
An Architecture Style for Cloud
Application Modeling

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Alexander Bergmayr
Registration Number 0255171

to the Faculty of Informatics
at the TU Wien

Advisor: Priv. Doz. Dr. Manuel Wimmer

The dissertation has been reviewed by:

Priv. Doz. Dr.
Manuel Wimmer

Prof. Dr. Dr. h. c.
Frank Leymann

Vienna, 4th April, 2016
Alexander Bergmayr

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

An Architecture Style for Cloud
Application Modeling

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Alexander Bergmayr
Matrikelnummer 0255171

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Priv. Doz. Dr. Manuel Wimmer

Diese Dissertation haben begutachtet:

Priv. Doz. Dr.
Manuel Wimmer

Prof. Dr. Dr. h. c.
Frank Leymann

Wien, 4. April 2016
Alexander Bergmayr

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Alexander Bergmayr
Maria-Tusch-Straße, A-1220 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quel-
len und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich
Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder
dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich
gemacht habe.

Wien, 4. April 2016
Alexander Bergmayr

v

Acknowledgements

I had the good fortune of getting to know Manuel Wimmer back in 2007. Since then we stayed in
contact. When I joined the research group of Gerti Kappel in 2012, he guided me in my research
and advised me on writing my dissertation. I am grateful to Manuel Wimmer for his extraordinary
support in the last four years and to Gerti Kappel, who provided to me an inspiring environment
for doing research. Thank you, Manuel and Gerti! I am indebted to Frank Leymann, who
reviewed my dissertation. Thank you, Frank! Angelika Kebhart gave generously of her time to
correct my dissertation. Thank you, Angi! I thank Martin Fleck for his final proofreading. Thank
you, Martin! I thank the many people who contributed directly or indirectly to this dissertation:
Michael Grossniklaus, Philip Langer, Tanja Mayerhofer, David Madner, Patrick Neubauer, and
Javier Troja. I am deeply grateful to my family for all the patience, support, and love. Thank you,
Nadine, Gustav, and Frida! No, no, I do not forget you Mum. Thank you!

vii

Abstract

UML is a widely adopted open standard to create architectural models from multiple viewpoints
for various domains. Its language-inherent extension mechanism is being applied to systemati-
cally integrate domain-specific concepts via libraries and profiles because they are indispensable
for model-based engineering (MBE). Cloud computing is an appealing target domain for MBE.
Modern cloud environments support a relatively high degree of automation in service provi-
sioning, which allows cloud users to dynamically acquire services required for deploying cloud
applications. On the other hand, MBE aims at increasing the automation of application develop-
ment by a systematic tool-supported refinement of high-level models towards a target platform
and the environment underneath. The selected platform and environment designate the technical
target domain whose concepts have to be captured on the model level in order to enable the
refinement of architectural models. Modeling concepts and tools along with a set of constraints
on how they can be used denote an architecture style. Providing an architecture style for cloud
application modeling based on UML including tools that exploit automated processes of both
cloud computing and MBE is thus highly desirable. Due to the generic nature of UML, it does
however not provide cloud modeling concepts by default and existing UML tools do not yet
adequately support cloud-specific model refinement.

To address these deficiencies, the goal of this thesis is to realize cloud-specific extensions to
UML and a toolset that together form an architecture style for developing cloud applications. In
particular, we place emphasis on the automation of development processes and their effectiveness
in producing truly useful models. Four main contributions are presented to achieve this goal.
First we systematically review current cloud modeling languages (CMLs) and investigate major
cloud environments to derive a core set of features inherent to the cloud computing domain. They
serve as the basis for developing the UML-based cloud application modeling language (CAML),
which is the second contribution. CAML supports semi-automatic model refinement towards the
Java platform and three major cloud environments via dedicated libraries and profiles. The third
contribution addresses the automatic translation of UML architecture models refined by CAML
into TOSCA, a recently adopted standard that aims at automating application provisioning and
management. Combining UML and TOSCA closes the gap between architecture modeling and
application provisioning. As model transformations are key to automate the refinement and trans-
lation of model-based artifacts, maintaining those transformations and their produced artifacts is
addressed by the fourth contribution. We exploit incremental transformation to co-evolve existing
models with changes to transformations. In addition to the conceptual contributions, we provide
proof-of-concept implementations as open-source projects and present case studies for evaluating
not only their practical relevance but also aspects such as quality and performance.

ix

Kurzfassung

UML ist ein weitverbreiteter offener Modellierungsstandard für unterschiedliche Domänen, der
es durch seinen sprachinhärenten Erweiterungsmechanismus ermöglicht, domänen-spezifische
Konzepte systematisch zu integrieren. Die dadurch entwickelten Bibliotheken und Profile sind
unabdingbar für den Einsatz von Model-based Engineering (MBE). Cloud Computing ist eine
vielversprechende Zieldomäne für MBE. Heutige Cloud-Umgebungen bieten einen relativ hohen
Automatisierungsgrad für die Serviceprovisionierung, der es Benutzern erlaubt Services für das
Deployment einer Cloud-Anwendung dynamisch zu akquirieren. Ein Kernziel von MBE ist die
Automatisierung der Anwendungsentwicklung durch systematische werkzeuggestützte Verfeine-
rung von Architekturmodellen für eine Zielplattform und die darunterliegende Umgebung. Die
gewählte Plattform und Umgebung bestimmen die technische Zieldomäne deren Konzepte auf
der Modellierungsebene erfasst werden müssen, um eine Modellverfeinerung zu ermöglichen.
Die Bereitstellung geeigneter Modellierungskonzepte und Werkzeuge in Form eines Architecture
Styles basierend auf UML ist deshalb wünschenswert. Standardmäßig stellt UML jedoch keine
Modellierungskonzepte für Cloud Computing zur Verfügung und existierende UML Werkzeuge
bieten keine ausreichende Unterstützung für eine cloud-spezifische Modellverfeinerung.

Um diese Limitierungen zu adressieren, werden in dieser Arbeit cloud-spezifische Erwei-
terungen für UML und ein Werkzeugsatz vorgestellt, die zusammen einen Architecture Style
für die Entwicklung von Cloud-Anwendungen bilden. In einem ersten Schritt werden existie-
rende Modellierungssprachen und Umgebungen im Cloud Computing Bereich untersucht, um
Kernaspekte der adressierten Domäne abzuleiten. Auf dieser Grundlage wird die UML-basierte
Cloud Application Modeling Language (CAML) entwickelt. CAML unterstützt mit Hilfe geeigne-
ter Bibliotheken und Profile die semi-automatische Modellverfeinerung für die Java Plattform
und drei führende Cloud-Umgebungen. Zudem befasst sich diese Arbeit mit der automatischen
Übersetzung von Architekturmodellen repräsentiert in UML und verfeinert durch CAML nach
TOSCA, ein kürzlich verabschiedeter Standard mit dem Ziel die Anwendungssprovisionierung
und das Anwendungsmanagement zu automatisieren. Durch das Zusammenwirken von UML und
TOSCA kann die Lücke zwischen Architekturmodellierung und Anwendungssprovisionierung
geschlossen werden. Da in der automatisierten Verfeinerung und Übersetzung von modellbasier-
ten Artefakten die Modelltransformation eine Schlüsselrolle einnimmt, wird in dieser Arbeit auch
die Modellevolution auf Grund von Transformationsanpassungen betrachtet. Die in dieser Arbeit
vorgestellten Konzepte werden als proof-of-concept Implementierungen in Form von open-source
Projekten zur Verfügung gestellt und anhand von Fallstudien evaluiert. Dabei wird nicht nur die
praktische Relevanz der vorgestellten Arbeit demonstriert sondern auch Aspekte wie Qualität
und Performanz untersucht.

xi

Contents

Abstract ix

Kurzfassung xi

1 Introduction 1
1.1 Problem statement . 3
1.2 Aim of the thesis . 5
1.3 Scientific approach . 9
1.4 Application scenario . 10
1.5 Structure of the thesis . 12

2 Preliminaries 15
2.1 Cloud services and environments . 16
2.2 Architecture viewpoints . 18
2.3 Model-based engineering . 21

3 Review of cloud modeling languages 29
3.1 Review framework . 31
3.2 Review process . 40
3.3 Results . 48
3.4 Summary . 65
3.5 Related surveys . 66

4 Cloud application modeling 69
4.1 Motivation . 72
4.2 UML-based language for cloud application modeling 75
4.3 Extensions to UML for target platforms in the cloud 78
4.4 Extensions to UML for target cloud environments 91
4.5 Summary . 103
4.6 Related work . 104

5 Cloud application provisioning 109
5.1 Motivation . 112
5.2 TOSCA metamodel . 112

xiii

5.3 Intensional and extensional deployment modeling 114
5.4 Bridging UML and TOSCA . 115
5.5 Framework for architecture modeling and application provisioning 120
5.6 Summary . 122
5.7 Related work . 124

6 Cloud model patching 127
6.1 Motivation . 129
6.2 Model transformation evolution . 131
6.3 Model patches for out-place transformations in ATL 133
6.4 Generation of patch transformations . 138
6.5 Summary . 141
6.6 Related work . 143

7 Evaluation 145
7.1 Methodological evaluation . 147
7.2 Quality evaluation . 151
7.3 Performance evaluation . 157
7.4 Practical relevance . 163

8 Conclusion 177
8.1 Summary . 177
8.2 Outlook . 179

A Research prototypes 183

B CAML and PetApp artifacts 185

Bibliography 189

Curriculum vitae 209

CHAPTER 1
Introduction

With the emergence of cloud computing, the effort required to get access to environments with the
scale of large distributed data centers has tremendously been reduced. Provisioning resources of
a cloud environment [BGPCV12] can be carried out on-demand [Ley11] via the Web without the
need to negotiate with the cloud provider because their offerings are considered as commodities
that are readily available as a service and consumable over the network even on per hour basis.
For instance, Amazon Web Services (AWS)1, which appeared in 2006, offers compute services
for less than 2 cents per hour without any long-term commitments, where the provisioning of a
running virtual machine on a raw computing node takes only a few minutes. Therefore, cloud
environments are appealing for software companies and engineers because of the low upfront
costs compared to a traditional on-premise solution and operational costs that scale with the
consumed services. They range from low-level infrastructure services, e. g., raw compute capacity,
over higher level platform services, e. g., a fully managed Java runtime as provided by the Google
App Engine (GAE)2, on top of a cloud infrastructure, to ready-to-use software, e. g., Sales Cloud
offered by Salesforce3, hosted on a cloud platform. Companies are no longer forced to plan far
ahead for the provisioning of their applications [AFG+10] because the large-scale data centers of
today’s cloud providers ensure that the required cloud services to operate those applications are
available. Cloud services are not only provisioned as their demand increases, e. g., the number of
user requests exceeds a defined threshold, but also released once their demand decreases, e. g.,
the number of user requests falls below a defined threshold. This elastic capability of cloud
environments [Owe10] reduces the risk of under and over-provisioning of services and enables
applications deployed in the cloud to scale in and out dynamically [VRB11]. As a result, modern
cloud environments support a relatively high degree of automation in service provisioning not only
to achieve the dynamic scalability of cloud applications but also to allow clients to acquire services
on demand required for the deployment of those applications. The deployment of an application
determines the connection between the application components and the target environment on

1Amazon Web Services (AWS): http://aws.amazon.com
2Google App Engine (GAE): https://cloud.google.com/appengine
3Salesforce: http://www.salesforce.com

1

http://aws.amazon.com
https://cloud.google.com/appengine
http://www.salesforce.com

top of which the implementations of those applications are eventually executed. Deploying and
configuring applications is usually a complex multi-faceted task as it cuts across the boundaries of
different layers, e. g., infrastructure and platform, and requires expertise from various areas, e. g.,
development and operations [EKK+06, WBL14]. Like in any engineering discipline, modeling is
a powerful means of software engineering to master complexity and communicate effectively.
Model-based engineering (MBE) [Ken02, AK03, BCW12, MLM+13, LMM+15] emphasize the
importance of models throughout the entire application life-cycle.

From a development perspective, models are considered as the primary artifacts [Béz05b,
BCW12] to capture the essence of an application by means of abstraction [Kra07], thereby
hiding lower level implementation details. Ideally, implementations can be generated for possibly
multiple environments from a single set of architecture models. Typically, this set of models
is progressively transformed into models that capture environment-specific features. In the
context of cloud computing, those features must convey the peculiarities of the targeted cloud
environment to enable model transformers to generate appropriate implementations [Sel12]. A
promise of model-based approaches is that model transformers can produce the implementations
for a variety of environments from high-level models, thereby investments in creating them are
retained [GS03] even though the target environment beneath is changed. For instance, a typical
application scenario is the generation of environment-specific implementations from a high-level
data model, where the environment may refer to a relational database and a particular data access
framework such as the Java Persistence API (JPA)4. Changing the environment for which the
Java-based implementation has been generated, e. g., by the highly scalable datastore of the GAE,
would require re-generating the implementation for the new environment. As a result, models
become valuable assets in the development of cloud applications for providing abstractions over
those applications and the diverse target environments. Moreover, they support the transition
of applications from on-premise environments to cloud environments and between cloud envi-
ronments [FR10, SR10] through rigorous model transformation techniques [SK03, Sch06]. This
implies that the applications must be (re-)distributed across a single or even multiple cloud envi-
ronments, which in turn necessitates the provisioning of the required cloud services. The desired
state of the application and service provisioning is usually captured in terms of a deployment
model [TMW+05] which is considered as part of the overall application architecture [CGL+03].
From an operations perspective, it triggers the actions carried out in a provisioning process. This
explains also the need for aligning the two perspectives [WBL14].

UML is a widely adopted open standard to create architectural models [MLM+13, LMM+15]
from multiple viewpoints for various domains. Its lightweight extension mechanism is be-
ing applied to systematically integrate domain-specific concepts into UML via profiles and
libraries [Par10,Sel07,Sel12]. Now, with the emergence of cloud computing, a new target domain
appealing for architecture modeling has appeared. This poses the general question whether
UML is suitable to model cloud application architectures. In this thesis, we hypothesize that
appropriately applying UML can render cloud application architectures more valuable for archi-
tects, developers, and operators to design and implement those applications and execute their
provisioning.

4JPA: http://www.oracle.com/technetwork/java/javaee/tech/persistence-jsp-140049.html

2

1.1 Problem statement

Domain-specific extensions to architectural languages are just as indispensable as are libraries
for programming languages. Developing language concepts and tools specific to a domain is
hard in particular if the addressed domain is highly diverse and constantly progressing as cloud
computing is. However, an elegant architecture of a cloud application is of limited value unless it
exploits concepts of the target cloud computing domain. Due to the generic nature of UML, it
does neither provide cloud-specific modeling concepts by default nor guidance how the existing
modeling concepts can be used to represent cloud application architectures. Therefore, this thesis
is concerned with providing a cloud-specific architecture style for UML. An architecture style
comprises a set of element and relationship types tailored to a particular domain together with
with a set of constraints on how they can be used to design a class of systems5. It also supports
that class of system design with style-specific tools, analysis, and implementations [GBI+10].
In the context of this thesis, the domain is cloud computing and the class of systems refers to
cloud applications. UML is used as the base language whose element and relationship types are
tailored to the cloud computing domain. The following four research challenges (RC1–RC4) are
addressed by this thesis.

1.1.1 Elicitation of cloud modeling concepts (RC1)

The first challenge that is addressed by this thesis concerns the classification and comparison
of existing languages for representing cloud applications on the model level. They provide a
complementary set of modeling concepts to deal with the diversity of current cloud environments.
Moreover, a standard called TOSCA [OAS13a, BBKL14a] for representing portable cloud ap-
plications [BBLS12] and supporting their life cycle management were adopted by the OASIS
standardization body6 in late 2013. All those languages can be considered as a domain-specific
language (DSL) [MHS05] where the domain refers to cloud computing. We collectively refer to
them as cloud modeling language (CML). There is, however, still little consensus in the research
community on what a CML is, what aspects of a cloud application and the target cloud environ-
ment including the runtime platform for executing the application components should be modeled
by a CML, which of the currently existing CMLs is best suited for a particular problem, and how
they relate to existing languages for architecture modeling such as UML. Having classified and
compared existing CMLs would provide a useful source of inspiration for collecting a common
set of cloud modeling concepts based on which extensions for UML can be developed [Sel07].
Moreover, lessons learned from this investigation would support the identification of the potential
extension points of UML for integrating cloud-specific features.

1.1.2 Refinement of cloud architecture models (RC2)

The second challenge that is addressed by this thesis concerns the refinement of high-level
models towards a selected platform and a target cloud environment, thereby allowing engineers
to capture platform and environment-related decisions, e. g., the selection of a cloud storage

5Based on the definition of the Software Engineering Institute, http://www.sei.cmu.edu
6OASIS: https://www.oasis-open.org

3

solution, already on the model level. Even though UML provides modeling concepts to represent
software, platform and infrastructure artifacts from different viewpoints, they neither satisfy
current cloud modeling requirements nor provide features of platforms currently available for
cloud environments. This is mainly because UML is a general-purpose language and hence
its modeling concepts must be generic rather than specific to a certain domain such as cloud
computing. Therefore, providing cloud-specific extensions to UML appears beneficial. They
would not only allow exploiting the full expressive power of UML to model cloud applications but
also a seamless integration of cloud-specific features into existing or possibly reverse-engineered
UML models. The latter would be especially useful for “modernization to the cloud” scenarios,
where reverse-engineered UML models [TP04] are refined towards a certain platform and cloud
environment in a forward-engineering process [HRW11,HWRK11]. Properly refined architecture
models would pave the way for generating implementations from different views, e. g., class,
component, and deployment, provided that model transformers capable to deal with environment-
specific features are available. Moreover, deployment models that capture environment-specific
features would explicitly represent the interconnection between the cloud application and its
environment and thus specify the desired state of the application provisioning.

1.1.3 Model-based cloud application provisioning (RC3)

The third challenge that is addressed by this thesis concerns the automation of cloud application
provisioning where UML deployment models refined towards the target cloud environment are
considered as input to the provisioning process. Since the adoption of TOSCA by OASIS, a
standard is available for modeling portable cloud applications with the aim to automate their
provisioning. However, until now, an effective conceptual mapping between UML and TOSCA as
a basis for an automated transformation between the two languages is still missing. As a result, the
translation is currently carried out in a tedious manual step, which is only achievable if engineers
are familiar with the peculiarities of both languages and capable to identify the correspondences
between them. Bridging UML and TOSCA would allow engineers to translate UML architectural
models into corresponding TOSCA deployment models based on which the provisioning process
can be enacted by a TOSCA-compliant runtime container [BBKL14a]. From a UML perspective
this is beneficial as it would allow the application provisioning for UML deployment models.
On the other hand, TOSCA deployment models can be considered in the light of UML, thereby
gaining insights into the components manifested by deployed artifacts and how they are realized
from a structural viewpoint. Obviously, model transformations play an important role for not
only bridging UML and TOSCA but also refining cloud architecture models towards the target
cloud environment.

1.1.4 Maintaining cloud artifact repositories (RC4)

The fourth challenge that is addressed by this thesis concerns the efficient re-execution of a
changed transformation chain because changes can invalidate previously produced models usually
maintained in a central repository. As a result, changes to a transformation chain need to be
propagated to existing models. Chaining transformations generally fosters reuse in the sense that
existing transformations are loosely coupled by a more coarse-grained transformation [KSW+15].

4

Such a loose coupling ensures that the engineers still have the control over the execution of the
single transformations. The latter is important not only to pause and resume a transformation
chain in case of engineers need to intervene, e. g., manual changes need to be carried out on
produced models, but also to partially re-execute the transformation chain as a result of changes
to one or more transformations. An incremental transformation execution can significantly reduce
the runtime overhead particularly when computation-intensive transformations are marginally
revised. Moreover, it can ensure that manual changes to existing models prior the transformation
re-execution and external references to them via identifiers are retained because the models are
only updated instead of entirely re-created.

1.2 Aim of the thesis

This thesis aims at realizing extensions to UML and a corresponding toolset that together form an
architecture style for developing cloud applications with a particular emphasis on the automation
of development processes and their effectiveness in producing truly useful and usable models.
The architectural style proposed in this thesis is grounded in a model-based framework that
defines its core building blocks.

Considering Figure 1.1, the framework provides a cloud library for representing the archi-
tecture model of a cloud application from an environment-independent perspective. Modeling
concepts of the cloud library are imported by the environment-independent architecture model.
Several views on the architectural model are conceivable. For instance, a component view reveals
the high-level structure of a cloud application, whereas a class view shows how components are
in fact realized. The interconnection of components with the target cloud environment is usually
represented by a deployment view. The latter implies already a refinement step [Wir71, MG06]
provided that the cloud-specific features injected to the architecture model are grounded in the
target environment. Those features are captured by the cloud profile of the framework. It col-
lects the cloud services offered by cloud environments, thereby allowing engineers to explicitly
represent the allocation of components to them. A model-based refinement of components
and their realizing classes towards a platform hosted on top of the target cloud environment is
also foreseen by the framework as it enables model transformers to produce platform-specific
application code including method bodies even from a structural viewpoint. To accomplish the
refinement towards a platform, dedicated target platform libraries and profiles are employed for
capturing platform-specific features on the model level. The refined architecture model embodies
the result of the transition from the platform-independent level to the platform-specific level.
The differentiation between a platform-independent model (PIM) and a platform-specific model
(PSM) has in fact been introduced by MDA7 initiative of OMG8. It essentially proposes a staged-
transformation process from a PIM to a PSM. In addition to the PIM and PSM, MDA defines
also a computation-independent model (CIM) which is typically used to provide the context in
which the system is embedded and to analyze high-level system requirements. It provides thus a
business-centric view on the system, which is however out of the scope of this thesis.

7Model-Driven Architecture (MDA): www.omg.org/mda
8OMG: http://www.omg.org

5

Cloud
environments

Provisioning
engine

supports

Cloud
profile

Cloud
library

Architecture
model

Refined
architecture

model

Application
code

Target
platform

Target
platform
libraries

Target
platform
profiles

imports

applies

imports

extends refined into

captures
provisions

operationalizes

PIM
(UML)

PSM
(UML)

Implementation
(e.g., Java or C#)

Operation
(TOSCA)

applies

is implemented by translated into

translated into

interprets

supports

depends on

provisions

Figure 1.1: Conceptual framework

The PSM is the basis for developing the application code which obviously depends on the
target platform already specified on the model level. To what extent the application code can be
automatically generated from the refined architecture model heavily depends on the capabilities
of the employed model transformers, the platform-specific features captured on the model level,
and which aspects of an application are in fact modeled. As the refined architecture model
represents the desired state of the application provisioning in terms of the deployment view, it is
considered as input to the provisioning engine for enacting the respective provisioning process.
The provisioning engine requires access to all implementation-related artifacts that must be trans-
ferred to the target cloud environment. It executes the provisioning of the deployable artifacts
from the implementation layer and the services of the target cloud environment as specified by

6

the deployment model. In this way, the provisioning engine operationalizes the cloud services
captured by the cloud profile on the model level.

It is important to note that the proposed framework does not impose any process how and in
which order the particular artifacts from the various layers must be produced. Rather it shows
how its constituting building blocks relate to each other which also reveals that all the introduced
layers exploit model-based artifacts expressed either in UML or TOSCA. This emphasizes the
importance of models and model-based techniques, especially model transformation, for the
architectural style proposed by this thesis. Model transformation is considered as a key enabler to
automate the generation of artifacts from different layers. For instance, target platform libraries
and profiles on the model level can automatically be generated provided that an appropriate model
transformer is available. Generating libraries and profiles for a certain platform may even be
carried out independent of a concrete application scenario but solely for collecting them in a
central repository to make them available.

The following four main research questions (RQ1–RQ4) are going to be answered by this
thesis.

RQ1: What are the main modeling concepts for the cloud computing domain and how do current
cloud modeling languages (CML) differ from UML?

RQ2: What are the extension points of UML for integrating cloud-specific domain modeling
concepts and how can they be exploited to represent architectural models of cloud applica-
tions?

RQ3: What are the language correspondences between UML and TOSCA and how can the
provisioning of UML deployment models be automated based on TOSCA?

RQ4: What are adequate techniques to maintain cloud modeling artifacts produced by trans-
formations and how can those artifacts be automatically co-evolved with changes to
transformations?

In total, four scientific contributions are going to be presented by this thesis to answer the
posed research questions.

1.2.1 Scientific contribution 1: Systematic review of cloud modeling languages

We systematically review the diverse features currently provided by existing CMLs with the goal
to support engineers in selecting the CML which fits the needs of their application scenario and
setting and distill a core set of modeling concepts inherent to all of them, see RC1. Furthermore,
we discuss how CMLs differ from architecture description languages (ADLs) because the influ-
ence of ADLs on current CMLs is obvious. In order to classify and compare existing CMLs
we present a relatively concise framework with a main emphasis on their modeling capabilities
and the toolset which comes with them. As the systematic review of CMLs presented in this

7

thesis follows the guidelines of Kitchenham and Charters [KC07], we present the detailed process
according to which the review was conducted. The gained results of this systematic review and
the experiences and needs of several research projects [BRF+15], ARTIST [BBC+13], MODA-
Clouds [ANM+12] and PaaSage [JHS13] form the basis of developing cloud-specific extensions
to UML.

1.2.2 Scientific contribution 2: Cloud application modeling

In order to support a flexible cloud-specific refinement process from high-level architecture model
down to a concrete implementation of it, we propose the Cloud Application Modeling Language
(CAML) accompanied with a toolset to render it useful, see RC2. It consists of a set of libraries
and profiles dedicated to target platforms supported by cloud environments (see Figure 1.1),
where the focus is on the Java platform.

CAML’s toolset is capable to automatically generate UML libraries and profiles from existing
Java libraries. Whereas the structural aspects of a Java library are directly captured by a corre-
sponding UML library on the model level, for Java libraries which embrace annotations a UML
profile is generated in addition. As this necessitates overcoming existing heterogeneities that, e. g.,
refer to the target specification of Java annotations and other peculiarities of how Java annotation
types are declared, CAML provides a conceptual mapping between UML’s profile language
and Java’s annotation language. As a result, it enables the generation of specific stereotypes for
corresponding annotations and a dedicated stereotype for the library itself, which in turn leverages
library-specific profiles that are intended to be applied in the context of class and component
modeling. The tool set of CAML provides extensions to the Eclipse UML generator for Java, such
that stereotypes of library-specific UML profiles are translated into corresponding annotations.
Furthermore, it provides transformation chains that exploit library-specific profiles to produce
application behavior, e. g., method bodies of CRUD operations for entities that are persisted.

When turning the focus from target platforms to the cloud environments underneath, CAML
provides a set of profiles that capture cloud services offered by well-known cloud environments
such as Amazon AWS, Google Cloud Platform, and Microsoft Azure. They are collected in
terms of a common cloud profile which is intended to be applied for refining an environment-
independent deployment model towards a selected target cloud environment. The deployment
model is considered as part of the overall architecture of a cloud application. In addition to
the environment-specific profiles, CAML also provides a cloud library which provides abstrac-
tions over services offered by cloud environments. Combining the library approach with the
notion of environment-specific UML profiles results in a powerful cloud modeling solution.
The cloud library is used to model environment-independent deployment models, whereas the
environment-specific profiles are applied to those models for accomplishing the refinement.
The applied profiles allow hiding details of the target cloud environments from the deployment
models and dynamically switching between them by (un-/re-)applying the respective profiles.
The cloud library along with the profiles specific to cloud environments is exploited by CAML’s
model transformers to produce environment-specific deployment descriptors usually required for
configuration purposes of cloud services.

8

1.2.3 Scientific contribution 3: Cloud application provisioning

We propose a conceptual mapping between UML and TOSCA as a basis for a fully automatic
transformation between the two languages, see RC3. In this endeavor, we address both the
intensional and extensional level [Küh06] of deployment models as the deployment viewpoint is
provided by both languages. Obviously, this favors its use in the mapping process. Moreover,
the cloud-specific extensions to UML provided by CAML are addressed in the mapping process.
They enable the generation of meaningful TOSCA models from models represented in UML
as the cloud-specific features are injected via CAML’s cloud library and profile. In this sense,
CAML can also be considered as a bridge between UML and TOSCA, which explains why
we called our approach Caml2Tosca. Considering the conceptual framework in Figure 1.1, the
refined architecture model expressed in UML is considered as input to the Caml2Tosca model
transformer. It produces a TOSCA standard compliant model which can be interpreted by TOSCA-
based provisioning engines, such as OpenTOSCA [BBH+13]. We show how the Caml2Tosca
model transformer can be integrated into a tool chain leveraging architecture modeling for and
application provisioning to the cloud.

1.2.4 Scientific contribution 4: Cloud model patching

To enable output models to be co-evolved with changes in transformations, we propose to in-
fer in-place patch transformations from revised out-place transformations for existing output
models [BTW14], see RC4. A patch transformation propagates changes of a revised out-place
transformation to the respective output models without re-creating them from scratch. They are
only updated [MG06] according to the changes in the revised transformation by following an
in-place execution strategy that enables model patching. A patch transformation is automatically
produced based on the notion of a higher order transformation [VP04, ALS08, TJF+09], a diff
model [KDRPP09] that captures the differences between the two version of a transformation,
and a classification of transformation change types with their respective co-changes. Our ap-
proach fills the gap between current research on incremental transformations [JE04,HLR06,JT10,
RBÖV08, RK12, EKK+13], where changes in input models are propagated to existing output
models, and co-evolution of transformations with evolving metamodels, where changes in the
metamodels are propagated to transformations [LBNK09, IPM12, GDA12, RIP13].

1.3 Scientific approach

This thesis is carried out according to commonly accepted research methods in the area of software
engineering [Sha02, Sha03]. For that reason, we formulate four main research questions that are
motivated by practical challenges of realizing innovative techniques and tools in the light of MBE
and providing a common ground for bridging software engineering and cloud computing [JAP13].
Table 1.1 categorizes the formulated research questions according the conducted type of research,
the produced type of results, and the type of validation carried to provide evidence that research
results are sound. As a result, knowledge is yielded by a constructive methodological approach
that also adheres to the main guidelines of Hevner et al. [HMPR04].

9

Research
question

Type of
research

Type of
result

Type of
validation

RQ1 Generalization or
characterization

Descriptive model By instantiation

RQ2
Method or means
of development

Technique, tool,
and language

Methodological evaluation
Quality evaluation
Performance evaluation
Practical relevance by exampleRQ3

Method or means
of development Procedure and tool

RQ4
Method or means
of development Technique and tool Quality evaluation

Performance Evaluation

Table 1.1: Scientific approach classified according to dimensions of Shaw [Sha02, Sha03]

1.4 Application scenario

The potential benefits of cloud environments are certainly not only appealing in the develop-
ment and provisioning of new applications, but also in the modernization of existing applica-
tions [FH11, LFM+11, ANM+12, BBC+13] hosted on an on-premise environment. In this context,
modernization to the cloud refers to the transition of an application from a traditional non-cloud
environment to a modern cloud environment, thereby taking advantage of the novel opportunities
of cloud environments, e. g., advanced scalable data persistence solutions, to modernize soft-
ware. A transition typically implies adaptations to application components [ABLS13] because
the optimization opportunities of cloud environments can often only be exploited properly if
the software complies with the peculiarities imposed by such environments, e. g., the unique
datastore solution of the GAE. The need for adapting software induces also the need to understand
it [MJS+00, CDPC11], which, in turn, requires representations of the application or at least parts
of it in another form or at a higher level of abstraction [CI90,BCDM14]. How such a scenario can
be carried out in general is described by Kazman’s “horseshoe” [KWC98], which is a theoretical
model that captures the main processes of evolving applications. We interpret this theoretical
model in the light of an advanced MBE approach [FR13] to introduce a moderately complex
application scenario consisting of a reverse engineering and forward engineering phase. UML
profiles and libraries play an important role in the application scenario as they enable models
annotated with platform-specific and environment-specific information [PBMH12].

By employing UML profiles and libraries, models independent of a platform and environment
are refined towards the required target platform and environment. Turning this forward engineer-
ing perspective into a reverse engineering perspective, existing applications can be represented as
UML models that capture platform and environment-specific information. In a reverse engineer-
ing process, this additional information can be exploited to facilitate comprehension [CDPC11],
whereas models refined to a target platform and environment pave the way for generating richer
application code in a forward engineering process [Sel12].

10

Environment-
specific models
Environment-

specific models

On-premise
application

Platform &
environment-

specific models

Cloud
application Transition

Environment-
specific models
Environment-

specific models
Platform &

cloud environment-
specific models

Code2
Model

Model2
Code

Model2
Model

Model2
Model

JPA
Profile

Pet
App

«apply»
«import»

Java
Library

Platform &
environment-
independent

models

Application
Code

JPA
Library

JDK

«import»
«import»

GAE

Application
Code

Objectify
Library

GAE
JDK

«import»
«import» Jackson

Library

«import»

1

2 3

4

«apply»

Cloud
Profile

«apply»

Objectify
Profile

Jackson
Profile

«import»

«import»

Java
Library

«apply»
Pet
App

PetApp cloud
 Deployment

Pet
App

Cloud
Library

«import»

Figure 1.2: Application scenario used throughout the thesis

The inner part of Figure 1.2 gives an overview of combining both processes for realizing the
transition of an existing application towards a cloud environment. In particular, we consider
a slightly extended version of the well known Java Petstore9 application (PetApp) which is
expected to be hosted on Google’s App Engine. The PetApp consists of three deployable
components [Szy03]. They refer to the Petstore web application (PetWeb), an administration
dashboard (PetAdmin), and support for calculating and visualizing sales statistics (PetStats).
Both the PetAdmin and PetStats component depend on the PetWeb component because they
require access to the domain classes such as Order and OrderLine. To demonstrate a concrete
adaptation step required to host the PetApp on the App Engine, we focus on the data persistence
solution of the original PetApp and how it needs to be changed to meet the peculiarities imposed
by of the App Engine’s datastore solution. The idea is to replace the JPA-based solution of the

9Java Petstore: http://oracle.com/technetwork/java/index-136650.html

11

original PetApp by a solution based on Objectify10, thereby realizing a change of the data access
platform as typically required for “moving-to-the-cloud” scenarios [ABLS13]. In addition, we
demonstrate how a REST-based client can be generated for domain classes managed by Objectify.
The presented solution is based on Jackson11, which provides data processing tools for a variety
of formats including the JavaScript Object Notation (JSON)12.

Now that we have introduced the application scenario, in the following a brief summary
is given how it is used throughout the remaining chapters. In Chapter 3, we demonstrate the
representational capabilities of existing CMLs according to the PetApp. As some CMLs support
reverse engineering processes in addition to forward engineering ones in a similar way compared
to CAML, the choice of the “PetApp-to-the-cloud” scenario fits well for this purpose. Then, in
Chapter 4 we provide insights into how the transition of the PetApp to the Google App Engine
can be accomplished by applying CAML, whereas its provisioning is presented in Chapter 5.
In Chapter 7 we again refer to the PetApp for demonstrating the practical relevance of the
architecture style for cloud application modeling presented in this thesis.

1.5 Structure of the thesis

This thesis is structured according to its main contributions. In the following, an overview of
this thesis is given by briefly describing the elaborated contents of each chapter. As some of the
contributions of this thesis are already published in peer reviewed workshops, conferences, and
journals, the contents presented in this thesis build on the contents of published research work.
The following chapter overview includes information about which contents are already published.

Chapter 2: Preliminaries. In this chapter, we briefly introduce the main characteristics of
cloud computing and give a short overview of three major cloud environments: Amazon AWS,
Google Cloud Platform, and Microsoft Azure. Thereafter, we discuss the role of UML in the con-
text of architecture modeling by putting emphasis on three modeling viewpoints most relevant for
this thesis: (i) class viewpoint, (ii) component viewpoint, and (iii) deployment viewpoint. Finally,
we consider how UML can be extended with domain concepts from an language engineering
perspective. As UML profiles play an important role in this thesis, we go into detail of how they
are defined and applied. In this respect, we also discuss Java’s annotation concept in the light of
UML profiles.

Chapter 3: Review of cloud modeling languages. This chapter presents the first contribu-
tion of this thesis. We systematically review existing CMLs according to four core dimensions
of a classification and comparison framework. To satisfy the common guidelines to conduct a
systematic literature review, we explain in detail the applied review process. As a result of the
CML comparison, not only features of existing CMLs are pointed out for which extensive support
is already provided but also in which they are deficient, suggesting a research agenda for the
future. Some of these suggestions can obviously be considered as motivation for the scientific

10Objectify: https://code.google.com/p/objectify-appengine
11Jackson: http://jackson.codehaus.org
12JSON: www.json.org/

12

contributions 2 to 4 of this thesis. This chapter builds on research work in which we investigate
some CMLs with an emphasis on their extensional capabilities [BWKG14].

Alexander Bergmayr, Manuel Wimmer, Gerti Kappel, and Michael Grossniklaus. Cloud Modeling
Languages by Example. In Proc. of Intl. Conf. on Service-Oriented Computing and Applications
(SOCA), pages 137–146, 2014

Chapter 4: Cloud application modeling. This chapter introduces CAML, which is the second
main contribution of this thesis. In the first part of this chapter, we give an overview of CAML’s
core building blocks and provide insights into how custom UML types can be extended via
stereotypes. The generation of UML profiles from Java-based target platforms is presented in
the second part of this chapter, while the third part deals with the development of cloud-specific
extensions to UML. This chapter builds on research works in which we present a conceptual
mapping between Java and UML [BGWK14b, BGWK15, BGWK16] and demonstrate a fully
automatic transformation chain on top of it [BGWK14a]. Moreover, this chapter relies on research
work in which we introduce some of CAML’s modeling capabilities [BTN+14].

Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel. JUMP –
From Java Annotations to UML Profiles. In Proc. of Intl. Conf. on Model Driven Engineering
Languages and Systems (MoDELS), pages 552–568, 2014

Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel. UML Profile
Generation for Annotation-based Modeling. In Proc. of Software Engineering & Management:
Multikonferenz der GI-Fachbereiche Softwaretechnik (SWT) und Wirtschaftsinformatik (WI),
pages 101–102, 2015

Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel. Leverag-
ing Annotation-based Modeling with JUMP. Software and Systems Modeling, 2016. to appear

Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel. Bridging
Java Annotations and UML Profiles with JUMP. In Proc. of Demo Track of Intl. Conf. on Model
Driven Engineering Languages and Systems (MoDELS), pages 1–5, 2014

Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel Wimmer, and Gerti Kappel. UML-
based Cloud Application Modeling with Libraries, Profiles, and Templates. In Proc. of Intl.
Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE), pages 56–65, 2014

Chapter 5: Cloud application provisioning. In this chapter, the third contribution of this
thesis is presented. It is concerned with the conceptual mapping between UML and TOSCA,
where CAML is exploited as the bridge between the two languages. We give a brief introduction
of TOSCA’s core language concepts and clarify how the intensional and extensional modeling
levels introduced by UML and TOSCA relate to each other. Thereafter, we present the language
correspondences based on which we implemented a model transformation that automates the

13

translation of UML models into TOSCA models. We discuss this model transformation in
the light of an application provisioning process that starts with a high-level architecture model
represented in UML. This chapter builds on research work in which we propose an approach for
combining UML and TOSCA [BBK+16]. Moreover, it builds on a transformation chain capable
to produce MOF13-based metamodels from XML Schemas [NBM+15].

Alexander Bergmayr, Uwe Breitenbücher, Oliver Kopp, Manuel Wimmer, Gerti Kappel, and
Frank Leymann. From Architecture Modeling to Application Provisioning for the Cloud by
Combining UML and TOSCA. In Proc. of Intl. Conf. on Cloud Computing and Services Science
(CLOSER), 2016. to appear

Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer, Javier Troya, and Manuel Wim-
mer. XMLText: From XML Schema to Xtext. In Proc. of Intl. Conf. on Software Language
Engineering (SLE), pages 71–76, 2015

Chapter 6: Cloud model patching. This chapter is concerned with the fourth contribution
of this thesis. It presents patch transformations capable of co-evolving existing models with
changes in the model transformation that produced those models. We give an overview of different
co-evolution scenarios in the context of model transformation evolution and show how incremen-
tal transformation execution can be exploited for efficiently maintaining models repositories in a
non-invasive manner. This chapter builds on research work in which we present the approach
underlying patch transformations [BTW14].

Alexander Bergmayr, Javier Troya, and Manuel Wimmer. From Out-Place Transformation
Evolution to In-Place Model Patching. In Proc. of Intl. Conf. on Automated Software Engineering
(ASE), pages 647–652, 2014

Chapter 7: Evaluation. In this chapter, the evaluation of the artifacts developed in the course
of this thesis is presented. We investigate the methods of current UML modeling tools to deal
with platform and environment-specific extensions and compare them to CAML’s methodological
approach. As CAML is capable to automatically generate UML profiles from Java-based libraries,
we report on their quality with respect to UML profiles used in practice. Moreover, we discuss its
scalability for relatively large programming libraries. Furthermore, we evaluate the quality and
performance of model patching by means of model transformations developed in the course of
the ARTIST project and applied to its use cases. Finally, in order to demonstrate the practical
relevance of the proposed architecture style for cloud application modeling, we report on its
application in the context of of a modernization scenario to the cloud.

Chapter 8: Conclusion. In this chapter, the four main contributions of this thesis are briefly
summarized and open challenges to be addressed in future work are outlined.

13Meta Object Facility [OMG11b]

14

CHAPTER 2
Preliminaries

To provide the necessary background for this thesis, we introduce cloud computing because it is
the domain for which we present extensions to UML. In particular, we discuss the different levels
of virtualization typically used to distinguish services offered by today’s cloud environments. We
support this discussion by looking at three major cloud environments whose features were ana-
lyzed in the course of this thesis to provide the foundation for the development of cloud-specific
extensions to UML.

Some of its peculiarities with respect to deployment modeling are seized and discussed
because this viewpoint of UML plays a particular role for the refinement of architecture models
towards a target cloud environment. Even though UML’s class and component viewpoint are just
as important as the deployment viewpoint for this thesis, their use has already been discussed
intensively in existing literature. For that reason, the main emphasis is placed on UML’s deploy-
ment viewpoint when discussing its role in the context of architecture modeling.

Finally, we introduce two mechanisms of UML that are useful for extending its metamodel
with supplementary types: profiles and libraries. Considering the former, we also discuss its
role as general injection mechanism because one goal of this thesis is to bring annotations from
programming to modeling. In this respect, we focus on Java’s annotation mechanism and current
methods of how it can be supported on the model level. Hence, the foundations for leveraging
annotation-based modeling are mainly emphasized when we introduce model-based engineering
(MBE).

The remainder of this chapter is structured as follows. In Section 2.1, we introduce cloud
computing and highlight some of its core characteristics most relevant for this thesis. Then, we
discuss UML’s capabilities for architecture modeling in Section 2.2. Finally, in Section 2.3, the
typical artifacts that occur in MBE are introduced at first. Thereafter, we place emphasis on
approaches for extending UML’s metamodel.

15

2.1 Cloud services and environments

In cloud computing, infrastructure resources, such as processing power and storage, platforms,
and software, are viewed as commodities that are readily available from large data centers op-
erated by cloud providers. Cloud computing leverages service-oriented architectures to unify
elements of distributed, grid, utility, and autonomous computing. One characteristic that sets
cloud computing apart from these existing approaches is the dynamic provisioning of resources
offered by cloud providers as services. Those services are exposed by the providers’ cloud
environments. Usually they are offered according to a certain quality of service. The quality
of a technical service can be expressed in various ways. Often cloud providers define only the
availability of their services. From a user perspective, the quality of a cloud service is ideally at
least equivalent [VW12] to a non-cloud solution.

Cloud users can provision and release cloud services on demand and pay only for what they
have actually consumed. This “pay-as-you-go” principle benefits both the cloud user and the
cloud provider. From the user perspective, the risk of under or over-provisioning is avoided as the
provisioned cloud services can elastically scale [VRB11] with the user’s demand. In contrast,
the cloud provider profits from an economy of scale and can offer cloud services at a price that
is usually lower than the one of a non-cloud solution [Wal09]. Cloud providers can utilize their
resources to capacity by optimizing the work load scheduling of the different co-located cloud
users. To achieve this elasticity, virtualized resources are virtualized [AFG+09]. Hence, a key
concept that enables cloud computing is virtualization. The possible spectrum of virtualization
that can be offered by a cloud environment is wide. On one end of the spectrum, compute
capacity is virtualized by providing a raw virtual machine. Since compute services constitutes
virtualization at a relatively low level in the computing stack, they provide little management and
maintenance. Therefore, cloud users of such services are, for example, responsible to provide
the complete software stack from the operating system upwards, configure it, and keep all the
components of the stack up to date. On the other end of the spectrum, the virtualization comprises
in addition to low level compute capacity a fully-managed software stack that is inherently
tailored to a certain type of applications. Such a software stack may even provide complete and
ready-to-use applications or a collection of general components that can be assembled into an
end-user application without programming by branding, customization and configuration, similar
to mash-ups in the context of web services.

In theory, the spectrum of virtualization is continuous and all possible trade-offs are imagin-
able. In practice, however, cloud services have converged to three rather discreet points on this
spectrum. They are commonly referred to as Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), and Software-as-a-Service (SaaS), where IaaS provides low-level virtualization
and less management and SaaS provides high-level virtualization and more management, while
PaaS resides in between the two. Figure 2.1 provides an overview of the three levels of virtualiza-
tion including examples of cloud services for each level.

16

User-managed
e.g., PetApp User-managed

e.g., Java-based
software stack

Cloud-managed
Infrastructure

Resources

Cloud-managed
Platform

Resources

Cloud-managed
Software
Resources

Cloud users

Cloud
Environment

Cloud service

e.g., Amazon EC2
compute service

e.g., Google App
engine service

e.g., Microsoft
Office 365 service

Infrastructure
as a Service

(IaaS)

Platform
as a Service

(PaaS)

Software
as a Service

(SaaS)

Figure 2.1: Levels of virtualization in cloud computing

Infrastructure-related cloud services are typically concerned with the provisioning of compute
units consisting of a processor, memory and local storage. Those compute units can be networked
by defining their addresses and the connections between them. For instance, Amazon’s EC2
service offers virtualized compute units that look in fact much like physical hardware. Another
option that is commonly available on the infrastructure level is shared storage in the form of
a basic block storage, a database, or a scalable data store. Such elements can be found in the
services of most major cloud environments. In the case of Amazon, for example, block storage
is offered as part of EC2, while their Simple Storage Service (S3), SimpleDB, and DynamoDB
provide scalable data management. The latter are different cloud storage services that can be
accessed via dedicated APIs.

Cloud services on the platform level provide a pre-configured and managed execution envi-
ronment in terms of tools, supported programming languages, and available APIs. Often those
services replicate execution environments in the cloud that are already commonly used in practice,
such as web servers, web application servers, or database servers. For instance, Microsoft Azure
is a mixture between an infrastructure and a platform cloud environment. On the one hand, it is
possible to work with bare Windows or Linux virtual machines, similar to Amazon EC2. On the
other hand, Microsoft Azure also provides cloud services for media delivery, web sites and web
applications, which are realized using byte-code virtualization based on the .NET framework.
Additionally, two types of data management services are available. The SQL Database service is
based on Microsoft SQL Server and supports tables and BLOBs, whereas the Big Data service
is based on Apache Hadoop. In contrast to Microsoft Azure, Google’s App Engine virtualizes

17

a complete software stack that targets automatic scalable web applications that require high
availability. It is proprietary to Google, but provides application programming interfaces that
are similar to well-known frameworks. For example, their Datastore API is similar to JDBC
and supports database access through an SQL-like language called GQL. The Google cloud
ecosystem further offers a series of services for data management and data analysis. Google
Cloud Storage is similar to Amazon S3, whereas the key-value datastore of Google’s App Engine
is similar to DynamoDB. For the on-line transaction processing (OLTP) use case, Google offers
Cloud SQL, which is based on MySQL with synchronous replication and support for joins. For
the off-line analytical processing (OLAP) use case, clients can use Google Big Query which is
based on Cloud Storage and can evaluate MapReduce as well as SQL tasks without joins.

Finally, software-related cloud services operate on the highest level of the three types of cloud
computing platforms. Examples of ready-to-use cloud software include Microsoft Office 365 and
Google Drive. Platforms such as Force.com are examples of platforms that can be adapted at a
very high-level to build end-user applications.

Orthogonal to the classification of cloud environments into infrastructure, platform, and
software, they can be distinguished according to their availability to the public [MG11]. In
the case of a public cloud environment there is a clear distinction between an organization or
company that acts as the cloud provider and other organizations, companies, or individuals that
use the offered services. We refer to the latter as cloud users. In contrast, a private cloud is used
and operated in-house by the same company or organization and hence not available to the public.
Hybrid clouds are composed from several different cloud services, regardless of whether they are
private or public. There are many use cases in which companies or organizations opt for using a
hybrid cloud. Security considerations, for example, might require that sensitive data are managed
and processed in a private cloud, while data that are not restricted can be handled by a public
cloud. Another reason to use multiple cloud environments might be the different capabilities of
cloud services [Pet14]. For example, companies may try to split their data management between
several cloud environments for the purpose of combining the best available transactional and
analytical processing. Finally, if several organizations have common concerns or goals, they can
share an environment as a community cloud. As a consequence, a community cloud is a mix of a
private and a public cloud environment.

2.2 Architecture viewpoints

Already since the late 1980s architecture models are used to capture and communicate the high-
level structure of an application along with the behavior of structural elements as specified in
the interactions among them [BRJ05]. For that reason, a plethora of languages starting with
box-and-line notations to describe applications in terms of components and connectors have been
proposed since then. Today, UML is a well-adopted language for modeling the architecture of
applications from various viewpoints [LMM+15]. Each model view delivers a certain perspective
on the application architecture, thereby addressing the different concerns of involved stakeholders.
This thesis is mainly concerned with three viewpoints for modeling the architecture of a cloud
application: (i) class viewpoint, (ii) component viewpoint, and (iii) deployment viewpoint. How
these viewpoints can be supported by UML models is demonstrated in Figure 2.2.

18

«class»
ShoppingCart

- order:Order
- orderService:OrderService

«artifact»
PetWeb

:PetWeb

1..* orderLines

«component»
PetBusiness

«manifestation»

«use»

«deploy»

«deploy»

«import»

PetComponents

«deploy»

«class»
OrderService

+ createOrder():Order
+ findOrder(in id long):Order

«component»
PetService

«class»
Order

- orderId:Long

«component»
PetBusiness

«class»
OrderLine

- lineId:Long

«use»

«manifestation»

«manifestation»

«artifact»
PetData «manifestation»

:PetData

:ApplicationContainer

container=JEE

:Datastore

type=Relational

:OnPremiseNode
memory=2
CPU=1.7
localDisk=4
os=Linux

«deploy»

PetDeployment

«node»
OnPremiseNode
memory:Real
CPU:Real
localDisk:Real
os:OSKind

«executionenvironment»
ApplicationContainer

type:ContainerKind

«executionenvironment»
Datastore

type:DatastoreKind

«enumeration»
DatastoreKind

Relational
Key-Value

«enumeration»
OSKind

Linux
Windows

«enumeration»
ContainerKind

JEE
RubyOnRails

«modellibrary» WebDeployment

«import»

(a) Class and component viewpoint

(b) Deployment viewpoint on instance level (c) Deployment viewpoint on type level

Figure 2.2: Demonstration of class, component and deployment viewpoint

It shows three sub-components (PetBusiness, PetService and PetData) of the PetWeb component
and an excerpt of their realizing classes (see Figure 2.2(a)). The components are manifested by
deployable artifacts instead of directly allocated to a deployment target. This additional level
of indirection allows the manifestation of one or more components into an artifact that refers
to the actual implementation of the manifested components. For instance, a “JAR file” is a
deployable artifact in the context of Java-based web development. Artifacts are allocated to
respective deployment targets that are capable to interpret or execute them (see Figure 2.2(b)).
In fact, the PetWeb artifact is allocated to a Java-based application container which in turn is
deployed on a node with certain (virtual) machine characteristics. Similarly, the PetData artifact

19

is allocated to relational DBMS that runs on a separate node. Both nodes are connected to
each other to allow communication between the various artifacts and targets comprised by the
deployment model. All these artifacts and targets are instances of the custom types created by the
component model (see Figure 2.2a) and the common web deployment model (see Figure 2.2c),
respectively. The latter provides the types of the deployment targets instantiated by the concrete
deployment model of the PetApp. A deployment model on the type level describes all possible
deployment configurations. In contrast, a deployment model on the instance level captures a
concrete deployment configuration for a certain application. Engineers that model concrete
deployment configurations instantiate the types of the common web deployment model and
assign values to the features provided by those types. For them, the differentiation between
ontological and linguistic typing [AK07] is irrelevant. They can directly benefit from the fact
that custom types or even hierarchies of them can be established without modifying the UML
metamodel. However, from a language engineering perspective, it is important to understand
which meta-classes are in fact instantiated, how are custom types assigned to created instances,
and what are the implications of the two typing dimensions. As this thesis deals with developing
cloud-specific language extensions to UML, the differentiation between ontological and linguistic
typing is briefly discussed by means of the deployment viewpoint.

Figure 2.3 captures UML’s meta-classes relevant for deployment modeling. The meta-class
InstanceSpecification is used to model artifacts and targets of a concrete deployment
configuration. It inherits from the meta-classes DeploymentTarget and DeployedArtifact,
which are the member ends of the Deployment meta-class. As a result, instances of the meta-
class InstanceSpecification can be related via a deployment relationship. Considering the
deployment configuration in Figure 2.2(b), all the artifacts and targets are instances of the meta-
class InstanceSpecification. The relationships between them (annotated by «deploy») are
instances of the Deployment meta-class. Meta-classes of the UML metamodel enable linguistic
typing. In order to assign a custom type to an instance of InstanceSpecification, ontological
typing is required. In UML, the classifier property of InstanceSpecification allows
custom types to be linked to instances. For instance, the PetWeb artifact defined in the component
model of Figure 2.2(a) is the ontological type of the respective artifact instance in the deployment
configuration of Figure 2.2(b). Even though an instance may have both a linguistic type as well
as an ontological type, in UML they are treated differently. Linguistic typing is realized in the
sense of a true “class/object” instantiation known from object-oriented programming. In contrast,
ontological typing is solely based on a plain reference between the two members. Thus, the actual
semantics underlying this reference, which is in fact also a “class/object” instantiation, is only
weakly defined. The different realization of linguistic and ontological typing, the first one may be
considered as first-class type, while the latter as a second-class type, has a strong effect on the
functionality of UML’s extension mechanism as it solely allows linguistic types to be extended
by default.

