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Chapter 1

Introduction

Complex wave dynamics is one of the cornerstones of modern physics. Ranging from
the description of classical waves like sound waves, water waves and electromag-
netic waves to subatomic particles whose dynamics are governed by the Schrödinger
equation, the treatment of wave scattering is among the most important challenges
in these fields of research. In scattering theory, a general tool for the calculation
of the propagation of wavefronts is the scattering matrix which fully describes the
asymptotics of a scattering process and consists of the transmission and reflec-
tion matrices of each system port. Experimentally, the transmission matrix can be
measured by applying wavefront shaping techniques using spatial light modulators,
antennas or loudspeaker arrays to control the incident field. In optics, these trans-
mission matrix measurements can, for example, be used for focusing light through
or inside a complex scattering medium, or for coupling to the so-called open trans-
mission channels [1, 2]. Recently, these wavefront shaping concepts have also been
successfully applied to multi-mode optical fibers, which could thereby be turned
into microscopes [3], or into optical tweezers for optically trapping and manipulat-
ing of micro-particles [4]. Moreover, it has recently been shown that these fibers
are highly predictable systems with respect to refractive index deviations or fiber
curvatures [5], which may open up new possibilities in the field of optical imaging.

In conventional fibers, the cross section is of circular shape which features regular
dynamics, whereas adding a straight cut, yielding a D-shaped fiber cross section,
results in either completely chaotic, regular or mixed dynamics of classical light
trajectories inside the fiber [6]. Chaotic systems are governed by an exponential
growth in the phase space separation of two initially nearby trajectories, whereas
systems with a mixed phase space feature islands with regular dynamics on which
the phase space separation grows linearly. Moreover, the classical phase space
structure also plays a key role in understanding the dynamics of wave states in
a given system. In this context, it was also discovered that among highly excited
fiber modes which feature a small transverse wavelength, so-called scars exist which
show an intensity enhancement along classically unstable periodic orbits. These
topics have been studied theoretically for D-shaped fibers and billiard systems [6].
Specifically, the phenomenon of light scarring in a fully chaotic D-shaped fiber has
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been investigated [7], and the properties and statistics of regular modes in mixed
D-shaped fibers have been studied [8]. Apart from addressing certain modes, a
big goal in fiber optics is to find states with little dispersion and a high degree of
collimation, where we will consider the concepts introduced by Wigner and Smith
in order to reach this goal.

In the framework of quantum mechanical scattering theory, Wigner showed the
possibility to extract information about the mean interaction time of a particle
passing a potential from the corresponding scattering phase [9]. Following Wigner
and using the concept of scattering matrices, Smith derived a “lifetime matrix”
[10], which is nowadays well-known under the term of Wigner-Smith time-delay
operator. Applying this concept to waveguide systems, the eigenvalues of this
operator are the so-called proper delay times, while some of its eigenstates might be
given by collimated wavefronts that follow classical trajectory-like paths, provided
that the associated proper delay time is lower than the Ehrenfest time of the system
[11]. Due to their classical behavior, these states are called particlelike states and
correspondingly they feature a transmission close to zero or one, which allows for a
very efficient transmission through a complex system. The concept of time-delay is
a general concept of wave dynamics that can be applied to almost any type of waves
and the existence of particlelike states has just recently been verified experimentally
in an elastic cavity using laser-excited ultrasound waves [12].

In this thesis, we search for particlelike states in multi-mode fibers with a D-
shaped cross section without cladding in the mixed and completely chaotic case.
We will also draw a comparison between classical-trajectory-bundles and wave dy-
namics. Regarding the classical dynamics, we will use Monte-Carlo methods to
generate trajectory bundles that mimic initial wavefronts in order to achieve the
best coincidence with our wave simulations. In the framework of the Helmholtz
equation, our search for particlelike wave states will be focused on finding a new
operator constructed from the transmission matrix, which contains states with the
desired particlelike behavior among its eigenstates, where we will exploit the con-
cept of time-delay. The behavior of those wave states will be investigated in the
spatial domain, as well as in classical phase space by means of Husimi distributions.
We will see, that the phase space structure, which depends on the truncation of
the fiber cross section, plays an important role for finding particlelike states since
islands in a classically mixed phase space can help a wave state to stay collimated
for longer propagation times compared to systems with regular or chaotic phase
spaces. Ultimately, our aim is to study in which way these special states of light
are suitable for efficient data transmission and for optical imaging techniques based
on multi-mode optical fibers.

Considering an experimental realization of this work, we also have to deal with
restrictions regarding the possible experimental methods and the geometric dimen-
sions at hand. Currently, the collaborating group of Hui Cao at the Yale University
is limited to millimeter-sized cross section diameters, i.e., we are dealing with glass
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rods rather than fibers. Since the full wave simulation of such a large rod-system
is numerically not feasible for optical wavelengths in the visible spectrum, we will
thus restrict the investigation of the actual experimental setup to classical trajec-
tory bundle simulations, in order to make predictions about the behavior of wave
states in this system.





Chapter 2

Theoretical Framework

In this chapter, we first give an overview over the classical trajectory dynamics of
light rays in different D-shaped geometries. Besides the dynamics in position space,
the behavior of states in phase space is also of great importance as it features
the simultaneous visualization in position and momentum space. Moreover, we
will introduce characteristic quantities which give a measure for the chaoticity of
a system and we will discuss the description of wave states through trajectory
“bundles”. The latter will also feature spreading in order to draw a fair comparison
to wave states. Regarding the wave dynamics, we will explain how to solve the
wave equation and introduce a characteristic time called Heisenberg time up to
which a wave consisting of quantized fiber modes can mimic the classical behavior
which is based on a continuous spectrum. Furthermore, we will give an overview
of phase space distribution functions that allow a representation of wave states in
classical phase space and describe the scattering formalism which is used to derive
an expression for the transmission matrix. This transmission matrix is then used to
construct the time-delay operator, where besides the meaning of its eigenvalues and
eigenstates an algorithm for treating non-square transmission matrices is presented.

2.1 Classical Dynamics

In this section we consider the dynamics of classical trajectories in a straight
fiber, i.e. without bends or imperfections, with a D-shaped cross section without a
cladding, see sketch in Fig. 2.1. In order to describe a light ray by way of a particle-
trajectory, we have to find expressions which describe the trajectory’s dynamics in
such a system. These will serve as building blocks for approximating wave states
as bundles of trajectories.

Due to the translational invariance of our system, the dynamics reduce to those
of a two-dimensional D-shaped billiard. Even though we are not dealing with a
real billiard system with hard walls, we can make use of this assumption since
the refractive index difference between the fiber’s silica-core (𝑛co ≈ 1.5) and the
surrounding “air-cladding” (𝑛cl ≈ 1) is quite high resulting in a pretty steep critical
angle of total internal reflection. According to Snell’s law, this angle calculates to
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Figure 2.1: Left: Schematic of the fiber geometry. Right: Trajectory’s “wavevector” �⃗�
(red line) and its projection onto the cross section (red dashed line) with the injection
angle 𝜙 w.r.t. the 𝑥-axis and 𝜃 w.r.t. to the 𝑧-axis indicated.

𝜂𝑐 = arcsin

(︂
𝑛cl

𝑛co

)︂
≈ 41.8∘ , (2.1.1)

measured normal to the cross section surface. Due to a limited number of open
modes available in our wave simulations (see section 2.2), this angle will never be
reached and hence there will always be total internal reflection.

Starting from Fermat’s principle which states that light takes the path whose
optical path length is an extremum, one can derive an equation of motion for the
light trajectory (see Appendix A)

𝑑

𝑑𝑠

(︂
𝑛
𝑑�⃗�

𝑑𝜁

)︂
= ∇⃗𝑛 , (2.1.2)

which is similar to the respective equation of a point particle 𝑑𝑝/𝑑𝑡 = 𝐹 with
𝑝 = 𝑚𝑑�⃗�/𝑑𝑡, where the time 𝑡 is replaced by the arc length 𝜁 along the particle’s
trajectory, and the mass 𝑚 is replaced by the refractive index 𝑛 of the material.
Moreover, we see that the refractive index plays the role of a potential whose gradi-
ent can be seen as a force acting on the trajectory. Since our system is homogeneous
inside the cross section we have ∇⃗𝑛 = 0 resulting in a free propagation of a light ray
until it hits the boundary. There it gets reflected according to Snell’s law, which
states that for total internal reflection, the angle of reflection is equal to the angle
of incidence. Thus, the “wavevector” in the transverse 𝑥𝑦-plane after a reflection
can be determined by

�⃗� ′
𝑡 = �⃗�𝑡 − 2(�⃗�𝑡 · �̂�)�̂� , (2.1.3)

where �̂� is the outward normal unit vector to the boundary of the two-dimensional
D-shaped cross section at the reflection point, |⃗𝑘𝑡| = 𝑛co(2𝜋/𝜆) sin(𝜃) = |⃗𝑘 ′

𝑡 | (see
Fig. 2.1), and 𝜆 is the light’s vacuum wavelength.



Chapter 2 Theoretical Framework 7

2.1.1 Classical Phase Space of D-Shaped Billiards

The phase space of a given dynamical system represents all possible states of the
system, where each point corresponds to one of those possible states. Since ev-
ery degree of freedom is represented as an axis, the classical phase space for a
system with 𝑁𝑓 degrees of freedom, i.e. 𝑁𝑓 spatial dimensions, is generally 2𝑁𝑓 -
dimensional, consisting of 𝑁𝑓 generalized positions and 𝑁𝑓 generalized momenta.
For high-dimensional systems, it is thus impossible to visualize the full phase space
and, therefore, it is convenient to introduce so-called Poincaré surface of sections
(PSSs) which are lower-dimensional cuts through the high-dimensional phase space.
In our case of a three-dimensional fiber, 𝑁𝑓 = 3, but since our particlelike states
should stay collimated during the propagation through the system, we are partic-
ularly interested in the PSS at the output facet (𝑧 = 𝑙fib) in which a localization
should be visible. This reduces the number of dimensions to 2𝑁𝑓 − 1 = 5. Given
that in a straight fiber, the dynamics of a single trajectory projected to the two-
dimensional cross section do not principally change when changing the angle to
the optical axis, 𝜃, gives us the opportunity to fix this angle, i.e. to fix 𝑘𝑧, and to
reduce the number of dimensions to 2𝑁𝑓 − 2 = 4. Lastly, we can consider just a
single transverse wavevector component, i.e., 𝑘𝑥 or 𝑘𝑦, since the other one is fixed
by energy conservation, which reduces the number of dimensions to 2𝑁𝑓 − 3 = 3.

Apart from the above considerations, it is more convenient to use so-called
Birkhoff coordinates which are introduced in the following, where the full descrip-
tion of a billiard system can be mapped entirely to the dynamics on the boundary.
This reduces the number of dimensions to 2, resulting in two-dimensional graphs
which are much easier to read.

Birkhoff Coordinates

An important concept in the description of classical billiard systems are the Birkhoff
coordinates which contain all dynamical information of a two-dimensional billiard.
They are defined for every bounce of the trajectory at the walls and for a D-shaped
billiard they are given by the following two parameters: the normalized arc length
𝑠 = 𝜙/𝜙max at the point of impact, and the sine of the angle of a trajectory after
a reflection (see Fig. 2.2), 𝑡 = sin𝜒, which can also be seen as the normalized
tangential momentum. The sign of 𝜒 thus corresponds to the sign of the angular
momentum. Together they form a mapping from the 𝑛-th bounce to the (𝑛+1)-th,

𝑠𝑛, 𝑡𝑛 → 𝑠𝑛+1, 𝑡𝑛+1 , (2.1.4)

which is area preserving if the boundary is convex and continuously differentiable
[13]. Given that our fiber cross section is D-shaped, our boundary is not con-
tinuously differentiable and thus we just take the curved part of the boundary
into account. Due to time-reversal symmetry of our trajectories, our phase space
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is symmetric under the mapping 𝜒 → −𝜒, where our 𝑦-symmetric fiber geome-
try additionally causes our phase space to be symmetric under the transformation
𝜙→ −𝜙.

Poincaré Surface of Section

In what follows, we explicitly investigate the classical PSS at the fiber boundary
using Birkhoff coordinates, where the phase space structure and thus the classical
dynamics depend on the ratio 𝛾 = 𝑟cut/𝑟fib (see Fig. 2.2). In a full or half circle (𝛾 =
0 or 1), we get completely regular dynamics since we can separate the equations of
motion [6], then. This separation yields two constants of motion which are given
by the radial momentum 𝑘𝑟 and the angular momentum 𝐿 in a full circle billiard.
In the half circle billiard the angular momentum can change its sign and hence the
second constant of motion is given by 𝐿2 instead of 𝐿. For these two systems, we
thus have the same number of degrees of freedom as constants of motion, which is
the reason for their regular dynamics. For all other values of 𝛾 neither 𝐿 nor 𝐿2 is
conserved, which results in completely chaotic (0 < 𝛾 < 1), or mixed (1 < 𝛾 < 2)
dynamics.

In Fig. 2.3 PSSs for different values of 𝛾 are shown. The first diagram shows
the full circle billiard with its regular dynamics, and introducing a cut 0 < 𝛾 < 1,
we see that the phase space consists entirely of the chaotic sea. Notice that some
empty horizontal lines can be seen in these plots which numerically originate from
classical periodic orbits as explained below. Looking at the circle billiard we can
define two types of periodic orbits: the polygon and the star orbits (see Fig. 2.2).

𝜙

𝜙max

𝜒

Figure 2.2: Left: Fiber cross section with the Birkhoff coordinates 𝜙 and 𝜒 indicated.
Middle: Example of a polygon orbit with 𝑛 = 5 bounces (red) and a star-shaped orbit
with 𝑛 = 5 and 𝑞 = 2 trips around the circle (blue). Right: Two periodic orbits in a
fiber with 𝛾 = 1.05 which correspond to the centers of the two largest types of islands
in the PSS.
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For a polygon orbit with 𝑛 edges, we know that the sum of the interior angles is
given by 2𝜒𝑛 = (𝑛− 2)𝜋, and hence the angle of reflection is

𝜒 =
(𝑛− 2)𝜋

2𝑛
. (2.1.5)

For the star-shaped orbits with 𝑛 edges, we also have to take the number 𝑞 of trips
around the circle into account. In such an orbit the reflection angle is given by

𝜒 =
(𝑛− 2𝑞)𝜋

2𝑛
. (2.1.6)

Depending on the fiber cut, some of these orbits do not bounce off the cut region
and survive like in a full circle billiard. Since both of these two types of orbits
have measure zero in phase space, it is practically impossible to launch a trajectory
there. Furthermore, we can only treat finite propagation times in our numerical
simulation, which means that we cannot propagate a trajectory long enough, such
that it would fill out these empty lines visible in the PSSs for 0.1 ≤ 𝛾 ≤ 0.9 in
Fig. 2.3 due to the underlying chaoticity. In a mixed PSS, this effect is even more
pronounced since there, some trajectories are trapped on stable islands, where
different sets of parameters correspond to different island-contours. This results in
partly empty islands due to the finite grid spacing of our initial parameters which
can be seen in the PSSs for 1 < 𝛾 < 2 in Fig. 2.3.

At 𝛾 = 1, we again get regular dynamics as mentioned above, and cutting more
than one radius (𝛾 > 1) causes the regular bands to split up into some stable
islands, where the space between them is filled out by the chaotic sea. Cutting
further results in the disappearance of some smaller islands into the chaotic sea,
where the bigger islands grow in size, and after the special case of 𝛾 = 1.5 almost
the entire PSS is filled out with the central island.
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Figure 2.3: Poincaré surfaces of section for different values of 𝛾 = 𝑟cut/𝑟fib. For 𝛾 = 0, 1
we get regular dynamics, for 0 < 𝛾 < 1 the phase phase is completely filled with the
chaotic sea, and for 1 < 𝛾 < 2 we have mixed dynamics, i.e., there exist some stable
islands in between the chaotic sea. Please note that the value of 𝜙max changes for every
value of 𝛾.
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2.1.2 Characteristic Quantities of Chaotic Systems

Lyapunov Exponent

In chaotic systems, the distance 𝑑(𝑡) between two initially nearby trajectories in
phase space grows exponentially with the propagation time 𝑡, where the measure
for this growth is given by the Lyapunov exponent Λphys (see. Appendix B) [14]:

𝑑(�⃗�0, 𝑡) = 𝑑(�⃗�0, 0)𝑒Λphys𝑡 . (2.1.7)

Here, the subscript denotes the physical exponent which is given in units of 1/𝑠.
Since the Lyapunov exponent depends on the initial position and injection angles at
the input facet, we use a certain parameter set and track the phase space separation
of each trajectory pair. Then, we build the mean over all individual exponents in
order to arrive at an estimate for a single Lyapunov exponent which describes the
system. Again we use Birkhoff coordinates, where we measure the phase space
separation every time when the trajectories collide with the boundary

𝑑(�⃗�0, 𝑛) = 𝑑(�⃗�0, 0)𝑒ΛBirk𝑛 , 𝑛 = 1, 2, 3... . (2.1.8)

In contrast to (2.1.7) we have used another subscript to indicate that this expo-
nent is dimensionless due to its calculation in Birkhoff coordinates. This Birkhoff
Lyapunov exponent is then defined as

ΛBirk(�⃗�0) = lim
𝑛→∞

lim
𝑑(0)→0

1

𝑛
ln

(︂
𝑑(�⃗�0, 𝑛)

𝑑(�⃗�0, 0)

)︂
. (2.1.9)

Numerically, the second limit cannot be realized due to finite machine precision.
Thus, we use a very small initial separation in phase space greater than the ma-
chine’s precision, where we chose to let the trajectories start from the same position
with an angular difference of ∆𝜙 = 10−14. Using a small 𝑑(0) is important in order
to observe an exponential growth of 𝑑(𝑡) over a fairly large number of bounces 𝑛,
where a greater initial phase space separation would result in a faster reach of the
saturated regime caused by the boundedness of the system. Due to this saturation,
the first limit in (2.1.9) cannot be realized either, but in order to estimate the Lya-
punov exponent it is sufficient to let the trajectories undergo a certain number of
bounces until the saturation is reached. This saturation of 𝑑(�⃗�0, 𝑛) can clearly be
seen in Fig. 2.4, where the Lyapunov exponent shows a decrease proportional to
1/𝑛 due to the constant phase space separation. The Lyapunov exponent is then
calculated by taking the mean value over a certain range of bounces for which it
stays mostly constant, where this range is typically reached before the saturation
sets in (see Fig. 2.4). To get a single Lyapunov exponent, we furthermore build the
average over all initial conditions as mentioned above, where the conversion factor
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from the Birkhoff to the physical exponent is given by the mean propagation time
⟨𝜏⟩ between two collisions with the fiber boundary [15, 16],

Λphys =
ΛBirk

⟨𝜏⟩
. (2.1.10)

A more rigorous approach is the the so-called Benettin method [17], which is based
on repeated rescaling of the offset from the reference trajectory every time the
mentioned saturation is reached, which yields longer propagation times and thus
a more precise value for the Lyapunov exponent. Another way of calculating the
Lyapunov exponent is by considering the trajectories’ stability matrices for each free
propagation and reflection, where the Lyapunov exponents are then given by the
eigenvalues of the product of these matrices [6]. These stability matrices describe
the particle’s short term phase space dynamics for which the exponential can be
linearized resulting in a Jacobian matrix. Since the latter is a 𝑁𝑓 ×𝑁𝑓 matrix with
𝑁𝑓 = 2 being the number of degrees of freedom in our billiard system, we get two
exponents, where the one greater zero is a measure for the chaoticity of the system.

