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Abstract

Major spoiler alert. We investigate the α-hypergeometric stochastic volatility model.
We present results including the martingale property of the forward and calculate cer-
tain transforms of the forward as well as the volatility itself, which enable us to perform
plain vanilla pricing and pricing of volatility derivatives. Furthermore we derive cer-
tain large deviation problems associated with the α-hypergeometric stochastic volatility
model as well as other asymptotics.
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1 Introduction

Stochastic volatility models are nowadays an important tool in financial mathematics. The
most common model is the Heston model, which however when calibrated to real world data
often does not satisfy the Feller condition. This in turn results in the volatility hitting zero
in finite time. Volatility models where the volatility itself is modelled using an Ohrnstein-
Uhlenbeck process however immediately lacks the property of positivity. Therefore one
essential property is the strict positivity of the volatility at all time. Of course another
important property one would like to have is that there are certain closed form expressions
for example of the call option price. This is however only possible for a small amount of
models. One way to handle this is to integral transform the call price like in the Heston
model.

This master thesis analyses a new stochastic volatility model called the α-hypergeometric
stochastic volatility model introduced by [Da Fonseca and Martini, 2014]. By construction
this model satisfies the assumption of strict positivity of the volatility process at all time.
Furthermore it has the property of being a non affine model. Finally it is tractable in the
sense that we can express the Laplace transform in time of the Mellin transform of the call
option price in terms of standard functions and hypergeometric series.

This thesis is structured as follows: First we introduce the model and investigate certain
dependencies on model parameters. Then we investigate the martingality of the forward
where we follow the ideas of [Da Fonseca and Martini, 2014]. An original result of this thesis
is lemma 2.4 which enables us to perform a crucial measure change afterwards. Another
original result of this thesis is an alternative proof theorem 2.6. Using results of [Lions
and Musiela, 2007] we were able to derive theorem 2.8 which analyses the integrability of
certain powers of the forward. At the end of section 2 we consider the dual market. In
section 3 we give a quick reminder of the concept of generalized hypergeometric functions
and related functions. Section 4 is dedicated to the asymptotic analysis of the model. First
we consider the short and long term behaviour of the expected variance and the variance
swap. Proposition 4.2 is an original generalization of proposition 3 in [Da Fonseca and
Martini, 2014]. We furthermore investigate the case of deterministic volatility as an heuristic
approximation for the model with small volatility of volatility. In this case we were able to
express the price of a call option in terms of hypergeometric functions, see Proposition 4.11.
At the end of section 4 we derive large deviation problems associated with the model and
derive a small time behaviour of the implied volatility. This is done following ideas of [Forde
and Jacquier, 2011]. The theorems 4.14 and 4.20 are original results of this thesis. Section
5 deals with certain transforms of the volatility as well as the forward itself which are then
necessary to perform pricing of plain vanilla options, which in turn is done in section 6. Both
sections follow [Da Fonseca and Martini, 2014]. We were however able to simplify certain
hypergeometric series, see the proof of proposition 5.2.
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2 The model

2.1 Definition of the model

The risk neutral dynamics under the pricing measure P of the forward S and the instanta-
neous log volatility v in the α-hypergeometric model are given by

dSt = Ste
vtdWt, (1)

dvt = (a− beαvt) dt+ σdBt, (2)
dWtdBt = ρdt, (3)

with deterministic initial data S0 = 1 and v0 ∈ R, where W and B are correlated Brownian
motions with correlation ρ ∈ (−1, 1) and constants α > 0, a ∈ R, b > 0 and σ > 0.
W.l.o.g. we assume that the interest rate is equal to zero. In the α-hypergeometric model
the instantaneous variance is therefore given by Vt = e2vt , t ≥ 0.

Since the coefficients of the SDE in (1) and (2) are locally Lipschitz continuous strong
uniqueness holds. In fact the SDE (2) has a unique strong solution given by

vt = v0 + at+ σBt −
1

α
ln

(
1 + αb

∫ t

0

exp (α (v0 + as+ σBs)) ds

)
, (4)

see for example section 2.1.1 in [Da Fonseca and Martini, 2014] for a direct derivation and
section 4.4 equation (4.53) in [Kloeden and Platen, 1992] for a much more general approach.
The dynamics of S and V are given by

dSt = St
√
VtdWt,

dVt =
((

2a+ 2σ2
)
Vt − 2bV

1+α
2

t

)
dt+ 2σVtdBt,

which shows the non-affinity of the model in question.
Remark 2.2. From the dynamics (1) and (2) one can easily verify that

αvv0,α,a,b,σ = vαv0,1,αa,αb,ασ,

where vv0,α,a,b,σ denotes the solution of (2) with the corresponding parameters.

2.3 Martingality and moments of S

In order to prove certain martingale properties of S we are going to need the following lemma,
which is an original result of this thesis and will be necessary to perform a crucial measure
change hereafter.

Lemma 2.4. For a ∈ R, b ≥ 0 and c ≥ 0, a Brownian motion B and

Lt :=

∫ t

0

a− b exp (cBs) dBs

for t ≥ 0, the corresponding stochastic exponential E (L) is a martingale.
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Proof. By exercise 5.38 in [Karatzas and Shreve, 1991] we know that E (L) is a martingale
if and only if the function

ϕ : x 7→
∫ x

0

∫ y

0

exp

(
−2

∫ y

z

a− becudu
)
dzdy

satisfies limx→±∞ ϕ (x) = +∞. For c 6= 0 and x ≥ 0 elementary calculations show that

ϕ (x) =

∫ x

0

exp

(
−2ay +

2b

c
ecy
)

︸ ︷︷ ︸
=:f(y)

∫ y

0

exp

(
2az − 2b

c
ecz
)
dz︸ ︷︷ ︸

=:g+(y)

dy.

A closer look at the function f shows that

lim
y→∞

f (y) =



+∞ a < 0

1 a = 0, b = 0

+∞ a = 0, b > 0

0 a > 0, b = 0

+∞ a > 0, b > 0.

Except for the case a > 0 and b = 0 we can immediately conclude ϕ (+∞) = +∞, since g+

is trivially bounded away from zero at infinity. For the case a > 0 and b = 0 we have

ϕ (x) =

∫ x

0

exp (−2ay)

∫ y

0

exp (2az) dzdy

=

∫ x

0

1− exp (−2ay)

2a
dy

and we can conclude as above. The case c = 0 is handled analogously. Therefore we obtain
ϕ (+∞) = +∞ for all a ∈ R, b ≥ 0 and c ≥ 0.

For c 6= 0 and x ≤ 0 we have

ϕ (x) =

∫ 0

x

exp

(
−2ay +

2b

c
ecy
)

︸ ︷︷ ︸
=f(y)

∫ 0

y

exp

(
2az − 2b

c
ecz
)
dz︸ ︷︷ ︸

=:g−(y)

dy.

Again a closer look at the function f shows that

lim
y→−∞

f (y) =


0 a < 0

1 a = 0

+∞ a > 0
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and we can immediately conclude that ϕ (−∞) = +∞ except for the case a < 0. But since
the inequalities

f (y) = exp

(
−2ay +

2b

c
ecy
)
≥ exp (−2ay) ,

g− (y) =

∫ 0

y

exp

(
2az − 2b

c
ecz
)
dz ≥

∫ 0

y

exp

(
2az − 2b

c

)
dz

hold for y ≤ 0 we have

ϕ (x) ≥
∫ 0

x

exp (−2ay)

∫ 0

y

exp

(
2az − 2b

c

)
dzdy

= e−
2b
c

∫ 0

x

exp (−2ay)

∫ 0

y

exp (2az) dzdy

= e−
2b
c

∫ 0

x

exp (−2ay)− 1

2a
dy.

Therefore we can conclude ϕ (−∞) = +∞. As in the case x → ∞ one can easily verify
ϕ (−∞) = +∞ in the case c = 0. This concludes the proof.

Remark 2.5. Lemma 2.4 guaranties the validity of an essential measure change in the proof
of the following theorem. Note however that the Novikov condition does not hold in general.
Consider for example the case a = 0 and b, c > 0. Using the Jensen inequality for the convex
function x 7→ (becx)2 and the fact that

∫ t
0
Bsds is Gaussian we arrive at

E
(

exp

(
1

2

〈∫ ·
0

−b exp (cBs) dBs

〉
t

))
= E

(
exp

(
1

2

∫ t

0

(−b exp (cBs))
2 ds

))
≥ E

(
exp

(
b2t

2
exp

(
2c

t

∫ t

0

Bsds

)))
=∞.

Theorem 2.6. The forward S in the α-hypergeometric model is a martingale if and only if
α ≥ 2 or α < 2 and one of the following conditions is fulfilled:

• ρ ≤ 0,

• α > 1,

• α = 1 and b ≥ ρσ.

Proof. We follow the reasoning of proposition 6 in [Da Fonseca and Martini, 2014]. First we
consider the case α = 2. Note that by integrating (2) and with (4) we arrive at∫ t

0

exp (αvs) ds = −1

b
(vt − v0 − at− σBt)

=
1

αb
ln

(
1 + αb

∫ t

0

exp (α (v0 + as+ σBs)) ds

)
.
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Using the above equation we get

exp

(
1

2

〈∫ ·
0

exp (vs) dWs

〉
t

)
= exp

(
1

2

∫ t

0

exp (2vs) ds

)
= exp

(
1

4b
ln

(
1 + 2b

∫ t

0

exp (2 (v0 + as+ σBs)) ds

))
=

(
1 + 2b

∫ t

0

exp (2 (v0 + as+ σBs)) ds

) 1
4b

≤ (1 + 2bt exp (2 (v0 + |a| t+ σB∗t )))
1
4b

≤ (1 + 2bt exp (2 (v0 + |a| t)))
1
4b exp

(
2σB∗t

4b

)
,

where B∗ denotes the running maximum of B , i.e. B∗t = max0≤s≤tBt. Therefore, by the
Novikov condition, we conclude that S is a martingale.

We now consider α > 2. By Hölder’s inequality with p = α
α−2

and q = α
2
we get the

inequality ∫ t

0

exp (2vs) ds ≤ t
α−2
α

(∫ t

0

exp (αvs) ds

) 2
α

.

Now as above and again with the Novikov condition we conclude that S is a martingale.
Now we consider the case α < 2. Since S is given by a stochastic exponential it is a

martingale if and only if its expectation is constant, i.e.

E (St) ≡ 1.

Note that by introducing the standard Brownian motion
(
Bt, B

⊥
t

)
t≥0

, ρ =
√

1− ρ2 and the
sigma algebra Ft := σ (Bs : 0 ≤ s ≤ t) we have

E (St) = E
(
E
(∫ ·

0

evsdWs

)
t

)
= E

(
E
(
ρ

∫ ·
0

evsdBs + ρ

∫ ·
0

evsdB⊥s

)
t

)
= E

(
E
(
ρ

∫ ·
0

evsdBs

)
t

E
(
E
(
ρ

∫ ·
0

evsdB⊥s

)
t

∣∣∣∣Ft))
= E

(
E
(
ρ

∫ ·
0

evsdBs

)
t

)
.

Let
B̃s := Bs −

∫ s

0

a− beαv0 exp (ασBu)

σ
du

and let P̃t, given by the Girsanov theorem, which can be applied to the above process by
lemma 2.4, denote the probability measure under which

(
B̃s

)
0≤s≤t

is a Brownian motion.
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The density is therefore given by

dP̃t

dP
= E

(∫ ·
0

a− beαv0 exp (ασBs)

σ
dBs

)
t

= exp

(∫ t

0

a− beαv0 exp (ασBs)

σ
dBs −

1

2

∫ t

0

(
a− beαv0 exp (ασBs)

σ

)2

ds

)
.

The law of (vs, Bs)0≤s≤t under P is now the same as the one of the process
(
v0 + σBs, B̃s

)
0≤s≤t

under P̃t. This can be easily seen by

dvs = (a− beαvs) dt+ σdBs under P,
d (v0 + σBs) =

(
a− beα((v0+σBs)

)
ds+ σdB̃s under P̃t,

and by the Yamada Watanabe theorem, since we have already shown pathwise uniqueness.
This enables us to conclude that

EP
(
E
(
ρ

∫ ·
0

evsdBs

)
t

)
= EP̃t

(
E
(
ρev0

∫ ·
0

exp (σBs) dB̃s

)
t

)
= EP

(
E
(
ρev0

∫ ·
0

exp (σBs)

(
dBs −

a− beαv0 exp (ασBs)

σ
ds

))
t

·E
(∫ ·

0

a− beαv0 exp (ασBs)

σ
dBs

)
t

)
= EP

(
E
(∫ ·

0

ρev0 exp (σBs) +
a− beαv0 exp (ασBs)

σ
dBs

)
t

)
= EP

(
E
(∫ ·

0

b (Bs) dBs

)
t

)
,

with
b (x) := ρev0 exp (σx) +

a

σ
− beαv0

σ
exp (ασx) .