20

classifier

[*]

«metaclass»
Classifier

Name:String [0..1]
isAbstract:Boolean = false

«metaclass»
Element

«metaclass»
Stereotype

«metaclass»
Association

«metaclass»
Deployment

Target

«metaclass»
Node

«metaclass»
ExecutionEnvironment

«metaclass»
Communication

Path

«metaclass»
InstanceSpecification

«metaclass»
Slot

«metaclass»
ValueSpecification

slot [*]

value [*]

«metaclass»
Artifact

«metaclass»
Enumeration

«metaclass»
EnumerationLiteral

ownedLiteral [*]

«metaclass»
Deployment

«metaclass»
Dependency

deployment

[*]

«metaclass»
Deployed
Artifact

deployed
Artifact

[*]

«metaclass»
DeploymentSpecification

configuration [*]

source [1..*]
[1..*]

target

«metamodel» UML deployment language

Figure 2.3: Meta-classes of UML deployment viewpoint

2.3 Model-based engineering

Model-based Engineering (MBE) advocates the use of models to raise the level of abstraction
and model transformations to increase the degree of automation in software engineering [Sel08,
BCW12]. Models are used to represent a certain kind of information, e. g., a model of an
application that exists (descriptive) or that should be realized (prescriptive). Transformations
enable the manipulation of models in a systematic manner for a given purpose. In this sense, they
are the active part in MBE. Following the “everything is a model” doctrine of MBE [Béz05b],
transformations are in fact also models. This general notion of a model brings several benefits
to MBE. For instance, in case transformations are subject to manipulation, considering them in
terms of a model is extremely useful. As a result, transformations can be passed as input to a
transformation and produced from it as output. A higher order transformation (HOT) is a model

21

transformation whose input and/or output are themselves transformations [VP04,TJF+09,ALS08].
Modeling languages that are used to create models and upon which model transformations

are defined play an important role in MBE. They are often specified by means of a metamodel.
Roughly speaking, a metamodel is a model that captures the abstract syntax of a language.
Additional constraints on the syntactical elements provide contextual validation rules for the
language. For instance, the UML metamodel along with OCL1 constraints is one obvious example
in this respect. Another example is the TOSCA metamodel which plays also an important role in
the context of this thesis.

Grammarware

EBNF

Metamodel
e.g., UML

Model
e.g., PetApp

domain model

Program
e.g., PetApp

Grammar
e.g., Java

MOF

conforms to

M3

M2

M1

Modelware

conforms to conforms to

conforms to

Figure 2.4: Meta-layers of grammarware and modelware

2.3.1 Models, metamodels, and transformations

A model is built up from elements that comprise values stored in attribute slots and references to
other elements. The underlying structure of a model is a graph. In the context of MBE, models
usually conform to a metamodel. Validating the conformance of a model to a metamodel is of
particular interest in scenarios where models are processed. A metamodel is itself a model that
defines a potentially infinite set of valid models. Metamodels are often represented by means
of UML class-diagram-like notations in combination with OCL to describe the abstract syntax
of a modeling language. The same pattern can be applied for validating the conformance of
metamodels against the model used to create them. Such a model is standardized by OMG’s MOF.
For instance, UML is a MOF-based metamodel. It conforms thus to the metamodel specified by
MOF. A popular implementation of the essential part of MOF (EMOF) is Ecore, the top-level

1Object Constraint Language: http://www.omg.org/spec/OCL

22

model of EMF2. For instance, the Eclipse-based implementation of UML is built on top of EMF,
where its metamodel is expressed in Ecore. When considering the different layers of the general
meta-architecture introduced by MOF, they show similarities to the meta-layers used in the field of
programming language development. The terms “modelware” and “grammarware” are often used
to distinguish between the two technical spaces [KLV05, Béz05a]. A valid program conforms
to a grammar which is usually expressed in terms of a meta-language. For instance, EBNF is a
prominent example of a meta-language. MOF takes a similar role in MBE. Figure 2.4 illustrates
the meta-layers of both technical spaces along with concrete examples.

Turning the focus now on transformations, they are indispensable for manipulating models in
MBE. Originally, the notion of model transformation has been proposed to automate the transition
from models to code. Today, this core technique of MBE is used to automate a multitude of
different MDE tasks. Some tasks that are nowadays often solved by (semi-)automated model
transformations are summarized in the following.

• Model refinement: An abstract model is transformed into a more concrete model
• Model modernization: A model is transformed in order to operate in a new target envi-

ronment
• Model refactoring: The internal structure of a model is transformed for the purpose of

improvement while the external observable behavior is preserved

The core ingredients of a model transformation are illustrated in Figure 2.5. This pat-
tern [CH06a] describes the systematic transformation of an input model conforming to an input
metamodel into an output model conforming to an output metamodel.

Input metamodel

conforms to

Output metamodel

Input model Output model

conforms to

Transformation logic

Execution
engine

input output

Trace model

input elements output elements

executes

creates

Transformation
specification

Transformation
execution

Figure 2.5: Model transformation pattern

2Eclipse Modeling Framework: http://www.eclipse.org/modeling/emf/?project=emf

23

A model transformation is developed based on the metamodels of the models that are intended to
be transformed. The source metamodel and the target metamodel need not necessarily be different.
For instance, a UML model that is refined into a more concrete UML model is an example of a
transformation where both the source and target metamodel refers to UML. The transformation
logic implemented in some kind of model transformation language is executed by a dedicated
execution engine. It reads the input models and generates the output models by applying the
transformation. In addition, most transformation execution engines are also capable of producing
a trace model. It connects the input elements transformed into corresponding output elements via
trace links. The trace information is especially useful for transformation development, e. g., it can
be exploited for debugging and testing purposes. Furthermore, it can be exploited to trace model
elements through different abstraction levels and to analyze change impact. In general, model
transformations can deal with several input and output models, thus, although the one-to-one
transformation case is the most used one, it is only one out of several cases.

As quite diverse MDE tasks are supported by model transformations, several languages
different characteristics emerged in the last decade. Most importantly, their underlying paradigm
can be classified in declarative, imperative, and hybrid. Furthermore, the execution possibilities
of transformations is of major interest. While some languages enable uni-directional execution
only, others are capable to transform in both directions and to match and synchronize existing
input and output models. A prominent hybrid model transformation language used in academia
as well as industry is ATL3 [JABK08].

2.3.2 Profiles and libraries for extending UML

Extensions to UML can be realized by profiles and libraries [Sel07]. A library in UML comprises
custom model elements intended to be reused by other models including profiles. For instance,
the common web deployment model in Figure 2.2 is defined as a library (annotated by «modelli-
brary»). It provides a variety of custom types to be reused by a concrete deployment configuration.
On the other hand, UML profiles can be considered as general injection mechanisms for varying
purposes. For instance, a UML profile is often used to specify variation points of general UML
semantics, explicitly document environment-specific design decisions, introduce classifiers in
addition to the standard UML classifiers (i. e., it is used as a classification mechanism), and
capture platform-specific terminology (i. e., it is used as an annotation mechanism). In this thesis,
UML’s profile mechanism is primarily used to capture features of selected cloud environments
and platform-specific terminology of Java-based libraries. For instance, the UML specification
contains a simplified Enterprise Java Beans (EJB)4 profile to discuss the benefits of the profile
mechanism and demonstrate its application.

We use a similar approach to briefly introduce UML’s profile mechanism, but turn the focus
on the JPA, which is employed by our PetApp example. In fact, we place emphasis on a single
JPA concept that is used to annotate persistable domain classes: Entity. Its declaration in Java
is shown in Listing 2.1. The Entity of the JPA is realized in terms of an annotation that can be
applied to declared domain classes (see @Target annotation which refers to Java types).

3ATL: https://eclipse.org/atl
4EJB: http://www.oracle.com/technetwork/java/javaee/ejb/index.html

24

Listing 2.1: Declaration of Entity annotation
1 package javax . persistence ;
2 import java . lang . annotation . ∗ ;
3
4 @Target (ElementType . TYPE)
5 p u b l i c @inter face Entity {
6 String name () d e f a u l t "" ;
7 }

Listing 2.2: Application of Entity annotation
1 package . . . ;
2 import javax . persistence . Entity ;
3
4 @Enti ty (name = "Order")
5 p u b l i c c l a s s Order {
6 . . .
7 }

To demonstrate how the declared annotation (type) can be applied, we consider the Order class
of the PetApp. Placed orders are required to be persisted. Thus, the Entity annotation is applied
to the Order class. Listing 2.2 illustrates the declaration of Order class along with the applied
Entity annotation.

«metamodel» UML

public
protected
private
package

«Enumeration»
VisibilityKind

owned
Attribute

[*]

type [1]

«metaclass»
NamedElement

name:String[0..1]
visibility:VisibilityKind[0..1]

«metaclass»
Class

isAbstract:Boolean[1] = false

«metaclass»
Property

«metaclass»
Association

«metaclass»
Stereotype

«metaclass»
ExtensionEnd

«metaclass»
Extension

«metaclass»
Classifier

ownedEnd

[1]

metaclass

[1]

Figure 2.6: Metamodel of UML profiles

25

Turning now the perspective from Java to UML, we show how the Entity concept can be realized
by means of a UML profile. With the introduction of UML 2, the profile mechanism has been
significantly improved compared to the beginnings of UML [FFV04, Sel07]. In particular, a
profile modeling language has been incorporated in the UML language family to precisely define
how profiles are applied on UML models and how stereotypes are applied to elements of those
models. Figure 2.6 depicts the core elements of UML’s Profiles package and relates them to
the Classes package of UML. Several classifiers, relationships, and features are omitted. We
refactored some relationships for reasons of comprehensibility [BWRZ13]. For instance, in the
standard UML metamodel Class inherits indirectly from NamedElement, hence we reduced the
intermediate meta-classes forming a deep inheritance hierarchy.

A Stereotype is a specific meta-class used to extend meta-classes of the UML metamodel.
This enables platform-specific concepts to be injected into instances of meta-classes that are
extended by a defined stereotype. The Stereotype meta-class specializes the meta-class Class.
Hence, it inherits modeling capabilities such as properties. Similar to AnnotationTypes, an
instance of a Stereotype is identified by a name and modified by an optional visibility and
the mandatory isAbstract property. A defined stereotype references the extended meta-classes
via instances of the Extension relationship. The Extension relationship inherits from the
Association meta-class. As a result, it is a binary relationship with two association ends where
both are realized by a Property. The property that points to the extended meta-class is contained
by the defined stereotype, whereas the extension contains the other association end. It realizes the
reference from the extended meta-class back to the defined stereotype. This back reference is
represented by the ExtensionEnd meta-class, which inherits from Property.

Having introduced the core meta-classes of UML’s profile langugage, the corresponding UML
representations of the declared and applied Entity concept are shown in Figures 2.7 and 2.8.

They demonstrate the stereotype application to the Order class and the Entity definition
by a stereotype. Considering the latter, it comprises as expected the string-typed name property

name : String = "" [0..1]

«Metaclass»
Type

«metamodel» UML

«Stereotype»
Entity

«Profile»
javax.persistence

«import» «instantiate»

metamodel
level

model
level

«Metaclass»
Stereotype

«modellibrary»
UML primitive types

«primitive»
String

«import»

Figure 2.7: Declaration of Entity stereotype

26

name : String = "" [0..1]

«Metaclass»
Class

«Metamodel» UML

«Stereotype»
Entity

«Profile» javax.persistence

«import»

«Entity»
Order

«instantiate» «apply»

Entity
«reference»

«instantiate»

metamodel
level

model
level

name = "Order" «Entity»
name = "Order"

Figure 2.8: Application of Entity stereotype

corresponding to the annotation type element of the Entity annotation type. UML provides
a model library of primitive types, which comprise a String type among others. Hence, the
primitive types library of UML is imported by the defined UML profile. To ensure that the Entity
stereotype provides at least similar capabilities as the Entity annotation type, the Extension
relationship references the UML meta-class Type. Once the required stereotypes have been
defined, they can be applied to instances of the extended meta-class and its sub-meta-classes.

In order to apply the defined Entity stereotype to the Order class, the profile comprising it
must be applied to the Order’s package at first. Applying a stereotype means that it is instantiated
similar to any other meta-class that is used to create elements on the model level, e. g., the
Order class which is an instance of the meta-class Class. Hence, a declared stereotype can be
considered as part of the metamodel level if the focus is on the stereotype application [AKHS03].
A stereotype instance references the element on the model level to which the respective stereotype
has been applied. In our example, the Order class is thus referenced by an instance of the
declared Entity stereotype. An excerpt of the serialized PetApp model in Listing 2.3 shows the
result of applying the Entity stereotype to the Order class in serialized form (see line 24 for the
stereotype instance).

Listing 2.3: Serialized PetApp model
1 <?xml version = " 1 . 0 " encoding="ISO−8859−1"?>

2 <xmi : XMI . . . >

3 <!--
4 Excerpt of PetApp model covering the Order entity and the application of
5 the JPA profile .
6 -->
7 <uml : Model xmi : id="_Irs5cOQcEeStU_XOIGwR−w " name="pet−app">

8 <packagedElement xmi : type="uml : Class " xmi : id="_Irs5p−QcEeStU_XOIGwR−w " name="
↪→Order">

9 <ownedAttribute xmi : id="_Irs5qOQcEeStU_XOIGwR−w " name="id " visibility="
↪→private">

10 <type xmi : type="uml : PrimitiveType " href="pathmap : / / UML_LIBRARIES /

↪→JavaPrimitiveTypes . library . uml#long " / >

27

11 </ownedAttribute>

12 </packagedElement>

13 <profileApplication xmi : id="_Irs6L−QcEeStU_XOIGwR−w">

14 <eAnnotations xmi : id="_Irs6MOQcEeStU_XOIGwR−w " source="http : / / www . eclipse .
↪→org / uml2 / 2 . 0 . 0 / UML">

15 <references xmi : type="ecore : EPackage " href="platform : / . . . / jpa2_profile .
↪→profile . uml#_TEHZ8iWxEeOCj6LiK5WXEg " / >

16 </eAnnotations>

17 <appliedProfile href="platform : / . . . / jpa2_profile . profile . uml#
↪→_TEHZ8CWxEeOCj6LiK5WXEg " / >

18 </profileApplication>

19 </uml : Model>

20 <!--
21 Instance of the Entity stereotype . The base_Type captures the id of the
22 Order entity to the stereotype is applied .
23 -->
24 <jpa2 . javax . persistence : Entity xmi : id="_Irs6i−QcEeStU_XOIGwR−w " base_Type="

↪→_Irs5p−QcEeStU_XOIGwR−w " / >

25 </xmi : XMI>

28

CHAPTER 3
Review of cloud modeling languages

Recently, several CMLs emerged with a complementary set of concepts to represent cloud ap-
plications on the model level and to address the diversity of today’s cloud environments and the
services they offer. Moreover, the TOSCA standard for representing portable cloud applications
and supporting their life cycle management were adopted by OASIS in late 2013. There is
however still little consensus in the research community on what a CML is, what aspects of a
cloud application and the target cloud environment should be modeled by a CML, and which
of the currently existing CMLs is appropriate for a particular problem. For example, there are
CMLs that place emphasis on virtual machine (VM) configuration required for the provisioning of
compute services with custom software stacks (e. g., the approach by Nhan et al. [NSJ12]). Others
address in addition networking aspects such as custom addressing and segmentation of launched
VMs (e. g., CloudNaas [BASS11]). While those languages solely target the infrastructure layer
of a cloud environment, there are also CMLs that turn the focus more on the platform layer
(e. g., StratusML [HLT11]). Independent of the addressed service layer [BGPCV12], there are
CMLs which support the representation of elasticity rules in order to trigger the provisioning of a
compute service if a certain threshold is exceeded (e. g., RESERVOIR-ML [CEM+12]) or provide
dedicated tools to allow cloud users seeking for compute services that satisfy their requirements
in terms of performance and costs (e. g., CloudMIG [FFH13]).

Consequently, there is an urgent need to investigate the diverse features currently provided
by CMLs and classify and compare them according to a common framework with the goal (i)
to support cloud users in selecting the CML which fits the needs of their application scenario,
e. g., migration or optimization, and setting, and (ii) to investigate language characteristics and
concepts as they are of particular relevance for this thesis. As a result of the comparison, not only
features of existing CMLs are pointed out for which extensive support is already provided but
also deficiencies of current CMLs are identified.

Existing surveys by Papazoglou and Vaquero [PV12] and Sun et al. [SDA12] mostly analyze
general description languages for service-oriented architectures and low-level formats for resource
virtualization with respect to their applicability to cloud computing. Generic service description
language can definitely be considered as a source of inspiration of current CMLs as they are

29

often capable to capture services offered by cloud environments. Existing formats for resource
virtualization are exploited by some CMLs for model serialization. As a result, models created
by a CML can directly be interpreted by a cloud environment that support the selected format.
One of the obvious reasons why most of the current existing CMLs were not considered by the
surveys of Papazoglou and Vaquero and Sun et al. is that the majority of CMLs emerged around
or shortly after they carried out their surveys. In the survey of Silva et al. [SRC13] a systematic
literature review regarding existing solutions that address the “vendor lock-in” problem in the
context of cloud computing is presented, whereas Jamshidi et al. [JAP13] conducted an SLR of
cloud migration research. However, their surveys do not focus on CMLs.

The systematic literature review on CMLs presented in this chapter builds upon the results of
existing efforts. It is further influenced by insights gained from investigating individual CMLs, lan-
guage concepts relevant in the context of architecture modeling and software modeling, features
of current cloud environments, and experiences and needs of several research projects [BRF+15],
ARTIST [BBC+13], MODAClouds [ANM+12] and PaaSage [JHS13]. The process according
to which the review was carried is grounded in the guidelines suggested by Kitchenham and
Charters [KC07]. We discuss how CMLs differ from architecture description languages (ADLs)
because the influence of ADLs on current CMLs is obvious. Furthermore, we present a relatively
concise classification framework for CMLs with a main emphasis on their characteristics from a
language engineering perspective, capabilities to model cloud application from different view-
points. Moreover, we also investigate the tools which come with them as they render a CML truly
usable and useful. Finally, we discuss to what extent existing CMLs are capable to deal with
the modernization scenario introduced in Figure 1.1. As we propose in this thesis cloud-specific
extensions to UML, we include also UML in this discussion and draw up the phases of the
application modernization in which cloud-specific extensions to UML are most relevant and
beneficial. Some of the main findings of reviewing current CMLs are summarized in the following.

High diversity in current cloud modeling languages. Current CMLs pursue different some-
times even specific goals, propose hence diverse modeling concepts and show various levels of
maturity. At the same time, there is a common theme among them as the majority of CMLs
are capable of representing the structure of cloud applications in terms of components and their
deployment on cloud services. Still, a well-connected mix of CMLs is currently not available.

Little attention paid to standard modeling languages. Even though general-purpose lan-
guages such as UML provide modeling concepts to represent application from a variety of
viewpoints, only one CML currently provides extensions to UML. With the relatively recent
adoption of the TOSCA standard, it appears even more desirable to align modeling approaches
that emerged in the area of cloud computing and software engineering for providing continuous
modeling support.

Primary focus of CMLs on design-time aspects. The majority of currently existing CMLs
is primarily used for representing design-time artifacts such as application components mani-
fested by deployable artifacts or deployment targets. However, considering run-time aspects on
the model level appears also promising for capturing the current status and workload of a certain

30

provisioned compute service. This run-time information can be exploited for various tasks such
as adaptation or optimization.

Considerable set of tools for current CMLs. Current CMLs span a broad spectrum of tools
supporting engineers in the design, development, and provisioning of cloud applications. Overall,
existing CMLs have placed the greatest emphasis on modeling, generation, and provisioning of
cloud applications and the least on analysis and refinement.

Lack of interoperability between CMLs. The exchange of models between CMLs requires
currently manual effort for replicating those models in the different languages. Model trans-
formations for an automated model exchange are not available even though scenarios such as
application modernization would benefit from a combined set of tools provided by different CMLs.

Heterogeneous language engineering background. From a language engineering perspec-
tive, two dominant meta-languages are used to realize CMLs: MOF and XML Schema. Some
CMLs are realized by means of a grammar-based approach while others employ meta-language of
proprietary language workbenches such as Micrsoft’s DSL tools. The heterogeneities imposed by
the different meta-languages used to implement them certainly impedes to achieve interoperability
between CMLs.

The remainder of this chapter is structured as follows. The framework according to which
we classify and compare currently existing CMLs is defined in Section 3.1. In Section 3.2 we
present the process that was applied to conduct this systematic literature review, whereas in
Section 3.3 we give insights into the results we obtained from classifying and comparing the
selected CMLs. In this respect, we also present the obtained results from considering CMLs
in the light of application modernization to the cloud with the goal to draw up the phases of
the modernization process in which cloud-specific extensions to UML are most relevant and
beneficial. A summary of this chapter is given in Section 3.4 before related surveys are discussed
in Section 3.5.

3.1 Review framework

The diversity of features provided by todays cloud environments and existing challenges cloud
adopters are faced with [BPBB14] has led to several approaches that propose a CML. They have
different origins, pursue different goals, and hence provide a complementary and diverse set of
language features. Still, a closer study of the set of features they propose and their main purpose
shows that there is a common theme among them, which is used as a guide in elaborating our
framework to classify and compare CMLs. To establish a thorough framework, the features of
individual CMLs and work in the field of cloud computing that discuss core domain concepts were
studied. Furthermore, common characteristics of modeling languages were extracted from work
in the area of language engineering. Whereas to a great extent, our classification and comparison
framework captures categories supported by all or most existing CMLs, we also argue for features
that are only supported by a few of them. They have either been identified in the literature as

31

important to develop cloud applications or have resulted from our own experience gained from
participating in the ARTIST project and collaborating with the MODAClouds [ANM+12] and
PaaSage [JHS13] projects. Finally, to validate that our framework is of practical relevance, we
analyzed features of current cloud environments (e. g., Amazon AWS, Google Cloud Platform,
and Microsoft Azure) and concepts of programming libraries (e. g., jclouds1 and Deltacloud2)
that provide an abstraction layer on top of cloud environments. In fact, such libraries enable cloud
users to connect to cloud environments for carrying out the software provisioning of cloud-based
applications. Now that we have discussed how our framework has been developed, Figure 3.1
depicts its main categories and, where appropriate, provides possible manifestations for them.
We developed a metamodel for our framework, which enables us to provide a model conforming
to this metamodel for the results of each reviewed CML. Providing the framework in terms of a
metamodel allows extensions and modifications, which is crucial in a field that is still largely in
its infancy.

Considering the language scope, we give a concise summary of the pragmatics for each
reviewed CML and classify them according to widely accepted categories of cloud environments,
i. e., IaaS, PaaS, SaaS, considered as a target. Common language characteristics refer to the
syntax and semantics of a CML, how it has been realized, and the different kinds of typing
mechanisms (i. e., linguistic and ontological) that are supported. The different typing mechanisms
seem to be not only relevant from a language engineering perspective but also from an application
one as ontological typing allows extensions to a language without manipulating its definition.
Modeling capabilities of a CML turn the focus on the core domain concepts to model the structure
of a cloud application, the services of a cloud environment required to operate a cloud application,
and the interconnection between the application and its environment. Cloud applications need to
be decomposed into components because the deployment of a cloud application usually enforces
to distribute them across a single or even multiple cloud environments [ASLW14, Pet14]. As a
result, a CML must support cloud users to model two essential concerns: (i) cloud environments
in terms of their offered services and (ii) cloud application structure in terms of components
and their deployment on cloud services. The deployment of application components on cloud
services defines their interconnection. Clearly, several other technical concerns, e. g., elasticity,
and non-technical concerns, e. g., pricing, are desirable, but not sufficient to argue that a given
language is not a CML. At the same, representing an application’s structure is not uncommon
in the context of architecture modeling [CGL+03]. In fact, architecture description languages
(ADLs) provide concepts to model the high-level structure of an application [MT00, MRRR02].
What differentiates now a CML from an ADL? A CML can be considered as an ADL for a
particular domain. However, syntactic elements of a CML capture cloud computing vocabulary,
which is usually not the case for a general purpose ADL. As a result, the semantics given to a
CML is more specific compared to the semantics of general purpose ADLs intended to be applied
to arbitrary domains. For instance, the semantics of a CML can be grounded in translators to
executable languages or frameworks in the cloud computing context (e. g., Google’s App Engine
or Orleans of Microsoft3) or engines that initiate the provisioning of modeled cloud services

1jclouds: https://jclouds.apache.org
2Deltacloud: https://deltacloud.apache.org
3Orleans: http://research.microsoft.com/en-us/projects/orleans

32

CML

name : String
url : String
hostLanguage : String

VirtualizationLevel

SaaS
PaaS
IaaS
XaaS

LanguageScope

pragmatics : String
target : VirtualizationLevel

LanguageCharacteristics

abstractSyntax : ASKind
concreteSyntax : CSKind
serialization : String
semantics : SemanticsKind
typing : TypingKind
realization : RealizationKind

ASKind

UML
MOF
XMLSchema
Grammar
DSLTools

CSKind

Textual
Graphical

RealizationKind

InternalDSL
ExternalDSL

TypingKind

linguistic
ontological

ModelingCapabilities

ComponentAndConnector

component : String
isComposable : Boolean
connector : EString

Deployment

artifact : String
service : String
link : String
network : String

ModelingConcern

ToolSupport

modeling : RepresentationKind
analysis : AnalysisKind
refinement : RefinementKind
generation : GenerationKind
provisioning : ProvisioningKind

Elasticity

specification :
ElasticitySpecification

ServiceLevel

specification :
ServiceLevelSpecification

CloudEnvironment

serviceConfiguration :
ConfigurationKind

ElasticitySpecification

Multiplicity
RuleBased

ConfigurationKind

textuallyDescribed
capturedByFeatureModel
capturedByLinguisticType
capturedByOntologicalType

SemanticsKind

translational
operational

ApplicationStructure

ServiceLevelSpecification

non-structured
structured

RepresentationKind

graphical
textual
imposedByMetaLanguage

ProvisioningKind

declarative
imperative
mixture

GenerationKind

model-to-text (m2t)
text-to-model (t2m)
model-to-model (m2m)

RefinementKind

byEnrichment
byResolution

AnalysisKind

design-time
run-time

Figure 3.1: Classification and comparison framework for CMLs

33

including the application components on top of them. The latter motivates the importance of
explicitly representing the deployment of a cloud application as it specifies the desired state which
triggers the provisioning process. Hence, the semantics given to a language and the two essential
capabilities of representing the structure of a cloud application and their deployment on cloud
services enable us to determine whether or not a certain language is a CML. Finally, even though
the suitability of a CML is independent of whether and what kinds of tool support it provides, an
accompanying toolset will render a CML both more usable and useful.

3.1.1 Language scope

Pragmatics

The pragmatics of a CML refers to its intended purpose including the overall goal that is pursued.
The intended purpose of a modeling language can range from sketching software architectures that
need to be developed over specifying blueprints for manually realizing application components to
creating models for the purpose of generating implementations or directly interpreting or even
executing them. Models are not only applied in a generative manner, but more and more they
are used analytically in software engineering, e. g., for design-space exploration, optimization,
validation, or even for verification. It is worth noting that there is a strong influence of the
pragmatics on language characteristics [KKP+09], such as syntax and semantics, and how the
language is realized.

Target

Cloud environments considered as target of a CML can be differentiated according to the
commonly accepted layers of virtualization [AFG+10]: infrastructure, platform, and software.
The higher the degree of virtualization is, the more is usually managed by a cloud environment
and the less is controlled by a cloud user. For instance, Google’s App Engine is a fully-managed
platform service in the sense that the application container and the programming language runtime
is pre-configured and cannot be manipulated by the cloud user. This means that aside from the
application-related artifacts deployed on the App Engine service, the other artifacts related to the
platform down to the infrastructure are immutable and controlled by Google. This is certainly of
interest to a cloud user in order to select services that operate at the expected virtualization layer.
For instance, in the context of software modernization to the cloud, an on-premise environment
is partly or even completely replaced by a cloud environment where in practice the typical
scenario requires “wiring” both environments [ABLS13]. A concrete scenario may refer to a
cloud application whose frontend is hosted on Amazon’s platform service Beanstalk, utilizes
the software service Google Maps, and connects to a user-controlled MySQL backend system
that runs in a virtual machine hosted on an Amazon EC2 infrastructure service. In this work, we
investigate the capabilities of CMLs to represent artifacts related to the different service layers:
infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS), and software-as-a-service (SaaS).
We use the abbreviation “XaaS” to refer to all layers.

34

3.1.2 Language characteristics

Syntax

The abstract syntax of a modeling language defines its concepts and how they relate to each
other. It is the common basis of a modeling language since the elements of the abstract syntax are
mapped to their concrete syntax, serialization syntax, and a proper semantic domain. Considering
the concrete syntax, it is concerned with the form [Moo09] of a modeling language and defines
how abstract elements are realized in a concrete representation. Decorating abstract syntax
elements with concrete ones usually increases the readability and intuitive handling of a modeling
language. A modeling language may have one or more textual or graphical syntaxes to represent
models. In this work, we investigate solely which kind of notation is provided by a CML. To
persist or interchange models, they are encoded according to the serialization syntax of the
modeling language.

Semantics

The semantics gives meaning to the syntactic elements of a modeling language. Most definitions
of semantics are functions that map the abstract syntax elements of one language onto elements
of a well-understood formal semantic domain, where the degree of formality may range from
plain English to rigorous mathematics [HR04]. Defining the semantics of a modeling language
is far from trivial as it involves a decision about a proper semantic domain, a mapping from
valid syntactic elements to a selected semantic domain [HR04], and the finding of an agreement
between stakeholders thereon. Therefore, most modeling languages do unfortunately not have a
rigorously defined semantics that goes beyond natural language specifications, even though it is
in general a undisputed requirement for the definition of a modeling language. In particular in the
light of the growing number of domain-specific languages, this requirement becomes even more
important. In practice, however, a useful approach is to implement transformers that translate
models of a given language into models of a commonly understood or executable language such
as Java or C#. Another approach is to implement an interpreter that directly operates on the
models. In the context of CMLs, a model-based provisioning engine is a concrete example of
an interpreter. It is important to note that one could implement for a single CML more than
one provisioning engine that may behave differently. This raises the question whether or not a
provisioning engine should be considered as part of a CMLs semantics definition. However, a
provisioning engine gives meaning to modeled cloud services in the sense that it relates them to
concrete services of a cloud environment once the provisioning process has been enacted.

Typing

As pointed out by [AK07], two different kinds of classification mechanisms need to be considered
in developing modeling languages. Linguistic classification refers to the commonly accepted
approach that a user-defined model (token model [Küh06]) is directly expressed by instantiating
types which define a modeling language, e. g., in terms of a metamodel. Linguistic types
determine which models are valid instances of a modeling language definition. However, to
support engineers to create custom types or even hierarchies of them without modifying directly

35

the modeling language definition, the notion of ontological classification has been introduced.
Ontological types can be considered as extensions to a modeling language even though in contrast
to linguistic types they are not grounded in the language definition. Instead they are defined by
means of (linguistic) types of the modeling language and often provided in terms of a custom type
library to foster their reuse across different application scenarios. As a result, ontological types
may capture vital features that are however relevant in a specific context only and thus lifting them
to a linguistic type appears unfavorable4. This is certainly of relevance for CMLs. Current cloud
environments offer a considerable set of diverse services including processing power usually
provided by virtual machines that can be provisioned on-demand. Different virtual machine types
may be defined in terms of ontological types while keeping the language definition unchanged.
Furthermore, they may capture not only common features but also vital peculiarities imposed by
a cloud environment such as the availability zone in which a particular virtual machine instance
must be provisioned and the operating system hosted by it. For instance, these features are
required to provision a virtual machine in Amazon’s cloud environment, whereas in the context
of the Google App Engine the operating system of a virtual machine is pre-defined and the
distribution of virtual machine replicas is automatically accomplished without granting custom
configurations.

Realization

Two different approaches are common for realizing a modeling language in general [Fow10]
and a CML in particular. Either the language is developed on top of an existing usually general-
purpose language or it is developed from scratch [MHS05]. Considering the former, they are
internal in the sense that the selected host language provides the base elements for which
extensions and constraints are developed. In contrast, external modeling languages have their
own custom concepts without explicit relationships to any existing language. Generally, there is
no simple answer when to create an internal or external modeling language. However, design
guidelines [KKP+09] and patterns [MHS05] have been proposed to aid engineers in developing
DSLs.

3.1.3 Modeling capabilities

As different stakeholders are usually involved in the development of a cloud application, their
concerns need to be covered by the models created with a CML. Essentially, a concern is a
stakeholder’s interest that pertains to the development of an application, its operation or any other
matters that are critical or otherwise important [vdBCC05]5. A critical task in the development of
a cloud application is its decomposition into deployable components because they must eventually
be distributed across a cloud environment or even multiple ones. Hence, the capability of a CML
to represent the structure of a cloud application certainly matters.

4The linguistic type is often considered as first-class, whereas the ontological as second-class.
5A concern is usually supported by a modeling viewpoint, see Section 2.2.

36

Application structure

A component is basically a unit of computation in an application, whereas interactions among
components are represented by connectors [MT00]. Components and connectors are used to
describe the high-level structure of an application in terms of a component configuration. Compos-
ing components and connectors into another more abstract component is beneficial in particular
to hide complex structures of a cloud application.

To deploy a cloud application on the selected target environment, its application components
need to be allocated to cloud services. More precisely, what needs to be allocated to the cloud
services are the implementations of those components. The notion of a deployable artifact sup-
ports exactly the reference between logical components and connectors to their implementations.
Artifacts are supposed to manifest any number of components and connectors. For instance, a
cloud application implemented in Java is possibly packaged into several archives, i. e., “JAR
files”. Those archives can be represented on the model level via artifacts. Allocating them to a
cloud service, e. g., a compute service including a Java platform, should have the effect that the
“JAR files” are physically allocated to the provisioned service. Furthermore, as cloud services
interact with each other, modeling capabilities are required to explicitly connect them. We use
the term link to refer to this capability. Artifacts deployed on possibly connected cloud services
constitute what is usually called a deployment configuration6. To ensure that connected cloud
services can in fact interact with each other, properties related to networking concerns need often
to be explicitly specified. For instance, a cloud service at the infrastructure-level needs to be
assigned to a virtual network and possibly connected to a middlebox to ensure that it can be
accessed by other cloud services.

It is important to note that we aim to investigate the modeling capabilities of CMLs to
represent component, connector and deployment concerns on a per concept basis. As a result of
this investigation, the different vocabulary introduced by current CMLs is classified according
to the common terms of our framework, where the string-valued properties allow us to collect
the concrete terms used by them. This effort is a first step towards achieving interoperability
between existing CMLs and a core set of common cloud modeling concepts upon which semantic
relations among different CMLs can be defined [MMPT10].

Cloud environment

From a cloud application deployment perspective, a modeled cloud service embodies in fact a
concrete service offered by the target cloud environment. For instance, several compute services
located in different availability zones and a storage service may be required to provide a reliable
and scalable cloud applications. The compute services may refer to Amazon’s EC2 offering and
the storage service to its DynamoDB datastore solution. As a result, services offered by a cloud
environment need to be available on the model level. Several possibilities are conceivable to
represent a configuration of cloud services required for the deployment of a cloud application.
Clearly, they can be described in textual form. Providing them in a structured form would

6The term “topology” is often used in this context as well. A deployment configuration or topology is a connected
graph that describes deployment artifacts along with targets and relationships between them from a structural
perspective.

37

certainly ease their interpretation by tools, e. g., engines that initiate the provisioning of compute
and storage services based on a deployment topology. In our framework, we distinguish between
three structured-based approaches for capturing cloud services: feature model, linguistic types,
and ontological types. Considering the former approach, existing compute and storage services
may be captured as features of a certain cloud environment denoting the root concept of the
model. In case of the latter two approaches, a cloud service is captured in terms of a type as
part of a CML. Depending on the typing mechanism a CML supports, a cloud service type is
either directly built-into the language definition (i. e., linguistic type) or realized as a custom type
supplementing the definition of a language without modifying it (i. e., ontological type).

Elasticity

As a main incentive of using cloud services is the capability of cloud environments to scale them
with a user’s demand [VRB11], a concern that matters is elasticity. Lower and upper-bounds of
cloud service instances can be specified by a multiplicity associated to the modeled service. To
specify more sophisticated strategies when a cloud service must be provisioned or released, a rule-
based approach [KDR14] tend to be more powerful compared to specify service multiplicity. The
elastic nature of cloud environments is also exploited to utilize them to capacity by optimizing the
work load scheduling of the different co-located cloud users with consideration to their required
quality of service.

Service level

A concern that matters is the specification of service levels, e. g., referring to latency, availability
and security of a cloud service. Ideally, the quality of a cloud service is at least equivalent [VW12]
to what can be expected if an on-premise environment is employed to host applications instead of
a cloud environment. Currently, only a few of the reviewed CMLs support modeling concepts
for capturing service levels at a rather high level. As a result, we distinguish in our framework
whether a service level is captured by means of a structured approach or it is described in
natural-language, i. e., a non-structured approach is employed.

3.1.4 Tool support

Modeling support

The means provided for the use of a CMLs notation and the validation of created models according
to its syntax and semantics is subsumed under modeling support. Depending on how the notation
is defined for a CML either graphical or textual representations of models are provided [Moo09].
In rare cases both kinds of representations can be used. Obviously, this requires that a textual as
well as a graphical notation is available for a CML. The notation of a CML may also be imposed
by the meta-language used to realize it [NBM+15]. For instance, XML-based CMLs for which
no further modeling support is available force engineers to express their models directly in XML.
If a CML is realized as internal DSL, it should ensure the portability between the modeling tools
that support the selected host language of the CML. For instance, UML-based CMLs should be
applicable for any standard conformance UML modeling tool. This can be achieved if UML’s

38

extension mechanisms are appropriately employed for developing a CML [Sel07]. Furthermore,
the multiple concerns supported by a CML should ideally be manageable by multiple views (e. g.,
dedicated views for the component and deployment concern) while ensuring consistency across
the various created views for the same cloud application [MT00].

Analysis support

To evaluate or predict certain (non-functional) properties of an application, e. g., operational costs
or performance, before it is hosted on a cloud environment is certainly a major incentive to use a
CML. Moreover, selecting an adequate set of services from possibly multiple cloud environments
is labor-intensive not only because of inevitable trade-offs between, e. g., operational costs and
performance, but also the enormous design space that needs to be explored for an optimal
deployment of a cloud application [HLS+13]. Analysis support for cloud applications and their
underlying environments has thus been addressed by CML toolset developers. In addition to
design-time analysis, support for analyzing cloud applications at run-time is of particular interest
because they may be migrated among cloud environments if a certain quality of service can no
longer be guaranteed.

Refinement support

Explicit refinement support can ensure that modifications to models expressed by a CML are
carried out in a stepwise systematic manner. Model refinement can be considered as a process of
transforming a given high-level model into a more concrete model. For instance, deployment
topologies of cloud applications are often modeled independently of the target cloud environment
in a first step. The refinement of the deployment topology towards the target cloud environment
is conducted in a second step [ANM+12]. This approach is particularly beneficial if a cloud
application needs to be migrated between environments. The high-level models representing
the cloud application are retained and enriched by environment-specific information in order
to accomplish the refinement. For instance, environment-specific information can be captured
in terms of custom (ontological) types [AGK09] or profiles [LWWC12]. Refinement may also
include the process of discovering appropriate concrete solutions that are already available, e. g.,
an application service that is hosted on a cloud environment. To enable this kind of refinement,
both the requirements of high-level models and the capabilities of existing more concrete models
must be appropriately described, such that the former can be resolved according to the latter.

Generation support

Applying generative techniques is promising because executable artifacts can be produced for
possible multiple target cloud environments from a single set of (architectural) models. Even
though the environment for which artifacts were generated may change over time the investment
in creating models is retained [GS03] provided that generators are capable to produce those
artifacts for the new environment. This includes not only the generation of implementations for
the application itself but also deployment scripts and vice versa, i. e., the generation of models
from lower level code artifacts. Furthermore, a deployment plan expressed in terms of a workflow

39

model may be generated from a deployment configuration in order to enact the application
provisioning. In this work, we distinguish between three kinds of generative techniques [CH06b]
possibly supported by a CML: model-to-code, code-to-model, and model-to-model.

Provisioning support

One key characteristic of a modern cloud environment is the capability of dynamic service
provisioning. Cloud users can provision and release cloud services on demand and pay only
for what they have actually consumed. Automating the processes of service provisioning and
releasing them and possibly (re-)deploying application-related artifacts including the required
middleware on top of those services is aimed at a provisioning engine. Considering the support
for application and service provisioning in the light of Talwar’s classification, current CML’s
inherently apply a model-based approach as they represent a deployment configuration in terms
of a model. In case it is directly interpreted by a provisioning engine, the approach can be
characterized as declarative because the created model describes only what has to be provisioned,
but without providing any details about how the provisioning shall be executed. In contrast to a
declarative approach, an imperative approach explicitly prescribes how the provisioning must be
executed. For instance, a deployment script7 or a workflow model is often used to capture the
respective provisioning actions8.

Considering the two approaches from the perspective of a CML user, the declarative approach
is less invasive compared to the imperative approach because it requires describing solely the
desired state of the provisioning in terms of a deployment configuration. How the desired state is
reached is completely hidden from the users. Since this loss of control is not always desirable,
a mix of the two approaches is supported by some CMLs. For instance, if a CML supports
in addition to a deployment configuration the specification of deployment scripts that shall
be executed at a certain point during the provisioning of an application component, then both
approaches can be combined to a certain degree. Such approaches typically employ life-cycle
definitions that subdivide the provisioning of an application component into multiple phases.
Those definitions provide a hook for custom scripts or other implementations that must be
executed in a certain phase.

3.2 Review process

To conduct the systematic review of CMLs, we followed the guidelines recommended by Kitchen-
ham and Charters [KC07]. The review commenced in mid-2014 in the context of the ARTIST
project, where some CMLs with no claim for completeness where demonstrated in the setting of
a cloud migration scenario [BWKG14]. However, this demonstration revealed already an initial
set of CMLs which was useful in several phases of the review process. For instance, we used this
initial set of CMLs to assess the quality of the search queries we formulated in an early phase of
the review process as those CMLs had to be covered by the obtained records. Furthermore, we

7A deployment script is sometimes executed at the remote environment that is considered as the target of the
application provisioning

8A workflow model usually captures the data flow and the control flow among actions in an explicit way

40

exploited them to develop a list of keywords required to conduct a keyword-based search as part
of the study selection phase. The main phases we carried out in the course of the review process
are described in the following Sections 3.2.1 to 3.2.4.

3.2.1 Research questions

The aim of this systematic literature review (SLR) is to provide an overview of current CMLs,
classify their main characteristics and core capabilities including the tool set they support, and
identify the gaps and future research directions for CML development. The overall objective is
defined by five research questions as follows.

SLR – Research question 1: What are the main purposes of current CMLs?
SLR – Research question 2: What are their characteristics from a language engineering per-
spective?
SLR – Research question 3: What core cloud modeling capabilities do they provide?
SLR – Research question 4: What toolset is accompanied with existing CMLs?
SLR – Research question 5: What are the capabilities of current CMLs for application modern-
ization to the cloud?

3.2.2 Data sources and search strategy

In this systematic review, the electronic databases recommended by [PFMM08,KBB+09,KPB+10]
have been used to search for primary studies9. We decided to search for publications in the period
from 2006 to 2015 as Amazon Web Services (AWS) was officially launched in 2006 and the term
“cloud computing” appeared around 2007 [VW12]. Since cloud computing is a highly diverse
research topic, determining on the publication sources to search for relevant research works is a
difficult task.

Hence, instead of taking this decision solely based on our expertise and knowledge in the
area of cloud computing, model-driven engineering, and related research areas, we additionally
formulated a search query with the main aim to figure out the publication sources where a
CML may have been published. Based on the topic of this systematic review and the research
questions proposed in Section 3.2.1, we defined the terms of the search queries according to
the recommendations of [KC07]. We considered the terms “model”, “modeling”, “modelling”,
“language”, “ontology”, “profile”, and “domain” as the main constituents of the search query. In
addition, we limited the search to studies that are indexed by the keyword “cloud computing”.
After several tests, we selected the search query that returned the largest result set. Depending on
the electronic database, the syntax of the search query obviously differs.

Table 3.1 summarizes the exact search queries we executed against the selected electronic
databases including the number of records we received as a result. Based on the obtained initial
set of records, we determined on the set of publication sources by a manual selection process. We
selected those publication sources that seemed to be relevant for the purpose of this review. For

9We only discarded Google Scholar (http://scholar.google.com) from the list of recommended electronic databases
as it hardly allows publications to be downloaded in a batch process and a suitable format.

41

Electronic database Search query Records
ACM Digital Library
http://portal.acm.org

"query": {(model, modeling, modelling, language, ontology,
profile, domain) AND keywords.author.keyword:(+"cloud
computing")} "filter": {"publicationYear":{"gte":2006
}},{owners.owner=GUIDE}

3,208

IEEE Xplore
http://ieeexplore.ieee.org

((model OR modeling OR modelling OR language OR ontol-
ogy OR profile) AND "Author Keywords":"cloud computing")
? and refined by Year: 2005–2016

4,020

ScienceDirect
http://www.sciencedirect.com

(model OR modeling OR modelling OR language OR ontol-
ogy OR profile) and KEYWORDS("cloud computing")[All
Sources(Computer Science)]

899

Scopus
http://www.scopus.com

ALL (model OR modeling OR modelling OR "language" OR
ontology OR profile OR domain) AND KEY(cloud comput-
ing) AND PUBYEAR > 2005 AND SUBJAREA (comp)

13,284

SpringerLink
http://www.springerlink.com

"cloud computing" AND (model OR modeling OR modelling
OR language OR ontology OR profile) within "Computer Sci-
ence" AND 2005–2016

12,341

Table 3.1: Search queries executed against electronic databases

instance, we discarded sources dedicated to topics such as “e-health applications and services” or
“green computing”. The selected publication sources are summarized in Tables 3.2 to 3.4. They
were used to limit the records of publications considered in study selection process.

Workshop Acronym
Intl. Workshop on Model-Driven Engineering for High Performance and CLoud Computing MDHPCL
Intl. Conference on Cluster Computing Workshops and Posters Cluster Workshops
Intl. Workshop on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems MESOCA
Intl. Workshop on European Software Services and Systems Research - Results and Challenges S-Cube
Intl. Workshop on Modeling in Software Engineering MiSE
Intl. Workshop on Analysis and Programming Languages for Web Applications and Cloud Applications APLWACA
Intl. Workshop on Security in Cloud Computing Cloud Computing
Intl. Workshop on Distributed Cloud Computing DCC
Intl. Workshop on Cloud Services, Federation, and Open Cirrus Summit FederatedClouds
Intl. Workshop on Hot Topics in Cloud Services HotTopiCS
Intl. Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems MASCOTS
Intl. Workshop on Multi-Cloud Applications and Federated Clouds MultiCloud
Intl. Enterprise Distributed Object Computing Workshop EDOCW
Intl. Workshop on Grid Computing -
Intl. Workshop on Cloud Computing Platforms CloudCP
Intl. Workshop on Cloud Data and Platforms CloudDP
Intl. Workshop on Software Engineering Challenges of Cloud Computing CLOUD@ICSE
Intl. Workshop on Model-Driven Engineering on and for the Cloud CloudMDE
Intl. Workshop on on Model-Driven Engineering for High Performance and CLoud computing MDHPCL

Table 3.2: International workshops considered for the review

42

Conference Acronym
Symp. on Cluster Computing and the Grid CCGRID
Asia-Pacific Services Computing Conf. APSCC
Conf. on Computer Science and Service System CSSS
Conf. on Cloud Computing in Emerging Markets CCEM
Conf. on Cluster Computing CLUSTER
Latin American Conf. on Cloud Computing and Communications LatinCloud
Conf. on Cloud Computing and Intelligence Systems CCIS
Conf. on Cloud Computing and Services Science CLOSER
Conf. on Cloud Computing CLOUD
Conf. on Cloud Computing Technology and Science CloudCom
Conf. on Web Services ICWS
Conf. on Model-Driven Engineering and Software Development MODELSWARD
Symp. on Modeling, Analysis, Simulation of Computer and Telecommunication Systems MASCOTS
Conf. on Software Engineering ICSE
Europ. Software Engineering Conf./Symp. on the Foundations of Software Engineering ESEC/FSE
Conf. on Software Engineering and Service Science ICSESS
Conf. on Software and Data Technologies ICSOFT
Conf. on Software Engineering and Applications ICSOFT-EA
Computer Science and Engineering Conf. ICSEC
Conf. on Communications and Information Technology ICCIT
Conf. on Services Computing SCC
Asia-Pacific Services Computing Conf. APSCC
Conf. on Service-Oriented Computing and Applications SOCA
Conf. on Utility and Cloud Computing UCC
Conf. on Web Services ICWS
Conf. on Cloud and Service Computing CSC
Conf. on P2P, Parallel, Grid, Cloud and Internet Computing 3PGCIC
Asia Pacific Cloud Computing Congress APCloudCC
Symp. on Cloud and Services Computing ISCOS
Conf. on Internet Computing for Engineering and Science ICICSE
Conf. on Cloud and Green Computing CGC
Conf. on Cloud and Ubiquitous Computing and Emerging Technologies CUBE
Conf. on Cloud Computing and Big Data CLOUDCOM
Conf. on Information Science and Cloud Computing Companion ISCC-C
Conf. on Information Science and Cloud Computing ISCC
Conf. on Cloud Engineering IC2E
Conf. on Future Internet of Things and Cloud FiCloud
Symp. on Service-Oriented System Engineering SOSE
Europ. Conf. on Web Services ECOWS
Conf. on Grid and Cloud Computing GCC
Conf. on Cluster Computing ICCC
Conf. on System of Systems Engineering SoSE
Conf. on Cloud Computing Technologies, Applications and Management ICCCTAM
Conf. on Cloud Computing and Internet of Things CCIOT
Conf. on Service Science ICSS
Symp. on Cloud Computing SoCC
Conf. on Internet and Web Applications and Services ICIW
Enterprise Distributed Object Computing Conf. EDOC
Conf. on Systems, Programming, Languages and Applications: Software for Humanity SPLASH
World Congress on Services SERVICES
Conf. on World Wide Web WWW
Conf. on Distributed Applications and Interoperable Systems DAIS
Europ. Conf. on Service-Oriented and Cloud Computing ESOCC
Conf. on Model-Driven Engineering Languages and Systems MoDELS

Table 3.3: International conferences considered for the review

43

Journal Acronym Publisher
Communications of the ACM CACM ACM
Computing Surveys CSUR ACM
Transactions on Internet Technology TOIT ACM
Transactions on Software Engineering and Methodology TOSEM ACM
Communications of the Association for Information Systems CAIS AIS
Advances in Information Sciences and Service Sciences AISS CIS
Computer Systems Science and Engineering - CRL
Computer Communications - Elsevier
Computer Standards and Interfaces - Elsevier
Future Generation Computer Systems FGCS Elsevier
Information and Software Technology IST Elsevier
Journal of Systems and Software JSS Elsevier
Journal of Visual Languages and Computing JVLC Elsevier
Intl. Journal of Web Information Systems IJSWIS Emerald
IBM Journal of Research and Development IBM RD IBM
IBM Systems Journal Systems IBM
Computer IEEE
Cloud Computing - IEEE
Communications Letters - IEEE
Internet Computing - IEEE
Software - IEEE
Transactions on Computers TC IEEE
Transactions on Cloud Computing TCC IEEE
Transactions on Services Computing TSC IEEE
Transactions on Software Engineering TSE IEEE
Intl. Journal of Grid and Utility Computing IJGUC Inderscience
Intl. Journal of Web and Grid Services IJWGS Inderscience
Intl. Journal of Network Management - John Wiley & Sons
Computer Journal - Oxford Journals
Communications in Computer and Information Science CCIS Springer
Computing - Springer
Cluster Computing - Springer
Journal of Cloud Computing JoCCASA Springer
Journal of Internet Services and Applications - Springer
Service Oriented Computing and Applications - Springer
Software and Systems Modeling SoSym Springer
Intl. Journal of Cooperative Information Systems IJCIS World Scientific
Intl. Journal of Software Engineering and Knowledge Engineering IJSEKE World Scientific
Computer Science and Information Systems ComSIS -
Computing and Informatics - -
Journal of Internet Technology JIT -
Journal of Object Technology JOT -

Table 3.4: Journals considered for the review

3.2.3 Study selection

In order to select the most relevant and important studies, inclusion and exclusion criteria were
developed in a first step, see Section 3.2.3. They were applied in several stages of the study
selection process as described in Sections 3.2.3 to 3.2.3.

Inclusion and exclusion criteria

Studies relevant for this review must propose language concepts for the purpose of modeling
cloud applications. Those concepts must be defined in terms of a grammar or a metamodel. For

44

instance, even though in the work of Sun et al. [SHSW12] a toolkit for managing cloud services
is proposed, the language concepts used to represent them have not actually been defined but
rather sketched by means of a single example only. Research works that introduce modeling
methodologies independent of a CML (e. g., MADCAT [INS+14]) are also excluded by this
criterion.

Furthermore, proposed language concepts must enable engineers to model a cloud application
independent of the concrete target cloud environment. Shielding models from possible changes
of target cloud environments is one main requirement of a modeling language in general [AK03]
and so also desirable for a CML. However, this does not mean that a CML should not pro-
vide capabilities for creating environment-specific models at all. Ideally, it allows engineers
to refine environment-independent models into models specific to the target cloud environ-
ment [ANM+12], which is commonly known as the transition from a platform-independent model
(PIM) to a platform-specific model (PSM) in model-driven engineering (MDE). Languages that
solely support PSMs, i. e., they are directly bound to a cloud environment such as Amazon’s
CloudFormation10 and OpenStack’s HOT11, are thus excluded by this review. However, such
languages are potential transformation targets for CMLs to automate the provisioning of modeled
application deployments. In this respect, approaches such as Deltacloud and jclouds may also be
considered as they provide an abstraction layer on top of the programming libraries provided for
cloud environments. With dedicated connectors a variety of cloud environments are supported by
these approaches.

To limit the scope of this review, we consider studies that propose language concepts mainly
applied by the user rather than by the provider of a cloud environment. One of the obvious
reasons for this decision is that approaches addressing the cloud provider perspective tend to
connect proposed language concepts with internal resources of a cloud environment. This is
hardly possible for a CML targeting cloud users as providers of a cloud environment usually offer
cloud services to their users without giving much details of the internal resources underlying those
services if at all. For instance, SCORCH [DWS11] assumes a scenario in which auto-scaling is
realized by provisioning and releasing pre-instantiated virtual machines from a queue, where its
optimizer aims at determining the length of this queue and the configuration of the pre-instantiated
virtual machines in the queue. Moreover, SCORCH is based on several computational models
that specify, for example, the energy consumption of resources and the costs for consuming such
resources, which is certainly of interest for providers of a cloud environment as they mainly
benefit from utilizing their resources to capacity by co-locating different cloud users on the same
infrastructure resources. Providing explicit specifications of such infrastructure resources is
supported by Cloud# [LZ11] for the purpose of improving the understanding of how resources in
a cloud environment are virtualized, scheduled and isolated from each other.

The inclusion and exclusion criteria that were applied in this systematic review are described
as follows.

Inclusion criteria
1. Studies that report on language concepts for the purpose of cloud application modeling

10CloudFormation: https://aws.amazon.com/de/cloudformation
11Heat Orchestration Template (HOT): http://docs.openstack.org/developer/heat

45

2. Proposed language concepts that are suitable to create models independent of target cloud
environments

3. Studies that address the cloud user perspective

Exclusion criteria
1. Studies or approaches that are bound to a cloud environment
2. Studies that address the cloud provider perspective
3. Studies that are not written in English

The selection of the primary studies was carried based on the initial set of records we obtained
from executing the search queries against the data sources given in Table 3.1. To extract the
studies relevant for this review from the total number of studies, we passed through several
pruning stages, where in each stage the number of studies was significantly reduced compared to
the result of the previous stage. Overall, four researchers conducted the four pruning stages as
illustrated in Figure 3.2.

