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Abstract

We design and implement a hybrid agent architecture that combines emotional reactions
to stimuli with reasoning about the consequences of actions as a means of developing
effective behaviour in a toy world. The fundamental task of our agents is to survive by
periodically finding and eating food and by dealing with hostile predators, either through
flight or through flight. Agents are free to cooperate, antagonize, or ignore each other
and agents with different emotional profiles will pursue different strategies.

The thesis begins with theoretical investigations of different models of computations
and their relation to the biological brain. Our assumption is that the brain’s function
is, to some degree, analogous to a collection of white boxes, observable to each other.
Accordingly, our agents are modelled as a collection of loosely coupled components which
communicate with each other through messages. Any component is free to read any
message and components have no information about which other components read the
messages which they insert into the agent’s message space.

The affective evaluation of its environment forms the basis of each agent’s decision-making,
though it is complemented by a belief generator which makes inferences about future
world-states resulting from certain choices. Though evaluation of these future states as
well, agents can optimize their behaviour, as they can foresee likely positive or negative
consequences of their actions.

The thesis ends with an evaluation of individual behaviour as well as a population-based
evaluation: we evaluate our agents qualitatively by placing agents in a number of simple
scenarios and observing whether they perform tasks like collecting food or avoiding
predators. After that, we evaluate them in a population-based manner by placing various
populations into larger scenarios and recording the survival of different personality types
over time.
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Kurzfassung

Wir entwerfen und implementieren eine hybride Agentenarchitektur, welche emotionale
Reaktionen auf Stimuli mit dem Schließen über den Folgen von Aktionen zum Zwecke der
Ausarbeitung effektiven Verhaltens in einer einfachen Welt kombiniert. Die fundamentale
Aufgabe unserer Agenten ist es, durch das Finden und Essen von Nahrung, sowie der
Handhabung von Feinden durch Kampf oder Flucht, zu überleben.

Die Arbeit beginnt mit einer theoretischen Untersuchung mehrerer computationaler
Modelle und ihrem Verhältnis zum biologischen Gehirn. Unser Ansatz ist, dass das
Gehirn zu einem gewissen Grad analog zu einer Ansammlung von White Boxes ist, die die
Arbeit der jeweils anderen beobachten können. Demgemäß sind unsere Agenten als lose
gekoppelte Komponenten modelliert, die über Nachrichten miteinander kommunizieren.
Jede Komponente kann jede Nachricht auslesen und keine Komponente weiß, welche
anderen die Nachrichten lesen werden, welche sie in den zentralen Message Space des
Agenten einfügt.

Die affektive Evaluierung ihrer Umgebung ist die Grundlage der Entscheidungsfindung der
Agenten, sie wird aber ergänzt durch einen Belief Generator, der zukünftige Zustände der
Welt als Folge bestimmter Aktionen simuliert. Durch die Bewertung dieser zukünftigen
Zustände können Agenten ihr Verhalten anpassen und sowohl die negativen als auch die
positiven Folgen ihrer Aktionen absehen.

Die Arbeit endet mit einer Evaluierung des individuellen Verhaltens sowie einer popu-
lationsbasierten Bewertung: Wir evaluieren die Agenten zuerst individuell, indem wir
sie in simple Beispielszenarien situieren und testen, ob sie in darin einfache Aufgaben,
wie das Sammeln von Essen oder die Flucht vor Feinden, ausführen. Danach bewerten
wir sie auch auf Populationsbasis, indem wir verschieden zusammengesetzte Gruppen
von Agenten in einer größeren Welt platzieren und die Überlebensrate verschiedener
Persönlichkeitstypen beobachten.
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CHAPTER 1
Introduction

The history of AI is marked by vacillations between two paradigms: the biological and
the ideal one. The biological school of thought subsumes ideas like connectionism, which
envisions the mind as an interconnected system of simple components, generally single
neurons, and tries to build AIs via neural networks. Opposed to this view stand those
schools that view the mind as an abstract machine: computationalism holds it to be
an information processing system that deals in the manipulation of symbols, and which
possesses structures like subsystems, rules, and syntax.

In this work, we shall build upon this latter, computationalist approach and, more
specifically, upon the work of Marvin Minsky and Aaron Sloman, who have very much
advocated the idea of the mind as a control system with an intelligible structure in books
like The Emotion Machine [Min06], Society of Mind [Min88], The Mind as a Control
System [Slo93], and What Sort of Control System Is Able to Have a Personality? [Slo97].
One of the running themes in Minsky’s and Sloman’s work is the criterion of evolvability:
it is not sufficient, they argue, to merely propose some ideal reasoning apparatus; if
artificial intelligences faithful to their biological inspirations are to be constructed, we
must structure them similar to the structure of biological minds — and that is best
accomplished by thinking about what sorts of subsystems might have evolved in what
order, in what way, and for what task. The human-level AI must therefore replicate the
brain’s functions, warts included.

In the rest of this thesis, we shall pursue this idea, with special attention given to the
interaction between emotions and reasoning in the sense of logical deduction. The result
will be a small cognitive architecture that combines both, but privileging neither. Both
Sloman and Minsky have sketched such architectures in the past, and ours will be similar
to these in its broad outlines; however, in our preliminary considerations, we will discuss
two specific issues:
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1. Introduction

1. How might certain subsystems have evolved? In particular: In what order capabil-
ities did like pain, anger, deduction, or introspection come about and were they
simply re-purposed from other, existing components, or were they created, so to
speak, from scratch?

2. We look at the interactions between subsystems. How could, in evolutionary
terms, something like a discrete subsystem, develop? In what manner do different
subsystems in the brain communicate? Is there some universal, perhaps symbolic,
communication protocol — or a suite of protocols?

These are deep and open questions and our goal will not be to answer them here, but
we will make certain assumptions based on knowledge from neurology and evolutionary
biology which will, in turn, motivate the design of the architecture of our toy artificial
intelligence.

White-box model. The first issue will be discussed in the next chapter in which
we give a hypothetical description of the brain as a collection of white boxes. The
brain evidently possesses large-scale structure, but its computational model of massively
connected neurons is very different than the ones present in man-made programming
languages [Arb02, Section “Introducing the Neuron”] and our white-box model, although
supported by circumstantial evidence from neurology, is primarily a working hypothesis.
Conventional structural programming models programs via functions and procedures that
work as black boxes, which are called and return an answer without their caller being
aware of their internal workings; we propose that one might gain some useful insights by
conceiving of the brain as a collection of white boxes, wherein components can interact
with and observe each other’s functioning. The reasoning behind this notion is that,
in a massively interconnected system such as the brain, there are no strict boundaries
between parts that would be analogous to the narrow interaction between a function and
its caller in a computer program; rather, typical neurons have one axon that branches
into thousands of synapses that connect to other neurons [Arb02, p. 4] and can, moreover,
make new connections to other neurons at any time.

We will transport this conception of a white-box model into software by modelling our
artificial intelligence as a collection of loosely coupled components that do not directly
call each other but rather communicate by putting messages into and reading from a
message space.

Reasoning and emotions. After this groundwork, we will come back to the large-scale
systems, specifically imagination, its relationship to affect, and reasoning. We contend
that imagination — perceiving events that are not happening — is the antecedent of
abstract reasoning, and that they both were gradually evolved from older functionality,
rather than either being sui generis. With support from fMRI studies, we conceive of
imagination as a re-purposing of sensory perception; the same neural circuitry that had
been used for the processing of physical stimuli like sights and sounds came to be used for
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Figure 1.1: Schematic of a neuron. From the caption of the source [Arb89, p. 52]: A
“basic neuron” abstracted from a motor neuron of [the] mammalian spinal cord. The
dendrites and soma (cell body) constitute the major part of the input surface of the neuron.
The axon is the “output line”. The tips of the branches of the axon form synapses upon
other neurons or upon effectors (although synapses may occur along the branches of an
axon as well as at the ends).

the processing of those which were internally generated, with specific inhibitory signals
prevent the imagined interfering with the real.

The concept of imagination being neurologically related to actual perception implies
that emotions play the same role in both — real as well as imagined situations evoke
emotional responses, but whereas real ones influence immediate behaviour, imagined
ones chiefly influence planning. Being able to think ahead, to play out scenarios in one’s
head allows one to effectively ask questions like “How would I like this?” and “Would
this be harmful?”. Such questions confer upon organisms the ability to plan and to select
beneficial courses of action, but without the need for explicit utility functions; their
brains merely re-use their old circuitry in a novel way.

Abstract reasoning, too, is assumed to be an incremental development of pre-existing
capabilities: with the ability to simulate physical worlds in place, brains were able to
develop the ability to simulate symbolic ones. The same mechanism that had dealt with
the processing of internally generated physical stimuli was employed in the simulation
and mental manipulation of things like numbers, glyphs, propositions, or the minds of
other individuals.

Toy AI. The second part of the thesis puts the above considerations into practice. We
derive an architecture that is influenced by the work of Minsky [Min88] and Sloman
[Slo93, Slo97], as well as of Sander et al. [SGS05] and Gadanho and Hallam [GH01]. This
AI will consist of subsystems for affect, belief generation, decision-making, and perception.

3



1. Introduction

For expediency’s sake, we will not implement a true white-box model; rather, we will
loosely couple the components so that each inserts messages into a common message
space, from which other components may take what they desire. While implementing a
fundamentally new computational model would be interesting, it would also be beyond
the scope of the thesis. Instead, we loosely couple the components: each one will insert
messages into a common container from which others may take whatever messages they
can interpret.

The affective system will read messages coming from external perception and belief
generation, and create emotional responses to them. These, in turn, will be read by the
decision-maker and guide its actions. Actions can be external, in which case they cause
the agent to act, or internal, in which case they tell the belief generator which possible
world to simulate.

In terms of software engineering, our model has similarities, both to the Actor model
developed by Carl Hewitt et al. [HBS73], and to publish/subscribe architectures [BJ87]
— although more as a concession to practicality and less because of a similarity to their
theories. The theoretical basis of our implementation is the postulate that the components
of the brain function as white boxes and that other components may listen in on their
activity, so to speak. Since this is diametrically opposed to the traditional idea of the
procedure/function as a black box, which nigh every programming language follows, we
compromise and model the cognitive structure as a mesh of loosely coupled components
communicating via passing.

World and evaluation. The so constructed toy AIs will be placed in a simple grid
environment that was inspired by the Wumpus world [RN10]. This world is populated
by a number of agents, Wumpuses who function as predators, plants which provide food
that the agents periodically have to consume, gold, which they can pick up and trade
with each other, and dangerous chasms that kill any agent that steps into them. In this
world, each agent can perceive and do a variety of things: it can see the cells ahead of it
to a certain distance, smell the stench of Wumpuses which function as predators, and
feel the gust around fatal chasms. It can move around, turn to rotate its sight cone,
take the food from plants, attack other individuals, trade items like food or gold, and
communicate with fellow agents by sending gestures in the form of arbitrary strings. The
environment is so designed that the information available to the agent is minimal: it
does not know about the disposition of other agents, the way in which they will interpret
its gestures, the global topology of the world, what items other agents have, or any other
information to which a real animal in a real environment would not have access.

The aim of this scenario is to test whether the agent architecture is viable at all and,
if so, which affective profiles are more successful than others. While each agent works
in the same way, they can be parametrised in their emotional reactions to stimuli and
thereby exhibit different personalities, in a manner of speaking.
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Structure of the thesis. The thesis consists of two large segments. The first one is
a theoretical argument and empirical data supporting it in Chapter 2. It deals with
the origin and purpose of neural systems, their evolution (insofar as is known), the
components of which they are likely comprised, and how these could have come about.
The constituent sections are

• Section 2.1, describing relevant previous work in the area of artificial intelligence,

• Section 2.2, containing the general evolutionary story,

• and Section 2.3, which describes our proposed white-box computation model of the
cognition of humans.

The second segment begins with Chapter 3, wherein we discuss our model in greater
detail. Section 3.1 explains how to represent white boxes as loosely coupled, interacting
components and Section 3.2 introduces mathematical language to talk about such
components in a formal way.

Chapter 4 then deals with subsystems as well as architectural patterns of which we will
make use in the implementation. Chapter 5 then specifies the world in which our agents
will have to survive, as well as the components and the architecture of our agents itself.

Thereafter, we present the results of our experimental evaluation in Chapter 6. Finally,
the thesis closes with Chapter 7, which contains the conclusion, as well as possible future
work.

5





CHAPTER 2
Preliminary Considerations

We begin this chapter with a look at related work in the field of artificial intelligence:
approaches, architectures, implementations, and philosophies on which later parts of the
thesis draw. After that, in Section 2.2, we will go through biological and neurological
considerations that shall ground the models and architectures proposed herein. Lastly,
Section 2.3 will outline a white-box model of cognition which assumes various parts
of a central nervous system observing and influencing each other relatively freely. We
specifically contrast this with the black-box model of structured programming, where the
inner workings of functions and procedures are oblique to the caller.

2.1 Related Work
A great deal of work has already been done with the aim of creating general artificial
intelligence approaches. Of special interest to us are cognitive architectures, the work of
Alan Sloman, and the nouvelle AI.

Cognitive architectures. This thesis falls into the category of cognitive architectures
and the integrated approach to AI, pioneered by people like Rodney Brooks and his
subsumption architecture, and [Bro86], Douglas Hofstadter, who famously wrote about
many aspects of AI in Gödel, Escher, Bach [Hof79], and who created the Copycat
analogy-making program [Hof96]. Another important work is the Hierarchical Control
System of James Albus [Alb96], in which cognitive tasks are organised hierarchically and
delegated by nodes on higher levels to those on lower ones (this is similar to the mesh-like
organisation of components described in Section 3.2, and to the layered structure of
Minsky’s The Emotion Machine [Min06]). The organisation described by Albus [Alb93]
is, moreover, very similar to the one in Section 5, with world simulator, belief generator,
sensory perception, and knowledge base (herein called “memory”) modules being mostly
analogous. Another large and conceptually similar system is Carnegie-Mellon’s 4CAPS
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2. Preliminary Considerations

[Uni], which posits small, relatively simple components, individually doing simple tasks,
and having only limited computational resources. Most of 4CAPS’s stated principles can
be recognised in the coming sections [Uni, Operating Principles of 4CAPS]:

0. Thinking is the product of the concurrent activity of multiple brain areas
that collaborate in a large-scale cortical network. [ . . . ]

1. Each cortical area can perform multiple cognitive functions, and con-
versely, many cognitive functions can be performed by more than one
area.

2. Each cortical area has a limited capacity of computational resources,
constraining its activity.

3. The topology of a large-scale cortical network changes dynamically during
cognition, adapting itself to the resource limitations of different cortical
areas and to the functional demands of the task at hand.

4. The communications infrastructure that supports collaborative process-
ing is also subject to resource constraints, construed here as bandwidth
limitations.
[ . . . ]

The probably earliest example of a cognitive architecture was Allen Newell’s and Her-
bert A. Simon’s Logic Theorist, created in 1955 [Cre93, p. 44]. Simon’s theory of bounded
rationality [GS01] — the idea of finding a merely satisfactory solution instead of a (prov-
ably) optimal one — is very similar to the loop between belief generation and evaluation
described in Section 5. In both cases, agents with limited information search heuristically
for the first solution that they find acceptable. Unlike exhaustive search methods (e.g.
A*), this does not guarantee the best possible results, but it is much more cost-effective
and closer to the way real humans solve problems. In spirit, this is also similar to the
Procedural Reasoning System of Michael Georgeff et al. [IGR92], which is based on the
belief-desire-intention (BDI) model[RMPG95, Bra87]. Much theoretical work has been
done on BDI, but it is only tangentially related to this thesis.

Sloman. Many of the fundamental ideas in this thesis can be found in Alan Sloman’s
works [Slo93, Slo97, Slo99, Slo01, Slo], especially in Beyond shallow models of emotion
[Slo01]. Therein, he formulated the criterion of evolvability in the context of cognitive
architectures and postulated the possibility that nervous systems may be chaotic (but
not unorganised). The agent architecture in Section 5 substantially resembles his, though
it was not taken from there. The similarity is, however, indicative of a great deal of
shared thought.

Implementation. In terms of software engineering, our model has similarities, both
to the Actor model developed by Carl Hewitt et al. [HBS73], and to publish/subscribe
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2.2. Biological Foundations

architectures [BJ87] — although more as a concession to practicality and less because of
a similarity to their theories. The theoretical basis of our implementation is the postulate
that the components of the brain function as white boxes and that other components
may listen in on their activity, so to speak. Since this is diametrically opposed to the
traditional idea of the procedure/function as a black box, which nigh every programming
language follows, we compromise and model the cognitive structure as a mesh of loosely
coupled components communicating via passing. This description is reminiscent to the
Actor model, although there are differences1: in the Actor model, the topology of the
network may change through the creation of new actors, and messages are always passed
from one source to known targets (via addresses). In our model, on the other hand, there
is no topology in a strict sense; messages are put into a global message storage and every
component is free to consume any message it deems relevant. Senders do not know who
will read their output, and consumers do not know the sources. This arrangement can
be seen as a particularly loose variant of a publish/subscribe architecture, in which the
source and the target of a message are completely unaware of each other, and in which
there are no specific channels to which one may subscribe. The only criterion by which
messages may be accepted or rejected is their content.

Nouvelle AI. Lastly, the overall goal, if not the method, of this thesis echoes that of
the nouvelle AI of, again, Brooks [Bro91], who claims that

the Von Neumann model of computation has lead Artificial Intelligence in
particular directions. Intelligence in biological systems is completely different.

The nouvelle AI approach stands in contrast to traditional AI in that it does not aim
for human-level performance at specific tasks, but rather for the faithful reproduction of
the behaviour of lower animals like dogs [Cop]. Brooks might be closer to the biological
realities in his desire to abandon the von Neumann model in favour of biologically
modelled computation, though we will take only general inspiration from his approach,
not follow it closely. As our goal is merely a proof-of-concept implementation, and
since the realization of truly novel programming, biologically oriented, paradigms is
quite laborious, we opted for a compromise position and only tried to imitate biological
computation in general spirit rather than in every detail.

2.2 Biological Foundations

In this section, we will go over the foundational ideas that, while serviceable on their
own, will underlie the work in the second part of this work. The information will
primarily concern biology, computational models, and the brain as a product of evolution.

1Note that we do not describe the implementation in the language of the Actor model, but that a
translation into it would be quite easy. Such a translation would require using only very rudimentary
features of the model, however, and, as that is not the focus, we forego the task.
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2. Preliminary Considerations

Biologists will find all of it terribly basic, but this document is not intended for them; it
is intended for computer scientists — who, we feel, have not truly taken to heart the
consequences of the routes our nervous systems have taken through history for their
present state. Sure enough, we have things called “evolutionary algorithms” and “machine
learning”, but names such as these invite us to a perilous confusion of labels with the
real things. Although such mathematical abstractions may be inspired by biological
processes, they are not the equivalents of these processes. Recreating the end-products
of biology demands an understanding of biology on its own terms, not through the
lens of misguidingly named mathematical abstractions. Providing the basis of such an
understanding will be our aim for the next couple of pages.

2.2.1 Historical and Designed Artefacts

In order to understand how our brain works or could work, we must possess conceptual
clarity — we must conceive of it, not as a product of one-time engineering, but as a
historical artefact. Unlike “perfect” systems, like Peano arithmetic and the λ-calculus,
those which grew historically does not make sense if one only looks at their current
snapshot. One will find nonsensical solutions, and attempts to mitigate the consequences
of earlier designs that have now become disadvantageous. The system as a whole might,
at first glance, appear incomprehensibly and needlessly complicated. Of all such systems,
the human brain might well be the most complex one; the task of understanding it
correspondingly harrowing. Sloman asked whether the brain might have no architecture
at all [Slo97, p. 5]:

Another question on which there is disagreement is whether the provision
of a large set of capabilities, such as those listed above, necessarily involves
the creation of an intelligible design, with identifiable components performing
separate tasks, or whether the functionality could sometimes (or always?)
emerge only in a very complex and incomprehensible fashion from myriad
interacting components.
For example, experimenters using genetic algorithms to evolve neural sets to
control a robot sometimes create networks that work, but which seem to be
impossible to understand (not unlike some legacy software which has grown
over many years of undisciplined developments).

It the classical sense, it probably does not, but we ought to be cognisant that “the
classical sense” was induced by tradition and the limits of human cognitive ability. We
might dismissively describe the brain as a jumbled, tangled chaos of neurons, but the
fact that we do not recognise a structure by no means implies that one does not exist.
Things, contrary to what is often espoused, do not “just work”; if they reliably produce
complex results, they must have an architecture inside them, independent of our ability
to recognise or understand it as such. We merely need to relax the notion of “architecture”
to include structures that result from incremental change and the creative combination

10



2.2. Biological Foundations

Figure 2.1: Relationship between the components of an organism without a nervous
system.

of pre-existing parts. While the results of such processes are often extremely unintuitive
and often even incomprehensible to us, we at least have a way of understanding them
by re-tracing their evolution. Doing so is laborious and requires a huge amount of data
(which we currently do not have), but this approach of regarding brain functions as
through-and-through Darwinian (as opposed to having been pieced together) might bear
results that have, so far, eluded the other schools of thought in the field.

What, one might now ask, is the consequence of such a view? The first is that each new
feature in the developmental history had to have been useful on its own. The second is
that it allows the distinction between what we will herein call efficient systems and clean
systems. Since, at each stage of its evolution, the organism that carried the brain had to
be viable, the end product is by definition guaranteed to be “efficient”. Because of that
same fact, however, it is all but guaranteed not to be “clean”: for one, it was not possible
to snap whole new components into the system; it would have also been impossible to
combine old components in the elaborate and precise ways in which a human engineer
might use parts. Worse, old components were almost certainly not discarded when new
and better ones came into being. A good exposition of this process in humans can be
found in Paul MacLean’s seminal work The Triune Brain in Evolution [Mac90].