0 20 40 60 80 100 120
n
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Figure 2.4: Exponential growth of phase space separations in a geometry with 𝛾 =
0.44. Left: Phase space distance between two trajectories dependent on the number of
bounces for many initial conditions, where the yellow line shows the mean value and the
saturated regime can be clearly seen (𝑛 ≈ 60). Please note the logarithmic scale on the
ordinate, where the slope is proportional to the Lyapunov exponent. Right: Lyapunov
exponent dependent on the number of bounces for many initial conditions, where the
yellow line denotes the mean value and the red line marks the region, where it stays
mostly constant.
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Ehrenfest Time

The Ehrenfest time is defined as the time, where the separation of two trajectories
reaches a characteristic system length which is given by the square root of the fiber
cross section:

𝑑(𝜏E) = 𝑑(0)𝑒Λphys𝜏E ≡ 𝐿0 =
√︀
𝐴fib . (2.1.11)

Hence, the Ehrenfest time is given by

𝜏E =
1

Λphys
ln

(︂
𝐿0

𝑑(0)

)︂
. (2.1.12)

Physically, at 𝑡 = 𝜏𝐸 every pair of initially nearby trajectories will be spread out
over the cross section. Since we want our trajectories or trajectory bundles to stay
collimated, this time will serve as a useful estimate for an upper limit of propagation
lengths in cases of fully chaotic systems. Looking at Eq. (2.1.12), we want to point
out that this definition is valid for two trajectories, but since we want to treat
trajectory bundles which mimic waves, we have to modify this definition. For
this purpose, we set the initial spatial distance 𝑑(0) to the mean distance between
two trajectories in a Gaussian bundle, i.e., 𝑑(0) = 𝑤0 = 2𝜎0. Hence, at 𝑡 = 𝜏𝐸
the number of particlelike bundles should be already pretty small which of course
depends on the definition of the criterion for a bundle at the output facet to be
counted as particlelike.
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2.1.3 Monte-Carlo Generation of Trajectory Bundles

In order to mimic the behavior of waves, we now want to create bundles of trajec-
tories that also feature the spreading of the corresponding wavepackets, where we
assume Gaussian shaped intensity distributions which consist of 𝑁𝑡 = 103 trajec-
tories whose initial spatial spread is two times the Gaussian’s standard deviation,
i.e., 𝑤0 = 2𝜎0. Furthermore, they are defined by a preferred angle in the transverse
plane 𝜙 ∈ [0, 2𝜋) and a preferred angle to the fiber axis 𝜃.

The initial positions �⃗� = (𝑥, 𝑦) in the fiber cross section 𝐴fib are then generated
by drawing random points from a Gaussian probability distribution

𝑔(𝑥, 𝑦) =

{︃
1

2𝜋𝜎2
0

exp
(︁
− (𝑥−𝑥0)2+(𝑦−𝑦0)2

2𝜎2
0

)︁
�⃗� ∈ 𝐴fib ,

0 �⃗� /∈ 𝐴in ,
(2.1.13)

which is truncated at the fiber boundary and normalized, i.e.
∫︀
𝑑𝑥𝑑𝑦 𝑔(𝑥, 𝑦) = 1.

In order to create minimal uncertainty bundles, we then also draw random points
from the Fourier transform of the directed Gaussian

𝑔(𝑘𝑥, 𝑘𝑦) =

{︃
ℱ {𝑔(𝑥, 𝑦) exp [𝑖(𝑥𝑘𝑥,0 + 𝑦𝑘𝑦,0)]} 𝑘2𝑥 + 𝑘2𝑦 < 𝑘20 ,

0 𝑘2𝑥 + 𝑘2𝑦 ≥ 𝑘20 ,
(2.1.14)

which is also normalized, i.e.,
∫︀
𝑑𝑘𝑥𝑑𝑘𝑦 𝑔(𝑘𝑥, 𝑘𝑦) = 1. Using the Fourier transfor-

mation
ℱ{𝑔(𝑥, 𝑦)} =

1

2𝜋

∫︁
𝑑𝑥𝑑𝑦 𝑔(𝑥, 𝑦)𝑒−𝑖(𝑥𝑘𝑥+𝑦𝑘𝑦) (2.1.15)

for the distribution of transverse wavevectors accounts for spreading, i.e. spatially
more localized bundles will have a broader transverse momentum distribution, and
will thus spread more quickly in accordance with the behavior of waves. Further-
more, the exponential factor in (2.1.14) containing 𝑘𝑥,0 = 𝑘𝑡 cos𝜙 and 𝑘𝑦,0 = 𝑘𝑡 sin𝜙
with 𝑘𝑡 = 𝑘0 sin 𝜃 shifts the function to the preferred position (𝑘𝑥,0, 𝑘𝑦,0) in Fourier
space. Note that the light’s wavelength enters in the above equations through 𝑘𝑡,
where we use 𝜆 = 553 nm of the experimentally used Nd:YAG laser.

Numerically, one would start to draw three random numbers from uniform distri-
butions, i.e. two for 𝑥𝑛 and 𝑦𝑛, and one for our probability 𝑝𝑛, where the positions
are accepted if the value lies beneath the function we want to draw our random
samples from, i.e. 𝑝𝑛 < 𝑔(𝑥𝑛, 𝑦𝑛). However, if we have highly localized distributions,
the amount of discarded random numbers is huge. One can save computation time
though by introducing a supporting Gaussian envelope function ℎ(𝑥, 𝑦), from which
it is easy to draw random samples from in order to achieve a higher acceptance rate
(see Fig. 2.5). This is called acceptance-rejection method, where we have to ensure
that 𝑔(𝑥, 𝑦) < 𝐶ℎ(𝑥, 𝑦) with some real-valued constant 𝐶 > 1. It can be shown
that the unconditional acceptance probability is 1/𝐶, which means that a high
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value of 𝐶 results in many discarded random samples, and thus keeping the value
of 𝐶 as low as possible is crucial for a good performance of this algorithm. Since
we place our trajectory bundles approximately one to three standard deviations
away from the boundary, the effect introduced by the truncation is mostly rather
small, and thus our wavevector distribution will look very similar to a Gaussian
with a standard deviation of approximately 1/𝜎0. Thus, the supporting envelope
function for 𝑔(𝑘𝑥, 𝑘𝑦) will be the Fourier transform of our spatial envelope function,
i.e. ℎ̃(𝑘𝑥, 𝑘𝑦).

4 2 0 2 4
x

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

g(x)

h(x)

15 10 5 0 5 10 15
kx

0.00

0.05

0.10

0.15

0.20

g̃(kx )

h̃(kx )

Figure 2.5: Left: Example of a one-dimensional, truncated Gaussian probability distri-
bution 𝑔(𝑥) (blue solid line) from which we want to draw random samples. Since the
random sampling of uniformly distributed values of 𝑥𝑛 and 𝑝𝑛 would result in many dis-
carded random samples 𝑥𝑛, one can introduce a Gaussian envelope function ℎ(𝑥) (red
dashed line), from which it is easy to draw random samples from, where we have to
assure that 𝐶ℎ(𝑥) > 𝑔(𝑥) with some 𝐶 > 1. Right: Fourier transformed distributions,
where some oscillations in 𝑔(𝑘𝑥) appear due to the spatial truncation. Again, we have
to find a 𝐶 > 1 such that 𝐶ℎ̃(𝑘𝑥) > 𝑔(𝑘𝑥).

Having found the constant 𝐶, one then draws random samples 𝑥𝑛 and 𝑦𝑛 from the
supporting Gaussian distribution ℎ(𝑥, 𝑦) and 𝑝𝑛 from the uniform distribution in the
unit interval. The positions 𝑥𝑛 and 𝑦𝑛 are then accepted if 𝑝𝑛𝐶ℎ(𝑥𝑛, 𝑦𝑛) < 𝑔(𝑥𝑛, 𝑦𝑛),
whereas they are discarded if this condition is not fulfilled. Together with its
equivalent procedure for the Fourier transformed quantities, this is repeated until
𝑁𝑡 positions (𝑥, 𝑦) and wavevectors (𝑘𝑥, 𝑘𝑦) are found, where the propagation of the
whole bundles is computed by means of the propagation of each single trajectory
as described at the beginning of section 2.1.
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2.2 Wave Dynamics

2.2.1 Solving Helmholtz’s Equation

In this subsection we discuss the algorithm to solve the three-dimensional wave
equation for the electric field. This wave equation originates from Maxwell’s equa-
tions and generally a full vectorial approach would be needed. However, in case
of a medium homogeneous along 𝑧, i.e. 𝜖(𝑥, 𝑦, 𝑧) ≡ 𝜖(𝑥, 𝑦), and a monochromatic
and linearly polarized electric field with a harmonic time-dependence, the wave
equation can be simplified to a scalar Helmholtz equation (see Appendix C),[︀

∆ + 𝑛2(�⃗�)𝑘20
]︀
𝜓(�⃗�, 𝑧) = 0 , (2.2.1)

where ∆ = ∆𝑡 + 𝜕𝑧𝑧 is the Laplacian, ∆𝑡 = 𝜕𝑥𝑥 + 𝜕𝑦𝑦 is the transverse Laplacian
and

𝑛 = 𝑛(�⃗�) =

{︃
𝑛co = 1.5 �⃗� ∈ 𝐴fib ,

𝑛cl = 1.0 �⃗� /∈ 𝐴fib ,
(2.2.2)

is the refractive index which depends only on the position �⃗� = (𝑥, 𝑦) in the trans-
verse plane due to the homogeneity of our system along the 𝑧-axis. Moreover,
𝑘0 = 2𝜋/𝜆 with 𝜆 being the vacuum wavelength of our monochromatic electric
field. Due to the absence of scatterers or fiber bends, the solutions of Eq. (2.2.1)
will keep their linear polarization in the transverse plane, which makes the full
vectorial treatment unnecessary. Since 𝑛(𝑥, 𝑦, 𝑧) ≡ 𝑛(𝑥, 𝑦), we can separate an
exponential factor from the wavefunction and write down a general ansatz for the
solution [7]

𝜓(�⃗�, 𝑧) =

∫︁
𝑑𝛽𝑧 𝜒(�⃗�, 𝛽𝑧)𝑒

𝑖𝛽𝑧𝑧 , (2.2.3)

where 𝛽𝑧 = 𝑛co
√︀
𝑘20 − 𝑘2𝑡 is the propagation constant. Inserting Eq. (2.2.3) into

(2.2.1) yields [︀
∆𝑡 + 𝑛2(�⃗�)𝑘20

]︀
𝜓(�⃗�, 𝑧) = 𝛽2

𝑧𝜓(�⃗�, 𝑧) , (2.2.4)

which can also be written as a stationary Schrödinger equation with an effective
potential [︂

−1

2
∆𝑡 + 𝑉 (�⃗�)

]︂
𝜒(�⃗�) = 𝐸𝜒(�⃗�) . (2.2.5)

Using 𝛽0 = 𝑛co𝑘0, the effective potential is given by

𝑉 (�⃗�) =
1

2

(︀
𝛽2
0 − 𝑛2(�⃗�)𝑘20

)︀
=

{︃
0 �⃗� ∈ 𝐴fib ,
1
2
(𝑛2

co − 𝑛2
cl)𝑘

2
0 �⃗� /∈ 𝐴fib ,

(2.2.6)
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and the “eigenenergy” is defined as

𝐸 =
1

2

(︀
𝛽2
0 − 𝛽2

𝑧

)︀
=

1

2
𝛽2
𝑡 =

1

2
𝑛2

co𝑘
2
𝑡 . (2.2.7)

Eq. (2.2.5) basically describes a finite potential well whose solutions feature quan-
tized eigenenergies 𝐸𝑛 and corresponding eigenstates 𝜒𝑛(�⃗�). Numerically, solv-
ing this equation is accomplished by using a finite differences approach with hard
wall boundary conditions at the borders of our transverse grid. An eigenstate of
Eq. (2.2.1) now reads

𝜓𝑛(�⃗�, 𝑧) = 𝒩𝑛𝜒𝑛(�⃗�)𝑒𝑖𝛽𝑧,𝑛𝑧 (2.2.8)

with 𝒩𝑛 being a normalization constant. Here one can see the similarity between
𝜓𝑛(�⃗�, 𝑧) and the time-evolution of an eigenstate of the Schrödinger equation, where
the 𝑧-coordinate plays the role of the time. The guided, flux-carrying modes fulfill
𝐸𝑛 < 𝑉 (�⃗�), i.e.,

𝑛co𝑘𝑡,𝑛 <
√︁
𝑛2

co − 𝑛2
cl 𝑘0 . (2.2.9)

Please note that we use the open mode approximation, where we just treat open
(𝛽𝑧,𝑛 ∈ R) guided modes, and neglect the evanescent ones which feature a purely
imaginary propagation constant 𝛽𝑧,𝑛 ∈ C. We should further mention that the
transverse eigenstates are orthogonal and intensity normalized according to∫︁

𝑑2𝑟 𝜒*
𝑛(�⃗�)𝜒𝑚(�⃗�) = 𝛿𝑛𝑚 . (2.2.10)

In (the unbounded) longitudinal direction, one could use a scattering normalization
to a Dirac 𝛿-distribution for which 𝒩𝑛 = 1/

√
2𝜋, however, a more convenient choice

for describing wave guide states is the normalization to unit flux

𝑗𝑧 = Re

[︂
𝜓*
𝑛(�⃗�, 𝑧)

(︂
−𝑖 𝜕
𝜕𝑧

)︂
𝜓𝑛(�⃗�, 𝑧)

]︂
= 1 . (2.2.11)

Imposing the condition (2.2.11) onto our modes yields 𝒩𝑛 = 1/
√︀
𝛽𝑧,𝑛. Bear in

mind that this also changes the transverse intensity normalization at a given 𝑧∫︁
𝑑2𝑟 𝜓*

𝑛(�⃗�, 𝑧)𝜓𝑚(�⃗�, 𝑧) =
1

𝛽𝑧,𝑛
𝛿𝑛𝑚 , (2.2.12)

and thus it is convenient to use either the 𝛿- or the flux-normalization depending
on the pursued purpose. Since our transverse differential operator in (2.2.5) is
Hermitian, its eigenstates form a complete and orthogonal set of basis states, in
which we can expand any arbitrary state

Ψ(�⃗�, 𝑧) =
∑︁
𝑛

𝑐𝑛𝜓𝑛(�⃗�, 𝑧) =
∑︁
𝑛

𝑐𝑛√︀
𝛽𝑧,𝑛

𝜒𝑛(�⃗�)𝑒𝑖𝛽𝑧,𝑛𝑧 , (2.2.13)

where we have already taken into account the flux normalization mentioned above.
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2.2.2 Heisenberg Time

For a quantum mechanical system the Heisenberg time is given by the inverse of
the mean level spacing, which is nothing else than the mean density of states

𝜏𝐻 =
ℎ

⟨∆𝐸⟩
=

2𝜋

⟨∆𝜔⟩
, (2.2.14)

where ℎ is Planck’s constant. Beyond this time, the classical or semi-classical
descriptions of waves break down and the discreteness of the energy spectrum of
a bounded system becomes important. Thus, at this time-scale, a system cannot
mimic the classical behavior which is based on a continuous spectrum. To obtain
an expression for 𝜏𝐻 for classical waves, one can compare the time evolution of
an arbitrary quantum mechanical state expanded into eigenstates of the respective
Hamiltonian in position space,

Ψ(�⃗�, 𝑡) =
∑︁
𝑛

𝑐𝑛𝜒𝑛(�⃗�)𝑒−𝑖𝜔𝑛𝑡 , (2.2.15)

to the propagation of an arbitrary state expanded into eigenstates of our Helmholtz
equation (see Eq. (2.2.13)),

Ψ(�⃗�, 𝑧) =
∑︁
𝑛

𝑐′𝑛𝜒𝑛(�⃗�)𝑒𝑖𝛽𝑧,𝑛𝑧 , (2.2.16)

where 𝑐′𝑛 contains the longitudinal normalization factor. In the above two equa-
tions, the eigenstates of the stationary Schrödinger equation in position space were
denoted by the same symbol 𝜒𝑛(�⃗�) as the one of the transverse Helmholtz equation
(2.2.5) in order to emphasize the similarity of these equations. We can now see
that the 𝑧-coordinate plays the role of the time and thus the Heisenberg time of
our classical system is given by

𝜏𝐻 =
2𝜋

⟨∆𝛽𝑧⟩
. (2.2.17)

Since higher dimensional systems in most cases feature a higher density of states as
energy levels are more closely spaced to each other, it usually holds that 𝜏H ≫ 𝜏E
[18], however, in case of 𝜏H < 𝜏E the Heisenberg time would replace the Ehrenfest
time in its role as a limiting factor for propagation times of particlelike states.