As in the proof of lemma 2.4 we are therefore left with the computations of the behaviour
of the function

ϕ : x 7→
∫ x

0

∫ y

0

exp

(
−2

∫ y

z

b (u) du

)
dzdy

at ±∞. For x ≥ 0 straightforward calculations show

ϕ (x) =∫ x

0

exp

(
−2ρev0

σ
eσy − 2a

σ
y +

2beαv0

ασ2
eασy

)
︸ ︷︷ ︸

=:f(y)

∫ y

0

exp

(
2ρev0

σ
eσz +

2a

σ
z − 2beαv0

ασ2
eασz

)
dz︸ ︷︷ ︸

=:g+(y)

dy

10



and for x < 0 we have

ϕ (x) =∫ 0

x

exp

(
−2ρev0

σ
eσy − 2a

σ
y +

2beαv0

ασ2
eασy

)
︸ ︷︷ ︸

=f(y)

∫ 0

y

exp

(
2ρev0

σ
eσz +

2a

σ
z − 2beαv0

ασ2
eασz

)
dz︸ ︷︷ ︸

=:g−(y)

dy.

We first take a look at the behaviour of ϕ for x → −∞. With C1 := max
(

2|ρ|ev0
σ

, 2beαv0
ασ2

)
and for y ≤ 0 we have

f (y) ≥ eC1 exp

(
−2a

σ
y

)
g− (y) ≥ eC1

∫ 0

y

exp

(
2a

σ
z

)
dz.

Therefore we have

ϕ (x) =

∫ 0

x

f (y) g− (y) dy

≥ e2C1

∫ 0

x

exp

(
−2a

σ
y

)∫ 0

y

exp

(
2a

σ
z

)
dzdy

which diverges for all a ∈ R for x→ −∞. We now consider the case x→∞. A closer look
at the function f shows

lim
y→∞

f (y) =



+∞ ρ ≤ 0,

+∞ α > 1,

+∞ α = 1 and b > ρσ,

0 α = 1 and b < ρσ,

0 α < 1 and ρ > 0.

Note that we excluded the case α = 1 and b = ρσ, since straightforward calculations show
limx→∞ ϕ (x) = +∞. Therefore we have limx→∞ ϕ (x) = +∞ if ρ ≤ 0, α > 1 or α =
1 and b ≥ ρσ.

For the other cases it can be shown by some lengthy computations that the ϕ (x) converges
as x→∞. We refer to proposition 6 in [Da Fonseca and Martini, 2014].

We have also derived a different approach to show the martingale property using results
of the paper [Lions and Musiela, 2007]. They considered the following stochastic volatility
models. Using their notation we have:

dFt = σtFtdWt,

dσt = b (σt) dt+ µ (σt) dZt,

dWtdBt = ρdt,

11



with deterministic initial data F0 > 0 and σ0 > 0, where W and Z are correlated Brownian
motions with correlation ρ ∈ [−1, 1] and µ and b are smooth functions on [0,∞) such that

µ (0) = 0, b (0) ≥ 0, (5)
µ (ξ) > 0 for ξ > 0, µ is Lipschitz on [0,∞) (6)
b (ξ) ≤ C (1 + ξ) on [0,∞) , for some C > 0. (7)

They derived the following

Theorem 2.7.

• If the following condition holds

lim sup
ξ→∞

ρµ (ξ) ξ + b (ξ)

ξ
<∞,

then E (Ft |lnFt|) < ∞, E
(
sup0≤s≤t Fs

)
< ∞ for all t ≥ 0 and F is a nonnegative

martingale.

• If the following condition holds

lim inf
ξ→∞

ρµ (ξ) ξ + b (ξ)

ϕ (ξ)
> 0,

for some smooth, positive, increasing function ϕ such that
∫∞ 1

ϕ(ξ)
dξ < ∞, then F is

not a martingale and we have:

E (Ft) < F0 for all t > 0.

Proof. See theorem 2.4 in [Lions and Musiela, 2007].

In the α-hypergeometric model we then have with a slight abuse of notation

Ft = St, σt = evt , b (ξ) =

(
a+

σ2

2

)
ξ − bξ1+α, µ (ξ) = σξ.

In the above the left hand side is the notation of [Lions and Musiela, 2007] and the right
hand side is our notation. Note that the α-hypergeometric model obviously satisfies all the
conditions proposed by [Lions and Musiela, 2007]. We were able to derive an original proof
of theorem 2.6.

Alternative proof of theorem 2.6. In view of theorem 2.7 lets calculate

lim sup
ξ→∞

ρµ (ξ) ξ + b (ξ)

ξ
= lim

ξ→∞
ρσξ +

(
a+

σ2

2

)
− bξα,

which is less than ∞ if and only if α ≥ 2 or α < 2 and one of the following conditions is
fulfilled:

12



• ρ ≤ 0

• α > 1

• α = 1 and b ≥ ρσ.

We conclude that in these cases S is a martingale.
Choosing ϕ (ξ) = ξ2, which obviously satisfies the assumptions of theorem 2.7 and con-

sidering all the other parameter cases now, which are α < 1, ρ > 0 or α = 1, b < ρσ, we
calculate

lim inf
ξ→∞

ρµ (ξ) ξ + b (ξ)

ϕ (ξ)
= lim

ξ→∞
ρσ +

a+ σ2

2

ξ
− b

ξ1−α > 0.

Therefore with theorem 2.7 we conclude that in these cases S is not a martingale.

Aside from this general approach [Lions and Musiela, 2007] also considered the following
stochastic volatility model:

dFt = σδtF
β
t dWt,

dσt = b (σt) dt+ ασγt dZt,

dWtdBt = ρdt,

with deterministic initial data F0 > 0 and σ0 > 0, where W and Z are correlated Brownian
motions with correlation ρ ∈ [−1, 1], α, β, γ, δ > 0, b (0) ≥ 0, b locally Lipschitz on [0,∞)
and b satisfies (7). Again the α-hypergeometric model fits into this model and again with a
slight abuse of notation we have

Ft = St, σt = evt , b (ξ) =

(
a+

σ2

2

)
ξ − bξ1+α, α = σ, β = 1, γ = 1, δ = 1.

Again in the above the left hand side is the notation of [Lions and Musiela, 2007] and the
right hand side is our notation. Note that these parameters now correspond to the cases (v)
and (iii) in theorem 3.2 and theorem 3.3 respectively in [Lions and Musiela, 2007]. Together
with the remark after theorem 3.2 we are now able to quantify the behaviour of the moments
of S, which is an original result of this thesis.

Theorem 2.8. Let S be a martingale in the α-hypergeometric model. Then St ∈ Lθ or
equivalently

E
(

sup
0≤s≤t

Sθs

)
<∞ (8)

holds for all t > 0 in the cases

• α < 1, ρ < 0 and 1 < θ ≤ 1
1−ρ2 ,

• α = 1, b > ρσ and 1 < θ ≤ σ−2bρ+
√

(σ−2bρ)2+4b2(1−ρ2)

2σ(1−ρ2)
,

13



• α > 1 and θ > 1.

Conversely
E
(
Sθt
)

=∞ (9)

holds for all t > 0 in the cases

• α < 1, ρ = 0 and θ > 1,

• α < 1, ρ < 0 and θ > 1
1−ρ2 ,

• α = 1, b = ρσ and θ > 1.

Proof. Since we can apply theorem 3.2., the remark after theorem 3.2. and theorem 3.3
in [Lions and Musiela, 2007] we first need to calculate the quantity b∞. Straightforward
computations lead to

b∞ =


0 if α < 1,
−b if α = 1,
−∞ if α > 1.

• Case α < 1 : To ensure martingality of S one needs ρ ≤ 0. If ρ ≤ −
√

θ−1
θ

we have that
(8) holds. Therefore for all 1 < θ ≤ 1

1−ρ2 and all t > 0 there holds E
(
sup0≤s≤t S

θ
s

)
<∞

and for all θ > 1
1−ρ2 and all t > 0 there holds E

(
Sθt
)

=∞. If ρ = 0 then E
(
Sθt
)

=∞
for all θ > 1 and all t > 0.

• Case α = 1 : To ensure martingality of S one needs b ≥ ρσ. Consider first the case
b > ρσ then if

ρ ≤ −
√
θ − 1

θ
+

b

σθ

(8) holds. One can simply calculate that the above equation is satisfied if 1 < θ ≤ θ+

with

θ+ =
σ − 2bρ+

√
(σ − 2bρ)2 + 4b2 (1− ρ2)

2σ (1− ρ2)
.

In the case b = ρσ one immediately gets that for all θ > 1 the inequality

ρ > −
√
θ − 1

θ
+

b

σθ

holds and therefore (9) holds.

• Case α > 1 : Since b∞ = −∞ we immediately get (8) for all θ > 1.
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2.9 The dual market

If S is a martingale we can take a look at the dual market given by the process S ′ := 1
S

under the probability measure dP′ := STdP. The dynamics of S ′ are then given by

dS ′t = S ′te
2vtdt− S ′tevtdWt.

Under P′ the process

W̃t := Wt −
∫ t

0

evsds

is a Brownian motion according to the Girsanov theorem. We can therefore rewrite the
dynamics of S ′ as

dS ′t = S ′te
2vtdt− S ′tevtdWt = −S ′tevtdW̃t.

Note that under P′ the process

B̃t := Bt − ρ
∫ t

0

evsds

is also a Brownian motion. Therefore the dynamics of v are given by

dvt = (a− beαvt) dt+ σdBt = (a− beαvt + ρσevt) dt+ σdB̃t.

We can therefore conclude that the dual model belongs to the same family of processes if
and only if ρ = 0, in which case the models are the same, or α = 1.

Remark 2.10. Note furthermore that in the special case α = 1 and b = ρσ one gets vt =
at+σB̃t, which results in the Hull-White model, see for example Section 2.3 in [Gulisashvili,
2012].
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3 Hypergeometric functions

In the following we need certain special functions which are known as hypergeometric func-
tions. Our notation is the same as in [DLMF]. Therefore the reader should take a look
at

• Chapter 13 in [DLMF] for the definition of the confluent hypergeometric functions and
the Whittaker functions as well as

• Chapter 15 in [DLMF] for the definition of the generalized hypergeometric functions.

Certain properties of these functions are cited directly by the corresponding equation number
in [DLMF].

Lemma 3.1. For a, b, c, d, f ∈ R such that a, c 6= 0, a
f

+ 1 6= 0,−1,−2, . . . there holds∫
eat
(
c+ deft

)b
dt =

1

a
eatcb2F1

([
−b, a

f

] [
a

f
+ 1

]
,−deft

c

)
.

Proof. This is an immediate consequence of equation 7.3.1.28 in [Prudnikov et al., 1998]
which enables us to write the right hand side in terms of the incomplete beta function. The
result follows immediately from derivation.
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4 Asymptotic analysis

4.1 Small and long term behaviour

In the following we want to analyse the short and long term behaviour of the instantaneous
variance Vt given by

Vt =
V0e2at+2σBt(

1 + αbV
α
2

0

∫ t
0

exp (α (as+ σBs)) ds
) 2
α

and the variance swap given by

VS (t) =
1

t

∫ t

0

E
(
e2vs
)
ds =

1

t

∫ t

0

E (Vs) ds.

Before however turning to the short and long term behaviour we take a look at certain
moments of Vt. First note that Zt := V

−α
2

t = e−αvt and by the Ito formula we have

dZt =

(
αb+

(
α2σ2

2
− αa

)
Zt

)
dt− ασZtdBt.

These kind of processes are sometimes called Shiryaev processes or Wong processes and were
intensively studied in [Donati-Martin et al., 2001] and [Peskir, 2006]. In [Donati-Martin
et al., 2001] they also derived an expression for the corresponding resolvent of the process.
Now let M (l)

t be the l-th moment of Zt. Since

dZ l
t = lZ l−1

t

((
αb+

(
α2σ2

2
− αa

)
Zt

)
dt− ασdBt

)
+
l (l − 1)

2
Z l−2
t α2σ2Z2

t dt

one immediately gets

dM
(l)
t =

(
αblM

(l−1)
t +

(
α2σ2

2
l − αal +

l (l − 1)

2
α2σ2

)
M

(l)
t

)
dt

which can now be recursively solved.