2.2.2 Origin of Nervous Systems

The evolution of nervous systems dates back to the development of primitive electrical
signalling in eukaryotes, using calcium action potentials2 and sodium channels [LHZ11]:

Voltage-dependent sodium channels are believed to have evolved from calcium
channels at the origin of the nervous system.

These sodium channels predated modern-day neurons, but served the same fundamental
purpose of acting as control systems. We can readily conceive the benefits of imparting a
control system onto an organism with the following thought experiment: let us imagine
a microscopic organism without any sort of nervous system — all of its behaviour is
hard-coded and mechanical. It can take in nutrients through its cell walls or through an
opening; parts of it can contract or expand in response to stimuli like light or pressure;
homeostatic conditions can influence its chemistry. Figure 2.1 shows this schema: if
we enumerate the constituent parts or components of an organism as {C1, . . . , Cn}, the

2See any textbook on evolutionary biology.
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2. Preliminary Considerations

organism’s behaviour is caused by signals being sent between Ci and Cj (the case i = j is
possible). Such an organism suffers from three disadvantages: (a) reactions are localised,
as two of its components might be too far apart to communicate in a timely manner or at
all; (b) its repertoire of behaviours is necessarily simple and (c) it is not very adaptable.

Precursors to nervous systems communicated (a) first via action potentials, which were
intracellular electrical signals [LHZ11] (emphasis ours):

Another key animal innovation was the nervous system, which is present
in all but a few animals (i.e., sponges and placozoans). Rapid, specific,
long-distance communication among excitable cells is achieved in bilaterian
animals and a few jellyfish (cnidarians) through the use of action potentials
(APs) in neurons generated by voltage-dependent sodium (Nav) channels.
Voltage dependent calcium (Cav) channels evolved in single-celled eukaryotes
and were used for intracellular signalling. It has been hypothesised that Nav
channels were derived from Cav channels at the origin of the nervous system
[the results in the paper support the hypothesis], thereby conferring the ability
to conduct action potentials without interfering with intracellular calcium.
This view was reinforced by the apparent lack of sodium currents in sponges.

The introduction of dedicated, long-distance3 signalling cells between parts of an organism
created the possibility of not only transmitting, but also modifying information. The
moment an organism’s parts do not communicate directly biochemically/mechanically,
but over transmissions lines, evolutionary processes acting upon these lines are able
to mutate them so that they change the signals. The first changes might consist of
amplifying, diminishing, or distributing signals. Over time, the nerves may come to act
as transducers on the stream of signals; in some rudimentary sense, they may begin
to compute functions. Schematically, we see this in Figure 2.2, where a function F is
interposed between two components. Not all components of an organism are created
equal, of course. The first and most important use of nerve cells was the communication
between sensory organs and the movement apparatus of the organism, and the bulk of
nerve cells were located close to the sensory organs, where they processed information. A
mere handful of neurons are not able to compute much, but they must have conferred
considerable advantage to their owners.

The history of these developments is not entirely clear, but action potentials are present
in all animals (with the exception of sponges) and in plants [LMM99, FL07]. A step
up from mere stream transducers are the nerve nets that permeate the entire bodies of
cnedaria (jellyfish) and the nerve cords that run along the bodies of bilateria (animals
with left and right sides). In Figures 2.3b and 2.4 we see them in the phylogeny of

3The term “long-distance” may very well mean “long-distance within a single cell”. Baluška and
Mancuso argue in Deep evolutionary origins of neurobiology: Turning the essence of “neural” upside-down
[BM09] that neural analogues already existed in prokaryotes (bacteria and archaea; organisms without
cell walls and nuclei) and unicellular eukaryotes.
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2.2. Biological Foundations

Figure 2.2: Relationship between the components of an organism possessing a nervous
system. F can be understood as a simple signal transformer or a central coordinating
mechanism.

(a) Nerve nets in ctenaphora. (b) Phylogeny of the animalia. Even Ctenophores, macroscopic
marine invertebrates which predate both jellyfish and bilateria,
have nervous systems in the form of distributed nerve nets.

Figure 2.3: Nerve nets and phylogeny of animalia. From The ctenophore genome and the
evolutionary origins of neural systems [MKC+14, p. 100].

the kingdom animalia. Both can process signals in a sophisticated way, and enable the
performing of varieties of complex tasks, although the sets vary widely from species to
species.

Central nerve cord and cephalisation. Nerve nets, while interesting, are not our
aim. Unlike jellyfish, bilateria have a central nerve cord which runs from their front
to their back. At various points alongside the cord, we find ganglions — thickenings
containing larger amounts of nerve bundles. In all animals but worms, the frontal ganglion
further thickened until it came to contain the overwhelming majority of the organism’s
neurons — forming the head. While substantial neural activity was occurring before this
time, it is only here that it becomes to proper to speak of brains, and where we can begin
to analyse macroscopic structures like lobes.

Vertebrate brains are subdivided into hinbrain, midbrain, and forebrain, having evolved
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Figure 2.4: Phylogeny of the animalia. Note the cnidaria and bilateria; both of these have
types of nervous systems. From Animals I – An Overview of Phylogeny and Diversity
[Woo].

Figure 2.5: Body plans for metazoans. The bottom three items are all bilateria and
all have nerve cords of some kinds, but only the bottommost (chordates) have a dorsal
(upper) nerve cord. Vertebrates are a subphylum of the chordata. From Evolution of
bilaterian central nervous systems: a single origin? [HCE+13, p. 3].
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Figure 2.6: Illustration of the cerebrum with lobes shown. Hidden: limbic lobe, insular
cortex. From Anatomy of the human body [Gra18, Fig. 728].

in this order. The forebrain (cerebrum) is responsible for all higher functions and is
again divided into six lobes, which we see in Figure 2.6. The functions performed by
these lobes are not precisely understood, but a number can be clearly associated to one
lobe. The frontal lobe, for instance, is responsible of conscious thought; the temporal
lobe processes auditory and olfactory signals; the occipital lobe deals with sights.4 While
some functions, like memory, are not neatly localisable, we can nonetheless see in the
anatomy of vertebrate and mammalian brains the accruing of large groups of functions:
motor control, smell, hearing, sight, reason, emotions. The question of organisation
remains, however: it is one thing to say that we have hearing and smell, but what, if
anything, ties these experiences together? We, after all, perceive the data from all our
senses as one integrated experience. Here, views diverge. The common-sense belief is that
we simply have one, indivisible consciousness. Such a view would implicate the frontal
lobe as an central organising unit, without which an organism, even if it could smell or
see, would not consciously do so. Minsky, Sloman, and Dennett argue persuasively, but
speculatively, against this view in their works [Min06, Min88, Slo91, Den91]. They differ
on the details, but all agree that the unified consciousness is an illusion; that it is not
a single “I am”-thing gathering raw data, but a dispersed locus of experiences that we
merely perceive as immediate.5 In this view, the frontal lobe, while still instrumental,
would not be the only contributor. All other regions of at least the cerebrum would
contribute in some way to the organism’s conscious experience. An animal without a
frontal lobe would not be conscious in the same way as we are, but it would not be

4Interestingly, the occipital lobe is at the back of the head.
5Dennett criticises the idea of a consciousness-thing with the concept of the “Cartesian theater”

[Den91]. According to him, positing that there is such a thing in our brains, and that it observes all other
brain functions, is fundamentally problematic: if there is such a sort of homunculus in our heads that,
say, sees the result the output of visual processing in the manner in which one would see a film, then how
its visual perception work? Is there yet another a homunculus inside the homunculus that interprets
visual information? Such a view implies either an infinite regress, or the algorithmic inexplicability of
some part of the brain.
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utterly blind either — it would already have some dim awareness of its existence; some
rudimentary “I am” that we can hardly imagine would already be present in it. To quote
Sloman (emphasis ours):6

It is not worth asking how to define consciousness, how to explain it, how it
evolved, what its function is, etc., because there’s no one thing for which all
the answers would be the same. Instead, we have many sub-capabilities, for
which the answers are different: e.g., different kinds of perception, learning,
knowledge, attention control, self-monitoring, self-control, etc.

Implications. The point in all this is not to give an detailed summary of evolutionary
neurobiology; it is to show that nervous systems are ancient, gradually developed things.
They have been shaped by the vicissitudes of hundreds of millions of years, and they could
have developed in other ways. They were not planned, as a human would understand
the word. If we are to gain headway in piecing together the “big picture”, we must take
these facts to heart, and choose our modelling methods accordingly.

In the abstract of this work, we described the biological and the idealistic approaches as
being polar opposites, and this is true as far as engineering is concerned, but in terms
of their assumptions, false. They are both idealistic. Neural networks, insofar as their
users want to re-create human behaviour, implicitly presuppose an intelligence in neurons
that is not there. The comparatively small network is taught to compute some desired
function, the hope being that it might thereby come to perform some complex, real-world
function like common-sense reasoning. In principle, this strategy could work, but in
practice, it is unrealistic — the environment in which real organisms had to succeed was
the planet’s ecosphere; billions upon billions of nervous systems of all complexities were
run over millions of years; nervous systems died off and were re-created from scratch
by genes. It is therefore entirely unreasonable to assume that neural networks, trained
against an objective function over a period of hours or days could re-create the function
a biological organism, unless one were to suppose that there is some inherent quality in
neurons that strives for such; that groups of cells somehow wish to organise themselves
into specific configurations in which they are able to perform activities we would call
“cognition”.

All this being said, we should not confuse criticism of the suitability of a method for
a specific purpose with criticism of its suitability for any purpose. Neural networks
have proven useful in understanding mental activity at small scales; both they and the
symbolic/logic-based approaches have had a myriad of industrial applications. From this,
however, it does not follow that we can build genuinely intelligent agents with them.
Our only means of doing that (the only means that remain) is to laboriously unravel the
developmental history of animal brains, step by step, making sense of each development

6The quotation appears in The Emotion Machine [Min06, p. 97] and Minsky attributes it to a post
made by Aaron Sloman in the comp.ai.philosophy newsgroup, but we have been unable to find the
original.
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in context. Where empirical data are not available, we at least have to hypothesise how
things could plausibly have happened. To this day, structural and genetic analyses have
been done (via genetic sequencing and MRI), but they do not deliver sufficiently detailed
data. Such methods are rather akin to measuring voltages and task time in a PC — they
do tell us something, but an observer would never infer the existence of, e.g., compilers,
call stacks, or type systems from such observations. For an understanding of the brain so
specific that we can re-implement it in a computer, we will need currently non-existent
and not-conceived-of technology. Until that day, guesswork, like the assumptions made
in this thesis, will have to suffice.

2.2.3 Ways of Adaptation

After the philosophical groundwork and biological basics, let us describe possible means
by which nervous systems can change and acquire new features. We begin with the
observation that the existence of neuron bundles between parts of an organism is analogous
to a loose coupling of components in a software systems. By having intermediaries that
take over the task of communication, selection pressure can produce more and more
complex functions, since it no longer has to act upon the body parts that send various
signals, but change the nervous system that processes these signals instead. As example:
pain receptors, muscles fibres, and the optical nerve have been unchanged for quite some
time, long pre-dating the human species, but more recent brain developments have given
us the ability to utilise them in novel ways — by providing a rich mental experience of
suffering, playing instruments, and mentally rotating objects, respectively. Manipulating
the software is far easier and more quickly done than doing so with the hardware, so to
speak.

Having said that, the changes still have to have occurred incrementally. Even if a nervous
system can change quickly (for evolutionary timescales), it still has change in tiny steps.
We shall leave the matter that for the time being, but, as we will discuss later, this simple
fact has profound computational consequences that are seldom thematised in discourse
on this matter.

Let us return to the consideration of primitive life forms. We can imagine the malleable
neuron bundles of such ancient organisms changing in a variety of ways in the face of
selection pressure: when the environment required it, they could, after several generations,
start to compute different or more elaborate functions. An organism which had had
developed in an environment where food was abundant in bright places and which had
now found itself in darkness would have benefited from a variety of plausible changes,
such as

• an inversion of its light-seeking behaviour,

• switching off its metabolism in light places to conserve energy,

• accelerating its metabolism in dark places to make better use of the food there.
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Of course, other changes would have also been possible, such as the metabolisation of
different food sources,7 but we can see how the aforementioned three could have been
effected through mutations in a simple nervous system. For a system to permit such
mutations, it must be far more robust than most products of human engineering, however.
If one were to take out a piston in a car or replace a cogwheel in a mechanical clock with
a differently sized one, the machine would, in most cases, simply break. In all others, it
would catastrophically malfunction. Machines are designed to fit together perfectly and
their complexity tends to be irreducible. Even software, which is more readily changed,
is easily broken by small-scale tinkering.

When discussing how they can evolve and, in particular, evolve to perform new tasks
and not just variations on old ones, explanations are again constrained by two criteria:
(a) the change has to be small, or at least have a small cause8 and (b) each change must
be beneficial in the short term.9 Something that we would conventionally recognise as a
program, something which has precise notions like “instruction” and “call structure” is
probably not suited to this pattern of changes.10 Instead, we ought to imagine the brain
as a mesh of computation in which functions are computed cumulatively, so that small
changes in neural structure only lead to small changes in output.

To illustrate this, we can look at a simple neural network in Figure 2.7a, with a marked
node Nx. Figure 2.7b shows an unlikely change scenario in which some new component/-
function is cleanly grafted onto the system. Figures 2.7c and 2.7d then show two more
likely scenarios: in the first a mutation causes Nx to be split and the new nodes take
over some of its connections. In the second, a larger component is accidentally copied
as-is and, over time, is moulded to do something useful.11 In time, new functions can
thus grow into the system, but never in the manner in which, say, an engineer would
implement a new feature.

Sloman’s brain. One might ask what the relationship between the gradual growth
of neural bundles and the observed, large-scale functions in the brain is. We have now
supposed at some length that the organisation is not neat, but the question remains
whether we can speak of an organisation at all (even a messy one). In Beyond shallow
models of emotion [Slo01, p. 8], Sloman illustrates the possible chaotic organisation of the

7A current-day example is given by nylon-eating bacteria, which have developed in the last century
and which now have an abundant food source and no competition.

8The effect does not have to be small — changes in single genes can switch entire components on or
off. The MYH16 gene, which is present in non-human primates but has been switched off in humans, is
an example. In us, its disabling lead to a drastic reduction in the size of jaw muscles and a corresponding
increase in brain size [Car05]. Nonetheless, such events are rare and not the main drivers of evolution.

9Caveats apply: if the selection pressure on a group of organisms is not too strong, changes which
may be suboptimal but perhaps beneficial at some later point may spread, and non-selective processes
like genetic drift can also play a role.

10Cf. evolutionary program generation, in which expression trees mutated. We charge that such
algorithms are not adequate models of what happened in the evolution of our brains.

11Such copies can be caused by mutations and are known to happen with some frequency in nature.
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(a) A simple neural network. (b) An unlikely change scenario in which
new, discernible components are grafted on
from whole cloth.

(c) A more likely change scenario in which
one part is split into three but where the
overall shape of the network is not apprecia-
bly altered.

(d) A second change scenario in which an en-
tire component is accidentally copied. While
the resultant change is large, a small genetic
mutation can cause it.

Figure 2.7: Means of change in neural networks.

brain with Figure 2.8, conjecturing that it might be a jumble of parts that just happen
to work together:

Any observed behaviour might be produced by an unintelligibly tangled and non-
modular architecture. (Rectangles represent information stores and buffers,
ovals represent processing units, and arrows represent flow of information,
including control signals.)

It sounds somewhat like cheery optimism to presuppose that there even are information
stores and control signals. The actual situation is likely a far worse one: it is not just
different programs that are run in the brain, but entire different models of computation,
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Figure 2.8: Sloman’s illustration of the brain as an “unstructured mess”.

with the same pattern of activity being interpreted simultaneously in more than one way.
Today, we can scarcely imagine how such an “architecture” would work, let alone how
one would program it — but if we really want to create genuinely animal intelligences,
we will have to find out. Sloman himself admits to this difficulty in What Sort of Control
System Is Able to Have a Personality? [Slo97, p. 6, Section 9 “Is the task too hard?”]:

Given the enormous diversity in both design space and niche space and our
limited understanding of both, one reaction is extreme pessimism regarding
our ability to gain significant insights.

The following remedy is offered:

My own attitude is cautious optimism: let us approach the study from many
different directions and with many different methodologies and see what we
can learn. [ . . . ]
In particular, the Cognition and Affect group at Birmingham has been trying
to use a combination of philosophical analysis, critical reflection on shared
common sense knowledge about human capabilities, analysis of strength and
especially weaknesses in current AI systems, and where appropriate hints from
biology, psychology, psychiatry and brain science, to guide a combination of
speculation and exploratory implementation. [ . . . ]

The methods listed all have their applications, but computational analysis is missing
among them. When we talk of psychology, philosophy, and critical reflection, we have
already supposed too much; we want to replicate the high-level output of the brain
without having explored the mechanism that produces it. In a manner of speaking, we
have seen the forest, but do not understand what trees are. If we are to gain the sort of
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knowledge of brains that we can implement into an AI, we must, empirically, find out
about their method of computation. Barring that, we must at least approximate it as far
as is practical, and accept that the result will necessarily be an inferior simulacrum.

What, then, is the computational model used in the brain? So far, nobody knows, and,
presumably, that will stay that way for the foreseeable future. It is very much a guess,
but from the concept of slowly growing neural networks (seen in Figures 2.7a-2.7d), one
might infer something like the “active symbol” hypothesis in Douglas Hofstadter’s Gödel
Escher Bach: that patterns of activity form little programs and pieces of data at once;
that manipulate other patterns of activation and are manipulated yet other patterns
during their lifetime. These are only imperfect analogies, of course. On the coming pages,
we shall outline a conceptually compatible white-box model of computation as another,
imperfect analogy that will serve as the basis for the model in Chapter 3, and for the
implementation of the toy agents in Chapter 5.

2.3 The Brain as a Collection of White Boxes
We now leave the realm of established fact and venture into conjecture. What has been
said up to this point has been good, general fact, but it does not suffice for building
actual programs. Data on the computational structure of the brain is scarce, thus we
will limit myself to positing general, plausible hypotheses about what sorts of structures
and loci of computation could have plausibly arisen in it over the course of its evolution.

A plausible case has been made by Minsky, Sloman, and others (especially in The Emotion
Machine [Min06]) that the brain must possess components in some form. Were it not so,
the organ would have long ago succumbed to the inefficiencies of its design. As more and
more functions are grafted onto a system, the number of interactions between its parts
or regions, and therefore the bugs in it, increases. Worse yet, the system becomes brittle:
even if, like in a neural network, some accidentally working configuration would have
been able to be reached, small changes would surely have upset it again. The part-less
system is an evolutionary dead-end from which no improvement is possible, and given
how far along our cognition is, it is quite clear that we are not dealing such when we
look at our brains.

If we concede that we are dealing with identifiable parts, a second question arises: how
do these parts communicate? We would like to deal with this question in some detail.
In the literature, this issue is often glossed over — in diagrams, one frequently finds
unannotated arrows going between functions; the accompanying texts mention concepts
like “selection”, ”message”, and “sending” under the implicit assumption that these are
merely primitives in no need of further explanation. When we consider the workings
of neurons, however, it is not at all clear how groups of them could put together any
sort of complex message, and, once put together, how it would travel, and how another
group of neurons could receive and interpret it. Are there dedicated interpreters, akin to
compilers and runtimes in computer systems? This is not known. We cautiously propose
that it is not so, but we can present plausibly-sounding scenarios for both outcomes:
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Figure 2.9: Architecture for motivated agents. From [Slo97, p. 10]

• On the one hand, we may image that, early on, some simple message format
developed, allowing more efficient communication between not quite differentiated
regions of a nervous system. Over time, this was extended as more components
came into play; these new components would have found it easier to make use of
the pre-existing protocol. Larger clusters of parts might have even repeated the
process and developed simple, internal message formats for communication among
themselves. As an orthogonal development, newly developed components might
have performed more abstract duties, using older ones as subsidiaries. To solve
conflicts whenever these new and old parts proposed different solutions to whatever
issue the organism faced, some other component could have received inputs from
both, and adjudicated. In such way, a hierarchical and layered structure could have
come into being — different layers working at different levels of abstraction, and
each component only communicating on an on-basis with others. All in all, the
whole system would come to resemble a human-developed program.

• On the other hand, we could imagine quite a different scenario: suppose that the
basic scheme of neurons sitting as growths on the communication lines between
components never changed. Their basic task was the modulation of signals, and
if some new function was to be grafted into the system, then this would have
been achieved by growing more neurons that modulated the signals of their fellow
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neurons. They would not have opened a communication channel with the existing
components, but would have listened in on their activity in the manner of interlopers
surreptitiously modifying messages. Since neurons would have had no reason to
hide their activity (as a black box does), this would have been quite easy and
straightforward to do. New bundles of functionality could have inserted themselves
into the middle of the information flow (enhancing existing functionality, or adding
administrative features), before it (providing pre-processing), or after it (providing
post-processing, or usage of the output for higher-level tasks). In contrast to above,
we concentrate on the process of software development instead of its product: a
human programmer adds functions one at a time, here and there, extending and
refining functionality where fancy strikes or necessity requires.

One could thus call the first scenario the product-oriented view and the second the
process-oriented view: the first looks at the end product of a development, the second
posits that the very process of that development, fossilised, is present in the end product.

Evidence is scarce and equivocal for both. In fact, it need not even be the case that
they form a dichotomy: we might just as well speculate, for instance, that the second is
the low-level reality, but that the first emerged from over time due to the efficiency of
its design. The components could be fuzzy, to some degree. We could also posit that
the first one “degenerated” into the second one; that a formal system is emulating an
informal one because of the latter’s greater versatility and dynamism.