Search based
on relevant

sources

Whitelist-based
keyword search

Manual selection
based on title and

abstract

Manual selection
based on paper

content

13.284
papers

3.371
papers

439
papers

109
papers

18
CMLs

Figure 3.2: Study selection process

Pruning stage 1: Search limited to relevant publication sources

Based on the initial set of records obtained from the electronic databases, we extracted those
studies that were published in the selected publication sources, see Tables 3.2 to 3.4. Additionally,
the removal of duplicates as a result of using different electronic databases was carried out in this
stage. Duplicates were basically identified by considering the title, authors, and publication year
of a study. Overall, in this stage, we selected around 25 percent of the total number of records for
the next pruning stage.

Pruning stage 2: Whitelist-based keyword search

In order to accomplish this stage, we defined in a first step a list of keywords from which at least
one must be present in a certain study to consider it for the next pruning stage. We elaborated the
whitelist on the basis of CMLs we were already aware of [BWKG14] and our own experience in
the area of model-driven engineering and cloud computing. Table 3.5 summarizes the keywords
we defined for the whitelist. After conducting the second pruning stage, we ruled out around
85 percent of studies, thus the number of studies were considerably pruned. The reduction to a
manageable number of studies at this stage was important as the two remaining stages are hardly
achievable automatically and so were conducted manually.

46

Keyword
[application|service] developer [application|service] definition deployment topology
[application|service] mode(l)ler [application|service] architecture infrastructure(-)as(-)a(-)service
[application|service] engineer [application|service] topology platform(-)as(-)a(-)service
[application|service] requirement resource provisioning software(-)as(-)a(-)service
[application|service] component resource description language engineering
[application|service] deployment cloud service [engineering] problem(-)oriented(-)language
[application|service] mode(l)l(ing) cloud service domain(-)specfic(-)language
[application|service] life(-)cycle cloud application domain modelling
[application|service] provisioning cloud mode(l)l(ing) [language] meta(-)mode(l)ling
[application|service] distribution deployment mode(l)l(ing) [language] meta(-)model

Table 3.5: Keywords of the elaborated whitelist.

Pruning stage 3: Manual selection based on title and abstract

As it is too often rather difficult to determine the relevance of a study for a systematic review
from solely considering its title, we decided to evaluate in this stage both the title and abstract
of each study against the inclusion and exclusion criteria. Generally, we acted in a conservative
manner in this stage as in some cases even more information in addition to the title and abstract
of a study is required to determine whether a study is relevant for this review. Finally, in this
pruning stage we ruled out around three quarter of the studies, thus leaving 108 studies for the
fourth pruning stage.

Pruning stage 4: Manual selection based on study content

In the final pruning stage, we carefully read the remaining studies under the consideration of
the goal of this systematic review and the defined inclusion and exclusion criteria. After all we
selected 18 relevant studies 12 that are presented in Table 3.6. The table provides in addition to a
representative name of each selected approach the main publications from which the data has
been extracted relevant for this review.

3.2.4 Data extraction

In a first step, we converted our proposed classification and comparison framework for CMLs into
several spreadsheets. They were used for the purpose of collecting the relevant data. Basically,
the single columns of the created spreadsheets were derived from the properties of the classes
constituting the framework. Following this approach, the properties determine the concrete
data items that we had to extract from the selected studies. For instance, the scope of a certain
CML is described by a single row which captures its pragmatics and the kind of target cloud
environments that are supported. The scope of a CML has been derived from the natural language
descriptions of the respective studies. Similar for the toolset provided by a CML, we extracted
the relevant data from the available studies. Concerning the characteristics of a CML and its
modeling capabilities we extracted them from the language definition. Considering the process of
collecting and interpreting the data itself, a series of consensus meetings were held with the goal
to carefully analyze each reviewed CML according to the properties of the prepared tables. As

12CAML is not included in this selection.

47

CML References
Blueprint [NLT+11, NLPvdH12]
Caglar et al. [CASG13]
clADL [PR13, HPR14]
CloudDSL [SRC14]
CloudMIG [FH10, FH11, FHS13, FFH13]
CloudML-Sintef [FRC+13, FSR+14]
CloudML-UFPE [GES+11]
CloudNaas [BASS11]
GENTL [ARXL14, ARSL14]
Holmes [Hol14, Hol15]
MOCCA [LFM+11]
MULTICLAPP [GMMC13b, GMMC13a]
Nhan et al. [NSJ12]
PDS [LSS+13]
RESERVOIR-ML [CEM+12]
StratusML [HLT11, HT14, HT15]
TOSCA [OAS13a, OAS13b, BBKL14a]
VAMP [ECBP11, ECB+11]

Table 3.6: Selected approaches

a result of this process, we established the basis necessary to answer the research questions as
defined in Section 3.2.1.

3.3 Results

Until now several CMLs have been proposed. In the following, we classify and compare them
along the dimensions of the presented review framework (see Section 3.1) with the main aim to
answer the defined research questions (see Section 3.2).

3.3.1 What are the main purposes of current CMLs?

Considering the pragmatics of current CMLs several interesting aspects can be observed as
described in the following.

Pragmatics

The majority of CMLs deal with the description of cloud deployment configurations. Cloud-
MIG aims at migrating on-premise deployment configurations into optimal cloud deployment
configurations and assuring that those configurations conform to the target cloud environment.
Optimization of cloud deployment configurations is also addressed by GENTL and MOCCA.
While GENTL places emphasis on cost efficient application provisioning, MOCCA primarily
deals with the distribution of cloud application components to multiple target cloud environments.
CloudML-Sintef exploits cloud deployment configurations not only at design-time but also at
run-time for the purpose of model-based reconfigurations of provisioned cloud services. Cloud-
Naas places emphasis on capturing networking aspects (e. g., addressing and segmentation of
compute services at the infrastructure layer) by cloud deployment configurations, whereas PDS

48

CML Pragmatics Target

Blueprint Cloud service composition and description of deployment configurations XaaS

Caglar et al. Cloud service simulation and description of deployment plan configurations IaaS

clADL Architecture description of interactive cloud services and generation of implementations
for the cyber-physical systems domain

XaaS

CloudDSL Description of deployment configurations XaaS

CloudMIG Application migration to the cloud with emphasis on optimal deployment configurations
and their conformance with target cloud environments

PaaS
IaaS

CloudML-
Sintef

Automated provisioning of multi-cloud applications and re-configuration of provisioned
cloud services at run-time

XaaS

CloudML-
UFPE

Description of cloud services IaaS

CloudNaas Description of deployment configurations with emphasis on network aspects IaaS

GENTL Description of deployment configurations with emphasis on cost-efficient application pro-
visioning

XaaS

Holmes Description of deployment configurations and their automated provisioning IaaS

MOCCA Optimal (re)arrangement of (existing) deployment configurations for application provi-
sioning to multiple target cloud environments

XaaS

MULTI-
CLAPP

Application code generation for target cloud environments from component configura-
tions

XaaS

Nhan et al. Feature model based software stack (re-)configuration and their automated provisioning IaaS

PDS Deployment plan generation from described deployment configurations IaaS

RESERVOIR-
ML

Description of deployment configurations with emphasis on application-triggered elastic-
ity rules for infrastructure-related cloud services

IaaS

StratusML Generation of executable deployment descriptor and run-time adaptation rule from de-
scribed deployment configurations

SaaS
PaaS

TOSCA Description of portable composite cloud applications for their automated provisioning
and life-cycle management

XaaS

VAMP Automated provisioning of distributed cloud applications with emphasis on support for
establishing communication between components

IaaS

Deployment configuration: connected graph of deployment artifacts, targets, and their relationships (see Section 3.1.3)
Deployment plan: imperative description of the provisioning process
Component configuration: connected graph of components and connectors (see Section 3.1.3)

Table 3.7: Language scope

exploits them for generating deployment plans. Deployment plans13 are suggested by TOSCA to
describe the process used to create and terminate cloud services and to manage them throughout

13In the TOSCA specification the term “management plan” is used.

49

their whole lifetime. In the approach of Caglar et al. deployment plan configurations are created
based on previous simulation results obtained from CloudSim [CRB+11].

CMLs that are capable of describing cloud deployment configurations support also the repre-
sentation of cloud services. In contrast to these CMLs, CloudML-UFPE places emphasis solely
on describing cloud services without providing dedicated concepts to model a cloud deployment
configuration. Still, cloud services described by CloudML-UFPE can be considered as a potential
source for describing cloud deployment configurations. The composition of cloud services is
addressed by Blueprint.

Several CMLs aim at automating the provisioning of cloud services and possible application
components deployed on top of them. CloudML-Sintef comes with a dedicated provisioning
engine. Such an engine is also available for TOSCA. Other approaches (Holmes, Nhan et al. and
PDS) rely on configuration management systems, such as Cloud-Init or Chef, whereas StratusML
generates deployment descriptors for platform-related cloud services (e. g., Azure App Service).
In contrast to those approaches, VAMP exploits OVF to describe VM configurations including
application components. It provides a dedicated protocol for exchanging configuration parameters
(e. g., remote addresses and ports) between remote VMs in order to establish the communication
among application components. Generally, generative techniques play an important role in auto-
mated provisioning to the cloud because a variety of artifacts (e. g., deployment plans or scripts,
runtime models, and VM images) are automatically produced. Aside from generating deployment
or provisioning-related artifacts, the goal of MULTICLAPP is to generate application code for the
Java environment. Generation of cloud application code is also support by clADL. It proposes an
architecture style for modeling interactive cloud services in the context of cyber-physical systems
(e. g., services that process sensor data from industrial production machines). Cloud environments
are considered as the deployment target for those services.

A few CMLs place emphasis on the representation of elasticity rules (RESERVOIR-ML,
StratusML) capable to trigger the provisioning of cloud service at application run-time.

Target

Almost half of the CMLs are capable to represent cloud services at any of the three service layers.
CMLs that target the IaaS layer mainly deal with the description of compute services or the
configuration of VMs. CloudMIG provides cloud service descriptions for both layers IaaS and
PaaS, whereas StratusML considers the PaaS layer up to the SaaS layer.

Summary of CML scope

Current CMLs pursue different goals and show various levels of maturity. Still, they also show
similarities with respect to their pragmatics. For instance, the majority of CMLs deal with the
description of deployment configuration and some of them even support automated application
provisioning. On the other hand, the observed diversity of the current CMLs is beneficial in
the sense that a broad spectrum of application scenarios is supported. At the same time, the
exchange of models between approaches and provided tools, respectively, is hardly supported.
As a result, a well-connected mix of existing CMLs is currently not available. The finding of a
common ground between the current approaches is thus highly desirable. GENTL did already

50

a first step in this direction. Mappings from Blueprint and TOSCA to GENTL are presented in
the work of Andrikopoulos et al. [ARSL14]. In this respect, the semantics of the CMLs play a
major role [KKK+06] since useful mappings, which are the basis for language interoperability
(cf. e. g., [MMP08]), can otherwise hardly be identified. A common metamodel [ACB05] may
serve as a useful means in such an endeavor.

Another interesting aspect is that most CMLs are used solely at design-time, whereby
the representation of the cloud application at run-time is outside the scope of most CMLs.
For instance, run-time information may provide the current status and workload of a certain
provisioned compute service. CloudML-Sintef is capable of annotating the design-time model
with run-time information, which allows run-time adaptations to be performed not only by human
operators but also reasoning engines, which manipulate models at run-time automatically. This
capability is facilitating “models@run-time” [BBF09], which is an architectural pattern for
dynamically adaptive systems that leverages upon models at both design-time and run-time.

3.3.2 What are the characteristics of CMLs from a language engineering
perspective?

Main language characteristics of current CMLs are summarized in Table 3.8. While they appear
to be primarily relevant for language engineers, some of them may also be of interest for the users
of a CML. For instance, the notation of a CML clearly affects its users.

Syntax

Considering how the abstract syntax of CMLs are represented, two meta-languages seem to be
dominant in the field of cloud computing: MOF and XML Schema. The majority of CMLs provide
a MOF-based metamodel 14, whereas one of them uses UML as a host language (MULTICLAPP).
Around a quarter define their modeling elements in terms of XML Schemas (BLUEPRINT,
CloudML-UFPE, PDS, TOSCA, VAMP). The remaining languages follow either a grammar-
based approach (clADL, CloudNaas, Holmes) or rely on Microsoft’s DSL tools (StratusML).

Regarding the concrete syntax of CMLs, the majority provides either a graphical notation
or a textual one. A few of them provide both. In case of CloudML-UFPE and VAMP models
need to be expressed directly in XML. Even though the TOSCA standard does not define a
graphical notation, with Vino4TOSCA [BBK+12] service templates can be visually represented.
The representational capabilities of some of the reviewed CMLs are demonstrated in [BWKG14].

While the serialization format of a language is usually imposed by the meta-language used
to define it (e. g., XMI is the standard interchange format for MOF-based metamodels), some
CMLs support alternative formats in addition mainly for the purpose of compatibility between
tools. For instance, the provisioning engine of CloudML-Sintef requires models serialized in the
JSON format.

14Since Ecore is a reference implementation of the essential part of MOF, CMLs which provide an Ecore-based
metamodel follow a MOF-based approach.

51

CML Syntax Semantics Realization Typing

Abstract Concrete Serialization

Blueprint XML schema graphical XML operational external linguistic

Caglar et al. MOF graphical custom
XML

operational external linguistic

clADL Grammar textual custom translational internal
MontiArc

linguistic

CloudDSL MOF graphical XMI English prose only external linguistic

CloudMIG MOF graphical XMI operational external
linguistic
ontological

CloudML-
Sintef

MOF
textual
graphical

XMI
JSON

operational external
linguistic
ontological

CloudML-
UFPE

XML schema textual
in XML

XML operational external linguistic

CloudNaas Grammar textual custom operational external linguistic

GENTL MOF graphical XML operational external
linguistic
ontological

Holmes Xtext1

grammar
textual custom

XMI
operational external

linguistic
ontological

MOCCA MOF graphical XMI operational external linguistic

MULTI-
CLAPP

UML graphical XMI translational internal UML
linguistic
ontological

Nhan et al. MOF
Feature model

textual
graphical

XMI
JSON
SXFM

operational external linguistic

PDS XML schema textual
XML
Ruby operational external lingusitic

RESERVOIR-
ML

MOF
textual
graphical

XMI
XML

operational external linguistic

StratusML Microsoft
DSL toolkit

graphical XML operational external linguistic

TOSCA XML schema
textual
graphical

XML
YAML

operational external
linguistic
ontological

VAMP XML schema textual
in XML

XML operational internal OVF linguistic

1 Xtext is a language engineering framework: https://eclipse.org/Xtext

Table 3.8: Language characteristics

Semantics

Turning the focus from the syntactical aspects of the CMLs to their semantics, the majority of
approach come with a tool set (see Table 3.11) that directly interprets or executes the models of a

52

CML, e. g., a provisioning engine. In this case, the semantics of the CMLs is defined based on an
operational approach. A translational approach is applied for defining the semantics of clADL
and MULTICLAPP. The former is grounded in the FOCUS [BS01] which enables the formal
specification of distributed systems in terms of components communicating via channels. The
communication between the components is formally represented by the concept of streams [RR11].
MULTICLAPP provides a mapping to Java for the purpose of generating application code from
models. Finally, in case of CloudDSL neither an operational nor a translational semantics is
defined. However, it seems that mapping from CloudDSL to TOSCA is currently developed.

Realization

Four out of the 18 reviewed CMLs are realized as internal domain-specific languages. MULTI-
CLAPP is embedded in UML by providing generic cloud modeling concepts in terms of a profile.
Additionally, MULTICLAPP comes with a feature model for capturing concrete cloud services.
clADL is realized on top of MontiArc [HRR12], which is a textual domain-specific language for
modeling distributed interactive systems, whereas VAMP is integrated into OVF.

Typing

More than a third of the reviewed CMLs support in addition to linguistic typing also ontolog-
ical typing. From a language engineering perspective, all CMLs basically rely on a spanning
hierarchy [AK05] where ontological types are considered orthogonal to linguistic types. Thus,
ontological types are referenced by instances of linguistic types instead of directly instantiated.
The latter would require a stacking hierarchy [AK05].

Summary of CML characteristics

One aspect that requires consideration refers to the interoperability between CMLs. The hetero-
geneities imposed by the different meta-languages used to implement them certainly impedes
such an endeavor. Realizing a mapping between two CMLs defined with different meta-languages
would require the implementation of a technical bridge in addition to the definition of language
correspondences. Hence, the use of different meta-languages for realizing CMLs poses a chal-
lenge for exchanging models between them. CMLs for which solely an XML Schema is provided
without a human-usable notation, the users are bound to the verbose angle-bracket syntax which
is complex in terms of human-comprehension and therefore impedes maintainability [Bad00]. For
instance, XMLText [NBM+15] provides a semi-automatic approach for generating Xtext-based
grammars with a human-readable textual concrete syntax while ensuring backwards compatibility
to the original XML-based representation.

Proposals for new CMLs or extension to them come ideally together with a machine-
interpretable and human-usable language definition. The latter is preferably available in a
commonly accepted format. Once they are defined, sharing them via an open repository, e. g.,
AtlanMod’s Metamodel Zoo15 or ReMoDD16, allows them to be easily accessed. It may also

15Metamodel Zoo: http://www.emn.fr/z-info/atlanmod/index.php/Zoos
16ReMoDD: http://www.cs.colostate.edu/remodd/v1

53

further stimulate their reuse in the development of new languages or additional features for them.
Another interesting aspect is that currently little attention is paid to general-purpose software

modeling languages, such as UML, even though they provide modeling concepts to represent
software, platform, and infrastructure artifacts from different viewpoints. Only MULTICLAPP is
realized on top of UML. With the relatively recent emergence of TOSCA and its standardization
by OASIS, it appears obvious that aligning cloud modeling approaches with existing software
modeling approaches in order to provide continuous modeling support is highly required [JAP13].

3.3.3 What core cloud modeling capabilities do CMLs provide?

Probably most important to the users of a CML are their modeling capabilities. A black-box view
on the modeling concerns addressed by current CMLs is summarized in Table 3.10. The results
of a closer investigation of the component and deployment viewpoint are given in Table 3.9.

Application structure

As expected, all the reviewed CMLs provide capabilities to model the structure of a cloud
application from a deployment viewpoint. Around half of the CMLs support in addition to
the deployment viewpoint also the component viewpoint. Reasons for including the latter
viewpoint are manifold. For instance, representing the interaction between a cloud application
and cloud services at the SaaS layer requires the consideration of application components.
Connectors are used to represent the interconnection among them and with cloud services. Having
components explicitly represented is also of particular relevance for application modernization
to the cloud if components are replaced by cloud services already offered by the selected target
environment. Furthermore, components may need to be re-allocated to deployable artifacts if the
cloud application is migrated only partially.

In addition to the component and deployment viewpoints of a cloud application, CloudMIG
also addresses the class viewpoint. As CloudMIG aims at supporting application migration to the
cloud, it captures technical constraints of cloud environments (e. g., directly instantiating Java’s
Thread class is not permitted on the Google App Engine) against which conformance checks are
carried out automatically. Dedicated validators operate at the class level of KDM models in order
to investigate whether the application satisfies all the captured environment constraints. KMD
models are directly associated to cloud nodes which explains the absence of components and
connectors in CloudMIG.

Considering the component and deployment viewpoints in more detail (see Table 3.9), the high
diversity of the vocabulary used by the reviewed CMLs is revealed. At the same time, it shows
that even though various different syntactical terms have been proposed, they can be classified at
least according to a high-level categorization. Almost all CMLs that deal with both viewpoints
component and deployment support artifacts as a means of allocating concrete implementations
to cloud services. In case of PDS, the artifact is specific to Java-based applications. RESERVOIR-
ML and StratusML do not distinguish between logical components and their implementations
in terms of deployable artifacts. Components are directly allocated to cloud services where the
interconnection between them is solely modeled from the deployment viewpoint by connecting
cloud services to each other. As a result, connectors between components can hardly be modeled

54

CML Application
structure

Cloud environment
services

Elasticity Service
level

Blueprint
Component
Deployment textually described Multiplicity structured by policies

Caglar et al. Deployment linguistic types 7 7

clADL
Component
Deployment ontological types 7 7

CloudDSL Deployment textually described 7 7

CloudMIG
Class
Deployment ontological types Rule-based 7

CloudML-
Sintef

Component
Deployment ontological types Multiplicity 7

CloudML-
UFPE

Deployment linguistic types 7 7

CloudNaas Deployment linguistic types 7 7

GENTL
Component
Deployment ontological types 7 structured by annotations

Holmes Deployment ontological types 7 7

MOCCA
Component
Deployment ontological types 7 7

MULTI-
CLAPP

Component
Deployment feature model 7 structured by properties

Nhan et al. Deployment linguistic types 7 7

PDS Deployment linguistic types 7 7

RESERVOIR-
ML

Component
Deployment linguistic types Rule-based 7

StratusML Deployment linguistic types Rule-based 7

TOSCA
Component
Deployment ontological types Multiplicity structured by policies

VAMP
Component
Deployment linguistic types 7 7

* Blueprint does not directly support to represent service levels but instead exploits existing lan-
guages such as WS-Policy or SLAng.

Table 3.9: Cloud modeling concerns

in particular if a variety of components are allocated to cloud services.
Regarding cloud service, it is important to note that as a result of the varying pragmatics of

the CMLs, they refer to different virtualization layers (see the superscript annotation determining
the service layer). For instance, CMLs targeting the IaaS layer mainly focus on the representation

55

of compute services and their configuration in terms of virtual machine characteristics such as
CPU, memory and local disc space. As a result, they can hardly deal with cloud services at the
PaaS or SaaS layer. Moreover, deployment models represented by CMLs that also support PaaS
or even SaaS related cloud services may only be partially translated to CMLs with a focus on
cloud services at the IaaS layer. Clearly, the border between cloud services at the IaaS and PaaS
layer is becoming blurred with the emergence of new cross-layered services (e. g., Azure App
Service on different virtual machines). Still, the service layers appear to be relevant to consider.
For instance, defining useful correspondences between the language concepts with the goal to
achieve better interoperability between CMLs requires considering the supported target cloud
environment.

Finally, considering the artifact concepts of TOSCA, it distinguishes between deployment
artifact and implementation artifact. The former refers to the implementations of application
components, whereas the latter is used to capture the implementation of a management operation.
A management operation is attached to a deployment model and executed in the context of the
application provisioning, e. g., “start” of a provisioned cloud service or “install” of an application-
related artifact.

Cloud environment

Considering how cloud environment services are represented by CMLs, the majority captures
them in terms of linguistic or ontological types that are instantiated to model the cloud application
structure from a deployment or component viewpoint or even both. Generally, CMLs that advocate
ontological types over linguistic types for capturing cloud services provide a richer collection of
pre-defined custom service types mainly because their definition is less intrusive compared to
defining linguistic types. Capturing cloud services in terms of a feature model can be considered
as an orthogonal approach compared to providing service types. From a language engineering
perspective, a feature model is not expressed by means of a CML but rather in one of the existing
notations (cf. e. g., [CE00]). Both MULTICLAPP and the approach of Nhan et al. exploit feature
models to let engineers configure the target cloud environment by selecting the required cloud
services. They are considered as a feature of a cloud environment denoting the root concept of
the feature model. As feature models are often used to explicitly represent the commonalities
and variabilities of a certain domain, they appear to be a useful source to define cloud service
types assuming that the analyzed domain refers to cloud computing. The variabilities indicate the
information required to instantiate a cloud service type in a CML [MHS05].

Elasticity

Turning the focus on how the elastic nature of cloud environments can be treated at model-level,
less than half of the CMLs allow engineers to define upper and lower-bounds for service instances
or elasticity rules based on which new service instances are provisioned or released. Considering
the CMLs supporting a rule-based approach, they all rely basically on the notion of ECA rules
that are triggered by monitors observing the cloud environment. Events may refer to increasing
virtual machine workload when considering the infrastructure level or growing response time
of application servers operating at the platform level. CloudMIG seems to focus solely on

56

CML Component & connector Deployment
Component Connector Service Link Networking Artifact

Blueprint Blueprint
Resource-
Requirement BlueprintX Require 7

Implementation-
Artifact

Caglar et al. 7 7 VMI 7 7 Cloudlet

clADL ComponentC Prov./Req.
Interfaces RuntimeX Endpoint 7 Artifact

CloudDSL 7 7 ServiceX Endpoint 7 Resource

CloudMIG 7 7 CloudNodeI Cloud
Link

Addressing KDM
model

CloudML-
Sintef

Component Relationship
External-
ComponentX Hosting Addressing Resource

CloudML-
UFPE

7 7 NodeI Link Addressing 7

CloudNaas 7 7 GroupI Virtual
Net

Addressing
Segmentation
NetworkService

7

GENTL Component Connector ComponentX Connector 7 7

Holmes 7 7
Hosting
UnitP,I Ports

Security-
Groups Service

MOCCA Component Component-
Relation

Virtual-
System

Network
Port
Profiles

Addressing Artifact

MULTI-
CLAPP

Cloud
Artefact
ElementC

Prov./Req.
Interfaces

Cloud
Artefact
InterfaceX

7 7
Cloud
Artefact

Nhan et al. 7 7 VMNodeI Connection Addressing
Software-
Component

PDS Service 7 NodeI Database
connection

Segmentation War file

RESERVOIR-
ML

Component 7

Virtual-
Machine-
DescriptorI

Network
Port
Profiles

Addressing
Segmentation 7

StratusML Service 7 TaskS,P Connection 7 7

TOSCA
Node-
Template

Relationship-
Template

Node-
TemplateX

Relationship-
Template Addressing

Deployment-
Artifact
Implementation-
Artifact

VAMP Component Binding
Dynamic-
Virtual-
SystemI

Network
Port
Profiles

Addressing 7

C Component is composable
I Service at infrastructure layer
P Service at platform layer
S Service at software layer
X Services of all three layers can be modeled

Table 3.10: Component and deployment viewpoint
57

infrastructure-level events whereas both RESERVOIR-ML and StratusML do also consider events
created at the platform-level.

Service level

Regarding the representation of service levels, only few CMLs have reported on how they can be
captured. Blueprint exploits existing languages such as WS-Policy17 or SLAng18 to express QoS
constraints, e. g., “response time < 3sec” or “Data storage is only within the Netherlands”. GENTL
is capable of representing those QoS constraints in terms of typed annotations. MULTICLAPP
provides some stereotypes capable to capture QoS constraints by means of key-value pairs
along with an operator that can be selected from a predefined enumeration. It covers standard
relational operators such as “equal to”, “greater than”, or “less than”. Finally, TOSCA supports
the definition of policies for expressing non-functional behavior or a kind of QoS that a node
type can declare to expose. A declared policy type can be instantiated via a policy template used
within a node template and processed by a TOSCA container. For instance, policies are processed
during service provisioning to guarantee that the provisioned services of a cloud environment
satisfy the requirements captured by policies [WWB+13].

Summary of CML modeling capabilities

The reviewed CMLs provide a considerable set of modeling concepts to support a variety of
viewpoints relevant in the context of cloud application and service modeling. Still, modeling
concepts for capturing non-functional aspects are under-represented. The spectrum of non-
functional requirements is certainly broad, however directly attaching information, such as
service levels and pricing [CBMK10], to the deployment artifacts and targets may be a further
improvement [Gli07]. As a result, technical and non-technical aspects are brought together in
a possibly single view, which can support the selection of an appropriate cloud provider and
the optimization of the application provisioning. Regarding the latter aspect, CloudMIG and
GENTL cover pricing information of cloud environments for the optimization of deployment
configuration.

Considering the modeling concepts of Table 3.10 in the light of interoperability, it gives
a first impression of how they relate to each other. Still, it is a first step in this direction
as achieving interoperability between the CMLs requires also the consideration of concept
specializations and possible available custom types. For instance, the TOSCA primer provides
a set of pre-defined custom types that may not only be of value for TOSCA users, but cloud
application engineers in general. As a result, conceptual mappings between the CMLs as a basis
for accomplishing interoperability among the CMLs need to consider both levels intensional and
extensional [Küh06]19. This requires a good understanding of the modeling levels addressed by a
CML, which may include not only the design-time models but also run-time models [RdLGN15].

17http://www.w3.org/TR/ws-policy
18http://uclslang.sourceforge.net
19Custom types are at the intensional level. They are instantiated at the extensional level by assigning concrete

values to their features.

58

CML Modeling Analysis Refinement Generation Provisioning

Blueprint Graphical
model editor

7 resolution 7 7

Caglar et al. Grapical
model editor

7 7
m2t: Deployment script
Simulation code

imperative

clADL Textual
model editor

7 7
m2t: Monticore
facility 7

CloudDSL Graphical
model editor

7 7 7 7

CloudMIG Graphical
model editor

design-time:
Conformance
checking and
Deployment
optimization

7 t2m: Java-KDM 7

CloudML-
Sintef

Textual & graphical
model editor

7
enrichment by
ontological types

m2m: Runtime model
m2t: Adaption script declarative

CloudML-
UFPE

Directly repre-
sented in XML

7 7 7 7

CloudNaas 7 7 7 m2t: network rules declarative

GENTL Graphical
model editor

design-time:
Deployment
optimization

enrichment by
ontological types 7 7

Holmes Textual
model editor

7
enrichment by
ontological types m2t: Deployment script declarative

MOCCA Graphical
model editor

design-time:
Deployment
optimization

7 m2m: Deployment plan declarative

MULTI-
CLAPP

Arbitrary UML
model editor

7
refinement by
UML profile

m2t: Service adapter
m2m: Deployment plan 7

Nhan et al.
Graphical feature
configuration editor 7 resolution m2t: Deployment script declarative

PDS Directly repre-
sented in XML

7 7 7 declarative

RESERVOIR-
ML

Textual & graphical
model editor

7 7 m2t: Deployment script declarative

StratusML Graphical multi-
view model editor

7 7

m2t:
Deployment descriptor1

Adaptation rules
7

TOSCA Graphical
model editor

7

enrichment by
ontological types
and Implementation
artifacts

m2m: Deployment plan mixture

VAMP Directly repre-
sented in XML

7 7 m2t: VM image declarative

1 A deployment descriptor is directly interpreted by the cloud environment.

Table 3.11: Tool support

59

3.3.4 What toolset is accompanied with existing CMLs?

Given the fact that the first CML was published in 2010, a considerable set of diverse tools beyond
model editors for CMLs is already available as summarized in Table 3.11.

Modeling support

The majority of CMLs provide a custom textual or graphical model editor. Both CloudML-Sintef
and RESERVOIR-ML provide a textual as well as a graphical notation to represent models. The
latter uses a textual approach for representing elasticity rules. UML-based CMLs (MULTICLAPP)
can be used by arbitrary modeling tools supporting UML and its profile mechanism. Most current
UML modeling tools provide multi-view model editors. Also, StratusML comes with a multi-
view model editor implemented on top of Microsoft’s DSL tools. Even though the TOSCA
specification does not define a standard graphical notation, Winery [KBBL13] is a web-based
model editor capable to visually represent TOSCA models. For some of the reviewed CMLs, a
dedicated model editor is missing. CloudML-UFPE, PDS, and VAMP are XML-based languages
where models are intended to be represented directly in XML. In case of CloudNaas, only a parser
is available for its language, hence engineers are forced to use a plain text editor to represent
network policies.

Analysis support

Only two of the reviewed CMLs bring analysis support to deployment topologies. CloudMIG’s
toolset is capable to validate a cloud application against constraints defined over cloud environ-
ments (see Section 3.3.3). Furthermore, it supports engineers seeking for the pareto optimal
set of deployment configurations with the objective to minimize response time, the number of
violations of an upper-bound response time, and costs. In fact, the solutions in the pareto optimum
are a trade-off between performance and costs. MOCCA addresses the problem of distributing
cloud application components over a single or multiple cloud environments. For that reason, a
deployment topology is translated into a labeled connected graph where the labels capture the
information (e. g., data throughput per time unit or the workload of an application component)
according to which the set of optimal graph partitions are calculated by means of a cohesion
metric.

Refinement support

Considering the toolset of CMLs for refinement tasks, the Blueprint approach enables the
resolution of defined service requirements by performing a string-based matching against service
offerings. As a result of this resolution process, explicit interconnections between concrete
service blueprints are derived. A resolution process is also carried out by the approach of Nhan
et al. in order to derive a valid configuration of a feature model from an initial one. In fact, the
resolution is achieved by additionally selecting required features that are not covered by the initial
configuration. As some CMLs propose to model a cloud application independent of a cloud
environment in a first step (CloudML-Sintef, MULTICLAPP, the approach of Holmes, StratusML,
and TOSCA), they employ dedicated approaches to achieve a refinement towards the target cloud

60

environment. In essence, all of them exploit predefined environment-specific information that
is associated to an environment-independent model. How the environment-specific information
is in fact captured and associated to a model from a technical perspective varies between the
CMLs mainly because they are realized on top of different platforms. Furthermore, three of the
CMLs (CloudML-Sintef, the approach of Holmes and StratusML) employ matching techniques
to semi-automatically achieve the refinement step.

Generation support

The majority of CMLs exploit generative techniques. Caglar et al. provide a code generation
facility capable of producing simulation code for CloudSim. Similarly, clADL20 and MULTI-
CLAPP21 support automated forward engineering capabilities. Model-based reverse engineering
is supported by CloudMIG, where the generated models are represented by KDM. The generation
of deployment scripts, descriptors and plans from deployment configuration is supported by
several CMLs (see the approaches of Caglar et al., Holmes, and Nhan et al., MOCCA, MUL-
TICLAPP, RESERVOIR-ML, StratusML, TOSCA). Virtual machine images can be generated
from deployment configuration by the VAMP. They are represented in OVF. A few approaches
deal with environment-related artifacts such as a runtime model (see CloudML-Sintef), adap-
tion scripts or rules that allow the manipulation of provisioned cloud services at run-time (see
CloudML-Sintef, StratusML), and network rules capable of re-provision virtual networks to
support different fail-over scenarios (see CloudNaas).

Provisioning support

Finally, more than half of the reviewed CMLs come with tool support capable of automatic
application and service provisioning. Most of them suggest a declarative approach, thereby
reducing the effort for engineers to explicitly describe the provisioning actions. Interestingly, the
CML of Caglar et al. supports the opposite approach. Their CML provides modeling concepts for
expressing the provisioning actions in a strict imperative style. The TOSCA-compliant run-time
container OpenTOSCA [BBH+13] combines the declarative and imperative approach [BBK+14].
It enables automated plan-based provisioning and management of cloud applications, which
allows imperative deployment scripts to be integrated into a deployment plan. The latter is
generated from a deployment configuration represented in terms of TOSCA.

Summary of CML tool support

Current CMLs span a broad spectrum of tools supporting engineers in the design, development,
and provisioning of cloud applications. Moreover, the existing set of tools enable them to
deal with different application scenarios, e. g., migration of a non-cloud application to a cloud
environment, distribution of application components in a single or multi-cloud environment,
optimization of cloud applications. Having categorized the core tools provided by existing CMLs
can be considered as a first step towards a canonical CML toolkit [MT00]. Overall, existing

20clADL exploits Monticore’s code generation facility [KRV10]
21MULTICLAPP focuses on code generation for the Java platform

61

CMLs have placed the greatest emphasis on modeling, generation, and provisioning of cloud
applications and the least on analysis and refinement.

3.3.5 What are the capabilities of current CMLs for application modernization
to the cloud?

Taking existing literature [CDPC11,FH11,LFM+11] into consideration, we derived five activities
as summarized by the modernization process illustrated in Figure 3.3. First, a deep understanding
of the legacy application is required [CDPC11] before any other step in the process can be
conducted. Once a target cloud environment is selected, adaptations on the legacy application
are performed, if required. Adaptations may be required to meet the goals of the migration
and to exploit the novel cloud-based technologies offered by today’s cloud environments. The
latter may also involve overcoming constraints imposed by different service layers that hinder
the appropriate functioning of the migrated application in a cloud environment. In particular,
applications to be deployed at the platform and software layer typically have to interface with
the proprietary framework of the cloud environment, whereas arbitrary dependencies can be
deployed and used at the infrastructure layer. Nevertheless, PaaS is appealing as it often provides
better support to automate the deployment and the management of cloud applications. For
example, the Google App Engine currently does not support EJB, but offers a degree of automatic
scalability [AFG+09] through a strict cloud application structure, which is inherently difficult
to achieve at the infrastructure layer, where, for instance, Amazon operates. Depending on the
service layer of the selected cloud service(s) and the pursued migration type [ABLS13], the
deployment covers different aspects of an application, such as user interface, business logic, or
data management, when considering a classical three-layer architecture. After the deployment is
prepared, the required cloud services can be provisioned to finally run the migrated application
in the cloud. The support offered by the selected approaches for each activity is indicated in
Figure 3.3 (see gray boxes). Most approaches support more than one activity.

Get understanding

As conceptual models provide excellent means for getting an understanding of applications,
CloudMIG supports their discovery from legacy applications by building on MoDisco [BCJM10].
It enables the discovery of KDM models from Java applications. CloudMIG provides a tree-based
structure to represent KDM models, which can be linked to a deployment model of the legacy
application. Representing legacy applications at model-level is also supported by MOCCA. It
provides modeling concepts for representing the architecture and the deployment of legacy appli-
cations. Clearly, UML appears to be useful for increasing the engineer’s current understanding
of legacy applications as it is capable to represent from a variety of viewpoints. Generally, the
selected modeling language plays an important role because the (reverse-engineered) models must
support engineers in analyzing the application from which the models originate. For instance,
if engineers are already familiar with UML because they use it for application development,
creating UML models of legacy applications appears favorable provided that they allow engineers
to carry out the required analysis for the purpose of comprehension.

62

Get
Understanding

Provide
Selection

Perform
Adaptation

Prepare
Deployment

Execute
Provisioning

[Adaptions
 Required?]

[yes]

[no]

CloudMIG
MOCCA
UML

CloudMIG
CloudML-UFPE
MULTICLAPP
TOSCA

Blueprint
Caglar et al.
clADL
CloudDSL
CloudMIG
CloudML-Sintef
CloudML-UFPE
CloudNaas
GENTL
Holmes
MOCCA
MULTICLAPP
Nhan et al.
PDS
RESERVOIR-ML
StratusML
TOSCA
VAMP
UML

Caglar et al.
CloudML-Sintef
CloudNaas
GENTL
Holmes
MOCCA
Nhan et al.
PDS
RESERVOIR-ML
TOSCA
VAMP

Blueprint
clADL
CloudMIG
CloudML-Sintef
GENTL
MOCCA
MULTICLAPP
PDS
RESERVOIR-ML
TOSCA
VAMP
UML

Figure 3.3: Modernization process and support for activities of CMLs and UML

63

Provide selection

CloudMIG, CloudML-UFPE and MULTICLAPP aim at providing descriptions of cloud services
for the purpose of cloud environment selection. CloudML-UFPE places the emphasis on de-
scribing infrastructure-related cloud services, whereas ClouMIG provides environment profiles
for cloud services at the infrastructure as well as the platform layer. In addition to selecting
cloud services, CloudMIG features conformance checking of legacy applications with respect
to potential cloud environments. Even though MULTICLAPP is realized on top of UML, it
captures cloud service descriptions in terms of a feature model rather than directly in UML
via, e. g., a UML profile. UML itself does not provide environment-specific descriptions by
default mainly because it is a general purpose modeling language. Finally, it is important to note
that even though all reviewed CMLs provide capabilities for capturing cloud services they are
predominantly used to represent deployment models without the goal to collect and integrate
those descriptions into environment-specific profiles or libraries. Most of the CMLs lack such a
mechanism. TOSCA comes with a set of predefined environment-independent node types (e. g.,
“WebServer” and “DBMS”) and relationship types (e. g., “DependsOn” and “HostedOn”). Similar
Nhan et al. provide environment-independent software stack configurations in terms of a feature
model.

Perform adaption

The required adaptations for a successful modernization to the cloud can be diverse and related
to different service layers of cloud environments. This activity of the modernization process
refers to possible modifications of the application. As a result, CMLs supporting it must be
expressive enough to represent at least application components. Often their internal structure or
behavior is even required for carrying out the necessary modifications. CMLs capable to capture
application components seem to be potential candidates for this activity and so UML. As it is a
multi-viewpoint modeling language, a variety of model views on applications are supported. At
the same time, mainly due to its generic nature, UML does not come with built-in support for
modeling cloud-specific aspects of applications required to run in the cloud. MULTICLAPP’s
UML profile is a first step in this direction, as it is capable to annotate components with stereotypes
that are expected to be deployed onto one or multiple environments.

Prepare deployment

All of the reviewed CMLs provide modeling concepts to prepare the deployment of an application
where the target is a cloud environment. Deployment models created by current CMLs describe
the desired state of the application provisioning [TMW+05]. They describe the result of the
application provisioning in a declarative way, i. e., how the provisioning is in fact carried out
is not explicitly prescribed by them. As UML provides also a generic deployment language,
it can be employed to describe a cloud-based application deployment. Clearly, cloud-specific
features are not supported by UML’s standard deployment modeling concepts. As a result,
on-premise application deployments expressed in UML can only be turned into cloud-based
application deployments if cloud-specific extensions are available. From this point of view,

64

UML’s deployment language is similar to CMLs which support ontological typing, as they also
require declaring custom cloud-specific types prior to creating concrete deployment models.

Execute provisioning

As todays cloud environments allow cloud service to be provisioned dynamically via dedicated
service interfaces, it appears obvious that those interfaces can be exploited by CMLs for automat-
ing the application provisioning. Around two thirds of the CMLs support application provisioning
to the cloud. They come with dedicated tools that are capable to accomplish the application provi-
sioning based on a deployment model. Some of them build on existing configuration management
tools (e. g., Chef, Puppet, or Cloud-Init), whereas for others full-fledged provisioning engines
have been developed. A cloud-based provisioning engine that directly supports UML deployment
models is yet not available.

3.3.6 Threats to validity

There are two main threats that may jeopardize the internal validity of this systematic literature
review. First, the search of potential relevant research works was carried out on a set of publication
sources that we determined. Since cloud computing is a highly diverse research topic, we may
have excluded publication sources in which research works relevant to this review are published.
In order to reduce the possibility of missing publication sources, we formulated in a first step a
relatively generic search query for the purpose of obtaining a set of potential relevant publication
sources. From this obtained initial set of publication sources, we excluded those sources that
seemed to be out of the scope of this review in a second manual step. Second, the definition
of keywords used to prune the set of studies is a critical task in the sense that to many studies
are already excluded before the manual search process is carried out. In order to reduce the risk
of defining a keyword list that is too restrictive, we carefully tested it with a set of studies we
were aware of from previous work. Concerning external threats to validity, we cannot claim any
results regarding language features outside of our classification and comparison framework even
though some CMLs are realized as extensions to existing general-purpose model languages or
architecture description languages.

3.4 Summary

Several CMLs accompanied by a considerable set of tools have been proposed so far. As they
address the diversity of modern cloud environments and their services, existing CMLs pursue dif-
ferent goals, differ in scope, and provide thus complementary modeling concepts. Consequently,
the investigation of the diverse features currently provided by CMLs is of high interest in general
and for this thesis in particular.

In this chapter, we presented a common classification and comparison framework with the
goal (i) to support cloud users in selecting the CML which fits the needs of their application
scenario and setting, and (ii) to investigate language characteristics and concepts as they are
of particular relevance for this thesis. In this respect, we are not only interested in features of
existing CMLs for which extensive support is already provided but also in which they are deficient.

65

Review framework and process. We introduced a relatively concise framework for classi-
fying and comparing current CMLs. The framework is realized in the form of a metamodel,
which allows extensions and modifications. This appears to be crucial in a field that is still largely
in its infancy. In total, we have reviewed 18 CMLs according to the presented classification
and comparison framework. For conducting this systematic review, we followed the guidelines
recommended by Kitchenham and Charters [KC07].

Study results and limitations. The results of classifying and comparing existing CMLs are
summarized in Tables 3.7 to 3.11 along with detailed descriptions of our findings and respective
summaries thereon. Thereafter, we discussed to what extent existing CMLs are capable to deal
with the application modernization scenario introduced in Figure 1.1, which includes processes of
both reverse engineering and forward engineering. Since in this thesis cloud-specific extensions
to UML are proposed, we included UML in this discussion and drew up those phases of the
modernization process in which standard UML lacks support for cloud application modeling.

3.5 Related surveys

In the work of Papazoglou and Vaquero [PV12], the need for knowledge-intensive cloud ser-
vices that comprise metadata (e. g., offered services, quality of a service, available service level
agreements, technical service specification) of cloud environments is discussed. Currently, the
metadata are spread over and confined to the different virtualization levels (i. e., IaaS, PaaS, SaaS)
of such environments. As a consequence, Papazoglou and Vaquero argue for a language that
supports the description, the definition of constraints over such descriptions, and the manipulation
of cloud services and their metadata. They identify and analyze (modeling) languages that fall
into these three categories. The set of selected languages spans a broad spectrum, ranging from
general languages used in the context of service-oriented architecture (cf. e. g., [MLP08]) to
low-level formats describing web resources (e. g., RDF) or virtual resources (e. g., OVF). We
share the approach of Papazoglou and Vaquero to use the virtualization layers as introduced by
the NIST [BGPCV12] to categorize existing CMLs regarding the target cloud environment they
support. However, we focus exclusively on modeling languages tailored to the cloud computing
domain, hence claim to be what we call a CML. As a result, we use more fine-grained criteria to
analyze existing CMLs compared to the work of Papazoglou and Vaquero.

Sun et al. [SDA12] present a survey of service description languages that examines seven
different aspects: domain, coverage, purpose, representation, semantics, intended user, and
feature22. By analyzing common modeling language characteristics (i. e., coverage, purpose,
semantics), their capabilities (i. e., representation) and intended users with respect to the cloud
computing domain, we cover all the aspects of this article. In contrast to our work, Sun et al. do
not further refine the domain aspect, which is due to the fact that their scope goes beyond cloud
computing, which includes languages used in the context of service-oriented architecture (e. g.,
SoaML [OMG12]) or semantic web (e. g., OWL-S [W3C04]).

22It is used to capture additional informal comments over a language rather than to provide a feature-based
analysis [KCH+90]

66

Jamshidi et al. [JAP13] conducted a systematic literature review of cloud migration research
in which they classified 23 publications from 2010 to 2013 according to 12 analysis dimensions.
They conclude that cloud migration research is still in its early stages, but their study also provides
evidence that the maturity of the field is increasing. Jamshidi et al. do not focus on modeling
techniques and languages in the cloud computing context, which distinguishes their work from
ours. Nevertheless, they cite the need for a common research agenda between cloud computing
and software engineering researchers, which further motivates our work.

Silva et al. [SRC13] conducted also a systematic literature review regarding existing solutions
that address the “vendor lock-in” problem in the context of cloud computing. They point out that
the dependency on a certain cloud environment is a major obstacle to cloud adoption [DWC10].
From an initial set of 721 primary studies 78 were selected and categorized according to 25 solu-
tion types dealing with the portability of cloud applications and how the interoperability between
offered cloud services can be improved. Even though some of the introduced solutions types
indicate that modeling techniques and languages can counteract portability and interoperability
challenges, Silva et al. do not further categorize or compare them in terms of more fine-grained
criteria. As some of the reviewed CMLs particularly aim for portable cloud applications, the
work of Silva et al. also further motivates our work.

67

CHAPTER 4
Cloud application modeling

The general-purpose language UML provides modeling concepts to represent software, platform
and infrastructure artifacts from different viewpoints. It can thus be applied to a variety of
domains including cloud computing. Its language-inherent extension mechanism enables domain
knowledge to be captured by profiles. Numerous profiles are available today [Par10], some of
which were even standardized by OMG [OMG14a]. Their practical value has been recognized
in industry, because modern modeling tools offer already predefined stereotypes covered by
profiles. Stereotypes are considered as a major ingredient for current model-based software
engineering approaches [BCW12] by providing modeling concepts supplementary to the UML
standard metamodel without directly manipulating it. Hence, providing extensions to UML that
satisfy current cloud modeling requirements appears beneficial, especially when cloud-oriented
modernization scenarios need to be supported where reverse-engineered UML models are refined
towards a selected cloud environment. A UML profile seems to be well suited to support an
environment-specific refinement provided that it captures at least the required cloud services.
Thereby, a clear separation can be achieved between environment-independent and environment-
specific models [ANM+12], which is in accordance with the PIM/PSM concept [MFBC12] where
the “platform” refers to the selected cloud environment in general and a certain cloud service in
particular.

For instance, Google’s environment offers a cloud storage service called App Engine Data-
store for managing application data. Objectify is the recommended programming library to
access the storage service. It is implemented in Java and must be deployed along with the cloud
application’s component(s) realizing the data management tier, which typically includes entities
that are persisted and service classes capable to manipulate them. As a result, several modeling
viewpoints are involved when the refinement towards the App Engine Datastore service is carried
out. Most notably from an application structure perspective, three key modeling viewpoints can be
identified that require careful consideration: (i) class viewpoint, (ii) component viewpoint, and (iii)
deployment viewpoint. Regarding the former viewpoint, persistable entities represented by means
of UML classes must be properly annotated, such that Objectify recognizes them accordingly. In
Java, this task is accomplished by applying the respective Objectify annotations to the entities.

69

Turning the focus from the class viewpoint to the component viewpoint, all the libraries which
are directly and indirectly used by the classes must be associated with the components realized by
those classes to ensure that they function appropriately once deployed on a cloud environment. To
accomplish the latter, the deployable artifacts which manifest the components must be linked to
the required cloud services. Considering Amazon’s DynamoDB cloud storage service, a similar
refinement process is applicable if the Objectify library is replaced by the DynamoDB Java library,
which also exploits annotations, and the Amazon cloud environment is used instead of Google’s
environment. Even Microsoft’s cloud environment can be targeted by applying this refinement
process provided that the Entity Framework is used as a data management library and Azure SQL
cloud service is selected to actually manage the data. In case of the Azure environment, C# must
be employed instead of Java for implementation purposes. Attributes in C# resemble the notion
of annotations in Java. They are exploited by the Entity framework in a similar manner as the
Objectify and the DynamoDB library embrace annotations.

In order to support a flexible refinement process from high-level PIMs over possibly several
PSMs down to a concrete implementation of them, we have developed the Cloud Application
Modeling Language (CAML) accompanied with a tool set to render it useful in practice. CAML
consists of a collection of UML profiles dedicated to libraries of a target platform such as Java
or C#. In fact, those libraries are exploited in terms of an annotation mechanism [Sel12], which
leverages annotation-based modeling, where defined stereotypes show similar capabilities as
annotations over program elements [ESM05, NP07]. Considering the large number of possible
annotations at the programming level, manually developing the corresponding UML profiles
would only be achievable by a huge development and maintenance effort. For that reason, CAML
provides a fully automatic transformation chain to generate UML profiles from programming
libraries that embrace annotations, where the focus is on the Java platform. This necessitates
overcoming existing heterogeneities that, e. g., refer to the target specification of Java annotations
and other peculiarities of how Java annotation types are declared. While current modeling tools
are capable to deal with Java annotations in UML, the mapping realized by CAML overcomes
some existing limitations of their capabilities. It allows annotations to be applied in a controlled
UML standard-compliant way as the generated stereotypes extend exactly the required UML
meta-classes. CAML realizes a mapping between Java’s annotation language and UML’s profile
language. As a result, it enables the generation of specific stereotypes for corresponding anno-
tations and a dedicated stereotype for the library itself, which in turn leverages library-specific
profiles that are intended to be applied in the context of class and component modeling. From a
tooling perspective, profiled UML models, i. e., models to which profiles are applied, pave the
way for model transformers to generate richer application code from PSMs [Sel12]. CAML’s
tool set provides extensions to the Eclipse UML generator for Java, such that stereotypes of
library-specific profiles are translated into corresponding annotations. Furthermore, it provides
transformation chains that exploit library-specific profiles to produce application behavior, e. g.,
method bodies of CRUD operations for entities that are persisted.

In addition to library-specific profiles, CAML provides a set of profiles that capture cloud ser-
vices offered by well-known cloud environments such as Amazon AWS, Google Cloud Platform,
and Microsoft Azure. As they are intended to be applied for refining environment-independent
deployment topologies towards a selected cloud environment, the peculiarities of how those

70

topologies are modeled in UML need to be carefully investigated for properly developing them.
In this respect it is important to understand that concrete deployment topologies are typically
modeled in UML on the instance level. The main benefit of this approach from a user perspective
is that custom types or even hierarchies of them can be established without modifying the UML
metamodel. Defined custom types can then be assigned to elements at the object level (see
Section 2.2). This approach is exploited by CAML in the sense that it provides a library of
common cloud modeling types which are abstractions over services of cloud environments, e. g.,
cloud storage service. Combining the library approach with the notion of environment-specific
UML profiles results in a powerful cloud modeling solution. The cloud library is used to model
environment-independent deployment topologies at the object level, whereas the environment-
specific profiles are applied to those topologies for accomplishing the refinement towards the
target cloud environment without direct modifications to the base elements and their features
as stereotypes are only associated to them. This additional typing mechanism shows its benefit
when a refinement needs to be changed, e. g., Amazon’s DynamoDB cloud storage service is
used instead of the cloud storage service offered by Google, because it requires only un-applying
and re-applying the respective stereotypes. The dynamic ability of a UML profile even allows
the same model to be refined towards several platforms and environments without affecting
the underlying model [Sel07]. In case of the modeled cloud storage service, it is decorated by
the applied stereotype. The stereotype encapsulates the environment-specific features, whereas
the common features of the cloud storage service are provided by the type of the cloud library
assigned to it. The cloud library along with the profiles specific to cloud environments is exploited
by CAML’s model transformers to produce environment-specific deployment descriptors usually
required for configuration purposes of cloud services. The main characteristics of CAML are
summarized in the following.

Embedded in the sense that it is a UML internal language. By realizing CAML as lightweight
extensions to UML it (i) directly exploits UML’s rich language support, (ii) facilitates a cloud-
oriented refinement process for UML models, and (iii) enables dynamically switching between
target platforms and cloud environments by (un-/re-)applying the respective profiles.

Generic with respect to generating library-specific profiles. The mapping between Java and
UML realized by CAML is generic because any declared annotation type by a programming
library can be represented in terms of a corresponding stereotype.

Generic with respect to representing deployment topologies. CAML’s cloud library enables
deployment topologies to be represented independent of a target cloud environment. The cloud
library is generic in the sense that it provides abstractions over cloud environments. Their concrete
services are captured by profiles specific to cloud environments.

Extensible with respect to cloud environment profiles. The cloud environment profiles pro-
vided by CAML are integrated via a common cloud profile that hides the peculiarities of how
custom types in UML can be extended. Abstract stereotypes covered by the common cloud
profile define possible extension points of CAML.

71

The remainder of this chapter is structured as follows. In Section 4.1, we motivate the practical
value of CAML by means of the application scenario introduced in Section 1.4. A high-level
architectural overview of CAML including a discussion of how custom library types can be
extended by stereotypes of cloud environment profiles is given in Section 4.2. Sections 4.3
and 4.4 are devoted to the profiles and libraries constituting CAML. A summary of this chapter is
given in Section 4.5 before work related to CAML is discussed in Section 4.6.