4.1.1 Short term behaviour

The following proposition generalizes proposition 3 in [Da Fonseca and Martini, 2014]. In
order to get an explicit asymptotic expansion one still has to extract the corresponding
coefficients.

Proposition 4.2. For γ > 0 the short term behaviour of E (V γ
t ) is given by

E (V γ
t ) = V γ

0 e2aγt+2σ2γ2t

N∑
n=0

αnbnV
αn
2

0

(
−2γ

α

n

)
e−

µ2t
2

n∑
j=0

C (n, j;µ) exp

(
t
(µ+ 2j)2

2

)
+O

(
tN+1

)
17



with µ =
2(a+2σ2γ)

ασ2 and N ∈ N and where C (0, 0;µ) = 1 and for j = 0, . . . , n

C (n, j;µ) = 2−n (−1)n−j
(
n

j

) ∏
k 6=j

0≤k≤n

(µ+ j + k)−1 .

Proof. Let
B̃t := Bt − 2σγt

and let P̃t, given by the Girsanov theorem, denote the probability measure under which(
B̃s

)
0≤s≤t

is a Brownian motion. The density is therefore given by

dP̃t

dP
= exp

(
2σγBt −

(2σγ)2

2
t

)
.

Therefore we have

EP (V γ
t ) = EP̃t

 V γ
0 e2aγt+2σγBt(

1 + αbV
α
2

0

∫ t
0

exp (α (as+ σBs)) ds
) 2γ

α

e−2σγBt+2σ2γ2t



= V γ
0 e2aγt+2σ2γ2tEP̃t


1 + αbV

α
2

0

∫ t

0

exp
(
α
((
a+ 2σ2γ

)
s+ σB̃s

))
ds︸ ︷︷ ︸

=:It


− 2γ
α

 .

Since we have

(1 + x)β =
N∑
n=0

(
β

n

)
xn + f (x)

with f ∈ O
(
xN+1

)
as x tends to zero, we can conclude that

EP̃t
((

1 + αbV
α
2

0 It

)− 2γ
α

)
=

N∑
n=0

αnbnV
αn
2

0

(
−2γ

α

n

)
EP̃t (Int ) + EP̃t (f (It)) .

Note that It satisfies

It =

∫ t

0

exp
(
α
((
a+ 2σ2γ

)
s+ σB̃s

))
ds

d
=

4

α2σ2

∫ α2σ2

4
t

0

exp

(
2

(
2 (a+ 2σ2γ)

ασ2
u+ B̂u

))
du

=
4

α2σ2
A

(µ)
α2σ2

4
t
,
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where we have used the notation of [Dufresne, 2000] with µ =
2(a+2σ2γ)

ασ2 ,

A
(µ)
t =

∫ t

0

exp
(

2µs+ 2B̂s

)
ds

and an appropriate Brownian motion B̂. Now by theorem 5.2 in [Matsumoto and Yor, 2005a]
we know that for µ ≥ 0 the moments of A(µ)

t can be calculated via

E
((
A

(µ)
t

)n)
= e−

µ2t
2

n∑
j=0

C (n, j;µ) exp

(
t
(µ+ 2j)2

2

)
,

where C (0, 0;µ) = 1 and for j = 0, . . . , n

C (n, j;µ) = 2−n (−1)n−j
(
n

j

) ∏
k 6=j

0≤k≤n

(µ+ j + k)−1 .

We are therefore left to verify that

EP̃t (f (It)) ∈ O
(
tN+1

)
.

By definition we know that there exist δf ,Mf > 0 such that |f (t)| ≤Mf t
N+1 for all t ≤ δf .

Therefore we have

EP̃t (|f (It)|) = EP̃t
(
|f (It)|1{It≤δf}

)
+ EP̃t

(
|f (It)|1{It>δf}

)
.

By construction and by the definition of It we have

EP̃t
(
|f (It)|1{It≤δf}

)
≤MfEP̃t

(
IN+1
t 1{It≤δf}

)
≤MfEP̃t (IN+1

t

)
≤MfEP̃t

(
tN+1 exp

(
C1 + C2B̃

∗
1

))
∈ O

(
tN+1

)
,

with constants C1, C2 > 0 for t ∈ [0, 1]. On the other hand we have

EP̃t
(
|f (It)|1{It>δf}

)
≤ EP̃t (|f (It)|2

)
P̃t (It > δf )

≤ C3P̃t (It > δf ) ,

with some constant C3 > 0 for t ∈ [0, 1]. Note that the probability of It getting larger than
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an arbitrary small level gets exponentially small as t tends to 0. This can be easily seen since

P̃t
(∫ t

0

exp
(
α
((
a+ 2σ2γ

)
s+ σB̃s

))
ds ≥ ε

)
≤ P̃t

(∫ t

0

exp

(
c1t+ c2 sup

0≤u≤t
B̃u

)
ds ≥ ε

)
= P̃t

(
c1t+ c2 sup

0≤u≤t
B̃u ≥ ln

(ε
t

))
= P̃t

(
sup

0≤u≤t
B̃u ≥

1

c2

ln
(ε
t

)
− c1

c2

t

)
= 2P̃t

(
B̃t ≥

1

c2

ln
(ε
t

)
− c1

c2

t

)

≤ 2
√
t√

2π

1
1
c2

ln
(
ε
t

)
− c1

c2
t

exp

−
(

1
c2

ln
(
ε
t

)
− c1

c2
t
)2

2t


≤ exp

(
− 1

2t

)
,

with positive constants c1 and c2, t sufficiently small and with the help of theorem 21.19 in
[Klenke, 2007]. We have therefore proven the assertion.

In fact using proposition 4.2 with N = 1, γ = 1 and extracting the corresponding
coefficients in the exponential one arrives at

Corollary 4.3. The short term behaviour of E (Vt) and VS (t) is given by

E (Vt) = V0

(
1 +

(
2a+ 2σ2 − 2bV

α
2

0

)
t
)

+O
(
t2
)
,

VS (t) = V0

(
1 +

(
2a+ 2σ2 − 2bV

α
2

0

) t
2

)
+O

(
t2
)

as t→ 0.
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Figure 1: Short term behaviour of t 7→ E (Vt) with initial instantaneous variance V0 of 20%
and model parameters given by a = 0.8, b = 0.4, α = 1.2 and σ = 1. The exact expectation
was calculated via simulation.
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Figure 2: Short term behaviour of t 7→ VS (t) with initial instantaneous variance V0 of 20%
and model parameters given by a = 0.8, b = 0.4, α = 1.2 and σ = 1. The exact price was
calculated via simulation.

4.3.1 Long term behaviour

We start with a quite useful lemma.
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Lemma 4.4. For X ∼ Γ (α, β) and γ ∈ (−α,∞) there holds

E (Xγ) =
Γ (α + γ)

βγΓ (α)
.

Proof. Straightforward calculations yield

E (Xγ) =

∫ ∞
0

xγ
βα

Γ (α)
xα−1e−βxdx

=
Γ (α + γ)

βγΓ (α)

∫ ∞
0

βα+γ

Γ (α + γ)
xα+γ−1e−βx︸ ︷︷ ︸

Γ(α+γ,β) density

dx

=
Γ (α + γ)

βγΓ (α)
.

Proposition 4.5. For a > 0 and Z ∼ Γ (µ, 1) with µ = 2a
ασ2 there holds

Vt
d−→
(

2b

ασ2

)− 2
α

Z
2
α ,

as t→∞. Moreover there holds

lim
t→∞

E (Vt) = lim
t→∞

VS (t) =

(
2b

ασ2

)− 2
α Γ

(
µ+ 2

α

)
Γ (µ)

.

Proof. We follow the ideas of section 2.1.9 in [Da Fonseca and Martini, 2014]. Note that by
the law of large numbers we have

lim
t→∞

at+ σBt =∞

and since for all β ∈ R we have (1 + x)β ∼ xβ as x→∞, we can conclude that with

Vt =
V0e2at+2σBt(

1 + αbV
α
2

0

∫ t
0

exp (α (as+ σBs)) ds
) 2
α

=

(
αbV

α
2

0

∫ t
0

exp (α (as+ σBs)) ds
) 2
α

(
1 + αbV

α
2

0

∫ t
0

exp (α (as+ σBs)) ds
) 2
α︸ ︷︷ ︸

=:Xt

· V0e2at+2σBt(
αbV

α
2

0

∫ t
0

exp (α (as+ σBs)) ds
) 2
α︸ ︷︷ ︸

=:Yt

,
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Xt
a.s.−−→ 1 as t → ∞. On the other hand we can rewrite the process Y by time reversal and

using an appropriate Brownian motion B̃ as

Yt =
V0e2at+2σBt(

αbV
α
2

0

∫ t
0

exp (α (as+ σBs)) ds
) 2
α

=
1(

αb
∫ t

0
exp (αa (s− t) + ασ (Bs −Bt)) ds

) 2
α

d
=

1(
αb
∫ t

0
exp (−αa (t− s)− ασBt−s) ds

) 2
α

d
=

1(
αb 4

α2σ2

∫ α2σ2

4
t

0
exp

(
2
(
− 2a
ασ2u+ B̃u

))
du

) 2
α

=

(
2b

ασ2

)− 2
α

 1

2A
(−µ)
α2σ2

4
t

 2
α

,

where we again used the notation of [Dufresne, 2000] with µ = 2a
ασ2 . From theorem C in

[Dufresne, 2000] we know that for any µ > 0, 1

2A
(−µ)
∞
∼ Γ (µ, 1). Since both Xt and Yt

converge in distribution and since Xt
a.s.−−→ 1, Slutsky’s theorem and the continuous mapping

theorem yield the first assertion.
In order to prove the second assertion first note that Xt ≤ 1. Since t 7→ A

(µ)
t is monotone

we can apply the monotone convergence theorem in the following computations and together
with lemma 4.4 we get

E (Vt) = E (XtYt) ≤ E (Yt) = E

( 2b

ασ2

)− 2
α

 1

2A
(−µ)
α2σ2

4
t

 2
α

 t→∞−−−→
(

2b

ασ2

)− 2
α Γ

(
µ+ 2

α

)
Γ (µ)

.

On the other hand by applying the reverse Hölder inequality for every r > 1 and again by
the monotone convergence theorem we arrive at

E (Vt) = E (XtYt) ≥ E
(
X
− 1
r−1

t

)−(r−1)

E
(
Y

1
r
t

)r
t→∞−−−→

(
2b

ασ2

)− 2
αr Γ

(
µ+ 2

αr

)
Γ (µ)

r

.

Since this holds for every r > 1 we have proven that

lim
t→∞

E (Vt) =

(
2b

ασ2

)− 2
α Γ

(
µ+ 2

α

)
Γ (µ)

.

The fact that
lim
t→∞

VS (t) = lim
t→∞

E (Vt)

is an immediate consequence of L’Hôpital’s rule.
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Remark 4.6. Note that the proof of proposition 4.5 stays valid if we replace Xt and Yt with
Xγ
t and Y γ

t respectively for every γ > 0. We have therefore proven

Corollary 4.7. For a > 0 and γ > 0 there holds

lim
t→∞

E (V γ
t ) =

(
2b

ασ2

)− 2γ
α Γ

(
µ+ 2γ

α

)
Γ (µ)

with µ = 2a
ασ2 .

Remark 4.8. For simplicity note that with α = 1 we have

lim
t→∞

E (Vt) = lim
t→∞

VS (t) =

(
2b

σ2

)−2
Γ (µ+ 2)

Γ (µ)
=

(
σ2

2b

)2
2a

σ2

(
2a

σ2
+ 1

)
,

and in the case α = 2

lim
t→∞

E (Vt) = lim
t→∞

VS (t) =

(
b

σ2

)−1
Γ (µ+ 1)

Γ (µ)
=
a

b
.

Proposition 4.9. For a < 0 and γ > 0 there holds

V γ
t

a.s.−−→ 0,

as t→∞. If moreover a < −σ2γ then

lim
t→∞

E (V γ
t ) = 0.