For the rest of the thesis, we will explore the second of the above two hypotheses, not
necessarily because we firmly believe it to be true, but rather because the first one has
been tried for some time, and has so far not produced a general AI.

Practical abstraction. While such a white-box model, and the hypothesising that
preceded it, are conceptually useful, a mesh of gradually grown patterns does not lend
itself to implementation in a program. We do not have the capability of faithfully pouring
the structure of the human brain into a computerised mould just yet, but, for the time
being, we may opt for the next best thing and take cues from it in the hopes of improving
our imitations.

Therefore, we will present a simplified model which, while attempting to remain true
to the conceptual view, will, pragmatically, contain discrete functions and components.
The white-box nature of brain activity will be emulated by a message-passing scheme in
which messages model the internal activity of components. Instead of each component
blindly acting in some fashion on the activity of another, components will have explicit
parsers and interpreters and later, these will be further simplified into localised message
formats and tagging, for the sake of easy implementation. This effort is guided by the
same thought as Sloman’s cognitive architecture depicted in Figure 2.9. It is not a truly
accurate representation of the brain and it does not claim to be, but it is something like
it; something that is close, and good, enough. We will meet this cognitive architecture
again later, but for now, we move on to the description of neural components.
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CHAPTER 3
Overall Component Model

Having gone through a number of biological considerations, we now translate these into
a mathematical model of a component system. These components can send and receive
messages, filter them out, and interpret them in various ways. This model does not yet
specify our architecture, but our artificial intelligence, as described in Chapter 5, will be
comprised of such components.

3.1 Components as White Boxes

We can imagine the components of the mind as white boxes which inform other components
by their very functioning — however, this does not lend itself to easy implementation.
Instead, we can emulate this behaviour via a message space, from which individual
components take their input and into which they put their output. A component is then
a local processing unit which continuously scans the message space, running messages
through its filter. If the filter detects a relevant message, it is then passed to the
interpreter, which parses the message into the needed format and hands it over to the
processor. The processor, after having finished, puts its output back into the message
space for other components to read. Figure 3.2 illustrates this scheme. Note the lack of
explicit hierarchical structure and central organising units.

However, as we will show in the next section, this model is generic enough to accommodate
special-purpose structures like a message space. Figure 3.2 shows the message-passing
scheme, but it also specifies a graph in which the nodes are the components and fixed,
while the edges are the accepted messages and are determined by the nodes; through
their filters, components control the shape of the graph. By imposing invariants on these
filters, we can have the graph take any shape we desire. In particular, we can model the
kinds of structures that occur in many other cognitive models and in empirical research:
central organisers, sequences of components (“pipelines”), localized messages affecting

25



3. Overall Component Model

Symbol Description

Processing component

Choice

Data container (Queue, List, etc.)

Data

Stream generator

Counterfactual (imaginary) data

Figure 3.1: Notation for the diagrams in this and the following sections.

only a small part of the mind, a component reading its own messages, loops and iterative
messages between two or more components et cetera.

Messages. We may now ask how such messages between components are structured.
Here, we make two empirical claims:

1. messages have a priority and

2. they are effectively unstructured.

To the best of our knowledge, the veracity of either has thus far not been determined
by neuroscience. For the first, Marvin Minsky’s “The Emotion Machine” provides some
circumstantial evidence [Min06, p. 222]:

Of course, when one activates two or more Critics or Selectors, this is likely
to cause some conflicts, because two different resources might try to turn on a
third resource both on and off. To deal with this, we could design the system
to use various policies like these:

1. Choose the resource with the highest priority.
2. Choose the one that is most strongly aroused.
3. Choose the one that gives the most specific advice.
4. Have them all compete in some “marketplace”.
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Figure 3.2: Global neural architecture.

The selection strategies Minsky lists imply that there is some mechanism in the brain
to determine the urgency of a signal. While it is possible that higher brain functions
like reasoning or affect make an additional, rational evaluation, sensations like intense
pain, bright lights, or great sadness can likely be communicated most easily by the
appropriate components causing a flood of activity which, by its very intensity, informs
other components of the urgency of their messages.

The second claim — that messages are essentially unstructured — means that there is no
common, agreed-upon format in which they are stored. In addition to the evolutionary
implausibility of such a format being created, an unstructured message format is in line
with the white-box nature of components: since components merely “listen in” on others,
and since each components will have its own pattern of activity, a listener would simply
have to try and make sense of this activity as best it could. The proposed structure of
messages is thus shown in Figure 3.3: every message comprises a priority header, together
with an unstructured body which, for our purposes, is simply a string of bits.

Filters. Before a component can respond to a message by another, such a message
must be assessed for the presence of relevant information. Conceptually, this happens via
a filter in each component, which pattern-matches incoming messages and, if a certain
threshold is reached, signals relevance and hands the message over the interpreter for
parsing. Figure 3.4 shows such a filter: it is composed of a directed graph of nodes, and
a node is activated if it detects some specific content in the message. Nodes, in turn, are

Figure 3.3: Structure of a neural message.
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Figure 3.4: A pattern-matching filter for a component Ci.

connected via edges of strength within the interval [0, 1]. When a node is activated, it
sends a charge proportional to the strength of its link to its neighbours, contributing to
their activation as well. Some nodes are marked as output nodes; if enough such output
nodes become activated, the message is deemed to be sufficiently relevant. This model of
filters is inspired by the spiking neural P Systems of Georghe Paŭn et al. ([PRS10, p.
337] and [IPY06]), in which charges sent along directed graphs of neurons are used to
compute functions.

3.2 Mathematical Model
We now create a mathematical model for the description of the architecture. This model
will be split into two parts: the structural and the operational semantics. The struc-
tural semantics encode the static properties of neural systems, whereas the operational
semantics describe the behaviour of such a system at runtime.

3.2.1 Preliminaries

Since the mathematical model is built with implementation in mind, we will use some
basic type theory in the coming sections. The following notions are from the λ-calculus
and its attendant type systems; anyone familiar with such can therefore freely skip this
section. We will introduce types, type constructors, and their relation to functions,
together with a few example types which will come in handy later on. The following can
be found in any introduction to type theory and was taken (with simplification) from
[Men88], [CD94], and [JR97].

Definition 1 (Syntax: Type). For our purposes, types are defined inductively thus:

1. Basic type: R and ∅ are types.

2. Sum type: If T1, T2 are types, the sum type T1 + T2 is a type.
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3. Product type: If s is a string and T1, . . . , Tn are types, the product type s T1 . . . Tn
is a type. A special case is the anonymous product type (tuple), where s = “〈〉”.
There, we just write 〈T1, . . . , Tn〉.

4. Full application: If T1, . . . , Tn are types and [∀x1, . . . , xn] C is a type constructor
(see next definition), then C T1 . . . Tn is a type.

5. µ-abstraction: If T, S are types and S occurs in T, then [µα] T[S\α] (for a fresh
variable name α) is a type.

Definition 2 (Syntax: Type constructor). Type constructors are the defined thus:

1. Base case: Every type T is a type constructor.

2. Abstraction: If C is a type constructor and T is a type, [∀x] C[T\x] is a type
constructor.

3. Sum types: If C1 . . . , Cn are type constructors with Ci =
[
∀ ~Xi

]
Ti (1 ≤ i ≤ n), then[

∀ ~X1; . . . ; ~Xn

]
(C1 + · · ·+ Cn) is a type constructor.

4. Partial application: If T1, . . . , Ti (i < n) are types and [∀x1, . . . , xn] T is a type
constructor, then [∀xi+1, . . . , xn] T[x1\T1, . . . , xi\Ti] is a type constructor.

Every type is interpreted as a set of values which are of that type; type constructors are
interpreted as universally quantified templates for actual types. Their formal semantics
are as follows:

Definition 3 (Semantics: Type). Let T be a type. Its interpretation function int(T)
is defined thus:.

1. Basic type: R is interpreted as the set of real numbers. int(∅) = {}.

2. Sum type: If T1, T2 are types, then int(T1 + T2) = int(T1) ∪ int(T2).

3. Product type: If T1, . . . , Tn are types and s is a string, then

int(s T1 . . . Tn) =
{
{s} if n = 0
{s} × int(T1)× · · · × int(Tn) if n ≥ 1.

4. Full application: If T1, . . . , Tn are types and [∀x1, . . . , xn] C is a type constructor,
then

int(C T1 . . . Tn) =
⋃

v1∈ int(T1)
· · ·

⋃
vn∈ int(Tn)

 ⋃
C′∈ cint(C)

C ′[x1\v1, . . . , xn\vn]

 .
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5. µ-abstraction: If [µα] T is a type, then

int([µα] T) = int(T) ∪ int(T[α\T]) ∪ int(T[α\T][α\T]) ∪ . . .

with int(α) = {}.

Definition 4 (Semantics: Type constructor). The partial interpretation function
cint for type constructors is defined as follows: if C is a type constructor containing
exactly the types T1, . . . , Tn, then

cint(C) =
⋃

v1∈ int(T1)
· · ·

⋃
vn∈ int(Tn)

C[T1\v1, . . . , Tn\vn].

Intuitively, sum types are simply unions, product types are named Cartesian products,
and full applications are instantiations of type constructors with all possible values.
µ-abstraction represents recursive data types such as lists or trees. Type constructors
themselves are just generic types.

Whenever we want to assert that an expression has a specific type, we write:

Notation 5 (Typed expressions). Let x be an expression and T a type. x :: T asserts
that x has type T.

Henceforth, by convention, we will write type variables in lower-case and concrete types in
upper-case, omitting the explicit ∀-blocks. That is, a type like [∀x, y, z] C x (N + T1) y z
will simply be written as C x (N + T1) y z and it will be clear that x, y, z are type variables,
while N, T1 are concrete types. A special kind of type constructor is the function arrow
(→) which induces the function type:

Example 6 (Function arrow). If we take, say, the type → S1 S2 (a product type with
the product types S1 and S2 as arguments) and abstract twice, we get [∀s, t]→ s t. Here,
→ s t is the type constructor for unary functions from s to t, also written infix as s→ t.
Functions with multiple arguments, mapping t1, . . . , tn−1 to tn, can be modelled in two
ways: either through n-tuples, or through nested function arrows:

〈t1, t2, . . . tn−1〉 → tn;
t1 → (t2 → · · · → (tn−1 → tn) · · · ).

The first method necessitates that we supply all arguments at once, whereas the second
allows them to be given one after another.

Function arrows allow the execution of functions in the obvious way:

Definition 7 (Function application). Let f :: S→ T and x be an expression of type
S. Then f x is an expression of type T. Function application associates to the left, that
is: f x1 . . . xn = (· · · ((f x1) x2) . . . xn).
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3.2. Mathematical Model

We can combine type constructors, sum types, and product types into algebraic data
types (ADTs).

Definition 8 (Algebraic data type (ADT)). Let s be a string and C1, . . . , Cn be type
constructors such that Ci = [∀x1, . . . , xn] Ti and Ti is a named product type with type
variables (1 ≤ i ≤ n). Then [∀x1, . . . , xn] (Ti + · · ·+ Tn) is an ADT. If we want to give a
name to an ADT, we write it as s x1 . . . xn = Ti + · · ·+ Tn.

Since an ADT is merely the sum of product types, it is itself a type constructor. If it has
no type variables, it is also a type. Next, we define a couple of example ADTs, some of
which we will use in the next section.

Example 9 (N, B, Q, C, Maybe, Either, List).

N = [µα] Z + S α;
B = False + True;
Q = Rat N N;
C = Complex R R;

Maybe t = Nothing + Just t;
Either l r = Left l + Right r;

List a = [µα] Nil + (a : α).

N is the usual Peano definition of natural numbers, with a nullary product type Z
representing zero, and a unary product type S, which allows recursion. B, Q, C are
the sets of Boolean number and rational/complex numbers, respectively, with False and
True being nullary product types, and with Rat N N and Complex R R being binary ones.
Maybe represents an optional value, which may or may not be present. Either represents
a choice between two values, of which either the left or the right one is present, but not
both. List a (or just [a] as a shorthand) denotes a list of values of type a. There, Nil is
the nullary type constructor for an empty list and : is an infix binary type constructor
that stores the head and tail of a list.

We also define the usual convenience functions for these types:

isJust :: Maybe a→ Bool;

isJust m =
{

True if m = Just x,
False otherwise;

fromJust :: Maybe a→ a;

fromJust m =
{
x if m = Just x,
⊥ otherwise;

head :: [a]→ a;

head l =
{
x if l = x : xs,
⊥ otherwise;

tail :: [a]→ [a];

tail l =
{
xs if l = x : xs,
⊥ otherwise.
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Definitions 1–8 specify a fragment of System Fω,1 which is used to type expressions in
the lambda calculus. Although System Fω is strictly more powerful, our definitions are
enough to provide a description language for the data types and functions in the rest of
this work.

3.2.2 Neural Systems

Definition 10 (Neural component). Let I be an index set and let T be any type.
Then, a neural component C with a name from I and message type T is a four-tuple

〈name, ft, int, proc〉

where

1. name :: I is the name of C,

2. ft :: T→ B is called the filter of C,

3. int :: T→ Maybe T is called the interpreter of C, and

4. proc :: T→ T is called the processor of C.

Formally, the type of C is CompT,I . As a shorthand, we denote the name, filter, interpreter
and processor of a given component C as nameC , ftC , intC , procC , respectively.

A set of neural components, together with a set of messages, induces a neural system:

Definition 11 (Neural system). Let T be any type and let I be an index set. Then, a
neural system with message type T and component names from I is a tuple

〈Co,Me〉

where

• Co is a set of neural components (with message type T and names from I) and

• Me is a set of elements of type T , called the set of messages.

3.2.3 Sending and Receiving Messages

We now give a notation for the sending and receiving of messages in a system. Here, we
distinguish two aspects: first, the structural, which describes how messages can travel in
a system and the operational, which describes how they do travel in some given scenario.

1Specifically, the decidable fragment of System Fω without higher kinds and only prenex-polymorphism.
That is, type constructors can only take types as arguments and are of the form [∀x1, . . . , xn] C for
quantifier-free C. This is also called the Hindley-Milner type system. For details, see [Bar91].
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Structural Notation

The elements of a component statically determine which messages it can receive and
send. Based on the behaviour of the filter, interpreter and processor of a component, we
can express a number of properties.

Definition 12 (Message reception). Let C be a component and m a message. C can
receive m if and only if ftC m = True and intC m = Just m′ for some m′. When C
can receive all messages in {m1, . . . ,mn}, we write:

{m1, . . . ,mn}� C.

We denote the opposite statement, that C cannot receive any message in {m1, . . . ,mn}, by:

{m1, . . . ,mn}( C.

Definition 13 (Message sending). Let C be a component and m,m1, . . . ,mn mes-
sages. C can send out a message m if and only if there exists a message min such that
procC min = m. When C can send all messages in {m1, . . . ,mn}, we write:

C � {m1, . . . ,mn}.

The opposite statement, that C cannot send any message in {m1, . . . ,mn}, is denoted by:

m1, . . . ,mn( {C}.

Definition 14 (Receiving set). The set of components which can receive a message
m is denoted by

rec(m) ≡ {C ∈ Co | {m}� C}.

rec can also be overloaded to refer to the set of components which can receive and
interpret at least some message of a component C:

rec(C) ≡ {Ci ∈ Co | ∃m : C � {m} ∧ {m}� Ci}.

Operational Notation

Whereas the structural notation pertained to the static properties of a neural system,
the operational notation describes traces: lists of sent and received messages, and the
changes they induced in the system.

Definition 15 (Message action). When a component Ci outputs a message mout that
another component Cj receives and interprets as message min, we write

Ci → [mout,min]→ Cj .

We refer to this as message action. If it is clear that the message m does not change, we
just write

Ci → [m]→ Cj .
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Definition 16 (Trace). Traces are defined inductively thus:

1. Every message action is a trace.

2. If T1 and T2 are traces, T1;T2 is a trace.

“;” denotes sequential execution and is associative. Thus, the semantics of a trace
T1;T2; . . . ;Tn are that T1 is executed first, followed by T2, and so forth, until Tn is
reached and the execution ends. For readability, T1; . . . ;Tn will sometimes be written
line-by-line as

T1
...
Tn

Definition 17 (Component mutation). Let f1, f2, . . . be functions CompT,I → CompT,I
which preserve the names of components, m,m′ messages of type T and C a component
of type CompT,I . When C is changed into (fn ◦ · · · ◦ f1) C by a message m it receives, or
changed into (fn ◦ · · · ◦ f1) C by a message m′ it sends, we write, respectively:

· · · → [m]→ 〈f1, . . . , fn〉C;
C〈f1, . . . , fn〉 → [m′]→ . . . .

If no change occurs, that is, if

C〈〉 → [m]→ . . . or
· · · → [m]→ 〈〉C

we omit the angle brackets. The semantics are as follows: after by sending or receiving a
message, Co is replaced by (Co− {C}) ∪ {(fn ◦ · · · ◦ f1) C}.

Definition 18 (Plastic and non-plastic neural systems). If, for all messages m
and components C,C ′ in a neural system:

C〈〉 → [m]→ 〈〉C ′

holds, we call the system non-plastic. Otherwise, we call it plastic.

This definition intends to roughly convey the notion of neuroplasticity, as used in
neuroscience: areas in the brain are changed over time through specific patterns of
activity. Here, such change is modelled by the execution of functions and the replacement
of C in the system by fn ◦ · · · ◦ f1(C).
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3.2. Mathematical Model

(a) Components communicating
via a central organising mecha-
nism.

(b) A sequence of components.

Figure 3.5: Two special-purpose component arrangements.

3.2.4 Invariants

Such a model does not necessitate the existence of special structures, such as central
organizers or sequences of components, one activated after another,2 but it does not
preclude them either. In fact, we can enforce certain features via first-order invariants.
For example, a central organizing units for the components C1, . . . , Cn can be emulated
by a component Cco which accepts messages and transforms them into an appropriate
format for the some other components. Figure 3.5a depicts such an organiser, and
Invariant 19 gives a symbolic definition.

Invariant 19 (Central organiser). Let C1, . . . , Cn, Cco be components, with C1, . . . , Cn
being peripheral components and Cco being the the central organiser. Then, the invariant
encoding that C1, . . . , Cn communicate with each other by sending messages via the central
organiser Cco is

[∀i ∈ {1 . . . , n}][∀m] :

(Ci� {m} ⇒ rec(m) = {Cco}) ∧
(

(procCco
◦ intCco(m)) ∈

⋃
1≤j≤n

rec(Cj)
)
.

Similarly, sequences can be created by components C1, . . . , Cn, where each components
reads the message of the last one. We see such an invariant depicted in Figure 3.5b and
formally described in Invariant 20.

Invariant 20 (Sequence). Let C1, . . . , Cn be components. Then, the invariant encoding
that, for 1 ≤ i < n, a component Ci may only send messages to the next component Ci+1
is

[∀i ∈ {2 . . . , n}] : rec(Ci−1) = {Ci}.

2An example of such a sequence is discussed by Sander et al. [SGS05] where the authors model the
emotion process as a four-step pipeline of relevance, implication, coping and normative significance.
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CHAPTER 4
Affective Architecture

Having laid out a general component model, we now describe the components our artificial
intelligence will actually use. In this, we make use of the works of Minsky and others to
design components that are likely analogous to those that exist in the brains of biological
organisms. Of special interest to us are perception, emotional systems, and planning.

4.1 Important Subsystems
If an agent is to efficiently navigate a complex environment, it has to possess certain
cognitive capabilities. First, it needs a means of sensory perception — that is, the
processing of raw sensory input into an format intelligible to its other cognitive components.
Second, if it wants to plan, it also requires the ability to reason about its actions — we
might call this belief generation or imagination. Third, it needs the ability to prefer some
courses of action over others. In biological organisms, we might think of one’s affect, that
is, emotions, fulfilling this role.

4.1.1 Sensory Perception

The model presented herein is inspired by Marvin Minsky’s The Emotion Machine
[Min06]. Therein, Minsky proposes a layered mental structure where each successive
layer operates on more and more abstract representations of the world, starting with
primitive sensations and proceeding all the way to self-conscious reflection and rational
planning. Figure 4.1 shows such a layered structure.
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4. Affective Architecture

Figure 4.1: Layered perception of the world, from [Min06, p. 100].

The diagram is explained thus [Min06, p. 100]:

Now suppose that your A-Brain gets some signals from the external world
(via such organs as eyes, ears, nose, and skin) — and that it also can react to
these by sending signals that make your muscles move. By itself, the A-Brain
is a separate animal that only reacts to external events but has no sense
of what they might mean. For example, when the fingertips of two lovers
come into intimate physical contact, the resulting sensations, by themselves,
have no particular implications. For there is no significance in those signals
themselves: their meanings to those lovers lie in how they represent and
process them in the higher levels of their minds.

If we apply this to the architecture of Section 3.2, we can devise a system in which each
sense S has an associated component CS which does two things:

1. It consumes the raw sensory information delivered by various organs and output
processed input for higher brain functions;

2. as a side effect of this processing, it causes instinctive, low-level reactions in the
body, such as pulling away from pain or jumping at a sudden fright.

In Figure 4.2, a slice of just such a system is shown for visual, auditory, olfactory/gustatory,
and tactile sensation. The produced data can be of two kinds: one is more abstract
than the input and facilitates deliberative action, and the other contains instructions for
instinctive behaviour for the body.