4.1 Motivation

To motivate the benefits of CAML, we use the application scenario as introduced in Section 1.4
and demonstrate the practical value of platform and environment-specific profiles for engineers
faced with an application modernization towards the Google App Engine. Figure 4.1 depicts
an excerpt of the reverse-engineered PSM of the PetApp, whereas the platform refers to Java in
general and the applied platform-specific profiles in particular. These profiles can be exploited to
accomplish the generation of a sliced PIM that sets the focus solely on the domain classes because
they are annotated with JPA stereotypes in the PSM. Even better, some JPA stereotypes can be
interpreted in terms of native UML concepts which not only strengthens the domain classes’
independence of a platform but also increases their accuracy because identifiers, compositions,
and more precise multiplicities can be explicitly captured. These improvements of the PIM
demonstrate the practical value of considering platform-specific profiles in the context of a
model-based reverse engineering process.

Profiles specific to a platform can also leverage the refinement of the PIM towards a platform
without the need to identify mappings between the respective platforms. A profile dedicated to
Objectify can support refining the domain classes of the reverse-engineered PIM towards the
Google App Engine because applied stereotypes are capable of denoting entities to be persisted
or embedded by another entity and properties which are uniquely identified. From the produced
Objectify-based PSM, annotated application code can be generated by also interpreting applied
stereotypes in the context of a forward engineering process. For instance, method bodies for
CRUD operations can be generated for domain classes as they are indicated by the respective
stereotypes and generated code elements can be automatically annotated (see Section 7.4 for
excerpts of generated application code). Hence, platform-specific profiles act as an enabler for
model-based reverse and forward engineering processes.

Having adapted the domain classes of the PetApp, it needs to be deployed on the cloud
environment of Google as assumed by our scenario. Google’s App Engine service offers several
different virtual machine types that are priced based on an hourly rate. Furthermore, it provides
several data storage solutions including a key-value datastore. Ideally, all the environment-related
deployment decisions can be captured on the model level. Therefore, profiles specific to cloud
environments appear to be highly desirable. Considering the deployment topology in Figure 4.2,
a profile dedicated to Google’s cloud platform can be exploited to express that for both modeled
compute service instances, an App Engine service that hosts a Java-based platform on top of

72

«Embedded»
- deliveryAddress

Annotated application classes

Composition

PSM2PIM

«OneToMany»
 {cascade=[All]}
«Size»{min=1}

- orderLines

- products
«OneToMany»
{cascade=[All]}

- item

- items
«OneToMany»
{cascade=[All]}

[0..*]

«Id» - id:Long

«Entity»
Order

ShoppingCart

«Id» - id:Long

«Entity»
OrderLine

- street:String

«Embeddable»
Address

«Id» - id:Long

«Entity»
Item

«Id» - id:Long

«Entity»
Product

«Id» - id:Long

«Entity»
Category

- order
[0..1]

[0..1]

[0..1]

[0..*]

[0..*]

«apply»

«Profile»
Validation

«Profile»
JPA

«Profile»
Java.lang

«apply» «import»

Annotated domain classes

«apply»

«Profile»
Objectify

«Profile»
Java.lang

«import»

- deliveryAddress - orderLines

- products

- item

- items

[1..*]

- id:Long {id}

Order

 - id:Long {id}

OrderLine
- street:String

Address

- id:Long {id}

Item

- id:Long {id}

Product

- id:Long {id}

Category

[0..1]

[0..1]
[0..*] [0..*]

Precise
Multiplicity

Identifier

Composition

Composition Composition

Identifier

Sliced domain classes

- deliveryAddress - orderLines

- products

- item

- items

[1..*]

«Id» - id:Long

«Entity»
Order

«Id» - id:Long

«Entity»
OrderLine

- street:String

«Embed»
Address

«Id» - id:Long

«Entity»
Item

«Id» - id:Long

«Entity»
Product

«Id» - id:Long

«Entity»
Category

[0..1]

[0..1]

[0..*]

[0..*]

PIM2PSM

cloudify

Identifier

Identifier

«model» PetApp «model» Cloudified PetApp

«model» PetApp

Figure 4.1: Benefits of annotation-based modeling in forward and reverse engineering processes

73

«ModelLibrary»
CloudLibrary

«import»

«Profile»
CloudProfile

«apply»

virtualization=platform
scaling=Auto

«AppEngineService»
:ComputeService

virtualization=platform
scaling=Auto

«AppEngineService»
:ComputeService

datastructure=keyValue
consistency=strict

«appEngineDatastore»
:StorageService

:PetBusiness :PetManage

«deploy» «deploy»

«model» PetApp
cloud deployment

Automatically
scaled platform-level

compute service
instances

GAE-specific
cloud datastore

Key-value cloud
storage solution with

strict consistency

GAE-specific
virtual machine types

including Java platform

GAE-specific
virtual machine types

including Java platform

«AppEngineService»
middleware=Java
instance=GAEF1

«AppEngineService»
middleware=Java
instance=GAEF1

«scalingConfiguration»
:ServiceConfiguration

«ScalingConfiguration»
maxIdleInstances=3

GAE-specific service
configuration for
scalability issues

Figure 4.2: Benefits of cloud-specific extensions to UML

F1 virtual machine instances must be provisioned. Furthermore, one of the compute service
instances must be capable to access Google’s cloud datastore. To ensure that provisioned compute
service instances are also released once they become idle, the modeled service configuration
defines the upper limit of idle instances. Capturing the environment-related information in terms
of profiles would allow engineers to model deployment topologies that are independent of a target
environment because the respective stereotypes can be used in a refinement step in a similar way
to platform-specific stereotypes. In a first step, an environment-independent deployment topology
can be modeled by instantiating common cloud modeling types, such as ComputeService and
StorageService, provided in terms of a dedicated library. Then, in a second step, the modeled
deployment topology can be bound to the target cloud environment by applying the respective
profile. As a result, environment-specific profiles along with a library of common cloud modeling
types enables engineers to exploit UML’s deployment viewpoint for modeling cloud applications
as part of model-based forward engineering processes.

74

4.2 UML-based language for cloud application modeling

CAML aims at supporting engineers to model architectural decisions of cloud applications and
the target cloud environment on top of which those applications are required to be executed. UML
was selected as the host language to realize CAML. The main reasons for this design decision are
manifold.

1. UML is a widely adopted standardized language that provides multiple viewpoints to
represent software, platform, and infrastructure artifacts by means of common modeling
concepts.

2. Its lightweight extension mechanism enables domain, platform, and environment-specific
concepts to be integrated into UML via profiles and libraries in a systematic way.

3. A considerable set of industrial strength tools is available today for UML which together
form an ecosystem that can be applied to UML-based approaches without any extra effort.

Recent work of Lago et al. [LMM+15] provides evidence that UML and UML profiles are
used by many organizations and engineers to model the architecture of their applications. Their
survey revealed that 86 percent of the respondents’ organizations use UML or UML Profile for
architecture modeling. The modeling language of choice plays an important role because created
models must support the understanding of design decisions and their communication to the
stakeholders involved in application design and should also promote automatic tasks [MLM+13]
including the generation of implementations from (UML) models and vice versa as part of MDE
processes [WHR14]. Clearly, the latter calls for mature tool support [WHR+13]. Today, several
open-source and commercial modeling tools with a diverse tool set exist. CAML extends UML
in a standard compliant way, such that current modeling tools that support UML are capable to
adopt our developed extensions.

The core library and profiles constituting CAML are presented in Figure 4.3. As expected, all
the building blocks of CAML are instances of the UML metamodel. Its profiles are defined by
means of UML’s profile language, some of which with the intention either to capture platform
and environment-specific concepts for refinement purposes or to annotate other profiles. In
particular, the pricing and performance profile are meant to be applied solely to profiles dedicated
to capture services of cloud environments. Whereas the former profile enables descriptions of
cloud services annotated with costs, high-level performance characteristics for such services
can be represented by means of the latter profile. To offer an interface for contributing other
cloud environment profiles to CAML, the common cloud profile provides abstractions over these
specific profiles. Abstract stereotypes of the common cloud profile extend the custom types
defined by the cloud library. They in turn instantiate meta-classes belonging to the deployment
viewpoint of UML. Custom types of the cloud library can be used via the ontological instantiation
mechanism supported by UML. Considering the cloud deployment topology of our application
scenario in Figure 4.2, the modeled platform-level nodes are instances of the type CloudNode,
which is provided by the cloud library. At the same time, they are instances of the UML meta-
class InstanceSpecification for the purpose of realizing their embodiment. These two
forms of typing are introduced in Section 2.2. From a language engineering point of view, this

75

«instantiate»

«Metamodel»
UML

«extend» «ModelLibrary»
Cloud

Library

«Profile»
Common

Cloud Profile

«Profile»
Amazon/

OpenStack
Profile

«Profile»
Google

Cloud Platform
Profile

«Profile»
Microsoft

Azure
Profile

«Profile»
Pricing
Profile

«Profile»
Performance

Profile

«Profile»
Platform
Profiles

«Profile»
Platform
Profiles

«Profile»
Platform
Profiles

«instantiate»
«instantiate»

«instantiate» «instantiate»

«apply»
«apply» «apply»

«apply»
«apply»

«apply»

Figure 4.3: CAML architecture

differentiation is important to understand because UML’s profile mechanism enables the extension
solely of meta-classes.

As a result, custom types as defined via libraries in UML cannot directly be extended by
stereotypes. Hence, the extension relationship between the cloud library and the common cloud
profile requires a thorough consideration. For that reason, Figure 4.4 gives insights into how
CAML deals with the challenge of extending custom UML types in addition to meta-classes as
supported by default.

We take again one of cloud node instances of the PetApp’s cloud deployment topology as
an example. Its linguistic type refers to the meta-class InstanceSpecification whereas from
an ontological perspective it is of type CloudNode. Obviously, the applied stereotype GAEF1
should be applicable to instances of CloudNode. Hence, the stereotype of the cloud profile in
the upper part of Figure 4.4 directly extends the custom CloudNode type. However, if we define
the extension relationship without specific treatment the stereotype would not be applicable to
cloud node instances because UML’s stereotype application mechanism does not consider custom
types as valid targets. Instead, only meta-classes are considered as valid targets. Hence, the
extension relationship pointing to the custom CloudNode type needs to be redefined, such that
the GAEF1 stereotype extends the UML meta-class which is instantiated by cloud node instances.
In other words, the extension relationship needs to follow the path of the linguistic instantiation

76

virtualization=platform
scaling=Auto

«gAEF1»
:CloudNode

«GAEF1»
middleware=Java

«import»
virtualization: VirtualicationKind
Scaling: ScalingKind

«modelLibrary»
Cloud library

«Node»
CloudNode

«metamodel» UML

«metaclass»
InstanceSpecification

middleware: MiddlewareKind

«profile» Cloud profile

«Stereotype»
GAEF1

inv: self.base_InstanceSpecification.classifier
‐> includes(CAML::CloudNode)

«model» PetApp
cloud deployment

middleware: MiddlewareKind

«profile+» Cloud profile

«Stereotype»
GAEF1

gen

«import»

«extend»

«import» «apply»

«instantiate»
(ontological)

«extend»

«instantiate» (linguistic)

Figure 4.4: Pattern for extending custom types in UML via stereotypes

instead of the ontological one. To effectively support ontological extensions, a pre-processing
step is carried out by CAML. If an extension relationship is defined along the path of ontological
instantiation the extended custom type is replaced by the meta-class InstanceSpecification
to accomplish an applicable stereotype definition. InstanceSpecification is the common
reference meta-class that has been introduced by UML to embody custom types and let them
point to an ontological type. To guarantee that the defined stereotypes are only applicable to the
extended custom types, a specific OCL constraint is introduced. It restricts the application of
the defined stereotype to instances of the custom type, i. e., concrete instance specifications that
point to the extended custom type. The GAEF1 stereotype covered by the profile in the middle
of Figure 4.4 presents the solution generated by CAML for the profile in the upper part. As a
result, CAML supports engineers to develop concise UML profile definitions even for ontological

77

extensions without requiring changes to existing UML tools because the provided generative
approach ensures that extension relationships are appropriately redefined if necessary.

4.3 Extensions to UML for target platforms in the cloud

Target platforms offered by a cloud environment often replicate existing platforms including
supported programming languages, available programming libraries, and standardized applica-
tions containers that are already commonly used in practice. One prominent example is the Java
platform. From a platform point of view, CAML targets engineers who employ UML in order
to realize reverse engineering and forward engineering processes where application artifacts
are implemented in Java. The investigation of realizing mappings between these two technical
spaces [KBA02, JCD+12] has already a long tradition [EHSW99, HBR00, NNZ00, KSS+02]. A
major contribution of CAML is the consideration of Java annotations and UML profiles in the
mapping process. Recent novelties of Java 8 regarding repeating annotations are included in
the mapping because it leads us to revisit how stereotypes are defined and applied in profile
applications [LWWC12]. In this respect, we discuss pros and cons of three significantly different
solutions to support repeating stereotypes in analogy to repeating annotations and modifications
required to the current UML 2.4 formal specification and its Eclipse-based reference implemen-
tation that are implied by two of them. CAML supports the generation of UML profiles with
repeating stereotypes. To give insights into our generative approach, we discuss the conceptual
mapping underlying it and elaborate effective solutions to overcome existing heterogeneities
between Java and UML. As a result, it allows engineers to “jump” from Java libraries to UML
profiles. All the platform-specific UML profiles that we have generated throughout the evaluation
of CAML were contributed to the Eclipse UML Profiles Repository (UPR) [UPR15]. Our aim is
to share them with existing community portals in general and the Eclipse modeling community in
particular.

4.3.1 Repeating stereotypes

Since Java 8, repeating annotations enable the same annotation to be repeated multiple times
in the place where it is declared. Obviously, this repeatable application of annotations has
an effect on determining the multiplicity of the ExtensionEnd contained by the Extension
relationship. In case of repeating annotations, the multiplicity should be 0..*, which expresses that
the corresponding stereotype can also be applied to base elements1 multiple times. However, the
UML standard introduces an OCL constraint that explicitly hinders the application of the same
stereotype to the same base element more than once (see page 683 of the UML standard [OMG15]).
As shown in Listing 4.1, the OCL constraint restricts the upper bound of the extension end to 1.

Listing 4.1: Multiplicity constraint on ExtensionEnd

(self−>lowerBound () = 0 or self−>lowerBound () = 1) and self−>upperBound () = 1

1A stereotype is applicable to a base element if it is an instance of a meta-class extended by the stereotype.
Considering the Entity stereotype, it extends the meta-class Type. As a result, it can be applied to all instances of
the meta-class Type.

78

When considering a stereotype as a means to classify base elements, the restriction on the upper
bound of the extension end seems reasonable. Classifying the same base element twice by
the same stereotype is obviously inappropriate. In contrast, when considering a stereotype
as a means to annotate base elements, there are use cases for applying the same stereotype
to a base element multiple times. For instance, in the context of model versioning dedicated
stereotypes can be used to visualize changes to a model element, e. g., “update class”, and highlight
potential conflicts, e. g., contradicting updates to a class, as a result of concurrently edited model
versions [BKL+10]. As updates to classes may be manifold, the respective stereotype is ideally
applied to the changed class several times where each atomic change is captured by exactly one
applied stereotype. To give another example, expressing several queries for an entity with the JPA
profile requires applying the NamedQuery stereotype multiple times. As a result, even though
repeating stereotypes in analogy to repeating annotations are currently not supported by standard
UML, they are still desirable.

To realize repeating stereotypes, several solutions are conceivable. Table 4.1 summarizes
three such possible solutions and shows pros and cons for all of them. Concerning the UML
metamodel and tools that depend on it, we refer to the Eclipse-based reference implementation.

Solution

Stereotype Changes in UML
metamodel

and tools

Backward
compatibility

Repeatable
application Container UML

metamodel Tools

Composition of
multiple stereotypes

not supported only
contained by a

dedicated stereotype

explicitly
modeled not required yes yes

Emulation of
repeating stereotypes

supported but
contained by a

dedicated stereotype

automatically
generated

yes, moderate
effort no yes

Native support for
repeating stereotypes supported not required yes, relatively

high effort no no

Table 4.1: Possible solutions for repeating stereotypes

The first solution is fully compliant to the current UML standard. In fact, it does not actually
apply several stereotypes to a base element. Instead a dedicated stereotype acts as a container for
the repeating stereotypes. This solution foresees that the container stereotype is explicitly created
by the modeler. As a result, changes to the UML metamodel and tools built on top of its API are
not required because the repeating stereotypes are only referenced by their container stereotypes
rather than applied to base elements. On the contrary, however, standard operations, for instance,
to apply stereotypes and retrieve them, are not applicable by this solution for repeating stereotypes
as they provide the expected result only for stereotypes that are applied following the standard
procedures.

This drawback is compensated by the second solution. It emulates repeating stereotypes as a
result of slight modifications to the operations provided for stereotypes. Even though, similarly
to the first solution, a container stereotype is exploited also by the second solution, this container

79

is automatically generated on demand. Moreover, as a result of the modifications required by
this solution, all standard operations for stereotypes are applicable also to repeating stereotypes.
However, the extension ends pointing to them need to be multivalued to ensure that they can be
applied multiple times. Consequently, this solution neglects the multiplicity constraint of the
ExtensionEnd meta-class, which in turn leads to profiles that do not fully conform to the current
UML metamodel. Still, the compatibility with existing tools can be ensured because the required
changes can completely be hidden by the UML metamodel API. This backward compatibility
cannot be maintained by the third solution. To natively support repeating stereotypes without
providing a dedicated container stereotype requires not only changes in the UML metamodel API
but also how they are represented and edited by the tools. For instance, applied stereotypes are
represented according to unique categories to which also their features are assigned, where the
category is derived from the name of a stereotype. Applying the same stereotype multiple times
to the same base element would result in a single category to which all the features of the applied
stereotypes are assigned.

To demonstrate how the profiles with repeating stereotypes of the three discussed solutions
differ from each other, we refer again to the NamedQuery annotation of the JPA. Listing 4.2 shows
its declaration as a repeatable annotation, whereas Listing 4.3 declares the required container
annotation. For compatibility reasons, in Java 8, repeating annotations are stored in a container
annotation that is automatically generated by the Java compiler once the annotation is applied.

Listing 4.2: Declaration of NamedQuery repeating annotation
package javax . persistence ;
import java . lang . annotation . ∗ ;

@Target ({ ElementType . TYPE })
@Repeatable (NamedQueries . c l a s s)
p u b l i c @inter face NamedQuery {

String name () ;
String query () ;

}

Listing 4.3: Declaration of NamedQueries container annotation
package javax . persistence ;
import java . lang . annotation . ∗ ;

@Target ({ ElementType . TYPE })
p u b l i c @inter face NamedQueries {

NamedQuery [] value () ;
}

Considering the possible profile solutions in Figures 4.5 to 4.7for the annotation declara-
tions, we selected the notation used to represent associations and their member ends instead of
extensions [LWWC12] to explicitly indicate the multiplicities of the extension relationships. The
first profile depicted in Figure 4.5, allows multiple NamedQuery stereotypes to be composed
by its container stereotype. As expected, the latter extends Type, where the multiplicity of the
extension end pointing to the NamedQueries stereotype is 0..1. It indicates that the container
stereotype can be applied once, which is sufficient because the composition relationship between
the NamedQueries stereotype and the NamedQuery stereotype is multivalued.

80

name : String [1]
query : String [1]

value

[*]

base_Type

extension_Type_
NamedQueries

[1]

[0..1]
«Stereotype»

NamedQueries
«Stereotype»
NamedQuery

«Metaclass»
Type

«Profile» javax.persistence

«Metamodel»
UML

«import»

Figure 4.5: Profile for composing multiple stereotypes, see first solution in Table 4.1

base_Type
[1]

extension_
NamedQuery

name : String [1]
query : String [1]

value

[*]

base_Type

extension_Type_
NamedQueries

[1]

[0..1]
«Stereotype»

NamedQueries
«Stereotype»
NamedQuery

«Metaclass»
Type

«Profile» javax.persistence

«Metamodel»
UML

«import»

[*]

Figure 4.6: Profile for emulating repeating stereotypes, see second solution in Table 4.1

Similarly, the second profile shown in Figure 4.6 exploits a multivalued composition rela-
tionship to emulate repeating stereotypes. The main difference compared to the first profile is
that the NamedQuery stereotype also extends Type, where the multiplicity of the extension end
pointing to the stereotype is 0..*, which indicates that it is a repeating stereotype. As a result,
the NamedQuery stereotype is applicable to base elements that are instances of the meta-class
Type. It is important that the extension relationships of both defined stereotypes point to the same

81

meta-class because the container stereotype need to be applicable to exactly the same set of base
elements as the repeating stereotype. In fact, this solution resembles the realization of repeating
annotations in Java 8. From the perspective of a modeler, the second profile is more powerful
compared to the first one, as the required container stereotype is managed in the background by
the UML metamodel API and hence fully transparent to the modeler. The development effort
is slightly higher and the profile more complex because an additional extension relationship is
required for the repeating stereotype.

base_Type [1]

extension_
NamedQuery

name : String [1]
query : String [1]

«Stereotype»
NamedQuery

«Metaclass»
Type

«Profile» javax.persistence

«Metamodel»
UML

«import»

[*]

Figure 4.7: Profile for native support of repeating stereotypes, see third solution in Table 4.1

Finally, the profile envisaged for the native support of repeating stereotypes is given in Fig-
ure 4.7. It does not require a container stereotype to capture repeating stereotypes because they
are assumed to be directly applied to the base elements. The main difference to the previous solu-
tion is that each applied repeating stereotype is captured by its own StereotypeApplication
instead of composed by an artificially introduced container stereotype for reasons of backward
compatibility. The latter can be considered as the trade-off between natively supporting repeating
stereotypes and guaranteeing that the solution is compatible at least with tools that are built on
top of the UML metamodel API.

Concerning support for the three discussed solutions of repeating stereotypes and the respec-
tive profiles, CAML allows the generation of these profiles by passing the respective configuration
option. Hence, the modeler can decide which profile version should be generated from a Java
library. Clearly, to emulate repeating stereotypes, a modified UML metamodel API is required
whereas native support for them requires also modifications in the tools built on top of this API.

4.3.2 Generating UML profiles from Java libraries

We start our investigation for generating UML profiles from annotation-based Java libraries by
presenting the process of CAML, as shown in Figure 4.8. The entry-point to the profile generation

82

Inject
Code

Generate
UML Profile

Apply
UML Profile

Generate
UML Model

Generate
Code Model

Apply
UML Profile

UML Model

Profiled UML Model

Java Code

UML Profile

RE Scenario

G
W

Extract
Code

Inject
Code

Java Code

Code Model

Profiled UML Model

Code Model Code Model

Java Code

M
W

Slice Profiled
UML Model

FE Scenario Profile Generation

Platform-
independent
UML Model

Figure 4.8: Processes for UML profile generation and application scenarios

is Java Code that is translated into a what we call Code Model conforming to MOF/EMF. As
a result of this first step, the transition from a text-based representation into a model-based
representation is accomplished. The generated Code Model is a one-to-one representation of
the Java Code and the basis for generating a UML Profile, which captures Java annotation type
declarations in terms of UML stereotypes (see middle of Figure 4.8). They serve as foundation to
exploit profiles as an annotation mechanism [Sel12].

In case of the reverse engineering scenario, a Code Model is generated in a first step similar
to the UML profile generation. The Profiled UML Model is generated from the Code Model
by taking into account profiles that provide stereotypes corresponding to annotations in the
Code Model (see left hand side of Figure 4.8). Annotated elements of the Code Model indicate
the elements of the Profiled UML Model to which those stereotypes need to be applied. As
demonstrated in Figure 4.1, stereotypes applied to elements of the Profiled UML Model may
lead to a more accurate Platform-independent UML Model if they are appropriately interpreted
by a model slicer [BCBB15]. This slicing step is specific to the interpreted stereotypes and

83

hence the profiles that cover them, whereas the steps of generating a Profiled UML Model and an
intermediate Code Model is completely generic in the sense that any Java application and library
can be translated into a Profiled UML Model.

A Profiled UML Model is accomplished in the case of the forward engineering scenario (see
right hand side of Figure 4.8) by applying profiles to a Platform-independent UML model. While
UML’s profile mechanism is generic in the sense that arbitrary profiles can be applied to a UML
model, automating the application of stereotypes to particular elements is certainly specific to the
application scenario. In contrast, both the generation of the Code Model and the extraction of the
Java Code are generic provided that the employed code generation facility supports stereotypes.
Considering the generation of stereotypes compared to the reverse and forward engineering
scenarios where those stereotypes are applied, the respective profile generation process operates
at a different level as the processes supporting the two application scenario because declared
stereotypes can be considered as part of the metamodel level instead of the model level [AKHS03]
(see Figure 2.8). Following this classification into different levels, the profile generation is a
meta-level process, which produces elements at the metamodel level.

Finally, bridging the two technical spaces [JCD+12] we are confronted with, i. e., grammar-
ware and modelware, is required for the two scenarios as well as CAML.

Bridging Technical Spaces

Transforming plain Java code into a UML-based representation requires overcoming the different
encoding and resolving language heterogeneities. Concerning the first aspect, the Java code
needs to be encoded according to the format imposed by the modeling environment [BW13].
Concerning the second aspect, a bridge between Java and UML based on translations requires a
conceptual mapping between the two languages. Instead of directly translating plain Java code
into a UML-based representation, the use of a two-step approach is preferable [HJSW10], which
is also applied by CAML. In a first step, Java code is translated into a Code model that uses Java
terminology and structures conforming to the Java metamodel provided by MoDisco [BCJM10].
An excerpt of the Java metamodel2 is presented in Figure 4.9.

It shows the main meta-classes required to declare and apply annotations. Before annotations
can be applied on code elements, they need to be declared in terms of annotation types. Anno-
tationTypes declare the possible annotations for code elements and may have, similar to
Java interface declarations, optional modifiers. They are identified by a name. Annotation-
Types may themselves be subject for annotations. An Annotation references to its type and
composes ElementValuePairs. They capture values passed to an annotation. Most importantly
for the context of this work is the target annotation that is represented in the metamodel as
an attribute for simplicity reasons. It is a meta-annotation because it can only be applied to
declared annotation types to indicate the code elements that are valid bases for an application
of an AnnotationType. The set of valid bases are captured by the literals of ElementType
enumeration. Note that we omitted the newly introduced TypeUse and TypeParameter literals
as they are considered as part of future work. Generally, UML does not support such annotations
by default as it would require extending not only meta-classes but also meta-features, which is not

2The presented metamodel uses the terminology of the Java language specification (JLS8) [Ora15]

84

[1]

[*] {ordered}

[0..1]

modifier

«metamodel» JavaAnnotation

«metaclass»
AnnotationType

name:String[1]
target:ElementType[*]
repeatable:Boolean[1]

«metaclass»
AnnotationTypeElement

name:String[1]
type:ReturnType[1]

«metaclass»
Modifier

modifier:ModifierType[0..2]

«metaclass»
ElementValue

«metaclass»
Annotation

«metaclass»
ElementValuePair

identifier:String[1]

«Enumeration»
ElementType

AnnotationType
Constructor
Field
LocalVariable
Method
Package
Parameter
Type
TypeParameter
TypeUse
All

PrimitiveType
String
Class
Class<T>
EnumType
AnnotationType
ArrayType

«Enumeration»
ReturnType

public
abstract

«Enumeration»
ModifierType

annotation
TypeElement

type

[0..1]

modifier

detaultValue
[0..1]

elementValue
[1]

annotation
[*]

value [*]

Figure 4.9: Metamodel of Java annotations

yet supported. The body of an annotation type declaration consists of zero or more Annotation-
TypeElements for holding information of AnnotationType applications. They are declared
in terms of method signatures with optional modifiers, a mandatory return type and name,
and an optional default value that is returned if no custom value is set. The default value
needs to conform to the defined return type of the AnnotationTypeElement. For instance, if
the defined return type is AnnotationType, the default value needs to be an Annotation,
which inherits from ElementValue. This abstract meta-class is specialized by other meta-classes,
e. g., ConditionalExpression to support the non-array ReturnTypes and ElementValue-
ArrayInitializer to support one-dimensional arrays thereof. For the sake of brevity, these
additional specializations of ElementValue are omitted.

The introduced meta-classes are instantiated for creating a Code model from Java code. A
Code model is the basis for generating UML profiles and the input for the second step that is
dedicated to resolving language heterogeneities by relying on the correspondences between the
Java and UML metamodels.

85

Generating UML Profiles

To facilitate the generation of UML profiles, we present a conceptual mapping between Java’s
annotation language and the profile language of UML. Thereby, stereotypes play a vital role for
representing annotation types on the model level as they enable their application in a controlled
UML standard-compliant way. From a language engineering perspective, stereotypes only extend
the required UML meta-classes and facilitate defining constraints and model operations, such as
model analysis or transformations, because they can directly be used in terms of explicit types
similar to a meta-class in UML. Our proposed mapping is generic in the sense that any declared
annotation type can be represented by a stereotype.

Java → UML
AnnotationType a if(not a.isContainerAnnotation() or

a.isContainerAnnotation()1 and requiresContainerStereotype()2)
add Stereotype s

s.name = a.name
add Property p for each AnnotationTypeElement in

a.annotationTypeElement
switch(a.modifier)

case : public s.visibility = public
case : abstract s.abstract = false
case : annotation an

and not an.type = Target apply Stereotype for an.type to s
case : annotation an

and an.type = Target for each ElementType et in a.target
add Extension e for each Metaclass mc in et.getMetaclasses()3

e.memberEnd = Set{p, f}
add ExtensionEnd f

f.name = "extension_".concat(mc.name).concat("_").concat(s)
f.type = s
f.aggregation = AggregationKind.composite
f.lower = 0
f.upper =

if(a.isRepeatable()) *
else 1

add Property p for each Metaclass mc in et.getMetaclasses()3

p.name = "base_".concat(mc.name)
p.type = mc

if(a.target.size() >= 1) 1
else 04

if(et = Constructor) add uml::Constraint constructorConstraint4

if(et = Method) add uml::Constraint methodConstraint5

if(et = Type) add uml::Constraint typeConstraint6

1 See Listing 4.4 for further details.
2 It provides a Boolean value of the decision taken by the modeler regarding repeating stereotypes.
3 See Listing 4.5 for further details.
4 AnnotationTypes that are intended to used only inside other annotations require a zero multiplicity (e. g., QueryHint

of the JPA).
5 See Listing 4.6 for its specification.
6 See Listing 4.7 for its specification.
7 See Listing 4.8 for its specification.

Table 4.2: AnnotationType to Stereotype mapping

AnnotationType → Stereotype. The mapping presented in Table 4.2 provides the basis to
generate an applicable Stereotype from an AnnotationType. First of all, it needs to be

86

decided if a stereotype should be generated at all, because container annotations required to
declare repeating annotations may not in any case result in a corresponding container stereotype
as discussed in the previous Section 4.3.1. For that reason, a corresponding container stereotype
is generated from a container annotation only if it is required, which depends on the provided
configuration parameter passed by the modeler. Whether an annotation type is exploited as a
container annotation is indicated by the meta-annotation Repeatable applied to the annotation
type for which the container annotation is declared. Listing 4.4 gives the respective function to
check for container annotations.

Listing 4.4: Definition of isContainerAnnotation
c o n t e x t AnntotationType def : isContainerAnnotation : Boolean =

Annotation . allInstances () −> select (a : Annotation | a . type . name = " Repeatable ")
↪→−> collect (value) −> exists (elementValue . type = s e l f)

In cases where repeating stereotypes should be composed by a dedicated stereotype instead
of directly applied to a base element, see first row in Table 4.1, or emulated in terms of repeating
annotations, see second row in Table 4.1, a container stereotype is generated. Otherwise, its
generation is neglected, see third row in Table 4.1. The function requiresContainerStereotype
provides a Boolean value of the decision taken by the modeler.

Generally, the generation of a stereotype from an annotation type requires not only its
signature to be considered, but also Java’s Target meta-annotation. It determines the set of
code elements an annotation type is applicable to. The name and, with two exceptions, the
defined modifiers of an AnnotationType can straightforwardly be mapped to UML. First, the
abstract modifier would lead to Stereotypes that cannot be instantiated if directly mapped.
The problem is caused by Java’s language definition. Although the abstract modifier is
supported to facilitate one common type declaration production rule, it does not restrict the
application of AnnotationTypes. To ensure the same behavior on the UML level, we never
declare a Stereotype to be abstract. Second, because annotations are considered as modifiers, it
needs to be ensured that the Target annotation is properly treated. In fact, the defined set of Java
ElementTypes determines the required set of Extensions to UML meta-classes that specify
the application context of the stereotypes. Listing 4.5 defines the correspondences between Java
ElementTypes and UML meta-classes.

Listing 4.5: Definition of getMetaclasses
c o n t e x t ElementType def : getMetaclasses : S e t (uml : : Element) =

if (s e l f = AnnotationType) then S e t {uml : : Stereotype}
else if (s e l f = Constructor) then S e t {uml : : Operation}
else if (s e l f = Field) then S e t {uml : : EnumerationLiteral , uml : : Property}
else if (s e l f = LocaleVariable) then S e t {uml : : Property}
else if (s e l f = Method) then S e t {uml : : Operation , uml : : Property}
else if (s e l f = Package) then S e t {uml : : Package}
else if (s e l f = Parameter) then S e t {uml : : Parameter}
else if (s e l f = Type) then S e t {uml : : Type}
else if (s e l f = All) then S e t {uml : : Class , uml : : Enumeration , uml : : Interface , uml : :

↪→Operation , uml : : Package , uml : : Parameter , uml : : Property , uml : : Stereotype}

Most of them correspond well to each other. Still, some constraints are required to precisely
restrict the application scope of the generated Stereotype according to their intention. UML

87

does not explicitly support a constructor meta-class. The workaround is to map the Constructor
to Operation and introduce a constraint that emulates the naming convention for constructors
in Java, as depicted in Listing 4.6. Note that annotation types can have several target types.
Thus, before validating the OCL constraint, we have to check which target is actually used in the
application.

Listing 4.6: Constructor constraint
c o n t e x t generated Stereotype inv :
s e l f . base_Operation . oclIsDefined () i m p l i e s
s e l f . base_Operation . name = s e l f . base_Operation . oclContainer () . oclAsType (uml : :

↪→Classifier) . name

Similarly, the mapping of Java methods to UML requires a constraint as a declared method
of an AnnotationType, i. e., AnnotationTypeElement, is mapped to a Property rather than
an Operation in UML. This is because such methods do not provide a custom realization
but merely return their assigned value when they get called. Properties in UML provide
exactly this behavior. Hence, the constraint in Listing 4.7 ensures that stereotypes generated from
annotation types that target Java methods are applicable also to Property if they are contained
by a Stereotype.

Listing 4.7: Method constraint
c o n t e x t generated Stereotype inv :
s e l f . base_Property . oclIsDefined () i m p l i e s
s e l f . base_Property . oclContainer () . oclIsTypeOf (uml : : Stereotype)

Finally, we use a constraint to overcome the heterogeneity of Java’s and UML’s scope of Type.
Consequently, stereotypes that extend Type are constrained to those elements that correspond
to the set of elements generalized by Java’s Type: AnnotationType, Class, Enumeration
and Interface. The clear benefit of this approach is a smaller number of generated extension
relationships between stereotypes and meta-classes in the profile. The constraint is depicted in
Listing 4.8.

Listing 4.8: Type constraint
c o n t e x t ToBeGeneratedStereotype inv :
s e l f . base_Type . oclIsDefined () i m p l i e s
S e t {uml : : Stereotype , uml : : Class , uml : : Enumeration , uml : : Interface} −> includes (s e l f .

↪→base_Type . oclType ())

AnnotationTypeElement→ Property. An AnnotationTypeElement is mapped to a Proper-
ty as depicted in Table 4.3. Except for the fact that UML properties cannot be defined as
abstract, AnnotationTypeElements straightforwardly correspond to Properties. In Java,
AnnotationTypes cannot explicitly inherit from super annotations. Therefore, the abstract
modifier is rarely used in practice. To fully support all return types of AnnotationType-
Elements, we introduce a Stereotype to address the generic capabilities of java.lang.Class,
which is not the case for UML’s meta-class Class. Hence, we apply our custom JGenericType
stereotype to properties with return type Class<T>.

88

Java → UML
AnnotationTypeElement a add Property p

p.name = a.name
p.default = a.default
p.lower =

if(p.default.isEmpty()) 1
else 0

switch(a.modifier)
case : public p.visibility = public
case : abstract – no corresponding feature
case : annotation an apply Stereotype for an.type to p

switch(a.type)
case : PrimitiveType p.type = uml::PrimitiveType for a.type
case : Class p.type = uml::Class
case : Class<T> p.type = uml::Class apply javaProfile::JGenericType Stereotype to p
case : EnumType p.type = uml::Enumeration
case : AnnotationType p.type = uml::Stereotype
case : ArrayType p.type = a.typeOfArray()1

p.upper = 1
1 Extracts the type of the array.

Table 4.3: AnnotationTypeElement to Property mapping

4.3.3 Collected UML profiles and their usage

To demonstrate concrete UML profiles that were generated from annotation-based Java libraries,
Figures 4.10 and 4.11 show excerpts of the platform-specific profiles that are applied in the
context of our application scenario. Whereas the JPA profile is applied in the reverse engineering
process to generate a profiled UML model from the PetApp implementation, the Objectify profile
captures the stereotypes applied to refine the platform-independent UML model towards Google’s
cloud environment as part of the forward engineering process. Considering the former profile, all
the applied stereotypes to the PetApp domain model that refer to the JPA library are covered by the
JPA profile. It was generated by means of the first solution regarding repeatable stereotypes (see
Table 4.1) because a one-to-many composition relationship links the NamedQueries stereotype
to the NamedQuery one, the former stereotype being the container for named queries applied to
an entity. Also, the Objectify profile provides as expected all the stereotypes required for the
“cloudified” version of the PetApp domain model.

Since early 2014, an Eclipse project is dedicated to develop a centralized repository that
hosts standardized UML profiles, such as BPMN [OMG11a] and SoaML. The UML-Profile-
Store complements the set of standardized profiles of the UML Profiles Repository (UPR) with
profiles specific to the Java platform. Contributing these Java-specific profiles to the UPR appears
obvious. Thereby, the Eclipse Modeling Community can access them via a common repository
for standardized platform-independent profiles as well as profiles that are specific to a platform
such as Java.

All the profiles specific to the Java platform are bundled in an Eclipse plug-in that currently
provides 20 profiles, comprising in total over 700 stereotypes. To ensure that they can directly
be used in the Papyrus UML modeling tool3, the profiles are automatically registered via the

3Papyrus: https://eclipse.org/papyrus

89

«profile» JPAProfile

«Stereotype»
Table

name:String
catalog:String
schema:String

«metaClass»
Type

«metaClass»
EnumerationLiteral

«Stereotype»
Entity

«Stereotype»
Id

name:String

value

[1..*]
«Stereotype»

NamedQueries
«Stereotype»
NamedQuery

name:String
query:String
lockMode:LockModelType

«Stereotype»
QueryHint

name:String
value:String

hints [*]

«Enumeration»
LockModelType

None
Optimistic
OPTIMISTIC_FORCE_INCREMENT
PESSIMISTIC_FORCE_INCREMENT
PESSIMISTIC_READ
PESSIMISTIC_WRITE
READ
WRITE

«Stereotype»
GeneratedValue

strategy:GenerationType
Generator:String

AUTO
IDENTITY
SEQUENCE
TABLE

«Enumeration»
GenerationType

«metaClass»
Operation

«metaClass»
Property

Figure 4.10: UML profile for JPA library

respective extension point offered by Papyrus. Also, all the profiles are defined in the sense
that in addition to the profile definition itself Ecore-based metamodels are available for them.
Those metamodels are automatically generated by the Eclipse UML reference implementation
and mainly required for the stereotype application. If a stereotype is applied to a model element,
an instance of the stereotype’s meta-class is created along with a reference that associates the
stereotype to the model element.

How the stereotype application is actually implemented by modeling tools which support
UML may vary among them. This implies that the Ecore-based metamodels defined for the
profiles may not necessarily be applicable by other tools which is not surprising because Ecore
and the modeling framework built on top of it is grounded in Eclipse. Hence, the profiles are also
offered in a tool neutral version, such that they are exchangeable among modeling tools. It just
means that the Ecore-related meta-classes for the stereotypes are not included in the profiles but
solely their UML native definitions.

90

«profile» ObjectifyProfile

«Stereotype»
Serialize

zip:Boolean
compressionLevel:Integer

«Stereotype»
Cache

expirationSeconds:Integer

«Stereotype»
Translate

early:Boolean

«metaClass»
Type

«metaClass»
Property

«metaClass»
Operation

«Stereotype»
Embed

«Stereotype»
Entity

«Stereotype»
Id

name:String

«Stereotype»
Index

«Stereotype»
OnLoad

«Stereotype»
OnLoad

«metaClass»
Class

«Stereotype»
Parent

«Stereotype»
Ignore

value
[*]

Figure 4.11: UML profile for Objectify library

4.4 Extensions to UML for target cloud environments

With the emergence of cloud services and the demand to exploit them, deployment topologies
modeled in UML must be expressive enough to capture them. A major contribution of CAML
are cloud-specific extensions to UML’s generic deployment language. Developing extensions
requires the investigation of the cloud computing domain with a particular emphasis on cloud
services and their features, and the identification of useful abstractions over the gathered domain
knowledge [MHS05]. The identified abstractions are the basis for designing and implementing
CAML on top of UML. We discuss the steps carried out for extracting information related to
offered cloud services and briefly summarize the phases performed for developing the extensions
to UML based on our gained insight into the cloud service landscape. Then, we present the
model library of CAML which allows engineers to model deployment topologies independent of
a specific cloud environment. Because the ultimate objective is to support the provisioning of
modeled cloud services, we show how profiles can close the gap between deployment topologies
on the model level and target cloud environments offering the services to be provisioned. Finally,
we present how templates in UML can be exploited for contributing deployment topologies as
reusable blueprints.

4.4.1 Investigation of cloud environment services

Available information about cloud services is scattered across a variety of web pages hosted
by the providers of cloud environments offering those services. A well-known approach to
capture existing cloud services in a hierarchically structured form is feature-oriented domain

91

analysis (FODA) [KCH+90]. It promotes feature models to explicitly represent commonalities
and variabilities of a problem domain. A commonly used feature diagram notation is introduced
by Czarnecki & Eisenecker [CE00]. The root of a feature model denotes the concept that
is modeled. It is decomposed into features, where child features depend on parent features.
Dependencies between features impose constraints on how they can be combined: a feature is
mandatory, alternative, or optional.

Google Cloud
Environment

Compute
Storage

Big Data
Services

App
Engine

Compute
Engine

Platform Scaling
Type

Instance
Class

Manual Automatic F1 B2

F2

Java

Python

PHP

Big Query Cloud
Dataproc

Cloud
Endpoints

Search Mail

Cost per instance
hour vary depending

on the selected
instance class

Performance
characteristics vary

between the different
instance types

Cloud
Datastore

 Cloud
SQL

Configurations
for scaling-out / scaling-in
virtual machine instance

Figure 4.12: Feature model of the Google cloud environment

Considering an excerpt of the feature model (see Figure 4.12) we created based on the analysis
of Google’s cloud environment, the root of the model denotes the environment under investigation.
It provides a variety of cloud services that belong to a certain category. For instance, the App
Engine service is a compute service offered by Google’s cloud environment. The App Engine
service is a platform-level compute service because it provides in contrast to Compute Engine
services also a platform that is immutable and fully managed by Google. Selecting the App
Engine service requires selecting mandatory features that refer to the desired platform, the virtual
machine type on top of which the platform is hosted, and the strategy for provisioning new
virtual machine instances and releasing them. The latter can either be carried out manually by
the cloud user or managed by the cloud environment in the sense that virtual machine instances
are automatically provisioned or released based on certain thresholds. They can be manipulated
depending on the needs of the cloud user. For instance, the App Engine enables cloud users to set
a limit for the maximum number of idle virtual machine instances to ensure that instances are not
only scaled-out but also scaled-in. Regarding the virtual machines offered by the App Engine

92

two further aspects are emphasized by the feature model: the performance characteristics of the
various offered virtual machines differ and the costs of them for the cloud user varies. These
cross-cutting aspects are not only relevant for Google’s cloud environment but also for others as
highlighted in the feature model (see Figures 4.13 and 4.14) of the cloud environments operated
by Amazon and Microsoft.

Amazon Cloud
Environment

Compute
Storage & Content

Delivery Database Networking
Application

Services

Virtual
Servers

Containers

On-demand
Instance type

General
Purpose

Compute
Optimized

Instance
Type Region Operating

System

Reserved
Instance type

US_East EU

Asia_Pacific
Singapore

RHEL SLES

Windows

t2.small

m3.medium

m3.large

Instance
Type

c4.large

c3.large

c3.xlarge

Relational NoSQL Caching Search Email Queueing

Cost per instance
hour vary depending

on the selected
features

Cost per instance
hour vary depending

on the selected
features

Performance
characteristics vary

between the different
instance types

Performance
characteristics vary

between the different
instance types

Figure 4.13: Feature model of the Amazon cloud environment

A variety of infrastructure-level compute services with different performance characteristics
and costs are offered by Amazon’s environment. Some features including the type of virtual
machine, its operating system, and the region where it must reside are mandatory to select for the
provisioning of a compute service. Even though the compute service of Microsoft is a mixture
between infrastructure-level and platform-level offering, it requires similar to the Amazon’s
compute service the selection of the virtual machine type and its location. In summary, the
gathered feature models of the three cloud environments point out the multitude of different cloud
services which are currently offered by them. At the same time, several similar categories of
cloud services are shared by all of them, e. g., compute service, storage service, and application
service. In case of the latter, Google refers to this category simply as “services” and Microsoft
classifies their services according to more specific development areas, such as “web & mobile”

93

Azure Cloud
Environment

Compute Data & Storage Analytics Web & Mobile

Virtual
Machines

Batch Machine
Learning

Stream
Analytics

App
Service

Notification Cloud
Storage

 SQL
Database

Media & CDN

Basic general
purpose

Region

East US East Asia North
Europe

A0
A1

A2

Standard
general purpose

A0
A1

A2

Cost per instance
hour vary depending

on the selected
features Performance

characteristics vary
between the different

instance types

Windows Linux SharePoint

Instance
Type

Figure 4.14: Feature model of the Microsoft cloud environment

and “media & CDN”. However, given the fact that all these services are applications delivered as
services [AFG+09], the term “application service” appears adequate to provide at least a common
category for them.

4.4.2 Developing UML-based extensions: From problem space to solution space

The feature models gathered from the three selected cloud environments provide explicit represen-
tations of the domain knowledge required for the realization of CAML’s cloud library and profiles.
How can the abstractions over the cloud environments be mapped into UML-based extensions?
Some guidelines [TMC99,KKP+09] and patterns [MHS05] exist how to accomplish this mapping
for developing a domain-specific language in general. For instance, Mernik et al. [MHS05]
demonstrate the FODA approach by means of a concrete language and points out that the vari-
abilities of modeled features indicate the information required to create instances of language
concepts. In recent work, mappings for the unification of feature and class modeling have been
proposed [BDA+14]. They are of particular relevance for accomplishing the transition of the
captured domain abstractions from the problem space to the implementation space [CE00, AK09]
because the key meta-classes of UML’s profile and deployment language, e. g., stereotype and
node, respectively, are grounded in the classifier and relationship meta-classes. However, instead

94

of seeking for a unification, we aim at developing UML-based extensions from gathered feature
models as depicted in Figure 4.15.

Domain-specific abstractions
over problem space

Implementation-oriented
abstractions in solution space

Cloud-specific extensions
embedded in UML

Feature models of
cloud environments

Mapping

Figure 4.15: Developing UML-based extensions from gathered feature models (based on [CE00,
AK09])

In essence, high-level categories of cloud services, e. g., compute and storage, are potential
candidates to be captured by CAML’s cloud library because they are common to the analyzed
cloud environments and hence independent of them. In the feature models, these categories are at
the upper level close to the root concept. On the other hand, cloud services at the lower level of
the feature models tend to be specific to the cloud environments. They are useful in the refinement
of environment-independent deployment topologies towards the target cloud environment and
hence composed into environment-specific profiles.

To make this mapping task more concrete, Figure 4.16 gives some examples of how UML-
based extensions have been developed from the feature model referring to Google’s cloud
environment. The features referring to storage and compute services are mapped to modeling
concepts of the cloud library. This design decision is a result of seeking for environment-
independent modeling concepts that belong to all three analyzed cloud environments. In contrast
to this cross environment decision, the profile corresponding to the Google’s cloud environment
has been developed independent of other environment-specific profiles. Obviously, the root
concept of the feature model denotes the profile itself. Considering the feature referring to the App
Engine and the features underneath it, they are mapped to either a Stereotype or a Property
of type Enumeration covering selectable features in terms of EnumerationLiterals. As the
App Engine feature is composed of other features that in turn are composed of other features, it is
mapped to a stereotype. Otherwise, it would not be possible to relate properties or stereotypes
to it. Selectable platforms are mapped to EnumerationLiterals. They are covered by the
Enumeration which is assigned to the Property derived from the platform feature of the App
Engine. The multiplicity of the Property is 1 because selecting a platform is required. In contrast
to this “feature-to-property” approach for features that are composed of leaves in the feature

95

PHP
Python
Java

«Enumeration»
PlatformKind

«Stereotype»
GAEF4

platform:PlatformKind[1]

«Stereotype»
GAEF1

«Stereotype»
AppEngineService

«profile» GAECloudProfile

Google Cloud
Environment

Storage

Platform Instance
Class

F1 B2
F4

Java
Python

PHP

Compute

App
Engine

Compute
Engine

«modelLibrary» CloudLibrary

«Class»
CloudService

«Node»
ComputeService

«ExecutionEnvironment»
StorageService

«map»

«map»

«map»

«map»
«map»

«map»

Mapping

«map»

«Stereotype»
InstanceClass

[1] instance

«map»

«map»

«map»

«map»

Google cloud environment features

Mapping

Figure 4.16: UML-based extensions from the feature model referring to Google’s cloud environ-
ment

model, there are cases in which a Stereotype is preferable over a Property. Considering the
virtual machine instance classes offered by the App Engine, they are mapped to stereotypes. This
design decision is grounded in the fact that all the selectable virtual machine instances have
different performance characteristics and operational costs which need to be captured separately
and associated to the corresponding modeling concepts. As a result, it appears natural to map
them to a first-class entity, i. e., a Stereotype in the context of a profile.

4.4.3 Model library for cloud deployment topologies

The cloud library of CAML aims at enabling engineers to create deployment topologies inde-
pendent of a target cloud environment by common cloud modeling concepts. As presented in
Figure 4.17, the CAML’s cloud library is built around the concept of cloud service. From a cloud
environment perspective, a cloud service is considered as a virtual resource that is expected to
be supported by a cloud environment. Cloud users can consume them over the network usually
based on a pay-per-use cost model. Often the cost model includes free quotas for cloud services.

96

«modelLibary» CloudLibrary

«CommunicationPath»
CommunicationChannel

channelSource

channelTarget

«Association»
OfferingConfiguration «DeploymentSpecification»

ServiceConfiguration
«Class»

CloudService

«Node»
ComputeService

«ExecutionEnvironment»
StorageService

virtualization:VirtualizationKind[1] dataStructure:StructureKind[1]
consistency:ConsistencyKind[1]

[*]
configuration offering

[*]

[*]

[*]

«Enumeration»
VirtualizationKind

Infrastructure
Platform

«Enumeration»
ScalingStrategy

Automatic
Manual

«Enumeration»
ConsistencyKind

Strict
Eventual

«Enumeration»
StructureKind

Block
Blob
Relational
KeyValue

«Artifact»
Application

Service

scaling:ScalingStrategy [1]

«Artifact»
Networking

Service

Figure 4.17: Cloud library of CAML

Once those quotas are exceeded the cloud service is charged based on measurable units, e. g.,
service instance hours, amount of network traffic over the service, or number of operation calls
against it. Modeled cloud service instances are intended to be refined towards concrete services
offered by cloud environment. This refinement step is achieved by applying environment-specific
stereotypes to cloud service instances. Considering the deployment topology in Figure 4.2, the
modeled cloud service instances are refined towards concrete services offered by Google’s App
Engine.

As cloud environments are inherently elastic in the sense that provisioned resources can be
scaled on-demand, scalability strategies are usually defined to control the provisioning of new
resources and their release. The provisioning and releasing of cloud services is either manually
controlled by the cloud user or automatically carried out by the target cloud environment. For
instance, in case of the latter, a possible scalability strategy defines that a cloud service must be
provisioned if the number of queued requests exceeds a certain threshold or released if the number
of idle service instances reaches a defined limit. For that reason, CAML’s cloud library allows
engineers to associate a service configuration to a cloud service. A configuration is intended
to be specified in the course of the refinement step. Similar to the refinement of cloud service
instances, configurations associated to services are refined via dedicated stereotypes covered by
environment-specific profiles. Currently, the cloud library does not provide configuration-related
abstractions over existing cloud services, which explains why possible configurations features are
solely provided by the applied stereotypes. Considering the cloud configuration in Figure 4.2, a

97

maximum number of idle cloud service instances is defined to ensure that instances are not only
scaled-out but also scaled-in.

Based on the analysis of the service categories of existing cloud environments, the cloud
library introduces four specific service types. A compute service provides computational capac-
ity and operates at a certain level of virtualization [BGPCV12]. From an infrastructure-level
perspective, a compute service comes along with an operating system, while when turning this
perspective to the platform-level it also provides a platform required to execute a cloud application.
For instance, a Java platform is required to execute a certain cloud application. Hence, Google’s
App Engine is categorized as a platform-level compute service. A networking service enables
engineers to model logical network information over which a cloud environment grants control.
For instance, a load balancer that distributes requests to compute services is a concrete networking
service. The storage service refers to the diverse data persistence solutions provided by todays
cloud environments. They are categorized according to how application data must be struc-
tured [FLR+14] and the possibility to increase their availability by relaxing consistency [Vog09].
Finally, an application service is considered as ready-to-use software components or libraries
provisioned and fully managed by a service provider [CC06]. For instance, Google’s “cloud
endpoints service” and the “translate API” fall into this service type.

4.4.4 Profiles for refining cloud deployment topologies

The set of profiles provided by CAML aims mainly at refining environment-independent deploy-
ment topologies modeled by the cloud library towards a target cloud environment. Stereotypes
covered by environment-specific profiles embody the concrete cloud services on the model level
and capture their features in terms of properties. Hence, the refinement step is driven by applying
stereotypes to the cloud services constituting the deployment topology and assigning values to
the properties offered by those stereotypes. Considering the deployment topology in Figure 4.2,
the selected platform of the modeled App Engine compute services refer to Java which is one
platform out of several provided ones. The respective property is intended to be manipulated by
the engineer in the course of the refinement step.