Proof. Note that by the law of large numbers we have

lim
t→∞

at+ σBt = −∞

therefore
V0e2at+2σBt a.s.−−→ 0

and since
1(

1 + αbV
α
2

0

∫ t
0

exp (α (as+ σBs)) ds
) 2
α

≤ 1,

we have proven the first assertion.
The second assertion follows immediately from the fact that

E (V γ
t ) ≤ E

(
V γ

0 e2aγt+2σγBt
)

= V γ
0 e2aγt+ 4σ2γ2

2
t.
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Figure 3: Long term behaviour of t 7→ E (Vt) with initial instantaneous variance V0 of 20%
and model parameters given by a = 0.8, b = 0.4, α = 1.2 and σ = 1. The exact expectation
was calculated via simulation.
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Figure 4: Long term behaviour of t 7→ VS (t) with initial instantaneous variance V0 of 20%
and model parameters given by a = 0.8, b = 0.4, α = 1.2 and σ = 1. The exact price was
calculated via simulation.

4.10 Deterministic Volatility

An original result of this thesis concerning the case of deterministic volatility is the following
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Proposition 4.11. In the α-hypergeometric model with σ = 0 and a 6= 0 the log volatility v
is given by

vt = v0 + at− 1

α
ln

(
1 + αb

∫ t

0

exp (α (v0 + as)) ds

)
= v0 + at− 1

α
ln

(
1 +

beαv0

a

(
eαat − 1

))
.

Furthermore the value at time t of a European call with maturity T and strike K of the asset
S is given by BS (St,Σt, t), where

BS (x, σ, t) = xΦ
(
d+

( x
K
, T − t

))
−KΦ

(
d−

( x
K
, T − t

))
,

with

d± (y, u) =
1√
σ2u

ln (y)±
√
σ2u

2

and

Σt
2 =

1

T − t

∫ T

t

e2vsds

=
e2v0 ĉb̂

(T − t) â

(
eâT 2F1

([
−b̂, â

f̂

] [
â

f̂
+ 1

]
,− d̂ef̂T

ĉ

)
− eât2F1

([
−b̂, â

f̂

] [
â

f̂
+ 1

]
,− d̂ef̂ t

ĉ

))
with constants â, b̂, ĉ, d̂ and f̂ given by

â = 2a b̂ = − 2

α
ĉ = 1− beαv0

a
d̂ =

beαv0

a
f̂ = αa.

Proof. The first assertion follows immediately from (4) with σ = 0 and elementary integra-
tion. The second assertion follows from theorem 7.1 and 7.3, therefore we are left with the
explicit computation of Σt. Using lemma 3.1 we arrive at

Σt
2 =

1

T − t

∫ T

t

e2vsds

=
e2v0

T − t

∫ T

t

e2at

(
1 +

beαv0

a
(eαas − 1)

)− 2
α

ds

=
e2v0

T − t

∫ T

t

e2as

(
1− beαv0

a
+
beαv0

a
eαas

)− 2
α

ds

=
e2v0

T − t

∫ T

t

eâs
(
ĉ+ d̂ef̂s

)b̂
ds

=
e2v0 ĉb̂

(T − t) â

(
eâT 2F1

([
−b̂, â

f̂

] [
â

f̂
+ 1

]
,− d̂ef̂T

ĉ

)
− eât2F1

([
−b̂, â

f̂

] [
â

f̂
+ 1

]
,− d̂ef̂ t

ĉ

))

which concludes the proof.
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Remark 4.12. Proposition 4.11 enables us to explicitly calculate the value of a European
call option in terms of hypergeometric functions. Note that for efficient computations it is
however necessary to calculate 2F1 in a fast and efficient manner. As an alternative solution
one can still approximate the integral representations of Σ2

t .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

t

E
(

(S
t
−

K
)+
)

 

 

σ=0.1

deterministic

Figure 5: Plot of price of a European call option with σ = 0.1 in red and approximation
with deterministic volatility. The exact expectation was calculated via simulation.

4.13 Large deviation problems

In the following we are going to derive certain large deviation problems associated with
the α-hypergeometric volatility model. We follow the ideas of [Forde and Jacquier, 2011].
They derived a small-time behaviour of the log forward for quite general stochastic volatility
models using Freidlin-Wentzell theory. Applying theorem 1.1 in [Forde and Jacquier, 2011]
directly was however not possible but we were able to derive a small-time behaviour in the
uncorrelated model by following the ideas of their proof. We also derived a result concerning
the small-time behaviour of the log forward in the correlated model. We heavily use the
results of section 2.2.1 in [Peithmann, 2007] in order to derive the necessary LDPs. These
results are original results of this thesis.

Theorem 4.14. In the α-hypergeometric model with ρ = 0 we have the small-time behaviour

− lim
t→0

t ln (P (Xt ≥ x1)) =
1

2σ2
arccosh

(√
σ2x2

1 + y2
0

y0

)2

for the log forward price Xt = ln (St) and for x1 > 0 where y0 = ev0.
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Proof. First we consider the dynamics of Xt = ln (St) and Yt = evt which are given by

dXt = −1

2
Y 2
t dt+ YtdWt,

dYt = Yt

(
a+

σ2

2
− bY α

t

)
dt+ σYtdBt.

Consider now the time changed processes Xε
t := Xεt and Y ε

t := Yεt which then satisfy the
SDEs

dXε
t = −ε1

2
Y ε2
t dt+

√
εY ε

t dWt,

dY ε
t = εY ε

t

(
a+

σ2

2
− bY εα

t

)
dt+

√
εσY ε

t dBt.

Since the assumptions 2.6 in [Peithmann, 2007] are satisfied we know that (Xε
t , Y

ε
t )t∈[0,1]

satisfies a LDP on the pathspace H1
(0,y0) ([0, 1] ;R2) with rate function I given by

I (x, y) =
1

2

∫ 1

0

ẋ (t)

y2 (t)
+

ẏ (t)

σ2y2 (t)
dt.

See theorem 2.9 in [Peithmann, 2007]. Now by the contraction principle applied to the point
evaluation (Xε

t )t∈[0,1] 7→ Xε
1 , we know that Xε

1 and therefore Xε satisfies a small-time LDP
with corresponding rate function given by

ι (x1) = inf
(x,y)∈H1

(0,y0)
([0,1];R2),

x(1)=x1

1

2

∫ 1

0

ẋ

y2
+

ẏ

σ2y2
dt.

Note that the above minimization problem is a well known problem in differential geometry.
It is just the minimization of the energy functional on the Riemannian manifold H2 :=
{(x, y) ∈ R2 : y > 0} with the Riemannian metric g given by

g =

( 1
y2

0

0 1
σ2y2

)
.

Since the space H2 is geodesically complete we just need to solve the geodesic equations. We
introduce the functional ι̂ given by

ι̂ (x1, y1) = inf
(x,y)∈H1

(0,y0)
([0,1];R2),

x(1)=x1,y(1)=y1

1

2

∫ 1

0

ẋ

y2
+

ẏ

σ2y2
dt

We just have to find the geodesics connecting the points (0, y0) , (x1, y1) ∈ H2. In order to
derive the geodesic equations we need the corresponding non-zero Christoffel symbols which
are given by

Γ1
12 = Γ1

21 = −1

y
, Γ2

11 =
σ2

y
, Γ2

22 = −1

y
.
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The geodesic equations are hence given by

ẍy = 2ẋẏ,

ÿy = ẏ2 − σ2ẋ2.

One can easily verify that the general solutions are given by

x : t 7→ a tanh (bt+ c) + d, (10)

y : t 7→ aσ

cosh (bt+ c)
, (11)

with a, b, c, d ∈ R chosen according to the initial and final conditions x (0) = x0, x (1) =
x1, y (0) = y0 and y (1) = y1. Simple calculations then show that

1

2

∫ 1

0

ẋ

y2
+

ẏ

σ2y2
dt =

1

2

b2

σ2

for x, y given by (10) and (11). Solving for the constants a, b, c and d one can calculate that
b is given by

ln

σ2 (x0 − x1)2 + y2
0 + y2

1 +
√(

σ2 (x0 − x1)2 + (y0 + y1)2) (σ2 (x0 − x1)2 + (y0 − y1)2)
2y0y1

 ,

which can be simplified, using the identity arccosh (x) = ln
(
x+
√
x2 − 1

)
, to

b = arccosh

(
1 +

σ2 (x0 − x1)2 + (y0 − y1)2

2y0y1

)
.

Hence we have

ι̂ (x1, y1) =
1

2σ2
arccosh

(
1 +

σ2x2
1 + (y0 − y1)2

2y0y1

)2

.

In the case of x1 = 0 we simply arrive at

ι (x1) = inf
y1>0

ι̂ (x1, y1) = 0.

In the case of x1 6= 0 simple calculations show that

ι (x1) = inf
y1>0

ι̂ (x1, y1) = ι̂

(
x1,
√
σ2x2

1 + y2
0

)
=

1

2σ2
arccosh

(√
σ2x2

1 + y2
0

y0

)2

.

Since ι is continuous we have proven the assertion.
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Remark 4.15. The space H2 from the proof of theorem 4.14 is known as the hyperbolic
half-plane or Poincarè half-plane.

Corollary 4.16. In the uncorrelated α-hypergeometric model we have the following small-
time behaviour for out-of-the-money put/call options on St

− lim
t→0

t ln
(
E (St −K)+) =

1

2σ2
arccosh


√
σ2 ln (K)2 + y2

0

y0

2

(K > 1) ,

− lim
t→0

t ln
(
E (K − St)+) =

1

2σ2
arccosh


√
σ2 ln (K)2 + y2

0

y0

2

(K < 1) ,

with y0 = ev0.

Proof. Simply apply corollary 1.2 in [Forde and Jacquier, 2011].

A simple use of the put-call parity immediately yields

Corollary 4.17. In the uncorrelated α-hypergeometric model1 for K > 0 we have the fol-
lowing small-time behaviour

− lim
t→0

t ln
(
E (St −K)+ − (1−K)+) = − lim

t→0
t ln
(
E (K − St)+ − (K − 1)+)

=
1

2σ2
arccosh


√
σ2 ln (K)2 + y2

0

y0

2

with y0 = ev0.

Corollary 4.18. In the uncorrelated α-hypergeometric model we have the following asymp-
totic behaviour for the implied volatility σt (x) of a European call option on St = eXt , with
strike K = ex, as t→ 0

I (x) = lim
t→0

σt (x) =
x

1
σ

arccosh

(√
σ2x2+y20
y0

)
with y0 = ev0.

Proof. Simply apply corollary 1.4 in [Forde and Jacquier, 2011].
1note that S0 = 1.
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Figure 6: Plot of K 7→ −t ln
(
E (St −K)+) for different values of t with initial instantaneous

variance V0 of 20% and model parameters given by a = 3, b = 0.4, α = 1, σ = 5 and ρ = 0.
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Figure 7: Plot of x 7→ σt (x) for different values of t with initial instantaneous variance V0 of
20% and model parameters given by a = 3, b = 0.4, α = 1, σ = 5 and ρ = 0.

Remark 4.19. A natural question to ask is whether theorem 4.14 can be generalized to the
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case ρ 6= 0. In order to follow the proof directly we first rewrite the SDEs as

dXt = −1

2
Y 2
t dt+ ρYtdBt + ρYtdB

⊥
t ,

dYt = Yt

(
a+

σ2

2
− bY α

t

)
dt+ σYtdBt.

by introducing the standard Brownian motion
(
Bt, B

⊥
t

)
t≥0

and ρ =
√

1− ρ2. One then
arrives at the Riemannian metric

g =

(
1

ρ2y2
− ρ
σρ2y2

− ρ
σρ2y2

1
σ2ρ2y2

)
.

Explicitly calculating the corresponding geodesics was however not possible.

Another approach for generalizing theorem 4.14 led to

Theorem 4.20. In the α-hypergeometric model we have the small-time behaviour

− lim
t→0

t ln (P (Xt ≥ x1)) =
1

2σ2
arccosh

(
1 +

σ2

ρ2

(
x1 − ρ

σ
(y?1 − y0)

)2
+ (y0 − y?1)2

2y0y?1

)2

where y?1 is give by

y?1 =

√
(σx1 + ρy0)2 + ρ2y2

0,

for the log forward price Xt = ln (St) and for x1 > 0 where y0 = ev0.

Proof. Analogously to the proof of theorem 4.14 and with the functions

µ1 (y) := −1

2
y2,

µ2 (y) := y

(
a+

σ2

2
− byα

)
we write the SDEs as

dXt = µ1 (Yt) dt+ ρYtdBt + ρYtdB
⊥
t ,

dYt = µ2 (Yt) dt+ σYtdBt,

which we can also rewrite as

dXt = µ1 (Yt) dt+ ρYtdBt + dZt,

dYt = µ2 (Yt) dt+ σYtdBt,

dZt = ρYtdB
⊥
t .
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Now the processes Xε
t := Xεt, Y ε

t := Yεt and Zε
t := Zεt satisfy the SDEs

dXε
t = εµ1 (Y ε

t ) dt+
√
ερY ε

t dBt + dZε
t ,

dY ε
t = εµ2 (Y ε

t ) dt+
√
εσY ε

t dBt,

dZε
t =
√
ερY ε

t dB
⊥
t .