Besides the analytical expression (2.2.17), one can also estimate the Heisenberg
time (length) for our fiber system by using the relation [7]

𝜏𝐻 = 𝛽0𝐴fib , (2.2.18)

where 𝛽0 = 𝑛co𝑘0 and 𝐴fib is the area of the fiber cross section.
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2.2.3 “Quantum” Poincaré Sections

In this subsection we introduce two prominent representatives of phase space dis-
tributions often used in wave mechanics. In classical mechanics, the choice of
generalized coordinates defines conjugate generalized momenta which together de-
fine (commuting) coordinates in phase space. In quantum (and generally wave)
mechanics, these observables are replaced by non-commuting Hermitian operators,
where this non-commutativity impedes the association of a wave state with a single
point in phase space. However, the phase space formulation of quantum mechanics
restores the equivalence of quantum mechanics and Hamiltonian mechanics by rep-
resenting a wave state by a quasi-probability distribution in phase space, instead
of a wave function (or a density matrix), where in contrast to the former the latter
has to be represented in position or momentum space.

Due to the high dimensionality of our system, we again just look at certain
Poincaré surfaces of section as discussed in subsection 2.1.1 which are often called
quantum Poincaré sections due to their heavy usage in quantum mechanics. Even
though we are dealing with classical optics, we use this term, since the structure
of the Helmholtz equation is similar to that of the time-independent Schrödinger
equation as shown in subsection 2.2.1.

Wigner Distribution at a Fiber Facet

Since we search for states that stay collimated during the propagation through the
system, a localization of their phase space distribution at the output facet should be
visible. For this, we use the quantum-mechanical Wigner phase space distribution
of a state Ψ(�⃗�, 𝑧) at the output facet (𝑧 = 𝑙fib)

𝑊 (�⃗�, �⃗�𝑡) =
1

(2𝜋)2

∫︁ ∞

−∞
Ψ*(�⃗� + 𝜉/2, 𝑙fib)Ψ(�⃗� − 𝜉/2, 𝑙fib)𝑒−𝑖𝜉·⃗𝑘𝑡 𝑑2𝜉 , (2.2.19)

where �⃗� and �⃗�𝑡 stand for the transverse position and transverse momentum of the
wavefunction. Note that these two phase space variables are just vectors consisting
of scalar quantities now and not operators, even though we are dealing with wave
mechanics. This distribution is a quasi-probability distribution, i.e.∫︁ ∞

−∞
𝑑2𝑘𝑡 𝑊 (�⃗�, �⃗�𝑡) = ⟨�⃗�|𝜌|�⃗�⟩ = |Ψ(�⃗�)|2 , (2.2.20)∫︁ ∞

−∞
𝑑2𝑟 𝑊 (�⃗�, �⃗�𝑡) = ⟨�⃗�𝑡|𝜌|⃗𝑘𝑡⟩ = |Ψ(�⃗�𝑡)|2 , (2.2.21)∫︁ ∞

−∞
𝑑2𝑘𝑡

∫︁ ∞

−∞
𝑑2𝑟 𝑊 (�⃗�, �⃗�𝑡) = Tr(𝜌) = 1 , (2.2.22)

which has furthermore the advantage of being uniquely defined (contrary to the
Husimi distribution we introduce in the following section). In the above relations,
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the second equal signs only hold true, if we have a pure state for which the density
matrix reads 𝜌 = |Ψ⟩ ⟨Ψ|. The term “quasi” refers to the fact that the Wigner
distribution can take negative values which usually occur in regions of small scale
oscillations and indicate a non-classical, purely wave-type behavior. These small
regions are shielded by the uncertainty principle and disappear in the classical limit.

For classical optics, the wavefunction corresponds to the electric field, and its
absolute value squared is proportional to the intensity of the wave. Hence, inte-
grating out one of the arguments of the Wigner function gives the intensity or the
momentum distribution of the wave.

Husimi Distribution on the Fiber Boundary

For our three-dimensional fiber we use the more convenient Husimi distribution 𝐻
(not to be confused with a Hamiltonian), which is basically the Wigner distribution
smoothed by the convolution with a Gaussian-shaped minimum-uncertainty state
|𝛼⟩

𝐻(𝛼) =
1

𝜋
⟨𝛼|𝜌|𝛼⟩ =

1

𝜋
|⟨𝛼|Ψ⟩|2 , (2.2.23)

where the second equal sign holds true for a pure state whose density matrix reads
𝜌 = |Ψ⟩ ⟨Ψ|. This smoothing is the reason for its non-negative definiteness, but
even if it is bounded and non-negative it is not an actual probability distribution,
since different coherent states are not orthogonal, ⟨𝛼𝑛|𝛼𝑚⟩ ̸= 𝛿𝑛𝑚, and thus they
do not represent two disjoint possibilities. However, since it is positive definite and
numerically easier to calculate than the Wigner distribution, it is a standard tool
for representing phase spaces in billiard systems.

The next step is to find an expression which is analogous to the classical PSS
in Birkhoff coordinates. In wave simulations we have to deal with the problem,
that in billiard systems with hard walls, the boundary is a nodal line, i.e., the wave
function vanishes there, and thus 𝐻(𝛼) would be zero. As explained earlier, we
have a finite but very high potential well, and hence the same argument applies.
To resolve this, we can expand the wave function at a position close to the boundary
[13], where 𝑟 = |�⃗�| ≈ 𝑟fib,

Ψ(�⃗�)|𝑟≈𝑟fib
= Ψ(�⃗�)|𝑟=𝑟fib⏟  ⏞  

≈0

+
𝜕Ψ(�⃗�))

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟fib

(𝑟 − 𝑟fib) + 𝒪((𝑟 − 𝑟fib)2) . (2.2.24)

To first order, we can thus represent the wave function on the circular part of the
boundary by its normal derivative

𝑢(𝑠) ≡ 𝜕Ψ(�⃗�)

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑟fib

=
(︁
∇⃗Ψ · �̂�

)︁
𝑟=𝑟fib

, (2.2.25)
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which only depends on the normalized arc length 𝑠 = 𝜙/𝜙max (see subsection 2.1.1).
This expression is usually called boundary function, and it can be written in a more
general way for arbitrary, non-circular geometries [19]

𝑢(𝑠) = ∇⃗Ψ(�⃗�(𝑠)) · �̂�(𝑠) , (2.2.26)

where �⃗�(𝑠) stands for a point on the boundary parametrized by the arc length. The
Husimi distribution is then given by [6]

𝐻(𝜙0, 𝐿0) =

⃒⃒⃒⃒∫︁ 1

−1

𝑑𝑠 ⟨𝜙0, 𝐿0|𝑠⟩𝑢(𝑠)

⃒⃒⃒⃒2
, (2.2.27)

where −𝜙max < 𝜙0 < 𝜙max, −𝐿max < 𝐿0 < 𝐿max and 𝐿max = 𝑟fib𝑛co𝑘𝑡. The
configuration state representation of the minimum-uncertainty state is given by

⟨𝑠|𝜙0, 𝐿0⟩ =

(︂
1

𝜋𝜎

)︂1/4

exp

[︂
−(𝜙− 𝜙0)

2

2𝜎2
+ 𝑖𝐿0(𝜙− 𝜙0)

]︂
. (2.2.28)

with 𝜎 =
√︀
𝜙max/𝐿max. This Husimi distribution is now calculated at the boundary

at a given value of 𝑧, but in order to get the full phase space representation, we
calculate the mean Husimi distribution over all propagation steps

�̄�(𝜙0, 𝐿0) =
1

𝑁𝑠

𝑁𝑠∑︁
𝑁=0

𝐻𝑁(𝜙0, 𝐿0) , (2.2.29)

where 𝑁𝑠 is the number of propagation steps and 𝐻𝑁 is the Husimi distribution at
step 𝑁 .
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2.2.4 Scattering Formalism

A general tool for calculating the propagation of wavefronts is the scattering ma-
trix which consists of transmission and reflection matrices and fully describes the
asymptotics of a scattering process. In our case of a perfect straight fiber without
scattering regions, no reflections occur, and the transmission matrix in mode basis
is diagonal consisting just of the phase factors in Eq. (2.2.13), which describe the
propagation through the system. Since we will also study the case of fiber imper-
fections (see subsection 3.1.4), we will give a brief overview of the used scattering
formalism, and based on that, we will analytically derive the transmission matrix
for the case of a perfect straight fiber. For a two-port system the scattering matrix
is given by

𝑆 =

(︂
𝑟 𝑡′

𝑡 𝑟′

)︂
(2.2.30)

and relates the mode coefficient vectors of incoming and outgoing states �⃗� and �⃗�
like (︃

�⃗�

�⃗�′

)︃
= 𝑆

(︃
�⃗�

�⃗�′

)︃
, (2.2.31)

where the absence/presence of a prime denotes quantities for the input/output
facet. The transmission and reflection matrix can be calculated via the Fisher-Lee
relations [20]:

𝑡𝑛𝑚(𝑘0) = 2𝑖
√︀
𝛽𝑧,𝑛𝛽𝑧,𝑚

∫︁
𝐴out

𝑑2𝑟out

∫︁
𝐴in

𝑑2𝑟in 𝜒
*
𝑛(�⃗�out)𝐺

+(�⃗�out, �⃗�in; 𝑘0)𝜒𝑚(�⃗�in) ,

(2.2.32)

𝑟𝑛𝑚(𝑘0) = −𝛿𝑛𝑚 + 2𝑖
√︀
𝛽𝑧,𝑛𝛽𝑧,𝑚

∫︁
𝐴in

𝑑2𝑟′in

∫︁
𝐴in

𝑑2𝑟in 𝜒
*
𝑛(�⃗� ′

in)𝐺+(�⃗� ′
in, �⃗�in; 𝑘0)𝜒𝑚(�⃗�in) .

(2.2.33)

Here 𝑡𝑛𝑚 and 𝑟𝑛𝑚 stand for the transmission and reflection from mode 𝑚 to mode
𝑛, where 𝜒𝑛(�⃗�) are the intensity-normalized transverse profiles of the modes, i.e.,
solutions of Eq. (2.2.5), and 𝐺+(�⃗�out, �⃗�in, 𝑘0) is the outgoing or retarded Green’s
function which describes the propagation from �⃗�in to �⃗�out for a given wavenumber
𝑘0.

The Green’s function of the Schrödinger equation (𝐸 − 𝐻)𝜓 = 0 for a given
energy 𝐸 is given by 𝐺±(𝐸) = lim𝜖→0(1𝐸 −𝐻 ± 𝑖𝜖)−1, where the sign in front of
𝜖 determines if the Green’s function is retarded (+) or advanced (−). To get an
equivalent expression for the Helmholtz equation we rewrite Eq. (2.2.1) to{︀

𝑛2
co𝑘

2
0 −

[︀
−∆ + 𝑘20(𝑛2

co − 𝑛2(�⃗�))
]︀}︀
𝜓 = 0 , (2.2.34)
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where we have added zero in terms of ±𝑛2
co𝑘

2
0. The Green’s function of the Helmholtz

equation is now given by

𝐺±(𝑘0) = lim
𝜖→0

(1𝛽2
0 −ℋ± 𝑖𝜖)−1 . (2.2.35)

with ℋ = −∆ + 𝑘20(𝑛2
co − 𝑛2(�⃗�)) being the differential operator which replaces the

Hamiltonian. Next, we want to use the Green’s function’s spectral representation
and thus we insert a complete set of eigenstates of ℋ using the longitudinal nor-
malization to a 𝛿-distribution (see Eq. (2.2.8)). Letting the operators act on those
eigenstates yields

𝐺+(�⃗�2, �⃗�1; 𝑘0) = lim
𝜖→0

∑︀
𝑛

∫︀
𝑑𝛽𝑧,𝑛

1√
2𝜋
𝜒*
𝑛(�⃗�1)𝑒

−𝑖𝛽𝑧,𝑛𝑧1 1√
2𝜋
𝜒𝑛(�⃗�2)𝑒

𝑖𝛽𝑧,𝑛𝑧2

𝛽2
0 − 𝛽2

𝑡,𝑛 − 𝛽2
𝑧,𝑛 + 𝑖𝜖

(2.2.36)

=
∑︁
𝑛

𝜒*
𝑛(�⃗�1)𝜒𝑛(�⃗�2) lim

𝜖→0

1

2𝜋

∫︁
𝑑𝛽𝑧,𝑛

𝑒𝑖𝛽𝑧,𝑛(𝑧2−𝑧1)

(𝛽2
0 − 𝛽2

𝑡,𝑛) − 𝛽2
𝑧,𝑛 + 𝑖𝜖⏟  ⏞  

𝐺+
0 (𝑧2,𝑧1;

√
𝑘20−𝑘2𝑡,𝑛)

,

where the last term is just the one-dimensional Green’s function describing the free
propagation from 𝑧1 to 𝑧2. Applying Cauchy’s residue theorem, the latter evaluates
to [21]

𝐺+
0

(︁
𝑧2, 𝑧1;

√︁
𝑘20 − 𝑘2𝑡,𝑛

)︁
=

−𝑖
2𝛽𝑧,𝑛

𝑒𝑖𝛽𝑧,𝑛|𝑧2−𝑧1| , (2.2.37)

where the Green’s function for the whole system is then

𝐺+(�⃗�2, �⃗�1; 𝑘0) =
∑︁
𝑛

−𝑖
2𝛽𝑧,𝑛

𝜒*
𝑛(�⃗�1)𝜒𝑛(�⃗�2)𝑒

𝑖𝛽𝑧,𝑛|𝑧2−𝑧1| . (2.2.38)

Inserting this expression into Eq. (2.2.32) and using the orthogonality of the trans-
verse fiber modes, we see that our transmission matrix becomes diagonal in case
of a perfect translational invariance with respect to 𝑧, as already mentioned in the
introduction of this subsection,

𝑡𝑛𝑚 = 𝑒𝑖𝛽𝑧,𝑛𝑙fib𝛿𝑛𝑚 . (2.2.39)
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2.2.5 Wigner-Smith Time-Delay Operator

The scattering matrix, which has been introduced in the last subsection, can be
used to construct the so-called Wigner-Smith time-delay operator [9, 10],

𝑄 = 𝑖
𝜕𝑆†

𝜕𝜔
𝑆 = −𝑖𝑆†𝜕𝑆

𝜕𝜔
. (2.2.40)

As already mentioned, the application of the concept of time-delay to waveguide
systems can give rise to particlelike states as shown in [11]. For the search of parti-
clelike states in our fiber system, we restrict ourselves to the use of the transmission
matrix only, since there is almost no reflection. Thus, we use the operator

𝑞 = −𝑖𝑡−1 𝜕𝑡

𝜕𝜔
, (2.2.41)

rather than Eq. (2.2.40). Since the transmission matrix is often subunitary, e.g. in
the presence of scatterers or loss, we have also replaced 𝑡† by 𝑡−1 [22], but in case
of a perfect straight fiber without scatterers 𝑡† = 𝑡−1. In this case, the transmission
matrix is also diagonal in the basis of eigenstates of the Helmholtz equation as
derived in the preceding subsection. As a consequence [𝑡, 𝑞] = 0 and hence they
share the same eigenbasis (2.2.8) which are just the fiber modes which do not feature
the desired beam-like behavior.

To resolve this problem, a transformation will be introduced in subsection 3.1.2,
where the representation of the transmission matrix in an incomplete subset of
eigenvectors of another Hermitian operator causes it to be non-square in general.
Since the inverse of a non-square matrix does not exist, one can utilize a singu-
lar value decomposition and construct an effective pseudo-inverse, as we will now
demonstrate. Given that our transmission matrix in mode basis is a 𝑛out × 𝑛in

matrix we can decompose it into

𝑡 = 𝑈Σ𝑉 † , (2.2.42)

where 𝑈 is a 𝑛out×𝑛out matrix which contains column-wise the left-singular vectors
of 𝑡 and 𝑉 is a 𝑛in×𝑛in matrix which contains column-wise the right singular vectors
of 𝑡. The singular values which can be seen as a generalization of the eigenvalues
for non-quadratic matrices can be found in the diagonal of the 𝑛out × 𝑛in matrix
Σ. Due to the representation of the transmission matrix in an incomplete basis,
some singular values can get less than one, even though the corresponding states
are physically fully transmitted. This is caused by the choice of these incomplete
subsets which imposes a restriction in terms of the corresponding eigenvalues on
the states at the fiber facets, where singular vectors of 𝑡 that do not fulfill this
restriction feature a singular value less than one. Thus, we pick those singular
values 𝜍𝑖 and corresponding left and right singular vectors contained in 𝑢 and 𝑣,
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which are close to 1 up to some 𝜖, i.e. |𝜍𝑖−1| ≤ 𝜖, which we have chosen to be 10−3.
We can then construct the pseudo-inverse of the projected transmission matrix

𝑡−1 = 𝑣
(︀
𝑢†𝑡𝑣

)︀−1
𝑢† = 𝑣𝜎−1𝑢† , (2.2.43)

where (𝜎−1)𝑖𝑗 = 1/𝜍𝑖. Looking at the expression for the time-delay operator, we
notice that it further contains the derivative of the transmission matrix which also
has to be projected onto this subspace. With the projection operators onto this
subspace of left and right singular vectors of the transmission matrix, 𝑃𝑢 = 𝑢𝑢†

and 𝑃𝑣 = 𝑣𝑣†, we arrive at the following expression

𝑞 = −𝑖𝑣
(︀
𝑢†𝑡𝑣

)︀−1
𝑢†𝑢𝑢†

𝜕𝑡

𝜕𝜔
𝑣𝑣† . (2.2.44)

Apart from this method which will be used in subsection 3.1.2, we will also gen-
eralize the concept of time-delay to the concept of dependence shift in subsection
3.1.3 and apply it to a two-dimensional fiber toy model.