Figure 4.18 gives an overview of some stereotypes covered by the profiles for Google’s App
Engine service (GAE) and Amazon Web Services (AWS). The two presented “front end” virtual
machine instance classes of the App Engine service as well as the “medium” and “large” offerings
by the Amazon environment are concrete environment-specific realizations of a compute service.
To ensure that they can be applied to deployment topologies, the common cloud profile estab-
lishes the link between the cloud library and the cloud environment profiles. From a technical
perspective, it is important to note that the extension relationship between the cloud library’s
ComputeService modeling concept and the corresponding ComputeService stereotype of the
common cloud profile is treated as explained in Figure 4.4. Hence, the abstract ComputeService
stereotype hides not only the technical details for extending custom types in UML but also acts
as the entry point for introducing concrete compute services offered by cloud environments.
Newly introduced compute services certainly have different performance characteristics and are
typically offered at a price that varies depending on those characteristics. Obviously, this technical
and non-technical information over the compute services is directly associated to them and not
intended to be manipulated by engineers at the time a deployment topology is modeled. Instead,

98

«profile» GAECloudProfile

Java
PHP
Python

«generalPurpose,
runningCosts»
«Stereotype»

GAEF1

«generalPurpose,
runningCosts»
«Stereotype»

GAEF4

«generalPurpose,
runningCosts»
«Stereotype»

AWSM3Medium

«generalPurpose,
runningCosts»
«Stereotype»
AWSM3Large

«RunningCosts»
value=0.05
currency=USD
metric=Hour

«RunningCosts»
value=0.20
currency=USD
metric=Hour

«Stereotype»
GAEComputeService

«Enumeration»
PlatformKind

operatingSystem:OSKind [1]
Region:RegionKind [1]
availabilityZone:String [0..1]

«Stereotype»
AWSComputeService

RHEL
Windows

«Enumeration»
OSKind

US_EAST
EU

«Enumeration»
RegionKind

«GeneralPurpose»
memory=0.512
CPU=2.4

«GeneralPurpose»
memory=0.128
CPU=0.6

«RunningCosts»
value=0.70
currency=USD
metric=Hour

«GeneralPurpose»
memory=3.75
virtualCores=1

«RunningCosts»
value=0.0814
currency=USD
metric=Hour

«GeneralPurpose»
memory=3.75
virtualCores=2

«profile» AWSCloudProfile

Cl
ou

d
en

vi
ro

nm
en

t p
ro

fil
es

«Stereotype»
ComputeService

«apply»

«profile» CommonCloudProfile

«profile» PricingProfile

«Stereotype»
CostComponent

«Stereotype»
RunningCosts

«Stereotype»
BaseCosts

currency:CurrenyKind [1]
EUR
USD

«Enumeration»
CurrencyKind

Hour
GB

«Enumeration»
MetricKind

«profile» PerformanceProfile

«Stereotype»
ComputeServiceCharacteristics

«Stereotype»
GeneralPurpose

«Stereotype»
MemoryOptimized

virtualCores:Integer[0..1]
memory:Real [0..1]
CPU:Real [0..1]
localDisk:Real [0..1]

M
et

a-
Pr

of
ile

s

«apply» «apply» «apply»

platform:PlatformKind[1]

«Stereotype»
AppEngineService

«Stereotype»
InstanceClass

«Node»
ComputeService

«modelLibrary» CloudLibrary

instance

[1]

«Stereotype»
PricingElement

value:Real [1]
metric:MetricKind [1]

Figure 4.18: CAML profiles and meta-profiles

99

this additional meta-information is part of the compute services. It allows engineers to compare
them. For instance, their comparison is required for the cloud service selection process.

Considering the excerpt of the pricing profile (see Figure B.1 of Appendix B for details
about defined extensions), the CostComponent stereotype provides properties to capture the
operational costs of cloud services. Costs may rely on various components, especially Base-
Costs and RunningCosts. For instance, some of the compute services offered by Amazon have
up-front costs as well as hourly costs when those services are consumed. The costs may vary
depending on the performance characteristics of cloud services. Capturing those characteristics is
supported by the performance profile (see Figure B.2 of Appendix B for details about defined
extensions). It is mainly build around the ComputeCharacteristcs stereotype which provides
a variety of properties to represent, for instance, the number and speed of virtual cores, and the
amount of memory and local disk space. Several concrete stereotypes, i. e., GeneralPurpose and
MemoryOptimized inherit from this abstract stereotype mainly for the purpose of introducing a
categorization of existing compute services. For instance memory optimized compute services
have a relatively high amount of memory compared to general purposed ones. All the stereotypes
covered by the pricing and performance profile are intended to be applied to cloud services of
the cloud environment profiles. Hence, they extend the meta-class Stereotype of the UML
metamodel. As the profiles are solely applied to other profiles we call them meta-profiles.

4.4.5 Reusable deployment topologies as UML templates

As templates in UML promote reuse, they appear to be relevant also for capturing common
deployment topologies. In particular, UML’s reuse mechanism can be exploited for providing
frequently occurring deployment patterns as predefined UML templates. For instance, Amazon
provides architectural guidelines4 in order to build deployment topologies for cloud applications
that take the full advantage of its cloud environment. If Amazon’s cloud environment is selected
as the target for an application deployment, these guidelines appear to be a relevant source.
Ideally, the proposed topologies by Amazon can be represented by CAML and provided in terms
of reusable deployment templates.

To demonstrate how CAML can be used to model a deployment template, we select the “web
application hosting” scenario of Amazon’s reference architecture collection. Furthermore, we
assume a 2-tier Java-based web application architecture [FLR+14] in order to specify how the
application components manifested by deployable artifacts are distributed in the deployment
topology. In fact, the deployable artifacts and the platform required for their execution are
considered as the formal template parameters. They must be substituted when the template is
used. The parameter substitution is specified in terms of a binding. Figure 4.19 gives an overview
of the modeled deployment topology constituting the template. It consists of two compute
services that both refer to the AWSM3Medium virtual machine offering of the Amazon environment.
They must be located in Europe and operated by a Linux operation system. For reliability reasons,
they are placed in different availability zones. Requests that arrive at the compute services are first
handled by a load balancing service, which enables a higher fault tolerance of the web application.
The number of running compute services is automatically managed by the Amazon environment

4Amazon Architecture Center: https://aws.amazon.com/architecture

100

«deploy»

«elasticLoadBalancing»
:NetworkingService

«aWSM3Medium»
:ComputeService

virtualization=infrastructure
scaling=Auto

«AWSM3Medium»
operatingSystem=Linux
region=EU
availabilityZone='A'

«aWSM3Medium»
:ComputeService

virtualization=infrastructure
scaling=Auto

«AWSM3Medium»
operatingSystem=Linux
region=EU
availabilityZone='B'

«autoScalingGroup»
:ServiceConfiguration

«AutoScalingGroup»
minimumInstances=3
adjustment=1

:AppContainer

«deploy»

:BusinessTier :DataTier

«deploy» «deploy»

«DynamoDB»
:StorageService

dataStructure=KeyValue
consistency=Strict

«artifact»
:BusinessTier

«artifact»
:DataTier

«model» AWS-based web deployment

BusinessTier:Arifact,
DataTier:Artifact,
Platform:AppContainer

«ModelLibrary»
WebDeployment

«ModelLibrary»
CloudLibrary

«ModelLibrary»
AWSCloudProfile

«import» «import» «apply»

Figure 4.19: Reusable deployment template for AWS web deployment

as expressed by the scalability strategy directly associated to the compute services. Only the
minimum number of running compute services and their adjustment is configured. Both compute
services are connected to a storage service that in turn is replicated to improve data availability.
As Amazon’s compute services operate at the infrastructure-level, the platform required to execute
the deployable artifacts is defined. This is in contrast to platform-level compute services, such as
Google’s App Engine, which provide already a fully managed platform. In case of our deployment
template, the platform is embodied by a Java-based web container. A variety of different web
containers is provided by the web deployment library. The deployable artifacts as well as the
modeled platform are exposed by the deployment template in terms of formal parameters that
must be substituted in terms of a template binding.

Now that we have explained how deployment templates can be produced with CAML,
Figure 4.20 demonstrates a concrete binding. We take the PetApp and manifest its components
into two deployable artifacts: PetData and PetBusiness. It is important to note that the Pet-

101

< BusinessTier PetBusiness,
 DataTier PetData,
 Platform AppContainer>

«model» AWS-based web deployment
BusinessTier:Arifact,
DataTier:Artifact,
Platform:AppContainer

«manifestation»

«component»
PetStats

«component»
PetAdmin

«use» «use»

«model» PetApp

«component»
PetData

«artifact»
PetData

«artifact»
PetBusiness

«manifestation»

«manifestation»

«component»
PetWeb

«use»

«manifestation»

«model» PetApp Deployment

:PetBusiness :PetData

«ModelLibrary»
WebDeployment

«import»

containerKind=JEE6.0

:AppContainer

«deploy»

«import»

«deploy»

«ModelLibrary»
WebDeployment

«ModelLibrary»
CloudLibrary

«ModelLibrary»
AWSCloudProfile

«import» «import» «apply»

Figure 4.20: PetApp deployed based on AWS web deployment template

Data artifact must be implemented in a way that the persistable entities can be stored in Amazon’s
DynamoDB. Considering the annotation-based refinement in Figure 4.1, the DynamoDB profile
must be applied instead of the Objectify profile to ensure that application code specific to
Amazon’s datastore solution is generated. Interestingly, in case of this scenario, the selected
deployment template affects the refinement of the high-level domain model towards the platform
that is supported by the target cloud environment. This further emphasizes that deployment
topologies are a vital part of (cloud) architecture modeling as also pointed out by Figure 1.1.
Coming back to the template binding, an application container is required for enabling the
execution of the PetApp’s application code. In case of our scenario, an application container that
supports version 6 of Java’s enterprise edition is used. The required custom types are provided

102

by the imported web deployment library. In a final step, the binding needs to be specified to
reuse the deployment topology captured by the template in Figure 4.19. Basically, all the formal
parameters exposed by the template are substituted by the deployable artifacts and the platform
modeled for the PetApp. As the deployment topology of the template is already composed of
cloud services of the Amazon environment, not only the reuse of cloud environment profiles is
further promoted but also the refinement from an environment-independent topology towards a
target cloud environment is completely reused. The latter is carried out only once in the course of
creating the template.

4.5 Summary

Developing cloud-specific extensions to UML is hard in particular because cloud computing is a
highly diverse domain that constantly progresses. At the same time, such extensions are just as
indispensable as are libraries for programming languages since they provide core concepts of
the target platform and environment. Due to the generic nature of UML, it does however neither
provide cloud-specific modeling concepts by default nor guidance how the existing modeling
concepts can be used to represent cloud application architectures.

In this chapter, we introduced CAML to support architecture modeling of cloud applications
in UML. It supports a flexible refinement process from high-level PIMs over possibly several
PSMs down to a concrete implementation of them. The accompanied tools render it useful in prac-
tice. CAML consists of a collection of UML profiles dedicated to libraries of the Java platform.
Considering the large number of Java libraries, we presented a fully automatic transformation
chain to generate UML profiles from Java libraries that embrace annotations. In addition to
library-specific profiles, CAML provides a set of profiles that capture cloud services offered by
modern cloud environments. They enable the refinement of environment-independent deployment
configurations towards a selected cloud environment. The former is represented by means of
CAML’s cloud library. It provides common cloud modeling types which are abstractions over
services of the current major cloud environments, i. e., Amazon AWS, Google Cloud Platform,
and Microsoft Azure. Combining the library approach with the notion of environment-specific
UML profiles results in a powerful architecture style for cloud application modeling.

UML-based language for cloud application modeling. CAML extends UML in a standard
compliant way, such that current modeling tools that support UML are capable to adopt its cloud-
specific extensions. As a result, all the building blocks constituting CAML are instances of the
UML metamodel. Since CAML exploits both libraries and profiles to contribute cloud-specific
extension to UML, we provided insights into how custom UML types captured by a library on
the model level can be extended via stereotypes even though UML’s profile mechanism enables
the extension of meta-classes only. For that reason, we introduced a pattern for extending custom
types in UML via stereotypes. It allows engineers to develop concise UML profile definitions
for custom UML types without requiring changes to existing UML tools because the provided
generative approach ensures that extension relationships to those types are appropriately redefined
if necessary.

103

Extensions to UML for target platforms in the cloud. UML profiles can be exploited in
terms of a general injection mechanism. Their capabilities to capture platform-specific informa-
tion are an enabler for both reverse engineering and forward engineering processes in architecture
modeling. CAML provides a conceptual mapping between the Java platform and UML with
a particular emphasis on annotations and profiles. For that reason, we present a conceptual
mapping between Java’s annotation language and UML’s profile language as a basis to automate
the generation of UML profiles from annotation-based Java libraries used in general and in the
context of cloud application development in particular, e. g.,. Amazon’s DynamoDB library and
Objectify for the Google’s App Engine service. Since Java’s annotation mechanism has been
improved with the release of version 8, we also discussed several different solutions including
their pros and cons how the newly introduced repeating annotations can be supported in UML.

Extensions to UML for target cloud environments. CAML provides cloud-specific exten-
sions to UML’s deployment modeling language for modeling deployment configurations and
refining them towards a target cloud environment. In order to gain insights into the cloud service
landscape and identify useful abstractions over the offered services, we carried out a feature-
oriented domain analysis. The results obtained from this analysis are captured in form of feature
models from which we distilled the modeling concepts comprised by CAML. Clearly, these
modeling concepts are also inspired from existing CMLs including the relatively recently adopted
TOSCA standard. As CAML provides both environment-independent as well as environment-
dependent cloud modeling concepts, it is not only capable of creating deployment configurations
but also closing the gap between those configurations on the modeling level and the concrete
services offered by the selected target cloud environment. To promote the reuse of deployment
configurations, CAML advocates UML’s template mechanism. Templates are aimed to capture
deployment configurations that are already refined towards a cloud environment. Thus, not only
the reuse of profiles dedicated to cloud environments is further promoted but also the refinement
process must only be carried out once in the course of creating the deployment template.

In the evaluation of CAML, we investigate the quality of automatically generated UML profiles
from Java libraries compared to existing UML profiles used in practice. In general, automatically
generated UML profiles comprise a more comprehensive set of stereotypes and features compared
to currently existing profiles that support Java libraries. Moreover, we demonstrate that CAML’s
transformation chain to generate UML profiles scales for large libraries and applications. Finally,
we show the practical relevance of CAML by means of a modernization scenario to the cloud.
Further details on CAML’s evaluation are presented in Sections 7.2 to 7.4.

4.6 Related work

To differentiate CAML from existing approaches, we first discuss related work in the area of
bridging modeling and programming languages with a particular emphasis on UML and Java.
Thereafter, we compare CAML to existing CMLs and categorize it according to the classification
and comparison framework used to review these CMLs.

104

4.6.1 UML profile generation

With respect to the contribution of this paper, namely to generate UML profiles from Java libraries,
we consider three threads of related work. First, we discuss mappings between Java and UML
because CAML builds on existing efforts in this respect. Thereafter, generative approaches
dealing with UML profiles and Java Annotation Types are discussed. Finally, we consider
approaches that support metamodel generation from programming libraries.

Mapping Java and UML

The elaboration on the mapping between Java and UML has a long tradition in software engi-
neering research [EHSW99, HBR00, NNZ00, KSS+02]. Round-trip engineering for UML and
Java has been extensively studied in the context of the development of FUJABA [NNZ00]. One
particular concept of UML that received much attention in the context of Java code generation
is the association concept [Ges08, AHMM07, GdCL03]. However, none of these mentioned
approaches consider the transformation of annotation types and their applications from Java to
UML. The only exception is the mTurnpike approach [WS05] that considers Java annotations on
the model level. Thereby, round-trip transformations between UML models and Java code are
realized by considering stereotypes and annotations in the transformations. In contrast, CAML
sets the focus on the automated generation of UML profiles that facilitate round-trip transforma-
tions or transformations in general. Besides academic efforts, today’s modeling tools support
the transformation of Java code to UML models, and vice versa. Their current capabilities and
limitations with respect to CAML are discussed in Section 7.1.

Generating UML profiles and Java annotation types

The only approaches we are aware of that deal with automated generation of profiles fall into
the research area concerned with bridging the gap between MOF-based metamodels and UML’s
profile mechanism, which is also related to the discussion of an external domain-specific modeling
languages (DSML) compared to an internal DSML where the host language is UML [Fow10].
Considering the latter, they are internal in the sense that they are embedded in a host lan-
guage [MHS05] providing the base elements for which extensions and constraints are developed.
In contrast, external DSMLs are built from scratch and have their own custom concepts without
explicit relationships to any existing language. Mernik et al. [MHS05] discuss when and how to
develop internal and external domain-specific (modeling) languages. Several papers discuss the
pros and cons of these approaches, e. g., [Sel12] and their combination, e. g., [WS07].

Visualizing domain-specific models in UML with profiles is discussed in [GvD07]. Abou-
zahra et al. [ABFJ05] present an approach for interoperability of UML models and DSML
models based on mappings between the DSML metamodel and the UML profile. Brucker and
Doser [BD07] go one step further and propose an approach for extending a DSML metamodel
for deriving model transformations able to transform DSML models into UML models that are
automatically annotated with stereotypes. A related approach is presented by Wimmer [Wim09],
where mappings between the UML metamodel and a DSML metamodel are defined and processed
to generate UML profiles for the given DSMLs.

105

Considering the generation of Java annotation types from DSML models, Ann [CdL15] is a
recent approach for modeling Java annotation types. It provides code generation facilities to
produce the Java code of modeled annotation types as well as respective annotation processors
that implement validation rules for annotations applied to program element. For instance, the
Entity annotation type of the JPA requires that one or several attributes of the annotated Java
class define the primary key. One possibility to define it is to apply the Id annotation type to an
attribute of the respective Java class. Validating invariants can also be achieved for UML models
by associating OCL constraints with stereotypes. In this case, the validation would be carried out
before the Java code is actually generated from the UML model.

Generating metamodels

To the best of our knowledge, there is only one automated approach for generating modeling
languages from programming libraries. All other automated approaches that deal with exploring
libraries, such as the approach of Bruneliere et al. [BCJM10], set their focus on the generation of
domain models rather than a language.

API2MoL [CJCM12] deals with generating metamodels based on Ecore from Java APIs as
well as models conforming to the generated metamodels for Java objects instantiated from the
Java APIs, and vice versa. As a result, an external DSML is generated from a Java API. While
the general idea and motivation of the API2MoL approach is comparable to CAML, there is
a significant difference on how the DSML is realized. CAML targets UML modelers that are
familiar with UML class diagrams and generates internal DSMLs by exploiting the language-
inherent extension mechanism of UML, i. e., UML Profiles. Furthermore, annotations are not
explicitly considered in the metamodel generation process of API2MoL. One possible reason for
neglecting them is that standard versions of current meta-modeling languages, such as Ecore, do
not support language-inherent extension mechanisms out-of-the-box [LWWC12].

Antkiewicz et al. [ACS09] present a methodology for creating framework-specific modeling
languages. While we aim for an automated approach, Antkiewicz et al. use a manual one to
create the metamodel and the transformations between model instances and instantiated objects
of the frameworks. Again, annotations are not captured by the created languages.

Finally, Noguera et al. [ND08] propose the extraction of annotation models in terms of class
diagrams from a set of annotation types with the purpose to define validation constraints for the
consistent use of annotations. They mention the study of the relationship of stereotypes and
annotation types as interesting subject for future work, only.

Research of related fields consider ontologies as a kind of (meta-)model [GDD09]. In
particular, research on ontology extraction from different artifacts is subsumed under ontology
learning [DG08]. We are aware of only one approach for extracting ontologies from APIs [RFJ08].
It neglects however annotations. Furthermore, most of current ontology learning approaches
focus on the extraction of concepts and their taxonomic relationships. Finding non-taxonomic
relationships (e. g., associations between classes) and intrinsic attributes are the least considered
problems [KMS04] in this field.

106

Synopsis

To summarize, CAML is – to the best of our knowledge – the first approach to generate standard-
compliant UML profiles from Java libraries that exploit annotations. While other existing
approaches are capable of producing (meta-)models from Java code, the annotation concept
has not received much attention. This is however in contradiction with the frequent use and
ever-growing importance of the annotation concept on the programming level. Therefore, support
for annotations on the model level has to be provided. We applied an internal DSML approach by
exploiting the language-inherent extension mechanism of UML. It perfectly suits the annotation
mechanism of Java. As a result, we close an important gap between programming and modeling.

4.6.2 Cloud-specific extensions to UML

Recently, several CMLs that address the diversity of today’s cloud environments and their services
have emerged. They pursue different goals, provide complementary modeling concepts, and thus
differ in scope. For that reason, we conducted a systematic literature review on existing CMLs
(see Chapter 3). We reviewed them according to a classification and comparison framework (see
Section 3.1) and collected our findings along with detailed descriptions (see Tables 3.7 to 3.11
for a concise overview of our results). Also, we have investigated existing CMLs including UML
in the light of the PetApp modernization scenario and drew up those phases of the modernization
process in which standard UML requires extensions to support cloud application modeling.

Inspired from common cloud computing literature [AFG+10, BGPCV12, FLR+14], major
cloud environments, and existing CMLs (see Table 3.6), we have developed CAML’s cloud library
and profile on top of UML. Modeling concepts of existing CMLs are thus reflected by CAML’s
on a level of abstraction that supports engineers in the design, deployment and provisioning of
cloud applications. As a result, modeling concepts required to, e. g., achieve the optimization
of an application deployment (cf. e. g., [LFM+11, FH11, ARSL14]), express elasticity rules
(cf. e. g., [CEM+12]), or exploit workload models (cf. e. g., [FRC+13, HT15]) are not completely
captured by CAML’s. However, it enables deployment models to be specified in such a way that
they are seamlessly applicable on UML models usually created throughout application modeling
activities, e. g., class models to specify the realization of components, because CAML is based
on UML. Consequently, well-connected model-based views on cloud applications are supported.
Those views can be refined towards a selected target platform and environment by CAML’s
profiles, which can be dynamically applied and un-applied. This additional flexible typing
dimension and the benefits of a multi-viewpoint language exploited by CAML differentiates it
from existing CMLs.

Cloud modeling support based on UML is also proposed by MULTICLAPP [GMMC13b],
which presents a UML profile for the purpose of representing applications components that
are expected to be deployed on a cloud environment. While MULTICLAPP solely relies on
UML’s profile mechanism to annotate components that are expected to be deployed onto a cloud
environment, CAML exploits both the library concept of UML as well as profiles. The modeling
concepts of CAML’s cloud library are generic in the sense that they are independent of a cloud
environment, whereas profiles are used to capture services offered by cloud environments. This
is in contrast to MULTICLAPP where generic cloud modeling concepts are captured by means

107

Language scope
Pragmatics Target
Cloud application architecture description and refinement of deployment configura-
tions towards target cloud environment

XaaS

Language characteristics
Syntax Semantics Realization Typing

Abstract Concrete Serialization
UML graphical XMI translational internal UML linguistic

ontological

Modeling concerns
Application structure Cloud environment services Elasticity Service level
Class
Component
Deployment

ontological types Multiplicity 7

Component and deployment viewpoint
Component Deployment

Component Connector Service Link Networking Artifact
ComponentC Prov./Req.

Interfaces
CloudServiceX Communication-

Channel
Addressing Artifact

Tool support
Modeling Analysis Refinement Generation Provisioning
Arbitrary UML
model editor

7 enrichment by
UML profiles

m2t: UML-Java
t2m: Java-UML
m2m: CAML-TOSCA

declarativeT

C Component is composable
X Services of all three layers can be modeled
T Based on OpenTOSCA as CAML provides mapping to TOSCA (see Chapter 5)

Table 4.4: CAML categorized according to the CML comparison and classification framework
(see Figure 3.1)

of a profile. As MULTICLAPP’s profile does not support to refine application components
towards cloud services provided by a certain cloud environment, CAML is different in the
sense that its cloud profile is applied to achieve exactly this platform and environment-specific
refinement. In this respect, MULTICLAPP advocates feature models for capturing existing
cloud services. Both CAML and MULTICLAPP provide a mapping to Java for the purpose
of generating application code from models. In addition, CAML also provides a mapping to
TOSCA for reasons of exploiting existing TOSCA runtime containers (e. g., OpenTOSCA) that
enable automatic provisioning of cloud applications and services. Table 4.4 categorizes CAML
according to the classification and comparison framework used to review existing CMLs.

108

CHAPTER 5
Cloud application provisioning

The adopted TOSCA specification [OAS13a, BBKL14a] aims at standardizing the representation
of portable cloud applications mainly for automating their provisioning and supporting life-
cycle management. Cloud applications are described in terms of a deployment model that
captures all the deployment artifacts and management operations (e. g., “install”, “start”, or “shut
down”) required for enacting the provisioning of a cloud application on the defined deployment
targets. Portability of cloud applications is accomplished by providing a standard container
format to represent cloud applications and a binding mechanism for associating target-specific
implementations to management operations. They are invoked in the course of a provisioning
process that is described by a deployment plan. It orchestrates management operations exposed
by the deployment model.

At the same time, UML supports architecture modeling from different viewpoints, including
the class, component, and deployment viewpoint. As the deployment viewpoint is provided by
both modeling standards, they seem to share commonalities for representing deployment artifacts
and their targets. Hence, combining them appears to be beneficial from the perspective of both
UML and TOSCA because they are also diverse in the sense of the modeling viewpoints and
toolset that are provided for them. Moreover, TOSCA can be considered as a cloud modeling
language, whereas UML is a general purpose modeling language that is applicable to a variety of
domains and hence used in the broader context of architecture modeling [MLM+13, LMM+15]
and software modeling [FL08, HWRK11, TTR+11].

Combining UML and TOSCA would allow engineers to exploit the full expressive power of
UML for modeling applications along with the capabilities of TOSCA to enact their provisioning
on a certain target cloud environment and possibly port them between cloud environments. From
a UML perspective this is beneficial as it allows the application provisioning for UML deployment
models by means of TOSCA compliant runtime container such as OpenTOSCA [BBH+13]. On
the other hand, TOSCA deployment models can be considered in the light of UML, thereby
gaining insights into the application components manifested by deployment artifacts and how
they are realized from a structural viewpoint.

109

However, manually translating between UML and TOSCA is only achievable if engineers are
familiar with the peculiarities of both languages and capable to identify the correspondences
between them at both levels intensional and extensional [Küh06]. While at the intensional level
common aspects of cloud environments are captured in terms of types, they are instantiated at
the extensional level by assigning concrete values to their features. Moreover, due to the generic
nature of UML’s deployment language, it does not natively support deployment models for cloud
applications, which hampers the translation between the two languages.

To support an automated translation from UML to TOSCA, we present a conceptual mapping
as a basis for realizing an effective model transformer between them. The deployment viewpoint
is selected to accomplish the conceptual mapping, as it is shared by both UML and TOSCA.
Moreover, the cloud-specific extensions to UML provided by CAML are addressed in the map-
ping process. They enable the generation of meaningful TOSCA models from models represented
in UML as the cloud-specific features are injected via CAML’s cloud library and profile. As
CAML captures cloud-specific features in terms of custom (stereo)types, both the intensional
and extensional level of deployment models can be addressed in the mapping process. In this
sense, CAML can also be considered as a bridge between UML and TOSCA, where our model
transformer – Caml2Tosca – provides the glue between architecture modeling and application
provisioning [JAP13]. The main characteristics of Caml2Tosca are summarized in the following.

Generic in the sense that any UML model can be translated into a TOSCA model. The
conceptual mapping between UML and TOSCA is defined between their metamodels, which
enables the translation of any deployment model expressed in UML into a corresponding TOSCA
model. As CAML provides standard compliant extensions to UML in terms of custom types, they
can be considered as supplementaries to UML’s metamodel. In this way, they can be treated in
the mapping process similar to UML standard meta-classes.

Comprehensive as both levels intensional and extensional are addressed. As CAML cap-
tures abstractions over cloud environments and services offered by them in terms of custom types,
i. e., at the intensional level, they must also be declared in the context of TOSCA to ensure that
the type information is preserved throughout the translation of concrete deployment models. For
that purpose, the conceptual mapping covers correspondences between language concepts not
only to deal with the extensional level but also with the intensional level. The latter is achievable
as both UML and TOSCA can be extended via custom types.

Automated as the mapping is realized as model-to-model transformation. The model trans-
formation language ATL has been used to realize the model transformer, which comes as an
Eclipse plug-in. It is capable to produce a standard compliant TOSCA model serialized in XML
from a UML deployment model refined by CAML extensions.

The remainder of this chapter is structured as follows. In Section 5.1, we motivate the practical
value of Caml2Tosca by means of the application scenario introduced in Section 1.4. A brief
introduction to TOSCA with a particular emphasis on its metamodel is presented in Section 5.2.
In Section 5.3 we clarify how the intensional and extensional level introduced by UML and

110

TOSCA relate to each other as this is essential for providing a useful mapping between them. The
conceptual mapping from UML to TOSCA is presented in Section 5.4, whereas in Section 5.5
we show how Caml2Tosca can be integrated into a comprehensive framework for application
deployment and provisioning where the entry point is a high-level architecture model represented
in UML. A summary of this chapter is given in Section 5.6 before work related to Caml2Tosca is
discussed in Section 5.7.

«ModelLibrary»
CloudLibrary

«import»

«Profile»
CloudProfile

«apply»

virtualization=platform
scaling=Auto

«AppEngineService»
:ComputeService

«AppEngineService »
middleware=Java
instance=GAEF1

virtualization=platform
scaling=Auto

«AppEngineService»
:ComputeService

«AppEngineService»
middleware=Java
instance=GAEF1

datastructure=keyValue
consistency=strict

«appEngineDatastore»
:StorageService

:PetBusiness :PetManage

«deploy» «deploy»

«model» PetApp
cloud deployment

«scalingConfiguration»
:ServiceConfiguration

«ScalingConfiguration»
maxIdleInstances=3

Cloud
environment

TOSCA
container

Model-driven
provisioning

Figure 5.1: Direct use of a UML deployment model for cloud application provisioning

111

5.1 Motivation

To show the practical value of Caml2Tosca, we consider again the application scenario as
introduced in Section 1.4, where the main emphasis is placed on the application provisioning.
Figure 5.1 shows the PetApp’s deployment model refined towards the Google App Engine. The
deployment model captures the two deployable artifacts of the PetApp and allocates them to
platform-level compute services that offer a Java runtime environment. One of the compute
services requires access to Google’s cloud datastore for the purpose of persisting application
data. Since the application data are exposed via a REST-based API, the PetManage artifact
does not directly access the cloud datastore but instead invokes the respective service operations.
The service configuration associated to the compute services specifies the upper limit of idle
instances. It ensures that provisioned compute service instances must be released once the
specified threshold is exceeded. Considering the topology defined by the deployment model, it
captures the desired initial1 state of the application provisioning. Ideally, the deployment model
can directly be passed to a provisioning engine capable to enact the application provisioning. As
TOSCA-compliant runtime containers offer those capabilities, it appears beneficial to exploit them
for the provisioning of a UML deployment model refined towards a target cloud environment
via CAML extensions. This is exactly the motivation behind a conceptual mapping between
UML and TOSCA because it would allow the realization of a model transformer to automate the
generation of the required TOSCA deployment model from the architectural models represented
in UML. Moreover, it would allow engineers to exploit existing tools for UML as well as TOSCA
without re-creating any of UML architectural models, thereby the investments in creating them is
retained even though the application provisioning is carried out based on a TOSCA model.

5.2 TOSCA metamodel

The main concepts of the TOSCA metamodel relevant for the Caml2Tosca approach are depicted
in Figure 5.2. Some concepts are simplified for the sake of comprehension. The complete
metamodel is covered by the TOSCA specification [OAS13a]. An introduction to it is given
in the TOSCA primer [OAS13b], whereas Binz et al. [BBKL14a] provide a compact overview
of TOSCA. Conceptually, TOSCA consists of two parts. The TopologyTemplate is used to
describe the structure of cloud applications, whereas a management Plan is basically a workflow
model that can be invoked to execute management tasks, e. g., the provisioning of a compute
service instance.

Considering the TopologyTemplate in more detail, it is a directed graph that consists of
NodeTemplates and RelationshipTemplates. The former represent artifacts related to cloud
applications and environments, while the latter define dependencies between those artifacts, e. g.,
the PetBusiness artifact is deployed on an application server which in turn is deployed on a
compute service. Both kinds of templates are typed. The type of a NodeTemplate is defined
by a NodeType, similarly is a RelationshipType used to define the type of a Relationship-
Template.

The respective types can be used to specify a PropertiesDefinition which covers all

1At run-time several instances of the modeled compute services may be provisioned on demand.

112

minInstances:Integer[0..1]
maxInstances:Integer[0..1]

Topology
Template

«metamodel» TOSCA

Concepts for
defining

topology templates

properties
Definition

[0..1]

NodeTemplate Relationship
Template

Entity
Template

element:String[*]
value:String[*]

Properties

Entity
Type

element:String[*]
type:String[*]

Properties
Definition

name:String[1]
abstract:Boolean[0..1]

name:String[1]

properties

[0..1]

source
Element

target
Element

[0..1]

[0..1]

name:String[1]
artifactType[1]

DeploymentArtifact

deploymentArtifact [*]

Node
Type

Relationship
Type

valid
Source

valid
Target

[0..1]

[0..1]

derivedFrom [0..1]
[*]

entity
Types

Definitons
Service

Template

service
Templates
[*]

Plan

plans
topology

Templates [1] [*]

name:String[1]
Interface

Operation Parameter

input
Parameters

entity
Templates

[*]

[0..*]

name:String[1] name:String[1]
type:String[1] [*] output

Parameters

operations [1.*]

interfaces [*]

Implementation
Artifact

[0..1] operation

type [1]

Concepts for
type definitions

Figure 5.2: TOSCA metamodel (XML-based language [OAS13a])

113

the properties of a type. This explains the zero-to-one multiplicity between EntityType and
PropertiesDefinition. For example, a compute service type may define two properties,
“public_address” and “private_address” for internal and external communication. A template
of this type enables the configuration of both addresses that are used to access the compute
service instance from remote services and services within the cloud environment, respectively. A
PropertiesDefinition specifies “element/type” pairs that embody the set of properties of a
type. From a technical perspective, a PropertiesDefinition is realized in terms of an XML
Schema. It allows the validation of the properties used by templates against their definition at
type-level.

Furthermore, types in TOSCA can define management Interfaces including Operations
with Input and OutputParameters. For example, a compute service type may provide two
operations, “start” and “shut down”. They can then be invoked via the templates of this type to
start the compute service instance and shut it down. An ImplementationArtifact is used to
provide a concrete implementation for an operation. In theory, any programming language can be
used to implement an operation. From a technical perspective, a TOSCA runtime container must
be capable of invoking the implementation of an operation.

Generally, types can inherit from each other, which fosters its reuse: compute services
specific to a cloud environment, e. g., an Amazon EC2 compute service, may inherit from a
generic compute service type that provides common properties and operations.

Finally, a DeploymentArtifact refers to a concrete implementation of a NodeTemplate.
For example, a Java-based web application front-end compressed in a certain format is considered
as a deployment artifact. Also, binaries of an application container are DeploymentArtifacts.
They are required to actually install the application container.

5.3 Intensional and extensional deployment modeling

Clarifying how the intensional and extensional level introduced by UML and TOSCA relate
to each other is essential for combining them. Figure 5.3 depicts the core concepts of UML
and TOSCA to create intensional and extensional deployment models. While in UML the var-
ious sub-meta-classes of Classifier are employed to model application architectures from
an intensional perspective, the corresponding meta-class in TOSCA is Type. For instance, the
compute service with the region property is considered as a concrete UML classifier or TOSCA
type, respectively. At the extensional level, the meta-classes InstanceSpecification of UML
and Template of TOSCA correspond to each other. Indeed, the stereotype applied to an in-
stance specification needs to be taken into consideration to infer the corresponding type of a
produced template because TOSCA does not directly support stereotypes. Still, a stereotype can
be considered as a type in TOSCA, which inherits the properties of the base class extended by
the stereotype. For instance, the extension between the “AWSM3Medium” stereotype and the
compute service is represented as a generalization between the corresponding TOSCA types.
This solution implies that a stereotyped artifact of an extensional deployment model needs to be
translated into a TOSCA template that is typed by the type of the corresponding stereotype instead
of its direct classifier. As a result, the stereotyped compute service instance at the extensional
level is represented as a TOSCA template of type “AWSM3Medium” instead of compute service.

114

[1]

[*]

[1]

[*]

UML
metamodel

Entity of modeled
software system

[*]

[*]

[1]

[*]

Legend

…

Instance
Specification

Type

Template

TOSCA
metamodel

AWSM3Medium

region : RegionKind

: M1Medium

scaling: Auto
region : EU

instance of corresponds to

Stereotype

ComputeService

scaling : ScalingKind

ComputeService

scaling : ScalingKind

«Stereotype»
AWSM3Medium

region : RegionKind

Classifier

«M1Medium»
region : EU

«M1Medium»
: CloudNode

scaling: Auto

In
te

ns
io

na
l

…

Ex
te

ns
io

na
l

In
te

ns
io

na
l

Ex
te

ns
io

na
l

Extension Generalization

«apply»

Figure 5.3: Comparison of TOSCA’s and UML’s intensional level and extensional level

Generally, elements modeled at the extensional level are employed to designate elements
of a (software) system in the form of a one-to-one mapping concerning their individual fea-
tures [Küh06]. Considering the instance of the “AWSM3Medium” compute service, it designates
Amazon’s M3 medium compute service located in the EU. Obviously, in the context of deploy-
ment modeling, several compute services may be comprised by a running cloud application,
which requires a multiplicity concept not only for elements of intensional models but also for ex-
tensional models. Regarding the former, a one-to-many or many-to-many multiplicity is typically
supported by default, i. e., it is not explicitly defined by engineers but integral part of a metamodel.
Multiplicities for elements at the extensional level determine the lower-bounds and upper-bounds
of real-world entities that are considered as instances of these elements. This is useful for cloud
applications where cloud services are provisioned and released on-demand. Clearly, to specify
more sophisticated custom rules that trigger the provisioning of new cloud services or force to
release them, dedicated language support seems to be required (cf. e. g., [KDR14]).

5.4 Bridging UML and TOSCA

Bridging the gap between UML and TOSCA leverages not only continuous modeling support for
cloud applications but also allows engineers to carry out the application provisioning, where a
cloud environment is considered as the deployment target. UML provides capabilities to model
application architectures from different viewpoints, whereas TOSCA enables the provisioning,

115

management, and termination of cloud services and applications. In the following, we give first a
high-level overview of the underlying approach to combine UML and TOSCA. Thereafter, we
propose an effective conceptual mapping between UML and TOSCA where CAML takes the role
of capturing cloud-specific features from the perspective of UML.

5.4.1 Conceptual overview

Considering the high-level overview presented in Figure 5.4, the entry point to the Caml2Tosca
approach is a deployment model capturing the desired state of the cloud application provisioning.
Creating the deployment model is considered as part of architecture modeling which usually
includes to produce a variety of models (or views on models), each of which addressing a concern
from a certain viewpoint. In particular, CAML deals with the class, component, and deployment
viewpoint. A deployment model refined towards a target cloud environment is considered as
input to a tool chain capable of producing a standard-compliant executable cloud service archive
(CSAR). We collectively refer to the set of tools comprised by this chain as TOSCA tools.
They allow engineers to automatically generate a TOSCA-based representation consisting of
type definitions and the topology template that corresponds to the injected UML deployment
model refined by CAML. Based on those type definitions, the implementations of management
operations required for the application provisioning are automatically injected [KBBL13]. To
enable their execution in an appropriate order, a management plan is orchestrated [BBK+14].
All the produced artifacts by the TOSCA tools constitute the CSAR. It can be executed by
TOSCA-compliant runtime containers. The presented conceptual mapping between UML and
TOSCA provides the basis for automating the generation of a typed TOSCA topology template
from a CAML-based deployment model.

Architecture
modeling

TOSCA CSAR

 Application
 provisioning

Topology generation &
plan orchestration

 App

Cloud
environment

 App

Cloud
environment

DB

[HTTP]
[HTTP]

VM

[SSH]

CAML-based
deployment

TOSCA
tools

TOSCA
container

Figure 5.4: Overview of the Caml2Tosca approach

116

5.4.2 Conceptual mapping

The proposed conceptual mapping is generic in the sense that any UML deployment model can be
translated into a corresponding TOSCA model. As CAML provides standard compliant extensions
to UML in terms of custom types, they can be considered as supplementaries to UML’s metamodel.
In this way, those types can be treated in the mapping process similar to UML standard meta-
classes. Considering CAML’s defined custom types is vital to produce typed TOSCA topology
templates. The types comprise in fact all the properties and operations that are provided to the
templates. In CAML, concrete classifiers of UML, e. g., Node, ExecutionEnvironment, and
Artifact, are employed for creating such types. In addition, stereotypes are exploited to capture
features of existing cloud environments possibly selected as deployment target.

Generally, a concrete Classifier of CAML can be represented as a NodeType in TOSCA,
whereas their use at the extensional level can be represented in terms of a NodeTemplate. A
specific case are stereotypes that required special treatment for inferring the type information
assigned to produced node templates. Moreover, standard relationships of UML typically applied
for deployment modeling, i. e., Deployment and Dependency are addressed in the conceptual
mapping. They are usually applied directly at the extensional level. As a result, they are
represented as instances of the corresponding meta-classes at the extensional level instead of an
InstanceSpecification. Both relationship types can certainly be stereotyped if additional
features are required or a certain vocabulary with specific semantics needs to be introduced.

Intensional level

The mapping presented in Table 5.1 acts as the basis to generate TOSCA type definitions. In
fact, NodeTypes can be generated from concrete Classifiers that constitute CAML’s cloud
library and profiles. Basically, the signature of a classifier including its name and whether
it is abstract or concrete can straightforwardly be mapped to a NodeType. If the concrete
classifier is a Stereotype, we need to distinguish whether they extend a base element or
inherit from a Stereotype. In the former case, the generated NodeType specializes the cor-
responding NodeType of the stereotype’s base element, whereas in the latter case, it inherits
from the node type of the super stereotype. For instance, the stereotype AppEngineService
covered by the Google cloud profile inherits from the GAEComputeService stereotype (see
fig:cam:cloudproviderprofile). Concrete compute services of the different cloud profiles extend
the ComputeService concept provided by CAML’s cloud library. The latter is considered as
an abstraction over the concrete compute services and hence extended by them. If a concrete
Classifier comprises properties, a PropertiesDefinition is created and added to the cor-
responding NodeType. The PropertiesDefinition can be considered as the container of the
properties provided by a type. An Operation including its input and output Parameters can be
mapped to an Operation of a node type and added to the exposed management Interface.

Finally, an Association can be mapped to a RelationshipType where the first member-
End of the Association corresponds to the validSource and the second one to the valid-
Target of the RelationshipType.

117

UML/CAML → TOSCA
uml:Model m add Definitions d
uml:Classifier c if(c.oclIsTypeOf(uml:Class))

add NodeType nt
nt.name = c.name
nt.abstract = c.isAbstract
nt.derivedFrom =

if(c.oclIsTypeOf(Stereotype) and c.extension.oclIsDefined())
c.getBaseElement()1

else
c.general

if(c.attribute.notEmpty()) add PropertiesDefinition pd
if(c.ownedOperation.notEmpty()) add Interface i

uml:Property p add Element e, Type t for each uml:Property p in c.attribute
e = p.createElementDefinition()2

t = p.obtainElementType()3

pd.element = e
pd.type = t

uml:Operation uo add Operation o for each uml:Operation uo in c.ownedOperation
o.name = uo.name
add Parameter p for each uml:Parameter up in uo.ownedParamer

p.name = up.name
p.type = up.type

o.inputParameters = uo.ownedParameter where p.direction = in
o.outputParameters = uo.ownedParameter where p.direction = out
add ImplementationArtifact ia for each uml:Behavior b in uo.method

b.provideImplementation()4

nt.interfaces.operations = o
uml:Association a add NodeRelationship nr

nr.name = a.name
nr.validSource = a.memberEnd.at(1)
nr.validTarget = a.memberEnd.at(2)

1 Retrieves the (ontological) base element that is extended by the stereotype
2 Creates an element definition from the name of the property and assigns it to the element
3 Obtains the type of the property and assigns it to the element’s type
4 Provides the concrete implementation for an operation (e. g., in form of Java)

Table 5.1: Conceptual mapping for the intensional level

Extensional level

The mapping presented in Table 5.2 provides the basis to generate a TOSCA TopologyTemplate
from a UML deployment model refined towards a cloud environment. Thus, the emphasis is now
placed on InstanceSpecifications and the generation of corresponding NodeTemplates
and RelationshipTemplates from them. If a stereotype is applied to an instance specification
the inferred type refers to the node type of the stereotype instead of the type assigned to the
instance specification. Indeed, we need to consider the properties of both the type assigned and
the stereotype applied to the instance specification. If the assigned type refers to an Artifact, a
TOSCA DeploymentArtifact must be created additionally. It describes the type of an artifact
that is actually deployed, e. g., a web application implemented in Java compressed as JAR.

The Deployment relationship in UML is directly mapped to the predefined TOSCA rela-
tionship template hosted on. A collection of base types is defined by the simple profile for
TOSCA [OAS15]. In the given mapping between UML and TOSCA, those based types are

118

UML/CAML → TOSCA
uml:Model m add Definitions d

add ServiceTemplate st
st.name = m.name
add TopologyTemplate tt

uml:InstanceSpecification is
switch(is.classifier.oclType())

case: uml:Classifier c using add NodeTemplate nt
rst = is.getAppliedSubstereotype nt.name = is.name

(cpp:CAMLElement) nt.type =

mst = is.getAppliedStereotype if(rst.oclIsUndefined()) is.classifier
(cpp:CAMLMultiplicity) else rst.getToscaType()1

nt.minInstances = is.getValue(mst, "lower")
nt.maxInstances = is.getValue(mst, "upper")
add Properties

add Element e, Value v for each uml:Slot sl
in is.slots

e = sl.definingFeature.name
v = sl.getValues()

add Element e, Value v for each uml:Property p
in rst.attribute

e = p.name
v = is.getValue(rst, p.name)

if(c = uml:Artifact)
add DeploymentArtifact da

da.name = is.name
da.artifactType = c

case: uml:Association a using add RelationshipTemplate rt
rst = is.getAppliedSubstereotype rt.name = is.name

(cpp:CAMLElement) rt.type =

if(rst.oclIsUndefined()) is.classifier
else rst.getToscaType()1

add Properties
add Element e, Value v for each uml:Property p

in rst.attribute
e = p.name
v = is.getValue(rst, p.name)

uml:Deployment d using add RelationshipTemplate rt
rt.name = "HostedOn"
rt.type = ttl:HostedOn2

rt.sourceElement = d.source
rt.targetElement = d.target

uml:Dependency d using add RelationshipTemplate rt
rst = is.getAppliedSubstereotype name =

(cpp:CAMLElement) if(rst.oclIsUndefined()) "DependsOn"
else rst.name

type =

if(rst.oclIsUndefined()) ttl:DependsOn
else rst.getToscaType()

add Properties
add Element e, Value v for each uml:Property p

in rst.attribute
e = p.name
v = is.getValue(rst, p.name)

rt.sourceElement = d.source
rt.targetElement = d.target

1 Retrieves the corresponding TOSCA type, e. g., WebServer in case of a node or connectsTo in case of a
relationship (see [OAS15])

2 ttl: TOSCA type library

Table 5.2: Conceptual mapping for the extensional level

119

prefixed with a dedicated namespace: ttl (TOSA type library). Even though there is also a prede-
fined TOSCA relationship template depends on that fits well to the Dependency relationships
in UML, we need to consider the fact that a dependency may be stereotyped to specialize its
semantics. As a result, a possibly applied stereotype determines on the type of the produced
relationship template.

5.5 Framework for architecture modeling and application
provisioning

The overall framework for architecture modeling and application provisioning to the cloud is
presented in Figure 5.5. It distinguishes between two kinds of users. Application engineers
who model cloud applications in UML and refine them with CAML. Those applications are
automatically provisioned to be employed by business users.

To create the high-level architecture of a cloud application including its desired deployment
on a cloud environment, engineers can employ the Papyrus UML modeling tool for which CAML
plug-ins are available. In a first step, the deployment model is refined towards the selected target
cloud environment by applying the CAML cloud profile, see 1 . For instance, considering the
deployment model in Figure 5.1, the Google Cloud Platform was selected as the deployment
target. Clearly, any other cloud environment is conceivable as a target as well provided that an
appropriate profile is available. Applying environment-specific profiles ensures that a properly
typed TOSCA-based representation can be generated from a deployment model created in UML
and refined by CAML. To support the application provisioning, the CAML deployment model is
translated into a functionally equivalent TOSCA topology, see 2 .

This second step is accomplished by the Caml2Tosca transformer. It is grounded in the
presented conceptual mapping between UML and TOSCA (see Section 5.4.2). From a technical
perspective, the Caml2Toscamodel transformer comes as an Eclipse plug-in where the conceptual
mapping between UML and TOSCA is implemented by means of the proven model transfor-
mation language ATL. To employ ATL, the source and target metamodels must be available
in a compatible format. Metamodels defined in EMF’s Ecore are directly supported by ATL.
However, language definitions expressed in terms of an XML Schema are not compatible with
it. For that purpose, we automatically reverse-engineered an Ecore-based representation from
the XML-based metamodel of the TOSCA standard [NBM+15]. To produce an XML-based
representation of the TOSCA models generated by the Caml2Tosca transformer, the standard
serialization mechanisms provided by EMF are exploited. EMF provides dedicated model con-
verters to translate between the serialization formats used by Ecore and XML Schema. The
former employs XMI [OMG11c] while the latter relies obviously on XML.

The TOSCA-based representation generated by the Caml2Tosca transformer solely describes
the typed topology template of the CAML deployment model. However, for the purpose of
enacting the application provisioning process, executable artifacts are required. They are in-
jected into the TOSCA topology via Winery [KBBL13], which is part of OpenTOSCA to model
TOSCA-based cloud applications. Winery injects implementations of all management operations
required for the provisioning by looking up the corresponding node types and relationship types
in a local repository and embedding the required artifacts and type definitions into the TOSCA

120

Application
architecture

Instantiation
request

Endpoint
e.g., URL

Business
users

Application
engineer

TOSCA
topology
template

CAML-based
deployment

1

2

3 4
5

CAML2TOSCA
transformer

Winery
backend

Types &
Artifacts

Plan
generator

OpenTOSCA
container

Process
engine

IA
runtime

TOSCA CSAR

Papyrus
UML

Vinothek
self-service portal

Figure 5.5: Overall framework for architecture modeling and application provisioning to the
cloud

topology, see 3 . To ensure that the appropriate type definitions are available, we semantically
aligned CAML’s cloud profile with the respective TOSCA types. As a result, the CAML de-
ployment model can be transformed into a functionally equivalent TOSCA-based representation

121

without changing its overall semantics. In addition, behavioral aspects, i. e., the implementations
of operations required for the provisioning, can be embedded seamlessly without additional
manual effort when creating the CAML deployment model. However, very specific stereotypes
or TOSCA types, respectively, may require further manual adaptation of the resulting TOSCA
topology template or deployment plan. For example, a special script may need to be added to the
TOSCA model in order to enable automatically establishing a connection between two custom
business components.

To automatically execute the required operations, a BPEL-based deployment plan is auto-
matically generated [BBK+14]. It orchestrates the operation implementations in an appropriate
order, see 4 . The generated deployment plan along with the topology template and all required
artifacts and type definitions are packaged as portable CSAR.

The OpenTOSCA container consumes the CSAR for installing it. The CSAR enables the
container to provision the modeled application. In fact, the generated deployment plan is exe-
cuted on a local workflow engine, see 5 . As TOSCA allows implementations of management
operations using arbitrary technologies, operation implementations that are not executed in the
application’s target cloud environment, e. g., local services that wrap cloud environment APIs, are
deployed on a local IA runtime (Implementation artifact runtime) and bound to the deployment
plan [WBB+14b, WBB+14a].

Finally, business users can trigger the provisioning of cloud applications via the Vino-
thek [BBKL14b], which is a self-service portal that offers those applications.

5.6 Summary

Realizing an effective mapping between UML and TOSCA requires a deep understanding of
their peculiarities and the identification of language correspondences at both modeling levels
intensional and extensional. The former level must be considered to ensure that appropriately
typed TOSCA topology templates can be generated from deployment models expressed in UML
and refined by CAML towards the selected cloud environment. As a result, CAML takes the role
of capturing cloud-specific features from the perspective of UML.

In this chapter, we presented our approach Caml2Tosca for bridging the gap between UML
and TOSCA. As a result, engineers are capable to combine the capabilities of both languages
where the deployment viewpoint is exploited for realizing the conceptual mapping between
them. CAML’s cloud-specific extensions to UML are exploited to accomplish the bridge towards
TOSCA. To automate the translation from UML to TOSCA, we implemented the Caml2Tosca
transformer. It is grounded in the proposed conceptual mapping between the two languages and
provides the necessary glue to leverage a framework for architecture modeling and application
provisioning based on UML and TOSCA. To accomplish this framework, we first clarified how
the intensional and extensional modeling levels introduced by UML and TOSCA relate to each
other as this is essential for providing an effective mapping between them. Thereafter, we identi-
fied the language correspondences between UML’s deployment language extended by CAML
concepts and TOSCA. This paves the way for a continuous cloud modeling support and allows
engineers to carry out the provisioning of cloud applications.

122

Intensional and extensional deployment modeling. As the deployment viewpoint is exploited
to realize the bridge from UML to TOSCA, we discussed how their core concepts to model
custom types and instances of them can be related in a useful way. At the intensional level, the
meta-classes Classifier of UML and Type in TOSCA correspond to each other. Similarly
at the extensional level, a direct language correspondence can be identified: UML’s meta-class
InstanceSpecification corresponds to TOSCA’s Template. Special treatment is required
if stereotypes are applied to instance specifications because TOSCA does not directly support
this additional typing dimension of UML. However, we showed how stereotypes in UML can
be treated as types in TOSCA. Our solution implies that a stereotyped instance specification
is translated into a TOSCA template that is typed by the type of the corresponding stereotype
instead of its direct classifier. As a result, the way is paved for generating appropriately typed
TOSCA topology templates from UML deployment models refined by CAML’s cloud profile.

Conceptual mapping for bridging UML and TOSCA. We proposed a conceptual mapping
between UML and TOSCA that is generic in the sense that any UML deployment model refined
by CAML can be translated into a corresponding TOSCA model. This is possible because
CAML provides standard compliant extensions to UML in terms of custom types which can be
considered as supplementaries to UML’s metamodel and treated in the mapping process similar to
UML standard meta-classes. As a result, the type information is preserved in the translation from
UML to TOSCA. Moreover, as we semantically aligned CAML’s custom types with possibly
existing TOSCA types, e. g., Hosted on or Deployed on, the CAML deployment model can
be transformed into a functionally equivalent TOSCA-based representation without changing its
overall semantics. The presented conceptual mapping provides the grounding for the developed
Caml2Tosca transformer which is capable to automatically produce typed TOSCA topology
templates from CAML deployment models.

Framework for architecture modeling and application provisioning. The Caml2Tosca trans-
former provides the glue between UML-based architecture modeling and application provisioning
based on TOSCA. We presented the overall framework for combining UML and TOSCA. It
suggests as entry point a deployment model capturing the desired state of the cloud application
provisioning. Creating the deployment model is considered as part of architecture modeling
which usually includes producing a variety of models. Based on the deployment model refined by
CAML a standard-compliant executable cloud service archive is generated by a set of TOSCA
tools: (i) the Caml2Tosca transformer generates a typed TOSCA topology template, (ii) Win-
ery [KBBL13] injects implementations of management operations based on the type definitions
that come with the generated topology template and (iii) OpenTOSCA [BBK+14] orchestrates
a deployment plan which prescribes the execution order of the application provisioning. The
latter is a TOSCA-compliant runtime container and hence capable to execute the application
provisioning.