Again by theorem 2.9 in [Peithmann, 2007] we know that (Zε
t , Y

ε
t )t∈[0,1] satisfies a LDP on

the pathspace H1
(0,y0) ([0, 1] ;R2) with rate function I given by

I (z, y) =
1

2

∫ 1

0

ż (t)

ρ2y2 (t)
+

ẏ (t)

σ2y2 (t)
dt.

In fact we know that the processes Xε, Y ε and Zε are exponentially equivalent to the pro-
cesses X̃ε, Ỹ ε and Z̃ε given by

dX̃ε
t =
√
ερỸ ε

t dBt + dZ̃ε
t ,

dỸ ε
t =
√
εσỸ ε

t dBt,

dZ̃ε
t =
√
ερỸ ε

t dB
⊥
t ,

See theorem 2.7 and theorem 2.9 in [Peithmann, 2007]. Now note that

Xε
t =
√
ε

∫ t

0

ρY ε
t dBt + Zε

t

=
ρ

σ
(Y ε

t − y0) + Zε
t .

Now using the contraction principle with the continuous function

(Zε
t , Y

ε
t )t∈[0,1] 7→

(ρ
σ

(Y ε
t − y0) + Zε

t

)
t∈[0,1]

=
(
X̃ε
t

)
t∈[0,1]

we know that
(
X̃ε
t

)
t∈[0,1]

satisfies a small-time LDP with corresponding rate function given

by
Ĩ (x) = inf

(z,y)∈H1
(0,y0)

([0,1];R2),
x= ρ

σ
(y−y0)+z

I (z, y) .

Analogously Xε
1 satisfies a LDP with rate function ι defined as

ι (x1) = inf
x∈H1

0 ([0,1];R),
x(1)=x1

Ĩ (x)

= inf
x∈H1

0 ([0,1];R),
x(1)=x1

 inf
(z,y)∈H1

(0,y0)
([0,1];R2),

x= ρ
σ

(y−y0)+z

I (z, y)

 .
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Now ι satisfies the following trivial inequalities

ι (x1) = inf
x∈H1

0 ([0,1];R),
x(1)=x1

 inf
(z,y)∈H1

(0,y0)
([0,1];R2),

x= ρ
σ

(y−y0)+z

I (z, y)


≥ inf

x∈H1
0 ([0,1];R),

x(1)=x1

 inf
(z,y)∈H1

(0,y0)
([0,1];R2),

x(1)= ρ
σ

(y(1)−y0)+z(1)

I (z, y)


≥ inf

(z,y)∈H1
(0,y0)

([0,1];R2),
x1= ρ

σ
(y(1)−y0)+z(1)

I (z, y)

= inf
z1,y1,

x1= ρ
σ

(y1−y0)+z1

 inf
(z,y)∈H1

(0,y0)
([0,1];R2),

z(1)=z1,y(1)=y1

I (z, y)

 .

(12)

Note that we are already able to calculate the right hand side as in the proof of theorem
4.14. We have

inf
(z,y)∈H1

(0,y0)
([0,1];R2),

z(1)=z1,y(1)=y1

I (z, y) =
1

2σ2
arccosh

(
1 +

σ2

ρ2
z2

1 + (y0 − y1)2

2y0y1

)2

and the infimum is attained at the corresponding geodesics. Therefore the inequalities in
(12) are actually equalities, because we can just choose x to be the linear combination of
these geodesics. We arrive at

ι (x1) = inf
z1,y1,

x1= ρ
σ

(y1−y0)+z1

1

2σ2
arccosh

(
1 +

σ2

ρ2
z2

1 + (y0 − y1)2

2y0y1

)2

= inf
y1≥0

1

2σ2
arccosh

(
1 +

σ2

ρ2

(
x1 − ρ

σ
(y1 − y0)

)2
+ (y0 − y1)2

2y0y1

)2

.

An elementary calculation shows that the above infimum is attained at

y?1 :=

√
(σx1 + ρy0)2 + ρ2y2

0,

which proves the assertion.

Note that we can now derive the same results obtained in corollaries 4.16, 4.17 and 4.18
in the case of the correlated model. We therefore obtain the following corollaries.
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Corollary 4.21. In the α-hypergeometric model we have the following small-time behaviour
for out-of-the-money put/call options on St

− lim
t→0

t ln
(
E (St −K)+) =

1

2σ2
arccosh

(
1 +

σ2

ρ2

(
ln (K)− ρ

σ
(y?1 − y0)

)2
+ (y0 − y?1)2

2y0y?1

)2

,

− lim
t→0

t ln
(
E (K − St)+) =

1

2σ2
arccosh

(
1 +

σ2

ρ2

(
ln (K)− ρ

σ
(y?1 − y0)

)2
+ (y0 − y?1)2

2y0y?1

)2

,

where y?1 is give by

y?1 =

√
(σ ln (K) + ρy0)2 + ρ2y2

0,

with y0 = ev0.

Corollary 4.22. In the α-hypergeometric model2 for K > 0 we have the following small-time
behaviour

− lim
t→0

t ln
(
E (St −K)+ − (1−K)+)

= − lim
t→0

t ln
(
E (K − St)+ − (K − 1)+)

=
1

2σ2
arccosh

(
1 +

σ2

ρ2

(
ln (K)− ρ

σ
(y?1 − y0)

)2
+ (y0 − y?1)2

2y0y?1

)2

,

where y?1 is give by

y?1 =

√
(σ ln (K) + ρy0)2 + ρ2y2

0,

with y0 = ev0.

Corollary 4.23. In the α-hypergeometric model we have the following asymptotic behaviour
for the implied volatility σt (x) of a European call option on St = eXt , with strike K = ex,
as t→ 0

I (x) = lim
t→0

σt (x) =
x

1
σ

arccosh

(
1 +

σ2

ρ2
(x− ρσ (y?1−y0))

2
+(y0−y?1)

2

2y0y?1

)
where y?1 is give by

y?1 =

√
(σx+ ρy0)2 + ρ2y2

0,

with y0 = ev0.
2note again that S0 = 1.
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(a) ρ = −0.5
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(b) ρ = 0.5

Figure 8: Plot of K 7→ −t ln
(
E (St −K)+) for different values of t with initial instantaneous

variance V0 of 20% and model parameters given by a = 3, b = 0.4, α = 1, σ = 5 and different
correlations ρ.
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(a) ρ = −0.5
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(b) ρ = 0.5

Figure 9: Plot of x 7→ σt (x) for different values of t with initial instantaneous variance V0 of
20% and model parameters given by a = 3, b = 0.4, α = 1, σ = 5 and different correlations
ρ.
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5 Transforms of the driving processes

Before we are able to start pricing plain vanilla options under the α-hypergeometric model
we need to compute certain transforms of v. We follow the reasoning of [Da Fonseca and
Martini, 2014].

5.1 Transforms of v

Proposition 5.2. In the 1-hypergeometric model with θ > 0 and λ > θ2

2σ2 + aθ the Laplace
transform in time of the moment transform of v is given by∫ ∞

0

e−λtE
(
eθvt
)
dt =

1

σ2
exp

(
− a

σ2
v0 +

b

σ2
ev0
)

(J1 + J2) .

With

J1 = 2
Γ (a1 − 1)

Γ (b1)
e−

z0
2 zη0U (a1 − 1, b1; z0) (2ν2)−θ−

a
σ2 I1,

J2 = 2
Γ (a1 − 1)

Γ (b1)
e−

z0
2 zη0M (a1 − 1, b1; z0) (2ν2)−θ−

a
σ2 I2,

I1 =
zb1−a1+θ

0

b1 − a1 + θ
2F2 ([b1 − a1 + 1, b1 − a1 + θ] [b1 − a1 + θ + 1, b1] ,−z0) ,

I2 =
Γ (b1 − a1 + θ) Γ (θ − a1 + 1)

Γ (θ)

− zθ−a1+1
0

Γ (b1 − 1) 2F2 ([2− a1, 1 + θ − a1] [2− b1, 2 + θ − a1] ,−z0)

Γ (a1 − 1) (1 + θ − a1)

− zθ−a1+b1
0

Γ (1− b1) 2F2 ([1− a1 + b1, θ − a1 + b1] [b1, 1 + θ − a1 + b1] ,−z0)

Γ (a1 − b1) (θ − a1 + b1)

where a1 − 1 = η − a
σ2 , b1 = 1 + 2η, ν2 = b

σ2 , z0 = 2ν2ev0 and η2 = a2

σ4 + 2λ
σ2 .

Proof. Let

B̃s := Bs +

∫ s

0

a− bevu
σ

du (13)

and let P̃t, given by the Girsanov theorem, denote the probability measure under which(
B̃s

)
0≤s≤t

is a Brownian motion. The density is therefore given by

dP̃t

dP
= E

(
−
∫ ·

0

a− bevu
σ

dBu

)
t

= exp

(
−
∫ t

0

a− bevu
σ

dBu −
1

2

∫ t

0

(
a− bevu

σ

)2

du

)
.
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The new dynamics under P̃t are therefore given by

dvt = σdB̃t,

devt =
σ2

2
evtdt+ σevtdB̃t

and in integrated version

vt − v0 = σB̃t, (14)

evt − ev0 =
σ2

2

∫ t

0

evsds+ σ

∫ t

0

evsdB̃s. (15)

Performing this measure change and using (13), (14) and (15) we arrive at

EP (eθvt) = EP̃t
(

exp

(
θvt +

∫ t

0

a− bevs
σ

dBs +
1

2

∫ t

0

(
a− bevs

σ

)2

ds

))

= EP̃t
(

exp

(
θvt +

∫ t

0

a− bevs
σ

dB̃s −
1

2

∫ t

0

(
a− bevs

σ

)2

ds

))

= EP̃t
(

exp

(
θvt +

a

σ
B̃t −

b

σ

∫ t

0

evsdB̃s −
1

2σ2

∫ t

0

(
a2 − 2abevs + b2e2vs

)
ds

))
= EP̃t

(
exp

(
θvt +

a

σ2
vt −

a

σ2
v0 −

b

σ2

(
evs − ev0 − σ2

2

∫ t

0

evsds

)
− a

2t

2σ2
+
ab

σ2

∫ t

0

evsds− b2

2σ2

∫ t

0

e2vsds

))
= exp

(
− a

σ2
v0 +

b

σ2
ev0 − a2t

2σ2

)
· EP̃t

(
exp

(
−
∫ t

0

β2
2

2
e2vs − β1evsds

)
exp

((
θ +

a

σ2

)
vt −

b

σ2
evt
))

with

β1 =
ab

σ2
+
b

2
, β2

2 =
b2

σ2
.

With the Feynman-Kac formula we arrive at the following PDE for the above expectation

Ft =
σ2

2
Fvv −

β2
2

2
e2vF + β1evF,

F (0, v) = exp

((
θ +

a

σ2

)
v − b

σ2
ev
)
.

(16)

This enables us to calculate the moment generating function via

EP (eθvt) = exp

(
− a

σ2
v0 +

b

σ2
ev0 − a2t

2σ2

)
F (t, v0) .
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The function
g (t, v) = F

(
t

σ2
, v

)
then obviously satisfies the PDE

gt = −Hg,

g (0, v) = exp

((
θ +

a

σ2

)
v − b

σ2
ev
)
,

(17)

where, following the proof of theorem 8.1 in [Matsumoto and Yor, 2005a],H is the Schrödinger
operator with Morse potential given by

H = −1

2

d2

dv2
+
ν2

2

2
e2v − ν1ev

with

ν1 =
β1

σ2
, ν2

2 =
β2

2

σ2
.

Let q (t, v, y) be the transition density associated to the semigroup generated by H. We can
calculate F via

F (t, v) = g
(
σ2t, v

)
=

∫ ∞
−∞

q
(
σ2t, v0, y

)
F (0, y) dy.