4.1.2 Belief Generation and Planning

Broadly speaking, belief generation can be described as “imagination”, and is closely
related to sensory perception and world simulation. In examining the system, we might
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Figure 4.2: Partial structure of sensory perception - raw sensory data is processed
and made available to higher functions such as the affective subsystem. The comment
“Possible side-effect: sensory experience” signifies the fact that conscious and subconscious
sensory experiences might occur as a side-effect of this processing. However, it is currently
unknown to neuroscience whether this is indeed the case.

broadly classify its processes into three categories:

1. Belief generation — imagining sights, sounds, etc. Such experiences have much
in common with those caused by our sensory organs, yet are marked not as real.
In particular, imagined experiences evoke only parts of the conscious experience
that accompanies real perceptions. Research by Berthoz [Ber96] and Lotze et al.
[LME+99] suggests that (a) the brain indeed uses similar circuitry for real and
imagined experiences and that (b) imagined experiences are prevented from being
confused with real ones via inhibitory signals. Lotze et al. write:

The results of cortical activity support the hypothesis that motor imagery
and motor performance possess similar neural substrates. The differential
activation in the cerebellum during EM and IM is in accordance with the
assumption that the posterior cerebellum is involved in the inhibition of
movement execution during imagination.

From the abstract of Berthoz’s paper:

[ . . . ] experimental evidence suggesting that the brain can use the same
mechanisms for the imagination and the execution of movement. In
particular the fact that adaptation of the vestibulo-ocular reflex can be
obtained by pure mental effort and not solely by conflicting visual and
vestibular cues has been suggestive of the fact that the brain could inter-
nally simulate conflicts and use the same adaptive mechanisms used when
actual sensory cues were in conflict.
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2. World simulation — the imagination of future states. Simulating worlds goes
beyond the imagination of sensory experiences; it involves constructing models of
worlds and simulating their behaviour. The details of this process are unknown,
but we can assert that it is capable of a number of things:

(a) construction of non-physical worlds, such as mathematical models,

(b) extrapolation into the future and the past, and

(c) simulation of the minds itself and other agents.

3. Executive planning — humans can plan both both in immediate and concrete terms
(such as body movement) and in the abstract. It is likely that different circuitry is
used for movement planning and for planning involving abstract reasoning, in both
cases it is necessary that the brain simulate the world in some way. The simulation
of the consequences of body movement is likely older than humanity and distinct
from the kind of world simulation described above, but both share their function:
the agent proposes as series of actions to take, inserts them into some mental world
and judges the utility of those actions based on the predicted consequences.

Needless to say, that this process in all its subtleties is immensely complex and thus
we simply endeavour to sketch its possible structure only in extremely rough outlines.
This sketch is shown in Figures 4.3, 4.4, and 4.5: the world simulation is an ordinary
component with a filter and interpreter which outputs, for simplicity’s sake, messages
marked as imaginary. We can imagine such messages to be very much like ordinary
sensory ones, with the exceptions that they have no accompanying sensation and, more
importantly, that we are aware of their non-reality. The planning component receives
instructions about desirable states and outputs hypothetical actions which the world
simulator incorporates. The world simulator’s output is in turn read by the planner,
which then abandons the plan or decides to pursue it further.

The planner, minimally, has to perform two functions — first, it has to judge the
desirability of various world states and second, it has to be able to devise possible steps
for the agent based on some strategy. If these two functions and some desired goal(s)
are given, the planner can do its work by issuing the following commands, as shown in
Figure 4.4:

1. If some goals are not yet reached but appear possible, devise possible steps to take
and have the world simulator predict their outcomes.

2. If the goals appear impossible the necessary steps prohibitively undesirable, com-
mand the world simulator to cease its activity.

3. If earlier proposed steps turn out to fulfil some goal, contact the agent’s executive
component.
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Figure 4.3: Structure of of belief generation & world simulation: messages emulating the
output of sensory perception are generated, but are marked as imaginary by unknown
means.

Figure 4.4: Planner with two kinds of inputs: (1) real sensory data and (2) imaginary
data which comes from world simulation. On the basis of these inputs, possible steps are
developed and sent out as commands.

World Simulation as Rationality

The way in which we just described the interaction between the world simulator and
the planner suggests that they function as a pair of guesser and checker: the planner
generates ideas on what to do and the world simulation tests their viability in some
setting. Indeed, we can model rational thinking as embedded in the world simulator,
especially if we make use of a plastic neural system. The proposed steps of the planner
might be quite chaotic and irrational, but when given to the world simulator, it recognises
them as such and returns a failure signal to the planner, causing it to abandon “bad”
paths of cognition. A plastic planner can learn from the consistent failure of certain
kinds of steps and, in time, propose them less and less often. Observed as a whole, this
system of planner and simulator appears to simply deliver good plans by intuition, even
though, in isolation, neither part is very clever.1

1We do not wish to idealise rationality too much; world simulation is only partly rational and,
given faulty information about the world, will err considerably and in documented ways. Similarly, it
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4. Affective Architecture

Figure 4.5: Interaction between world simulator and planner: the planner devises possible
steps and feeds them into the world simulator, which, in turn, tries to calculate their
effects. The results are fed back to the planner.

Model. In a simplified way, we can model the process of logical deduction in a formal
system F = (A,R), where A is a recursive set of axioms and R is a recursive set of
production rules of the form (rfrom, rto) s.t. rfrom → rto is a valid production in the
system. Let

1. W be a world simulator for the world of propositions P in (A,R),

2. P a planner,

3. St = {s1, . . . , sp} a set of messages about steps to take,

4. Cat = {K1, . . . ,Kq} a list of message categories,

5. cur : WS the current state of the world simulator,

6. ins :: WS → St → W → W , del :: St → W → W functions for inserting or
deleting a state change into the world simulator or the planner,

7. t(i) and b(i) functions which increase or decrease the likelihood of sending a message
belonging to category Ki and

8. ⊥i,>i the failure and success signals of a message belonging to the category Ki.

One step of the interaction between W and P , in a scenario where P proposes steps
si1 , . . . , sin , can then be modelled with two traces Tguess and Tcheck:

Tguess(step) ≡ P 〈ins cur step)〉 → [step,step]→ 〈ins cur step)〉W ;

Tcheck(step) ≡ ∀Ki ∈ Cat : Ki(step)⇒
if [∃sj ] (cur, sj) ∈ R then W 〈〉 → [>i,>i]→ 〈t i〉P
else W 〈del step)〉 → [⊥i,⊥i]→ 〈del step, b i〉P.

is certainly possible for the planner to derange the world simulator by evaluating certain states as so
desirable/undesirable that it will pursue even scenarios which the world simulator reports as highly
unlikely.
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Axioms can be selected by executing Tguess(ax) for all ax ∈ A. We can then perform
deduction via Tguess;Tcheck, for a probabilistically selected step ∈ St.

Intuitively, Tguess guesses a step to take. It does so but inserting it into the planner’s
world-state via ins and then sending a message to the world simulator, which also inserts
it into its world state. Tcheck then checks whether the change from cur to step was
legitimate. If so, it determines to which category step belongs and sends the >-signal
for that category back to the planner. Otherwise, it sends the corresponding ⊥-signal.
The purpose of this is to make it more or less likely, respectively, that the planner should
choose the same category of step in the future. The categories, we can imagine, could be
things like “modus ponens”, “associative reasoning”, “appeal to consequences” and so
forth.

If we repeat this interaction (with different proposed steps s1, . . . , sp in each iteration),
we get an algorithm for logical deduction — that is, since A and R are recursive, the
system will recursively enumerate all valid logical formulas, provided that we pursue each
path and that the probability of selecting any valid step is > 0. In addition, we could
add a goal function g to P s.t. it would accept certain states and stop. Thereby, P and
W could be used to prove logical propositions.

4.1.3 Affect

When discussing human affect, one can mean various things: the causation of emotion, its
internal mechanisms, the expression of emotion, social communication of emotions, etc.
In this document, we restrict our attention just to the internal mechanisms — that is, to
the means by which emotions are evoked in an agent and how they shape its thinking.

Furthermore, the issue will only be the causative mechanism itself; taxonomy and
hierarchy of emotions are deferred to future versions of this document.

The model presented herein is adapted from Gadanho and Hallam [GH01], who employed
it in the context of robot learning. They constructed a system of feelings and sensations
F , emotions E , and a hormone storage H.

Figure 4.6 shows this model: sensations enter the system and are connected to the feelings.
They, in turn, determine the agent’s emotions. The emotions then feed into a hormone
storage, the contents of which influence, together with the sensations, the agent’s feelings.
In the context of their paper, this model had a very restricted application. Its purpose
was to merely help guide a robot through a world, and accordingly, F and E were only
defined as [GH01, p. 47]:

F = {Hunger,Pain,Restlessness,Temperature,Eating, Smell,Eating,Proximity}
E = {Happiness,Sadness,Fear,Anger}
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Figure 4.6: Emotional model of Gadanho and Hallam [GH01, p. 46].

The main advantage of Gadanho’s and Hallam’s model is that (a) it is sufficiently
generic to accommodate various schemas and (b) posits an internal state (the hormone
storage), giving agents a certain inertia. For example, one can imagine integrating
a many-dimensional model like Brazeal’s [Bre03] detailed taxonomy of emotion like
Ortony’s OCC model [OLCC88]. The existence of an internal state is necessitated by the
simple observation that our internal world is not solely dependent on momentary stimuli,
but merely influenced by them. The idea of a hormone storage might be a simplistic
approximation but it, too, can be refined as needed.2 Figure 4.2 shows the adapted
model. The general structure was retained, but the set of sensations was replaced by the
sensory processor described in Section 4.1.1 and, instead of a single dominant emotion,
competing emotions simply emit messages which are used by execute components and
the world simulation.

2It might be tempting to simply replace the hormone storage with the message space, but doing so
would ignore the role that neurotransmitters like dopamine and serotonin play in cognition, irrespective
of the purely computational activity of brain components.
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Figure 4.7: Affective subsystem; specialisation of the global neural architecture. In plastic
neural systems, selections may change over time.

Affective Subsystems

We now develop the concept of “emotion” in greater detail. The process shown in
Figure 4.7 might suggest we simply have a collection of emotions and that all emotions
are essentially equal, but we submit that this is not so. Instead, we propose the existence
of various subsystems, each responsible for a group of emotions, and each with its own
history and distinctive tasks. Thus, we will make the following two assumptions:

1. “Emotion” is not a singular phenomenon. Specifically, we will assume that emotions
are not simply vectors in a vector space of two, three, or four dimensions, with
the only difference between, say, happiness and fear being a different value in the
positivity-component. Rather, we will assume that emotions are fundamentally
different from each other and that each emotion induces a distinct subjective
experience.
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2. There exist emotions which are both different in kind and which pertain to different
subsystems in the brain. This implies that emotions cannot conceptually be seen
as a homogeneous set {E1, . . . , En}. Instead, a number of distinct subsystems
are necessitated, each responsible for the causation and processing of a group of
emotions. Given this, the only substantial aspect any two emotions might have in
common would be our referring to both of them as “emotion”.

Both of these assumptions are rather concrete and thus deserve evidence. In 1999,
Davidson and Irwin, using PET and fMRI scanning, found two different systems mediating
approach- and avoidance related behaviours [DI99, p. 13]:

A large body of lesion, neuroimaging and electrophysiological data supports
the view that the prefrontal cortex (PFC) is an important part of the circuitry
that implements both positive and negative affect. (. . . ) A number of early
studies that evaluated mood subsequent to brain damage suggested that patients
with damage to the left hemisphere, particularly in PFC, were more likely
to develop depressive symptoms compared with patients having lesions in
homologous regions of the right hemisphere. (. . . ) The general finding of left
dorso-lateral PFC damage increasing the likelihood of depressive symptoms has
been interpreted to reflect the contribution of this cortical territory to certain
features of positive affect, which, when disrupted, increases the probability of
depressive symptomatology.

In this, they echo earlies findings by Cacioppo et al. [CG99], Gray [Gra94] and Lang et
al. [LBC90] that affect is lateralised, with different hemispheres being responsible for
different categories of feeling. It therefore stands to reason that different emotions, being
generated by different brain regions, should therefore also be different in their character.

Further, much research has been done in the area of so-called basic emotions — a small
set of emotions are acknowledged as being both elementary and characteristically distinct
from each other. The Cambridge Handbook of Affective Neuroscience provides a good
overview of the basic emotion theory [AV13, pp. 9-10]. Matsumoto and Eckman [ME09],
for instance, identified seven basic emotions: happiness, surprise, contempt, sadness, fear,
disgust, and anger.

Damasio [Dam98], drawing upon neuroscientific findings, sketches a model of affect
mainly involving the prefrontal cortex, but also the amygdala, the hypothalamus, and
the anterior cingulate cortex, as seen in Figure 4.8.

In the same article, he describes how different brain regions are responsible for different
kinds of emotion (emphasis ours):

Equally problematic is the widespread view that the limbic system is the neural
basis for all emotions. A rich body of evidence tells us that this is just not the
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Figure 4.8: Neurological structure of affect, according to Damasio [Dam98].

case. Both within and around the limbic system, circuitry connection varied
neural sites supports the operation of different emotion. For instance, work
on aversive conditioning in rodents has shown that the amygdala is certainly
involved in negative emotions such as fear [10,6]. Work in humans, on the
other hand, has not only confirmed the amygdala’s involvement in negative
emotions such as fear and anger, but also shown that the amygdala is not
involved in the processing of positive emotions such as happiness, or negative
emotions such as disgust.

The last sentence of that quotation is especially revealing: it states that the neurological
distinction is not simply one between positive and negative, or one between approach-
or avoidance-related emotions, but that each emotion has its own profile of neurological
activity and involves its own peculiar set of brain structures.

These facts make it quite clear that emotions are not simply homogeneous phenomena,
being induced by a single system in the brain; rather, they are different in character and
in the neural structures they involve.

Structure of affect. The system depicted in Figure 4.7 left several parts unspecified:
the sensory processor Pr, the emotion selectors S1, . . . , Sn and the messages sent by the
chosen emotions into the message space. In the following paragraphs, we will flesh out
that model in greater detail, building principally on the work of Sander, Grandjean and
Scherer [SGS05]. Sander and colleagues partitioned the emotion process into four stages,
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Figure 4.9: The four-stage emotion process according to Sander et al, consisting of
relevance, implication, coping and normative significance.

as shown in Figure 4.9. The first is relevance, which functions as a filter and detects the
intrinsic pleasantness and the level of (emotional) attention that a stimulus demands.
The processes of this stage, roughly speaking, correspond to the work of the sensory
processor Pr. The second stage is implication, where reasoning becomes engaged in order
to determine the cause, likely outcome, and urgency of the perceived facts. At this stage,
emotions like joy, anger, contentment, disgust, etc. are evoked, together with approach-
and avoidance-related behaviours — this corresponds to the emotion selectors S1, . . . , Sn.
Deliberate strategies come only in the next stage: coping. In it, reasoning and planning
become fully engaged. The fourth stage is normative significance and deals, in essence,
with moral concerns, both internal and those of other agents.

Sander et al. give a good, detailed account of the interactions of affect with other systems,
although we would argue that theirs is unduly suggestive of a simple pipeline, rather than
a mesh of systems into which the affective ones are embedded. In addition, it does not
address the interactions with perception, memory, and reasoning. Based on the evidence
discussed above, we shall now present a more horizontal view and construct a model of
the hypothesised emotional subsystems and their interactions with other parts of the
brain. Since no established vocabulary seems to exist in this specific are we shall first
introduce a number of terms.

Definition 21 (Evocative system). An evocative system is a subsystem in the brain
responsible for evoking consciously experienced affect within an agent based on internal
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or external stimuli.

Various such evocative systems can be imagined. For the purposes of this thesis, we will
work with the following rough categorization:

Pre-social emotions. Certain behavioural mechanisms can be observed in non-social as
well as social animals. The fight-or-flight instinct, for example, is nearly universal,
as is the inclination to seek out food, shelter, and other resources. “Instinct” is
indeed a more appropriate term in the case of most species, rather than “emotion”,
which connotes a certain richness of experience. Nonetheless, we can clearly see
that, in more intelligent, social animals, emotions like anger, fear, and joy, have
grown out of just these instincts. Hence the term “pre-social emotions”: while
emotion itself is quite possibly inherently social, certain emotions are rooted in
instincts which are not, and an emotional animal would feel them even if it were
the only one of its kind in an environment.

Social emotions. A by far richer subset of emotions are the social ones. Indeed, social
situations are the ones where affect can and must truly shine: the presence of
other individuals, or of the entire tribe, demand a variety of affect relating to the
appraisal of the agents, sympathy/antipathy, respect/contempt, the appraisal of
oneself, showing dominance or submission, influencing other group members, taking
action as a group, judging the behaviour of agents against norms, etc. It is also in
social emotions in which it even makes sense to show emotion: facial expressions
and gestures provide the signalling and mechanism needed for group coherence and
coordinated action.
We can identify several subsystems in the category of social emotion:

1. Reflective judgement about oneself in relation to the group or to abstract
norms, primarily pride and shame [TD08], but possibly also jealousy and
humiliation (which, in contrast to shame, is attributed to external causes)
[Fon09];

2. other-related judgement which determines whether to feel sympathy or antipa-
thy, compassion, respect or contempt, trust or distrust for other individuals;

3. normative judgement, which determines whether others or oneself is acting in
accordance with instinctive or cultural norms.

Other classifications are also possible. Haidt [Hai03], for example, identifies those
that are other-condemning (disgust, contempt), self-conscious (shame, embarrass-
ment), other-suffering (compassion), other-praising (gratitude, awe). The picture is
immensely complex and the neurological structure is presently not known. For the
purposes of this thesis, we will therefore content ourselves with only this roughest
of outlines.

Aesthetic emotions. This type of emotion is perhaps the least studied in neuroscience
and AI. It is certainly the most subtle and the least “utilitarian” type — as such,
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it is philosophers, rather than AI researchers, who study it. For instance, Jenefer
Robinson, in Deeper Than Reason: Emotion and Its Role in Literature, Music,
and Art [Rob05], writes about the affective appraisal of artwork as an unconscious
process which partly reproduces the emotions of its creator. In this, she builds
upon and modifies Collingwood’s 1983 The Principles of Art [Col05, Kem12]. Since
aesthetics are not the focus of this work, we shall leave it at this mention. A more
thorough exploration would be interesting future work, however.

The emotions just listed can all be found in the more extensive taxonomies, chiefly among
them in Ortony’s OCC model [OLCC88]. The taxonomies, however, tend to neglect the
underlying neurology and the chronology of the development of these systems. Ortony’s
classification specifically is persuasive up to a point, but, despite it being fine-grained,
one is left wondering about the underlying structure: which emotions are caused by the
same brain regions, what structure, if any, do two given emotions share, to what degree
is the classification scheme isomorphic to the actual neurology? This is an active area of
research and while these questions are interesting, we have to leave them largely open for
now.

The evoked feelings tie into and directly influence the agent’s actions. This includes
conscious, deliberate ones, such as avoiding an unsympathetic person, but also subcon-
scious ones and those that are purely internal, such as the focusing one’s attention to an
important topic. These actions all fall under the umbrella term of executive system:

Definition 22 (Executive system). An executive system is a subsystem in the brain
which makes decisions about the behaviour of an agent’s mind or muscular system.

This definition leaves open what exactly a decision is. In principle, any neural activity
in a part of the brain could be seen as a decision of sorts, since it influences neural
activity in other parts. While we do perceive certain processes as deliberate and others
as automatic, this is simply what our introspection tells us and does not reflect the
underlying reality; (conscious) decision-making is as mechanical as any other process in
the brain, the chief difference being that we are aware of the workings of that process
and perceive the control it exerts over cognition as coming from us.3

Nonetheless, there are properties by which we can identify executive systems in the
brain: on a sufficiently high level of abstraction, we can see that certain components
are receptive to control signals. Certain other components — these are the executive

3We should add that we are not even aware of the entirety of our decision-making. This is especially
apparent when we are asked to make trivial or random choices. A person who is asked to press a left or a
right button, for example, will choose one, seemingly at random, but will not be able to explain why one
button was chosen over another. Moreover, there is evidence that the choice is made before the person
knows that a choice was made: Soon et al. [SSBHH08] instructed subjects to press a button and to record
when they thought they made the decision to do so. Brain scanning revealed spikes in the activity of
the lateral and medial frontopolar cortices and the posterior cingulate cortex before the subjects claimed
their decisions were made. In effect, they only became aware of their supposedly free decisions after they
had already been made. From their conscious perspective, the decision simply “popped into their heads”.
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systems — have as their chief purpose the sending of such control signals. The former
accomplish some conceptually small task and essentially serve as building blocks. The
latter structure the work and assemble the small building blocks into compound actions.
See Section 4.1.2, where planner and world simulator work in tandem, with the world
simulator bearing the workload and the planner having control.

We can now distinguish certain kinds of action. While those performed with the “body”
(i.e. the skeletomuscular system) are the most visible ones, we, as shown, also make
decisions regarding the contents of our minds — we decide what to think about. We then
add the distinction between consciously and subconsciously made actions and get the
following four categories of executive system:

• Subconscious motor control: instinctive reaction, such as the jerking away from
pain, jumping when startled, and turning towards interesting visual stimuli.

• Conscious motor control: deliberate, planned action which the agent experiences
as a choice.

• Subconscious mental control: involuntary but consciously experienced changes to
the mind-state of an agent which are perceived as activity rather than mere feeling.
This includes like obsessing over an issue, manias, fantasies insofar as involuntary,
etc.

• Conscious mental control: deliberate mental changes of an agent. This includes
the making of decisions, the deliberate focusing of attention, deliberate planning,
deliberate strategy selection, and so forth.

We stress that these are categories of systems, not systems themselves. We control our
minds and our bodies in a variety of ways and there is no evidence that there is some
sort of master control system anywhere in the brain responsible for these tasks. The
planner from Section 4.1.2 only controls one other component — and it might very well
be that it does not even exist in the brain as one compact component. It might be that
a variety of smaller systems are tugging and vying for control and balanced against each
other in such a way that the illusion of dedicated planning component is created.