As the entry point to the framework for architecture modeling and application provisioning
is a deployment model created in UML and refined by CAML, we investigated the methods of
current industrial and open-source UML tools for deployment modeling in general and support

123

for cloud-based deployment targets in particular. Our findings show that current UML tools lack
cloud-based refinement support for deployment models. However, they are capable of adopting
CAML, which shows the practical value of Caml2Tosca for engineers. Further details on this
evaluation are presented in Section 7.1.

5.7 Related work

Considering work related to Caml2Tosca, we discuss existing mapping efforts where TOSCA is
involved in process.

Andrikopoulos et al. [ARSL14] investigate existing CMLs for representing deployment
topologies of cloud applications with the goal to identify a set common modeling concepts shared
among them. Based on the identified modeling concepts the Generalized Topology Language
(GENTL) has been developed. It aims at providing generic modeling concepts with the goal to
establish a pivot language that promotes reuse of deployment topologies represented in different
CMLs and enables the composition of those topologies in the long term. As a key aspect of
GENTL is to preserve the generic nature of its modeling concepts, it provides an annotation
mechanism to support the representation of the various different aspects such as QoS properties,
pricing information, performance characteristics, or management operations of cloud services that
are addressed by current CMLs. GENTL distinguishes between static and dynamic annotations,
where the latter is considered as a service invocation (e. g., a management operation to provision
a compute service or release it). For that reason, GENTL provides not only a language definition
for representing deployment topologies but also for capturing annotations. Currently, conceptual
mappings from TOSCA and Blueprint to GENTL are available. The GENTL environment
provides the respective tool support to transform models represented in TOSCA or Blueprint into
GENTL models.

Carrasco et al. [CCP15] propose to combine TOSCA and CAMP [OAS12] for the purpose of
automating the application provisioning to the cloud. For that reason, a provisioning engine called
Brooklyn 2 is employed. It complies with the CAMP specification and exposes many of its REST-
based API endpoints for managing cloud services at the PaaS layer3. To represent deployment
topologies which are considered as input to the Brooklyn engine, Carrasco et al. propose to use
TOSCA. Their approach intends that deployment topologies are modeled using TOSCA in a first
step, whereas the application provisioning is carried out based on a CAMP-compliant runtime
environment instead of a TOSCA-compliant one. Clearly, this requires a translation of a TOSCA
deployment topology into a CAMP blueprint plan, a specification of typed deployment artifacts
and their targets which is interpreted by a CAMP-compliant runtime environment. The required
conceptual mapping along with the transformation to automate it is currently developed in the
context of the SeaClouds project [BCC+15].

In contrast to our work, Andrikopoulos et al. and Carrasco et al. consider TOSCA as the
source language in their mapping process, whereas in our approach UML is mapped towards

2Apache Brooklyn: https://brooklyn.apache.org
3Even though Brooklyn complies with the CAMP specification, it uses jclouds for connecting to cloud environ-

ments. jclouds is not restricted to a particular service layer but rather provides a variety of connectors to different
cloud services and environments mainly operated at the IaaS and PaaS layer

124

TOSCA. Hence, it is considered as the target language in the mapping proposed by Caml2Tosca.
Moreover, the goal of Caml2Tosca is not only to exploit TOSCA-based application provisioning
for deployment models created in UML and refined by CAML but also to bridge architecture
modeling and application provisioning to the cloud based on adopted standards in software
engineering and cloud computing. This differentiates the Caml2Tosca approach from the work of
Carrasco et al. where the main goal is to automate the provisioning of multi-cloud applications.
The latter can also be achieved by OpenTOSCA and hence by the provisioning process supported
by the Caml2Tosca approach.

125

CHAPTER 6
Cloud model patching

Model transformation is a key technique to automate software engineering tasks and hence
probably the most penetrating aspect of model-based software development [SK03, BCW12]. It
enables reverse engineering processes where lower level implementation artifacts are lifted to
higher level models as well as processes where those implementation artifacts are generated from
models in a forward engineering context. Moreover it facilitates exchanging models between
tools [ADL+12]. Transformations are often implemented out-place [MG06]. This means that
the model produced by a transformation is built from scratch based on properties of the input
model. Output models are newly produced whenever an out-place transformation is (re-)executed.
Out-place transformations are typically used when the input and output models are expressed
using different languages, i. e., they are conform to different metamodels.

In this thesis, several out-place transformations have been realized. For instance, the genera-
tion of UML profiles from annotation-based Java libraries relies on an out-place transformation
where the two involved languages are Java and UML. In this scenario, the input model conforms
to the Java metamodel, whereas the produced output model, i. e., a profile, conforms to the UML
metamodel. As another example, the Caml2Tosca transformer is realized based on an out-place
style because the source metamodel refers to UML, whereas the target metamodel is TOSCA. In
both examples the output models are produced from the properties of the input models. A variety
of other transformation examples are collected by the “ATL Transformation Zoo”1.

Like any other piece of software, transformations change over time [WKS+09, vAvdB11,
RNHR13]. Modifications to transformations can obviously invalidate previously produced models
possibly maintained in a repository. For instance, the platform-specific UML profiles gener-
ated for Java libraries are collected in the Eclipse UML Profiles Repository. If the respective
Java2UMLProfile transformation is changed, the performed modifications must be propagated
to existing output models. This process is often called change propagation. A straightforward
approach to propagate changes of a transformation to existing output models is to re-execute it
entirely for each of them. This ensures that existing output models are newly produced from input

1Transformation Zoo: http://www.eclipse.org/atl/atlTransformations

127

models by taking into consideration the changes to the transformation. However, this approach
induces an unnecessary overhead, particularly when computation-intensive transformations are
marginally revised. Moreover, possible manual updates to existing models prior the transfor-
mation re-execution get discarded in the newly produced models. Furthermore, identifier-based
inter-model references involving those existing models are also affected because re-creating the
output models from scratch can break them. For instance, an inter-model reference is created as
a result of applying a UML profile to a model. Re-creating UML profiles is hence an apparent
issue, especially if they are already applied to a variety of models. Consequently, a less invasive
approach that avoids re-creating existing models from scratch is required. We refer to this chal-
lenge as transformation evolution/output model co-evolution, where changes to a transformation
imply an evolution and output models must co-evolve according to them.

To overcome the challenge of co-evolving output models with changes in a transformation,
we present model patching, a non-invasive approach that enables the propagation of changes to
existing output models without re-creating them from scratch. It infers in-place patch transforma-
tions from evolved out-place transformations for existing output models. An in-place execution
strategy implies that all changes to a model are updates to it [MG06], which is in contrast to an
out-place strategy where the model is always newly produced. Applying an in-place execution
strategy requires that the input and output models of a transformation are the same. A patch
transformation is capable to satisfy this requirement because it solely operates on the existing
output models to which changes must be propagated. It captures only the affected parts of a
transformation evolution in terms of model patches. A model patch reformulates a change in an
out-place transformation as in-place transformation that is capable of propagating those changes
to the respective output models. It is inferred from the type of change to a transformation, e. g.,
deletion of a transformation rule, and a taxonomy of transformation change types which provides
the appropriate co-change, e. g., deletion of model elements produced by this transformation
rule. In order to elaborate this taxonomy, we investigated ATL [JABK08], a hybrid model
transformation language that supports both styles in-place and out-place. Model patching fills
the gap between approaches for propagating changes from either input models to output models
based on incremental transformation execution [JE04, HLR06, RBÖV08, JT10, RK12, EKK+13]
or metamodels to transformations [LBNK09, GDA12, IPM12, RIP13]. The main characteristics
of model patching are summarized in the following.

Complete with respect to change types and co-changes. The taxonomy of change types
and corresponding co-changes is key to model patching. We have systematically analyzed ATL’s
metamodel with respect to possible instantiations of its meta-classes and modifications of their
features. In a second step, we generalized change types from the analysis results and elaborated
corresponding co-changes for those change types in a last step. Given a change in an ATL
transformation, the taxonomy is capable to provide the co-change that must be applied to existing
output models of this transformation for accomplishing their co-evolution with it.

Non-invasive with respective to change propagation. Model patches realize co-changes in
terms of executable in-place transformations that can be applied to existing models. They reflect
exactly the intended effects of the changes performed to the a transformation. As model patches

128

only update the output models based on an in-place execution strategy, elements including their
features that need not to be patched are completely preserved.

Incremental with respect to transformation re-execution. Incremental transformation exe-
cution shifts the runtime complexity of a transformation from the size of input models to the size
of changes performed on them. As a result, only those parts of a transformation are re-executed
that are required for propagating the changes in an input model to a corresponding output model.
This benefit of incremental transformations is brought to propagating changes in transformations
to previously produced output models by model patching.

The remainder of this chapter is structured as follows. In Section 6.1, we motivate model
patching by means of the Java2UMLProfile transformation developed for generating UML
profiles from annotation-based Java libraries. We introduce different dimensions of model trans-
formation evolution and potential co-evolution tasks in Section 6.2. In Section 6.3, we present
the taxonomy of change types and corresponding co-changes for the ATL model transformation
language. Thereafter, we provide the conceptual foundation for generating patch transformations
from evolved out-place transformations implemented in ATL. Finally, we give a summary of this
chapter in Section 6.5 before work related to model patching is discussed in Section 6.6.

6.1 Motivation

To motivate the need of model patching, we consider an excerpt of the Java2UMLProfile transfor-
mation, where the emphasis is placed on its evolution. Listing 6.1 shows two transformation rules
for generating stereotypes including properties from declared annotations and their members. For
the purpose of demonstrating an evolution, we assume that the third binding of the second rule
(see line 19 of Listing 6.1) were added after the first release of the transformation. The binding
ensures that the default value of a declared member of an annotation is assigned to the property
produced from it.

Listing 6.1: Evolution of Java2UML transformation in ATL (out-place style).
1 c r e a t e Profile : UML from Library : JAVA ;
2
3 r u l e Annotation2Stereotype {
4 from
5 s1 : JAVA ! AnnotationTypeDeclaration ()
6 to
7 t1 : UML ! Stereotype (
8 name <− s1 . name ,
9 ownedAttribute <− s1 . bodyDeclarations −> select (e | e . oclIsTypeOf

10 (JAVA ! AnnotationTypeMemberDeclaration))) }
11
12 r u l e Member2Property {
13 from
14 s1 : JAVA ! AnnotationTypeMemberDeclaration ()
15 to
16 t1 : UML ! Property (
17 name <− s1 . name ,
18 type <− s1 . type . getUMLType ()
19 default <- s1.default.getUMLRepresentation()) }

129

Obviously, this modification to the transformation should ideally also be propagated to existing
UML profiles which were produced by the first release of the transformation, i. e., before the
evolution has been carried out. The model patch for the added binding is shown in Listing 6.2.
The transformation is in-place because it takes as input a UML profile and provides as output the
patched version of that profile (see line 1 Listing 6.1). Furthermore, the model patch requires in
addition to the profile the library from which it was produced and the trace model that records
the executed transformation rules along with the input and output elements in terms of trace
links. The library provides the default values of the annotation members, whereas the trace
model reveals to which property a certain default value must be assigned. To obtain the relevant
properties, two auxiliary functions are used (see line 4 and 7 Listing 6.1). Considering the evolved
transformation rule and the corresponding model patch, the assignment of the default value to
the property is identical (see line 19 of Listing 6.1 and line 18 of Listing 6.2). Hence, the model
patch propagates exactly the change in the evolved transformation to those properties that must in
fact be patched. They are only updated because the change is reformulated, such that an in-place
instead of an out-place execution strategy can be applied (see line 12 and 16 of Listing 6.2). As a
result, a complete computation intensive re-execution of the evolved transformation which would
newly create all stereotypes and properties, i. e., invasive modifications to existing profiles, can
be avoided.

Listing 6.2: Model patch for the added binding (in-place style).
1 c r e a t e PatchedProfile : UML refining Profile : UML , Library : JAVA Trace : TRACE ;
2
3 -- trace links refering to the generation of properties from annotation members
4 he lp er def : tracelinks : TRACE ! TraceLink = TRACE ! TraceLink . allInstancesFrom (’TM’

) −> select (e | e . ruleName = ’ Member2Proper ty ’ and e . targetElements −> exists
(f | f . oclIsTypeOf (UML ! Property))) ;

5
6 -- properties which must be patched
7 he lp er def : outElements : OclAny = (thisModule . tracelinks −> collect (e | e .

targetElements)) −> flatten () ;
8
9 r u l e PatchAddedBinding {

10 from
11 -- the model patch is applied to properties
12 ps1 : UML ! Property in Profile (thisModule . outElements −> includes (ps1))
13 us ing {s1 : JAVA ! AnnotationTypeMemberDeclaration = thisModule . tracelinks
14 −> any (e | e . targetElements −> includes (ps1)) . sourceElements −>

first () ; }
15 to
16 -- default values are assigned to selected properties
17 t1 : UML ! Property (
18 default <− s1 . default . getUMLRepresentation ()) }

Figure 6.1 shows the result of applying the patch transformation to the Objectify profile
produced by the Java2UMLProfile transformation before it has been modified to support also
default values of annotation members. Comparing it to the Objectify profile in Figure 4.11, all
the properties of the generated stereotypes provide yet default values.

130

«profile» ObjectifyProfile

«Stereotype»
Serialize

zip:Boolean = false
compressionLevel:Integer = -1

«Stereotype»
Cache

expirationSeconds:Integer = 0

«Stereotype»
Translate

early:Boolean = false

Add
default value

«metaClass»
Type

«metaClass»
Property

«metaClass»
Operation

Add
default value

Add
default value

Figure 6.1: Evolved Objectify profile

6.2 Model transformation evolution

Considering the model transformation pattern (see Figure 2.5), a variety of artifacts at different
model levels are involved, each of them may subject to evolution. If a certain artifact is modified,
others may also require modifications mainly due to the dependencies, e. g., a transformation
is defined upon a (or several) metamodel(s), between the artifacts of the model transformation
pattern. Consequently, the evolution of an artifact usually requires co-evolution tasks. Two
evolution dimensions have gained attention in the last decade which led to several approaches
that aim at overcoming evolution challenges in the field of model transformation engineering.
In the following, we give a brief overview of these two evolution dimensions and discuss how
transformation evolution/output model co-evolution relates to them. The latter introduces in fact
a third evolution dimension for which we provide a solution in this chapter.

The main distinguishing features of the evolution dimensions refer to the type of artifact,
e. g., input model or metamodel, that is assumed to evolve and the type of artifact to which
a corresponding co-evolution task must be applied. As a result, each evolution dimension is
characterized by an initial evolution step and a suggested co-evolution step. Figure 6.2 provides
an overview of currently investigated evolution dimensions in the context of model transformation
engineering.

Since a metamodel contributes the type information upon which a transformation is defined,
modifications to it may also require propagating changes to existing transformations. Considering
the ATL transformation in Listing 6.1, the type information is provided by the Java metamodel as
well as the metamodel of UML. For instance, Java’s language definition changed with version 8
released early 2014 and so its metamodel must evolve to support the newly introduced language
features. This in turn may require co-evolving transformations that are defined upon Java’s
metamodel. As a result, this evolution dimension is often referred to as metamodel evolution/-
transformation co-evolution (see Figure 6.2(a)) and addressed by several proposed approaches
(cf. e. g., [LBNK09, MEMC10, RIP13, IPM12, GDA12]). The main goal of those approaches is to
(semi-)automatically adapt transformations to new metamodel versions while preserving their
overall behavior.

131

Input Model Output Model Transformation

Input Metamodel Output Metamodel

conforms to

Transformation’

co-evolves

defined upon

Input Metamodel’ Output Metamodel’

evolves

(a)

evolves

defined upon
conforms to

Input Model Output Model Transformation

Input Metamodel Output Metamodel

conforms to

co-evolves

defined upon

(b)

defined upon conforms to

Input Model’

evolves

Output Model’

Input Model Output Model Transformation

Input Metamodel Output Metamodel

conforms to

co-evolves

defined upon

(c)

defined upon
conforms to

Output Model’ Transformation’

evolves

Legend
input/output of artifacts relationship between artifacts evolution

Figure 6.2: Dimensions of model transformation evolution: (a) metamodel evolution/transfor-
mation co-evolution, (b) input model evolution/output model co-evolution, (c) transformation
evolution/output model co-evolution

132

While some changes to a metamodel can automatically be propagated to a transformation, others
are hardly or even impossible to automate. For instance, if an element of a metamodel is renamed
all the occurrences of this element in a transformation can automatically be replaced by the new
name [RIP13]. On the other hand, if a new element is added to a metamodel automatically deriving
a transformation rule for it is hard [LBNK09]. In this case, only some default rule skeletons can
be provided, while the behavior of the rule must be implemented by engineers [RIP13].

The evolution at model-level poses another evolution challenge: input model evolution/output
model co-evolution (see Figure 6.2(b)). If input models evolve, the respective output models
often must co-evolve as well. The co-evolution of output models can straightforwardly be
accomplished by re-executing the entire transformation in batch mode for new versions of input
models. However, due to several reasons an incremental execution of the transformation is
preferred over a complete re-execution. For instance, in case of minor changes on large models
the execution time of a transformation can be reduced if the affected parts of it are re-executed
only. Another reason is that incremental transformation execution is capable to preserve possible
manual updates to output models prior the re-execution because only changes in input models
are propagated by the transformation to output models. There are several approaches that
allow incremental execution of model transformations with respect to changes in input models
(cf. e. g., [JE04,HLR06,RBÖV08,JT10,RK12]). A review of existing approaches for incremental
transformation execution has been carried out by Etzlstorfer et al. [EKK+13]. The main idea
of incremental transformation is that the runtime complexity of a transformation is no longer
proportional to the size of input models but instead to the size of changes performed on them.

Beside the two introduced evolution dimensions, transformation evolution/output model co-
evolution (see Figure 6.2(c)) can be considered as the intersection of the former two dimensions.
This third dimension assumes that a transformation based on which output models have already
been produced from input models evolves and all transformation executions must be reproduced
to turn existing output models into valid transformation results. Obviously, the same benefits
incremental transformations provide for propagating changes in input models to output models
are also desirable for reflecting changes in transformations to previously produced output models.

6.3 Model patches for out-place transformations in ATL

Model patches are the main constituents of a patch transformation. Depending on the change
to a transformation, they provide a co-change suggested to be applied to existing output models
produced by the transformation. In the following, we first introduce ATL’s language elements
for which we present model patches. Thereafter, we present a taxonomy of change types and
co-changes for ATL.

6.3.1 Transformation language elements

ATL is a hybrid model transformation language supporting a mixture of declarative and imperative
constructs. Considering the patch transformation in Listing 6.2, it comprises two auxiliary
functions for computing relevant trace links and elements that need to be patched. These functions
are imperative constructs, whereas the two rules of the patch transformation are considered as

133

declarative constructs. In the remaining chapter, we place emphasis on ATL’s declarative part.
Transformations implemented in ATL are unidirectional, operate on read-only input models
and produce write-only output models. This is an important feature of ATL to facilitate patch
transformations as it ensures that input models are immutable throughout the execution of a
transformation. Its metamodel is depicted in Figure 6.3.

Transformation

MatchedRule
name:String

rules 1..*

1
inPattern InPattern

InPatternElement

name:String

1..*
elements

Filter
0..1

filter

OutPattern
outPattern

1 OutPatternElement
name:String

elements
1..*

1..*
bindings

Binding

Class Feature

Reference Attribute

*

features
class 1 class

OCLExpression

1 condition

value

Metamodel
*

classes

in

out

TraceLink

ruleName:String
TraceElement

patternName:String

inElements

Trace

* links

outElements

1..*
1..*

Model

1

ModelElement

class 1

value
1

1..*

1..*

1

«metamodel» Trace

«metamodel» ATL

«metamodel» SMOF

feature 1

Figure 6.3: Metamodel excerpts: (a) transformation language, (b) metamodeling language, and
(c) trace language

134

A Transformation is composed of declarative MatchedRules. It gets Models as input and
produces output Models. A MatchedRule contains one InPattern and one OutPattern. The
former is a query on the input model and gathers the set of InPatternElements that represent
the input model elements of the rule. They are defined upon elements of the source metamodel(s).
In the context of MOF, Classes that may comprise Features are used to develop a metamodel.
We use the abbreviation SMOF to refer to a simplified version of MOF which is however sufficient
for the purpose of introducing model patches. InPatternElements can also contain a Filter.
If the conditions of a Filter are satisfied by the InPatternElements, the respective rule is
applied. Filters are expressed by means of a constraint language. For that purpose, ATL relies
on OCL [OMG14b]. OutPatterns describe the creation of elements in the output model. Those
elements are typed by the Class of the OutPatternElements. Each OutPatternElement is
composed of a set of Bindings. Their values are expressed and computed by OCL expressions
that are used to initialize the features of output model elements.

Concerning the semantics of ATL, the order in which the rules are defined does not affect the
computation of output models. ATL applies a two-phase process. In the first phase, matching
conditions of rules, i. e., InPatterns, are evaluated. As a result, the set of output model elements
that correspond to OutPatterns declared in evaluated rules can be determined. In the second
phase, those elements are initialized by feature values obtained by the respective Bindings.

Finally, we use in our approach an explicit trace metamodel. In fact, a trace model conforming
to this metamodel is automatically obtained from a transformation execution, e. g., by exploiting
Jouault’s “TraceAdder” [Jou05] for standard ATL. A more advanced ATL VM developed by

:TraceLink

ruleName=
"Annotation2
Stereotype"

:Trace

:TraceLink
ruleName=
"Member2
Property"

:TraceElement

patternName= "t"

:TraceElement
patternName= "t"

:TraceElement

patternName= "s"

:AnnotationType
Member

Declaration

type= "String"

:AnnotationType
Declaration

name= "Entity"

:Property

type= "String"

:Stereotype
name= "Entity"

InputModel

TraceModel

OutputModel

:TraceElement
patternName= "s"

owned
Elements

packaged
Elements

value
inElements

links

links

outElements
value

inElements outElements

value value

Figure 6.4: Example trace model fragment of Java2UMLProfile transformation

135

Wagelaar [WTCJ11] has built-in functionality for producing trace models. A Trace is composed
of TraceLinks. A TraceLink captures the name of applied MatchedRule and contains Trace-
Elements. Those elements capture the name of the corresponding InPatternElement or
OutPatternElement and reference to the input model elements or output model elements
that have been queried or generated, respectively. To sum up, trace models explicitly capture
transformation rule executions and information about input model elements that contributed to
the generation of output model elements. An example trace model for a possible execution of the
Java2UMLProfile transformation is shown in Figure 6.4.

6.3.2 Change types and co-changes

In order to establish a taxonomy of change types and co-changes, we have investigated ATL’s
language definition. In fact, we systematically analyzed the addition and deletion of instances
for any meta-class in the transformation metamodel (see Figure 6.3) and modifications of their
features. The complete set of distilled change types for which co-changes are highly desirable are
summarized in Table 6.1. The collected language concepts refer to the metamodel of ATL (see
Figure 6.3).

Table 6.1: Change types and co-changes for ATL

 Concept Change type Co-change in output model

 MatchedRule

Addition Execution of MatchedRule
Deletion Deletion of previously produced elements
Modification
(name feature)

Propagation of name change to trace model
(ruleName feature)

 InPatternElement

Addition
Deletion

1. Deletion of previously produced elements
2. Execution of the MatchedRule

Modification
(class feature) Considered as Addition and Deletion of InPatternElement

Modification
(name feature)

Propagation of name change to trace model
(patternName feature)

 Filter

Addition
Deletion
Modification
(condition feature)

1. Deletion of elements that do not satisfy the Filter
2. Creation of elements that satisfy the Filter
3. Execution of Bindings

 OutPatternElement

Addition 1. Creation of elements
2. Execution of its Bindings

Deletion Deletion of previously produced elements
Modification
(class feature) Considered as Addition and Deletion of OutPatternElement

Modification
(name feature)

Propagation of name change to trace model
(patternName feature)

 Binding

Addition Execution of added Binding
Deletion Deletion of feature values
Modification
(value feature) Re-execution of changed Binding

Modification
(feature feature) Considered as Addition and Deletion of Binding

136

MatchedRule

Adding or deleting a MatchedRule implies to add or delete the elements that the rule creates. A
change of the rule name is propagated to the trace model, to keep it properly updated.

InPatternElement

If an InPatternElement is added or deleted, the matches of a rule for a given input model may
change as well. For instance, if we had only one InPatternElement and we add another one,
the match is realized now with the cartesian product of both element types. Contrarily, if we
remove an InPatternElement, the number of matches for a rule may decrease. Furthermore,
the addition or deletion of an InPatternElement may lead to a change of the OutPattern in
the rule provided that the variable referring to the new/old InPatternElement is used in one
or several Bindings. As a result, we delete all the changes produced by the rule and execute
it. Similarly, when the class feature of an InPatternElement changes, we consider it as an
addition and a deletion. As for the modification of its name feature, we need to propagate the
change to the trace model.

Filter

The effect of adding, deleting, or modifying a Filter is equally treated. Even if a Filter is
not defined, we can still consider one whose condition is set to true. Similarly, if a Filter is
removed, it is the same as changing it to true. Consequently, we consider the three cases as if the
Filter is modified. In a first step, elements are added to the output model that are created from
elements in the input model that now satisfy the Filter, whereas, in a second step, elements are
deleted in the output model that correspond to elements in the input model that do not satisfy
Filter anymore. Finally, the corresponding Bindings are executed.

OutPatternElement

Adding or deleting an OutPatternElement implies to add or delete the respective elements in
the output model and to re-execute corresponding Bindings. If the class feature is changed,
we consider it as addition and deletion of the OutPatternElement, whereas the modification of
the name feature is propagated to the trace model.

Binding

In case a Binding is added or deleted, the effect is to compute its value or delete the value that
was previously computed. If the value expression of a Binding changes, it has to be recomputed
and reassigned, whereas if the target feature is changed, we consider it as an addition and a
deletion of the Binding.

Rule dependencies and execution

Apart from the co-changes described above, we also have to take into account the dependencies
between bindings and rules as explained in Section 6.3. If changes occur in MatchedRules,

137

InPatternElements, Filters, and OutPatternElements (except for modification of name
features), we need to check if such changes are involved in explicit dependencies. If they are, the
generated patch transformations ensure that the respective bindings are recomputed.

The way our co-changes are applied for producing the evolved output models follows the
same semantics ATL applies for full execution (see Section 6.2). In a first phase, the output model
elements are appropriately added or deleted. Subsequently, in the second phase, feature values of
the output model elements are computed if necessary. The latter implies the execution of affected
bindings.

6.4 Generation of patch transformations

A patch transformation is comprised of model patches. The general idea underlying a patch
transformation is to reformulate changes in out-place transformations as in-place transformations
that are capable of propagating those changes to the respective output models. The latter is
accomplished by co-changes expressed in terms of model patches. Figure 6.5 gives an overview
of how a patch transformation can be generated for an evolved transformation.

The upper part shows the transformation evolution/output model co-evolution dimension
already discussed in Figure 6.2. It captures the input/output of all involved artifacts and the rela-
tionships between them. In particular, the relationship between the two transformation versions
indicates the evolution.

Turning the focus on the lower part, it describes the transformation evolution and captures
the main steps of model patching. Based on the original transformation and the evolved trans-
formation, a diff model is produced. It describes the differences between the two transformation
versions and hence the changes performed on the original transformation. To compute the dif-
ferences between ATL transformation versions, we first inject the transformation code into a
model representation by using the ATL injector component. This model-based representation of
the transformations allows us to employ EMF Compare2 for computing the differences between
them. To get a more concise diff model for the purpose model patching, we aggregate the diff
elements produced by EMF Compare in a post-processing step of the comparison. The idea of
this post-processing step is to derive change types as introduced in Table 6.1. As a result, a solid
basis for producing a patch transformation is obtained.

In the next step, a higher order transformation (HOT) takes this diff model and the two trans-
formation versions as input and produces a patch transformation. It defines the transformation
rules required to co-evolve existing output models according to changes in the transformation
that has been executed to produce these models. A patch transformation requires three input
models: (i) an output model that has been produced from the original transformation because it is
evolved according to the changes indicated by a patch transformation, (ii) an existing input model
which provides model elements and assigned values to them possibly required for appropriately
modifying output models, and (iii) a trace model as it captures interconnections between model
elements of an input and output model. Obviously, the more information is provided as input, the
more accurate the evolved output models can be. A patch transformation is capable to produce

2www.eclipse.org/emf/compare

138

Input Model

Output Model

Transformation

Input Metamodel Output Metamodel

conform to conform to

Transformation’

Output Model’

evolves

PatchTransformation

Higher-Order Transformation (HOT)

defined upon

Trace Model

Diff Model

Trace Model’
conform to

defined upon

Legend
input/output of artifacts relationship between artifacts evolution

Figure 6.5: Patch transformation generation at a glance

results, i. e., output models and trace models, that are equal compared to results gained from a
complete re-execution of the evolved transformation for which a patch transformation has been
generated. In case a trace model is not available, it can probably be re-calculated by matching
techniques for out-place transformation. If the input model is not at hand, the question arise to
what extent the output model can be kept conform to new transformation versions at all. In some
cases, the deletion of elements in the output model can be carried out without the existence of an
input model.

One important aspect of ATL transformations that affect the generation of patch transforma-
tions refers to what we call inter-rule dependencies.

139

Listing 6.3: Evolution of the Java2UML transformation.
1 c r e a t e Model : UML from Application : JAVA ;
2
3 r u l e Package2Package{
4 from
5 s1 : JAVA ! Package
6 to
7 t1 : UML ! Package (
8 name <− s . name ,
9 packagedElement <− s . ownedElements) }

10
11 r u l e Class2Class{
12 from
13 s1 : JAVA ! ClassDeclaration (
14 Set{’domain’,’web’}->includes(s.package.name)
15 Set{’domain’,’service’}->includes(s.package.name))
16 to
17 t1 : UML ! Class (
18 name <− s . name) }

Considering the excerpt of the Java2UML transformation in Listing 6.3, it transforms Java
packages and class declarations to their UML correspondences. For the purpose of demonstrating
the need to consider inter-rule dependencies for generating patch transformations, we assume
that only class declarations contained by certain packages, i. e., domain and web, are considered.
This behavior is achieved by the defined Filter of the InPattern in the second MatchedRule.
The Bindings of the two rules ensure that the names of the packages and classes as well as the
references in-between are pushed from the Java (input) models to the produced UML (output)
models. To introduce a possible revision of the transformation, the Filter condition of the
second rule is modified (see line 14 of Listing 6.3). As a result, class declarations contained
by the service package instead of the web package are expected in the produced UML model.
In our transformation, the return type of the value expression s.ownedElements is of type
Sequence(JAVA!AbstractTypeElement). Thus, it may also contain classes because JAVA!-
ClassDeclaration is a subtype of JAVA!AbstractTypeElement. For that reason, if the binding
is computed, packagedElement will reference, among others, those elements created in the
second rule. Technically speaking, ATL performs a transparent lookup of output model elements
for given input model elements when executing bindings. Hence, ATL automatically retrieves
corresponding UML elements for queried Java elements. It is important that we deal with these
inter-rule dependencies when creating patch transformations. In case of our transformation, a
modification in the second rule may cause the re-computation of the second Binding in the first
rule (see line 9 of Listing 6.3). To deal with such situations, we perform a static analysis on
the revised transformation. It consists of using a HOT to determine the return types of value
expressions of bindings. Then, we calculate the dependencies between bindings and rules.

Listing 6.4 presents an excerpt of the patch transformation inferred from the revision of the
original out-place transformation in Listing 6.3. In the first rule, produced elements of existing
models that do not satisfy the revised filter condition are deleted, whereas in the second rule,
elements that have previously not satisfied the filter condition but satisfy the revised one are
produced. In our example, these elements refer to UML classes of the original output model.

140

Listing 6.4: Patch transformation for evolved Java2UML transformation (see Listing 6.3).
1 c r e a t e PatchedModel : UML refining Model : UML , Application : JAVA Trace : TRACE ;
2
3 r u l e PatchFilterDelete {
4 from
5 s1 : UML ! Class (thisModule . elementsForDeletion−>includes (s)) }
6
7 r u l e PatchFilterAdd {
8 from
9 s1 : Java ! ClassDeclaration (thisModule . elementsForAddition−>includes (s))

10 to
11 t1 : UML ! Class (name <− s1 . name) }
12
13 r u l e Package2Package {
14 from
15 ps : UML ! Package
16 us ing {s : JAVA ! Package = thisModule . tracelinks−>any (e | e . outElements−>exists (f |

f . value = ps)) . inElements−>any (e | e . patternName = ’ t 1 ’) . value ; }
17 to
18 t1 : UML ! Package (
19 packagedElement <− ps . packagedElement−>union (JAVA ! ClassDeclaration .

allInstances () −> select (e | s . ownedElements−>includes (e) and thisModule .
adds−>includes (e)))) }

The UML classes are computed prior to the execution of the patch rules and provided by the
respective sets, i. e., elementsForDeletion and elementsForAddition. They are accom-
plished by executing the original and revised filter conditions against the original input model and
calculating their differences. The third rule is dedicated to the re-execution of bindings affected
by transformation revisions. Even though in our example the binding itself has not been explicitly
revised, its re-execution is required to ensure that newly added UML classes are appropriately
referenced by their containing UML packages. This shows the importance to consider inter-rule
dependencies for generating patch transformations. As UML packages may already contain
classes, the union operator needs to be applied to accomplish the expected result. In this respect,
the pertinent Java packages are required as well (see line 16 of Listing 6.4). They are queried
from the trace model in the using part of the patch transformation (see line 19 of Listing 6.4).

6.5 Summary

Transformation changes must be propagated to existing output models possibly maintained in a
central repository. To accomplish this co-evolution task, an evolved transformation can entirely be
re-executed. However, completely re-executing evolved out-place transformations for propagating
changes to existing output models is computation intensive in particular if the models are large
and the changes only marginal. Moreover, possible modifications to those models prior the
transformation re-execution get discarded because an out-place transformation typically produces
output models from scratch. Consequently, a less invasive and computation intensive approach is
required to overcome the co-evolution of existing output models with changes to transformation.

In this chapter, we proposed model patching to tackle the challenge of transformation evo-
lution and output model co-evolution. Model patching exploits the benefits of incremental
transformation execution, which has already been investigated and applied for propagating

141

changes from input models to output models. To overcome the challenge of input model evolution
and output model co-evolution only the relevant parts of a transformation are re-executed, such
that previous transformation results are updated instead of discarded. Similarly, model patching
updates existing output models by reformulating changes to out-place transformations into an
in-place patch transformation. A patch transformation takes as input existing output models and
updates them by an in-place execution strategy. In this way, elements in the output model that do
not require modifications are completely retained. As a result, model patching is non-invasive
with respect to change propagation. Furthermore, it is usually faster compared to a complete
transformation re-execution because a patch transformation for a typical evolution scenario
comprises only a small portion of the rules covered by an evolved transformation.

Model transformation evolution. Several artifacts at different model levels may subject to
evolution in model transformation engineering. We investigated and discussed two evolution
dimensions that gained attention in the last decade and introduced transformation evolution and
output model co-evolution as a third evolution dimension. It can be considered as the intersection
of the former two dimensions: metamodel evolution and transformation co-evolution and input
model evolution and output model co-evolution. In particular, the investigation of the latter
revealed that the benefits incremental transformation provides for propagating changes in input
models to output models are also desirable for reflecting transformation changes to previously
produced output models.

Model patches for out-place transformations in ATL. Following the idea of incremental
transformation, we introduced model patches that provide output model co-changes for changes
to transformations. To establish a set of effective co-changes for models produced by an ATL
transformation, we investigated ATL’s metamodel with an emphasis on possible transformation
changes. In fact, we systematically analyzed the addition and deletion of instances for any
meta-class of ATL’s metamodel and the modifications of features comprised by those instances.
Based on the results of this analysis, a taxonomy of change types and corresponding co-changes
has been developed. This taxonomy is key to provide a model patch for a certain change to a
transformation. Technically speaking, a model patch is implemented by a transformation rule
that updates models according to transformation changes.

Generation of patch transformations. A patch transformation reformulates changes to an
out-place transformation in terms of an in-place transformation that is suggested to be applied to
existing output models. The change propagation is accomplished by executing the model patches
comprised by a patch transformation. We introduced a framework for generating a patch transfor-
mation from the diff model of two versions of a transformation. A higher order transformation is
at the core of this framework. It takes the diff model and the two transformation versions as input
and generates a patch transformation capable to propagate the identified transformation changes
to existing output models. In this respect, a patch transformation considers not only co-changes
directly derived from the taxonomy of change types but also possible inter-rule dependencies that
may affect the update of output models, e. g., a binding which depends on the results of a rule
invocation. To appropriately deal with inter-rule dependencies, we perform a static analysis on

142

the revised transformation for determining dependencies between bindings and rules.

To investigate whether model patching is equally effective compared to completely re-executing
evolved transformations, we carried out a case study based on two versions of the Java2UML trans-
formation. In general, our findings show that the updates to the output models by model patching
reflect exactly the intended effects of the changes in the evolved transformation. When comparing
the execution times of patch transformations and evolved transformations for co-evolving existing
output models, our results show a speed-up for the majority of patch transformations. More
details on this evaluation are presented in Sections 7.2 and 7.3.

6.6 Related work

To the best of our knowledge, there is currently no other approach that deals with transformation
evolution and output model co-evolution. Since model patching exploits incremental transfor-
mation execution, we discuss it according to existing approaches that also exploit this technique
for propagating the changes in an input model to a corresponding output model, thereby the
emphasis of those approaches is placed on input model evolution/output model co-evolution. A
detailed comparison of existing incremental model transformation approaches is presented by
Etzlstorfer et al. [EKK+13].

Johann and Egyed present a framework for incremental transformation where a notified
change to an input model is instantly propagated to existing output models [JE04]. The frame-
work provides generic functions that need to be implemented for a given transformation. They
ensure that existing output model are kept synchronized with changes to input models [XLH+07].
As a result, the change propagation is accomplished by executing those implemented functions
instead of certain parts of the original transformation. This is in contrast to model patching,
whereby certain parts of the original transformation are re-executed instead of auxiliary functions
that need to be re-implemented for each transformation separately.

The change propagation from input models to output models as proposed by Hearnden et
al. [HLR06] is based on live transformation, whereby the transformation context of the original
transformation is preserved, such that the effects of changes to input models can be reflected to
output models. A live transformation does not terminate but instead reacts to changes in input
models. The approach of Hearnden et al. is applicable to declarative rule-based transformation
languages such as Tefkat [LS06]. Jouault and Tisi present an implementation of live transfor-
mation for ATL [JT10]. They focus on the declarative part of ATL, which is also considered by
model patching. However, model patching does currently not support live transformation in the
sense of dynamically re-executing rules of a model transformation in memory, but rather generates
a new patch transformation for a changed transformation. The scope of the live transformation
approach proposed by Ráth et al. [RBÖV08] also comprises partially declarative and imperative
implementations of transformations. Existing results on live transformation have been generalized
by Bergmann et al. [BRVV12] in terms of a classification of change scenarios and a formalism
for change processing.

143

Razavi and Kontogiannis turn the focus on the imperative implementation style of model trans-
formation languages [RK12]. Their approach derives incremental model transformations from
existing transformations to improve their performance in succeeding executions. They exploit
partial evaluation techniques known from the area of program optimization. Partial evaluation
is a program optimization technique which is based on the premise that parts of a program can
be pre-evaluated for static input data with the goal to avoid the re-computation of those parts
in subsequent executions of the program [Jon96]. In the approach of Razavi and Kontogiannis
static input data refer to elements of the input model that are expected to remain unchanged.
This information is lifted to the meta-level and passed to the transformation via user-defined
annotations. They are applied to elements of the input metamodel. The parts of the transformation
that are expected to be pre-evaluated are determined based on the annotated elements. The results
of the pre-evaluated transformation parts are either cached in a local store or in-lined in the
transformation under subject.

144

CHAPTER 7
Evaluation

As UML plays an important role in the architecture style proposed by this thesis, we investigate
the methods of current UML modeling tools to deal with platform and environment-specific
extensions and compare them to CAML’s methodological approach. In particular, we place
emphasis on their representational capabilities to declare and apply annotation types of the Java
platform at model level and their support for deployment modeling where cloud environments
are considered as the target. Considering the former, CAML provides annotation types in terms
of dedicated UML profiles. To investigate the quality of UML profiles automatically generated
from Java libraries, we compare them with profiles offered by current modeling tools. In fact, we
selected four established Java libraries for which a corresponding UML profile is available. As
some existing Java libraries are obviously relatively large (more than 700K reverse-engineered
elements), we also report on the performance of CAML’s tool for UML profile and profiled UML
model generation.

Both the quality and performance of model patching is examined by means of model transfor-
mations developed in the course of the ARTIST project and applied to its use cases. Regarding the
quality of model patching, we investigate whether it is equally effective compared to completely
re-executing evolved transformations on existing output models. For that reason, we selected six
different revisions of the Java2UML transformation to cover the introduced change types and the
core effects of their co-changes. In order to assess whether model patching is faster compared to
a re-execution of an evolved transformation, we carry out a performance analysis. We compare
the execution times of revised transformations and their respective patch transformations mainly
to provide an impression of the performance improvements that can be expected by applying
model patching.

Finally, in order to demonstrate the practical relevance of the proposed architecture style
for cloud application modeling, we report on its application in the context of a modernization
scenario to the cloud. The modernization scenario builds on the PetApp introduced in Section 1.4.
The main highlights of our findings from the conducted investigations are summarized in the
following.

145

Cloud application modeling based on libraries and profiles can be adopted by current UML
modeling tools. Current commercial and open-source modeling tools that support UML are also
capable of adopting cloud-specific extensions based on libraries and profiles provided by CAML.

Lack of cloud-based refinement for UML deployment models emphasizes practical value
of CAML. The majority of current UML modeling tools do not provide dedicated modeling
concepts for refining deployment models towards a select target cloud environment.

Automatically generated UML profiles are higher in quality compared to profiles used in
practice. With a fully automated approach, the quality of current profiles can be improved by
providing more complete stereotypes that precisely capture the intention of the original anno-
tation types in terms of target definitions, member declarations and return values of such members.

Model patching is less invasive and equally effective compared to complete transformation
re-execution. A Patch transformation exactly reflects the intended effects of a transformation
revision to existing output models based on an in-place execution strategy and thus only updates
existing output models.

A speed-up of model patching can be observed for the majority of transformation change
scenarios. Generated patch transformations execute in general less rules compared to the revised
transformations and are thus faster compared to a complete transformation re-execution for
propagating transformation changes to existing output models.

Annotation-based modeling leverages reverse and forward engineering scenarios. Anno-
tations on the model level enable higher quality results produced from reverse engineering
processes and richer application code generated in course of forward engineering processes.

Cloud-specific refinements to architecture models close the gap between deployment con-
figurations and target cloud environments. Architecture models created in UML and refined
by CAML are interpretable by a TOSCA-based runtime container for cloud application and
service provisioning thanks to the fully-automated Caml2Tosca transformer.

The remainder of this chapter is structured as follows. In Section 7.1, we evaluate the methodolog-
ical approach underlying CAML compared to the methods of current commercial and open-source
modeling tools that support UML. Thereafter, in Section 7.2, we investigate the quality of (i)
CAML’s generative techniques for UML profiles and (ii) model patching for updating existing
output models. Both of them are subject to a performance evaluation in Section 7.3. Finally, in
Section 7.4, we demonstrate the practical relevance of the architecture style for cloud application
modeling.

146

7.1 Methodological evaluation

Today, several commercial and open-source modeling tools support UML. We investigate their
methods for dealing with platform-specific information captured by Java annotation types. There-
after, we place emphasis on the methods of those tools for deployment modeling in general
and support for cloud-based deployment targets in particular. In total, we selected seven major
industrial modeling tools as summarized in Table 7.1.

Name Version Availability Source

Altova UML 2015 commercial and free
for academic use

www.altova.com/umodel.html

ArgoUML 0.34 open-source argouml.tigris.org
Enterprise Architect 9.3 commerical and free

for academice use
www.sparxsystems.com

Magic Draw 18.0 commerical and free
for academice use

www.nomagic.com

Rational Software Architect 8.5.1 commerical and free
for academice use

www.ibm.com/developerworks/rational/products/rsa

Papyrus 1.0.0 open-source www.eclipse.org/papyrus
Visual Paradigm 12.1 commercial and free

community edition
www.visual-paradigm.com

Table 7.1: Selected modeling tools that support UML

7.1.1 Declaration and application of Java annotation types in UML

The aim of this study is to investigate the methods of current UML tools for dealing with the
declaration and application of Java annotations types in UML. For that reason, we set the focus
on a Java-based reverse engineering example that includes annotations and their declarations with
the goal to answer the following research question.

Methodological approach – Research question 1: What are the methods of current model-
ing tools to represent Java annotation types and their applications in UML and what are the
practical implications?

In order to answer this research question, we defined a set of comparison criteria that mainly
address (i) how the conceptual mapping between Java and UML for annotations is achieved by
current modeling tools and (ii) the generative capabilities of these tools regarding profiles. Based
on the defined criteria, we evaluate six representative modeling tools and CAML.

Comparison criteria

As there are different approaches on how annotation types and their applications are represented
on the model level, the first and the second criteria (CC1 and CC2) refer to these extensional capa-
bilities. The third criterion (CC3) refers to the support of generative capabilities regarding profiles.

147

• CC1: How are Java annotations applied to UML models?
• CC2: How are Java annotation type declarations represented in UML?
• CC3: Is the generation of UML profiles from Java code supported?

Selected tools

We selected six out of the seven major industrial modeling tools that claim to support reverse
engineering capabilities for Java and UML. Papyrus does not yet directly support automatic
reverse engineering. The selected tools are summarized in Table 7.2.

 Mapping (Java -> UML) UML Profile
Generation Modeling Tool Annotation

Application
Annotation
Declaration

 Altova UML Generic Java Profile Interface -

 ArgoUML Generic Java Profile Interface -

 Enterprise Architect Built-in Tool Feature Interface -

 Magic Draw Generic Java Profile Interface -

 Rational Software Architect Specific Profiles Stereotype -

 Visual Paradigm Built-in Tool Feature Class -

 CAML Specific Profiles Stereotype +

 Table 7.2: Comparison results

Evaluation procedure

We defined a simple reference model that declares a Java class to which we applied an annotation
type from the JPA (see Figure 2.8). For the purpose of importing the application, we activated
the offered functionality of the modeling tools required for a reverse engineering scenario from
Java to UML. While some of the modeling tools are delivered with standard configurations,
other modeling tools allow configurations to change the reverse engineering capabilities by using
specific wizards. Moreover, some modeling tools go one step further and allow modifications on
the transformation scripts used for the import of Java code. We evaluated the capabilities of the
modeling tools offered in the standard settings and explored the different wizard configurations if
supported, but we restrained from modifying transformation scripts.

Results

The results of our comparison are summarized in Table 7.2. It shows that the investigated tools
apply one of three significantly different approaches to represent Java annotations in UML: (i)
the built-in annotation feature of modeling tools is used, (ii) a generic profile for Java is provided,
which enables capturing annotations and their type declarations, or (iii) profiles are offered, which

148

are specific to a Java library or even an application with custom annotation type declarations.
The first solution is certainly the most generic one as it goes beyond Java and UML. Clearly,
it facilitates capturing Java annotations, though the type declaration of an annotation in terms
of a UML element and its application are not connected. A generic profile for Java emulates
the representational capabilities of Java’s annotation language. Although with this approach,
the connection of annotation type declarations and their applications can be ensured, the native
support of UML for annotating elements with stereotypes is still neglected. However, stereotypes
specifically defined for annotation types would facilitate their application in a controlled UML
standard-compliant way as they extend only the required UML meta-classes. From a language
engineering perspective, such stereotypes facilitate defining constraints and model operations,
such as model analysis or transformations, because they can directly be used in terms of explicit
types similar to a meta-class in UML. CAML is based on a conceptual mapping between Java’s
annotation language and UML’s profile language, which enables the generation of specific
stereotypes for corresponding annotation types that in turn leverage platform-specific profiles.
While all evaluated modeling tools support the generation of annotated UML class diagrams from
Java applications, none of them is capable of generating profiles dedicated to Java libraries. Only
the Rational Software Architect also exploits the powerful capabilities of stereotypes and profiles
for capturing declared Java annotation types.

7.1.2 Representation of deployment models and their cloud-based refinement

In order to investigate the methods of current UML tools for representing deployment models and
refining them towards a cloud environment, we created the deployment model of the PetApp (see
Figure 4.2) in each of the selected tools. The aim of this study is to answer the research question
as follows.

Methodological approach – Research question 2: What are the methods of current UML
modeling tools to represent cloud-based deployment models and what are the practical implica-
tions?

In order to answer this research question, we address (i) the levels at which deployment models
are represented, (ii) the support for multiplicities not only at type level but also at instance level,
and (iii) the offered possibilities to refine environment-independent deployment models towards
a selected cloud environment. Regarding the second criterion, the support for multiplicities at
the instance level is not directly supported by the UML standard. However, defining them for
modeled application artifacts and cloud services appears to be of particular importance. The
multiplicities determine the lower bound of running application artifacts and cloud services
as well as their upper bound since in a highly scalable cloud environment [VRB11] they are
provisioned as their demand increases but also released once their demand decreases.

Comparison criteria

As deployment models are specified by exploiting the intensional and extensional level, the first
criterion (CC1) refers exactly to the capability of UML modeling tools to support both levels.

149

The second criterion (CC2) is dedicated to the support of multiplicities at the extensional level
because this seems of particular interest for modeling cloud applications. Finally, to investigate
the need of UML libraries and UML profiles covering cloud-specific domain concepts, the third
criterion (CC3) addresses the support of current UML modeling tools for refining deployment
models towards a cloud environment.

• CC1: Is deployment modeling supported at both levels intensional and extensional?
• CC2: Is the definition of multiplicities supported for elements at the extensional level?
• CC3: Is the refinement of deployment models towards a cloud environment supported?

Selected tools

The selected set of commercial and open-source UML modeling tools that claim to support
deployment modeling are summarized in Table 7.3.

UML
 Deployment Multiplicities

Cloud
Support Modeling Tool Intensional

level
Extensional

level
Intensional

level
Extensional

level

 Altova UML supported supported via

Object Diagram supported not
supported

no
support

 ArgoUML supported directly

supported supported not
supported

no
support

 Enterprise Architect supported supported via

Object Diagram supported supported SOMF-
based

 Magic Draw supported directly

supported supported not
supported

no
support

 Rational Software Architect supported directly

supported supported not
supported

partial
support

 Papyrus supported supported via

Object Diagram supported not
supported

no
support

 Visual Paradigm supported supported via

Object Diagram supported not
supported

no
support

 Table 7.3: Comparison results

Evaluation procedure

We imported the deployment model of Figure 4.2 including CAML’s cloud library and profile into
the modeling tools. We evaluated the capabilities of the modeling tools offered in the standard
settings and explored the different wizard configurations if supported.

150

Results

The results of our study are summarized in Table 7.3. As expected, all evaluated UML modeling
tools support both the intensional and extensional level to create deployment models. Support
for the extensional level slightly differs between the tools because some of them offer to directly
create instances of deployment artifacts, where the respective instance specification assigned
with a classifier is generated automatically, i. e., without additional user interaction. Regarding
multiplicities at the extensional level, only Enterprise Architect supports them by default. Most
of the tools lack cloud-based refinement support for UML deployment models. Only Rational
Software Architect introduces a cloud node concept which is resembled by CAML’s cloud node.
This emphasizes the value of CAML not only to leverage the refinement of deployment models
towards a cloud environment but also as a bridge from UML to TOSCA. Finally, even though
this evaluation focuses on UML, it is worth noting that Enterprise Architect supports describing
and analyzing cloud environment topologies as part of the service-oriented modeling framework
(SOMF)1.

7.2 Quality evaluation

As UML profiles are already offered by current modeling tools, we investigate their quality in
comparison with profiles automatically generated by CAML. Then, we turn the focus on the
quality of model patching. In fact, we investigate whether it is equally effective compared to
completely re-executing evolved transformations on existing output models. In order to conduct
the case studies, we follow the guidelines of Roneson and Hörst [RH09].

7.2.1 Comparison of UML profiles

As UML profiles are already offered by current modeling tools, the aim of this case study is to
investigate their quality in comparison with profiles automatically generated by CAML. For that
reason, we conduct a positivist case study [Lee89] based on real-world Java libraries. We evaluate
the commonalities and differences between generated profiles and profiles used in practice with
the goal to answer the following research question.

Quality – Research question 1: How is the quality of UML profiles automatically generated
from annotation-based Java libraries compared to UML profiles used in practice?

In order to answer this research question, we define the requirements of the case study, briefly
mention the used Java libraries, and specify the measures based on which the comparison is
conducted. Then, we discuss the results of our study not only from a syntactic perspective, but
also from a semantic one. The rationale behind this two-step approach is that even though a
syntactical matching process for comparing the profiles provides already valuable results, some
interesting correspondences may still be uncovered because of potential syntactical and structural

1SOMF: http://www.sparxsystems.com/somf

151

heterogeneities [WKK+10] between the compared profiles and the conservative matching strategy
applied for the syntactical comparison.

Case-study design

To conduct this study, the source code of Java libraries that exploit annotations is required.
Furthermore, we require existing profiles that claim to support the selected Java libraries on the
model level. To accomplish an appropriate coverage of different scenarios, the selected Java
libraries ideally comprise different intrinsic properties with respect to the design complexity
and exploited language elements. Unfortunately, profiles specific to Java libraries in reasonable
quality are rarely available. Consequently, in the process of selecting the Java libraries for this
study, we were also confronted with the actual offering of modeling tools. IBM’s Rational
Software Architect (RSA) is obviously close to CAML and offers several profiles of well-known
Java libraries mainly for code generation purposes. Thus, we conducted this study by relying on
profiles of RSA in version 8.5.1. We selected four established Java libraries for which the source
code is available and a corresponding RSA profile in the same major version is offered: JPA, EJB,
Struts2 and Hibernate3. RSA offers them in a UML standard-compliant way. Consequently, we
could directly compare them without an intermediate conversion step.

Case-study measures

The measures used in the case study are based on model comparison techniques [KDRPP09].
Thus, we are interested in equivalent elements that reside in our generated profiles and in the RSA
profiles, elements that reside in both solutions but still show differences in their features, and
elements that are only available in one of the compared solutions. The measures for estimating
the quality of the generated profiles are collected in a two-step matching process. While the first
step automatically collects measures based on syntactic model comparison, the second step relies
on manually processing differences produced in the first step to deal with semantic aspects.

In the syntactic model comparison, we compute the following measures for certain model
elements. To determine element correspondences, we employ as matching heuristic name
equivalence, i. e., only if two elements have completely the same name, they are considered to be
corresponding. If an element has no name, such as the Extension relationship, it is considered
that the elements are corresponding if their source and target elements correspond. Finally, fine
grained comparison of the feature values for the given elements is performed. Regarding model
elements, we set the focus on (i) Stereotypes that are common to both and unique either to
CAML or RSA, (ii) differences regarding the Extensions of common Stereotypes, and (iii)
differences regarding the Properties such Stereotypes cover.

In the semantic model comparison, we take the syntactical differences as input and aim
at finding additional correspondences between elements which are hardly explored by a pure
syntactic comparison due to the conservative matching strategy. We investigate unmatched
elements, especially stereotypes, in our generated profiles and in the RSA profiles, and reason
about possible element correspondences beyond String equivalences. Finally, in the semantic

2Struts: http://struts.apache.org
3Hibernate: http://hibernate.org/orm

152

processing, we further evaluate the correspondences found in the first phase due to the potential
syntactical and structural heterogeneities.