The associated Green functionG satisfies, withMκ,µ andWκ,µ being the Whittaker functions,

G

(
v, y,

η2

2

)
=

∫ ∞
0

e−
η2

2
tq (t, v, y) dy

=
Γ
(
η − ν1

ν2
+ 1

2

)
ν2Γ (1 + 2η)

e−
v+y
2 W ν1

ν2
,η

(
2ν2emax(v,y)

)
M ν1

ν2
,η

(
2ν2emin(v,y)

)
,

for η ≥ 0, where if ν1
ν2

> 0 one has to ensure that η > ν1
ν2
− 1

2
. Therefore by Laplace

transforming the moment generating function in time we arrive at∫ ∞
0

e−λtEP (eθvt) dt = exp

(
− a

σ2
v0 +

b

σ2
ev0
)∫ ∞

0

exp

(
−
(
a2

σ2
+ 2λ

)
t

2

)
F (t, v0) dt

= exp

(
− a

σ2
v0 +

b

σ2
ev0
)

·
∫ ∞

0

∫ ∞
−∞

exp

(
−
(
a2

σ2
+ 2λ

)
t

2

)
q
(
σ2t, v0, y

)
F (0, y) dydt

=
1

σ2
exp

(
− a

σ2
v0 +

b

σ2
ev0
)

·
∫ ∞

0

∫ ∞
−∞

exp

(
−
(
a2

σ4
+

2λ

σ2

)
t

2

)
q (t, v0, y)F (0, y) dydt.
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Now let η2 := a2

σ4 + 2λ
σ2 . Since ν1

ν2
= a

σ2 + 1
2
this choice is convenient in the sense that η > ν1

ν2
− 1

2

is always satisfied. With Fubini’s theorem the above can be rewritten as∫ ∞
0

e−λtEP (eθvt) dt =
1

σ2
exp

(
− a

σ2
v0 +

b

σ2
ev0
)∫ ∞

−∞
G

(
v0, y,

η2

2

)
F (0, y) dy.

In order to calculate the integral on the right hand side we plug in the Green function and
split up the integral such that∫ ∞

−∞
G

(
v0, y,

η2

2

)
F (0, y) dy = J1 + J2,

where

J1 :=
Γ
(
η − ν1

ν2
+ 1

2

)
ν2Γ (1 + 2η)

e−
v0
2 W ν1

ν2
,η (2ν2ev0)

∫ v0

−∞
e−

y
2M ν1

ν2
,η (2ν2ey)F (0, y) dy,

J2 :=
Γ
(
η − ν1

ν2
+ 1

2

)
ν2Γ (1 + 2η)

e−
v0
2 M ν1

ν2
,η (2ν2ev0)

∫ ∞
v0

e−
y
2W ν1

ν2
,η (2ν2ey)F (0, y) dy.

As a reminder the Whittaker functions and the confluent hypergeometric functions are re-
lated via

Mκ,µ (z) = e−
z
2 z

1
2

+µM

(
1

2
+ µ− κ, 1 + 2µ; z

)
,

Wκ,µ (z) = e−
z
2 z

1
2

+µU

(
1

2
+ µ− κ, 1 + 2µ; z

)
.

Plugging in the definition of the Whittaker functions and the initial conditions and using
the change of variables z = 2ν2ey we can write J1 and J2 as

J1 =
Γ
(
η − ν1

ν2
+ 1

2

)
ν2Γ (1 + 2η)

e−
v0
2 W ν1

ν2
,η (2ν2ev0) (2ν2)

1
2
−θ− a

σ2

·
∫ z0

0

zη−1+θ+ a
σ2 e−zM

(
η − a

σ2
, 1 + 2η; z

)
dz,

J2 =
Γ
(
η − ν1

ν2
+ 1

2

)
ν2Γ (1 + 2η)

e−
v0
2 M ν1

ν2
,η (2ν2ev0) (2ν2)

1
2
−θ− a

σ2

·
∫ ∞
z0

zη−1+θ+ a
σ2 e−zU

(
η − a

σ2
, 1 + 2η; z

)
dz.
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Now let a1 − 1 = η − a
σ2 and b1 = 1 + 2η. We can therefore rewrite J1 and J2 as

J1 = 2
Γ (a1 − 1)

Γ (b1)
e−

z0
2 zη0U (a1 − 1, b1; z0) (2ν2)−θ−

a
σ2

·
∫ z0

0

zb1−a1+θ−1e−zM (a1 − 1, b1; z) dz︸ ︷︷ ︸
=:I1

J2 = 2
Γ (a1 − 1)

Γ (b1)
e−

z0
2 zη0M (a1 − 1, b1; z0) (2ν2)−θ−

a
σ2

·
∫ ∞
z0

zb1−a1+θ−1e−zU (a1 − 1, b1; z) dz︸ ︷︷ ︸
=:I2

.

Note that b1 − a1 + θ − 1 > −1. Now for the integral I1 there holds

I1 =

∫ z0

0

zb1−a1+θ−1e−zM (a1 − 1, b1; z) dz

(1)
=

∫ z0

0

zb1−a1+θ−1M (b1 − a1 + 1, b1;−z) dz

(2)
=

∞∑
n=0

(b1 − a1 + 1)n
(b1)n n!

(−1)n
∫ z0

0

zb1−a1+θ−1+ndz

=
∞∑
n=0

(b1 − a1 + 1)n
(b1 − a1 + θ + n) (b1)n n!

(−1)n zb1−a1+θ+n
0

(3)
=

zb1−a1+θ
0

b1 − a1 + θ

∞∑
n=0

(b1 − a1 + 1)n (b1 − a1 + θ)n
(b1 − a1 + θ + 1)n (b1)n n!

(−1)n zn0

(4)
=

zb1−a1+θ
0

b1 − a1 + θ
2F2 ([b1 − a1 + 1, b1 − a1 + θ] [b1 − a1 + θ + 1, b1] ,−z0) .

In the above calculations equality (1) holds because of Kummer’s transformation

e−zM (a1 − 1, b1; z) = M (b1 − a1 + 1, b1;−z) ,

see equation 13.2.39 in [DLMF]. Equality (2) is justified since M can be written as a pow-
erseries with infinite radius of convergence and therefore it converges uniformly on compact
sets, especially on the interval [0, z0]. Therefore we can interchange the integral with the
sum. Equality (3) follows from the fact that

b1 − a1 + θ + n =
(b1 − a1 + θ + 1)n (b1 − a1 + θ)

(b1 − a1 + θ)n

and equality (4) is just the definition of 2F2.
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Now we are going to calculate the integral I2. First of all by the Mellin–Barnes integral
representation of U, see equation 13.4.18 in [DLMF], the integrand can be written as

zb1−a1+θ−1e−zU (a1 − 1, b1; z) =
1

2πi

∫ +i∞

−i∞

Γ (b1 − 1 + t) Γ (t)

Γ (a1 − 1 + t)
zθ−a1−tdt,

where the contour of the integral passes all the poles of t 7→ Γ (b1 − 1 + t) Γ (t) on the right
hand side. This formula holds in fact for all complex z with arg (z) ≤ π

2
therefore especially

in our case. Furthermore note that b1−1 > 0 and we are therefore able to choose the contour
arbitrary close but on the right of the imaginary line. When calculating I2 we are going to
interchange the integrals, which is valid by Fubini’s theorem as long as θ−a1−Re (t)+1 < 0.
Since we have already seen that we can choose Re (t) to be arbitrarily small, it suffices to
ensure that θ − a1 + 1 < 0, which in turn can be done by choosing λ large enough. In fact
recalling that

a1 − 1 = η − a

σ2
=

√
a2

σ4
+

2λ

σ2
− a

σ2

simple calculations show that λ has to be chosen such that

λ >
θ2

2σ2
+ aθ.

Therefore after applying Fubini’s theorem and solving the inner integral we arrive at

I2 = − 1

2πi

∫ +i∞

−i∞

Γ (b1 − 1 + t) Γ (t)

Γ (a1 − 1 + t) (θ − a1 + 1− t)
zθ−a1+1−t

0 dt

The next step is to apply the residue theorem. Therefore we are going to look at the poles
of the integrand. The corresponding residues can be calculated by elementary properties of
the residue and the gamma function. As a reminder we recall that

Res (Γ,−n) =
(−1)n

n!
, for n ∈ N0.

Now the residues of the integrand of I2 are located and given by

• t = θ − a1 + 1, which is - after the appropriate choice of λ - in the left half-plane and
therefore accounts in the calculations of the residues. The residue is given by

−Γ (b1 − a1 + θ) Γ (θ − a1 + 1)

Γ (θ)
.

• t = −n with n ∈ N0. The residue is given by

Γ (b1 − 1− n)

Γ (a1 − 1− n) (θ − a1 + 1 + n)n!
(−1)n zθ−a1+1+n

0 .
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• t = 1− b1 − n with n ∈ N0. The residue is given by

Γ (1− b1 − n)

Γ (a1 − b1 − n) (θ − a1 + b1 + n)n!
(−1)n zθ−a1+b1+n

0 .

The above holds true if the cases do not coincide. But since we are trying to calculate the
Laplace moment transform, which is in fact a C∞ function in λ and θ, it suffices to know it
except for those special cases which are a zero set anyway. Summing up all the residues we
get

I2 =
Γ (b1 − a1 + θ) Γ (θ − a1 + 1)

Γ (θ)

− zθ−a1+1
0

∞∑
n=0

Γ (b1 − 1− n)

Γ (a1 − 1− n) (θ − a1 + 1 + n)n!
(−1)n zn0︸ ︷︷ ︸

=:H1

− zθ−a1+b1
0

∞∑
n=0

Γ (1− b1 − n)

Γ (a1 − b1 − n) (θ − a1 + b1 + n)n!
(−1)n zn0︸ ︷︷ ︸

=:H2

.

In fact H1 can be further simplified. There holds

H1 =
Γ (b1 − 1) 2F2 ([2− a1, 1 + θ − a1] [2− b1, 2 + θ − a1] ,−z0)

Γ (a1 − 1) (1 + θ − a1)
.

In order to derive this equation we will show that the coefficients of the powerseries expansion
of the right hand side coincides with the coefficients of H1. From the definition of 2F2 and
by multiplying with n! the coefficients are given by

Γ (b1 − 1)

Γ (a1 − 1) (1 + θ − a1)

(2− a1)n (1 + θ − a1)n
(2− b1)n (2 + θ − a1)n

writing out the pochhammer symbols and using elementary properties of the gamma function
this equals

Γ (b1 − 1)

Γ (a1 − 1) (1 + θ − a1)

Γ(2−a1+n)
Γ(2−a1)

Γ(1+θ−a1+n)
Γ(1+θ−a1)

Γ(2−b1+n)
Γ(2−b1)

Γ(2+θ−a1+n)
Γ(2+θ−a1)

=
Γ (b1 − 1)

Γ (a1 − 1) (1 + θ − a1)

Γ (2− a1 + n)

Γ (2− a1)

Γ (1 + θ − a1 + n)

Γ (1 + θ − a1)

Γ (2− b1)

Γ (2− b1 + n)

Γ (2 + θ − a1)

Γ (2 + θ − a1 + n)

=
Γ (b1 − 1)

Γ (a1 − 1)

Γ (2− a1 + n)

Γ (2− a1)

Γ (2− b1)

Γ (2− b1 + n)

1

(1 + θ − a1 + n)
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Since for z ∈ C \ Z there holds

Γ (z) Γ (1− z) =
π

sin (πz)
(18)

one can rewrite the above as

Γ (b1 − 1)

Γ (a1 − 1)

Γ (2− a1 + n)

Γ (2− a1)

Γ (2− b1)

Γ (2− b1 + n)

1

(1 + θ − a1 + n)

=
sin (π (a1 − 1))

sin (π (b1 − 1))

Γ (2− a1 + n)

Γ (2− b1 + n)

1

(1 + θ − a1 + n)

=
sin (π (a1 − 1− n))

sin (π (b1 − 1− n))

Γ (2− a1 + n)

Γ (2− b1 + n)

1

(1 + θ − a1 + n)
.

Note that the last equation is valid even tough the sine function is 2π periodic. Now using
again equation (18) yields the assertion. Analogously one can verify that

H2 =
Γ (1− b1) 2F2 ([1− a1 + b1, θ − a1 + b1] [b1, 1 + θ − a1 + b1] ,−z0)

Γ (a1 − b1) (θ − a1 + b1)
.

Together with remark 2.2 one immediately gets

Theorem 5.3. In the α-hypergeometric model the Laplace moment transform of v is given
by ∫ ∞

0

e−λtE
(
eθvt
)
dt =

∫ ∞
0

e−λtE
(

e
θ
α
ṽt
)
dt,

where the process ṽ with starting value ṽ0 = αv0 follows the SDE

dṽt =
(
αa− αbeṽt

)
dt+ ασdBt,

which can be calculated using proposition 5.2.