Coming back to the time-delay operator, its eigenstates, which are also called
principal modes, have the nice feature of being invariant to first order under a
variation of the frequency. This has been shown theoretically in [23] in case of a
𝑞-operator which contains 𝑡† rather than 𝑡−1. Due to the mentioned subunitarity of
the transmission matrix in real fiber systems, a proof for the case of 𝑡−1 has been
given in [22], where the invariance of principal modes under modal dispersion to
first order has also recently been experimentally shown in [24]. However, a more
elegant theoretical proof of this feature can be obtained by expressing the shift in
frequency for a certain mode coefficient vector at the output facet by a Taylor series
[25],

�⃗�(𝜔0 + ∆𝜔) = �⃗�(𝜔0) +
𝜕�⃗�

𝜕𝜔

⃒⃒⃒⃒
⃒
𝜔0

∆𝜔 + 𝒪(∆𝜔2)

≈ 𝑡(𝜔0)�⃗�+
𝜕𝑡(𝜔)

𝜕𝜔

⃒⃒⃒⃒
𝜔0

�⃗�∆𝜔 ,

(2.2.45)

where we have neglected terms of the order of ∆𝜔2. Furthermore, we have used
�⃗� = 𝑡�⃗� and assumed a constant frequency-independent input pattern �⃗�. Next, we
demand that our change to first order has to be parallel to our output vector at
𝜔0, i.e., they can only differ by a global amplitude and a global phase contained in
𝑧 ∈ C:

𝑡(𝜔0)�⃗� = 𝑧
𝜕𝑡(𝜔)

𝜕𝜔

⃒⃒⃒⃒
𝜔0

�⃗� . (2.2.46)

Rearranging and using 𝜏 = (𝑖𝑧∆𝜔)−1 yields the eigenvalue equation

− 𝑖𝑡−1(𝜔0)
𝜕𝑡(𝜔)

𝜕𝜔

⃒⃒⃒⃒
𝜔0

�⃗� = 𝜏 �⃗� , (2.2.47)
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where the operator on the l.h.s is just given by the time-delay operator (2.2.41).
To assign a meaning to its eigenvalues, 𝜏𝑛, we multiply the equation above again
by the transmission matrix from the left and use 𝜕�⃗�/𝜕𝜔 = 0,

𝜏 �⃗� = −𝑖 𝜕�⃗�
𝜕𝜔

⃒⃒⃒⃒
⃒
𝜔0

. (2.2.48)

Next, we decompose the output vector into a unit vector pointing in the corre-
sponding direction in the mode coefficient space, a global amplitude and a global
phase, i.e., �⃗� = 𝜓|�⃗�|𝑒𝑖𝜙, and get from Eq. (2.2.48)

𝜏𝜓|�⃗�|𝑒𝑖𝜙 = 𝜓|�⃗�| 𝜕𝜙
𝜕𝜔

⃒⃒⃒⃒
𝜔0

𝑒𝑖𝜙 − 𝑖𝜓
𝜕|�⃗�|
𝜕𝜔

⃒⃒⃒⃒
⃒
𝜔0

𝑒𝑖𝜙 . (2.2.49)

Here we have used that 𝜓(𝜔) ≈ 𝜓(𝜔0) which is justified by the 𝜔-independence of
�⃗� to first order which, together with the assumption of a frequency-independent
input pattern �⃗�, has led us to the time-delay operator in Eqs. (2.2.45)-(2.2.47).
The eigenvalue now reads

𝜏 =
𝜕𝜙

𝜕𝜔

⃒⃒⃒⃒
𝜔0

− 𝑖
𝜕 ln |�⃗�|
𝜕𝜔

⃒⃒⃒⃒
⃒
𝜔0

. (2.2.50)

From this relation, we can see that the real part of 𝜏 corresponds to the change in
the scattering phase and can be interpreted as delay time [9], whereas the imaginary
part gives the change of the transmitted intensity. Note that these derivations are
valid for 𝑞 as well as for 𝑄, where for the latter, one also has to consider incoming
states from the output facet of our fiber.
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Results

In this chapter we will apply the concepts we reviewed in the previous chapter. The
experimental limitations to millimeter-sized cross section diameters of our three-
dimensional D-shaped geometry make it numerically impossible to entirely simulate
such a system, since the number of open modes is huge. For a rod with radius
𝑟fib = 2.5 mm and a laser on wavelength 𝜆 = 553 nm, the number of open modes
can be estimated by 𝑁𝑚 = 2𝜋𝐴fib/𝜆

2 ≈ 𝒪(109) [1], where 𝐴fib is the area of the D-
shaped cross section. One possible solution to that problem is the use of a subpart
of higher excited fiber modes which correspond to the choice of a certain angle 𝜃 to
the fiber axis. Even for a few degrees, however, the number of gridpoints needed
to resolve the wavelengths of these eigenstates is huge, and thus numerically out
of reach. Furthermore, picking a subpart highly-excited modes can give rise to
problems in building localized wave packets due to the highly oscillating behavior
of these states. To be able to treat the system numerically, we thus scale it down
to the size of an actual multi-mode fiber, using 𝑟fib = 62.5 𝜇m.

For simplicity, we will also consider a two-dimensional toy model of our fiber in
a first step. In this model, two non-operator based approaches will be presented
whose poor performance lead us to operator-based approaches, which will then also
be used in the three-dimensional fully chaotic and mixed D-shaped fiber. First, we
will introduce a transformation of the time-delay operator which yields particlelike
states in the two-dimensional toy model, whereas this method lacks functionality
in the three-dimensional fiber system due to the chaoticity caused by the D-shaped
cross section. We present a generalization of the time-delay operator, though,
whose eigenstates behave in a beam-like fashion in the toy model as well as in our
D-shaped fiber. For all these methods the found states will be investigated in the
spatial domain as well as in phase space, which will give us a deeper insight into
their dynamics.

For the sake of comparison, we will then perform trajectory bundle simulations in
the three-dimensional D-shaped fiber system used in our wave simulations, where
we will find that spreading, together with the lack of interference, makes this tra-
jectory bundle approach not a suitable tool for describing waves states in such small
systems. However, in case of the experimentally available rods, the larger system
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dimensions make interference less important. Thus, the trajectory bundle approach
will serve as a good approximation and allows us to make predictions about the
behavior of wave states in such systems.

3.1 Wave Dynamics in a 2D Fiber Toy Model

In this section, we study a two-dimensional toy model in a first step since the
computations are less time consuming, and the methods stay the same, in principal.
The 𝑧-invariant transverse potential of this toy model is given by Eq. (2.2.6) and
sketched in Fig. 3.1. Because no direct comparison with an actual experimental
setup is made, we choose the fiber length more or less arbitrarily to be 𝑙fib = 100𝑟fib.
Moreover, all calculations in this section are based on the usage of the system’s 100
energetically lowest transverse modes, i.e., solutions to (2.2.5).

Figure 3.1: Sketch of the toy model potential which is given by a translational invariant
finite potential well along the 𝑧-direction.

Because of the high difference in the indices of refraction, our finite potential well
can be treated in good approximation as infinitely high. This gives us the advan-
tage to look at our problem partly analytically, since the corresponding transverse
eigenfunctions for a two-dimensional translationally invariant rectangular waveg-
uide with hard walls are given by

𝜒𝑛(𝑦) =

√︂
2

𝑑fib
sin (𝑘𝑡,𝑛𝑦) , (3.1.1)
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where 𝑘𝑡,𝑛 = 𝜋𝑛/𝑑fib, and 𝑑fib = 2𝑟fib is the diameter of the fiber. Experimentally,
obtaining particlelike states via calculating operator eigenfunctions is not necessary
since just the form of the incident wavefront is needed in order to shape it by usage
of a spatial light modulator. Hence, we have also considered two non-operator
based approaches in the following section.

3.1.1 Non-Operator-Based Approaches

Since one of the key-features of particlelike states is their spatial localization, we
first thought of minimizing a quantity which is a measure for the area occupied by
a wave, namely the spatial participation ratio (see Appendix D),

𝑃 (𝜓) =

[︀∫︀
𝑑𝑦 |𝜓(𝑦)|2

]︀2∫︀
𝑑𝑦 |𝜓(𝑦)|4

. (3.1.2)

Notice that, like the standard deviation which is a measure for the broadness of
the tails of a function, it is nonlinear and, hence, a corresponding eigenproblem
does not exist. For the minimization procedure, we decompose our initial state
into fiber modes and use the coefficient vectors at the input and output facet, �⃗�
and �⃗� = 𝑡�⃗�. Numerically, we start with a random coefficient vector and minimize
the functional 𝑃 (𝜑) +𝑃 (𝜓), which yields states that are localized at the input and
output facet as expected, but nearly completely delocalized in between. In Fig. 3.2a
one can see that the strong spatial localization causes the state to feature a broad
range of momenta, which results into a Wigner distribution spread out along the
𝑘𝑦-axis. Apart from oscillations, the spatial localization at the output facet is also
clearly visible. This effect gets even stronger if we use a higher number of modes
and, therefore, this minimization procedure is not an appropriate tool for finding
particlelike states.

In a second approach, we consider Glauber states whose defining equation is
formally given by

𝑎 |𝜓𝛼⟩ = 𝛼 |𝜓𝛼⟩ (3.1.3)

in which 𝑎 is the annihilation or lowering operator. Since this operator is infinite
dimensional in the mode basis, we cannot represent it in a finite basis, and thus we
have to use the analytical solution of (3.1.3) instead of solving the eigenproblem
numerically. In a quantum mechanical harmonic oscillator, Glauber states are the
“most classical” ones, since the expressions for the mean position and momentum are
equivalent to the classical equations of motion of a particle in a harmonic oscillator
potential. These Glauber states are of the form

|𝜓𝛼⟩ = 𝑒−
|𝛼|2
2

∞∑︁
𝑛=0

𝛼𝑛

√
𝑛!

|𝜒𝑛⟩ , (3.1.4)
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and applying the time-evolution operator using 𝜔𝑛 = 𝜔(𝑛+ 1/2) with 𝜔 being the
eigenfrequency of the oscillator shows a nice feature of these states

|𝜓𝛼(𝑡)⟩ = 𝑒−
|𝛼|2
2

∞∑︁
𝑛=0

𝛼𝑛

√
𝑛!
𝑒−𝑖𝜔𝑛𝑡 |𝜒𝑛⟩

=

[︃
𝑒−

|𝛼|2
2

∞∑︁
𝑛=0

(𝛼𝑒−𝑖𝜔𝑛𝑡)
𝑛

√
𝑛!

|𝜒𝑛⟩

]︃
𝑒−

𝑖𝜔𝑡
2

= |𝜓𝛼(𝑡)⟩ 𝑒−
𝑖𝜔𝑡
2

(3.1.5)

with 𝛼(𝑡) = 𝛼 exp(−𝑖𝜔𝑡). Since the time-evolution changes 𝛼 by the same phase
factor for every eigenstate, the Glauber state does not broaden over time which
originates from the special form of this potential for which the eigenenergies are
equidistant. We can now generalize the expression (3.1.4) for potential wells, but
since their energy levels are not equidistant, these states will not keep the minimum
uncertainty during the propagation through the system. Using the “evolution oper-
ator” exp(𝑖𝛽𝑧,𝑛𝑧) for classical waves with 𝛽𝑧,𝑛 =

√︁
𝛽2
0 − 𝛽2

𝑡,𝑛, one can show that the
value of 𝛼(𝑡) changes every eigenstate by a different phase factor since the propa-
gation constant 𝛽𝑧,𝑛 cannot be separated into a 𝑛-dependent and a 𝑛-independent
part like 𝜔𝑛 in a harmonic oscillator potential. This causes the spreading of the
generalized Glauber state as shown in Fig. 3.2b. Another problem arises from the
form of our potential: In an oscillator potential, the real and imaginary part of the
parameter 𝛼 can be associated with the mean position and mean momentum of the
wave, but having a potential well makes this association invalid.

All in all, we were not able to find particlelike states in our considered two-
dimensional system by numerically minimizing a nonlinear functional or by general-
izing the concept of Glauber states of a harmonic oscillator. In the next subsections,
we take a different approach and search for linear operators whose eigenstates show
a beam-like behavior. Finding such an operator would constitute a much easier and
more elegant way compared to the two approaches discussed in this subsection.
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(a) State with a minimized spatial participation ratio at the input and output facet, where the
high spatial localization at the facets causes complete delocalization in between due to the
broad range of contributing transverse momenta. This spatial localization and delocalization
in transverse momenta can be clearly seen in the Wigner function at the output facet displayed
in the smaller inset at the top. Note that in contrast to the following propagation plots, here
we have modified the colormap in order to make the delocalization more visible.

(b) Coherent state with 𝛼 = 10 exp(3𝑖𝜋/2) which is initially localized, but spreads due to the
non-equidistant energy levels of the potential well. In the Wigner function, one can see that
this state consists mostly of momenta around 𝑘𝑦 ≈ −0.2𝑘0, where the spreading during the
propagation causes the state to also consist of momenta around 𝑘𝑦 ≈ 0.2𝑘0 at the output
facet.

Figure 3.2: Propagation of given states through the system, where the insets show the
corresponding Wigner distribution at the output facet in which red/blue colors stand
for positive/negative values of the function.
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3.1.2 Projection of the Time-Delay Operator

In this subsection, we address the problem that the eigenstates of the time-delay
operator are just given by the fiber modes (2.2.8) in a perfect straight geometry
due to the diagonal form of the transmission matrix. To circumvent this problem
we can impose a restriction onto the transmission matrix in order to lift the degen-
eracy w.r.t. the angle 𝜃, i.e. performing a rotation into a subspace spanned by the
eigenvalues of another arbitrary Hermitian operator 𝜇

𝑡𝜇 = 𝑀 †
out𝑡𝑀𝑖𝑛 , (3.1.6)

where eigenvectors of 𝜇 are contained column-wise in 𝑀 . The subscripts stand for
the possible choices for different subsets at the input and output facet. Please note
that a rotation into a complete set of basis states is a unitary operation and does
not change the eigenstates, whereas the rotation into an incomplete subspace is not
unitary since 𝑀 †𝑀 = 1, but 𝑀𝑀 † ̸= 1. Inserting (3.1.6) into the expression for
the time-delay operator yields

𝑞𝜇 = −𝑖𝑀 †
in𝑡

−1𝑀out𝑀
†
out

𝜕𝑡

𝜕𝜔
𝑀in . (3.1.7)

However, by making a severe restriction in terms of small subsets, we also get
𝑞𝜇-eigenstates which do not fulfill this restriction and mathematically show a trans-
mission eigenvalue less than one even though they are physically fully transmitted.
To get rid of those states we just want to use those 𝑡-eigenstates, which mathe-
matically feature a transmission close to unity. However, choosing different subsets
at the input and output facet leads to the problem that our transmission matrix
is no longer quadratic, and thus we cannot perform a straight-forward inversion.
Given that 𝑀in/out consist of 𝑛in/out eigenvectors we instead utilize the singular
value decomposition method as discussed in subsection 2.2.5, construct the effec-
tive inverse of the transmission matrix and project the derivative of 𝑡 onto the “fully
transmitting” subspace of singular vectors of 𝑡:

𝑞𝜇 = −𝑖𝑣
(︀
𝑢†𝑡𝑣

)︀−1
𝑢†𝑢𝑢†

𝜕𝑡

𝜕𝜔
𝑣𝑣† . (3.1.8)

Here we have introduced the subscript 𝜇 which denotes the operator whose eigen-
basis was used for the rotation. Since this operator is quadratic, we can solve its
eigenvalue problem and get eigenvectors consisting of 𝜇-coefficients which can easily
be transformed back to mode-coefficients via

�⃗� = 𝑀in�⃗�𝜇 . (3.1.9)

Now we have all ingredients to try different operator eigenbases, where a first logical
step in the sense of spatial localization is to restrict the time-delay operator to a
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certain region in the cross section. For this purpose, we have to use the transverse
position operator for which an analytical expression can be written down in the
approximation of an infinitely high potential well,

𝑦𝑚𝑛 =

∫︁
𝑑𝑦 𝜒*

𝑚(𝑦) 𝑦 𝜒𝑛(𝑦) =
4𝑑fib [(−1)𝑚+𝑛 − 1]𝑚𝑛

𝜋2(𝑚2 − 𝑛2)2
. (3.1.10)

The eigenstates of this operator are localized peaks which get narrower the more
modes we take into account. In the limit of an infinite number of propagating
modes, they become 𝛿-peaks. One disadvantage of using this operator is that we
have to pick a subspace corresponding to a certain reasonably narrow range of 𝑦-
values manually. Depending on the choice of the subset we can get 𝑞𝑦-eigenstates
that consist of single branches as desired (see Fig. 3.3a), whereas we can also get
states that feature two branches due to the degeneracy of the delay-times with
respect to the sign of the transverse momentum (see Fig. 3.3b).