Results

We now present the results of applying Jump to the selected Java libraries and compare them
to the profiles offered by RSA. The absolute number of generated stereotypes by Jump and the
provided ones by RSA are depicted in Figure 7.1.

Figure 7.2 summarizes (i) the number of stereotypes generated by Jump but not covered by the
RSA profiles, (ii) the number of stereotypes that are exclusively covered by the RSA profiles, and
(iii) the number of stereotypes that are common to both. These results include correspondences
between stereotypes detected throughout the syntactic and semantic comparison. For instance,
the EJB profile of RSA covers stereotypes that refer to the @Local and @Remote annotations of

0

20

40

60

80

100

120

EJB Hibernate JPA Struts

St

er
eo

ty
pe

s

JUMP RSA

Figure 7.1: Absolute number of Stereotypes

0

20

40

60

80

100

120

EJB Hibernate JPA Struts

St

er
eo

ty
pe

s

Unique to JUMP Unique to RSA Common

Figure 7.2: Comparison of Stereotypes

153

0

10

20

30

40

50

EJB Hibernate JPA Struts

Ex

te
ns

io
ns

Missing in JUMP Missing in RSA More Specific in RSA

Figure 7.3: Comparison of Extensions

the EJB library, though their signature additionally contains the substring “Interface”. Another
example refers to the class QueryHint in the JPA profile of RSA, which is in fact an annotation
type in the JPA library. In our solution, the QueryHint is represented by a stereotype even though
it is also valid to use a class instead, because the QueryHint cannot actually be applied, but can
rather only be used inside of another annotation. Although some stereotypes in the set of common
ones show differences regarding the meta-classes they extend, we granted them to be equal if
the extended meta-classes are related by a generalization relationship. We encountered this case
in the EJB and the JPA library with respect to extensions of the meta-classes Type and Class.
Stereotypes generated by CAML extend the more general meta-class Type because the scope
of Java’s element type Type also covers Enumeration, Interface and AnnotationType in
addition to Class.

0

10

20

30

40

50

60

70

EJB Hibernate JPA Struts

Pr

op
er

tie
s

Missing in JUMP Missing in RSA Different Type in RSA

Figure 7.4: Comparison of Properties

154

The comparison regarding extensions of stereotypes common to both Jump and RSA is summa-
rized in Figure 7.3. In a few cases, the RSA profiles comprise extensions to the UML meta-class
Association to allow stereotypes on associations between elements rather than on properties
contained by associations. Although both modeling variants are valid, we adhere to the second
one as it is more accurate with respect to the target specifications of the original annotation type
declarations.

Finally, in Figure 7.4, the differences regarding the properties of common stereotypes are
presented. Except for the JPA profile, we cover all stereotype properties of the RSA profiles.
Consequently, our profiles are more complete. The main reason for missing properties in our JPA
profile seems to be that RSA provides additional properties for code generation purposes, but
these properties are not covered by the JPA library.

Discussion

In this study, we have demonstrated that automatically generated UML profiles from Java libraries
comprise a more comprehensive set of stereotypes and features compared to profiles used in
practice for the purpose of supporting such libraries. Clearly, the purpose of the developed profiles
plays an important role. From a forward engineering perspective, one may argue that the set
of stereotypes, which is actually supported by the accompanying code generators is reasonable
to capture on the model level. In fact, RSA offers code generation capabilities specific to the
profiles we have evaluated in this study. However, for unsupported annotations, which have no
corresponding stereotypes, code generators may only produce program code by conventions
without allowing engineers to intervene in this generation process at the modeling level. From a
reverse engineering perspective, we would lose relevant information on the model level if offered
profiles provide less capabilities compared to the programming level, which is, however, the case
for RSA profiles. Hence, with a fully automated approach, the quality of current profiles can
be improved by providing more complete stereotypes that precisely capture the intention of the
original annotation types in terms of target definitions, member declarations and return values of
such members.

Threats to validity

There are two main threats that may jeopardize the internal validity of this study. First, we
consider only profiles from RSA. The main reason for this procedure is that RSA applies a similar
approach as Jump and offers specific UML profiles for Java libraries. Furthermore, RSA offers
standard-compliant UML profiles that conform to the same UML 2 metamodel implementation
as used in CAML. Second, it may be possible that we missed correspondences between elements
of the profiles involved in the study. Several kinds of heterogeneities [WKK+10] exist that are
real challenges for model matching algorithms and, thus, may affect the results of our study.
However, by applying a two-step matching process which includes a syntactic as well as semantic
comparison phase, we tried to minimize the possibility of missing correspondences as a result
of different naming conventions and modeling styles. While in the first phase we used a quite
conservative matching strategy to avoid false positives, we applied a rather liberal strategy in the
second phase to avoid losing potential correspondences. Concerning external validity, CAML

155

sets the focus on Java annotations. Many libraries embrace them and real-world cases provide
validity for annotated Java code [PBMH12]. However, we cannot claim any results outside of
Java.

7.2.2 Effectiveness of model patching

To evaluate model patching, we investigate the Java2UML model transformation for which several
well-documented evolutions were performed in the context of the ARTIST project. The revised
transformations serve as basis to generate patch transformations. Both of them are executed for
propagating the respective transformation changes to output models. They are compared with the
goal to answer the following research question.

Quality – Research question 2: Is a patch transformation equally effective as a revised trans-
formation for which it was generated?

In order to answer this research question, we briefly introduce the main artifacts involved in the
case study and specify the measures based on which the comparison is conducted. Thereafter, we
discuss the results of our study. In contrast to the previous case study on the quality of automati-
cally generated UML profiles, a syntactical matching process for comparing the produced output
models of the patch transformations and revised transformations is sufficient as syntactical and
structural heterogeneities are not expected.

Case-study design

To conduct this case study, input models for the Java2UML transformation are required. We
selected the PetApp and a framework that was of high interest in the context of the ARTIST
framework, EclipseLink4. To generate the respective Java models for the PetApp and EclipseLink,
we employed MoDisco. We selected six different revisions of the Java2UML transformation that
have been performed throughout its development to cover the presented change types and the
core effects of patch transformations. Based on these revisions, we generated the corresponding
patch transformations. In a first step, we executed both the revised transformations and the
generated patch transformations. The produced output models of the transformations are the
basis to investigate the effectiveness of patch transformations compared to their corresponding
revised transformations. Then, in a second step, we passed the respective pairs of output models
to EMF Compare for automating the comparison task. Clearly, the diff model computed by EMF
Compare needs to be empty to show that the produced output models are equal. It is important to
note that the element identifiers can be different in the output models as patch transformations
preserve them while they are newly produced if revised out-place transformations are re-executed.

Case-study measures

The measures used in the case study are once again based on syntactic model comparison
techniques. Also in this case study, we employ name equivalence to determine whether two

4EclipseLink: www.eclipse.org/eclipselink

156

elements correspond to each other. Elements without a name are deemed to equivalent if their
source and target elements correspond to each other. In contrast to the previous quality evaluation,
we do not focus on particular model elements in the comparison. Instead the emphasis is placed
on the equality of the output models produced by a revised transformation and the corresponding
patch transformation.

Results and discussion

Considering the output models of the revised transformations and the patch transformations,
their comparison shows that our approach produces effective results. In fact, the updates of our
patch transformations to the output models reflect exactly the intended effects of the revisions
performed to the original transformation. Clearly, as patch transformations only update the output
models based on an in-place execution strategy, identifiers of existing elements and possible
manual changes to elements that need not to be patched are preserved. As a result, the benefit
of model patching to guarantee a non-invasive update to the output models is in our case study
always given.

Threats to validity

We focused on the Java2UML case and applied patch transformations on small to large models
that represent real-world applications and frameworks. Concerning internal validity, we need to
further explore different combinations of changes and investigate if they can be correctly detected
and efficiently propagated. Concerning external validity, we cannot claim any results outside of
our performed case study concerning other transformation languages or model transformations.
The latter may be considered as subject to future work.

7.3 Performance evaluation

To report on the scalability of the CAML’s reverse-engineering capabilities, we measured the
execution times of applying the JavaCode2UMLProfile and JavaCode2ProfiledUML transfor-
mations to several libraries used in practice and real-world applications. Also, we report on the
speed-up that can be expected by applying model patching instead of completely re-executing
evolved transformation for propagating transformation changes to existing output models. Both
performance studies were conducted in Eclipse Luna 4.4.2 with Java 1.8 on commodity hardware:
Intel Core i5-2520M CPU, 2.50 GHz, 8,00 GB RAM, Windows 7 Professional 64 Bit.

7.3.1 Scalability of UML profile and profiled UML model generation

As some existing Java libraries and applications are relatively large, the goal of this performance
evaluation is to investigate whether CAML’s reverse-engineering capabilities scales for those
libraries and applications. In particular, we aim to answer the following research question.

Performance – Research question 1: Do CAML’s reverse-engineering capabilities scale for
Java libraries and applications?

157

In order to answer this research question, CAML’s transformation chains for UML-based reverse
engineering from Java artifacts were executed on a variety of libraries and applications. The
rationale behind our selection of libraries and applications is to consider small-sized to large-sized
libraries and applications with varying number of declared and applied stereotypes. We collected
all measured execution times along with some characteristics of the input and output models.

Library
Size of input /

output model
Applied
stereotypes

Execution
time in sec

EJB 10K / 1.5K 32 1.302
JPA 20K / 4K 84 2.165
Objectify 40K / 0,6K 20 1.442
Struts 90K / 2.5K 38 3.672
Hibernate 300K / 5K 108 12.042
Spring1 500K / 3K 63 9.463
EclipseLink 700K / 6K 127 19.193
1 Spring: http://projects.spring.io/spring-framework

Table 7.4: Performance measures: UML profile generation

Application
Size of input /

output model
Declared
stereotypes

Execution
time in sec

EJB 10K / 0.6K 5 (1 Profile) 1.647
Petstore (PS)1 10K / 1.5K 287 (12 Profiles) 3.977
DEWS-core2 30K / 3K 253 (2 Profiles) 2.179
Struts 90K / 20K 753 (2 Profiles) 8.447
Findbugs3 100K / 50K 1808 (3 Profiles) 22.267
Spring 500K / 90K 7973 (3 Profiles) 50.909
EclipseLink 700K / 200K 7117 (3 Profiles) 177.978
1 Petstore: http://oracle.com/technetwork/java/index-136650.html
2 DEWS-core: A component of the Distant Early Warning System

(DEWS), a use case of the ARTIST project
3 Findbugs: http://findbugs.sourceforge.net

Table 7.5: Performance measures: Profiled UML model generation

Results

Tables 7.4 and 7.5 summarize our obtained results. We focus on the involved artifacts and their
characteristics mainly for the purpose of providing an explanation for the increasing execution
times.

158

1. The number of elements in the intermediate Java model, i. e., the input of the transforma-
tions, and the produced UML profile / model, i. e., the output of the transformations

2. The number of declared and applied stereotypes
3. The measured execution times

Two results are accompanied with scatter plots, see Figures 7.5 and 7.6, which show the ratio of
model size and execution time for UML profile generation and profiled UML model generation,

EJB

JPA

Objectify

Struts

Hibernate

Spring

EclipseLink

0

2

4

6

8

10

12

14

16

18

20

22

0 100 200 300 400 500 600 700

Ex
ec

ut
io

n
tim

e
in

 s
ec

Size of input model in K

EJB

JPA Objectify Struts

Hibernate

Spring

EclipseLink

0

2

4

6

8

10

12

14

16

18

20

22

0 1 2 3 4 5 6

Ex
ec

ut
io

n
tim

e
in

 s
ec

Size of output model in K

Figure 7.5: Ratio of model size and execution time for UML profile generation

159

EJB

PS

DEWS
Struts

Findbugs

Spring

EclipseLink

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600 700

Ex
ec

ut
io

n
tim

e
in

 s
ec

Size of input model in K

EJB
PS

DEWS
Struts

Findbugs

Spring

EclipseLink

0

20

40

60

80

100

120

140

160

180

200

0 20 40 60 80 100 120 140 160 180 200

Ex
ec

ut
io

n
tim

e
in

 s
ec

Size of output model in K

Figure 7.6: Ratio of model size and execution time for profiled UML model generation

respectively. The scatter plots include a linear regression curve to show the trend of increasing
execution time with respect to growing model size by considering both input and output model.

Discussion

Clearly, the size of the input models passed to the transformations as well as the size of the
produced output models has a strong impact on the execution time of the CAML tool as they
are traversed throughout the generation of profiles and profiled models. Regarding the UML

160

profile generation, the number of generated stereotypes is another main factor that impacts on
the execution time. Generally, the more stereotypes are generated, the more extensions to UML
meta-classes and features of these stereotypes need to be created. As a result, the number of
produced stereotypes has a strong impact on the size of the generated UML profile. For instance,
even though the JPA is compared to Objectify smaller in size, the execution time is higher because
a lot more transformation rules are applied when considering the number of declared stereotypes.
Similarly, the execution time of generating a profile for EclipseLink is twice as high as it is for
Spring, which can be explained by the major difference of the number of declared stereotypes,
i. e., 127 vs. 63.

Regarding the generation of profiled UML models, the more stereotypes from different UML
profiles are applied, the higher is the execution time. Similarly, the number of applied stereotypes
and their respective profiles influences the execution time. For instance, in the Petstore (PS)
application, stereotypes are applied from 12 different profiles, which explains the higher execution
time compared to DEWS-Core, even though the input model of the latter is larger in size.

Considering the measured results for Struts and Findbugs show the strong impact of the size
of the generated output model and the number of applied stereotypes on the execution time. Even
though the input models of Struts and Findbugs are almost similar in size, the execution time of
the latter is more than twice as high as of the former. This can be explained by the fact that the
output model and the number of applied stereotypes in the case of Findbugs is double in size
compared to Struts.

If the size of both input and output models is as large as it is in case of EclipseLink, the high
memory consumption and as a result the excessive use of garbage collection may also be an
additional factor that influences execution time. This is one reason why the execution time for
EclipseLink is above the overall estimated trend, see Figure 7.6.

Considering the execution time of the profiled UML model generation, it is generally higher
compared to profiles because the class structure of the former is much larger in size compared
to the latter. For instance, considering EclipseLink and the number of generated stereotypes
compared to classes the factor is almost 30.

7.3.2 Speed-up of model patching

To evaluate the performance of model patching, we measured the execution times of all the
revised and patch transformations involved in the quality evaluation (see Section 7.2.2) with the
aim to answer the research question as follows.

Performance – Research question 2: How is the speed-up of executing a patch transformation
compared to re-executing the respective revised transformation?

In order to answer this research question, we collected the respective execution times obtained
by conducting the quality evaluation of model patching. In the course of the quality evaluation,
we selected a small-sized application and a large-sized framework mainly for reasons of reusing
them also in the context of a performance evaluation.

161

Results

Table 7.6 summarizes the collected execution times of the revised and patch transformations. It
also provides the speed-up of model patching compared to a complete re-execution of revised
transformations. We placed the emphasis on the involved artifacts and their size as the latter
obviously influences the execution times.

Reference Appliction

(> 1000 Elements)
EclipseLink

(> 100.000 Elements)

 Transformation
Speed-Up

Transformation
Speed-Up

 Change Type Revised Patch Revised Patch

 MatchedRuleAddition 0,076 0,067 1,134 6,698 4,766 1,405

 MatchedRuleDeletion 0,057 0,014 4,071 6,114 1,417 4,315

 FilterModification 0,066 0,079 0,835 5,854 4,987 1,174

 OutPatternElementAddition 0,066 0,058 1,138 7,531 3,149 2,392

 BindingAddition 0,063 0,010 6,300 6,687 0,104 64,298

 BindingDeletion 0,064 0,009 7,111 6,882 0,058 118,655

 Table 7.6: Re-execution vs. patch execution (time measures in sec.)

Discussion

Considering the runtime efficiency of model patching, generally, the generated patch transfor-
mations execute less rules compared to the revised transformations. The number of required
rules of a patch transformation slightly varies depending on the considered change type. In our
case study, one up to six rules were required to build-up a patch transformation. Clearly, this
number increases if certain rules need to be re-executed as a result of revising another rule, e. g.,
inter-rule dependencies. Such dependencies lead to patch transformations covering not only
revised rules but also rules that are affected by the performed revisions, e. g., bindings, as shown
in Listing 6.3. Finally, the adaptation of the trace model requires also additional rules in the patch
transformation, e. g., when matched rules are added. While the number of rules has certainly an
impact on the execution time of patch transformations, our results show that their need to traverse
and query the traces of the original transformation produces an overhead compared to the revised
transformations. Still, in our case study, for the majority of patch transformations a speed-up can
be observed, as summarized in Table 7.6. In fact, only in one case, such a speed-up could not
be achieved as the input and output models of the reference application are rather small and the
inferred patch transformation for this case is more complex compared to other ones. However,
the benefit of patch transformations to guarantee a non-invasive update to the output models is in
our case study always given.

162

7.4 Practical relevance

To demonstrate the practical relevance of the proposed architecture style, we report on our experi-
ences of applying it in the context of an application modernization to the cloud that involves both
a reverse engineering and a forward engineering process. In doing so, we elaborate on the appli-
cation scenario motivated in Section 1.4, where a change of the data access platform is discussed
and provide insights into the transition of a JPA-based solution to an Objectify-based solution.
The Google Cloud Platform is considered as the deployment target of the modernized PetApp. It
allows entities to be retrieved not only by plain service classes but also via a REST-based client,
which basically resembles Google’s Cloud Endpoints service5 (cf. e. g., [EIG+15]).

To carry out the transition towards the cloud-based solution we apply Kazman’s “horseshoe”
in light of model-based engineering and cloud-oriented software modernization. As a result of
applying advanced techniques of model-based engineering, we reverse engineered a platform
and environment-independent domain model in a quality that allowed us to directly refine it
towards the target platform and environment. The refined domain model is passed to a code
generation facility capable to automatically produce the complete cloud-based solution. In this
modernization scenario we particularly emphasize the benefit of annotation-based modeling to
improve the quality of the reverse engineered domain model and to generate model artifacts that
could have hardly been generated otherwise. Based on our insights gained from the outlined
modernization scenario, we aim to answer the research question as follows.

Practical relevance – Research question 1: How can engineers benefit from CAML’s architec-
ture style by applying it in a modernization scenario?

In order to answer this research question, we apply the modernization process introduced in
Figure 3.3. Most of the activities in this process are supported by dedicated transformations.
They come with CAML. To get an understanding of the PetApp’s domain model, several trans-
formations are applied to the application code and intermediate models to ultimately obtain
a UML-based representation of the domain model. As a target cloud environment, we select
Google’s Cloud Platform, which obviously influences the adaptations we must perform. In
our modernization scenario, the PetApp domain model is adapted towards an Objectify-based
solution. In addition, a REST-based client is provided to allow accessing entities via service
endpoints. To prepare the deployment of the modernized PetApp CAML’s cloud library and
profile is employed. As a result, deployment model of the PetApp can directly be refined towards
the Google Cloud Platform by applying stereotypes of the respective profile. The deployment
model basically describes the desired state of the application provisioning, which is executed
in the course of the last activity of the modernization process. This activity is supported by a
transformation of the deployment towards a TOSCA topology template that in turn is passed to a
TOSCA-compliant provisioning engine. A high-level overview of the modernization roadmap is
given in Figure 7.7. It relates all the code, model, and transformation artifacts involved in our
modernization scenario.

5Google Cloud Endpoints: https://cloud.google.com/appengine/docs/java/endpoints/

163

Annotation-based
slicing & analysis

Objectify- & Rest-
based refinement

JavaCode2
UMLLibrary

JavaCode2
UMLProfile

JavaCode2
ProfiledUML

ProfiledUML2
JavaCode

ProfiledUML2
SlicedUML

UML2
ProfiledUML

CAML2
TOSCA

Modernized
Pet App

Pet App
Slice

Pet
App

Application
code &

libraries

Modernized
application

code

Topology
Template Transition

Application
libraries

«deploy»

«import»

1

2

3

4

Figure 7.7: Modernization roadmap to the cloud

7.4.1 Reverse engineering process

Considering the first step in the reverse engineering process (see 1 of Figure 7.7), a UML model
that captures the complete PetApp from a structural perspective is generated. Moreover, Java
libraries are reverse engineered into corresponding UML libraries and UML profiles as they enable
succeeding transformations to exploit information that is specific for the current environment or
platform. They can be exploited to provide abstractions over the initially generated models that
are usually specific to a platform, e. g., Java and libraries provided for it such as JPA. Moreover,
we have also discussed their usefulness for improving the quality of a reverse engineered domain
model.

Listing 7.1: Relationship between Category and Product

/ ∗ Category ∗ /

package domain ;

import javax . persistence . ∗ ;
import java . util . ∗ ;

@Ent i ty (name = "Category")
p u b l i c c l a s s Category {

164

@Id p r i v a t e Long id ;
@OneToMany (mappedBy = "category" , cascade = CascadeType . ALL) p r i v a t e List<

↪→Product> products ;
}

/ ∗ Product ∗ /

package domain ;

import javax . persistence . ∗ ;

@Ent i ty (name = "Product")
p u b l i c c l a s s Product {

@Id p r i v a t e Long id ;
@ManyToOne p r i v a t e Category category ;

}

/ ∗ Catalog Service ∗ /

package service ;

import javax . persistence . ∗ ;
import java . util . ∗ ;
import domain . ∗ ;

p u b l i c c l a s s CatalogService

p r i v a t e EntityManager em ;

p u b l i c Category findCategory (Long categoryId) {
if (categoryId == null) throw new ValidationException ("Invalid category id") ;
re turn em . find (Category . c l a s s , categoryId) ;

}

p u b l i c Product findProduct (Long productId) {
if (productId == null) throw new ValidationException ("Invalid product id") ;
re turn em . find (Product . c l a s s , productId) ;

}
}

For instance, the profiled model represented in Figure 7.8 captures the two entities and the
service class to retrieve them of Listing 7.1. This reverse-engineered model is specific to the
Java platform as the products property and both methods findAllCategories and find-
AllProducts are of type java.util.List. Furthermore, it is specific to JPA because all the
applied stereotypes refer to annotations types captured by the JPA.

In the second step of the reverse engineering process (see 2 of Figure 7.7), the domain
model is sliced from the previously produced model of the PetApp. All model elements that do
not denote entities are withdrawn, thereby only persistable entities are retained. Furthermore,
Java-specific types are turned into corresponding UML concepts. Considering the slicing part, we
have implemented an annotation-based slicer where the point of interest is a set of stereotypes,
e. g., Entity and Embeddable. They are captured by a slicing criterion according to which
model elements are either withdrawn or retained. In case of our modernization scenario, model
elements to which at least one of the stereotypes is applied are considered as part of the computed
model slice. Furthermore, structural features comprised by model elements of the slice are also
completely retained. The computed model slice is presented in Figure 7.9 (see Figure B.3 of

165

«Entity»
Category

«Id» - id: Long [0..1]
«OneToMany»{mappedBy = category,
 cascade=CascadeType.ALL}
- products: List<Product>

«Entity»
Product

CatalogService
+ findAllCategories (): List<Category>
+ findAllProducts(): List<Product>

domain

service

«Id» - id: Long [0..1]
«ManyToOne» - category: Category

«Profile»
JPA

«apply»

«Library»
java.util

«import»

«import»

«import»

Figure 7.8: Reverse engineered PetApp model specific to the Java and JPA platform

Appendix B for the complete domain model of the PetApp). To improve the quality of the sliced
platform-independent domain model, stereotypes applied to persistable elements are analyzed
before they are withdrawn.

Category

- id: Integer[0..1] {id}
Product

- id: Integer[0..1] {id}
[0..*]

- products

domain
«Library»

UML
Primitives

Types

«import»

Figure 7.9: Platform-independent domain model of the PetApp

For instance, the composition relationship between Category and Product of the sliced
domain model has been generated on the basis of the @OneToMany stereotype applied to the
products property of the Category class in the platform-specific model (see Figure 7.8). The
selected CascadeType allows the composition relationship to be derived where its member ends
are determined by the property to which the @OneToMany stereotype is applied and the property
assigned to the mappedBy element. Without this detailed consideration of the @OneToMany
stereotype, we would at best be able to generate properties with the respective types, i. e.,
Category and Product. Concerning Java-specific types, we mainly turned collection types of
properties into multi-valued properties and primitive types known from Java into primitive types
offered by UML.

166

7.4.2 Forward engineering process

Based on the sliced domain model, we started the refinement towards the target platform and
environment, which is part of the forward engineering process. In fact, we produced two different
platform-specific models in the course of this process, one of which capturing the “front-end”.
It describes the API that is used by the REST-based clients. They manipulate entity instances
of the domain model. The second model refers to the “back-end”. It is specific to Objectify.
The role of Objectify is to manage the entity instances in cloud datastore of the Google Cloud
Platform. Generally, client requests are delegated from the front-end to the back-end. In addition
to the front-end and back-end models, we also created the deployment model for the PetApp. We
started from an environment-independent deployment model and refined it towards the Google
Cloud Platform by applying the respective profile.

Generating front-end and back-end model

How the front-end and back-end model is generated from the platform-independent domain
model is outlined in Figure 7.10.

It shows the process and the main models, profiles, and libraries involved in the refinement.
The UML2ProfiledUML artifact in Figure 7.7 is in fact realized by several in-place transformations,
each of which supporting an activity of the refinement process. In the first step, service interfaces
and service methods are generated for the entities of the domain model to create, read, update,
and delete them. For instance, the CategoryService interface in Figures 7.11 and 7.12 is a
result of this first step.

Depending on whether the front-end CESM or the back-end CESM is generated, getter/setter
methods are generated either in a standard way or specific for Objectify. In case of generating the
back-end CESM, the EIDM is annotated with stereotypes of the Objectify profile and the Jackson
profile before concrete service classes for the service interfaces are generated. For instance,
an explicit composition relationship between two entities where the contained one cannot be
identified by a dedicated property indicates that the latter entity needs to be embedded by the
former entity. This embedding of entities can be expressed in Objectify via the Embed stereotype,
e. g., the Address domain class in Figure 7.11. Moreover, the Id stereotype is required for
generating the behavior of service methods where the identifier of an entity needs to be accessed,
e. g., the method findCategory(long entityId) of the service class CategoryService in
Figure 7.11. In cases of cyclic or bi-directional relationships between entities the stereotype
JsonIdentityInfo is required for instructing the serialization and de-serialization process as
part of a REST-based solution to turn bi-directional relationships into cross-references of a tree-
based structure as determined by JSON. Annotating the service interfaces with stereotypes of the
JAX-RS6 profile is a prerequisite for exposing them to clients. JAX-RS is a Java API for RESTful
web services. Moreover, these stereotypes are required to generate the behavior of the service
proxies as part of the front-end CESM. For instance, to correctly deal with the HttpResponse
object of the findCategory(long entityId) method in the CategoryServiceProxy, the
Path stereotypes applied to the service interfaces and service operations, and the stereotypes
determining the REST method need to be accessed.

6JAX-RS: https://jax-rs-spec.java.net

167

Generate
service interface

Generate
getter/setter

Annotate
domain
model

Annotate
service

interface

Generate
service
proxy

Generate
service
classes

[front-end] [back-end]

Generate
getter/setter
for Objectify

[front-end] [back-end]

Domain
model

Objectify
library

Objectify
profile

Jackson
profile

Objectify
library

JAX-RS
profile

Google
client
librar

Front-end
model

Back-end
model

Figure 7.10: Refinement of EIDM towards CESM

168

«model» domain

«Entity»
Order

«Id» - id: Long [1]

«Embed»
Address

[1] - deliveryAddress

[1..*]

- street: String [0..1]

«Entity»
OrderLine

«Entity, JsonIdentityInfo»
Product

«Entity, JsonIdentityInfo»
Category

«Id» - id: Long [1]

«Id» - id: Long [1]

«Entity»
Item

«Id» - id: Long [1]

- products [*] - item

- items

[*]

[1]

«Id» - id: Long [1]

- order
Lines

«Profile»
Objectify

«apply»

«Library»
java.lang

«import»

«Profile»
Jackson

«apply»

«Library»
Objectify

«import»

CategoryServiceImpl

+ findCategory(Long id): Category

«model» service

«Interface»
«Path, Produces, Consumes»

CategoryService

«Path»
value=CategoryService

«Produces»
value=[application/json]

«Consumes»
value=[application/json]

«POST, Path»{value=findCategory}
+ findCategory (Long id): Category

findCategoryBehavior=
return OfyService.ofy().load().
type(Category.class).filter("id", Id).first().
now();

«apply»

«Library»
java.lang

«import»

«Profile»
JAX-RS

«Library»
Objectify

«import»

Figure 7.11: Modernized back-end model specific to the target cloud environment

Having generated both the front-end CESM and the back-end CESM as a result of the above
refinement steps, the corresponding Java code can be produced from them. For that reason,
we have adapted the Java-based model transformer provided by Obeo Network mainly to
support (i) Stereotypes for which the corresponding annotations need to be produced, (ii)
OpaqueBehaviors that is used to generate method bodies, and (iii) ElementImports as they
indicate the required import statements of the Java code. Listing 7.2 shows the generated back-end
Java code for the Category domain class whereas in Listing 7.3 its front-end Java code is given.

169

«model» domain

Order

- id: Long [1]

Address

[1] - deliveryAddress

[1..*]

- street: String [0..1]

OrderLine

«JsonIdentityInfo»
Product

«JsonIdentityInfo»
Category

- id: Long [1]

- id: Long [1]

Item

- id: Long [1]

- products [*] - item
- items

[*]

[1]

- id: Long [1]
- order
Lines

«apply»

«Library»
java.lang

«import»

«Profile»
Jackson

«Library»
Objectify

«import»

CategoryServiceProxy

+ findCategory(Long id): Category

«model» service

«Interface»
«Path, Produces, Consumes»

CategoryService

«Path»
value=CategoryService

«Produces»
value=[application/json]

«Consumes»
value=[application/json]

«POST, Path»{value=findCategory}
+ findCategory (Long id): Category

«apply»

«Library»
java.lang

«import»

«Profile»
JAX-RS

«Library»
Google.client

«import»

ServiceProxy
+ makeRequest(path : String,
 httpMethod : String): HttpResponse

findCategoryBehavior=
try {
 HttpResponse response = this.
 makeRequest("/CategoryService/find
 Category", "POST", id);
 return response.parseAs(Category.class);
} catch (IOException e) { … }

Figure 7.12: Modernized front-end model specific to the target cloud environment

Listing 7.2: Generated back-end code for Category
/ ∗ Category ∗ /

package domain ;

import com . googlecode . objectify . ∗ ;
import com . fasterxml . jackson . annotation . ∗ ;

170

import java . util . ∗ ;
import domain . Product ;

@Ent i ty
@ J s o n I d e n t i t y I n f o (generator = IntSequenceGenerator . c l a s s , property = "@id")
p u b l i c c l a s s Category {

@Id p r i v a t e Long id ;
p r i v a t e List<Ref<Product>> products ;

}

/ ∗ CategoryService ∗ /

package service

import javax . ws . rs . ∗
import domain . Category ;

@Path (value = "CategoryService")
@Produces (value = {"application/json" })
@Consumes (value = {"application/json" })
p u b l i c interface CategoryService {

@POST
@Path (value = "findCategory")
p u b l i c Category findCategory (long id) ;

}

/ ∗ CategoryServiceImpl ∗ /

package service

import domain . Category ;
import service . CategoryService ;
import service . OfyService ;

p u b l i c c l a s s CategoryServiceImpl implements CategoryService {

p u b l i c Category findCategory (long id) {
re turn OfyService . ofy () . load () . type (Category . c l a s s) . filter ("id" , id) . first () .

↪→now () ;
}

}

Listing 7.3: Generated front-end code for Category
/ ∗ Category ∗ /

package domain ;

import com . fasterxml . jackson . annotation . ∗ ;
import java . util . ∗ ;
import domain . Product ;

@ J s o n I d e n t i t y I n f o (generator = IntSequenceGenerator . c l a s s , property = "@id")
p u b l i c c l a s s Category {

p r i v a t e Long id ;
p r i v a t e List<Product> products ;

}

/ ∗ CategoryService ∗ /

package service

171

import javax . ws . rs . ∗
import domain . Category ;

@Path (value = "CategoryService")
@Produces (value = {"application/json" })
@Consumes (value = {"application/json" })
p u b l i c interface CategoryService {

@POST
@Path (value = "findCategory")
p u b l i c Category findCategory (long id) ;

}

/ ∗ CategoryServiceProxy ∗ /

package proxy

import com . google . api . client . http . HttpResponse ;
import java . io . IOException ;
import domain . Category ;
import proxy . ServiceProxy ;
import service . CategoryService ;

p u b l i c c l a s s CategoryServiceProxy extends ServiceProxy implements CategoryService
↪→ {

p u b l i c Category findCategory (long id) {
try {

HttpResponse response = this . makeRequest ("/CategoryService/findCategory" , "
↪→POST" , id) ;

re turn response . parseAs (Category . c l a s s) ;
} catch (IOException e) {

/ / log error message
}
re turn null ;

}
}

Creating the deployment model

In addition to adapting the domain model of the PetApp towards Google’s key-value cloud
datastore, the components constituting the PetApp must be re-deployed on the cloud environment
of Google. The latter has been selected as the deployment target. We assume that the PetApp’s
components are currently deployed on an on-premise environment. For that reason, we take the
viewpoint of the application components and their deployment as depicted in Figure 7.13. It shows
the three main components of the PetApp and the manifestation of them by deployable artifacts.
The PetAdmin and PetStats components retrieve and manipulate data from the PetWeb component
via the generated REST-based client API. Furthermore, a possible on-premise deployment
model for the PetApp is presented. As expected, they are deployed on a Java-based platform
and a relational DBMS, which are in turn deployed on nodes with certain (virtual) machine
characteristics. The model elements of the PetApp on-premise deployment are instances of
the custom types defined in the context of the component viewpoint and the web deployment
library, respectively. Both the component model and the model library providing custom types
for deploying web applications are imported by the PetApp on-premise deployment topology.
Details about how the model library is actually defined are presented in Figure 2.2.

172

«ModelLibrary»
WebDeployment

«import»

:PetBusiness

«manifestation»

«component»
PetStats

«component»
PetAdmin

«use» «use»

«model» PetApp

«component»
PetWeb

«artifact»
PetManage

«artifact»
PetBusiness

«manifestation»

«manifestation»

:PetManage

containerKind=JEE

:AppContainer

Memory=2
CPU=1.7
localDisk=4
os=Linux

:OnPremiseNode

«deploy»

«deploy»

containerKind=JEE

:AppContainer

Memory=2
CPU=1.7
localDisk=4
os=Linux

:OnPremiseNode

«deploy»

«deploy»

datastoreKind=relational

:Datastore

«deploy» «deploy»

virtualization=platform
scaling=Auto

«AppEngineService»
:ComputeService

«AppEngineService»
instance=GAEF1
platform=Java

virtualization=platform
scaling=Auto

«AppEngineService»
:ComputeService

«AppEngineService»
instance=GAEF1
platform=Java

«scalingConfiguration»
:CloudConfiguration

«ScalingConfiguration»
maxIdleInstances=3

datastructure=keyValue
consistency=strict

«appEngineDatastore»
:StorageService

:PetBusiness :PetManage

«deploy» «deploy»

cloudify

«ModelLibrary»
CloudLibrary

«import»

«Profile»
CloudProfile

«apply»

«import» «import»

«model» PetApp
cloud deployment

«model» PetApp
on-premise deployment

Figure 7.13: On-premise and cloud deployment model for PetApp

Now with the emergence of cloud services and the demand to exploit them, deployment models
must be expressive enough to capture those services. This is exactly the idea of CAML’s cloud
library and profiles. It is precisely because CAML is realized in terms of lightweight extensions
to UML. Its library and profiles are directly applicable to UML models and so to the modeled
components of the PetApp and the respective deployable artifacts. Considering them in the context
of PetApp’s cloud deployment topology, they are deployed on automatically scaled compute
services, whereas one of those compute services is capable to access the key-value cloud storage

173

for managing the application data in a strictly consistent way. The artifacts are directly deployed
on the compute services because they operate at the platform-level. Google’s App Engine service
provides compute services with fully managed platforms. By applying CAML’s cloud profile,
environment-specific information can be expressed on the model level. The applied stereotypes
basically enable the refinement of an environment-independent deployment model towards an
environment-specific model. In case of our modernization scenario, stereotypes are applied to
refine the deployment model towards concrete cloud services offered by Google. As a result, both
the modeled compute services refer to a Java-based AppEngineService with F1 instance types.
The configuration attached to these compute services constrains the maximum number of idle

CSAR

Types
<xs:complexType name="tAESProperties">
 <xs:element default="Java" name="platform" type="PlatformKind"/>
</xs:complexType>

<xs:simpleType name="PlatformKind">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Java"/>
 <xs:enumeration value="PHP"/>
 <xs:enumeration value="Python"/>
 </xs:restriction>
</xs:simpleType>

<xs:element name="AESProperties" type="tAESProperties"/>

Definitions

<NodeTemplate name="App Engine Service" type="ns2: AppEngineService">
 <Properties>
 <ns2:AESProperties xmlns:ns2="..." xmlns="…">
 <platform>Java</platform>
 </ns2:AESPropertiess>
 </Properties>
</NodeTemplate>

<NodeType name="AppEngineService">
 <DerivedFrom typeRef="ns1:GAEComputeService"/>
 <PropertiesDefinition element="tns:AESProperties"/>
 <Interfaces>
 <Interface name="http://docs.oasis-open.org/tosca/ns/interfaces/lifecycle">
 <Operation name="start"/>
 <Operation name="stop"/>
 </Interface>
 </Interfaces>
</NodeType>

Figure 7.14: CSAR for PetApp

174

compute services. The UML deployment model refined by CAML can now be translated into
a functionally equivalent TOSCA topology template. This topology is enriched by Winery and
packaged into a CSAR, which can be consumed by the OpenTOSCA container. An excerpt of
the CSAR is depicted in Figure 7.14. It shows the definition of the AppEngineService type
assigned to a template. Properties of the AppEngineService type are captured by an XML
schema to support their validation when they are used.

7.4.3 Synopsis

We have shown the transition of a non-cloud software into a cloud software with a particular
focus on modernizing the data access layer. As a result of the reverse engineering process we
obtained an environment-independent domain model from which we generated environment-
specific models for the back-end as well as the front-end of the REST-based solution hosted on
the Google Cloud Platform, where Objectify manages the access to the cloud datastore. Table 7.7
gives some quantitative characteristics of the PetApp we dealt with in the model refinement and
code generation.

 Model element types

Number of model elements

PSM1 PIM2

CPSM3

 Front-end Back-end

 reused generated reused generated

 Classes / Interfaces / Enumerations 39 9 9 13 - 22

 Properties 157 49 40 5 - 40

 Operations 263 - 85* 74* - 153*

 Annotations 287 - - 78 - 95

1PSM …Platform-specific model
2PIM … Platform-independent model
3CPSM … Cloud platform-specific model
*including behavior

Table 7.7: Quantitative characteristics of the generated UML models

The PSM reflects its structural elements, whereas the PIM captures the essence of the entities
without operations to access their properties as these operations may not fit the requirements of
the target environment anyhow. Finally, the CPSM’s produced for the front-end and the back-end
represent the structure as well as the behavior of the cloud-based solution. We distinguish model
elements that can be reused from the original implementation from the model elements that are
generated as part of the forward engineering process. In fact, the domain classes of the original
implementation can obviously be reused for the front-end. Service classes are newly generated as
they need to be appropriately annotated and the service proxies have not existed in the original
implementation. Regarding the back-end, all the artifacts are newly generated as the change
from JPA to Objectify requires modifying the domain classes and the service classes to access

175

them. Finally, Table 7.8 summarizes the benefits of annotation-based modeling in the context
of our modernization scenario. While the presented stereotypes were automatically applied in
our modernization scenario by model transformations, other stereotypes may directly be applied
by engineers in a manual refinement step. For instance, Objectify provides annotations to index
properties of entities or cache retrieved entity instances. As all the annotations of Objectify are
captured by respective stereotypes on the model level, the engineers have full control over such
platform-specific decisions at any phase of the forward engineering process.

 Profile Stereotype Benefit

Objectify

Entity Indicates entities that need to be persisted
 Allows the entity registry to be generated

Id Indicates properties that idendity domain classes

 Allows the behavior of service classes to be generated

 Jackson JsonIdentityInfo Allows cross-references to be produced

JAX-RS

Path Allows the URL of the service request to be generated

Post, Put, Delete Indicates the employed REST method

 Allows the service request to be completed

CAML
AppEngineService,

AppEngineDatastore,
ScalingConfiguration

 Allows the refinement towards a target cloud environment
 Allows generation of useful TOSCA topology template

Table 7.8: Benefits of annotated models in the modernization scenario

176

CHAPTER 8
Conclusion

In this thesis, we presented four major contributions to realize a UML-based architecture style for
cloud application modeling. In the following, we summarize the contributions presented in this
thesis along with some conclusions drawn from their evaluation. Thereafter, we give an outlook
on possible future directions that build upon the research conducted in the course of this thesis.

8.1 Summary

Scientific contribution 1: Systematic review of cloud modeling languages. Several languages
for modeling cloud applications have been proposed since 2010. As the cloud computing domain
is highly diverse, those languages pursue different goals and provide a complementary set of
modeling concepts to represent certain aspects of cloud applications. Existing cloud modeling
concepts are in fact highly relevant for realizing cloud-specific extensions to UML. Thus, we sys-
tematically reviewed existing cloud modeling languages (CMLs). For that reason, we introduced
a common classification and comparison framework not only to support cloud users in selecting
the CML which fits the needs of their application scenario but also to investigate characteristics
and concepts of current CMLs. The results of this systematic review and the investigation of
major cloud environments provided the necessary basis to derive a core set of features inherent to
the cloud computing domain. The presented cloud-specific extensions to UML are grounded in
this set of features. Furthermore, the contributions presented in this thesis address some of the
interesting findings of the conducted CML review. We observed that current CMLs pay only little
attention to standard modeling languages and the exchange of models between them requires
manual effort for replicating those models in the different languages. In the course of this thesis,
we selected UML as the base language on top of which we developed cloud-specific model-
ing concepts and proposed an automated approach that allows engineers to combine standards
emerged in the area of cloud computing and software engineering: TOSCA and UML. Another
observation shows that existing CMLs have placed the greatest emphasis on modeling, generation,
and provisioning of cloud applications and the least on analysis and refinement. In this thesis,

177

we exploited TOSCA-based tools for cloud application provisioning and placed emphasis on
realizing flexible cloud-specific refinement support for high-level architecture models.

Scientific contribution 2: Cloud application modeling. In order to support architecture mod-
eling for cloud applications, we presented the cloud application modeling language CAML, a col-
lection of libraries and profiles realized on top of UML. CAML supports a flexible semi-automatic
refinement process from high-level architecture models down to a concrete implementation of
them. In this respect, we placed emphasis on the Java platform for which libraries and profiles can
be generated automatically by a transformation chain of CAML toolset. In addition to platform-
specific libraries and profiles, CAML provides a set of profiles that capture cloud services offered
by modern cloud environments. They enable the refinement of environment-independent de-
ployment configurations towards a selected target cloud environment. Environment-independent
deployment configurations can be represented by means of CAML’s cloud library, which provides
common cloud modeling types. They are abstractions over services of the current major cloud
environments, i. e., Amazon AWS, Google Cloud Platform, and Microsoft Azure. Combining
the library approach with the notion of platform and environment-specific UML profiles results
in a powerful architecture style for cloud application modeling. In the evaluation of CAML, we
investigated the quality of automatically generated UML profiles from Java libraries compared to
existing UML profiles used in practice. Our findings show that automatically generated UML
profiles comprise in general a more comprehensive set of stereotypes and features compared to
currently existing profiles for Java libraries. We demonstrated the practical relevance of CAML
for engineers by means of a modernization scenario to the cloud. A considerable part of the
modernized application code and a complete TOSCA-based representation of the respective
application deployment configuration could be automatically generated from architecture models
expressed in UML and refined by CAML.

Scientific contribution 3: Cloud application provisioning. Deployment configurations based
on CAML specify the desired state of the application provisioning. As automated cloud applica-
tion provisioning and management is supported by TOSCA-compliant runtime containers such
as OpenTOSCA, we elaborated an effective mapping between UML and TOSCA where CAML
provides the cloud-specific features required to produce appropriately typed TOSCA topology
templates. To automate the translation from UML to TOSCA, we implemented the Caml2Tosca
model transformer. It is grounded in the proposed conceptual mapping between the two languages
and leverages a framework for architecture modeling and application provisioning based on UML
and TOSCA. It paves the way for a continuous cloud modeling support and allows engineers
to carry out the provisioning of cloud applications. As the entry point to the framework is an
architecture model refined by CAML, we investigated current industrial and open-source UML
tools and found that they lack cloud-specific refinement support for deployment configurations.
At the same time, they are capable of adopting CAML, which shows the practical value of
Caml2Tosca for engineers.

178

Scientific contribution 4: Cloud model patching. As model transformations play an important
role to automate refinement and translation processes, we proposed an approach for effectively
maintaining transformations and their produced artifacts. In particular, we placed emphasis on the
co-evolution of existing models with changes to transformations. To accomplish this co-evolution,
we proposed model patching. It exploits the benefits of incremental transformation execution to
propagate transformation changes to existing models, such that previous transformation results
are updated instead of discarded. As a result, model patching is non-invasive with respect to
change propagation. Furthermore, it is usually faster compared to a complete transformation
re-execution because model patches for a typical evolution scenario comprise only a small portion
of the rules covered by an evolved transformation. The evaluation of model patching shows that it
is equally effective compared to completely re-executing evolved transformations. In general, our
findings show that the updates to the output models by model patching reflect exactly the intended
effects of the changes in the evolved transformation. When comparing the execution times of
the model patching approach and the complete re-execution of an evolved transformation, our
results show a speed-up for the majority of studied cases. In recent work, we have exploited
techniques of model patching for mutation-based testing of model transformations [TBBW15].
To reduce the computational costs of executing model transformation mutants, we generated
patch transformations for the mutated parts of the model transformation. In this way, we could
avoid re-executing complete model transformations that were mutated on a certain statement.

8.2 Outlook

Improving the integration between programming and modeling. With CAML’s support for
platform-specific libraries and profiles, we proposed an approach to close the gap between pro-
gramming and modeling concerning annotation mechanisms. Still, a number of future challenges
remain to further integrate programming and modeling. For instance, some interesting differences
between Java annotations and UML profiles remain to be explored. On the UML side, inheritance
between stereotypes is possible, a concept that is not supported by Java for annotation types.
Thus, the design quality of automatically generated UML profiles can be enhanced by exploiting
inheritance. On the Java side, retention policies determine at which stages annotations are ac-
cessible. UML stereotypes are considered only at design-time. Therefore, an interesting line of
future work is to support stereotype applications also during run-time, which becomes especially
interesting for executable models, a research area that is currently experiencing its renaissance
by the emergence of the FUML standard [OMG16] and recent work in this context. Other
programming languages such as C# and Python also support annotations to program elements.
Investigating how their concepts, i. e., attributes and decorators, correspond to UML profiles
appears also desirable.

From technology-specific to technology-independent profiles. All the profiles provided by
CAML for the Java platform are specific to libraries and their technology-specific concepts. For
instance, a UML profile is available for JPA which supports relational datastore solutions. Another
example is Objectify which supports key-value datastore solutions. Obviously, both profiles
deal with data persistence even though for different technologies. While this is beneficial to

179

better understand the various technologies for data persistence, it also enables technology-specific
refinement for architecture models. This paves the way for generating highly effective platform
and technology-specific application code. Moreover, full control over platform and technology-
specific decisions can be given to engineers as those decisions are explicitly manifested by the
refined model. Still, the need for technology and platform-independent profiles appears obvious
as they would allow engineers to express design decisions by means of more generic concepts.
They would be retained even if the technology and platform is changed. Generalizing technology
and platform-independent profiles from the existing set Java-based profiles provided by CAML
is hence of high interest. Ideally, they provide potential mappings to existing technology and
platform-specific profiles as a basis for implementing dedicated transformations.

Maintaining environment-specific profiles. CAML enables automated generation of platform-
specific profiles from programming libraries. Whenever those libraries change, the corresponding
UML profile can automatically be adapted, e. g., by model patching. In contrast to the platform-
specific profiles, CAML’s profiles dedicated to cloud environments have been developed largely
in a manual process. As a result, the environment-specific profiles provided by CAML need to be
manually maintained. For instance, if a new cloud service is offered by a cloud environment, it
needs to be added to the respective profile. Similarly, if existing cloud services change, the respec-
tive profiles need to be updated according to those changes. Automating the manual processes
required for maintaining CAML’s environment-specific profiles would thus highly desirable given
the fact that some aspects of cloud services may change quite frequently, e. g., their costs. One
possibility to automatically gather these cloud service offerings is to apply web information
extraction techniques. Another possibility is to exploit APIs available for cloud environments
or existing cloud programming libraries. For instance, Amazon provides service endpoints for
programmatically retrieving prices of cloud services. Furthermore, jclouds could be used to
collect available services of various cloud environments in a programmatic way.

Simulation of deployment configurations. A deployment configuration created in UML and
refined by CAML captures design-time artifacts that prescribe the desired state of the application
provisioning. It is primarily used as input to a model-based provisioning process supported by
TOSCA and respective tools. Cloud services are provisioned according to the modeled deploy-
ment configuration and application components manifested in form of deployable artifacts are
distributed on top of those services as specified by deployment relationships. However, predicting
non-functional properties such as costs and performance before the actual application provision-
ing is carried out seems of high interest. For instance, evaluating the cost-effectiveness of moving
an on-premise application to the cloud before possible adaptations to application components
are performed appears desirable. The simulation of deployment configurations refined towards a
cloud environment could contribute to predict operational costs of certain cloud services. More-
over, it could support engineers to evaluate the effectiveness of defined elasticity rules before they
are applied to the running application. Providing simulation support for CAML-based deployment
configurations requires an operational semantics for UML’s deployment language in general and
the extensions provided by CAML in particular. A first promising step could be to explore fUML
as it can be used to define the operational semantics of MOF-based languages [MLWK13].

180

Model-based reactive provisioning. As a CAML-based deployment configuration captures
the desired state of the application provisioning, changes to it need to be propagated to the
provisioned cloud services and the application components deployed on top of them. For instance,
if a modeled compute service is replaced by another one for some purpose, e. g., to save costs or
increase performance, the corresponding running service instances need to be adapted according
to the changes in deployment configuration. Such an adaptation may require releasing certain
running service instances and enact the provisioning of other service instances. Re-executing
the complete provisioning process to accomplish the required adaptations appears however un-
favorable in particular if only some parts of the deployment configuration are concerned by a
change. Exploiting techniques from reactive programming could be promising to improve the
presented provisioning process based on UML/CAML and TOSCA. They could be used to realize
a non-intrusive propagation of deployment configuration changes to the services of the target
cloud environment. The latter would be the system that needs to react to events triggered by
changes to a deployment configuration. In addition to design-time aspects, the consideration of
run-time aspects could also be promising, as it would allow the representation and manipulation
of individual service instances on the model level.

Live model patching. Model patching exploits the benefits of incremental transformation
which has already been investigated and applied for propagating changes from input models
to output models, such that previous transformation results are updated instead of discarded.
Live transformation improves the change propagation between models because the effects of
changes to input models are instantly mapped to respective output models. This is accomplished
by preserving the transformation context and considering the execution of a transformation as
phases that are triggered whenever a model change is notified. In this sense, a live transformation
does not terminate but instead reacts to changes in input models. Model patching does currently
not support live transformation in the sense of dynamically re-executing rules of a model trans-
formation in memory, but rather generates a new patch transformation based on the diff of two
transformation versions. Producing this diff certainly leads to a computational overhead when
generating patch transformation. Moreover, in case the produced diff is not accurate enough, a
patch transformation is unnecessarily generated. Thus, avoiding the computation of the diff is of
high interest. Applying the idea of live transformation to model patching appears worthwhile
in several respects. Changes to transformations could be notified with the same mechanisms
used to notify changes of models because in MBE all artifacts can be considered as models. The
incremental transformation rule execution mechanisms could also be reused. However, if a rule
needs to be (re-)executed, adaptations according to our proposed taxonomy of change types and
co-changes are required.

181

APPENDIX A
Research prototypes

The research prototypes implemented in the course of this thesis are available under the Eclipse
Public License (EPL)1. They can be found at public github repositories.

CAML. Platform-specific libraries and profiles as well as the CAML tools can be found at:
https://github.com/alexander-bergmayr/jump
The CAML library and profiles for cloud environments can be found at:
https://github.com/alexander-bergmayr/caml

Caml2Tosca. The model transformer can be found at:
https://github.com/alexander-bergmayr/caml2tosca

Model patching. Patch transformations realized for the Java2UML case can be found at:
https://github.com/alexander-bergmayr/modelpatching

1EPL: http://www.eclipse.org/legal/epl-v10.html

183

https://github.com/alexander-bergmayr/jump
https://github.com/alexander-bergmayr/caml
https://github.com/alexander-bergmayr/caml2tosca
https://github.com/alexander-bergmayr/modelpatching

APPENDIX B
CAML and PetApp artifacts

«Stereotype»
CostComponent

currency:CurrenyKind [1]

EUR
USD
Hour
Day
Month
Year
KB
MB
GB
TB
PB
Percentage
Absolute
Operation
Query
Application
One-time

«Enumeration»
MetricKind

cost-
Component

«Class»
CloudService

«modelLibrary» CloudLibrary

«Stereotype»
CostPlan

«Stereotype»
FreeQuota

value:Real [1]
metric:MetricKind [1]

«Stereotype»
CompoundCosts

[1..*]

«Stereotype»
RunningCosts

«Stereotype»
BaseCosts

«Stereotype»
Discount

pricing
Element

«Metaclass»
Element

«Stereotype»
PricingElement [*]

service
Feature

«profile» PricingProfile

[*]

Figure B.1: Pricing profile

185

Arch_32_Bit
Arch_64_Bit

«Enumeration»
ArchitectureType

«Class»
ComputeService

«modelLibrary» CloudLibrary

virutalCores:Integer[0..1]
memory:Real[0..1]
localDisk:Integer[0..1]
architecture:ArchitectureType[0..1]

«Stereotype»
Micro

«Stereotype»
General
Purpose

«Stereotype»
Compute

Optimized

«Stereotype»
Memory

Optimized

«Stereotype»
ComputeServiceCharacteristics

«profile» PerformanceProfile

«Stereotype»
Storage

Optimized

«Stereotype»
Graphics

Processing

Figure B.2: Performance profile

186

«model» domain

Category

- products

OrderLine

Order Customer

Product Item

CreditCard

Address

VISA
MASTER_CARD
AMERICAN_EXPRESS

«Enumeration»
CreditCardType

-id:Integer[1]
-name:String[0..1]
-description:String[0..1]

-id:Integer[1]
-name:String[0..1]
-description:String[0..1]

[*]

- category [1]

-id:Integer[1]
-name:String[0..1]
-description:String[0..1]
-unitCost:Real[0..1]

-id:Integer[1]
-quantity:Integer[0..1]

- items

[1..*] - product
[1]

- item [1]

-id:Integer[1]
-orderDate:String[0..1]

-id:Integer[1]
-login:String[0..1]
-password:String[0..1]
-firstname:String[0..1]
-lastname:String[0..1]
-dateOfBirth:String[0..1]

-creditCardNumber:String[0..1]
-creditCardType:CreditCardType[0..1]
-creditCardExpDate:String[0..1]

- customer
[1]

-street:String[0..1]
-city:String[0..1]
-zipcode:String[0..1]
-country:String[0..1]

- homeAddress

[0..1]

- orderLines
[1..*]

- deliveryAddress

[0..1]

- creditCard [0..1]

Figure B.3: Sliced domain model of the PetApp

187

Bibliography

[ABFJ05] Anas Abouzahra, Jean Bézivin, Marcos Didonet Del Fabro, and Frédéric Jouault. A
Practical Approach to Bridging Domain Specific Languages with UML Profiles. In
Proc. of Intl. Workshop on Best Practices for Model-Driven Software Development,
pages 1–8, 2005.