5.4 The variance swap

The expected annualized variance until t is given by

VS (t) =
1

t
E
(∫ t

0

e2vsds

)
=

1

t

∫ t

0

E
(
e2vs
)
ds.

Its Laplace transform is therefore given by∫ ∞
0

e−λttVS (t) dt =
1

λ

∫ ∞
0

e−λtE
(
e2vt
)
dt.

Note that we are already able to calculate the above right hand side.
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5.5 Transforms of S

In the following we want to compute the Laplace transform in time of the Mellin transform
of the forward S. As seen above for the process v we were able to calculate the Laplace
moment transform for general α > 0, see remark 2.2. The same strategy can however not
be performed when dealing with the forward itself. In the proof of the next theorem we
therefore set α = 1. The interested reader can follow the first part of the proof with general
α > 0 but will soon run into a problem. According to chapter 9 in [Henry-Labordère,
2008] the 1-hypergeometric model lies in the class of solvable stochastic volatility model
which are related to Natanzon superpotentials. Hereafter we will therefore focus on the
1-hypergeometric model. The dynamics are therefore given by

dSt = Ste
vtdWt,

dvt = (a− bevt) dt+ σdBt,

dWtdBt = ρdt.

Theorem 5.6. Let S and v be given by the 1-hypergeometric model with ρσ < b. Furthermore
let θ ∈ (θ?, θ+) where

θ? =
9σ − 16bρ+ 3

√
32b2 + 9σ2 − 32bρσ

2σ (9− 8ρ2)
,

θ+ =
σ − 2bρ+

√
(σ − 2bρ)2 + 4b2 (1− ρ2)

2σ (1− ρ2)

and λ > 0 such that(
a2

σ4
+

2λ

σ2

) 1
2

−
(b− θρσ)

(
a
σ2 + 1

2

)√
(b− θρσ)2 + σ2θ (1− θ)

+
1

2
> 0.

Then the Laplace transform in time of the Mellin transform of S is given by∫ ∞
0

e−λtE
(
Sθt
)
dt =

1

σ2
e−

a
σ2
v0+( b

σ2
− θρ
σ )ev0 (J1 + J2) .

With

J1 = 2
Γ (a2)

Γ (b2)
e−

z0
2 zη0U (a2, b2; z0) (2ν2)−θ−

a
σ2 I1,

J2 = 2
Γ (a2)

Γ (b2)
e−

z0
2 zη0M (a2, b2; z0) (2ν2)−θ−

a
σ2 I2,

where

I1 =
∞∑
n=0

(a2)n
(b2)n n!

in,

45



with in is given by

in = (−δ (θ))−η−
a
σ2
−n γ

(
η +

a

σ2
+ n,−δ (θ) z0

)
,

where γ denotes the lower incomplete gamma function. Alternatively in satisfies the following
recurrence relation

δ (θ) in+1 = z
η+ a

σ2
+n

0 eδ(θ)z0 −
(
η +

a

σ2
+ n
)
in.

Furthermore

I2 =
∞∑
n=0

(−1)n

n!

(
Γ (b2 − 1− n)

Γ (a2 − n)
j (−n) +

Γ (1− b2 − n)

Γ (a2 + 1− b2 − n)
j (1− b2 − n)

)
.

The function j is given by

j : t 7→ ζη−
a
σ2

+tΓ
(
−η +

a

σ2
− t, z0ζ

)
,

where Γ (·, ·) denotes the upper incomplete gamma function and ζ = −1
2
− θρσ−b

2ν2σ2 with a2 =

η− ν1
ν2

+ 1
2
, b2 = 1 + 2η, ν1 = (b−θρσ)

σ2

(
a
σ2 + 1

2

)
, ν2 = 1

σ2

√
(θρσ − b)2 + σ2θ (1− θ), z0 = 2ν2ev0

and η2 = a2

σ4 + 2λ
σ2 .

Proof. Since S is given by a stochastic exponential and by introducing the standard Brownian
motion

(
Bt, B

⊥
t

)
t≥0

we have

E
(
Sθt
)

= E
(

exp

(
θ

∫ t

0

evsdWs −
θ

2

∫ t

0

e2vsds

))
= E

(
exp

(
θρ

∫ t

0

evsdBs + θ
√

1− ρ2

∫ t

0

evsdB⊥s −
θ

2

∫ t

0

e2vsds

))
.

With the sigma algebra Fs := σ (Bu : 0 ≤ u ≤ s) and using elementary properties of the
conditional expectation and Ito integrals we arrive at

E
(
Sθt
)

= E
(

exp

(
θρ

∫ t

0

evsdBs −
θ

2

∫ t

0

e2vsds

)
E
(

exp

(
θ
√

1− ρ2

∫ t

0

evsdB⊥s

)∣∣∣∣Ft))
= E

(
exp

(
θρ

∫ t

0

evsdBs +
θ2 (1− ρ2)− θ

2

∫ t

0

e2vsds

))
.

Now note that by the Ito formula applied to evt we have

σ

∫ t

0

evsdBs = evt − ev0 −
∫ t

0

evs (a− bevs) ds− σ2

2

∫ t

0

evsds.
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Therefore we arrive at3

E
(
Sθt
)

= E
(

exp

(
θρ

∫ t

0

evsdBs +
θ2 (1− ρ2)− θ

2

∫ t

0

e2vsds

))
= E

(
exp

(
θρ

σ

(
evt − ev0 −

∫ t

0

evs (a− bevs) ds− σ2

2

∫ t

0

evsds

)
+
θ2 (1− ρ2)− θ

2

∫ t

0

e2vsds

))
= exp

(
−θρ
σ

ev0
)
E
(

exp

(
θρ

σ
evt − θρ

σ

(
a+

σ2

2

)∫ t

0

evsds

−
θ − θ2 (1− ρ2)− 2θρb

σ

2

∫ t

0

e2vsds

))

= exp (−α0ev0)E
(

exp

(
α0evt + α1

∫ t

0

evsds− α2

2

∫ t

0

e2vsds

))
,

with

α0 =
θρ

σ
, α1 = −θρ

σ

(
a+

σ2

2

)
, α2 = θ − θ2

(
1− ρ2

)
− 2θρb

σ
.

Now as in the proof of proposition 5.2 let

B̃s := Bs +

∫ s

0

a− bevu
σ

du (19)

and let P̃t, given by the Girsanov theorem, denote the probability measure under which(
B̃s

)
0≤s≤t

is a Brownian motion. The density is therefore given by

dP̃t

dP
= E

(
−
∫ ·

0

a− bevu
σ

dBu

)
t

= exp

(
−
∫ t

0

a− bevu
σ

dBu −
1

2

∫ t

0

(
a− bevu

σ

)2

du

)
.

The new dynamics under P̃t are therefore given by

dvt = σdB̃t,

devt =
σ2

2
evtdt+ σevtdB̃t

3Note that this step would lead to another integral term with integrand e(1+α)vs for general α > 0.
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and in integrated version

vt − v0 = σB̃t, (20)

evt − ev0 =
σ2

2

∫ t

0

evsds+ σ

∫ t

0

evsdB̃s. (21)

Performing this measure change and using (19) , (20) and (21) we arrive at4

EP (Sθt ) = e−α0ev0EP̃t
(

exp

(
α0evt + α1

∫ t

0

evsds− α2

2

∫ t

0

e2vsds

+

∫ t

0

a− bevs
σ

dBs +
1

2

∫ t

0

(
a− bevs

σ

)2

ds

))

= e−α0ev0EP̃t
(

exp

(
α0evt + α1

∫ t

0

evsds− α2

2

∫ t

0

e2vsds

+

∫ t

0

a− bevs
σ

dB̃s −
1

2

∫ t

0

(
a− bevs

σ

)2

ds

))

= e−α0ev0EP̃t
(

exp

(
α0evt + α1

∫ t

0

evsds− α2

2

∫ t

0

e2vsds

+
a

σ2
(vt − v0)− b

σ2

(
evt − ev0 − σ2

2

∫ t

0

evsds

)
− a

2t

2σ2
+
ab

σ2

∫ t

0

evsds− b2

2σ2

∫ t

0

e2vsds

))
= e−

a
σ2
v0+( b

σ2
−α0)ev0− a2t

2σ2EP̃t
(

exp

(
a

σ2
vt + β0evt + β1

∫ t

0

evsds− β2
2

2

∫ t

0

e2vsds

))

with

β0 = α0 −
b

σ2
=
θρσ − b
σ2

,

β1 = α1 +
b

2
+

ab

2σ2
= (b− θρσ)

(
a

σ2
+

1

2

)
,

β2
2 = α2 +

b2

σ2
= −θ2

(
1− ρ2

)
+ θ

(
1− 2ρb

σ

)
+
b2

σ2

=
1

σ2

(
(θρσ − b)2 + σ2θ (1− θ)

)
.

Note that in the definition of β2
2 we need to ensure positivity of the right hand side. One of

course could simply calculate the zeros of the right hand side as a function of θ, but since
4Note that these calculations are also valid for general α > 0 but lead to extra integral terms with

integrands of the forms eαvs , e(α+1)vs and e2αvs , which collapse into each other in the case α = 1.
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β2
2 |θ=0 = b2

σ2 > 0 and β2
2 |θ=1 = (ρσ−b)2

σ2 ≥ 0 we have strict positivity at least for θ ∈ [0, 1) and
in the case ρσ 6= b even in an open neighbourhood of the interval [0, 1]. Now let

ν1 =
β1

σ2
, ν2

2 =
β2

2

σ2

and let F (t, v) denote the the above expectation with initial condition

F (0, v) = exp
( a
σ2
v + β0ev

)
.

From now on we follow exactly the proof and notation of theorem 5.2. Again by performing
a Laplace transform in time and with η2 := a2

σ4 + 2λ
σ2 we have∫ ∞

0

e−λtEP (Sθt ) dt =
1

σ2
e−

a
σ2
v0+( b

σ2
−α0)ev0

∫ ∞
−∞

G

(
v0, y,

η2

2

)
F (0, y) dy.

Again we need to ensure that η > ν1
ν2
− 1

2
, which can be done by choosing λ sufficiently large.

Explicitly in terms of model parameters one needs(
a2

σ4
+

2λ

σ2

) 1
2

−
(b− θρσ)

(
a
σ2 + 1

2

)√
(b− θρσ)2 + σ2θ (1− θ)

+
1

2
> 0.

In order to calculate the integral on the right hand side we plug in the Green function and
split up the integral such that∫ ∞

−∞
G

(
v0, y,

η2

2

)
F (0, y) dy = J1 + J2,

again simplifying J1 and J2 leads to

J1 =
Γ
(
η − ν1

ν2
+ 1

2

)
ν2Γ (1 + 2η)

e−
v0
2 W ν1

ν2
,η (2ν2ev0) (2ν2)

1
2
− a
σ2

·
∫ z0

0

zη−1+ a
σ2 e

(
− 1

2
+
β0
2ν2

)
z
M

(
η − ν1

ν2

+
1

2
, 1 + 2η; z

)
dz︸ ︷︷ ︸

=:I1

J2 =
Γ
(
η − ν1

ν2
+ 1

2

)
ν2Γ (1 + 2η)

e−
v0
2 M ν1

ν2
,η (2ν2ev0) (2ν2)

1
2
− a
σ2

·
∫ ∞
z0

zη−1+ a
σ2 e

(
− 1

2
+
β0
2ν2

)
z
U

(
η − ν1

ν2

+
1

2
, 1 + 2η; z

)
dz︸ ︷︷ ︸

=:I2

.

Note the main difference to the proof of theorem 5.2 is the exponential factor given by
δ (θ) := −1

2
+ β0

2ν2
in the above integrals. We will now investigate the function δ a little more.
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Let θ−, θ+ denote the zeros of β2
2 as a function of θ. Simple calculations show that - see

theorem 2.8 -

θ+ =
σ − 2bρ+

√
(σ − 2bρ)2 + 4b2 (1− ρ2)

2σ (1− ρ2)
.