This degeneracy can be lifted by using a subset of eigenstates of the transverse
momentum operator, whose analytical expression in the mode basis in case of an
infinitely high potential well is given by

𝑘𝑦,𝑚𝑛 =

∫︁
𝑑𝑦 𝜒*

𝑚(𝑦) (−𝑖𝜕𝑦) 𝜒𝑛(𝑦) =
2𝑖 [(−1)𝑚+𝑛 − 1]𝑚𝑛

𝑑fib(𝑚2 − 𝑛2)
. (3.1.11)

As shown in Fig. 3.4, using the subset of eigenstates with 𝑘𝑦 > 0 instead of 𝑦 > 0
lifts the mentioned degeneracy and yields exclusively states with single branches
as desired. Furthermore, 𝑞𝑘𝑦 -eigenstates with a high time-delay automatically get
narrower in the direction perpendicular to the propagation direction in order to
fulfill the imposed restriction, where their width gets bigger for a smaller time-
delay. Moreover, it is experimentally easily possible to inject plane waves, i.e., 𝑘𝑦-
eigenstates, into a fiber, which makes this method more favorable compared to the
use of the 𝑦-operator. However, as we will see, in three dimensions the additional
degree of freedom causes problems since [𝑘𝑥, 𝑘𝑦] ̸= 0 due to our D-shaped cross
section which permits us to do subsequent rotations into subsets of 𝑘𝑥- and 𝑘𝑦-
eigenstates. Thus, we continue the search for other appropriate operators which
are based on the transmission matrix.



34 3.1 Wave Dynamics in a 2D Fiber Toy Model

(a) Eigenstate of 𝑞𝑦 with the highest time-delay using the subset of 𝑦 > 0, where the beam-like
behavior can be clearly seen. Note, that the choice of the subset 𝑦 > 0 yields only a single
branch as desired which results in a Wigner distribution at the output facet with a single peak
at 𝑘𝑦/𝑘0 ≈ −0.2.

(b) Eigenstate of 𝑞𝑦 with the highest time-delay using the subset of −0.6 < 𝑦/𝑟fib < 0.6.
This choice results in two branches with similar delay times due to the degeneracy w.r.t. the
sign of the transverse momentum which can also be clearly seen in the Wigner function at the
output facet in form of two peaks around 𝑘𝑦/𝑘0 ≈ ±0.2.

Figure 3.3: Propagation of given states through the system, where the insets show the
corresponding Wigner distribution at the output facet in which red/blue colors stand
for positive/negative values of the function.
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(a) Eigenstate of 𝑞𝑘𝑦 with the highest time-delay using the subset of 𝑘𝑦 > 0. The choice of
this subset lifts the degeneracy with respect to the sign of 𝑘𝑦 and results exclusively in states
with single branches. This single branch yields a Wigner distribution at the output facet which
features a single peak at 𝑘𝑦 ≈ 0.2𝑘0.

(b) Eigenstate of 𝑞𝑘𝑦 with the lowest time-delay using the subset of 𝑘𝑦 > 0, where the small
𝑞𝑘𝑦 -eigenvalue results in a small transverse momentum. Again, the choice of this subset yields
a state consisting of a single branch which shows up in the Wigner distribution in form of a
single peak, but the restriction 𝑘𝑦 > 0 at the input and output facet allows broader transverse
profiles for smaller delay times.

Figure 3.4: Propagation of given states through the system, where the insets show the
corresponding Wigner distribution at the output facet in which red/blue colors stand
for positive/negative values of the function.
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3.1.3 Introducing the Dependence Shift (DEFT) Operator

In this subsection, we introduce the dependence shift (DEFT) operator as a gen-
eralization of the Wigner-Smith time-delay operator by replacing the derivative
w.r.t. 𝜔 by the derivative w.r.t. an arbitrary continuous parameter 𝜉, i.e.

𝐷 = −𝑖𝑆†𝜕𝑆

𝜕𝜉
. (3.1.12)

As shown in subsection 2.2.5, the eigenstates of this operator are then stable under
a variation of this parameter to first order instead of the frequency 𝜔. The next
important task is the choice of an appropriate continuous parameter. For this we
recall, that the 𝜔-derivative leads to states with a certain propagation time. Since
time and frequency are conjugate quantities, we use the derivative w.r.t. the fiber
position in order to get states with a well-defined difference in momenta at the input
and output facet in the shift direction. As we will show later, shifting the fiber in the
transverse direction will result in states that stay collimated during the propagation
through the system in order to have a well-defined transverse momentum difference.
Moreover, we again restrict ourselves to the use of the transmission matrix and
introduce the operator

𝑑 = −𝑖𝑡† 𝜕𝑡
𝜕𝜉

, (3.1.13)

where 𝜉 now denotes the shift of the fiber’s position into a certain direction. In order
to show that 𝑑-eigenstates correspond to well-defined momentum differences, we
assume a small fiber displacement in the 𝑟-direction such that we can approximate
the differential by the finite-difference quotient

𝜕𝑡

𝜕𝜉
≈ 𝑡(𝜉0 + ∆𝜉) − 𝑡(𝜉0)

∆𝜉
, (3.1.14)

where 𝑡(𝜉0) is the unshifted transmission matrix. To get the shifted transmission
matrices, we make use of the translation operator

𝑡(𝜉0 + ∆𝜉) = 𝑒−𝑖�⃗�·𝑟Δ𝜉 𝑡(𝜉0) 𝑒
+𝑖�⃗�·𝑟Δ𝜉

=
[︁
1− 𝑖 �⃗�·𝑟∆𝜉 + ...

]︁
𝑡(𝜉0)

[︁
1 + 𝑖 �⃗�·𝑟∆𝜉 − ...

]︁
= 𝑡(𝜉0) − 𝑖∆𝜉 �⃗�·𝑟 𝑡(𝜉0) + 𝑖∆𝜉 𝑡(𝜉0) �⃗�·𝑟 + 𝒪(∆𝜉2) .

(3.1.15)

Putting everything together, neglecting terms of 𝒪(∆𝜉2) and writing 𝑡(𝜉0) = 𝑡 for
simplicity, we arrive at

𝑑 = −
(︁
𝑡†�⃗�·𝑟 𝑡− �⃗�·𝑟

)︁
. (3.1.16)

Note that this proof is entirely based on operators which are not represented in
any basis. To assign a meaning to its eigenvalues we consider an input vector �⃗� in
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mode basis and build the expectation value

�⃗� †𝑑 �⃗� = −
(︁
𝑡�⃗�
)︁†
�⃗�·𝑟
(︁
𝑡�⃗�
)︁

+ �⃗� †�⃗�·𝑟 �⃗�

= −⟨�⃗�·𝑟⟩out + ⟨�⃗�·𝑟⟩in .
(3.1.17)

Bear in mind that the transmission matrix relates flux coefficients and hence the
eigenvalues are not the physical momenta of our wave states. For simplicity, how-
ever, we will speak of momentum differences and denote the 𝑑-eigenvalue as 𝛿𝜅.
Since our system features translational invariance along 𝑧, shifting in this direction
will maintain the diagonal structure of the transmission matrix which yields the
fiber modes as 𝑑-eigenstates. Thus, we shift the fiber in the transverse direction,
where states with a high |𝛿𝜅| show a beam-like behavior since they are restricted
to a small range of transverse momenta in order to have a well-defined momentum
difference between the input and output facet, much analogous to the grouping
of trajectories with similar delay times in case of particlelike states found by the
time-delay operator [11]. States with a smaller |𝛿𝜅| in turn feature less well-defined
transverse momenta at the fiber facets and are thus generally not particlelike.

To obtain the shifted transmission matrices in Eq. (3.1.14) numerically, we shift
the entire fiber for the distance of one transverse (e.g., 𝑦-direction for the two-
dimensional toy model) gridpoint while keeping the input the same, which intro-
duces a certain amount of mode mixing whose degree is determined by the matching
of the modes and their derivatives at the input and output facets very similar to
transfer matrix-concepts. Like in [22], we will neglect the small amount of reflection
occurring at the fiber facets, which avoids the problem of solving a set of equations
via matrix inversion, where the matrix which has to be inverted is highly singular
due to the small amount of mode mixing. Denoting a region left/right of the input
facet with the superscript 𝐿/𝑅 we have to ensure the continuity of the transverse
electric field at the interface 𝑧 = 0[︃∑︁

𝑛

𝑓𝐿
𝑛 𝑒

𝑖𝛽𝐿
𝑧,𝑛𝑧𝜒𝐿

𝑛(�⃗�)

]︃
𝑧=0

=

[︃∑︁
𝑛

𝑓𝑅
𝑛 𝑒

𝑖𝛽𝑅
𝑧,𝑛𝑧𝜒𝑅

𝑛 (�⃗�)

]︃
𝑧=0

, (3.1.18)

where the coefficients 𝑓𝐿,𝑅
𝑛 already contain the longitudinal normalization factor.

Also note that we have replaced the transverse coordinate 𝑦 by the vector �⃗� in the
transverse plane since this calculation will also be used in the three-dimensional
fiber system. Multiplication of Eq. (3.1.18) by 𝜒𝑅*

𝑚 (�⃗�), integrating over the consid-
ered fiber cross section, and using the orthogonality relation (2.2.10) of the trans-
verse fiber modes gives us the relation

𝑓 𝑅 = 𝑂𝑓 𝐿 , (3.1.19)

where 𝑂 is the overlap or coupling matrix between the transverse fiber modes whose
elements read

𝑂𝑚𝑛 =

∫︁
𝑑2𝑟 𝜒𝑅*

𝑚 (�⃗�)𝜒𝐿
𝑛(�⃗�) . (3.1.20)
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The same arguments apply to the output facet and, together with the unshifted
transmission matrix 𝑡 which is diagonal in mode basis, we can get the shifted
transmission matrices by

𝑡± = 𝑂†
±𝑡𝑂± , (3.1.21)

where +/− denotes the shifting in positive/negative 𝑟-direction in the transverse
plane. The dependence shift operator for transverse shifting in our two-dimensional
toy model is thus given by

𝑑𝑦 = −𝑖𝑡−1 (𝑡+ − 𝑡−)

2∆𝑦
, (3.1.22)

where we have used a central difference approximation for the continuous derivative,
with ∆𝑦 being the spacing between two transverse gridpoints.

In Fig. 3.5a and 3.5b eigenstates with the highest and second highest eigenvalue
𝛿𝜅 are shown. Due to their well-defined transverse momentum difference between
the input and output facet, these states stays collimated during the propagation
through the system, where the sign of the eigenvalue corresponds nicely to the re-
lation found in (3.1.16). Furthermore, similar to the 𝑞-eigenstates the 𝑑-eigenstates
feature a quantization in the direction perpendicular to the beam propagation (see
Fig. 3.5b). The origin of this quantization has not yet been fully understood and is
subject of current research [26]. In Fig. 3.6a also an eigenstate with a small 𝛿𝜅 is
shown, where one can see the complete delocalization in position as well as in mo-
mentum space. An eigenstate with 𝛿𝜅 ≈ 0 features several branches (see Fig. 3.6b)
whose sum of transverse momenta is close to zero at the input facet as well as at
the output facet.

As we have shown in subsection 2.2.5, the time-delay eigenstates are invariant
under a frequency change to first order. The DEFT-eigenstates we generated,
however, are by construction invariant to first order under a transversal shift of the
entire fiber. Regarding pulse transmission, we will also investigate the frequency
dependence of the particlelike 𝑑-eigenstates by calculating the spectral correlation
function which is a measure for the change of a given state dependent on a change
of the initial frequency. Given our coefficient vector in the mode basis at the input
facet, �⃗�, the corresponding coefficient vector at the output facet is �⃗�(𝜔) = 𝑡(𝜔)�⃗�.
Note that in general, also the shape of the fiber modes and thus the coefficient vector
depends on 𝜔, but a slight change in frequency, i.e., in the height of the potential
well, changes the shape of the fiber modes in a negligible way, which enables us to
use �⃗� ̸= �⃗�(𝜔). The spectral correlation function for a frequency detuning of ∆𝜔
reads

𝐶(∆𝜔) =

⃒⃒⃒
�⃗�(𝜔0 + ∆𝜔) · �⃗�(𝜔0)

⃒⃒⃒
⃒⃒⃒
�⃗�(𝜔0 + ∆𝜔)

⃒⃒⃒
·
⃒⃒⃒
�⃗�(𝜔0)

⃒⃒⃒ . (3.1.23)
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(a) Eigenstate of 𝑑 with the highest momentum difference 𝛿𝜅 between the input and output
facet which behaves in a beam-like fashion and features a Wigner function at the output facet
with a single peak at 𝑘𝑦/𝑘0 ≈ −0.2.

(b) Eigenstate of 𝑑 with the second highest momentum difference 𝛿𝜅 between the input and
output facet which is also localized in phase space at 𝑘𝑦/𝑘0 ≈ −0.2. Moreover, a quantization
transverse to the direction of the beam propagation can be seen, which has also been observed
for particlelike states formed by the time-delay operator.

Figure 3.5: Propagation of given states through the system, where the insets show the
corresponding Wigner distribution at the output facet in which red/blue colors stand
for positive/negative values of the function.
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(a) Eigenstate of 𝑑 with a small momentum difference 𝛿𝜅 between the input and output facet
which is completely delocalized in position space as well as in momentum space.

(b) Eigenstate of 𝑑 with the smallest momentum difference 𝛿𝜅 between the input and output
facet. Since 𝛿𝜅 is nearly zero, this state consists of several branches whose sum of transverse
momenta approximately cancel each other out at each fiber facet. These branches also show
up in the Wigner function, where they have to be symmetric around 𝑘𝑦 = 0 in order to feature
a transverse momentum at the output facet which is approximately zero.

Figure 3.6: Propagation of given states through the system, where the insets show the
corresponding Wigner distribution at the output facet in which red/blue colors stand
for positive/negative values of the function.



Chapter 3 Results 41

In Fig. 3.7 one can see the mean correlation function of fiber modes, random states
and particlelike eigenstates of the DEFT-operator. Fiber modes have an infinitely
broad correlation due to the lack of mode mixing, whereas the correlation of ran-
dom states decays rapidly. Compared to the latter, the DEFT-eigenstates show
a very broad correlation which opens up the possibility to inject particlelike time-
dependent pulses consisting of a certain frequency composition into our fiber, where
the usage of a broader frequency spectrum would result in pulses that are tempo-
rally more localized. Even more important is the fact that this 𝜔-invariance makes
it possible to transmit arbitrary temporal pulse shapes through the system. Fur-
thermore, the spectral correlation of time-delay eigenstates is also shown in Fig. 3.7.
Since these eigenstates are by construction invariant to first order under a frequency
shift, they are overall better correlated than our particlelike DEFT-eigenstates.

Figure 3.7: Mean correlation function all fiber modes (red curve), the ten best 𝑑-
eigenstates with the highest |𝛿𝜅| (blue curve), the ten 𝑞𝑘-eigenstates with the highest
time-delay fulfilling the restriction 𝑘𝑦 > 0 at the input and output facet (black curve),
and thousand random states (green curve). Here one can see, that the modes feature
an infinitely broad correlation function, whereas the correlation function of random state
decays rapidly. Moreover, the 𝑞𝑘-eigenstates feature an overall larger correlation width
compared to the 𝑑-eigenstates, where the latter are slightly better correlated in the
range −0.0075 < ∆𝜔/𝜔0 < 0.0075.
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3.1.4 Impact of Imperfections

As we have seen in the last subsection, the fiber modes have an infinite spectral
correlation, but adding imperfections to the fiber could destroy that feature and
make our DEFT-eigenstates a better choice for sending pulses through a fiber. Note
that in the presence of scattering elements, one could also use the concept of the
Wigner-Smith time-delay operator, where the eigenstates are by construction in-
variant under a slight frequency shift to first order. However, the construction of
the time-delay operator requires phase-coherent measurements of the transmission
matrix for different frequencies, whereas the subclass of DEFT introduced in sub-
section 3.1.3 is based on shifting the entire fiber while keeping the frequency the
same which is experimentally more easily realizable in certain cases. Furthermore,
the application of DEFT for finding particlelike wavefronts in scattering systems is
also a nice demonstration of this method in more realistic systems even though the
concept of time-delay might also work. Moreover, the particlelike DEFT-eigenstates
are by construction invariant to a shift, e.g. a vibration, of the entire system in the
chosen direction to first order.

The scattering matrix in such an imperfect system is calculated via the Fisher-
Lee relations (2.2.32) and (2.2.33), where we use a code which is based on the
modular recursive Green’s function method. We will again assume an infinitely high
potential for the walls of our potential well, as well as for the two added scatterers
of circular shape (see Fig. 3.8). In this system, the transmission matrix is no
longer unitary and thus we replace 𝑡† by 𝑡−1 in the definition (3.1.13) of the DEFT-
operator. Since we want particlelike states that propagate through the system
without getting back-reflected, we again utilize a singular value decomposition to
pick out those 𝑡-eigenstates which feature a transmission close to unity. Similar to
the representation of the time-delay operator in the subspace of fully transmitting
states (see subsection 2.2.5), the DEFT-operator reads

𝑑 = −𝑖𝑣
(︀
𝑢†𝑡𝑣

)︀−1
𝑢†𝑢𝑢†

𝜕𝑡

𝜕𝜉
𝑣𝑣† , (3.1.24)

where 𝜉 stands for a shift of the whole scattering region including the scatterers in
the transverse direction. Please note, that the leads outside the scattering region
do not get shifted. As shown in Fig. 3.8, eigenstates of this operator with a high
|𝛿𝜅| are fully transmitted and furthermore feature a beam-like behavior like the
eigenstates of the time-delay operator

𝑞 = −𝑖𝑣
(︀
𝑢†𝑡𝑣

)︀−1
𝑢†𝑢𝑢†

𝜕𝑡

𝜕𝜔
𝑣𝑣† (3.1.25)

shown in Fig. 3.9. Note, that we have used a system whose scattering region is 3𝑑fib

long in order to reduce the numerical effort, where the length of each lead is 𝑑fib.
This demonstrates, that besides the concept of time-delay, the concept of DEFT also
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applies to systems with scattering regions. Furthermore, our particlelike DEFT-
eigenstates show a better spectral correlation in the range −0.0025 < ∆𝜔/𝜔0 <
0.0025 than the best correlated fiber modes (see Fig. 3.10), where the time-delay
eigenstates are by construction invariant under a slight frequency shift and thus they
feature a slightly broader correlation function compared to the DEFT-eigenstates
as expected.