4.2 Interaction Between Affect and World Simulation

Section 4.1.2 outlined what could be called deliberate action in the from of a planner-
world-simulator loop. Section 4.1.3 described the structure and components of affect.
These systems are of course not isolated from each other; emotional states influence both
the planner’s chosen heuristics and the world simulator’s creation of worlds. In addition,
attention, also influenced by affect, controls the allocation of cognitive resources. We
now explore these relationships in further detail.
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Planning as search. In the AI literature, search algorithms are of great importance.
In this context, we can view the loop between planner and world simulator as a greedy
search: the planner chooses the nodes which are to be expanded and sends them to the
world simulator. It, in turn, performs the expansion by simulating the appropriate worlds.
These simulated worlds are sent back to the planner for evaluation regarding desirability
(i.e. cost). This presents an obvious problem: since greedy search is not complete, our
planner-world-simulator loop can’t be complete either. In fact, the situation is worse —
greedy search computes the cost of all candidates for expansion and chooses the cheapest,
whereas our planner, being heuristic, might not consider certain nodes at all.

This might seem damning, but we must also consider the interaction with attention and
memory. First, planned steps are committed to memory and thus, we gain access to
past costs. An agent does not plan blindly, but can recall how long its plans are and
what costs past planned steps entail. Given this information, we can turn the greedy
algorithm into an A∗ search, with the qualification that the planner might not consider
certain nodes. The mechanism of attention can further be used to enhance the search:
if planning along a certain path takes too long, the agent might decide to abandon it
altogether and start afresh with a different strategy. This failure too is stored in memory
and can influence the planner in the new planning process by making the proposing of
steps of the previously pursued path unlikely.
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CHAPTER 5
Implementation

Having laid the theoretical framework, we come to the practical part of this thesis — a
proof-of-concept implementation of multiple affective agents interacting with each other.
This chapter describes the world in which the agents and the Wumpuses will act, as well
as the architecture of these agents.

The goal is the creation of a toy AI that semi-realistically mimics animal intelligence,
the operative word being “mimic”. As Sloman [Slo01] pointed out, naming a variable
anger or love does not give a program some qualitative experience. Indeed, our much
more modest goal is to emulate the behaviours that are associated with certain mental
states — and to show how such emotional states, interacting with reasoning, can help an
agent thrive in its environment. These programs will really only be soulless automata,
employed to illustrate a point about living beings with brains, acting with incomplete
information.

5.1 World
The choice of the world profoundly affects the implementation of the agent — its
knowledge base, mechanism of perception and interaction, the required complexity of
the implementation. On the one hand, the world should be simple enough to permit a
reasonably small and effective agent which does not have to solve hard AI problems (like
human-level sight) to deal with what we, in this context, might call details — but on
the other hand, the world should be sufficiently complex to allow agents to distinguish
themselves. This is especially true in the case of an affective agent whose actions should
be visibly influenced in rich and subtle ways by its emotional state. We shall first lay out
the design goals and then evaluate three possible worlds for agents.

Design Goals. The two most important criteria for prospective worlds are richness
of interaction and world complexity, in that order. As said, an evaluation of affective
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agents is only possible if they can interact with their environment and other entities
in a sufficiently complex way to allow agents with different emotional profiles to be
distinguished from each other. Mechanisms of problem-solving like STRIPS [FN71], A*
search [HNR68], answer-set programming [GL88], forward-/backward-planning, etc. have
been explored in the context of structurally simple worlds, generally those representable
through propositional logic, cost-functions, decision tress, and the like. While these are
useful, they are less appropriate in an affective scenario for the following two reasons:

1. they are geared towards finding provably optimal solutions to computationally
expensive but conceptually simple problems like planning or game-playing and

2. they rely heavily on hand-crafted ontologies and domain knowledge on the part of
the human programmer.

For a world to be useful to us and to avoid these pitfalls, it should be in some sense
realistic: it should permit a large number of different kinds of interactions, and it should
not provide agents in it with perfect knowledge about its rules.

We admit that we, in this matter, stand in opposition with Marvin Minsky, who famously
recommended the use of idealised micro-worlds to study artificial intelligence, in that
same vein in which physics makes use of ideal, frictionless planes and perfect spheres. His
argument certainly has merit, but we believe that emotion is too complex a phenomenon
for such abstract scenarios. In too simple a setting, pure reasoning not only easily
outperforms emotional behaviour, but avenues for exhibiting emotional behaviour are
scarce to begin with. For this reason, we propose that, in this context, rich interactions
should take precedence over idealization and simplicity.

It is of course still desirable to minimise complexity as far as possible. An overwhelmingly
complex world has two obvious drawbacks: first, the required complexity of an agent
scales with the complexity of the world; second, the more complex the world, the harder
it is to reason about it. If there are a hundred ways to succeed, for instance, agent
performance becomes quite difficult to measure.

5.1.1 Wumpus World

The traditional Wumpus world, as described in Russell and Norvig’s Artificial Intelligence:
A Modern Approach [RN10, p. 236], is a grid-based, 4x4 cave world with one agent, one
monster — the Wumpus — and gold placed in random rooms. The agent starts at
position 〈1, 1〉 and can move forward or turn 90◦ to the left or right. If it enters a room
with a pit or a live Wumpus, it dies; its goal is to find and collect the gold and then
move back to position 〈1, 1〉 to climb out of the cave. In addition, it has one arrow which
he can fire straight ahead to defend against the Wumpus. The agent cannot see, that is,
it only has access to information about its own cell and cannot directly observer other
ones. To quote Russell and Norvig, the agent has only the following local information
[RN10, p. 237]:
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• In the square containing the Wumpus and in the directly (not diagonally)
adjacent squares, the agent will perceive a Stench.
• In the squares directly adjacent to a pit, the agent will perceive a Breeze.
• In the square where the gold is, the agent will perceive a Glitter.
• When an agent walks into a wall, it will perceive a Bump.
• When the Wumpus is killed, it emits a woeful Scream that can be perceived
anywhere in the cave.

This type of world is simple enough to be amenable to rule-based reasoning, although it
can contain ambiguous situations where the agent does not have enough information to
make the best choice. For example, if an agent moves to position 〈px, py〉 and experiences
a breeze, 1, 2, or 3 adjacent rooms may contain pits, but it cannot be safely determined
which ones these are. Thus, occasionally, the agent must choose between climbing out
without the gold and risking death by pit or Wumpus.

For our purposes, this is a bit too simple, however. Caution/bravery is the only axis
along which agents can be differentiated and although various complex behaviours —
such as trying one dangerous cell, then going back and trying another one to explore the
world — are possible, these do not have a clear relation to emotional states.

Let us, while staying true to the spirit of the original, now define a type of extended
Wumpus world Wext that allows more varied interaction between agent an environment.

Definition 23 (Wext-type world). Let Tv, Te, Tg be arbitrary types. Further, let G
be a directed graph with vertex labels of type Tv and edge labels of type Te, and let gl be
an object of type Tg. Then, the tuple 〈G, gl〉 is a Wext-type world (with type parameters
Tv, Te, and Tg). We call G the world frame and gl the world data.

We can interpret each vertex v in the graph as a room with attached data l(v) of type
Tv, and each edge e as an unidirectional connection between rooms with attached data
(such as path costs) l(e) of type Te. The object gl is the global world data.

Next, we specify some properties of the world frame:

Definition 24 (World properties). Let W = 〈G, gl〉 be a Wext-world. Then, W is

1. reflexive, if, for all v ∈ V (G), (v, v) ∈ E(G),

2. non-Euclidean, if for all pairwise distinct v1, v2, v3 ∈ V (G), {(v1, v2), (v1, v3)} ⊆
E(G) implies (v2, v3) /∈ E(G),

3. symmetrical, if for all v1, v2 ∈ V (G), (v1, v2) ∈ E(G) implies (v2, v1) ∈ E(G),

4. connected, if for all v1, v2 ∈ V (G), there exists a path from v1 to v2 in G, and

5. n-dimensionally embeddable, if there exists an infinite, n-dimensional grid S such
that G ⊆ S.
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The first four properties speak for themselves. As for the fifth — Figure 5.1 shows
an example of a 2-dimensionally embeddable frame. A frame G is n-dimensionally
embeddable if it is a fragment of an infinite, n-dimensional, square grid of nodes S,
plus any loops G might have. When we embed this infinite grid S into Rn through an
embedding, every edge corresponds to a vector of length 1 along exactly one dimension.
If we additionally take G’s loops to correspond to null-vectors, this induces an edge
direction function and a position function:

Definition 25 (Edge direction and position). LetW = 〈G, gl〉 be an n-dimensionally
embeddable world (for some n) and ε an embedding ofW into Rn. Then, the edge direction
function is given by

∆ε
n : E(G)→ {0, x+

1 , x
−
1 , x

+
2 , x

−
2 , . . . , x

+
n , x

−
n }

with 0 corresponding to a loop and x+
i /x

−
i corresponding to forward/backward movement

in the ith dimension. Furthermore, a position function is an injective mapping

πε :: V (G)→ Rn,

with piε(v) = r indicating that under ε, v was mapped to position r in Rn. When the
number of dimensions and the embedding are obvious, we omit n and ε. Finally, the
indexing function of W is given by:

[.] : n-dimensionally embeddable world→ Rn → Maybe V (G),

W [p] ≡
{

Just((πε)−1 p) if (πε)−1 p is defined,
Nothing otherwise.

Note that, since πε is injective by definition, an inverse (πε)−1 also exists.

We will give agents access to ∆ε
n and πε (or simply ∆ and π) to allow them to determine

their position and direction in the world. Providing such information might seem
problematic, but we thereby free ourselves from having to insert things like landmarks,
wind currents, stars, and other navigational aids into the world. Given that navigation is
not the focus of this thesis, this seems an appropriate simplification. Using the above
properties, we can specify a subtype of Wext-type worlds:

Definition 26 (2D grid world). Let W = 〈G, gl〉 be a Wext-type world (with type
variables Tv, Te, Tg). If W is reflexive, connected, and 2-dimensionally embeddable W
is a 2D grid world. Every 2D grid world has an associated function ∆2 : E(G) →
{0, x+

1 , x
−
1 , x

+
2 , x

−
2 } and a position function π : V (G)→ R2.

Note that every n-dimensionally embeddable world is also symmetrical and non-Euclidean.

Grid worlds, as we have seen, are potentially infinite, n-dimensional grids, although their
cells need not form a square or cube. Their shape can be irregular in that some rooms
and connections may be missing, as long as the shape as a whole stays connected.
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Figure 5.1: A segment of 2-dimensionally embeddable world. The vertices are its rooms,
the edges are the connections between the rooms.

2D grid worlds are representationally the same as Wext-type worlds; they just have some
structural invariants on their frames. If we additionally specialise the representation
through the type parameters Tv, Te, and Tg, we arrive at the type of world which will
serve as the environment for our agents: the “jungle world” Wjun.

Definition 27 (Wjun). Let Tv, Te, Tg be the following tuples:

TVjun = 〈entity :: Entity,
plant :: Maybe R,
stench :: R,
breeze :: R,
pit :: B,
meat :: N,
fruit :: N,
gold :: N〉,

TEjun = 〈danger :: R,
fatigue :: R〉,

Temp = Freezing + Cold + Temperate + Warm + Hot,

TGjun = 〈time :: N,
temperature :: Temp〉.
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Entity, Item, Agent and Wumpus are the following records:

Entity = Ag Agent + Wu Wumpus + None,

Item = Gold + Fruit + Meat,

Agent = 〈name :: String,
direction :: X+

1 + X−1 + X+
2 + X−2 ,

health :: R,
fatigue :: R,
inventory :: [〈Item,N〉],
state :: S〉,

Wumpus = 〈health :: R,
fatigue :: R〉.

The last component of Agent, state :: S, is the internal state of agents which we will
discuss later.

Let gl also be a value of type TGjun and let G be any 2D grid world with node labels of
type TVjun and edge labels of type TEjun. Then, 〈G, gl〉 is a Wjun-type jungle world.

The intuitive meaning ofWjunis the following: the two-dimensional grid world is inhabited
by multiple agents and wumpuses, where the former act according to their agent function
and the latter act mechanically. In addition, each cell in the world may have a plant
or a deadly pit on it, in addition to a certain amount of fruit, meat, and gold. Agents
and wumpuses move in the world by traversing edges which have associated fatigue and
danger levels, representing easy and difficult paths. Local information is available to
expedite navigation: stench (emanating from wumpuses) and breeze (emanating from
pits). Finally, the temperature and the time dictate global environmental conditions.

Although the field names are suggestive of the way in which aWjun-type world works, the
type, strictly speaking, only specifies the data and frame properties. We can employ such
worlds in any sort of scenario, with whatever semantics we wish. Notwithstanding, our
implementation will use a straightforward standard semantics, that have the world work
in the manner of a simple ecosystem in which predators hunt for prey and compete with
each other. The wumpuses fulfil the role of carnivorous predators which roam the world,
hunting and attempting to kill agents on sight. Agents, in turn, are hunter-gatherer
omnivores who can sustain themselves either through eating plants, killing Wumpuses for
their meat, or by acquiring resources from other agents. They may carry meat or fruits in
their inventory, or gold, which has no intrinsic use, but which may be used as an exchange
medium, provided that multiple agents have the mental ability to facilitate bartering.
The term “jungle world” reflects the uncertainty under which its actors must act. They
only have access to quite limited local environmental information, and they possess no

58



5.1. World

communication protocol upon which they could base their cooperation. Analogously to
real-world situations, agents must rely on simple gestures to infer the intentions of their
peers, and they cannot know whether they are misunderstanding these, or whether they
are being deceived. The aim of this mechanism is to allow the experimentations with
things like social adaptation, prejudice, and trust. The goal of simulating affective agents
in such a world is to see which behavioural profiles are successful, how they develop over
multiple generations, and how they engage each other.

Definition 28 (Semantics and runs of W jun-type worlds). A function ϕ of type
Wjun →Wjun is called a semantics of Wjun-type worlds. For a Wjun-type world, W , the
iterated application of ϕ to W , given by the list [W,ϕ W,ϕ2 W,ϕ3 W, . . . ], is called a
run of W (with semantics ϕ). Furthermore, ϕn W is referred to as the state of W ’s
simulation at time n (with semantics ϕ).

Definition 29 (Standard semantics of W jun-type worlds). The standard semantics
for Wjun-type worlds is given by the function sem ::Wjun →Wjun. sem, defined as

sem 〈G, gl〉 = 〈G′, gl′〉,

where 〈G′, gl′〉 is identical to 〈G, gl〉, except for the following changes:

1. Environment: For all v ∈ V (G), the following is defined:

• Wumpus: Set v’s stench to

max
{

0, 1− max{0, ||v, w|| − 1}
3

}
where w is the closest cell that has a Wumpus on it. If there are no Wumpuses,
set w’s stench to 0.
• Plant: If there is a plant on v and it has a growth value of < 1, increase its
growth by 1

10 .
• Pit: If there is a pit in a cell w at a distance ≤ 3 from v, set the breeze to

max
{

0, 1− max{0, ||v, w|| − 1}
3

}
.

2. Global data: The daylight function is defined as

light t =



0 if 20 ≤ |t− 25|,
1 if 15 ≤ |t− 25| < 20,
2 if 10 ≤ |t− 25| < 15,
3 if 5 ≤ |t− 25| < 10,
4 if |t− 25| < 5.

The new global data gl′ are given by
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Figure 5.2: Graph of the intensity of the stench/breeze, as a function of the distance
from a Wumpus/pit.

time′ = time gl + 1 mod 50,

temperature′ =



Freezing if light time′ = 0,
Cold if light time′ = 1,
Temperate if light time′ = 2,
Warm if light time′ = 3,
Hot if light time′ = 4,

gl′ = 〈time′, temperature′〉.

3. Wumpus behaviour: Every Wumpus has three behaviours:

• If the Wumpus is adjacent to a player, it performs the attack action on that
player.

• If there is a player reachable with at most (light ◦ time) gl edges, move
along the edge that minimises the distance to that player (in R2). If there are
multiple players, choose one at random as target. This target choice remains
until the player is no longer within range.
• If there is no player within range, move in a random direction with probability

0.2× (1 + (light ◦ temperature) gl).

Whenever a Wumpus travels along an edge e with ∆ e 6= 0, apply 0.1 damage with
probability danger e.
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5.1. World

4. Agent behaviour: Agents always act after Wumpuses and, depending on their
implementation, may choose one of the following actions:

• move: Move along an edge e. If ∆ e = 0, restore 0.1 of the agent’s fatigue,
otherwise reduce it by 0.05× fatigue e. Additionally (if ∆ e 6= 0), apply 0.1
damage with probability danger e.
If an agent’s fatigue is below 0.2, it cannot choose this action.

• rotate: The agent changes the direction into which it is facing to a value in
x+

1 , x
−
1 , x

+
2 , x

−
2 .

• attack: Move along an edge e to attack an agent or Wumpus.

• give: Give an item i from the agent’s inventory to another agent a.

• gather: If there is a plant with a fruit on the agent’s cell, take the fruit and
put it in the agent’s inventory.

• butcher: If there is a dead Wumpus on the agent’s cell, remove it and add an
item of meat to the agent’s inventory.

• collect: If there is n gold on the player’s cell, take an amount m (1 ≤ m ≤ n)
of it an put it into the agent’s inventory.

• eat: Eat a meat- or fruit-item i from the agent’s inventory. Restore 0.5 health,
to a maximum of 2.0.

• gesture: Expresses a gesture in the form of a string s. All other agents on the
same cell receive s.

• nothing: Doing nothing this turn.

5. Combat mechanics: When two entities A, B attack each other, an entity being either
an agent or a Wumpus, the health of A is subtracted from the health of B and vice
versa. Any entity whose health thereby reaches or goes below 0 dies.

Upon death in a fight, one meat is added to the cell. If the dead entity was an agent,
the amount of gold, fruit, and meat in its inventory are added to values of the gold,
fruit, and meat fields of its cell.

6. Movement mechanics: Agents and Wumpuses may only move to another cell if that
movement does not reduce their fatigue below 0. Neither an agent nor a Wumpus
may move onto a cell that already has another agent or a Wumpus, or a plant. Any
agent or Wumpus can move into a pit, but doing so deletes either of them from the
world.

7. Hunger: If an agent does not eat a fruit or a meat item, its health declines by 0.01.
If its health thereby reaches 0, it dies and the contents of its inventory are added to
the values of the gold, fruit, and meat fields of its cell. However, no additional
item of meat is created on the cell.

61



5. Implementation

It ought to be said that the formulae and constants used in the above definitions are,
fundamentally, judgement calls and that there is no theoretical reason for choosing these
over others. Nonetheless, we can give them an intuitive meaning:

1. Environment:

• Wumpus: Wumpuses carry around them a wafting stench, the strength of
which drops off linearly for three cells.

• Plant: Fruits grow periodically on plants, although a plant can only bear one
fruit at a time.

• Pit: The breeze coming from pits works via the same mechanism as the stench
of wumpuses, but as pits are immobile, the strength of a breeze does not
change with time.

2. Global data: A day is segmented into 50 periods, where a time of 25 represents
midday, and 0/50 represents midnight. The temperature is a function of the
daytime, with midday being the hottest and midnight being the coldest.

3. Wumpus behaviour: Wumpuses are day-active and roam around randomly. At
night, they are likely to sit still. When they sight an agent (depending on light
conditions), they will invariably attempt to close the distance and attack.

4. Agent behaviour: Agents are free to do choose any action they wish. They may
move around, attack wumpuses and other agents, gather items (fruit from plants,
meat from dead wumpuses, gold lying around), consume food, give items to other
agents, or communicate with them. They are limited by their health, which is
depleted by travelling along dangerous paths and by fights, and by fatigue. They
must thus periodically eat and rest to keep both up.

5. Combat and hunger: Agents must compete with each other for finite resources.
They can either eat fruits from plants, get meat from killed Wumpuses and agents,
or they can kill other agents for the contents of their inventories. Because their
health slowly but steadily decreases, they must periodically eat food. In addition,
fatigue limits their ability to move, forcing periodic rests.

5.2 Agents

The agents of our simulation are composed of two parts: their minds and their bodies.
Their minds constitute their sensors and agents functions; their bodies, make up their
actuators, although they are more than that. An agent’s body can be damaged and
healed, perceived by others, and it can hold items. As such, the bodies are actually part
of the world. From the point of view of the agent’s mind, they are external objects they
happen to control.
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5.2.1 Body and Percepts

As we saw in Definitions 27 and 29, agents (1) have a body composed of a name, health,
fatigue, and an inventory of items they carry, and (2) can execute one of a fixed set
of actions at each step. These data function in the obvious way: the name is publicly
available information other agents can use for identification, the agent is killed when its
health drops to zero, fatigue determines the effectiveness when attacking and prevents
movement when low, and the inventory is used to store items which the agent can use
for itself or give away to others.

What we are missing is the description of the agent’s percepts in the world. As in the
original Wumpus world, an agent can perceive everything on its cell:

1. the plant, if present,

2. the breeze,

3. the stench, and

4. the amount of fruit, gold, and meat.

In addition to this local information, the agent also has access to the global world state:

1. the temperature and

2. the current time.

The most important means of perception will be the agent’s sight, however. The sense
of sight is modelled via an approximately π

4 radians sight cone which is oriented in the
agent’s direction and is shortened or lengthened, depending or daylight. Formally:

Definition 30 (Sight cone). Let W = 〈G, gl〉 be a 2D grid world and let an agent be
on vertex v ∈ V (G), facing into direction d. Let further ld be the line starting at v and
extending infinitely into direction d, and lv,w be the line from v to w. Then, any other
vertex w ∈ V (G) falls into the agent’s sight cone exactly if:

1. the angle between lv,w and ld is less than or equal to π
4 ,

2. ||v, w|| ≤ 1.5× (((light ◦ time) gl) + 1), and

3. there is a path v1, v2, . . . , vn from v to w in G such that the distance between vi and
the closest point along lv,w is less than or equal to

√
2

2 (1 ≤ i ≤ n).

