,
@wetbulbcelsius FLOAT,
@dewpointcelsius FLOAT,
@relativehumidity INTEGER,
@windspeed INTEGER,
@winddirection VARCHAR(20),
@valueforwindcharacter INTEGER,
@stationpressure FLOAT,
@pressuretendency FLOAT,
@pressurechange INTEGER,
@sealevelpressure FLOAT,
@recordtype VARCHAR(20),
@hourlyprecip VARCHAR(20),
@altimeter FLOAT

SET @wid = (SELECT wid FROM deleted)
SET @VID = (SELECT vid FROM deleted) + 1
SET @airportID = (SELECT airportID FROM deleted)
SET @year = (SELECT year FROM deleted)
SET @month = (SELECT month FROM deleted)
SET @day = (SELECT day FROM deleted)
SET @time = (SELECT time FROM deleted)
SET @timezone = (SELECT timezone FROM deleted)
SET @skycondition = (SELECT skycondition FROM deleted)
SET @visibility = (SELECT visibility FROM deleted)
SET @weathertype = (SELECT weathertype FROM deleted)
SET @drybulbcelsius = (SELECT drybulbcelsius FROM deleted)
SET @wetbulbcelsius = (SELECT wetbulbcelsius FROM deleted)
SET @dewpointcelsius = (SELECT dewpointcelsius FROM deleted)
SET @relativehumidity = (SELECT relativehumidity FROM deleted)
SET @windspeed = (SELECT windspeed FROM deleted)
SET @winddirection = (SELECT winddirection FROM deleted)
SET @valueforwindcharacter = (SELECT valueforwindcharacter FROM deleted)
SET @stationpressure = (SELECT stationpressure FROM deleted)
SET @pressuretendency = (SELECT pressuretendency FROM deleted)
SET @pressurechange = (SELECT pressurechange FROM deleted)
SET @sealevelpressure = (SELECT sealevelpressure FROM deleted)
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SET @recordtype = (SELECT recordtype FROM deleted)
SET @hourlyprecip = (SELECT hourlyprecip FROM deleted)
SET @altimeter = (SELECT altimeter FROM deleted)

rollback transaction
set identity_insert weatherdata on
insert into weatherdata(wid, vid, deleted, airportID, year, month, day, time,

timezone ,skycondition, visibility, weathertype ,drybulbcelsius, wetbulbcelsius,
dewpointcelsius, relativehumidity, windspeed, winddirection,
valueforwindcharacter, stationpressure, pressuretendency, pressurechange,
sealevelpressure, recordtype, hourlyprecip, altimeter)

values(@WID, @VID, 1, @airportID, @year, @month, @day, @time, @timezone ,
@skycondition, @visibility, @weathertype ,@drybulbcelsius, @wetbulbcelsius,
@dewpointcelsius, @relativehumidity, @windspeed, @winddirection,
@valueforwindcharacter, @stationpressure, @pressuretendency, @pressurechange,
@sealevelpressure, @recordtype, @hourlyprecip, @altimeter)

set identity_insert weatherdata on
end
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A.5 Process Parameter Script
Description: Python script used for the Process Parameter Module 4.3.2

Listing A.5: Process Parameter Script
1 de f azureml_main ( dataframe1 = None , dataframe2 = None ) :
2 import pandas as pd
3 import ha sh l i b
4 from datet ime import datet ime
5 import numpy as np
6
7 # Extract parameter
8 query = dataframe1 [ ’ query ’ ] [ 0 ]
9 so r tquery = query
10
11 # order query
12 i f ’ o rder ’ not in query :
13 sor tquery = query+’ ␣ order ␣by␣wid␣DESC ’
14
15 # normal ize query
16 q1 , q2 = sor tquery . s p l i t ( ’ where ’ )
17 sor tquery = q1 + "wd␣where␣ vid ␣=␣ ( s e l e c t ␣max( vid ) ␣ from␣weatherdata ␣xd␣where␣wd