Figure 3.8: Propagation of four particlelike DEFT-eigenstates with a high |𝛿𝜅|. These
states have been obtained by shifting the whole scattering region including the scatterers
(white circles) in the transverse direction. As in the perfect fiber without scatterers, we
observe a quantization perpendicular to the direction of the beam propagation.

Figure 3.9: Propagation of two particlelike 𝑞-eigenstates with a high time-delay.
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Figure 3.10: Mean correlation function of the ten best correlated fiber modes (red curve),
the ten best 𝑑-eigenstates with the highest |𝛿𝜅| (blue curve), the ten 𝑞-eigenstates with
the highest delay time (black curve) and thousand random states (green curve) in a
scattering system. As expected, the time-delay eigenstates are slightly better correlated
than our particlelike DEFT-eigenstates, where both of them feature a better correlation
in the range −0.0025 < ∆𝜔/𝜔0 < 0.0025 than the best correlated fiber modes.
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3.2 Wave Dynamics in a 3D D-Shaped Fiber
In this section we generalize the concepts found in the previous section to a three-
dimensional, D-shaped geometry. Unlike in our two-dimensional toy model, we now
also take into account the experimental limitations, i.e., we set 𝑙fib = 80𝑟fib, 𝛾 = 0.44
or 𝛾 = 1.05 and use 400 modes calculated around a given angle which determines
the transverse energy. This angle depends on the injection angle 𝜃 which we set
to a value for which a wave undergoes approximately 𝑛 = 5 reflections during the
propagation. With the mean free path of trajectories 𝑙mfp = 𝜋𝑟fib/2 the angle 𝜃
with respect to the optical axis can be estimated via

𝜃 = arctan

(︂
𝑛𝑙mfp

𝑙fib

)︂
≈ 5∘ . (3.2.1)

In a completely chaotic system, this number of bounces should be sufficient to
reach a non-trivial regime, whereas in mixed systems states can undergo many
more bounces due to the regular islands in the PSS. Moreover, with (2.2.18) as
well as with (2.2.17), we find that 𝜏𝐻/𝜏𝐸 ≈ 𝒪(101), and thus, the Ehrenfest time
will keep its role as the limiting factor for propagation times (lengths). Bear in
mind that the small spatial extent of our wave states due to the small system
dimensions can cause a fairly large amount of spreading which is not included in
the trajectory-based definition of the Ehrenfest time (2.1.12). However, considering
this effect would yield even smaller Ehrenfest times resulting in a greater value of
𝜏𝐻/𝜏𝐸.

3.2.1 Generalizing the Projection Procedure

Here, we will generalize the procedure in subsection 3.1.2, where we will explicitly
demonstrate the difficulties that arise due to the increased dimensionality, which
yields an additional degree of freedom. Together with our D-shaped cross section,
this causes our transverse fiber modes not to be separable in 𝑥 and 𝑦, in contrast
to the eigenfunctions of Eq. (2.2.5), with an infinitely high rectangular potential,
𝜒𝑛𝑚(�⃗�) = 𝜒𝑛(𝑥)𝜒𝑚(𝑦). This non-separability causes our operators not to commute,
i.e. [𝑥, 𝑦] ̸= 0 and [𝑘𝑥, 𝑘𝑦] ̸= 0, and hence we cannot find a common eigenbasis.
Thus, doing two subsequent rotations into a 𝑘𝑥- and a 𝑘𝑦-subset destroys the effect
of the first of the two transformations, and gives bad results. In a perfectly circular
infinitely high potential well, however, the eigenstates of (2.2.5) are separable into 𝑟
and 𝜙 components, which would enable us to do subsequent rotations into subsets
of the radial momentum operator (𝑘𝑟) and the angular momentum operator (𝐿)
eigenstates, but since we are interested in non-integrable phase spaces, we have to
avoid doing more than one subspace rotation.

Being forced to use just one subspace rotation means that we have to find a single
suitable operator to work with. One possible choice would be a momentum operator
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in an arbitrary direction 𝑘𝛼 = cos(𝛼)𝑘𝑥 + sin(𝛼)𝑘𝑦, but besides picking a certain
subset at the input and output facet, we furthermore have to choose the angle 𝛼
which determines the propagation direction of our states in the transverse plane.
Another possible choice would be the operator 𝑘𝜙 = 𝐿/𝑟, but the best results in
terms of particlelike states have been achieved by rotating the transmission matrix
into a (incomplete) subspace of eigenstates of the angular momentum operator

𝐿 = �⃗� × �⃗� = 𝑥𝑘𝑦 − 𝑦𝑘𝑦 . (3.2.2)

Like in subsection 2.2.5, this transformation is given by

𝑡𝐿 = ℒout𝑡ℒin , (3.2.3)

where ℒin/out contains the subsets of 𝐿-eigenstates used for the rotation at the
input and output facet. We construct the effective inverse of 𝑡𝐿 again by using the
mathematically “fully transmitting” singular vectors of 𝑡𝐿, which fulfill the choice
of eigenvalues corresponding to the chosen subsets ℒin/out at the fiber facets. Last,
we project the frequency-derivative of the transmission matrix onto this subspace
of singular vectors and get

𝑞𝐿 = −𝑖𝑣
(︀
𝑢†𝑡𝑣

)︀−1
𝑢†𝑢𝑢†

𝜕𝑡

𝜕𝜔
𝑣𝑣† . (3.2.4)

However, we have to make a more severe restriction than 𝐿 > 0 at the input and
output facet in order to get reasonable results. For our two-dimensional toy model,
we have used a subset of 𝑘𝑦-eigenstates whose eigenvalues are conserved up to a
sign. Considering our three-dimensional fiber now, we have emphasized in section
2.1.1 that the reason for the chaoticity of the D-shaped cross section lies in the fact
that we have more degrees of freedom than conserved quantities. Since 𝐿 and |𝐿|
are only conserved in integrable geometries such as the full and the half circle, this
could be responsible for the inferior performance (compare Figs. 3.11 and 3.4) of
this method compared to its usage in our toy model.

In Fig. 3.11 the 𝑞𝐿-eigenstate with the highest time-delay is shown, where we have
used a subset which corresponds to eigenvalues 𝐿 > 0.7𝐿max for the rotation at the
input and output facet. This state behaves particlelike despite the underlying fully
chaotic phase space, where it also exhibits a certain amount of refocusing caused
by the partly convex shape of our cross section. This refocusing is visible in the last
propagation snapshot in Fig. 3.11 in form of a “bent” intensity distribution which
also causes a more elongated Husimi distribution at the boundary due to the larger
number of momentum values contributing to that state.

Another disadvantage is that in mixed geometries with 1 < 𝛾 < 2 most particle-
like 𝑞𝐿-eigenstates are given by whispering gallery type states like the one shown
in Fig. 3.12, which tends to conserve the angular momentum best. This, however,
is a major drawback of this method since these 𝑞𝐿-eigenstates occupy the outer
PSS regions corresponding to a larger ratio 𝐿/𝐿max, where it would be desirable to
address the larger inner islands on which a wave state could fit on more easily.
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Figure 3.11: Top: Propagation snapshots for nine equidistant 𝑧-values (from the input
facet at the top left to the output facet at the bottom right) of the 𝑞𝐿-eigenstate with
the highest time-delay in a fiber with 𝛾 = 0.44 and 𝑙fib = 80𝑟fib, where we have used the
subset of states with 𝐿 > 0.7𝐿max at the input and output facet. In the last diagram
one can see the effect of refocusing in form of a “bent” intensity distribution. Bottom:
Corresponding mean Husimi distribution, where the underlying red dots represent the
classical (fully chaotic) phase space. Here, the refocusing is visible in form of more
elongated Husimi distributions at 𝜙/𝜙max ≈ ±0.5.
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Figure 3.12: Top: Propagation snapshots for nine equidistant 𝑧-values (from the input
facet at the top left to the output facet at the bottom right) of the 𝑞𝐿-eigenstate
with the highest time-delay in a fiber with 𝛾 = 1.05 and 𝑙fib = 80𝑟fib, where we have
used the subset of states with 𝐿 > 0.7𝐿max at the input and output facet. Bottom:
Corresponding mean Husimi distribution, where the underlying red dots represent the
classical (mixed) phase space. This 𝑞𝐿-eigenstate is a whispering gallery type state which
travels along the curved part of the boundary which causes its Husimi distributions to
be located at large ratios 𝐿/𝐿max.
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3.2.2 Finding Island States via the DEFT-Operator

In subsection 3.1.3, we have introduced the DEFT-operator as a generalization
of the time-delay operator, where the arbitrary parameter of the derivative has
been chosen to be the fiber position. In three dimensions, shifting the fiber in
the transverse plane opens a lot of possibilities, but looking at the different shift-
ing directions we found that we get the best particlelike DEFT-eigenstates, if we
displace the fiber along its symmetry axis in the transverse plane, i.e., the 𝑥-axis
(see Fig. 2.1), accordingly, we will denote the corresponding DEFT-operator as 𝑑𝑥.
The reason for that lies in classical periodic orbits which are using the system’s
symmetry to return to their initial positions which yields a higher chance that
the trajectory’s transverse momentum at the output facet will be the negative of
its initial value compared to other orbits which are not located on PSS islands.
Regarding the DEFT-eigenstates, this results in a large |𝛿𝜅| and a particlelike be-
havior of the corresponding eigenstate whose Husimi distribution will be located
on those classical PSS islands. Thus, shifting along the system’s symmetry axis is
generally beneficial for finding particlelike DEFT-eigenstates, whereas in our case
of short fibers with 𝑙fib = 80𝑟fib, we also get good results when shifting the fiber
in an arbitrary direction. Also note that using the system’s symmetry will lead to
states that feature the same symmetry.

Shifting the fiber along the 𝑥-axis (see Fig. 2.1), we find states which correspond
to classical periodic orbits amongst the best 𝑑𝑥-eigenstates, even in a completely
chaotic system without any phase space structure (see Fig. 3.13 and Fig. 3.14).
This is caused by the comparably short propagation lengths of 𝑙fib = 80𝑟fib, where
in the case of longer fibers these states disappear from the 𝑑𝑥-spectrum, since their
momentum difference tends to zero due to the chaoticity of the system.

In a system with a classically mixed phase space, the situation changes since the
phase space partly consists of stable islands. Once a state is placed on such islands,
it can just escape via dynamic tunneling which is exponentially suppressed, i.e., the
tunnel probability is proportional to 1 − exp(−𝜁𝑧) with a certain tunneling rate 𝜁
[27]. The latter can be written as 𝜁 ∝ exp (−𝐶𝒜), where 𝒜 = 𝒜(𝑘0) is the area
of a phase space island and 𝐶 > 0 is some system-dependent constant. Note that
we have set ℎ = 1 in the expression for 𝜁 in [27] due to the treatment of classical
waves. Since 𝒜(𝑘0) is huge compared to 1 even in our treated fiber system, we do
not expect to see any effects of dynamic tunneling. Thus, for such short propagation
lengths a state is trapped on those islands, which ensures a well-defined momentum
difference between the input and output facet. Again, looking at the 𝑑𝑥-eigenstates
with the highest |𝛿𝜅|, we find states that occupy phase space islands and accordingly
“survive” many more reflections as compared to their counterparts in completely
chaotic systems. In Figs. 3.15-3.17 three of those particlelike 𝑑𝑥-eigenstates which
correspond to classical, periodic orbits are shown. Since the central island is large
compared to the other ones, the spectrum of 𝑑𝑥 contains a lot of states similar to
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the one in Fig. 3.15, which just differ in form of a quantization in the direction
perpendicular to the propagation direction. We already observed this quantization
in our two-dimensional toy model (see Fig. 3.5a and 3.5b). Interestingly, we get
eigenstates like the one shown in Fig. 3.16 together with a similar one which is
located at the outer region, i.e. at larger ratios 𝐿/𝐿max, of these four PSS islands,
but we have not observed a state whose Husimi distributions are located directly
in the centers of these islands. The reason for this could be the so called Goos-
Hänchen effect, where linearly polarized light undergoes a small lateral shift when
totally internally reflected, where the amount of lateral displacement depends on
the reflection angle. Since this effect is a pure wave phenomenon, it is not accounted
for in the calculation of the classical phase space which could explain the observed
discrepancy.
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Figure 3.13: Top: Propagation snapshots for nine equidistant 𝑧-values (from the input
facet at the top left to the output facet at the bottom right) of a 𝑑𝑥-eigenstate with
a high |𝛿𝜅| in a fiber with 𝛾 = 0.44 and 𝑙fib = 80𝑟fib. Bottom: Corresponding mean
Husimi distribution, where the underlying red dots represent the classical (fully chaotic)
phase space. Despite the absence of phase space islands, this state follows a classical,
unstable, periodic orbit, i.e. it is a scar, which results in localized Husimi distributions.



52 3.2 Wave Dynamics in a 3D D-Shaped Fiber

Figure 3.14: Top: Propagation snapshots for nine equidistant 𝑧-values (from the input
facet at the top left to the output facet at the bottom right) of another 𝑑𝑥-eigenstate
with a high |𝛿𝜅| in a fiber with 𝛾 = 0.44 and 𝑙fib = 80𝑟fib. Bottom: Corresponding
mean Husimi distribution, where the underlying red dots represent the classical (fully
chaotic) phase space. This state is also a scar, i.e. it also follows a classical, unstable,
periodic orbit, which again results in localized Husimi distributions.
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Figure 3.15: Top: Propagation snapshots for nine equidistant 𝑧-values (from the input
facet at the top left to the output facet at the bottom right) of a 𝑑𝑥-eigenstate with
a high |𝛿𝜅| in a fiber with 𝛾 = 1.05 and 𝑙fib = 80𝑟fib. Bottom: Corresponding mean
Husimi distribution, where the underlying red dots represent the classical (mixed) phase
space. This state corresponds to the two-bounce orbit in Fig. 2.2 indicated by the red
line and due to its form it has no angular momentum when it hits the curved part of
the boundary at 𝑦 = 0 and 𝑥 = 𝑟fib which yields a mean Husimi distribution localized
at the central PSS island.
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Figure 3.16: Top: Propagation snapshots for nine equidistant 𝑧-values (from the input
facet at the top left to the output facet at the bottom right) of another 𝑑𝑥-eigenstate
with a high |𝛿𝜅| in a fiber with 𝛾 = 1.05 and 𝑙fib = 80𝑟fib. Bottom: Corresponding
mean Husimi distribution, where the underlying red dots represent the classical (mixed)
phase space. This state corresponds to the periodic orbit in Fig. 2.2 indicated by the
blue line which yields a mean Husimi distribution localized at the second largest PSS
islands.
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Figure 3.17: Top: Propagation snapshots for nine equidistant 𝑧-values (from the input
facet at the top left to the output facet at the bottom right) of another 𝑑𝑥-eigenstate
with a high |𝛿𝜅| in a fiber with 𝛾 = 1.05 and 𝑙fib = 80𝑟fib. Bottom: Corresponding mean
Husimi distribution, where the underlying red dots represent the classical (mixed) phase
space. Like in the previous two Figures, also this state corresponds to a periodic orbit
which again yields a mean Husimi distribution localized at some smaller PSS islands.
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Again, we also look at the spectral correlation of the particlelike 𝑑𝑥-eigenstates
which is calculated via (3.1.23). In the completely chaotic fiber with 𝛾 = 0.44,
as well as in the mixed cased 𝛾 = 1.05, the ten best 𝑑𝑥-eigenstates, i.e. with the
highest |𝛿𝜅|, show a broader spectral correlation than the average of thousand
random states, where the 𝑞𝐿-eigenstates are again better correlated than the DEFT-
eigenstates since they are by construction invariant under a 𝜔-shift to first order.
The modes show an infinitely broad correlation as already mentioned in chapter
3.1.3. Also note the faster decrease of the correlation function for a fiber with
𝛾 = 1.05. Since the area of the cross section of this system is smaller compared to
the one with 𝛾 = 0.44, it has a larger energy-level spacing, which causes a given state
to decorrelate faster for a slight frequency change. However, comparing Fig. 3.7 and
Fig. 3.18, we observe a much more pronounced difference in the correlation between
the DEFT-eigenstates and random states in the two-dimensional case, whereas the
underlying reason for the less pronounced difference in three dimensions has not
yet been found.

Figure 3.18: Mean correlation function of all fiber modes (red curve), the ten best 𝑑𝑥-
eigenstates with the highest |𝛿𝜅| (blue curve), the ten 𝑞𝐿-eigenstates with the highest
time-delay fulfilling the restriction 𝐿 > 0.5𝐿max in the chaotic fiber or 𝐿 > 0.7𝐿max

in the mixed fiber at the input and output facet, and thousand random states (green
curve) for a system with 𝛾 = 0.44 (left) and 𝛾 = 1.05 (right). Here one can see, that
the DEFT-eigenstates feature a broader correlation function compared to the random
states, whereas the time-delay eigenstates show an even stronger spectral correlation
due to their 𝜔-invariance to first order.
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3.3 Classical Dynamics in a 3D D-Shaped Fiber

In this section we, investigate the behavior of trajectory bundles in the fiber sys-
tem discussed in section 3.2 in order to make a comparison to the found DEFT-
eigenstates and to see, if this approach allows predictions of the dynamics of wave
states. Since we are using Gaussian shaped bundles we have to choose a reasonable
standard deviation in order to make it comparable to the found DEFT-eigenstates.
The initial standard deviation of the states in Fig. 3.13 (here we just use one of
the two branches) and Fig. 3.15 is

√︀
𝜎2
𝑠 + 𝜎2

𝑙 ≈ 15 𝜇m which is quite sizable as
compared to the system’s radius 𝑟fib = 62.5 𝜇m.