Criterion 1 restricts the sight cone to π
4 radians; criterion 2 limits its length based on

light conditions; criterion 3 demands rough line-of-sight, saying that the path in G may
never deviate more than one cell from the line in R2. Figure 5.3 illustrates the working
of this mechanism. If vertex w falls into an agent’s sight cone, it perceives π(w) and the
following:
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Figure 5.3: Sight cone of an agent at light(t) = 2. The cone with width π
4 signifies that

agent’s range of vision. Red vertices in it are perceived; the hollow black ones are not
because they are blocked by holes in the world. The line lv,w illustrates why the vertex
w is not visible from v: the shortest path from v to w runs through d, but the distance
∆ between d and the closest point along lv,w is larger than

√
2

2 .

1. the agent or Wumpus on w (excluding the agent’s internal state),

2. the plant, it present,

3. the pit, if present, and

4. the amount of fruit, meat, and gold.

The breeze and the stench, being non-visual, are not thus perceived. As we can see from
criterion 2 in Definition 30 and the formulae for breeze and stench in Definition 29, sight
reaches farther, but is directed. The non-visual cues can tell an agent that it is in danger,
but not from which direction that danger comes. If that agent consequently fails to look
around, it may be attacked or wander into a pit.

5.2.2 Cognition

Our goal is the design of a reasonably effective type of agent which will be able to navigate
Wjun-type worlds. Effectiveness, in this context, simply means survival. There is no
explicit performance measure; certain agents will survive, while others will not.
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Relevant aspects. We have already seen what sort of data an agent must process if
it is to perform well. It must first know or learn the geography of the world, of which it
is a priori unaware. It must also be able to seek out resources in the form of plant and
gold; it must be able to deal with the threat posed by Wumpuses, either by avoiding or
defeating them. Most importantly, it must be able to interact with other agents in ways
which avoid adverse behaviour towards the agent itself, and it must find ways to solicit
beneficial behaviour from them.

In order to achieve this, three things are indispensable: (1) memory, (2) utility maximisa-
tion. If we don’t impose a memory limit, it is quite easy to store everything that happens
to an agent. In essence, such memories will be fragments of past states of the external
which can be used to make decisions. Utility maximisation is the far more complex task:
the agent must either perform individual fact synthesis or inherit certain predilections
from its parents and must therewith exhibit useful behaviour. The fact synthesis can
be done in a number of ways — machine learning, reasoning, heuristic —, but we must
remember that knowledge, by itself, does not determine behaviour. In addition, the agent
must possess a decision-making component which uses gained knowledge in whatever
way it sees fit. Knowledge thus allows efficient decisions to be made, but fundamentally,
an agent is free to disregard any fact it wants.

Design goals and dynamism. As with the world, the cognitive structure of agents
is a compromise between intricacy and simplicity. Ideally, we would make every aspect
of an agent’s thinking dynamic and malleable under evolution, but this would necessitate
a prohibitively high implementation effort. Instead, based on the description of filters
in Section 3.2, we make the following compromise: the evocation of an emotion will be
dynamic and different from agent to agent; the effects of emotions, however, will always
be the same. As an example, different agents might become angry in different situations
and to different degrees, but the behavioural consequences that follow from the emotion
of anger will always be the same.

Cognitive components. Based on the considerations outlines in earlier sections, we
propose that agents be made out of the following six components:

• Pre-social behaviour control (PSBC ): This controls aspects of an agents which, in
principle, can work without other agents: fear, happiness, anger. These emotions
are evoked in social situations, but in principle, they would be useful in a world
without any other agents present.

• Social judgement system (SJS): Analogous to the PSBC, the SJS controls an
agent’s appraisal of other agents and thereby influences its decision-making.

• Belief generation (BG): Belief generation describes, in essence, the imagination of
an agent. It allows reasoning and the internal simulation of parts of the world.

65



5. Implementation

• Attention-control (AC ): Attention-control is the recognition of certain real or
imaginary percepts as important, leading to the allocation of cognitive resources to
them.

• Decision-making (DM ): This component captures the executive function of an
agent and includes both internal decision-making (IDM) — what to think — and
external decision-making (EDM) — what to do.

• Memory: Memory is a log of imagined and real events that happened to an agent.
This log is utilised chiefly by the BG with the goal of providing world data.

As a side remark, these components make no claim to encompass the kind of intelligence
humans have. In particular, there are no aesthetics, pure abstract reasoning, purely
self-centered emotions like grief or remorse, etc. Providing such mechanisms is, however,
not the goal her; we merely wish to make the agents complex enough to successfully
navigate the world. For this purpose, a simple, social, and animalistic sort of intelligence
suffices, one that, in complexity, is actually below even that of wolves and dogs.

Pre-social behaviour control. The PSBC is responsible for evoking the kinds of
emotions that non-social animals have, in some form. Here “pre-social” does not refer
to the current use of this system, but to its evolutionary history: past animals were
able to experience anger and fear, or something analogous to anger and fear, before
they developed social lives. The fight-or-flight instinct, and deciding when to engage in
activity and when to abstain from it are necessary for survival even in solitary animals.
A social system, of course, does impact these emotions, but a social system is not
necessary for them to be there. We categorise the experienced emotions according to
approach/avoidance and positivity/negativity, based on the work of Davidson and Irwin
[DI99]. The four combinations are:

1. Anger, which is approach-related and negative. Anger causes attack-actions against
Wumpuses and other agents, and gesture-actions with parameters the agent deems
to be aggressive.

2. Fear, which is avoidance-related and negative. Fear causes flight and gesture-actions
which the agent deems submissive.

3. Enthusiasm, which is approach-related and positive. Enthusiasm has a wide range
of effects: gesture-actions with positive contents, fatigue-inducing activity, and the
gathering and sharing of resources with other agents.

4. Contentment, which is avoidance-related and positive. Contentment is concerned
primarily with the conservation of resources. Its chief effect is thus the is the
cessation of action.
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Figure 5.4: Emotions evoked by the PSBC.The left half contains the positive emotions of
enthusiasm and contentment, whereas the right contains the negative emotions of anger
and fear. Enthusiasm and anger are both approach-related, causing action, whereas
contentment and fear are approach-related, causing flight or abstinence from action.

Figure 5.4 illustrates these four emotions. Each of them can be evoked with a valence
within the interval [−1, 1]. Higher-valence emotions exert a greater pressure on decision-
making and attention control. The figure, with its two axes, should not mislead us
into thinking that emotions are just vectors in R2. There is, for example, weak/intense
enthusiasm and there is weak/intense contentment, but there is no emotion halfway
between contentment and enthusiasm. It is possible that a stimulus should activate two
emotions at once, but those will actually be two emotions, not one “hybrid” emotion.

In terms of implementation, this is realised via the system we saw in Figure 4.7, Section 4.1:
each of the four emotions has a selector that reads percepts and the hormone storage,
using them to decide whether and how intensely to activate an emotion. Emotions, once
active, flow into the hormone storage and send messages into the global message space.
The scheme is illustrated in Figure 5.5: the filters of each emotions continually check
the agent’s percepts for relevant data. If a filter is activated, the message is passed the
component’s interpreter (to determine its urgency), which hands it to the processor.
It then puts the message “I feel emotion E with intensity πE” into the message space.
In this, it takes the hormone storage into account: experiencing an emotion increases
the corresponding hormone level, and, conversely, a high hormone level intensifies the
emotion. Formally, the hormone storage is defined thus:

Definition 31 (Hormone storage). Let E1, . . . , En be the names of emotions. A
hormone storage for the emotions E1, . . . , En is the ADT Hn = 〈h1 :: R, . . . , hn :: R〉,
together with the functions receive :: Hn → N→ R→ Hn and tick :: Hn → Hn, given by
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receive h e π = 2π ∗ log2(1− get h e),

tick h = 〈get1 h− 2 log(get1 h),
. . .

getn h− 2 log(getn h)〉.

The idea is that hormone level increases and decreases logarithmically: whenever an agent
receives a message about an experienced emotion e with intensity π, the corresponding
level he is increased proportionally to π and the logarithm of the current level. The levels
also decay at each time step, returning the agent to a neutral state over time if no stimuli
are experienced.

One objection might be that, while an agent can experience conflicting emotions if
multiple components are activated, different emotions cannot directly interact with each
other. This is true; however, they can interact indirectly, through the message space: if a
component CX reads the message of component CY as a percept and, because of that,
begins sending negatively-valenced messages, the emotion X is effectively shutting down
the emotion Y — even though the process is controlled by CY . Of course, we do not
claim that this mechanism accurately reflects nature, that being an empirical question,
but at the very least, it gives us a way to implement both ambivalence and quick mood
changes.

Social judgement system. The social judgement system (SJS) has the task of recog-
nizing other agents as such and guiding friendly and hostile interactions with them. Real
social behaviour is very complex and involves not only other agents as individuals, but
the group itself. In the minds of tribal animals, the group exists as an entity unto itself,
with its own will and mood. Our agents will not implement this group dynamic. Instead,
they will appraise each other agent individually, according to three criteria:

• Sympathy: This determines how much an agent likes another one. Liked agents
will receive friendly gestures, assistance in the form of food and protection from
Wumpuses and hostile agents, disliked agents will be denied these benefits, receive
hostile gestures and, if the dislike is sufficient, might be attacked.

• Trust: The trustworthiness of another agent influences the likelihood of two things:
(1) the propensity to give out items in the hope of future reciprocation and (2) the
aggressiveness if protection from the agent is present. The reasoning here is that
the agent will be emboldened by the presence of trusted allies.

• Competence: Competence judges the capabilities of another agent. Competent
agents will be respected, incompetent ones will be held in contempt. Similarly to
trust, the presence of friendly, competent agents emboldens the agent.
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Message space

Figure 5.5: The PSBC as a collection of a hormone storage and four emotion selectors.
The neural components are anger (A), contentment (C), enthusiasm (E), and fear (F).

Sympathy is the primary axis of judgement, since it determines whether others are seen as
friends or enemies. Trust and competence are secondary and help an agents ascertain the
quality of its allies an enemies. The three criteria are illustrated in Figure 5.6. Figures 5.7
and 5.8 list the different antagonistic and sympathetic judgements.

The evocative mechanism is structurally similar to that of the PSBC, as we saw in
Figure 5.5, but with two crucial differences: first, social judgements are always attached
to agents; second, the SJS models each of these three categories as a single emotions
which can be positive or negative — that is, an agent cannot simultaneously experience
trust and distrust for another one, but only a single emotion (trust). We see this system
illustrated in Figure 5.9, which shows it to be largely analogous to the PSBC in Figure 5.5.

This system is a quite gross simplification of the real world. In reality, one does not
simply possess an emotion called “trust”, the value of which can go from -1 to +1,
but rather, one possesses different kinds of trust, and trust with respect to different
matters. One can, for instance, have a gut feeling that someone is generally unreliable
and shady, but one can, through reason, come to the conclusion that this person will
keep his word in a certain situation in which punishment would ensue. This does given
an assurance of loyalty, but does not change the fundamentally negative appraisal of that
person. Similarly, one can have judgements which seem to lie halfway between reason
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Figure 5.6: Emotions evoked by the SJS. The primary is axis is sympathy/antipathy,
since it distinguishes friend from foe. Trust/distrust judges the loyalty/honor of another
agent, whereas respect/contempt judges its competence.

Enemy segment

“Bumbling fool”:
trust, contempt

“Ineffectual villain”:
distrust, contempt

“Arch enemy”:
trust, respect

“Traitor”:
distrust, respect

Figure 5.7: The four antipathic judgements. Enemies can be respected or held in
contempt, and deemed trustworthy or untrustworthy. Respect for an enemy implies that
an agent holds it to be competent. Trust implies that an agent knows its enemy to be
basically honourable.

and emotion, and which pertain only to certain situations, such as trusting someone with
money, with completing a task on time, or with one’s child.

Our agents will not implement the nuances of such concepts directly, but they will not
completely neglect them either. As we will see in the sections about memory and the
relationship between components, the two affective systems will make use of memory and
imagination in order to deliver situational judgements. To stay with our example about
trust: if an agent imagines a situation in which another was loyal, or remembers such an
event, it will be able to judge that other agent as trustworthy (in that situation.)

Belief generation. World-simulation is probably the most complex identifiable part
of human cognition. Our version of it, therefore, will only be a minimalistic reproduction.
Instead of constructing a system which is able to extensively utilise learning and construct
its own ontologies and ways of thinking from scratch, we will reuse the actual ontology
of the Wumpus world and generate beliefs about future world-states with its semantics
function ϕ.
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Friend segment

“Lovable fool”:
trust, contempt

“Scamp”:
distrust, contempt

“Best friend”:
trust, respect

“Unreliable friend”:
distrust, respect

Figure 5.8: The four sympathetic judgements. Friends, like enemies, respected or held in
contempt, and deemed trustworthy or untrustworthy. Distrust renders the sympathetic
judgement tentative, since the agent cannot be sure of the assistance of an untrustworthy
friend. Contempt works similarly, but doubts a friend’s ability, rather than loyalty.

The agent generates the immediate future world-state by reconstructing a segment of the
present world from the facts stored in its memory. This will result in an internal world
that might contains less information than the external, real one, but the internal world
will not contradict the external one on any fact. Importantly, a representation of the
agent itself — let us call it I to distinguish it from the real agent — will be a part of this
generated world. The belief generator then reads each action that the decision-maker
has proposed (see below), configures I to perform it, and calls ϕ to advance the time
by one step. I will perform its action, its consequences will be simulated by ϕ, and I
will receive corresponding perceptions. The belief generator then reads out I’s message
space and inserts these messages into the real agent’s message space. It has thus utilised
the agent’s memory and ϕ to infer the consequences of certain actions to the best of the
agent’s knowledge.

This simulated future world-state is then read out by the affective components, which
emotionally evaluate it, as well as the decision-maker, which either proposes another
action for the belief-generation to simulate, finalises the plan if it is satisfied with the
predicted, or orders that a certain number of steps be retracted if the situation is deemed
unfavourable.

Memory. While real-world memory is complex phenomenon, for expediency’s sake,
our agents will possess only a simple analogue to it, in the form of a private database of
world data which they perceived in the past. These data are of type TVjun, TEjun, which
were given in Definition 27. We store them on a per-cell and per-edge basis and update
them whenever we perceive them anew. This gives rise to the following definition:

Definition 32. Let 〈G, gl〉 be a Wjun-type world and let A be an agent. The memory
database of A has type

Memory = Memory (Map V (G) TVjun) (Map E(G) TEjun)

and is accessed through the functions
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Figure 5.9: The SJS for one other agent as a collection of a hormone storage and three
emotion selectors. The neural components are sympathy (S), trust (T), and respect (R).
Every agent which is encountered has its own SJS instance.

store :: Wjun → Memory→ Memory,
retrieveV :: Memory→ V(G)→ Maybe TVjun,
retrieveE :: Memory→ E(G)→ Maybe TEjun,
retreiveA :: Memory→ String→ [Action],

where store updates the database with the edges and cells of the world which the agent
can perceive; receiveV and receiveE return the values associated with a given cell or
edge, provided that data for the given cell/edge is stored. The function receiveA takes
the name of an agent B as a key and returns the list of actions A has observed that B
performs.

We should note that a number of justified criticisms can be levelled against it. For one, it
does not deal with uncertain data that are either old, or were not inaccurately perceived.
It only records past states, but not sequences of events. Most direly, it does not provide
enough information to contextualise the actions of other agents. Suppose that A observes
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B attacking C. A may infer that B is powerful or aggressive, but the list of actions
returned by retrieveA are not enough to construct a theory of mind for either B or C.
A thus does not know whether B’s attack was revenge, opportunism, betrayal, or plain
hostility.

Nonetheless, this database is valuable for the agent. The functions retrieveV and
retrieveE can provide actionable information about the static aspects of the world such
as the location of plants or dangerous paths. Even the information about its changing
aspects, such as the location of wumpuses, will be reasonably good, since wumpuses, in
the absence of agents, tend to stay in place over time1.

Attention-control. Attention-control serves as a prioritisation mechanism for the
decision-making process. In addition to the emotional evaluation of the whole of the
agent’s perceptions, we also group incoming messages by cell and evaluate each of those
groups separately to determine which locations in the world evoke the strongest emotions.
We thereby have a method of prioritising cells and tasks that require immediate attention
and to prevent, colloquially speaking, aimless deliberation on unimportant ones.

For our agents, paying attention means to focus on a cell and making it the target of its
decision-making. The cell can be another one with say, food or a Wumpus on it, or it
can be the agent’s own cell, which would be important in case of low health, say.

The AC component then emits messages of type EmotionOnCell and is modelled via the
functions

Cell = 〈N,N〉,
EmotionName = Anger + Fear + Enthusiasm + Contentment,

EmotionOnCell = EmotionOnCell Cell EmotionName R,

attention :: s→Wjun → [EmotionOnCell],
ac :: s→Wjun → s,

where s is the internal state of the agent. The function ac is just a wrapper around
attention which puts the latter’s message into the agent’s message space.

We should note that the AC does not prescribe any specific action in relation to a cell or
an emotion. Its role thus merely consists of noticing, so to speak, emotionally important
places in the world and to communicate these to the DM which uses the AC’s messages
to guide its own planning process, described in detail below. The general scheme consists
of selecting the globally most strongly felt emotion and then going through the messages
of the AC, in descending order according to that most strongly felt emotion, and seeing
what actions it might take.

1They approximately perform 2-dimensional random walks over time. The expectation E(W ) of a
random walk is the null-vector 〈0, 0, . . . , 0〉. Given that they have a disproportionately high chance of just
staying in place, depending on light conditions, their positions are even quite densely clustered around
that.

73



5. Implementation

Decision-making. Decision-making is split into two components: external decision-
making, which controls the agent’s actions, and internal decision-making, which controls
the BG and thus drives the planning process. Aside from the difference in target, both
are modelled via a function

choice :: s→Wjun → 〈Action, s〉

where s is the internal state of the agent. The function choice evaluates a world and the
previous state of the agent and then gives a new internal state, together with a proposed
action from the list in Definition 4 — that is, one of the following: move, rotate, attack,
give, gather, butcher, collect, eat, gesture. The function choice is wrapped into another
function

dm :: s→Wjun → s

which inserts the messages of choice into the agent’s message space. If choice non-
imaginary action, its is marked accordingly. The actions proposed by the internal
decision-making component (IDM) are instructions for the BG and, in principle, can go
on as long as the agent wishes to deliberate. Those of the external decision-maker are
translated into the real world. Once the simulation program receives the return value of
an agent’s EDM, that agent is done, so to speak: it has performed its action for that tick
and is no longer consulted until the next one.

An agent’s decision-making begins by observing the intensity of each of its four emotions
(anger, fear, enthusiasm, contentment), and choosing the most intensely felt as its
dominant emotion. The agent then evaluates each cell it perceives separately to determine
which evokes its dominant emotion most strongly — as described above, this cell is then
designated the target of its planning in the current step, and we select one of the actions
appropriate to the dominant emotion and the target. Each emotion has associated with
it the following set of hard-wired — instinctive, if you will — actions:

• Anger: moving/rotating towards the target, sending a hostile gesture, and attacking;

• Fear: moving away from the target;

• Enthusiasm: moving/rotating towards the target, sending a friendly gesture, giving
an item, collecting an item, harvesting a plant;

• Contentment: doing nothing, i.e., resting.

If the dominant emotion is sufficiently strong, the chosen action is communicated directly
to the EDM. Otherwise, it is marked as hypothetical and remains within the IDM, where
its consequences can be evaluated by the belief generator and the whole process can
repeat.

Lastly, we note the corner case of no emotion being sufficiently strong to serve as the
dominant one. In this case, the agent judges that nothing need be done and forgoes the
planning process altogether, delivering a nothing-action instead.
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5.2. Agents

Figure 5.10: Imagination loop, influenced by affect. The edge labels denote the type of
signal: α for affective information, δ for control signals, and ϕcf for imagined perceptions.

Finalizing and aborting plans. Once an agent begins taking hypothetical actions,
it will continue to do so until its dominant emotion drops sufficiently — we conceive
of this event as the emotion being satisfied, in which case we begin executing the first
step of the plan — or until a conflicting emotion becomes stronger, in which case we
retract a random number of steps from the plan and continue evaluating hypothetical
actions. This entire process is subject to an upper bound which decreases each time
a new hypothetical action is proposed. Should the agent not commit to a plan before
this bound reaches, 0, it simply terminates the process and takes whatever action is
associated with its dominant emotion.

From the affective subsystem, the BG, and the DM, we can thus put together the
imagination simulator loop described in previous chapters. In Figure 5.10, we see the
DM issuing commands to the BG, which generates data for the affective systems and
the IDM. The affective systems treat this data as if it were coming from the external
world and generate affective messages, which are consumed by the IDM and inform its
commands to the BG.

Relationship between components. Having defined the agent’s components, we
now put them together into a functioning whole. The core of the agent’s cognition
will consist of the interplay between perception and decision-making, with the affective
systems and attention control influencing the latter. We see the system sketched in
Figure 5.11.

At the very heart of the agent lies its decision-making component, which controls both
the agent’s actions and its belief generation. The DM and the BG form the imagination
loop ι which develops plans by exploring the likely consequences of certain actions. In
that capacity, the DM evaluate the BG’s simulated worlds for desirability and chooses
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Figure 5.11: High-level view of the cognitive structure of agents, with groups of systems
shown in coloured boxes. The PSBC and the SJS comprise the affective group; the
DM and BG the imagination loop responsible for planning. The BG, with external
perception, makes up the perception system. As in the previous figure, the edge labels
show which kind of message the system sends out: α for affective information, ϕ and ϕcf
for (imagined) perceptions, and δ for control signals. IO corresponds to real actions in
the world.

which imagined steps to take next. These evaluations are influenced by the second group
of systems: the affective ones. The PSBC and SJS process perceptions and feed their
resultant emotional states into the DM. Through this colouring of its decision-making,
agents with different emotional dispositions will act and think differently from each other.