We have already seen that θ− < 0 < 1 < θ+. Since

δ (θ) = −1

2
+

1

2

θρσ − b√
(θρσ − b)2 + σ2θ (1− θ)

we immediately have that δ (1) = −1, since b > ρσ. Simple calculations yield that

sgn (δ′ (θ)) = (ρσ − 2b) θ + b,

which is negative for θ ∈ (1, θ+) and therefore δ is monotonically decreasing for θ ∈ (1, θ+).
Furthermore since δ has a pole at θ+ we have that limθ→θ+ δ (θ) = −∞. Later on we will
need to choose θ in such a way that δ (θ) < −2. Solving δ (θ) = −2 leads to finding the
largest zero of the polynomial

8 (θρσ − b)2 + 9σ2θ (1− θ) ,

which we denote by θ? and is given by

θ? =
9σ − 16bρ+ 3

√
32b2 + 9σ2 − 32bρσ

2σ (9− 8ρ2)
.

First we consider I1. Note that since η + a
σ2 > 0 for all λ > 0 the integral I1 stays finite.

Again, as in the proof of theorem 5.2, by interchanging the integral and the powerseries
expansion of the Kummer function we arrive at

I1 =

∫ z0

0

zη−1+ a
σ2 eδ(θ)zM

(
η − ν1

ν2

+
1

2
, 1 + 2η; z

)
dz

=
∞∑
n=0

(
η − ν1

ν2
+ 1

2

)
n

(1 + 2η)n n!

∫ z0

0

zη−1+ a
σ2

+neδ(θ)zdz︸ ︷︷ ︸
:=in

If δ (θ) < 0 then a simple change of variables leads to

in = (−δ (θ))−η−
a
σ2
−n γ

(
η +

a

σ2
+ n,−δ (θ) z0

)
,

where γ denotes the lower incomplete gamma function. Integration by parts immediately
leads to the recurrence relation

δ (θ) in+1 = z
η+ a

σ2
+n

0 eδ(θ)z0 −
(
η +

a

σ2
+ n
)
in.
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We now consider I2. By equation 13.2.6 in [DLMF] we know that

U (a, b, z) ∼ z−a

as z →∞. Therefore I2 is finite if and only if∫ ∞
z0

z
ν1
ν2

+ a
σ2
− 3

2 eδ(θ)zdz <∞,

which holds if and only if δ (θ) < 0 or δ (θ) = 0 and ν1
ν2

+ a
σ2 <

1
2
. Assuming now δ (θ) < −1

and using the integral representation of U again we have

zη−1+ a
σ2 eδ(θ)zU

(
η − ν1

ν2

+
1

2
, 1 + 2η; z

)
=

1

2πi

∫ i∞

−i∞

Γ (b2 − 1 + t) Γ (t)

Γ (a2 + t)
z−η−1+ a

σ2
−te(δ(θ)+1)zdt,

with a2 = η− ν1
ν2

+ 1
2
and b2 = 1+2η and where the contour of the integral again passes all the

poles of t 7→ Γ (b2 − 1 + t) Γ (t) on the right hand side. As before note that b2 − 1 > 0 and
we are therefore able to choose the contour arbitrary close but on the right of the imaginary
line. By our assumption δ (θ) < −1 we are able to interchange the integrals in I2 because of
Fubini’s theorem. We obtain

I2 =
1

2πi

∫ i∞

−i∞

Γ (b2 − 1 + t) Γ (t)

Γ (a2 + t)

∫ ∞
z0

z−η−1+ a
σ2
−te(δ(θ)+1)zdzdt

=
1

2πi

∫ i∞

−i∞

Γ (b2 − 1 + t) Γ (t)

Γ (a2 + t)
ζη−

a
σ2

+tΓ
(
−η +

a

σ2
− t, z0ζ

)
︸ ︷︷ ︸

=:j(t)

dt,

with ζ = −δ (θ)−1 and Γ (·, ·) denoting the upper incomplete gamma function. Since z0ζ 6= 0
the map a 7→ Γ (a, z0ζ) is an entire function. We conclude that j dose not contribute to any
poles of the integrand. First let us compute the poles and corresponding residues of the
integrand. They are located at:

• t = −n with n ∈ N0. The residue is given by

Γ (b2 − 1− n)

Γ (a2 − n)n!
(−1)n j (−n) .

• t = 1− b2 − n with n ∈ N0. The residue is given by

Γ (1− b2 − n)

Γ (a2 + 1− b2 − n)n!
(−1)n j (1− b2 − n) .

Therefore I2 can be written as

I2 =
∞∑
n=0

(−1)n

n!

(
Γ (b2 − 1− n)

Γ (a2 − n)
j (−n) +

Γ (1− b2 − n)

Γ (a2 + 1− b2 − n)
j (1− b2 − n)

)
.
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To ensure that the residue theorem is applicable we need to check if the integral along the
semi-circle t = reiϕ with ϕ ∈

[
π
2
, 3π

2

]
converges to zero as r → ∞. Therefore we need

certain asymptotics of the gamma function as well as the incomplete gamma functions. As
in [DLMF] equations 8.2.4 and 8.2.5 the normalized incomplete gamma functions are given
by

P (a, z) =
γ (a, z)

Γ (a)
,

Q (a, z) =
Γ (a, z)

Γ (a)

and trivially satisfy

P (a, z) +Q (a, z) = 1.

Therefore the integrand can be written as

Γ (b2 − 1 + t) Γ (t)

Γ (a2 + t)
j (t)

=
Γ (b2 − 1 + t) Γ (t)

Γ (a2 + t)
ζη−

a
σ2

+tΓ
(
−η +

a

σ2
− t, z0ζ

)
=

Γ (b2 − 1 + t) Γ (t) Γ
(
−η + a

σ2 − t
)

Γ (a2 + t)
Q
(
−η +

a

σ2
− t, z0ζ

)
ζη−

a
σ2

+t

=
Γ (b2 − 1 + t) Γ (t) Γ

(
−η + a

σ2 − t
)

Γ (a2 + t)

(
1− P

(
−η +

a

σ2
− t, z0ζ

))
ζη−

a
σ2

+t.

Furthermore since for z ∈ C \ Z there holds

Γ (z) Γ (1− z) =
π

sin (πz)

and because of 8.11.5 in [DLMF] we have

P (a, z) ∼ zae−z

Γ (1 + a)

as a → ∞ with |arg (a)| < π the behaviour of the integrand of I2 - ignoring multiplicative
constants - along the semi-circle as r →∞ is given by the quantities

k1 =
Γ (1− a2 − t) Γ

(
−η + a

σ2 − t
)

Γ (2− b2 − t) Γ (1− t)
sin (π (a2 + t))

sin (π (b2 − 1 + t)) sin (πt)
ζt,

k2 =
Γ (1− a2 − t) Γ

(
−η + a

σ2 − t
)

Γ (2− b2 − t) Γ (1− t) Γ
(
1− η + a

σ2 − t
) sin (π (a2 + t))

sin (π (b2 − 1 + t)) sin (πt)
z−t0 .
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By 5.11.12 in [DLMF] we have for a, b ∈ R

Γ (z + a)

Γ (z + b)
∼ za−b

as z →∞ with |arg (z)| < π. Furthermore, since for ϕ 6= π

lim
r→∞

|sin (π (a+ reiϕ))|2

e2rπ|sin(ϕ)| = lim
r→∞

sin2 (πa+ πr cos (ϕ)) + sinh2 (πr sin (ϕ))

e2rπ|sin(ϕ)| = 1,

there holds ∣∣sin (π (a+ reiϕ
))∣∣ ∼ erπ|sin(ϕ)|

as r →∞. Therefore we have

|k1| ∼ rb2−a2−η+ a
σ2
−2e−rπ|sin(ϕ)|er log(ζ) cos(ϕ).

To ensure that the contour integral along the semi-circle in fact converges to zero we have
to ensure that ζ ≥ 1. Also note if ζ < 1 the contour integral along the semi-circle will not
converge to zero. This is can be see by looking at the contour part where ϕ is sufficiently
close to π, which in turn results in |sin (ϕ)| being close to zero. Then the part er log(ζ) cos(ϕ)

will dominate and the integral will not converge to zero. The fact that ζ ≥ 1 is equivalent
to δ (θ) ≤ −2, which we have already seen to be possible and satisfied for θ ∈ (θ?, θ+). In
order to quantify the behaviour of k2 note that by 5.11.7 in [DLMF] we have

Γ (z + b) ∼
√

2πe−zzz+b−
1
2

for b ∈ C as z →∞ with |arg (z)| < π. Therefore we have∣∣Γ (b− reiϕ)∣∣ ∼ √2πer cos(ϕ)e−r log(r) cos(ϕ)+r(ϕ+π) sin(ϕ)+(b− 1
2) log(r)

as r →∞. Putting all together we have

|k2| ∼

rb2−a2−η+ a
σ2
−2e−rπ|sin(ϕ)|er log(z0) cos(ϕ)

√
2πe−r cos(ϕ)er log(r) cos(ϕ)−r(ϕ+π) sin(ϕ)−( 1

2
−η+ a

σ2
) log(r).

Note that the term er log(r) cos(ϕ) always guaranties that the contour integral along the semi-
circle converges to zero, because of the choice of ϕ. This shows that the residue theorem is
applicable and we therefore conclude the proof.
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6 Pricing vanilla options

Following section 6.7.8 in [Jeanblanc et al., 2009] and section 3.3 in [Da Fonseca and Martini,
2014] we are going to use the method of Mellin transformation to perform option pricing.
Note that the Mellin transform of a call option in the strike can be expressed in terms of the
moments of the forward:∫ ∞

0

E (St −K)+Kθ−2dK =
1

θ (θ − 1)
E
(
Sθt
)

for θ > 1. Applying this to the 1-hypergeometric model and choosing λ and θ as in theorem
5.6 and Laplace transforming the above in time leads to∫ ∞

0

e−λt
∫ ∞

0

E (St −K)+Kθ−2dKdt =
1

θ (θ − 1)

∫ ∞
0

e−λtE
(
Sθt
)
dt︸ ︷︷ ︸

=:g(θ,λ)

,

which can already be calculated. Let L (K,λ) denote the Laplace transform in time of a call
option with strike K, i.e.

L (K,λ) =

∫ ∞
0

e−λtE (St −K)+ dt.

By Fubini’s theorem there holds∫ ∞
0

L (K,λ)Kθ−2dK =
g (θ, λ)

θ (θ − 1)
.

In order to calculate the value of a call option we are going to numerically invert the above
transform. In order to invert the Mellin transform we need the following

Lemma 6.1. For θ ∈ (θ?, θ+) and λ as in theorem 5.6 the function

c 7→ g (θ + ic, λ)

(θ + ic) (θ + ic− 1)

is L1 (R).

Proof. The result follows immediately from∣∣∣∣ g (θ + ic, λ)

(θ + ic) (θ + ic− 1)

∣∣∣∣ ≤
∫∞

0
e−λtE

(∣∣Sθ+ict

∣∣) dt
|(θ + ic) (θ + ic− 1)|

≤
∫∞

0
e−λtE

(
Sθt
)
dt

(θ − 1)2 + c2

and the fact that θ? > 1, see the proof of theorem 5.6.
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Therefore we can obtain L by using Mellin’s inversion formula:

L (K,λ) =

∫
θ+iR

g (τ, λ)

τ (τ − 1)
K−τ+1dτ. (22)

The last step to do is use for example the modified Talbot method to invert the Laplace
transform, see [Dingfelder and Weideman, 2013]. The method to calculate the value of a
call option is as follows: We discretize the integral in (22) with a simple quadrature of size
N ∈ N. Then we calculated g at the necessary points using the results of theorem 5.6. To
calculated the value of the call option we then used the modified Talbot method to invert
L. The valuation of a variance swap was done analogously.
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Using Laplace Inversion
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Figure 10: Plot of t 7→ VS (t) with initial instantaneous variance V0 of 20% and model
parameters given by a = 0.8, b = 0.4, α = 1 and σ = 1. Numerical inversion was performed
using the modified Talbot method.
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7 Appendix

7.1 Black Scholes Formula

Theorem 7.2. The value at time t of a European call with maturity T and strike K of the
asset S with dynamic dSt = StσdWt is given by BS (St, σ, t), where

BS (x, σ, t) = xΦ
(
d+

( x
K
, T − t

))
−KΦ

(
d−

( x
K
, T − t

))
,

with

d± (y, u) =
1√
σ2u

ln (y)±
√
σ2u

2
.

Proof. See theorem 2.3.2.1 in [Jeanblanc et al., 2009].

Theorem 7.3. The value at time t of a European call with maturity T and strike K of the
asset S with dynamic dSt = StσtdWt with a deterministic function σ is given by BS (St,Σt, t),
where

Σ2
t =

1

T − t

∫ T

t

σ2
sds.

Proof. See Exercise 2.3.2.5 in [Jeanblanc et al., 2009].
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