To make the trajectory simulations more comparable to the wave states we look
at the standard deviations of these DEFT-eigenstates along their principle axes
and pick the smaller one such that our Gaussian bundles do not exceed the extent
of the wave states (see Fig. 3.19). This yields values of 𝜎𝑠 ≈ 5 − 8 𝜇m, where we
choose the lower value, i.e. 𝜎0 = 5 𝜇m, in order to ensure that our bundles are
smaller than each of our wave states.

𝜎𝑙 𝜎𝑠

Figure 3.19: Sketch of the approximate shape of a particlelike DEFT-eigenstate or one
of its branches (gray ellipse) with its standard deviations 𝜎𝑙/𝜎𝑠 along its longer/shorter
principal axis indicated. Since the standard deviation

√︀
𝜎2
𝑙 + 𝜎2

𝑠 ≈ 15 𝜇m is quite
sizable as compared to the system radius, we just use 𝜎0 = 𝜎𝑠 ≈ 5 𝜇m for our Gaussian
(red circle).

For the search of particlelike trajectory bundles, we use a discrete grid in the 𝑥𝑦-
plane for the positions from which the trajectories are launched combined with
varying the angle 𝜙 in finite steps for every gridpoint and let the bundles propagate
while monitoring their spread in terms of calculating their standard deviation for
every propagation step. Depending on the value of 𝛾 = 𝑟cut/𝑟fib, the number of
injected trajectory bundles ranges from 2 · 103 to 4 · 103. Next, we have to specify a
criterion for states to be counted as particlelike, where we have chosen this criterion
to be

𝑤 = 2𝜎 < 𝑟fib . (3.3.1)

Applying this to a system with 𝛾 = 0.44 yields the result shown in Fig. 3.20a,
where one can see that the value of the mean Ehrenfest length does not serve as
a good approximation for the limitation of propagation lengths. This is mainly
caused by spreading which does not enter the definition (2.1.12) of the Ehrenfest
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time. Together with the chaoticity of the system, we observe a rapid decrease in the
number of particlelike bundles, as expected. In the right diagram of Fig. 3.20a, we
can see the evolution of the bundle spreads dependent on the propagation length:
At the input facet (𝑙prop = 0) all bundles have the same initial width, where they
rapidly spread out for short propagation length mainly due to spreading and reach
the saturated regime caused by the boundedness of the system. Looking at some of
the bundles which lie in the red region in the left diagram of Fig. 3.20a, we notice
that due to the shallow injection angle of 𝜃 = 5∘ they undergo just two bounces on
average, where for 𝑙fib = 80𝑟fib none of these states have survived.

Next, we examine the case of a fiber with 𝛾 = 1.05 in which the phase space
islands could help the trajectory bundles to stay collimated. Comparing Fig. 3.20a
to Fig. 3.20b in which the number of particlelike bundles and the evolution of
bundle-spreads are shown, we notice that the former decays much more slowly due
to the mixed phase space structure. Looking at the most collimated states for
𝑙fib = 80𝑟fib, we find that they are exclusively states that occupy the central island,
where two of these states are shown in Fig. 3.21. Due to the rapid spreading the
bundles only fit on this island, which is the largest.

Comparing these results to the found particlelike DEFT-eigenstates in subsection
3.2.2, we find that for such small geometries the trajectory bundle approach is not
a valid tool for predicting the behavior of waves. This is mainly caused by the
lack of interference which gets more and more important the smaller a bundle is
compared to the wavelength of light. In other words, interference will not play such
an important role in larger geometries like the experimentally available rod-systems
treated in the following section in which case the trajectory bundle approach will
serve as a good approximation for describing the dynamics of wave states.
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(a) Fiber system with the ratio of fiber cut over fiber radius 𝛾 = 𝑟cut/𝑟fib = 0.44: In the left
diagram one can see the fast decrease of number of particlelike bundles, where the distribution
of spreads in the right diagram also shows a fast transition to the saturated regime caused by
the boundedness of the system.
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(b) Fiber system with the ratio of fiber cut over fiber radius 𝛾 = 𝑟cut/𝑟fib = 1.05: In the
left diagram one can see a slower decrease of the number of particlelike bundles compared
to the chaotic system, where the distribution of spreads in the right diagram also shows a
fast transition to the saturated regime. However, bundles occupying the central PSS island
(see Fig. 3.21) will stay more or less bundled together for longer propagation lengths due to
the trapping on that island which causes a broader spread distribution compared to the fully
chaotic case.

Figure 3.20: Left: Number of particlelike bundles 𝑁PLS over the number of injected
bundles 𝑁 in a fiber system with 𝑟fib = 62.5 𝜇m dependent on the propagation length
𝑙prop, where the red area marks the region in which 10-20% of bundles are particlelike
and the dashed vertical line denotes the Ehrenfest length. Right: Histogram plot of
spreads dependent on the propagation length. Here the vertical dashed line marks the
particlelike-criterion, the horizontal dashed line denotes the Ehrenfest length and the
colormap stands for the percentage of spreads in a certain bin.
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(a) Best particlelike bundle in the given fiber system which occupies the central PSS island.
Note, that even if this bundle is counted as particlelike due to our loosened criterion, its
distribution of trajectories at the output facet is fairly delocalized.

(b) Another particlelike bundle in the given fiber system which also occupies the central PSS
island and thus follows a quasi-periodic orbit in position space.

Figure 3.21: Fiber with 𝛾 = 1.05 and 𝑙fib = 80𝑟fib: The left diagram of each row shows
the initial Gaussian and the propagation of a subpart of the bundle’s trajectories, where
the yellow line marks the Gaussian center trajectory. The center diagrams show the
final distribution of trajectories at the output facet and the right diagrams show their
PSS distribution over the whole propagation (blue) together with the entire PSS (red).
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3.4 Classical Dynamics in a 3D D-Shaped Rod
Here we study classical trajectory bundle dynamics given a system which consists
of a glass rod with of radius 𝑟fib = 2.5 mm, and a length of 𝑙fib = 200 mm = 80𝑟fib

in order to predict the behavior of waves in such a system. Scaling up the width
of our Gaussian bundles used in the preceding section by the same factor as the
system dimension yields 𝑤0 = 200 𝜇m, where we keep the angle to the fiber axis
the same, i.e., 𝜃 = 5∘.

Like in the previous section, we track the standard deviations of trajectory bun-
dles launched at different positions in the 𝑥𝑦-plane, where we also vary the angle 𝜙
in discrete steps at each initial position. Due to the smaller amount of spreading
we use the particlelike criterion

𝑤 = 2𝜎 <
𝑟fib

2
, (3.4.1)

which again has to be fulfilled for all previous propagation steps in order for a state
to be counted as particlelike at a given propagation length.

Applying this to a rod with 𝛾 = 0.44 yields the diagrams in Fig. 3.22a. In
the left diagram one can see that for the given parameters the non-trivial regime
(red) in which 10-20% of bundles are counted as particlelike lies around 𝑙prop ≈ 𝑙fib,
where the mean Ehrenfest length coincides nicely with our results in the sense that
almost no particlelike bundles are left at this propagation length. Furthermore,
calculating the Heisenberg time via (2.2.18) and (2.2.17) we find a greater value of
𝜏𝐻/𝜏𝐸 ≈ 𝒪(103) due to the larger system dimensions, and thus the Ehrenfest time
will remain our limiting factor. Looking at the evolution of bundle-spreads in the
right diagram of Fig. 3.22a, we observe a much slower reach of the saturated regime
compared to the fiber system discussed in the preceding section which is mainly
caused by the smaller amount of spreading.

Moving on to the rod with 𝛾 = 1.05, we can see in Fig. 3.22b, that the spreading
happens much more slowly in comparison to a rod with 𝛾 = 0.44 due to the presence
of phase space islands. Moreover, it is worth noting that in this system, the mean
Lyapunov exponent of the whole system has lost its meaning since the spreading
of bundles launched on those islands happens in a linear way in contrast to the
exponential growth in the chaotic regions. In contrast to waves which can exhibit
dynamic tunneling, trajectories, once placed on an island, cannot escape which
causes a limitation of the maximal spread, which is determined by the size of the
island. Thus, a lot of particlelike bundles survive up to 𝑙prop = 𝑙fib.
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(a) Rod system with the ratio of fiber cut over fiber radius 𝛾 = 𝑟cut/𝑟fib = 0.44: In the left
diagram one can see that the decrease of the number of particlelike bundles happens much
slower compared to the fiber system (see Fig. 3.20a) due to the small amount of spreading.
Thus, the bundle spreading is mainly caused by the chaoticity of the system which yields
a mean Ehrenfest length at which almost no particlelike bundles are left. The evolution of
spreads in the right diagram shows a much more slowly and differently shaped transition to
the saturated regime like the on in Fig. 3.20a.
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(b) Rod system with the ratio of fiber cut over fiber radius 𝛾 = 𝑟cut/𝑟fib = 1.05: Due to the
presence of PSS islands and the small amount of spreading the increase of the bundle-widths
happens at a much slower rate compared to the chaotic case shown above. This can be seen
in the left diagram in form of a large number of “surviving” particlelike bundles as well as in
the slower growth of spreads visible in the right diagram.

Figure 3.22: Left: Number of particlelike bundles 𝑁PLS over the number of injected
bundles 𝑁 in a rod system with 𝑟fib = 2.5 mm dependent on the propagation length
𝑙prop, where the red area marks the region in which 10-20% of bundles are particlelike
and the dashed vertical line denotes the Ehrenfest length. Right: Histogram plot of
spreads dependent on the propagation length. Here the vertical dashed line marks the
particlelike-criterion, the horizontal dashed line denotes the Ehrenfest length and the
colormap stands for the percentage of spreads in a certain bin.
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Of course, we are also interested in the shapes in coordinate space and the PSS
distributions of our particlelike trajectory bundles for 𝑙fib/𝑟fib = 80. In Fig. 3.23,
some of the best states in a rod with 𝛾 = 0.44 are shown, which we can categorize
into three types of orbits: diameter orbits which do not bounce off the cut, remnants
of classically unstable periodic orbits which survive such short propagation lengths
despite bouncing off the cut, and refocused orbits that use the convex and focusing
geometry of the system.

By examination of the best particlelike bundles in a rod with 𝛾 = 1.05, we find
that most of them occupy the central phase space island which contains lots of
similar quasi-periodic orbits due to its large size. As shown in Fig. 3.24 we also find
orbits which correspond to the second and third biggest island, where the smaller
islands cannot be reached since the initial width of our Gaussian is too big. We
also find particlelike bundles that partly occupy the the chaotic sea, where their
“survival” is caused by the short propagation length 𝑙fib/𝑟fib = 80.

In contrast to the trajectory bundle simulations in fiber systems, the treatment
of larger bundles in rod systems yields nice results due to the small amount of
spreading which makes interference not so important for the survival of collimated
states. In case of a chaotic rod, the fiber length 𝑙fib = 80𝑟fib lies in the non-
trivial regime, where just a few particlelike trajectory bundles are left. In a mixed
rod, however, approximately 80% of the bundles are counted as particlelike for
𝑙prop = 𝑙fib, where the regime, in which particlelike bundles are the minority, is
reached for much longer lengths due to the presence of phase space islands. Even
though the length 𝑙prop = 𝑙fib seems to lie in a trivial regime in case of a mixed
rod, the main goal is to place initial states on phase space islands, which has been
achieved by launching approximately 2 ·103 bundles with different initial conditions
into the fiber. This scanning of initial conditions can be avoided by the application
of the concept of DEFT (see section 3.2.2), which is based on the measurement
of the transmission matrices, where it is very likely that DEFT-eigenstates with
the most well-defined momentum difference occupy phase space islands. Together
with the good results obtained in this section, we are confident that we will find
good agreement with the experimental measurements and that the realization of
the DEFT-concept will also yield particlelike wave states in these rod systems.
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(a) Example of a particlelike bundle whose trajectories do not bounce off the cut (diameter
orbit) and hence they do not experience the chaoticity introduced by the cut.

(b) Example of a particlelike bundle whose trajectories follow a classical, quasi-periodic orbit
which is unstable due to the placement of the cut at 𝛾 = 0.44, whereas its counterpart in a
system with 𝛾 = 1.05 is stable (see Fig. 3.24).

(c) Example of a particlelike bundle whose trajectories exhibit refocusing. This can be seen in
the left diagram at the end of the yellow Gaussian center trajectory as well as in phase space
in form of the longer blue streak.

Figure 3.23: Rod with 𝛾 = 0.44 and 𝑙fib = 80𝑟fib: The left diagram of each row shows
the initial Gaussian and the propagation of a subpart of the bundle’s trajectories, where
the yellow line marks the Gaussian center trajectory. The center diagrams show the
final distribution of trajectories at the output facet and the right diagrams show their
PSS distribution over the whole propagation (blue) together with the entire PSS (red).
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(a) Example of a particlelike bundle whose trajectories follow a classical, quasi-periodic two-
bounce orbit which is similar to the found DEFT-eigenstate in the fiber system shown in
Fig. 3.15.

(b) Example of a particlelike bundle whose trajectories follow a classical, quasi-periodic four-
bounce orbit (see blue line in Fig. 2.2) which is similar to the found DEFT-eigenstate in the
fiber system shown in Fig. 3.16.

(c) Example of a particlelike bundle whose trajectories follow a classical, quasi-periodic five-
bounce orbit.

Figure 3.24: Rod with 𝛾 = 0.44 and 𝑙fib = 80𝑟fib: The left diagram of each row shows
the initial Gaussian and the propagation of a subpart of the bundle’s trajectories, where
the yellow line marks the Gaussian center trajectory. The center diagrams show the
final distribution of trajectories at the output facet and the right diagrams show their
PSS distribution over the whole propagation (blue) together with the entire PSS (red).





Chapter 4

Summary and Outlook

In this thesis, we have investigated the classical trajectory and wave dynamics
in three-dimensional straight geometries with a D-shaped cross section without
cladding, with the aim of finding particlelike states which are highly collimated
beams. We have studied actual multi-mode fiber systems as well as rod systems,
where the treatment of the latter was constrained to classical trajectory bundle sim-
ulations, since the full wave simulation of such systems is numerically not feasible.
Dependent on the placement of the cut, which yields the D-shaped cross section,
the system shows regular, completely chaotic or mixed classical dynamics, where
we were mainly interested in the latter two cases, in which chaos can counteract
the formation of particlelike states.

For simplicity we first considered the wave dynamics in a two-dimensional toy
model of a multi-mode fiber, where our first approaches for finding particlelike states
were based on the minimization of a non-linear functional, and the generalization
of coherent states in harmonic oscillator potentials to potential wells. Due to their
poor performance, we moved on to operator-based approaches, where projecting
the time-delay operator onto a subspace of the transverse position operator yields
good results. However, for certain subsets we observe the emergence of eigenstates
with two branches rather than a single collimated beam, which are caused by a
degeneracy in delay-times for different signs of the transverse momentum. Even
better results have been achieved by using the subset of transverse momentum
eigenstates with an eigenvalue less or greater than zero which lifts the mentioned
degeneracy and gives exclusively eigenstates consisting of single branches. Apart
from this method we have also generalized the Wigner-Smith time-delay operator to
the DEFT-operator by replacing its derivative w.r.t. the frequency by the derivative
w.r.t. an arbitrary continuous parameter. The latter has been chosen to be the
spatial position of the entire fiber, where we have shown analytically the equivalence
of the DEFT-operator with an operator whose eigenvalues are given by momentum
differences in the shift direction. In case of a transverse fiber shift, the DEFT-
eigenstates with the highest or lowest eigenvalue feature a well-defined transverse
momentum difference which causes them to behave in a beam-like fashion, as we
could show. Moreover, they are by construction invariant to first order under a shift
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of the entire fiber and also feature broad spectral correlation compared to random
states which makes it possible to construct particlelike DEFT-pulses. We have also
shown that the concept of DEFT can be applied to systems with scattering regions
in which the concept of time-delay might also work. However, the latter does not
yield particlelike states in systems without mode mixing and furthermore does not
feature the invariance under a shift of the entire system which makes DEFT the
best approach for finding particlelike states.

Next, we have examined the wave dynamics in the actual three-dimensional,
D-shaped fiber in which we encountered certain difficulties due to the additional
spatial dimension. In the generalization of the projection method for the time-
delay operator, it is not possible to do subsequent rotations of the transmission
matrix in subspaces of both of the two transverse positions or transverse momenta
eigenstates. This is due to the non-commutativity of the corresponding operators,
which is caused by the non-separability of the system. Being limited to only one
rotation, we achieved the best results in terms of particlelike states by using the
eigenstates of the angular momentum operator. Since the angular momentum is
not a conserved quantity in these non-integrable D-shaped cross sections, we had to
choose a smaller subset of angular momentum eigenstates compared the usage of the
transverse momentum operator in our toy model in order to achieve reasonably good
results. However, in fibers with a mixed phase space, those time-delay eigenstates
are whispering gallery type states, which do conserve the angular momentum best,
but do not occupy larger phase space islands.

Since it would be desirable to address all phase space islands in order to find more
particlelike states, we moved on to applying the concept of the DEFT-operator to
the three-dimensional fibers, where we have found to get the best results by shifting
the fiber along its symmetry axis in the transverse plane. This fact originates
from the shape of classical periodic orbits which rely on the system’s symmetry.
For this shifting direction, the eigenvectors of the DEFT-operator contains states
that occupy classical phase space islands of regular dynamics. Even in completely
chaotic geometries or arbitrary shifting directions we were able to find states which
stay collimated in case of not too long propagation lengths. Together with the
result for the two-dimensional toy model, we think that the concept of DEFT is
generally a good approach for finding particlelike states in perfect systems as well
as in imperfect systems with scattering regions.