The third part of the system is the attention-control, which also evaluates real and
imagined emotions and outputs its data for the DM’s usage. It’s only purpose is to alert
the agent to important or shocking information which demands immediate action. Its
alerts cause the DM to cease its current course of action and re-plan based on the piece
of information deemed important.

We now have all the pieces we need to create the agent function agent:

Definition 33 (Agent function). Let S be a type. Then an agent function with internal
data of type S has type

agent ::Wjun → S→ 〈S, Action〉

and agent is defined as:
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agent w = fromJust
◦ getActionMessage
◦ head
◦ dropWhile noResult
◦ iterate loop
◦ perception w,

where
perception ::Wjun → S→ S,
psbc, sjs, ac, dm, bg :: S→ S,

loop :: S→ S,
loop = memory ◦ bg ◦ dm ◦ ac ◦ sjs ◦ psbc,

getActionMessage :: S→ Maybe Action,
getActionMessage S = the first message in the message-space of S

which is a non-imaginary action,
noResult :: S→ Bool,
noResult = not ◦ isJust ◦ getActionMessage,

iterate :: (a→ a)→ a→ [a],
iterate f x = x : iterate(fx, x),

dropWhile :: (a→ Bool)→ [a]→ [a],

dropWhile p xs =
{
h : dropWhile p t if xs = (h : t) ∧ (p h = True),
xs otherwise.

That is, agent takes the current world and its current internal state, and returns its new
internal state, together with the action it wishes to perform. Note that ◦ is function
concatenation; the list of functions in agent has to be read bottom-to-top.

This agent function can now be plugged into the standard semantics we defined back
in Definition 29: the function sem calls every agent with the world and its last internal
state and receives a new internal agent state, together with the action the agent has
chosen to perform at that time step.

5.3 Implementation Details

We implemented our agent architecture, together with a world simulation that realises
the standard semantics of Definition 29, in the functional programming language Haskell.
Although we will not endeavour to describe it in detail, the prototype, roughly, consists
of three major components:
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1. the world simulator,

2. the agent intelligence, and

3. the world generator.

Save for minor technical details, the world simulator and the agent intelligence closely
follow the specifications in this chapter. The only component which we did not mention
before, as it falls outside the scope of this thesis, but shall find brief mention here, is the
world generator; we implemented a way of creating and loading worlds in a convenient
way, using bitmaps. Each world consists of

• a topography map, wherein white pixels indicate accessible cells and black cells
indicate inaccessible ones;

• an entity map, wherein red pixels indicate Wumpuses, green pixels indicate plants,
and blue pixels indicate agents;

• an item map, wherein the red value of a pixel indicates the number of meat items
on that cell, the green value indicates the number of fruit items, and the blue value
indicates the number of gold items; and, lastly,

• an an agent file, which stores the personalities of the world’s agents in comma-
separated value (CSV) format.

Agent personalities shall be discussed in greater details in Chapter 6, but suffice it to say
that emotional reactions like anger, fear, enthusiasm, contentment, and sympathy can be
either weak or strong in each agent. The purpose of such personalities was to evaluate
and compare different emotional strategies, and determine which would perform best in
a large world.

The source code is available at the URL

https://github.com/jtapolczai/wumpus.

The program can be compiled and run with the standard Haskell compiler, GHC.2

2GHC is available as part of the Haskell Platform from https://www.haskell.org/platform/
or as part of the development tool Stack, from www.haskellstack.org.
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CHAPTER 6
Experimental Evaluation

In this chapter, we present the results of our evaluation, which consists of an assessment
of individual behaviour in small test-worlds as well as a population-based evaluation the
performance of various populations of agents was measured over time.

6.1 General Considerations

Our goal was to evaluate our agents in specific scenarios, and to compare different kinds
of agents to each other. To this end, we introduced parametricity in their emotional
reactions. While the interplay of affect, decision-making and belief generation was the
same in all agents, as was the schema of their emotional reactions, the strength of these
reactions varied — while all agents feared dying, for instance, not all feared it to the
same degree. Similarly, while all felt fear in the proximity of a Wumpus, they felt it with
different intensities.

We parametrised our agents through five criteria, with two possible values for each:

• anger, with the possible values strong and weak;

• fear, with the possible values strong and weak;

• enthusiasm, with the possible values strong and weak;

• contentment, with the possible values strong and weak;

• hostility, with the values hostile and friendly.

Note that each emotion of the PSBC is represented by one criterion, while the emotions
of the SJS were rolled into one for the sake of simplicity. For each emotion or personality
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fragment, we constructed a graph consisting of approximately 104 nodes by hand1, with
output nodes that had configurable significances. These graphs are far too large for
explication here2 and there was, indeed, no special theory behind their construction, but
we did use common-sense assumptions which we will illustrate by listing a few output
nodes:

• High health reduced fear.

• The presence of a Wumpus with low health increased anger. Closer Wumpuses
generated more anger than distant ones.

• Dying significantly increased fear.3

• Items lying on the ground increased enthusiasm.

• Low health also increased enthusiasm, so as to induce the enthusiasm-related action
of eating,

• Empty cells increased contentment.

• Eating fruit or meat decreased enthusiasm as a way of signalling satisfaction.

• Killing a Wumpus decreased anger.

• Receiving a gift increased sympathy.

Each output node had a variable significance which we varied according to whether we
wanted the emotion to be strong or weak, or hostile or friendly, respectively. The concrete
values for these significances were, again, the product of intuition. For an agent with
strong fear, dying increased the value by 0.8 out of a possible 1, making it almost certain
that a “You have died”-message would lead fear to override all other emotions. For
weak fear, the value only increased by 0.5 — still very high, but considerably lower, and
possible to override if the agent’s anger was strong enough. The five criteria induced 32
possibly combinations of values, with each combination representing a possible personality
for an agent.

For convenience, we will use a shorthand notation as defined next to specify an agent’s
personality.

Definition 34. Let A be an agent and let PA = 〈Xa, Xf , Xe, Xc, Xh〉 with Xa, Xf , Xe, Xc ∈
{W, S} and Xh ∈ {H, F}. Then, PA is a specification for a A’s personality, with Xa, Xf , Xe,
Xc, and Xh representing the agent’s personality fragments for anger, fear, enthusiasm,
and hostility, respectively. The values W and S stand for a weak or strong fragment, while
H and F stand for a hostile or friendly value for hostility.

1Of course, we generated large parts of these graphs through templating as well, as there had many
repeating structures.

2The code of the implementation is accessible at https://github.com/jtapolczai/wumpus.
3While such a node might seem useless, agents can receive “You have died”-messages from their belief

generators.
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A

P

P

x

y

Figure 6.1: The world of Scenario 1. In the south, we have a single agent labelled A.
The green squares labelled P indicate plants.

A at (2,0) moved north to (2,1).
A at (2,1) harvested a plant.
A at (2,1) ate fruit.
A at (2,1) did nothing.
A at (2,1) did nothing.

Listing 6.1: Actions in Scenario 1.

6.2 Evaluation of Individual Behaviour

To evaluate the general fitness of our architecture, we placed one or two agents in a
number of scenarios with a clear expected outcome. Unless otherwise noted, we expected
all personalities to perform in the same way.

Scenario 1: Harvesting a single plant. The first scenario was a 5x5 world with
two ripe plants and an agent with a health of 0.6 that had food in its inventory. The
agent’s health was low, but eating one plant would restore it to a level of 1.1. We
expected the agent to move to the closest plant, harvest it, eat the fruit which is now in
its inventory, and then rest. We can see the world in Figure 6.1 and the actions of the
agent in Listing 6.1. Coordinates are given in the format (x, y). As we can see, the agent
performed according to our expectations.

Scenario 2: Harvesting all plants. This scenario was identical to the previous one,
save for the agent’s health, which was set at 0.1. Very close to dying, we expected the
agent to harvest both plants and eat both fruits in succession to increase its health above
1. We see the actions of the agent in Listing 6.2. The agent again performed according
to our expectations.
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A at (2,0) moved north to (2,1).
A at (2,1) harvested a plant.
A at (2,1) ate fruit.
A at (2,1) moved north to (2,2).
A at (2,2) moved north to (2,3).
A at (2,3) harvested a plant.
A at (2,3) ate fruit.
A at (2,3) did nothing.
A at (2,3) did nothing.

Listing 6.2: Actions in Scenario 2.

A at (2,2) did nothing.
A at (2,2) did nothing.
A at (2,2) did nothing.
A at (2,2) did nothing.
A at (2,2) did nothing.

Listing 6.3: Actions in Scenario 3.

Scenario 3: Resting. This scenario is the simplest: we place an agent in good health
into an empty 5x5 world. We expect it to simply stay put for a short while, avoiding
exertion, or to look around to ascertain its surroundings. Listing 6.3 shows the results.
Since we had not built in any notion of curiosity into our agents, they simply remained
in place, which we deemed acceptable behaviour.

Scenario 4: Killing a wounded Wumpus. Here we put a Wumpus with 0.1 health
at some distance from a healthy agent, with the expectation that any agent would attack
such a weak enemy, regardless of personality. The world is shown in Figure 6.2 and the
agent’s actions are shown in Listing 6.4. We can see that the agent indeed approached and
killed the wounded Wumpus. However, enthusiasm then replaced anger as its dominant
emotion and the agent collected the meat from the corpse. This was both surprising
and beneficial behaviour, as there was nothing else to do and an agent can always use
additional food in its inventory.

Scenario 5: Picking up items. An agent with low health was placed into a world in
which two cells had items: one had two pieces of meat and another, most distant one,
had three pieces of fruit. We expected the agent to collect the items and eat as many as
necessary to restore its health to at least 1. Figure 6.3 shows the world and Listing 6.5
the results. We can see that the agent was killed in both cases, though for different
reasons: in the first, the agent killed the closer Wumpus, but this reduced its health to
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A

W

x

y

Figure 6.2: The world of Scenario 4. In the south, we have a single agent labelled A. To
its north, we have wounded Wumpus labelled W .

W at (2,3) moved south to (2,2).
A at (2,0) moved north to (2,1).
A at (2,1) attacked w1 to its north.
A at (2,1) moved north to (2,2).
A at (2,2) picked up meat.
A at (2,2) ate meat.
A at (2,2) did nothing.
A at (2,2) did nothing.

Listing 6.4: Actions in Scenario 4.

0.4. When the second Wumpus came close, the agent began moving backwards until
it reached the edge of the world, whereupon the Wumpus killed it. In the second case,
the agent was controlled by anger, not by fear. It had picked up the meat from the first
Wumpus as the second approached it but, instead of eating, the agent immediately and
suicidally attacked the Wumpus. In both cases, the agent’s behaviour was suboptimal,
as it could have eaten the meat from the first Wumpus and thereby regain enough health
to survive the second’s attack — however, if we conceive of the first agent running away
in fear and the second attacking in blind anger, we can at least make intuitive sense of
their actions.

Scenario 6: Fight or flight. Similarly to Scenario 4, we placed an agent together
with two Wumpuses, each with a health of 0.6. An agent was able to win the fight
against both by first killing one, eating its meat to restore its health, and then killing the
second. Here, we wanted to test the interplay between anger and fear — accordingly, we
expected agents with different personalities to react in different ways. Figure 6.4 shows
the world; Listing 6.6 shows the actions of an agent with the personality 〈W, W, W, W, F〉,
and Listing 6.7 the actions of an agent with the personality 〈S, W, S, W, F〉. Our expectation
was that the first agent would flee, whereas the second would try to fight.
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A

2M 3F
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y

Figure 6.3: The world of Scenario 5. In the south, we have a single agent labelled A. To
its north we have a cell with two pieces of meat, labelled 2M , and another cell with 3
pieces of fruit, labelled 3F .

A at (2,0) moved north to (2,1).
A at (2,1) moved north to (2,2).
A at (2,2) picked up meat.
A at (2,2) ate meat.
A at (2,2) ate meat.
A at (2,2) did nothing.
A at (2,2) did nothing.

Listing 6.5: Actions in Scenario 5.

Scenario 7: Searching for food. We placed an agent with 0.5 health into a world
with one pile of fruit outside of its sight cone. This scenario was interesting because,
while the goal was clear, there was no obvious series of actions which the agent was
supposed to take, nor was a goal immediately obvious. We expected it to search its
surroundings in search of a source of food. The world is shown in Figure 6.5 and the
results in Listing 6.8. It should be noted that the agent’s actions are largely random, as
agents may randomly select a possible action if several equally beneficial are possible. As
we can see, the results were somewhat unsatisfying. While the agent did eventually find
the food, it spent many round aimlessly wandering and turning around. Due to the lack
of any dedicated algorithm responsible for exploration and the lack of stimuli to guide it,
the agent essentially moved around randomly until it eventually stumbled upon the cell
with meat on it.

Scenario 8: Giving a gift to a friend. Here we placed two agents, first with the
personalities 〈W, W, W, W, F〉 and then 〈W, W, S, W, F〉 in a 5x5 world and added fruit to the
inventory of A. Although their disposition towards each other was neutral, we expected
them to interact in a friendly way, by giving items and sending sympathy-related gestures.
Figure 6.6 shows the world and Listing 6.9 shows somewhat interesting results. In the case
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Figure 6.4: The world of Scenario 6. We have an agent labelled A and two Wumpuses
labelled W1 and W2.

A at (2,0) moved north to (2,1).
W1 at (2,3) moved south to (2,2).
W2 at (2,7) moved south to (2,6).
A at (2,1) attacked W1 to its north.
W2 at (2,6) moved south to (2,5).
A at (2,1) moved north to (2,2).
W2 at (2,5) moved south to (2,4).
A at (2,2) moved south to (2,1).
W2 at (2,4) moved south to (2,3).
A at (2,1) moved south to (2,0).
W2 at (2,3) moved south to (2,2).
A at (2,0) did nothing.
W2 at (2,2) moved south to (2,1).
A at (2,0) did nothing.
W2 at (2,1) attacked A to its south.

Listing 6.6: Actions of an agent with the personality 〈W, W, W, W, F〉 in Scenario 6.

of weak enthusiasm, instead of approaching B, A just ate the food and then remained in
place, content. B, on the other hand, approached A and started sending the gesture love,
which we hard-coded as the friendly one. A’s contentment overwhelmed its enthusiasm
once its health was sufficiently high. Though this behaviour was unexpected and we
could have changed it by adjusting emotional filters, we did deem A selfishness in its
interaction with what was essentially a stranger efficient. In the second case, in which
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A at (2,0) moved north to (2,1).
W1 at (2,3) moved south to (2,2).
W2 at (2,7) moved south to (2,6).
A at (2,1) attacked W2 to its north.
W2 at (2,6) moved south to (2,5).
A at (2,1) moved north to (2,2).
W2 at (2,5) moved south to (2,4).
A at (2,2) picked up meat.
W2 at (2,4) moved south to (2,3).
A at (2,2) attacked W2 to its north.

Listing 6.7: Actions of an agent with the personality 〈S, W, S, W, F〉 in Scenario 6.

A

5M

x

y

Figure 6.5: The world of Scenario 7. We have an agent labelled A and a cell with five
pieces of meat labelled 5M .

both agents had strong enthusiasm, A was more charitable. As we seen in Listing 6.10,
A chose to share after eating one item of meat.

Results

Our agents performed the basic tasks set to them reasonably well. Agents managed to
acquire food if they knew the location of a food source, kill enemies if it seemed easy
to do so, and have positive interactions with friendly agents. As we saw in Scenario 6,
their personalities were also able to meaningfully influence their behaviour. Somewhat
disappointing was the performance in Scenario 7, where it became clear that the agents
would have benefited from a drive to systematically explore their surroundings.
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A at (3,0) moved north to (3,1).
A at (3,1) turned west.
A at (3,1) moved west to (2,1).
A at (2,1) moved west to (1,1).
A at (1,1) moved west to (0,1).
A at (0,1) turned south.
A at (0,1) turned north.
A at (0,1) turned south.
A at (0,1) turned north.
A at (0,1) turned south.
A at (0,1) turned north.
A at (0,1) moved east to (1,1).
A at (1,1) moved east to (2,1).
A at (2,1) moved north to (2,2).
A at (2,2) moved north to (2,3).
A at (2,3) moved north to (2,4).
A at (2,4) moved north to (2,5).
A at (2,5) moved east to (3,5).
A at (3,5) moved north to (3,6).
A at (3,6) moved north to (3,7).
A at (3,7) picked up meat.
A at (3,7) ate meat.
A at (3,7) did nothing.

Listing 6.8: Actions in Scenario 7.

6.3 Population-Based Evaluation

For the second part of our evaluation, we created a 30x30 world with 30 agents. We
randomly distributed these, along with 30/3 = 10 Wumpuses uniformly and randomly
over all cells. We also placed plants and gold uniformly and randomly in the world such
that, for all cells (x, y) in the world,

P (A plant is added to cell (x, y)) = 0.05
P (1 gold is added to cell (x, y)) = 0.01
P (A pit is added to cell (x, y)) = 0.01

The aim of these parameters was the creation of a world in which food was somewhat
readily available, gold was a rare item, and Wumpuses presented a threat, but not such
an overwhelming one that they could kill all the agents. Figure 6.7 depicts the world
created in the manner.
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Figure 6.6: The world of Scenario 8. We have two agents labelled A and B. A has three
pieces of fruit in its inventory.

A at (2,0) ate fruit.
B at (2,4) moved south to (2,3).
A at (2,0) did nothing.
B at (2,3) moved south to (2,2).
A at (2,0) did nothing.
B at (2,2) moved south to (2,1).
A at (2,0) did nothing.
B at (2,1) gestured ’love’ to A to its south.
A at (2,0) did nothing.
B at (2,1) gestured ’love’ to A to its south.

Listing 6.9: Actions in Scenario 8 when both agents had the personality 〈W, W, W, W, F〉.

We then simulated this world for 32 times, giving our population a different one of the
32 possible personalities each time. The simulations ran for 50 rounds or until at least
half of the agents died — whichever came sooner. During the simulation, we recorded
the survival rate of each population and that of the Wumpuses, along with a number of
other metrics. The results are listed in Tables 6.1-6.16.

Results

We ran the trial with each personality and captured the following data: the number of

• harvests,

• attacks,

• gifts given (split by gift type),

• gestures sent,
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Figure 6.7: The world of the quantitative evaluation, consisting of 30x30 cells. Green
pixels represent plants, ochre ones pits, red ones Wumpuses and blue ones agents, where
the value of the blue channel is the agent’s ID. Orange pixels represent gold. All entities
and items were distributed randomly.

89



6. Experimental Evaluation

A at (2,0) moved north to (2,1).
B at (2,4) moved south to (2,3).
A at (2,1) moved north to (2,2).
B at (2,3) gestured ’love’ to 1 to its south.
A at (2,2) gave meat to 2 to its north.
B at (2,3) gestured ’love’ to 1 to its south.
A at (2,2) gestured ’love’ to 2 to its north.
B at (2,3) gave meat to 1 to its south.
A at (2,2) gestured ’love’ to 2 to its north.
B at (2,3) gestured ’love’ to 1 to its south.

Listing 6.10: Actions in Scenario 8 when both agents had the personality 〈W, W, S, W, F〉.

• items eaten,

• surviving Wumpuses, and

• surviving agents.

In addition to recording the raw numbers, we also calculated their averages by personality
fragment to see whether there was a clear relation between certain personality types and
success.

Number of harvests. We see the number of harvests by personality type in Table 6.1,
which shows a rather large difference between the personalities. Table 6.3 shows the
average number of harvests by personality fragment. As expected, strong enthusiasm
and weak contentment led to the largest increase in harvest frequency, with fear, anger
and hostility having negligible effects.

Number of attacks. Table 6.2 shows the number of attacks and Table 6.4 the averages.
All personality fragments seemed to play a role in the agents’ aggression: anger predictably
increased it and fear lowered it, but strong enthusiasm and contentment lowered the
number as well. Surprisingly, hostile agents actually performed slightly less attacks, which
might be explained with the fact that they spent more time sending hostile gestures than
friendly, as we shall see below.

Gifts given. Tables 6.5-6.7 show the number of gifts given and Tables 6.8-6.10 show
the averages. We can see immediately that meat was the most popular gift, followed by
gold and fruit, which almost no agents gave. Most interesting is the case of meat: we see
quite starkly that strong anger, weak fear, high enthusiasm and low contentment resulted
in a population of apex predators that spent much of their time killing Wumpuses (and
each other) and built up inventories that they shared with the survivors. Gold, too,
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Personality Harvests
〈S, W, W, S, F〉 8
〈S, W, S, S, H〉 9
〈S, W, W, S, H〉 9
〈S, W, W, W, H〉 11
〈S, S, W, S, H〉 11
〈S, W, S, S, F〉 11
〈W, W, S, S, F〉 11
〈W, W, W, S, H〉 11
〈S, S, W, S, F〉 12
〈W, W, S, S, H〉 12
〈S, S, S, S, H〉 13
〈S, S, W, W, F〉 13
〈W, S, S, S, H〉 13
〈W, W, W, W, H〉 13
〈S, S, W, W, H〉 14
〈S, W, W, W, F〉 14
〈W, W, W, S, F〉 14
〈W, W, W, W, F〉 14
〈S, S, S, S, F〉 15
〈W, S, W, S, F〉 15
〈W, S, W, S, H〉 15
〈W, S, W, W, F〉 15
〈W, S, W, W, H〉 15
〈W, S, S, S, F〉 16
〈W, W, S, W, F〉 17
〈S, W, S, W, H〉 18
〈W, S, S, W, F〉 18
〈S, W, S, W, F〉 19
〈W, W, S, W, H〉 19
〈S, S, S, W, H〉 20
〈S, S, S, W, F〉 21
〈W, S, S, W, H〉 24

Table 6.1: Number of plant harvests
after 50 rounds.