. wid␣=␣xd . wid ) ␣and␣ de l e t ed ␣=␣0␣and␣ "+q2
18
19 qid = dataframe1 [ ’ q id ’ ] [ 0 ]
20 o r i g i n a l t s = dataframe1 [ ’ o r i g i n a l t s ’ ] [ 0 ]
21
22 # Check QID f i e l d
23 # i f id set , get o ld query
24 i f ( q id > 0) :
25 o ldd f = dataframe2 . l o c [ dataframe2 [ ’ q id ’ ] == qid ]
26 oldquery = o ldd f [ ’ q so r t ’ ] . i l o c [ 0 ]
27 o l d t s = s t r ( datet ime . fromtimestamp ( o ldd f [ ’ tmstmp ’ ] . i l o c [ 0 ] ) )
28
29 # i f o r i g n a l t s should be used , c r e a t e o ld query and send empty dataframe
30 i f ( o r i g i n a l t s ) :
31 preq , postq1 , postq2 = oldquery . s p l i t ( ’ where ’ )
32 newq = preq + "where␣tmstmp␣<␣ ’ "+o l d t s+" ’ ␣and␣ "+postq1 + "where␣tmstmp

␣<␣ ’ "+o l d t s+" ’ ␣and␣ " +postq2
33 p r i n t newq
34
35 df = pd . DataFrame ( columns=[ ’ query ’ , ’ q so r t ’ , ’ qhash ’ , ’ rhash ’ , ’ tmstmp

’ ] )
36 re turn df
37 # ju s t use o ld query with cur rent time
38 e l s e :
39 sor tquery = oldquery
40
41 # Create hash
42 h = hash l i b .md5( )
43 h . update ( so r tquery )
44 m = h . hexd ige s t ( )
45
46 # Create re turn a t t r i b u t e
47 querydata = { " query " : [ query ] , " q so r t " : [ s o r tquery ] , " qhash " : [m] }
48
49 in s e r t f r ame = pd . DataFrame ( querydata , columns=[ ’ query ’ , ’ q so r t ’ , ’ qhash ’ ] )
50
51 re turn in s e r t f r ame
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A.6 Query Metadata Script
Description: Python script used for the Query Metadata Module 4.3.3

Listing A.6: Query Metadata Script
1 de f azureml_main ( dataframe1 = None , dataframe2 = None ) :
2 import pandas as pd
3 import ha sh l i b
4
5 #Check f o r i t e r a t i o n run
6 i f ( dataframe2 i s None ) :
7 df = pd . DataFrame ( columns=[ ’ query ’ , ’ q so r t ’ , ’ qhash ’ , ’ rhash ’ , ’ tmstmp ’ ] )
8 re turn df
9
10 # Check f o r new Query
11 i f ( l en ( dataframe2 . index ) == 0) :
12 re turn dataframe2
13
14 # Create r e s u l t hash
15 columnames = dataframe1 . columns . va lue s
16 keyval = dataframe1 [ ’ wid ’ ] . va lue s
17 v e r s i onva l = dataframe1 [ ’ v id ’ ] . va lue s
18
19 h = hash l i b .md5( )
20 h . update ( s t r ( columnames )+s t r ( keyval )+s t r ( v e r s i onva l ) )
21 m = h . hexd ige s t ( )
22
23 # Create Query Timestamp
24 time = pd . Timestamp ( ’now ’ )
25
26 dataframe2 [ ’ rhash ’ ] = pd . S e r i e s (m, index=dataframe2 . index )
27 dataframe2 [ ’ tmstmp ’ ] = pd . S e r i e s ( s t r ( time ) , index=dataframe2 . index )
28
29 re turn dataframe2 ,
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A.7 Hash Compare Script
Description: Python script used for the Hash Compare Module 4.3.4

Listing A.7: Hash Compare Script
1 de f azureml_main ( dataframe1 = None , dataframe2 = None ) :
2 import pandas as pd
3 import md5
4
5 # Check f o r new Query
6 i f ( l en ( dataframe1 . index ) i s 0) :
7 re turn dataframe1
8
9 qhash = dataframe1 [ ’ qhash ’ ] [ 0 ]
10 rhash = dataframe1 [ ’ rhash ’ ] [ 0 ]
11
12 qha sh s e r i e s = dataframe2 [ ’ qhash ’ ]
13 r h a s h s e r i e s = dataframe2 [ ’ rhash ’ ]
14
15 # Compare Hashes
16 i f ( qhash in qha sh s e r i e s . va lue s and rhash in r h a s h s e r i e s . va lue s ) :
17 df = pd . DataFrame ( columns=[ ’ query ’ , ’ q so r t ’ , ’ qhash ’ , ’ rhash ’ , ’ tmstmp ’ ] )
18 re turn df
19
20 re turn dataframe1 ,
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