Last, we have used Monte-Carlo methods to generate Gaussian-shaped trajectory
bundles that feature spreading in order to mimic initial wavefronts. To achieve the
best coincidence with our wave simulations in the fiber systems, we have used
the standard deviation of the found DEFT-eigenstates along the shorter principal
axis of the respective elliptically-shaped beam cross sections for the creation of
our Gaussian-shaped bundles. In a fiber system, our simulations revealed that
the fairly large amount of spreading makes it impossible for bundles to survive
up to the propagation length used in our wave simulations. This shows that in
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such small systems, interference is one of the key-ingredients for the survival of
particlelike states. With respect to the experimental realization of this work at
Yale University, we have also studied the dynamics of trajectory bundles in the
D-shaped rod systems at hand, in order to make predictions about the underlying
wave behavior. For a completely chaotic rod, we have found that we can categorize
the found particlelike bundles into three types of orbits, namely diameter orbits,
classically unstable periodic orbits and refocused orbits, whereas in a rod with a
mixed phase space the particlelike bundles are mainly given by states that occupy
phase space islands. Even if it is numerically not feasible to do wave simulations in
rod-like systems, we have shown the good performance of the concept of DEFT in
fiber-systems, which, together with the results of the trajectory bundle simulations
in rods, makes us confident, that the experimental realization of DEFT will also
yield nice results in such large geometries.

In a future work, one could address the question of the survival time of DEFT-
eigenstates which occupy regular islands in a classically mixed phase space with
respect to dynamic tunneling. Since we expect the tunneling rate to be small,
the trapping on regular phase space islands limits the wavepacket size which would
allow longer propagation times of our particlelike DEFT-states compared to systems
with regular phase spaces in which the absence of islands causes a continuous linear
spreading. Together with this island trapping, the concept of DEFT could be
beneficial for multiplexing, where the additional use of the spatial degrees of freedom
could lead to higher data rates compared to current techniques. Moreover, the
particlelike DEFT-eigenstates feature a quantization transverse to the propagation
direction like the particlelike eigenstates of the Wigner-Smith time-delay operator.
Since the occurrence of this quantization is not yet fully understood, this could also
be a possible topic of future research. Further interesting and not yet understood
effects are the difference of correlation functions between DEFT-eigenstates and
random states which is much more pronounced in a two-dimensional system and
the shift of certain Husimi distributions w.r.t. the classical phase space which could
be related to the Goos-Hänchen effect. Lastly, the treatment of realistic three-
dimensional fiber systems including imperfections and bends would be an important
task regarding future applications of these techniques.
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Appendix A

Hamiltonian Optics

Here we want to give a brief overview of Hamiltonian optics in order to see the
striking similarity between the treatment of photon- and particle-trajectories which
justifies our ray-treatment of light in the main text. Following [28], we start with
Fermat’s principle who states that light takes the path whose optical path length
is an extremum, i.e.,

𝛿

∫︁ 𝑃1

𝑃1

𝑛(𝑥, 𝑦, 𝑧) 𝑑𝜁 = 0 , (A.1)

where 𝛿 stands for a small variation of the path 𝒞 between two fixed endpoints
𝑃1,2, 𝑛(𝑥, 𝑦, 𝑧) is the index of refraction of the medium the light is propagating in
and 𝑑𝜁 =

√︀
𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 is an infinitesimal element of the arc length. Next we

choose an optical axis, e.g. 𝑧, and change variables such that 𝑑𝜁 → 𝑑𝑧

𝛿

∫︁ 𝑧2

𝑧1

𝑛
𝑑𝜁

𝑑𝑧
𝑑𝑧 = 𝛿

∫︁ 𝑧1

𝑧1

𝑛(𝑥, 𝑦, 𝑧)
√︀

1 + 𝑥′2 + 𝑦′2 𝑑𝑧 = 0 (A.2)

in which 𝑥′ = 𝑑𝑥/𝑑𝑧 and 𝑦′ = 𝑑𝑦/𝑑𝑧. The integrand is then usually defined as the
optical Lagrangian

𝐿(𝑥, 𝑦, 𝑥′, 𝑦′, 𝑧) = 𝑛(𝑥, 𝑦, 𝑧)
√︀

1 + 𝑥′2 + 𝑦′2 (A.3)

and the corresponding Euler-Lagrange equations are just given by

𝑑

𝑑𝑧

(︂
𝑑𝐿

𝑑𝑥′

)︂
− 𝑑𝐿

𝑑𝑥
= 0 , (A.4)

𝑑

𝑑𝑧

(︂
𝑑𝐿

𝑑𝑦′

)︂
− 𝑑𝐿

𝑑𝑦
= 0 . (A.5)

The Euler Lagrange-equations can now be rearranged into a single differential equa-
tion of second order

𝑑

𝑑𝑠

(︂
𝑛
𝑑�⃗�

𝑑𝜁

)︂
= ∇⃗𝑛 , (A.6)
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where �⃗� = (𝑥, 𝑦, 𝑧)𝑇 is a vector in coordinate space. Eq. (A.6) shows a striking
similarity to the equations of motion for a classical point particle, i.e.,

𝑑

𝑑𝑡

(︂
𝑚
𝑑�⃗�

𝑑𝑡

)︂
= 𝐹 = −∇⃗𝑉 , (A.7)

where the time is replaced by the arclength and 𝑛 can be interpreted as a potential
whose gradient is the force acting on the photon changing its “momentum” 𝑛 𝑑�⃗�/𝑑𝜁.

To arrive at the Hamilton function we utilize the Legendre transform of the
optical Lagrangian

𝐻(𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦, 𝑧) = 𝑝𝑥𝑥
′ + 𝑝𝑦𝑦

′ − 𝐿(𝑥, 𝑦, 𝑥′, 𝑦′, 𝑧) , (A.8)

where the so-called ray momenta are given by

𝑝𝑥 =
𝜕𝐿

𝜕𝑥′
= 𝑛(𝑥, 𝑦, 𝑧)

𝑥′√︀
1 + 𝑥′2 + 𝑦′2

= 𝑛
𝑑𝑥

𝑑𝑠
, (A.9)

𝑝𝑦 =
𝜕𝐿

𝜕𝑦′
= 𝑛(𝑥, 𝑦, 𝑧)

𝑦′√︀
1 + 𝑥′2 + 𝑦′2

= 𝑛
𝑑𝑦

𝑑𝑠
(A.10)

in accordance to the mechanical analogy mentioned above. The whole photon
momentum can be written as

𝑝 = 𝑛
𝑑�⃗�

𝑑𝜁
= 𝑛

⎛⎝cos𝛼1

cos𝛼2

cos𝛼3

⎞⎠ , (A.11)

where the vector consists of the so called direction cosines with respect to the 𝑥,
𝑦 and 𝑧 axis and |𝑝| = 𝑛. Inserting the optical Lagrangian and using the proper
coordinates we arrive at the optical Hamiltonian

𝐻(𝑥, 𝑦, 𝑝𝑥, 𝑝𝑦, 𝑧) = −
√︁
𝑛2(𝑥, 𝑦, 𝑧) − 𝑝2𝑥 − 𝑝2𝑦 = −𝑝𝑧 , (A.12)

where the Hamilton equations of motion are then given by

𝑑𝑥

𝑑𝑧
=
𝜕𝐻

𝜕𝑝𝑥
,

𝑑𝑝𝑥
𝑑𝑧

= −𝜕𝐻
𝜕𝑥

, (A.13)

𝑑𝑦

𝑑𝑧
=
𝜕𝐻

𝜕𝑝𝑦
,

𝑑𝑝𝑦
𝑑𝑧

= −𝜕𝐻
𝜕𝑦

. (A.14)

It is worth noting that the choice of an optical axis is convenient but not necessary,
since one can also parametrize a curve along an arbitrary parameter. Moreover, in
Eq. (A.12) one can see another analogy to a relativistic point particle with mass 𝑚
whose energy is given by

𝐸 = 𝑐
√︀
𝑚2𝑐2 + |𝑝|2 , (A.15)

where the different sign in the square roots has its origin in the use of a Minkowski
metric instead of an Euclidean metric in optics.



Appendix B

Exponential Growth of Distances in
Chaotic Systems

Following [29], we show that in classically chaotic systems the distances between
phase space trajectories grows exponentially, where the rate of growth is determined
by the Lyapunov exponent Λ. Lets consider a state vector of a continuous system,
�⃗�, which is defined by a differential equation of the form

˙⃗𝑥 = 𝐹 (�⃗�(𝑡)) , (B.1)

where 𝐹 is also called the tangent map. If the tangent map is a function which is
continuously differentiable to first order, i.e. 𝐹 ∈ 𝐶1, it is characterized by⃒⃒⃒

𝐹 (�⃗�(𝑡)) − 𝐹 (�⃗� ′(𝑡))
⃒⃒⃒
≤ Λ |�⃗�(𝑡) − �⃗� ′(𝑡)| . (B.2)

If the state vectors are part of a Euclidean space, Eq. (B.2) is just the definition
of the Lipschitz continuity, where Λ is the Lipschitz constant. This criterion states
that there has to be an upper bound for the growth of the distances between two
solutions of the differential equation (B.1) which can be expressed as

�⃗�(𝑡) = �⃗�(0) +

∫︁ 𝑡

0

𝑑𝑡 𝐹 (�⃗�(𝑡)) , (B.3)

�⃗� ′(𝑡) = �⃗� ′(0) +

∫︁ 𝑡

0

𝑑𝑡′ 𝐹 (�⃗� ′(𝑡′)) . (B.4)

The difference 𝑑(𝑡) ≡ |�⃗�(𝑡)− �⃗�′(𝑡)| between two state vectors can then be rewritten
using the triangle inequality

𝑑(𝑡) =

⃒⃒⃒⃒
�⃗�(0) − �⃗� ′(0) +

∫︁ 𝑡

0

𝑑𝑡′ 𝐹 (�⃗�(𝑡′)) −
∫︁ 𝑡

0

𝑑𝑡′ 𝐹 (�⃗� ′(𝑡′))

⃒⃒⃒⃒
(B.5)

≤ 𝑑(0) +

⃒⃒⃒⃒∫︁ 𝑡

0

𝑑𝑡′ 𝐹 (�⃗�(𝑡′)) −
∫︁ 𝑡

0

𝑑𝑡′ 𝐹 (�⃗� ′(𝑡′))

⃒⃒⃒⃒
. (B.6)
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Inserting the Lipschitz continuity yields

𝑑(𝑡) ≤ 𝑑(0) + Λ

∫︁ 𝑡

0

𝑑𝑡′ 𝑑(𝑡′) ≡ 𝐷(𝑡) . (B.7)

To solve this we can use the derivative of 𝐷(𝑡) w.r.t. 𝑡 and get

�̇�(𝑡) = Λ𝑑(𝑡) ≤ Λ𝐷(𝑡) . (B.8)

This equation can now be easily integrated as

𝐷(𝑡) ≤ 𝐷(0)𝑒Λ𝑡 = 𝑑(0)𝑒Λ𝑡 . (B.9)

Making use of the inequality (B.7) we arrive at

𝑑(𝑡) ≤ 𝑑(0)𝑒Λ𝑡 , (B.10)

which proves that the distance between two trajectories can grow at most exponen-
tially. This observation is the hallmark of classical chaos and makes the dynamical
evolution of the system unpredictable, since infinitesimal deviations in the initial
conditions grow exponentially fast. With this prove we can now define the Lya-
punov exponent as

Λphys(�⃗�0) = lim
𝑡→∞

lim
𝑑(0)→0

1

𝑡
ln

(︂
𝑑(�⃗�0, 𝑡)

𝑑(�⃗�0, 0)

)︂
. (B.11)

If a Λ(�⃗�0) > 0 exists we call it Lyapunov exponent, where it is worth noting that
this exponent depends on the initial conditions �⃗�0. Up to now we have just looked at
continuous systems, but since we are using Birkhoff coordinates we use an analogous
version for discrete maps, where the tangent map is replaced by the billiard map.
Similarly we can define

ΛBirk(�⃗�0) = lim
𝑛→∞

lim
𝑑(0)→0

1

𝑛
ln

(︂
𝑑(�⃗�0, 𝑛)

𝑑(�⃗�0, 0)

)︂
, (B.12)

where we have replaced the time 𝑡 by the number of bounces 𝑛. Since we are dealing
with a billiard system our motion is bounded which makes the limit 𝑑(0) → 0 in
(B.11) and (B.12) necessary in order not to run into the regime, where distances
between two trajectories are saturated due to the boundedness of the system.



Appendix C

Derivation of the Scalar Helmholtz
Equation
In a medium without source terms, i.e. no charge density 𝜌 = 0 and no current
density �⃗� = 0, a wave equation can be derived from the Maxwell equations,

∇⃗ · �⃗�(�⃗�, 𝑡) = 0 , (C.1)

∇⃗ · �⃗�(�⃗�, 𝑡) = 0 , (C.2)

∇⃗ × �⃗�(�⃗�, 𝑡) = −𝜕�⃗�(�⃗�, 𝑡)

𝜕𝑡
, (C.3)

∇⃗ × �⃗�(�⃗�, 𝑡) =
𝜕�⃗�(�⃗�, 𝑡)

𝜕𝑡
, (C.4)

in which �⃗�(�⃗�, 𝑡) = 𝜖(�⃗�)�⃗�(�⃗�, 𝑡) and �⃗�(�⃗�, 𝑡) = 𝜇(�⃗�)�⃗�(�⃗�, 𝑡) with 𝜖(�⃗�) = 𝜖0𝜖𝑟(�⃗�) and
𝜇(�⃗�) = 𝜇0𝜇𝑟(�⃗�), where we assume 𝜇𝑟(�⃗�) ≈ 1. Taking the curl of Eq. (C.3) and
inserting Eq. (C.4) yields

∇⃗ ×
(︁
∇⃗ × �⃗�

)︁
= ∇⃗

(︁
∇⃗ · �⃗�

)︁
− ∇⃗2�⃗� = −𝜇0𝜖

𝜕2�⃗�

𝜕𝑡2
. (C.5)

Because of Eq. (C.1) we can write

∇⃗ ·
(︁
𝜖�⃗�
)︁

= 𝜖∇⃗ · �⃗� + �⃗� · ∇⃗𝜖 = 0 , (C.6)

and use the expression for the divergence of the electric field to arrive at the wave
equation

∆�⃗� − 𝜇0𝜖
𝜕2�⃗�

𝜕𝑡2
+ ∇⃗

(︃
�⃗� · ∇⃗𝜖
𝜖

)︃
= 0 . (C.7)

Since the dielectric function of our fiber system only changes in the transverse plane
we can neglect longitudinal field components and set

∇⃗

(︃
�⃗� · ∇⃗𝜖
𝜖

)︃
= 0 . (C.8)
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Now we assume a monochromatic and linearly polarized electric field

�⃗�(�⃗�, 𝑡) = 𝑝𝜓(�⃗�)𝑒−𝑖𝜔𝑡 (C.9)

whose polarization direction is determined by the unit vector 𝑝. Using 𝑘20 = 𝜔2𝜖0𝜇0

and 𝑛2(�⃗�) = 𝜖𝑟(�⃗�), we arrive at the scalar Helmholtz equation:

[∆ + 𝑛2(�⃗�)𝑘20]𝜓(�⃗�) = 0 , (C.10)

where 𝑘0 = 2𝜋/𝜆 is the vacuum wave number.



Appendix D

Spatial Participation Ratio

Besides the standard deviation which is a measure of how broad the tails of a given
distribution are there exists the concept of the so-called inverse participation ratio
𝑃 . It is given by the expression

𝑃 =
1∑︀
𝑛 𝑝

2
𝑛

with 𝑝𝑛 = |⟨𝜒𝑛|𝜓⟩|2 , (D.1)

where 𝑝𝑛 is the probability of finding the state |𝜓⟩ in one of the modes |𝜒𝑛⟩. If we
consider for example only two modes and assume that |𝜓⟩ is an equally weighted
superposition of both, then 𝑃 = 2. From this, we can see that 𝑃 is a measure for
how many modes participate in a given state. We can easily generalize (D.1) to
a spatial participation ratio by taking its inverse, projecting onto the transverse
position eigenstates instead of the modes and replacing the sum by an integral over
the cross section

𝑃 =

[︀∫︀
𝑑2𝑟 𝐼(�⃗�)

]︀2∫︀
𝑑2𝑟 𝐼2(�⃗�)

with 𝐼(�⃗�) = |⟨�⃗�|𝜓⟩|2 = |𝜓(�⃗�)|2 , (D.2)

where 𝐼(�⃗�) is the measured intensity. Note that we have added a term in the
numerator which we only need if the state is not intensity normalized. To show
that this quantity is a measure for the spatial extent of a state we consider two
special cases:

∙ For a point-like intensity 𝐼(�⃗�) = 𝛿(2)(�⃗� − �⃗�0) the occupied area is zero:

𝑃 =

[︀∫︀
𝑑2𝑟 𝛿(2)(�⃗� − �⃗�0)

]︀2∫︀
𝑑2𝑟 [𝛿(2)(�⃗� − �⃗�0)]

2 =
1

𝛿(2)(�⃗�0 − �⃗�0)
= 0 . (D.3)

∙ For a constant intensity 𝐼(�⃗�) = 𝑐 the occupied area is just the cross section:

𝑃 =

[︀∫︀
𝑑2𝑟 𝑐

]︀2∫︀
𝑑2𝑟 𝑐2

=
𝑐2𝐴2

fib

𝑐2𝐴fib
= 𝐴fib . (D.4)
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