Personality Attacks
〈S, S, S, W, H〉 1
〈W, S, S, W, H〉 2
〈W, W, S, S, F〉 2
〈W, W, S, S, H〉 2
〈S, S, S, S, F〉 3
〈W, S, S, S, H〉 3
〈W, S, W, S, F〉 3
〈W, S, W, S, H〉 3
〈S, S, S, S, H〉 4
〈S, S, W, S, H〉 4
〈W, S, S, S, F〉 4
〈W, S, W, W, F〉 4
〈S, S, S, W, F〉 5
〈W, S, W, W, H〉 5
〈W, W, W, S, F〉 5
〈W, W, W, S, H〉 5
〈S, S, W, W, H〉 6
〈S, W, S, S, H〉 6
〈S, W, S, W, H〉 6
〈W, S, S, W, F〉 6
〈W, W, S, W, H〉 6
〈W, W, W, W, F〉 6
〈W, W, W, W, H〉 6
〈S, S, W, S, F〉 7
〈S, W, S, S, F〉 8
〈S, W, S, W, F〉 8
〈S, W, W, S, F〉 8
〈S, S, W, W, F〉 9
〈W, W, S, W, F〉 9
〈S, W, W, S, H〉 10
〈S, W, W, W, F〉 11
〈S, W, W, W, H〉 12

Table 6.2: Number of attacks after 50
rounds.
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6. Experimental Evaluation

Personality fragment weak/hostile strong/friendly
Anger 15.125 13.625
Fear 13.125 15.625
Enthusiasm 12.75 16
Contentment 16.563 12.18
Hostility 14.188 14.563

Table 6.3: Average number of plant harvests, by personality fragment.

Personality fragment weak/hostile friendly/strong
Anger 4.438 6.75
Fear 6.875 4.313
Enthusiasm 6.5 4.688
Contentment 6.375 4.813
Hostility 5.063 6.125

Table 6.4: Average number of attacks, by personality fragment.

is of note: as its acquisition did not require killing, high contentment and friendliness
significantly increased the chance that it would be given as a gift. The unpopularity of
fruit as gift is somewhat contrary to our expectations and shows that agents did not
guard plants as reliable sources of food and that they did not infer that the plants would
regularly regrow.

Gestures. Table 6.11 shows the number of gestures sent and Table 6.17 shows the
averages. We can clearly see the dominant role of strong enthusiasm, followed distantly
by weak contentment. This is very much according to our expectations, as gestures are
primarily enthusiasm-associated. Anger, fear, and hostility only had relatively minor
effects on the number of social interactions.

Items eaten. We see the results and the averages in Table 6.12 and Table 6.18,
respectively. Clearly, the two most significant factors here are strong enthusiasm and
weak contentment. As eating is enthusiasm-related, it makes sense that agents with
strong enthusiasm would eat more, as would agents with weak contentment, since food
has to be acquired through action.

Surviving Wumpuses. We see the absolute number of surviving Wumpuses and the
averages in Tables 6.14 and 6.16. Similarly to the number of meat gifts given, we see
that strong anger, weak fear and low contentment all led to more Wumpuses being killed.
Enthusiasm and hostility somewhat increased the Wumpuses’ chances of survival — here
we might hypothesise that agents with strong enthusiasm spent more time gathering fruit
and engaging in interactions with other agents, and that hostile agents spent more time
attacking each other than they spent attacking Wumpuses.
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6.3. Population-Based Evaluation

Personality Gifts (fruit)
〈S, W, W, W, H〉 0
〈S, S, S, S, F〉 0
〈S, S, S, S, H〉 0
〈S, S, S, W, F〉 0
〈S, S, W, S, F〉 0
〈S, S, W, S, H〉 0
〈S, S, W, W, F〉 0
〈S, S, W, W, H〉 0
〈S, W, S, S, F〉 0
〈S, W, S, S, H〉 0
〈S, W, S, W, F〉 0
〈S, W, S, W, H〉 0
〈S, W, W, S, F〉 0
〈S, W, W, S, H〉 0
〈S, W, W, W, F〉 0
〈W, S, S, S, H〉 0
〈W, S, S, W, F〉 0
〈W, S, W, S, F〉 0
〈W, S, W, S, H〉 0
〈W, S, W, W, F〉 0
〈W, W, S, S, F〉 0
〈W, W, S, S, H〉 0
〈W, W, S, W, F〉 0
〈W, W, S, W, H〉 0
〈W, W, W, S, F〉 0
〈W, W, W, S, H〉 0
〈W, W, W, W, F〉 0
〈W, W, W, W, H〉 0
〈S, S, S, W, H〉 1
〈W, S, S, W, H〉 1
〈W, S, W, W, H〉 1
〈W, S, S, S, F〉 3

Table 6.5: Number of fruit
items given as gifts after 50
rounds.

Personality Gifts (meat)
〈S, W, W, W, H〉 0
〈S, S, S, S, F〉 0
〈S, S, S, S, H〉 0
〈S, S, S, W, H〉 0
〈S, S, W, S, F〉 0
〈S, S, W, S, H〉 0
〈S, S, W, W, F〉 0
〈S, S, W, W, H〉 0
〈S, W, S, S, F〉 0
〈S, W, S, S, H〉 0
〈S, W, W, S, H〉 0
〈W, S, S, S, F〉 0
〈W, S, S, S, H〉 0
〈W, S, S, W, F〉 0
〈W, S, W, S, F〉 0
〈W, S, W, S, H〉 0
〈W, S, W, W, F〉 0
〈W, W, S, S, H〉 0
〈W, W, W, S, F〉 0
〈W, W, W, W, F〉 0
〈W, W, W, W, H〉 0
〈S, W, W, S, F〉 1
〈S, W, W, W, F〉 2
〈W, S, W, W, H〉 2
〈W, W, W, S, H〉 2
〈W, W, S, W, F〉 5
〈W, W, S, S, F〉 7
〈S, S, S, W, F〉 11
〈W, W, S, W, H〉 12
〈W, S, S, W, H〉 17
〈S, W, S, W, F〉 19
〈S, W, S, W, H〉 19

Table 6.6: Number of meat
items given as gifts after 50
rounds.

Personality Gifts (gold)
〈S, S, S, S, F〉 0
〈S, S, S, S, H〉 0
〈S, S, W, S, F〉 0
〈S, S, W, S, H〉 0
〈S, W, S, S, F〉 0
〈S, W, S, S, H〉 0
〈S, W, S, W, H〉 0
〈S, W, W, S, F〉 0
〈S, W, W, S, H〉 0
〈W, S, S, S, F〉 0
〈W, S, S, S, H〉 0
〈W, S, S, W, F〉 0
〈W, S, S, W, H〉 0
〈W, S, W, S, F〉 0
〈W, S, W, S, H〉 0
〈W, W, S, W, F〉 0
〈W, W, S, W, H〉 0
〈W, W, W, S, F〉 0
〈W, W, W, S, H〉 0
〈S, W, W, W, H〉 1
〈S, S, W, W, F〉 1
〈S, W, W, W, F〉 1
〈W, S, W, W, F〉 1
〈W, S, W, W, H〉 1
〈W, W, S, S, H〉 1
〈W, W, W, W, H〉 1
〈S, S, S, W, F〉 2
〈S, S, W, W, H〉 2
〈W, W, S, S, F〉 2
〈W, W, W, W, F〉 2
〈S, S, S, W, H〉 5
〈S, W, S, W, F〉 6

Table 6.7: Number of gold
items given as gifts after 50
rounds.
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6. Experimental Evaluation

Personality fragment weak/hostile strong/friendly
Anger 0.313 0.063
Fear 0.0 0.375
Enthusiasm 0.063 0.313
Contentment 0.188 0.188
Hostility 0.188 0.188

Table 6.8: Average number of fruit gifts given, by personality fragment.

Personality fragment weak/hostile friendly/strong
Anger 2.8125 3.25
Fear 4.1875 1.875
Enthusiasm 0.4375 5.625
Contentment 5.4375 0.625
Hostility 3.25 2.8125

Table 6.9: Average number of meat gifts given, by personality fragment.

Personality fragment weak/hostile friendly/strong
Anger 0.5 1.125
Fear 0.875 0.75
Enthusiasm 0.625 1.0
Contentment 1.438 0.188
Hostility 0.688 0.938

Table 6.10: Average number of gold items given, by personality fragment.

Surviving agents. The absolute and average number of surviving agents are listed in
Tables 6.13 and 6.15. While all other metrics were important as well, in the end, survival
by whatever means is the measure of success in our evaluation. While all personality
types managed to survive reasonable well, we can see significant differences between them.
In Table 6.15, we can see that agents with weak anger survived better than those with
strong anger, as did agents with strong fear. This does make sense, as fighting was a
dangerous tactic, despite the meat with which it provided the victor. High enthusiasm
had a moderately beneficial effect on survival, which again makes sense, as it is associated
with low-cost, high-reward behaviour like the gathering of food and items and the sending
of friendly gestures that might lead to gifts in the future. Contentment had relatively
little effect and hostility actually increased survival. The case of hostility is somewhat
odd, as we would have expected friendliness to have the same beneficial effect that
enthusiasm in general had, but it seems that not being too friendly by perhaps giving
away all of one’s inventory to others might also be advantageous.
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6.3. Population-Based Evaluation

Personality Gestures
〈W, W, W, S, H〉 30
〈S, W, W, S, H〉 32
〈S, W, W, S, F〉 34
〈W, W, W, S, F〉 40
〈W, S, W, S, H〉 46
〈S, S, W, S, H〉 61
〈W, S, W, S, F〉 66
〈S, S, W, S, F〉 69
〈S, W, W, W, F〉 92
〈S, W, W, W, H〉 116
〈S, S, W, W, F〉 120
〈W, S, W, W, F〉 124
〈W, S, W, W, H〉 129
〈W, W, W, W, F〉 129
〈W, W, W, W, H〉 132
〈S, S, W, W, H〉 136
〈S, W, S, W, F〉 309
〈S, S, S, S, H〉 335
〈W, S, S, W, F〉 359
〈W, S, S, W, H〉 361
〈W, W, S, W, F〉 373
〈S, S, S, S, F〉 388
〈S, W, S, S, F〉 394
〈S, W, S, S, H〉 397
〈W, S, S, S, F〉 403
〈S, S, S, W, F〉 405
〈S, S, S, W, H〉 411
〈W, W, S, W, H〉 439
〈S, W, S, W, H〉 451
〈W, W, S, S, H〉 452
〈W, S, S, S, H〉 494
〈W, W, S, S, F〉 495

Table 6.11: Number of gestures sent
after 50 rounds.

Personality Meals
〈S, W, S, S, H〉 10
〈S, W, S, S, F〉 11
〈S, W, W, S, F〉 11
〈S, W, W, S, H〉 11
〈S, S, W, S, H〉 12
〈W, W, S, S, F〉 12
〈W, W, S, S, H〉 12
〈W, W, W, S, H〉 12
〈S, W, W, W, H〉 13
〈S, S, S, S, H〉 13
〈S, S, W, S, F〉 13
〈W, S, S, S, H〉 13
〈S, S, W, W, H〉 14
〈W, S, W, S, H〉 14
〈W, S, W, W, H〉 14
〈W, W, W, W, H〉 14
〈S, S, S, S, F〉 15
〈S, S, W, W, F〉 15
〈W, S, W, S, F〉 15
〈W, S, W, W, F〉 15
〈W, W, W, S, F〉 15
〈W, W, W, W, F〉 15
〈W, S, S, S, F〉 16
〈S, W, S, W, F〉 18
〈S, W, W, W, F〉 18
〈S, S, S, W, H〉 19
〈W, S, S, W, F〉 19
〈S, S, S, W, F〉 20
〈S, W, S, W, H〉 20
〈W, W, S, W, F〉 20
〈W, W, S, W, H〉 20
〈W, S, S, W, H〉 24

Table 6.12: Number of items eaten
after 50 rounds.
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6. Experimental Evaluation

Personality Agents
〈S, W, W, W, H〉 20
〈S, W, W, S, H〉 20
〈S, S, W, W, F〉 21
〈S, W, S, S, H〉 21
〈S, W, S, W, F〉 21
〈S, W, W, S, F〉 21
〈W, S, S, W, F〉 21
〈W, W, S, W, F〉 21
〈S, S, S, S, H〉 22
〈S, S, W, S, F〉 22
〈S, S, W, W, H〉 22
〈S, W, S, S, F〉 22
〈S, W, W, W, F〉 22
〈W, W, W, S, H〉 22
〈W, W, W, W, H〉 22
〈W, W, W, S, F〉 23
〈W, W, W, W, F〉 23
〈S, S, S, S, F〉 24
〈S, S, S, W, F〉 24
〈S, S, W, S, H〉 24
〈W, S, W, W, H〉 24
〈S, W, S, W, H〉 25
〈W, S, W, W, F〉 25
〈W, W, S, S, F〉 25
〈W, W, S, S, H〉 25
〈S, S, S, W, H〉 26
〈W, S, S, S, F〉 26
〈W, S, S, S, H〉 26
〈W, S, S, W, H〉 26
〈W, S, W, S, F〉 26
〈W, W, S, W, H〉 26
〈W, S, W, S, H〉 27

Table 6.13: Number of surviving
agents after 50 rounds.

Personality Wumpuses
〈S, S, W, W, F〉 3
〈S, W, W, W, F〉 3
〈S, W, W, W, H〉 4
〈S, W, S, W, H〉 4
〈W, W, S, W, F〉 4
〈S, W, W, S, H〉 5
〈W, S, W, W, H〉 5
〈S, S, S, W, F〉 6
〈S, S, S, W, H〉 6
〈S, S, W, S, F〉 6
〈S, W, S, S, F〉 6
〈S, W, S, S, H〉 6
〈S, W, S, W, F〉 6
〈W, S, S, S, F〉 6
〈W, S, W, W, F〉 6
〈W, W, S, W, H〉 6
〈W, W, W, S, F〉 6
〈S, S, W, S, H〉 7
〈S, S, W, W, H〉 7
〈S, W, W, S, F〉 7
〈W, S, S, W, H〉 7
〈W, S, W, S, F〉 7
〈W, S, W, S, H〉 7
〈W, W, S, S, F〉 7
〈W, W, W, S, H〉 7
〈W, W, W, W, F〉 7
〈S, S, S, S, F〉 8
〈S, S, S, S, H〉 8
〈W, S, S, S, H〉 8
〈W, S, S, W, F〉 8
〈W, W, S, S, H〉 8
〈W, W, W, W, H〉 8

Table 6.14: Number of surviving
Wumpuses after 50 rounds.
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6.3. Population-Based Evaluation

Personality fragment weak/hostile strong/friendly
Anger 24.25 22.313
Fear 22.438 24.125
Enthusiasm 22.75 23.8125
Contentment 23.063 23.5
Hostility 23.625 22.938

Table 6.15: Average number of surviving agents, by personality fragment.

Personality fragment weak/hostile friendly/strong
Anger 6.688 5.75
Fear 5.875 6.5625
Enthusiasm 5.9375 6.5
Contentment 5.625 6.813
Hostility 6.438 6.0

Table 6.16: Average number surviving Wumpuses, by personality fragment.

Personality fragment weak/hostile strong/friendly
Anger 254.5 234.375
Fear 244.688 244.188
Enthusiasm 84.75 404.125
Contentment 255.375 233.5
Hostility 251.375 237.5

Table 6.17: Average number of gestures sent, by personality fragment.

Personality fragment weak/hostile friendly/strong
Anger 15.625 14.563
Fear 14.5 15.688
Enthusiasm 13.813 16.38
Contentment 17.375 12.813
Hostility 14.688 15.5

Table 6.18: Average number items eaten, by personality fragment.
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CHAPTER 7
Conclusion

In this thesis, we proposed an agent architecture that combined affective reactions with
reasoning about future states of the world to achieve efficient behaviour. We began
in Chapter 2 by listing related work in the fields of artificial intelligence and biology.
Here we also made certain preliminary hypotheses that would undergird our architecture
and our implementation. We proposed a model in which brains are semi-independently
evolved collections of components which listened in on each other’s activity.

From there, we proceeded to formalise these notions in the form of a component model
in Chapter 3. Our components had the ability to filter messages relevant to them from a
larger message space, to interpret them, and to put back messages of their own. Although
components were thus able to communicate, they were not, as such, aware of the existence
of other components. In Chapter 4, we used the component model to construct our
affective architecture, consisting of emotional components as well as components for
reasoning. Agents evaluated their perceptions to generate pre-social emotions like anger
and fear, as well as social emotions like sympathy or trust for other agents based on
their positive or negative interactions with them. Guided by the agent’s emotions, a
decision-maker proposed hypothetical actions and a belief-generator generated future
states of the world, which were again submitted to emotional evaluation. In this way, the
agent constructed and evaluated plans until it was satisfied with the predicted outcome.

Chapter 5 detailed our implementation. We put our agents into a moderately complex
world filled with plants, pits, items, and hostile Wumpuses. This world was round-based
and in each round, each agent had to choose one of a pre-defined set of actions to perform.

In Chapter 6, we submitted our agents to both an evaluation of individual behaviour,
comprising eight simple test worlds with clear goals, as well as a population-based
evaluation in which we put 32 different populations into a large, complex world and
measured their performance over time. In the test worlds, all agents fulfilled their set
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7. Conclusion

tasks and almost all did so identically, showing the basic fitness for purpose of the artificial
intelligence we designed.

In the case of the population-based evaluation, we were interested in two things: would
the agents manage to survive in a complex world and would we see differences between
various personalities. To both questions, the answer was “yes”. We saw that all agents
survived reasonably well, although there were marked differences in the strategies they
chose. Aggressive agents killed many of the Wumpuses in their environment, but doing
so was costly to their numbers. More peaceful agents that avoided conflict and spent
more time harvesting plants survived better, even if they did not clear their worlds of
hostile Wumpuses.

These results show that our agents perform as well in their toy world as a simple animal
like a crab or a small fish would in the real one. The agents, however, did not fully meet
all expectations: despite their ability to predict the future, they failed to make inferences
like the fact that plants regrow in 10 time-steps. Their lack of a theory of mind also
meant that, while they were capable of liking other agents, they did not coordinate with
them for hunting and for protection.

Future work. In the course of the implementation and evaluation of the proof-of-
concept accompanying this thesis, a number of possible improvement arose, which were not
explored further but which can form the basis of fruitful future investigation. Specifically:

• Causality-based world simulation: Presently, the agents create plans by taking
hypothetical actions and simulating the world state as a result of these. As a
consequence, the lengths of plans and the number of time-steps required to perform
them correspond one-to-one. This schema is functional, but has apparent drawbacks
when we compare it to the way in which humans plan actions: If, say, one wanted
to go 100 steps in a straight line to get a glass of water, one would not consider each
required step individually. Rather, one would summarise the required 100 steps as
the single action “walk in a straight line towards the glass”. Similarly, if one had
to wait ten minutes for a train, one would not consider what to do during each
second of the wait; one would simply resolve to “sit there”. Clearly, not all actions
or series of actions are explicated to the same degree in the minds of humans when
they make plans.
It thus stands to reason that, during the planning process, one ought to consider a
sort of causal distance — that is, the number of actions which the agent regards as
qualitatively distinct. As soon as we begin to group actions together and distinguish
temporal from causal distance, the question during planning ceases to be “how long
will it take to achieve X?” and becomes “how complicated is it to achieve X?”

• Goal-based planning: Our planning scheme first selects an emotion to serve as
the guiding one and then proceeds to create hypothetical steps until the guiding
emotion is either satisfied, leading the the plan’s execution, or until a conflicting
emotion overpowers it, leading to the plan’s abortion. This is, once again, basically
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functional, but one could improve upon it by associating certain outcomes — e.g.,
sating one’s hunger or killing a Wumpus — with certain emotions and selecting
one of these as goals to reach. Agents would thus no longer seek to satisfy their
dominant emotions by any means possibly, but by working towards specific goals.

• Emotional learning: In conjunction with goal-based planning, one might also make
the association of outcomes with emotions a dynamic one. Instead of outcomes
being permanently associated with this or that emotion, agents would be able to
learn what constitutes a “good” or “bad”, or a “pleasurable”, “painful” outcome.

• Inference about world-states and forgetting: The agents’ memory is merely a perfunc-
tory fact-storage which remembers past perceptions about the world. Importantly,
it does not incorporate inferences about likely changes which an agent might rea-
sonably learn, such as the fact that plants regrow or that an agent which was last
seen surrounded by ten Wumpuses is likely to be dead now. The learning and
application of such inferences about the likely, but not directly observed, changes
in the world is an open-ended area of improvement, but carries the possibility of
much-optimised behaviour.

• Concept synthesis: Although agents are able to experience individual facts about
their surrounding world, they do not create larger concepts from these facts to
serve as cognitive shortcuts. An agent might perceive three Wumpuses in front of
it, say, but it has no concept of “three Wumpuses” or “a horde of Wumpuses”. One
can think of many other macro-concepts which would directly aid in the creation
of efficient plans and reduce cognitive load: “a dangerous area”, “an aggressive
agent”, “a gathering-place for Wumpuses”, etc.

• Evolution of neural nets: Emotional reactions are currently hand-crafted; the
personalities of agents customised by inserting different nets for individual emotions.
One might instead allow emotions to evolve by applying genetic algorithms to the
neural nets, selecting the best-performing agents in each generation and creating
the agents of the next one through recombination and mutation of their parents.

• Theory of mind: Our belief generator currently makes no attempt at predicting
the actions of other agents; it merely models them as completely passive entities.
It would be an interesting, if difficult, addition to utilise levels of trust, sympathy,
and respect felt towards certain other agents, as well as some general theory of
mind to reason about likely actions that other agents will take.
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