[ABLS13] Vasilios Andrikopoulos, Tobias Binz, Frank Leymann, and Steve Strauch. How to
Adapt Applications for the Cloud Environment. Computing, 95(6):493–535, 2013.

[ACB05] Paolo Atzeni, Paolo Cappellari, and Philip A. Bernstein. ModelGen: Model Inde-
pendent Schema Translation. In Proc. of Intl. Conf. on Data Engineering (ICDE),
pages 1111–1112, 2005.

[ACS09] Michal Antkiewicz, Krzysztof Czarnecki, and Matthew Stephan. Engineering of
Framework-Specific Modeling Languages. IEEE Trans. Software Eng., 35(6):795–
824, 2009.

[ADL+12] Moussa Amrani, Jürgen Dingel, Leen Lambers, Levi Lúcio, Rick Salay, Gehan
Selim, Eugene Syriani, and Manuel Wimmer. Towards a Model Transformation
Intent Catalog. In Proc. of Intl. Workshop. on Analysis of Model Transformations
(AMT), pages 3–8, 2012.

[AFG+09] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz,
Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and
Matei Zaharia. Above the Clouds: A Berkeley View of Cloud Computing. Technical
Report UCB/EECS-2009-28, EECS Department, University of California, Berkeley,
2009. https://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.pdf.

[AFG+10] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A View of Cloud Computing. Commun. ACM, 53(4):50–58, 2010.

[AGK09] Colin Atkinson, Matthias Gutheil, and Bastian Kennel. A Flexible Infrastructure
for Multilevel Language Engineering. IEEE Trans. Software Eng., 35(6):742–755,
2009.

189

[AHMM07] David H. Akehurst, W. Gareth J. Howells, and Klaus D. McDonald-Maier. Im-
plementing Associations: UML 2.0 to Java 5. Software and Systems Modeling,
6(1):3–35, 2007.

[AK03] Colin Atkinson and Thomas Kühne. Model-Driven Development: A Metamodeling
Foundation. IEEE Software, 20(5):36–41, 2003.

[AK05] Colin Atkinson and Thomas Kühne. Concepts for Comparing Modeling Tool Ar-
chitectures. In Proc. of Intl. Conf. on Model Driven Engineering Languages and
Systems (MoDELS), pages 398–413, 2005.

[AK07] Colin Atkinson and Thomas Kühne. A Tour of Language Customization Concepts.
Advances in Computers, 70:105–161, 2007.

[AK09] Sven Apel and Christian Kästner. An Overview of Feature-Oriented Software
Development. Journal of Object Technology, 8(5):49–84, 2009.

[AKHS03] Colin Atkinson, Thomas Kühne, and Brian Henderson-Sellers. Systematic Stereotype
Usage. Software and Systems Modeling, 2(3):153–163, 2003.

[ALS08] Carsten Amelunxen, Elodie Legros, and Andy Schürr. Generic and Reflective Graph
Transformations for the Checking and Enforcement of Modeling Guidelines. In Proc.
of Intl. Symposium of Visual Languages and Human-Centric Computing (VL/HCC),
pages 211–218, 2008.

[ANM+12] Danilo Ardagna, Elisabetta Di Nitto, Parastoo Mohagheghi, Sébastien Mosser, Cyril
Ballagny, Francesco D’Andria, Giuliano Casale, Peter Matthews, Cosmin-Septimiu
Nechifor, Dana Petcu, Anke Gericke, and Craig Sheridan. MODAClouds: A Model-
Driven Approach for the Design and Execution of Applications on Multiple Clouds.
In Proc. of Intl. Workshop on Modeling in Software Engineering (MISE), pages
50–56, 2012.

[ARSL14] Vasilios Andrikopoulos, Anja Reuter, Santiago Gomez Saez, and Frank Leymann. A
GENTL Approach for Cloud Application Topologies. In Proc. of European Conf. on
Service-Oriented and Cloud Computing (ESOCC), pages 148–159, 2014.

[ARXL14] Vasilios Andrikopoulos, Anja Reuter, Mingzhu Xiu, and Frank Leymann. Design
Support for Cost-Efficient Application Distribution in the Cloud. In Proc. of Intl.
Conf. on Cloud Computing (CLOUD), pages 697–704, 2014.

[ASLW14] Vasilios Andrikopoulos, Santiago Gomez Saez, Frank Leymann, and Johannes
Wettinger. Optimal Distribution of Applications in the Cloud. In Proc. of Intl. Conf.
on Advanced Information Systems Engineering (CAiSE), pages 75–90, 2014.

[Bad00] Greg J. Badros. JavaML: A Markup Language for Java Source Code. Computer
Networks, 33(1-6):159–177, 2000.

190

[BASS11] Theophilus Benson, Aditya Akella, Anees Shaikh, and Sambit Sahu. CloudNaaS: A
Cloud Networking Platform for Enterprise Applications. In Proc. of Intl. Symposium
on Cloud Computing (SOCC), pages 1–13, 2011.

[BBC+13] Alexander Bergmayr, Hugo Bruneliere, Javier Cánovas, Jesús Gorroñogoitia, George
Kousiouris, Dimosthenis Kyriazis, Philip Langer, Andreas Menychtas, Leire Orue-
Echevarria, Clara Pezuela, and Manuel Wimmer. Migrating Legacy Software to the
Cloud with ARTIST. In Proc. of European Conf. on Software Maintenance and
Reengineering (CSMR), pages 465–468, 2013.

[BBF09] Gordon S. Blair, Nelly Bencomo, and Robert B. France. Models@run.time. IEEE
Computer, 42(10):22–27, 2009.

[BBH+13] Tobias Binz, Uwe Breitenbücher, Florian Haupt, Oliver Kopp, Frank Leymann,
Alexander Nowak, and Sebastian Wagner. OpenTOSCA – A Runtime for TOSCA-
Based Cloud Applications. In Proc. of Intl. Conf on Service-Oriented Computing
(ICSOC), pages 692–695, 2013.

[BBK+12] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann, and David Schumm.
Vino4TOSCA: A Visual Notation for Application Topologies based on TOSCA. In
Proc. of Intl. Conf. on On the Move to Meaningful Internet Systems (OTM), pages
416–424, 2012.

[BBK+14] Uwe Breitenbücher, Tobias Binz, Kálmán Képes, Oliver Kopp, Frank Leymann,
and Johannes Wettinger. Combining Declarative and Imperative Cloud Application
Provisioning based on TOSCA. In Proc. of Intl. Conf. on Cloud Engineering (IC2E),
pages 87–96, 2014.

[BBK+16] Alexander Bergmayr, Uwe Breitenbücher, Oliver Kopp, Manuel Wimmer, Gerti Kap-
pel, and Frank Leymann. From Architecture Modeling to Application Provisioning
for the Cloud by Combining UML and TOSCA. In Proc. of Intl. Conf. on Cloud
Computing and Services Science (CLOSER), 2016. to appear.

[BBKL14a] Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank Leymann. TOSCA:
Portable Automated Deployment and Management of Cloud Applications. In Athman
Bouguettaya, Quan Z. Sheng, and Florian Daniel, editors, Advanced Web Services.
Springer, 2014.

[BBKL14b] Uwe Breitenbücher, Tobias Binz, Oliver Kopp, and Frank Leymann. Vinothek – A
Self-Service Portal for TOSCA. In Proc. of Central-European Workshop on Services
and their Composition (ZEUS), pages 69–72, 2014.

[BBLS12] Tobias Binz, Gerd Breiter, Frank Leymann, and Thomas Spatzier. Portable Cloud
Services Using TOSCA. IEEE Internet Computing, 16(3):80–85, 2012.

[BCBB15] Arnaud Blouin, Benoît Combemale, Benoit Baudry, and Olivier Beaudoux. Kompren:
Modeling and Generating Model Slicers. Software and Systems Modeling, 14(1):321–
337, 2015.

191

[BCC+15] Antonio Brogi, José Carrasco, Javier Cubo, Elisabetta Di Nitto, Francisco Durán,
Michela Fazzolari, Ahmad Ibrahim, Ernesto Pimentel, Jacopo Soldani, PengWei
Wang, and Francesco D’Andria. Adaptive management of applications across
multiple clouds: The SeaClouds Approach. CLEI Electron. J., 18(1), 2015.

[BCDM14] Hugo Bruneliere, Jordi Cabot, Grégoire Dupé, and Frédéric Madiot. MoDisco: A
Model Driven Reverse Engineering Framework. Information & Software Technology,
56(8):1012–1032, 2014.

[BCJM10] Hugo Bruneliere, Jordi Cabot, Frédéric Jouault, and Frédéric Madiot. MoDisco: A
Generic and Extensible Framework for Model Driven Reverse Engineering. In Proc.
of Intl. Conf. on Automated Software Engineering (ASE), pages 173–174, 2010.

[BCW12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Software Engi-
neering in Practice. Morgan & Claypool, 2012.

[BD07] Achim D. Brucker and Jürgen Doser. Metamodel-based UML Notations for Domain-
specific Languages. In Proc. of Intl. Workshop on Software Language Engineering
(ATEM), pages 1–15, 2007.

[BDA+14] Kacper Bąk, Zinovy Diskin, Michał Antkiewicz, Krzysztof Czarnecki, and Andrzej
Wąsowski. Clafer: Unifying Class and Feature Modeling. Software and Systems
Modeling, pages 1–35, 2014.

[Béz05a] Jean Bézivin. Model Driven Engineering: An Emerging Technical Space. In Proc.
of Intl. Summer School of Generative and Transformational Techniques in Software
Engineering (GTTSE), pages 36–64, 2005.

[Béz05b] Jean Bézivin. On the Unification Power of Models. Software and Systems Modeling,
4(2):171–188, 2005.

[BGPCV12] Mark Lee Badger, Timothy Grance, Robert Patt-Corner, and Jeffery M.
Voas. Cloud Computing Synopsis and Recommendations. Technical Report
USP 800-146, National Institute of Standards and Technology (NIST), 2012.
http://csrc.nist.gov/publications/nistpubs/800-146/sp800-146.pdf.

[BGWK14a] Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel.
Bridging Java Annotations and UML Profiles with JUMP. In Proc. of Demo Track of
Intl. Conf. on Model Driven Engineering Languages and Systems (MoDELS), pages
1–5, 2014.

[BGWK14b] Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel.
JUMP – From Java Annotations to UML Profiles. In Proc. of Intl. Conf. on Model
Driven Engineering Languages and Systems (MoDELS), pages 552–568, 2014.

[BGWK15] Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel.
UML Profile Generation for Annotation-based Modeling. In Proc. of Software

192

Engineering & Management: Multikonferenz der GI-Fachbereiche Softwaretechnik
(SWT) und Wirtschaftsinformatik (WI), pages 101–102, 2015.

[BGWK16] Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel.
Leveraging Annotation-based Modeling with JUMP. Software and Systems Modeling,
2016. to appear.

[BKL+10] Petra Brosch, Horst Kargl, Philip Langer, Martina Seidl, Konrad Wieland, Manuel
Wimmer, and Gerti Kappel. Conflicts as First-Class Entities: A UML Profile for
Model Versioning. In Proc. of Intl. Workshops and Symposia on Models in Software
Engineering, pages 184–193, 2010.

[BPBB14] Younes Benslimane, Michel Plaisent, Prosper Bernard, and Bouchaib Bahli. Key
Challenges and Opportunities in Cloud Computing and Implications on Service
Requirements: Evidence from a Systematic Literature Review. In Proc. of Intl. Conf.
on Cloud Computing Technology and Science (CloudCom), pages 114–121, 2014.

[BRF+15] Alexander Bergmayr, Alessandro Rossini, Nicolas Ferry, Geir Horn, Leire Orue-
Echevarria, Arnor Solberg, and Manuel Wimmer. The Evolution of CloudML and
its Manifestations. In Proc. of Intl. Workshop on Model-Driven Engineering on and
for the Cloud (CloudMDE), pages 13–18, 2015.

[BRJ05] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language
User Guide. Addison-Wesley, 2nd edition, 2005.

[BRVV12] Gábor Bergmann, István Ráth, Gergely Varró, and Dániel Varró. Change-Driven
Model Transformations - Change (in) the Rule to Rule the Change. Software and
Systems Modeling, 11(3):431–461, 2012.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement. Springer, 2001.

[BTN+14] Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel Wimmer, and Gerti
Kappel. UML-based Cloud Application Modeling with Libraries, Profiles, and
Templates. In Proc. of Intl. Workshop on Model-Driven Engineering on and for the
Cloud (CloudMDE), pages 56–65, 2014.

[BTW14] Alexander Bergmayr, Javier Troya, and Manuel Wimmer. From Out-Place Transfor-
mation Evolution to In-Place Model Patching. In Proc. of Intl. Conf. on Automated
Software Engineering (ASE), pages 647–652, 2014.

[BW13] Alexander Bergmayr and Manuel Wimmer. Generating Metamodels from Grammars
by Chaining Translational and By-Example Techniques. In Proc. of Intl. Workshop
on Model-driven Engineering By Example (MDEBE), pages 22–31, 2013.

[BWKG14] Alexander Bergmayr, Manuel Wimmer, Gerti Kappel, and Michael Grossniklaus.
Cloud Modeling Languages by Example. In Proc. of Intl. Conf. on Service-Oriented
Computing and Applications (SOCA), pages 137–146, 2014.

193

[BWRZ13] Alexander Bergmayr, Manuel Wimmer, Werner Retschitzegger, and Uwe Zdun.
Taking the Pick out of the Bunch – Type-Safe Shrinking of Metamodels. In Proc.
of Software Engineering: Fachtagung des GI-Fachbereichs Softwaretechnik (SWT),
pages 85–98, 2013.

[CASG13] Faruk Caglar, Kyoungho An, Shashank Shekhar, and Aniruddha Gokhale. Model-
driven Performance Estimation, Deployment, and Resource Management for Cloud-
hosted Services. In Proc. of Intl. Workshop on Domain-Specific Modeling (DSM),
pages 21–26, 2013.

[CBMK10] Jorge Cardoso, Alistair Barros, Norman May, and Uwe Kylau. Towards a Unified
Service Description Language for the Internet of Services: Requirements and First
Developments. In Proc. of Intl. Conf. on Services Computing (SCC), pages 602–609,
2010.

[CC06] Frederick Chong and Gianpaolo Carraro. Architecture Strategies for
Catching the Long Tail. Technical report, Microsoft Corporation, 2006.
https://msdn.microsoft.com/en-us/library/aa479069.aspx.

[CCP15] Jose Carrasco, Javier Cubo, and Ernesto Pimentel. Towards a Flexible Deployment of
Multi-cloud Applications Based on TOSCA and CAMP. In Proc. of the Workshops
of European Conf. on Service-Oriented and Cloud Computing (ESOCC), pages
278–286, 2015.

[CdL15] Irene Córdoba and Juan de Lara. A Modelling Language for the Effective Design of
Java Annotations. In Proc. of Intl. Symposium on Applied Computing (SAC), pages
2087–2092, 2015.

[CDPC11] Gerardo Canfora, Massimiliano Di Penta, and Luigi Cerulo. Achievements and
Challenges in Software Reverse Engineering. Commun. ACM, 54(4):142–151, 2011.

[CE00] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[CEM+12] Clovis Chapman, Wolfgang Emmerich, Fermín Galán Márquez, Stuart Clayman, and
Alex Gallis. Software Architecture Definition for On-Demand Cloud Provisioning.
Cluster Comput., 15(2):79–100, 2012.

[CGL+03] Paul Clements, David Garlan, Reed Little, Robert Nord, and Judith Stafford. Doc-
umenting Software Architectures: Views and Beyond. In Proc. of Intl. Conf. on
Software Engineering (ICSE), pages 740–741, 2003.

[CH06a] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model transforma-
tion approaches. IBM Systems Journal, 45(3):621–646, 2006.

[CH06b] Krzysztof Czarnecki and Simon Helsen. Feature-based Survey of Model Transfor-
mation Approaches. IBM Systems Journal, 45(3):621–646, 2006.

194

[CI90] Elliot J. Chikofsky and James H. Cross II. Reverse Engineering and Design Recovery:
A Taxonomy. IEEE Software, 7:13–17, Jan 1990.

[CJCM12] Javier Cánovas, Frédéric Jouault, Jordi Cabot, and Jesús García Molina. API2MoL:
Automating the Building of Bridges between APIs and Model-Driven Engineering.
Information & Software Technology, 54(3):257–273, 2012.

[CRB+11] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and
Rajkumar Buyya. CloudSim: A Toolkit for Modeling and Simulation of Cloud
Computing Environments and Evaluation of Resource Provisioning Algorithms.
Softw. Pract. Exper., 41(1):23–50, 2011.

[DG08] Lucas Drumond and Rosario Girardi. A Survey of Ontology Learning Procedures. In
Proc. of Intl. Workshop on Ontologies and their Applications WONTO, pages 13–24,
2008.

[DWC10] Tharam S. Dillon, Chen Wu, and Elizabeth Chang. Cloud Computing: Issues
and Challenges. In Proc. of Intl. Conf. on Advanced Information Networking and
Applications (AINA), pages 27–33, 2010.

[DWS11] Brian Dougherty, Jules White, and Douglas C. Schmidt. Model-Driven Auto-Scaling
of Green Cloud Computing Infrastructure. Future Generation Computer Systems,
28(2):371–378, 2011.

[ECB+11] Xavier Etchevers, Thierry Coupaye, Fabienne Boyer, Noel de Palma, and Gwen
Salaun. Automated Configuration of Legacy Applications in the Cloud. In Proc. of
Intl. Conf. on Utility and Cloud Computing (UCC), pages 170–177, 2011.

[ECBP11] Xavier Etchevers, Thierry Coupaye, Fabienne Boyer, and Noel De Palma. Self-
Configuration of Distributed Applications in the Cloud. In Proc. of Intl. Conf. on
Cloud Computing (CLOUD), pages 668–675, 2011.

[EHSW99] Gregor Engels, Roland Hücking, Stefan Sauer, and Annika Wagner. UML Collab-
oration Diagrams and their Transformation to Java. In Proc. of Intl. Conf. on The
Unified Modeling Language – Beyond the Standard (UML), pages 473–488, 1999.

[EIG+15] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, Abel Gómez, Massimo Tisi,
and Jordi Cabot. EMF-REST: Generation of RESTful APIs from Models. CoRR,
abs/1504.03498, 2015.

[EKK+06] Tamar Eilam, Michael H. Kalantar, Alexander V. Konstantinou, Giovanni Pacifici,
John Pershing, and Aditya Agrawal. Managing the Configuration Complexity of
Distributed Applications in Internet Data Centers. IEEE Communications Magazine,
44(3):166–177, 2006.

[EKK+13] Juergen Etzlstorfer, Angelika Kusel, Elisabeth Kapsammer, Philip Langer, Werner
Retschitzegger, Johannes Schoenboeck, Wieland Schwinger, and Manuel Wimmer. A

195

Survey on Incremental Model Transformation Approaches. In Proc. of Intl. Workshop
on Models and Evolution (ME), pages 4–13, 2013.

[ESM05] Michael Eichberg, Thorsten Schäfer, and Mira Mezini. Using Annotations to Check
Structural Properties of Classes. In Proc. of Intl. Conf. on Fundamental Approaches
to Software Engineering (FASE), pages 237–252, 2005.

[FFH13] Sören Frey, Florian Fittkau, and Wilhelm Hasselbring. Search-based Genetic Opti-
mization for Deployment and Reconfiguration of Software in the Cloud. In Proc. of
Intl. Conf. on Software Engineering (ICSE), pages 512–521, 2013.

[FFV04] Lidia Fuentes-Fernández and Antonio Vallecillo. An Introduction to UML Profiles.
Europ. Journal for the Informatics Professional, 5(2):5–13, 2004.

[FH10] Sören Frey and Wilhelm Hasselbring. Model-Based Migration of Legacy Software
Systems into the Cloud: The CloudMIG Approach. Softwaretechnik-Trends, 30(2):1–
2, 2010.

[FH11] Sören Frey and Wilhelm Hasselbring. The CloudMIG Approach: Model-Based
Migration of Software Systems to Cloud-Optimized Applications. Intl. J. Advances
in Software, 4(3&4):342–353, 2011.

[FHS13] Sören Frey, Wilhelm Hasselbring, and Benjamin Schnoor. Automatic Conformance
Checking for Migrating Software Systems to Cloud Infrastructures and Platforms.
Journal of Software: Evolution and Process, 25(10):1089–1115, 2013.

[FL08] Andrew Forward and Timothy C. Lethbridge. Problems and Opportunities for
Model-centric Versus Code-centric Software Development: A Survey of Software
Professionals. In Proc. of Intl. Workshop on Models in Software Engineering (MiSE),
pages 27–32, 2008.

[FLR+14] Christoph Fehling, Frank Leymann, Ralph Retter, Walter Schupeck, and Peter
Arbitter. Cloud Computing Patterns – Fundamentals to Design, Build, and Manage
Cloud Applications. Springer, 2014.

[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley, 2010.

[FR10] Robert France and Bernhard Rumpe. Modeling for the Cloud. Software and Systems
Modeling, 9(2):139–140, 2010.

[FR13] Robert B. France and Bernhard Rumpe. The Evolution of Modeling Research
Challenges. Software and Systems Modeling, 12(2):223–225, 2013.

[FRC+13] Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice Morin, and Arnor Solberg.
Towards Model-Driven Provisioning, Deployment, Monitoring, and Adaptation of
Multi-cloud Systems. In Proc. of Intl. Conf. on Cloud Computing (CLOUD), pages
887–894, 2013.

196

[FSR+14] Nicolas Ferry, Hui Song, Alessandro Rossini, Franck Chauvel, and Arnor Solberg.
Cloud MF: Applying MDE to Tame the Complexity of Managing Multi-cloud
Applications. In Proc. of Intl. Conf. on Utility and Cloud Computing (UCC), pages
269–277, 2014.

[GBI+10] David Garlan, Felix Bachmann, James Ivers, Judith Stafford, Len Bass, Paul
Clements, and Paulo Merson. Documenting Software Architectures: Views and
Beyond. Addison-Wesley, 2nd edition, 2010.

[GDA12] Jokin García, Oscar Díaz, and Maider Azanza. Model Transformation Co-evolution:
A Semi-automatic Approach. In Proc. of Intl. Conf. on Software Language Engineer-
ing (SLE), pages 144–163, 2012.

[GdCL03] Gonzalo Génova, Carlos Ruiz del Castillo, and Juan Lloréns. Mapping UML
Associations into Java Code. Journal of Object Technology, 2(5):135–162, 2003.

[GDD09] Dragan Gasevic, Dragan Djuric, and Vladan Devedzic. Model Driven Engineering
and Ontology Development. Springer, 2nd edition, 2009.

[Ges08] Dominik Gessenharter. Mapping the UML2 Semantics of Associations to a Java
Code Generation Model. In Proc. of Intl. Conf. on Model Driven Engineering
Languages and Systems (MoDELS), pages 813–827, 2008.

[GES+11] Glauco Gonçalves, Patricia Endo, Marcelos Santos, Djamel Sadok, Judith Kelner,
Bob Merlander, and Jan-Erik Mångs. CloudML: An Integrated Language for Re-
source, Service and Request Description for D-Clouds. In Proc. of Intl. Conf. on
Cloud Computing Technologies and Science (CloudCom), pages 399–406, 2011.

[Gli07] Martin Glinz. On Non-Functional Requirements. In Proc. of Intl. Conf. on Require-
ments Engineering (RE), pages 21–26, 2007.

[GMMC13a] Joaquín Guillén, Javier Miranda, Juan Manuel Murillo, and Carlos Canal. A
Service-oriented Framework for Developing Cross Cloud Migratable Software. J.
Syst. Softw., 86(9):2294–2308, 2013.

[GMMC13b] Joaquín Guillén, Javier Miranda, Juan Manuel Murillo, and Carlos Canal. A
UML Profile for Modeling Multicloud Applications. In Proc. of European Conf. on
Service-Oriented and Cloud Computing (ESOCC), pages 180–187, 2013.

[GS03] Jack Greenfield and Keith Short. Software Factories: Assembling Applications
with Patterns, Models, Frameworks and Tools. In Proc. of Intl. Conf on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
16–27, 2003.

[GvD07] Bas Graaf and Arie van Deursen. Visualisation of Domain-Specific Modelling
Languages Using UML. In Proc. of Intl. Conf. on Engineering of Computer-Based
Systems (ECBS), pages 586–595, 2007.

197

[HBR00] William Harrison, Charles Barton, and Mukund Raghavachari. Mapping UML
Designs to Java. In Proc. of Intl. Conf. on Object-Oriented Programming Systems,
Languages & Applications (OOPSLA), pages 178–187, 2000.

[HJSW10] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian Wende. Closing
the Gap between Modelling and Java. In Proc. of Intl. Conf. on Software Language
Engineering (SLE), pages 374–383, 2010.

[HLR06] David Hearnden, Michael Lawley, and Kerry Raymond. Incremental Model Transfor-
mation for the Evolution of Model-Driven Systems. In Proc. of Intl. Conf. on Model
Driven Engineering Languages and Systems (MoDELS), pages 321–335, 2006.

[HLS+13] Mark Harman, Kiran Lakhotia, Jeremy Singer, David Robert White, and Shin Yoo.
Cloud Engineering is Search Based Software Engineering too. Journal of Systems
and Software, 86(9):2225–2241, 2013.

[HLT11] Mohammad Hamdaqa, Tassos Livogiannis, and Ladan Tahvildari. A Reference
Model for Developing Cloud Applications. In Proc. of Intl. Conf. on Cloud Comput-
ing and Services Science (CLOSER), pages 98–103, 2011.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design Science
in Information Systems Research. MIS Quarterly, 28(1):75–105, 2004.

[Hol14] Ta’id Holmes. Automated Provisioning of Customized Cloud Service Stacks using
Domain-Specific Languages. In Proc. of Intl. Workshop on Model-Driven Engineer-
ing on and for the Cloud (CloudMDE), pages 46–55, 2014.

[Hol15] Ta’id Holmes. Facilitating Migration of Cloud Infrastructure Services: A Model-
Based Approach. In Proc. of Intl. Workshop on Model-Driven Engineering on and
for the Cloud (CloudMDE), pages 7–12, 2015.

[HPR14] Lars Hermerschmidt, Antonio Navarro Perez, and Bernhard Rumpe. A Model-based
Software Development Kit for the SensorCloud Platform. In Helmut Krcmar, Ralf
Reussner, and Bernhard Rumpe, editors, Trusted Cloud Computing, pages 125–140.
Springer, 2014.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Semantics of
“Semantics”? IEEE Computer, 37(10):64–72, 2004.

[HRR12] Arne Haber, Jan Oliver Ringert, and Bernhard Rumpe. MontiArc - Architec-
tural Modeling of Interactive Distributed and Cyber-Physical Systems. Techni-
cal report, Software Engineering Lab, RWTH Aachen University, Aachen, 2012.
http://webdoc.sub.gwdg.de/ebook/serien/ah/AIB/2012-03.pdf.

[HRW11] John Hutchinson, Mark Rouncefield, and Jon Whittle. Model-Driven Engineering
Practices in Industry. In Proc. of Intl. Conf. on Software Engineering (ICSE), pages
633–642, 2011.

198

[HT14] Mohammad Hamdaqa and Ladan Tahvildari. The (5+1) Architectural View Model
for Cloud Applications. In Proc. of Intl. Conf. on Computer Science and Software
Engineering (CASCON), pages 46–60, 2014.

[HT15] Mohammad Hamdaqa and Ladan Tahvildari. StratusML: A Layered Cloud Modeling
Framework. In Proc. of Intl. Conf. on Cloud Engineering (IC2E), pages 96–105,
2015.

[HWRK11] John Hutchinson, Jon Whittle, Mark Rouncefield, and Steinar Kristoffersen. Em-
pirical assessment of MDE in industry. In Proc. of Intl. Conference on Software
Engineering (ICSE), pages 471–480, 2011.

[INS+14] Christian Inzinger, Stefan Nastic, Sanjin Sehic, Michael Vögler, Fei Li, and
Schahram Dustdar. MADCAT: A Methodology for Architecture and Deployment
of Cloud Application Topologies. In Proc. of Intl. Symposium on Service Oriented
System Engineering (SOSE), pages 13–22, 2014.

[IPM12] Ludovico Iovino, Alfonso Pierantonio, and Ivano Malavolta. On the Impact Signifi-
cance of Metamodel Evolution in MDE. Journal of Object Technology, 11(3):1–33,
2012.

[JABK08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. ATL: A Model
Transformation Tool. Sci. Comput. Program., 72(1-2):31–39, 2008.

[JAP13] Pooyan Jamshidi, Aakash Ahmad, and Claus Pahl. Cloud Migration Research: A
Systematic Review. IEEE Trans. Cloud Computing, 1(2):142–157, 2013.

[JCD+12] Jean-Marc Jézéquel, Benoit Combemale, Steven Derrien, Clément Guy, and Sanjay
Rajopadhye. Bridging the Chasm between MDE and the World of Compilation.
Software and Systems Modeling, 11(4):581–597, 2012.

[JE04] Sven Johann and Alexander Egyed. Instant and Incremental Transformation of
Models. In Proc. of Intl. Conf. on Automated Software Engineering (ASE), pages
362–365, 2004.

[JHS13] Keith Jeffery, Geir Horn, and Lutz Schubert. A Vision for Better Cloud Applica-
tions. In Proc. of Intl. Workshop on Multi-cloud Applications and Federated Clouds
(MultiCloud), pages 7–12, 2013.

[Jon96] Neil D. Jones. An Introduction to Partial Evaluation. Comput. Surv., 28(3):480–503,
1996.

[Jou05] Frédéric Jouault. Loosely Coupled Traceability for ATL. In Proc. of European
Workshop on Traceability (TW), pages 29–37, 2005.

[JT10] Frédéric Jouault and Massimo Tisi. Towards Incremental Execution of ATL Trans-
formations. In Proc. of Intl. Conf. on Model Transformation (ICMT), pages 123–137,
2010.

199

[KBA02] Ivan Kurtev, Jean Bézivin, and M Akşit. Technological Spaces: An Initial Appraisal.
In Proc. of Intl. Conf. on Cooperative Information Systems (CoopIS), pages 1–6,
2002.

[KBB+09] Barbara Kitchenham, Pearl Brereton, David Budgen, Mark Turner, John Bailey, and
Stephen G. Linkman. Systematic Literature Reviews in Software Engineering - A
Systematic Literature Review. Information & Software Technology, 51(1):7–15,
2009.

[KBBL13] Oliver Kopp, Tobias Binz, Uwe Breitenbücher, and Frank Leymann. Winery – A
Modeling Tool for TOSCA-Based Cloud Applications. In Proc. of Intl. Conf. on
Service-Oriented Computing (ICSOC), pages 700–704, 2013.

[KC07] Barbara Kitchenham and Stuart Charters. Guidelines for performing Systematic
Literature Reviews in Software Engineering. Technical report, Keele University and
Durham University Joint Report, EBSE-2007-01, 2007.

[KCH+90] Kang Kyo, Sholom Cohen, James Hess, William Novak, and A. Spencer Peterson.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical report,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, 1990.

[KDR14] Kyriakos Kritikos, Jörg Domaschka, and Alessandro Rossini. SRL: A Scalability
Rule Language for Multi-cloud Environments. In Proc. of Intl. Conf. on Cloud
Computing Technology and Science (CloudCom), pages 1–9, 2014.

[KDRPP09] Dimitrios Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard Paige.
Different Models for Model Matching: An Analysis of Approaches to Support Model
Differencing. In Proc. of Intl. Workshop on Comparison and Versioning of Software
Models (CVSM), pages 1–6, 2009.

[Ken02] Stuart Kent. Model Driven Engineering. In Proc. of Intl. Conf. on Integrated Formal
Methods (IFM), pages 286–298, 2002.

[KKK+06] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler, Thomas Reiter,
Werner Retschitzegger, Wieland Schwinger, and Manuel Wimmer. Lifting Metamod-
els to Ontologies: A Step to the Semantic Integration of Modeling Languages. In
Proc. of Intl. Conf. on Model Driven Engineering Languages and Systems (MoDELS),
pages 528–542, 2006.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. Design Guidelines for Domain Specific Languages. In Proc. of
Intl. Workshop on Domain-Specific Modeling (DSM), pages 7–13, 2009.

[KLV05] Paul Klint, Ralf Lämmel, and Chris Verhoef. Toward an Engineering Discipline for
Grammarware. ACM Trans. Softw. Eng. Methodol., 14(3):331–380, 2005.

200

[KMS04] Martin Kavalec, Alexander Maedche, and Vojtěch Svátek. Discovery of Lexical
Entries for Non-taxonomic Relations in Ontology Learning. In Proc. of Intl. Conf.
on Current Trends in Theory and Practice of Computer Science (SOFSEM), pages
249–256, 2004.

[KPB+10] Barbara Kitchenham, Rialette Pretorius, David Budgen, Pearl Brereton, Mark Turner,
Mahmood Niazi, and Stephen G. Linkman. Systematic Literature Reviews in Soft-
ware Engineering - A Tertiary Study. Information & Software Technology, 52(8):792–
805, 2010.

[Kra07] Jeff Kramer. Is Abstraction the Key to Computing? Commun. ACM, 50(4):36–42,
2007.

[KRV10] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: A Framework
for Compositional Development of Domain Specific Languages. Intl. Journal on
Software Tools for Technology Transfer, 12(5):353–372, 2010.

[KSS+02] Ralf Kollman, Petri Selonen, Eleni Stroulia, Tarja Systä, and Albert Zündorf. A
Study on the Current State of the Art in Tool-Supported UML-Based Static Reverse
Engineering. In Proc. of Intl. Working Conf. on Reverse Engineering (WCRE), pages
22–32, 2002.

[KSW+15] Angelika Kusel, Johannes Schönböck, Manuel Wimmer, Gerti Kappel, Werner
Retschitzegger, and Wieland Schwinger. Reuse in Model-to-Model Transformation
Languages: Are we there yet? Software and Systems Modeling, 14(2):537–572,
2015.

[Küh06] Thomas Kühne. Matters of (Meta-)Modeling. Software and Systems Modeling,
5(4):369–385, 2006.

[KWC98] Rick Kazman, Steven G. Woods, and S. Jeromy Carrière. Requirements for Integrat-
ing Software Architecture and Reengineering Models: CORUM II. In Proc. of Intl.
Working Conf. on Reverse Engineering (WCRE), pages 154–163, 1998.

[LBNK09] Tihamer Levendovszky, Daniel Balasubramanian, Anantha Narayanan, and Gabor
Karsai. A Novel Approach to Semi-automated Evolution of DSML Model Trans-
formation. In Proc. of Intl. Conf. on Software Language Engineering (SLE), pages
23–41, 2009.

[Lee89] Allen S. Lee. A Scientific Methodology for MIS Case Studies. MIS Quarterly,
13(1):33–50, 1989.

[Ley11] Frank Leymann. Cloud Computing. it - Information Technology, 53(4):163–164,
2011.

[LFM+11] Frank Leymann, Christoph Fehling, Ralph Mietzner, Alexander Nowak, and
Schahram Dustdar. Moving Applications to the Cloud: An Approach Based on
Application Model Enrichment. Int. J. Cooperative Inf. Syst., 20(3):307–356, 2011.

201

[LMM+15] Patricia Lago, Ivano Malavolta, Henry Muccini, Patrizio Pelliccione, and Antony
Tang. The Road Ahead for Architectural Languages. IEEE Software, 32(1):98–105,
2015.

[LS06] Michael Lawley and Jim Steel. Practical Declarative Model Transformation with
Tefkat. In Proc. of Satellite Events at Intl. Conf. on Model Driven Engineering
Languages and Systems (MoDELS), pages 139–150, 2006.

[LSS+13] Hongbin Lu, Mark Shtern, Bradley Simmons, Michael Smit, and Marin Litoiu.
Pattern-Based Deployment Service for Next Generation Clouds. In Proc. of World
Congress on Services (SERVICES), pages 464–471, 2013.

[LWWC12] Philip Langer, Konrad Wieland, Manuel Wimmer, and Jordi Cabot. EMF Profiles:
A Lightweight Extension Approach for EMF Models. Journal of Object Technology,
11(1):1–29, 2012.

[LZ11] Dongxi Liu and John Zic. Cloud#: A Specification Language for Modeling Cloud.
In Proc. of Intl. Conf. on Cloud Computing (CLOUD), pages 533–540, 2011.

[MEMC10] David Méndez, Anne Etien, Alexis Muller, and Rubby Casallas. Towards Transfor-
mation Migration After Metamodel Evolution. In Proc. of Intl. Workshop on Models
and Evolution (ME), pages 84–89, 2010.

[MFBC12] Pierre-Alain Muller, Frédéric Fondement, Benoit Baudry, and Benoît Combemale.
Modeling Modeling Modeling. Software and Systems Modeling, 11(3):347–359,
2012.

[MG06] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation. Electron.
Notes Theor. Comput. Sci, 152:125–142, 2006.

[MG11] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. Techni-
cal Report NIST SP 800-145, National Institute of Standards and Technology (NIST),
2011.

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to Develop
Domain-Specific Languages. ACM Comput. Surv., 37(4):316–344, 2005.

[MJS+00] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne Storey, Scott R.
Tilley, and Kenny Wong. Reverse Engineering: A Roadmap. In Proc. of Intl. Conf.
on Software Engineering (ICSE), pages 47–60, 2000.

[MLM+13] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony
Tang. What Industry Needs from Architectural Languages: A Survey. IEEE Trans.
Software Eng., 39(6):869–891, 2013.

[MLP08] Ralph Mietzner, Frank Leymann, and Mike P. Papazoglou. Defining Composite
Configurable SaaS Application Packages Using SCA, Variability Descriptors and
Multi-tenancy Patterns. In Proc. of Intl. Conf. on Internet and Web Applications and
Services (ICIW), pages 156–161, 2008.

202

[MLWK13] Tanja Mayerhofer, Philip Langer, Manuel Wimmer, and Gerti Kappel. xMOF:
Executable DSMLs based on fUML. In Proc. of Intl. Conf on Software Language
Engineering (SLE), pages 56–75, 2013.

[MMP08] Ivano Malavolta, Henry Muccini, and Patrizio Pelliccione. DUALLY: A Framework
for Architectural Languages and Tools Interoperability. In Proc. of Intl. Conf. on
Automated Software Engineering (ASE), pages 483–484, 2008.

[MMPT10] Ivano Malavolta, Henry Muccini, Patrizio Pelliccione, and Damien A. Tamburri.
Providing Architectural Languages and Tools Interoperability through Model Trans-
formation Technologies. IEEE Trans. Software Eng., 36(1):119–140, 2010.

[Moo09] Daniel L. Moody. The “Physics” of Notations: Toward a Scientific Basis for
Constructing Visual Notations in Software Engineering. IEEE Trans. Software Eng.,
35(6):756–779, 2009.

[MRRR02] Nenad Medvidovic, David S. Rosenblum, David F. Redmiles, and Jason E. Robbins.
Modeling Software Architectures in the Unified Modeling Language. ACM Trans.
Softw. Eng. Methodol., 11(1):2–57, 2002.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and Comparison Frame-
work for Software Architecture Description Languages. IEEE Trans. Software Eng.,
26(1):70–93, 2000.

[NBM+15] Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer, Javier Troya, and Manuel
Wimmer. XMLText: From XML Schema to Xtext. In Proc. of Intl. Conf. on Software
Language Engineering (SLE), pages 71–76, 2015.

[ND08] Carlos Noguera and Laurence Duchien. Annotation Framework Validation Using
Domain Models. In Proc. European Conf. on Model Driven Architecture – Founda-
tions and Applications (ECMDA-FA), volume 5095 of LNCS, pages 48–62. Springer,
2008.

[NLPvdH12] Dinh Khoa Nguyen, Francesco Lelli, Mike P. Papazoglou, and Willem-Jan van den
Heuvel. Blueprinting Approach in Support of Cloud Computing. Future Internet,
4(1):322–346, 2012.

[NLT+11] Dinh Khoa Nguyen, Francesco Lelli, Yehia Taher, Michael Parkin, Mike P. Papa-
zoglou, and Willem-Jan van den Heuvel. Blueprint Template Support for Engineering
Cloud-Based Services. In Proc. of European Conf. on Towards a Service-Based
Internet (ServiceWave), pages 26–37, 2011.

[NNZ00] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA Environment. In Proc.
of Intl. Conf. on Software Engineering (ICSE), pages 742–745, 2000.

[NP07] Carlos Noguera and Renaud Pawlak. AVal: An Extensible Attribute-Oriented
Programming Validator for Java. Journal of Software Maintenance and Evolution:
Research and Practice, 19(4):253–275, 2007.

203

[NSJ12] Tam Le Nhan, Gerson Sunyé, and Jean-Marc Jézéquel. A Model-driven Approach
for Virtual Machine Image Provisioning in Cloud Computing. In Proc. of European
Conf. on Service-Oriented and Cloud Computing (ESOCC), pages 107–121, 2012.

[OAS12] OASIS. Cloud Application Management for Platforms (CAMP), 2012.
https://www.oasis-open.org/committees/camp/.

[OAS13a] OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA),
2013. https://www.oasis-open.org/committees/tosca.

[OAS13b] OASIS. Topology and Orchestration Specification for Cloud Applications (TOSCA)
Primer, 2013. http://docs.oasis-open.org/tosca/tosca-primer/v1.0/tosca-primer-
v1.0.html.

[OAS15] OASIS. TOSCA Simple Profile in YAML, 2015. http://docs.oasis-
open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0.

[OMG11a] OMG. Business Process Model and Notation (BPMN), 2011.
http://www.omg.org/spec/BPMN/2.0.

[OMG11b] OMG. Meta Object Facility (MOF), 2011. http://www.omg.org/spec/MOF.

[OMG11c] OMG. XML Metadata Interchange (XMI), 2011. http://www.omg.org/spec/XMI.

[OMG12] OMG. Service oriented architecture Modeling Language (SoaML), 2012.
http://www.omg.org/spec/SoaML.

[OMG14a] OMG. Catalog of UML Profile Specifications, 2014.
http://www.omg.org/spec/#Profile.

[OMG14b] OMG. Object Constraint Language (OCL), 2014. http://www.omg.org/spec/OCL/.

[OMG15] OMG. Unified Modeling Language (UML), 2015. http://www.omg.org/spec/UML.

[OMG16] OMG. Semantics of a Foundational Subset for Executable UML Models (FUML),
2016. http://www.omg.org/spec/FUML/.

[Ora15] Oracle. JLS8, 2015. http://docs.oracle.com/javase/specs.

[Owe10] Dustin Owens. Securing Elasticity in the Cloud. Commun. ACM, 53(6):46–51, 2010.

[Par10] Jesús Pardillo. A Systematic Review on the Definition of UML Profiles. In Proc. of
Intl. Conf. on Model Driven Engineering Languages and Systems (MoDELS), pages
407–422, 2010.

[PBMH12] Chris Parnin, Christian Bird, and Emerson Murphy-Hill. Adoption and Use of Java
Generics. Empirical Software Engineering, 18(6):1–43, 2012.

[Pet14] Dana Petcu. Consuming Resources and Services from Multiple Clouds. J. Grid
Comput., 12(2):321–345, 2014.

204

[PFMM08] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic
Mapping Studies in Software Engineering. In Proc. of Intl. Conf. on Evaluation and
Assessment in Software Engineering (EASE), pages 68–77, 2008.

[PR13] Antonio Navarro Pérez and Bernhard Rumpe. Modeling Cloud Architectures as
Interactive Systems. In Proc. of Intl. Workshop on Model-Driven Engineering for
High Performance and CLoud computing (MDHPCL), pages 15–24, 2013.

[PV12] Michael P. Papazoglou and Luis M. Vaquero. Knowledge-Intensive Cloud Services:
Transforming the Cloud Delivery Stack. In Jussi Kantola and Waldemar Karwowski,
editors, Knowledge Service Engineering Handbook, pages 447–492. CRC Press,
2012.

[RBÖV08] István Ráth, Gábor Bergmann, András Ökrös, and Dániel Varró. Live Model Trans-
formations Driven by Incremental Pattern Matching. In Proc. of Intl. Conf. on Model
Transformation (ICMT), pages 107–121, 2008.

[RdLGN15] Alessandro Rossini, Juan de Lara, Esther Guerra, and Nikolay Nikolov. A Compari-
son of Two-Level and Multi-level Modelling for Cloud-Based Applications. In Proc.
of European Conf. on Modeling Foundations and Applications (ECMFA), pages
18–32, 2015.

[RFJ08] Daniel Ratiu, Martin Feilkas, and Jan Jürjens. Extracting Domain Ontologies from
Domain Specific APIs. In Proc. of European Conf. on Software Maintenance and
Reengineering (CSMR), pages 203–212, 2008.

[RH09] Per Runeson and Martin Höst. Guidelines for Conducting and Reporting Case Study
Research in Software Engineering. Empirical Software Engineering, 14(2):131–164,
2009.

[RIP13] Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. A Methodological
Approach for the Coupled Evolution of Metamodels and ATL Transformations. In
Proc. of Intl. Conf. on Model Transformation (ICMT), pages 60–75, 2013.

[RK12] Ali Razavi and Kostas Kontogiannis. Partial Evaluation of Model Transformations.
In Proc. of Intl. Conf. on Software Engineering (ICSE), pages 562–572, 2012.

[RNHR13] Andreas Rentschler, Qais Noorshams, Lucia Happe, and Ralf Reussner. Interactive
Visual Analytics for Efficient Maintenance of Model Transformations. In Proc. of
Intl. Conf. on Model Transformation (ICMT), pages 141–157, 2013.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synopsis on Streams, Stream
Processing Functions, and State-Based Stream Processing. International Journal of
Software and Informatics (IJSI), 5(1-2):29–53, 2011.

[Sch06] Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering. IEEE
Computer, 39(2):25–31, 2006.

205

[SDA12] Le Sun, Hai Dong, and Jamshaid Ashraf. Survey of Service Description Languages
and Their Issues in Cloud Computing. In Proc. of Intl. Conf. on Semantics, Knowl-
edge and Grids (SKG), pages 128–135, 2012.

[Sel07] Bran Selic. A Systematic Approach to Domain-Specific Language Design Using
UML. In Proc. of Intl. Symposium on Object-Oriented Real-Time Distributed
Computing (ISORC), pages 2–9, 2007.

[Sel08] Bran Selic. MDA Manifestations. UPGRADE: The European Journal for the
Informatics Professional, 9(2):12–16, 2008.

[Sel12] Bran Selic. The Less Well Known UML – A Short User Guide. In Proc. of
Intl. School on Formal Methods for the Design of Computer, Communication, and
Software Systems (SFM), pages 1–20, 2012.

[Sha02] Mary Shaw. What Makes Good Research in Software Engineering? Journal on
Software Tools for Technology Transfer (STTT), 4(1):1–7, 2002.

[Sha03] Mary Shaw. Writing Good Software Engineering Research Paper. In Proc. of Intl.
Conf. on Software Engineering (ICSE), pages 726–737, 2003.

[SHSW12] Yih Leong Sun, Terence Harmer, Alan Stewart, and Peter Wright. Mapping Applica-
tion Requirements to Cloud Resources. In Proc. of European Parallel Processing
Workshops (Eur-Par), pages 104–112, 2012.

[SK03] Shane Sendall and Wojtek Kozaczynski. Model Transformation: The Heart and Soul
of Model-Driven Software Development. IEEE Software, 20(5):42–45, 2003.

[SR10] Amit Sheth and Ajith Ranabahu. Semantic Modeling for Cloud Computing, Part 2.
IEEE Internet Computing, 14(4):81–84, 2010.

[SRC13] Gabriel Costa Silva, Louis M. Rose, and Radu Calinescu. A Systematic Review of
Cloud Lock-In Solutions. In Proc. of Intl. Conf. on Cloud Computing Technology
and Science (CLOUDCOM), pages 363–368, 2013.

[SRC14] Gabriel Costa Silva, Louis M. Rose, and Radu Calinescu. Cloud DSL: A Language
for Supporting Cloud Portability by Describing Cloud Entities. In Proc. of Intl.
Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE), pages
36–45, 2014.

[Szy03] Clemens Szyperski. Component Technology: What, Where, and How? In Proc. of
Intl. Conf. on Software Engineering (ICSE), pages 684–693, 2003.

[TBBW15] Javier Troya, Alexander Bergmayr, Loli Burgueño, and Manuel Wimmer. Towards
Systematic Mutations for and with ATL Model Transformations. In Proc. of Intl.
Software Testing, Verification and Validation Workshops (ICSTW), pages 1–10, 2015.

206

[TJF+09] Massimo Tisi, Frédéric Jouault, Piero Fraternali, Stefano Ceri, and Jean Bézivin. On
the Use of Higher-Order Model Transformations. In Proc. of European Conf. on
Model Driven Architecture – Foundations and Applications (ECMDA-FA), pages
18–33, 2009.

[TMC99] Scott Thibault, Renaud Marlet, and Charles Consel. Domain-Specific Languages:
From Design to Implementation Application to Video Device Drivers Generation.
IEEE Trans. Software Eng., 25(3):363–377, 1999.

[TMW+05] Vanish Talwar, Dejan S. Milojicic, Qinyi Wu, Calton Pu, Wenchang Yan, and
Gueyoung Jung. Approaches for Service Deployment. IEEE Internet Computing,
9(2):70–80, 2005.

[TP04] Paolo Tonella and Alessandra Potrich. Reverse Engineering of Object Oriented Code.
Springer, 2004.

[TTR+11] Marco Torchiano, Federico Tomassetti, Filippo Ricca, Alessandro Tiso, and Gianna
Reggio. Preliminary Findings from a Survey on the MD* State of the Practice.
In Proc. of Intl. Symposium on Empirical Software Engineering and Measurement
(ESEM), pages 372–375, 2011.

[UPR15] UPR. Eclipse UML Profiles Repository, 2015.
https://projects.eclipse.org/projects/modeling.upr.

[vAvdB11] Marcel van Amstel and Mark G. J. van den Brand. Model Transformation Analysis:
Staying Ahead of the Maintenance Nightmare. In Proc. of Intl. Conf. on Model
Transformation (ICMT), pages 108–122, 2011.

[vdBCC05] Klass van den Berg, Jose Maria Conejero, and Ruzanna Chitchyan. AOSD Ontology
1.0 - Public Ontology of Aspect-Orientation. Technical report, D9 AOSD-Europe-
UT-01, AOSD-Europe, 2005.

[Vog09] Werner Vogels. Eventually Consistent. Commun. ACM, 52(1):40–44, 2009.

[VP04] Dániel Varró and András Pataricza. Generic and Meta-transformations for Model
Transformation Engineering. In Proc. of Intl. Conf. on Unified Modeling Language
(UML), pages 290–304, 2004.

[VRB11] Luis Miguel Vaquero, Luis Rodero-Merino, and Rajkumar Buyya. Dynamically
Scaling Applications in the Cloud. Computer Communication Review, 41(1):45–52,
2011.

[VW12] Will Venters and Edgar A. Whitley. A Critical Review of Cloud Computing: Re-
searching Desires and Realities. Journal of Information Technology, 27(3):179–197,
2012.

[W3C04] W3C. OWL-S: Semantic Markup for Web Services, 2004.
https://www.w3.org/Submission/OWL-S.

207

[Wal09] Edward Walker. The Real Cost of a CPU Hour. Computer, 42(4):35–41, 2009.

[WBB+14a] Johannes Wettinger, Tobias Binz, Uwe Breitenbücher, Oliver Kopp, and Frank
Leymann. Streamlining Cloud Management Automation by Unifying the Invocation
of Scripts and Services Based on TOSCA. Int. J. Organ. Collect. Intell., 4(2):45–63,
2014.

[WBB+14b] Johannes Wettinger, Tobias Binz, Uwe Breitenbücher, Oliver Kopp, Frank Leymann,
and Michael Zimmermann. Unified Invocation of Scripts and Services for Provi-
sioning, Deployment, and Management of Cloud Applications Based on TOSCA.
In Proc. of Intl. Conf. on Cloud Computing and Services Science (CLOSER), pages
559–568, 2014.

[WBL14] Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann. Standards-Based
DevOps Automation and Integration Using TOSCA. In Proc. of Intl. Conf. on Utility
and Cloud Computing (UCC), pages 59–68, 2014.

[WHR+13] Jon Whittle, John Hutchinson, Mark Rouncefield, Håkan Burden, and Rogardt
Heldal. Industrial Adoption of Model-Driven Engineering: Are the Tools Really
the Problem? In Proc. of Intl. Conf. on Model Driven Engineering Languages and
Systems (MoDELS), pages 1–17, 2013.

[WHR14] Jon Whittle, John Hutchinson, and Mark Rouncefield. The State of Practice in
Model-Driven Engineering. IEEE Software, 31(3):79–85, 2014.

[Wim09] Manuel Wimmer. A Semi-Automatic Approach for Bridging DSMLs with UML.
IJWIS, 5(3):372–404, 2009.

[Wir71] Niklaus Wirth. Program Development by Stepwise Refinement. Commun. ACM,
14(4):221–227, 1971.

[WKK+10] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Johannes
Schönboeck, and Wieland Schwinger. Towards an Expressivity Benchmark for
Mappings based on a Systematic Classification of Heterogeneities. In Proc. of Intl.
Workshop on Model-Driven Interoperability (MDI), pages 32–41, 2010.

[WKS+09] Manuel Wimmer, Gerti Kappel, Johannes Schönböck, Angelika Kusel, Werner
Retschitzegger, and Wieland Schwinger. A Petri Net Based Debugging Environment
for QVT Relations. In Proc. of Intl. Conf. on Automated Software Engineering (ASE),
pages 3–14, 2009.

[WS05] Hiroshi Wada and Junichi Suzuki. Modeling Turnpike Frontend System: A Model-
Driven Development Framework Leveraging UML Metamodeling and Attribute-
Oriented Programming. In Proc. of Intl. Conf. on Model Driven Engineering Lan-
guages and Systems (MoDELS), pages 584–600, 2005.

208

[WS07] Ingo Weisemöller and Andy Schürr. A Comparison of Standard Compliant Ways to
Define Domain Specific Languages. In Proc. of Intl. Workshops and Symposia on
Models in Software Engineering, pages 47–58, 2007.

[WTCJ11] Dennis Wagelaar, Massimo Tisi, Jordi Cabot, and Frédéric Jouault. Towards a
General Composition Semantics for Rule-Based Model Transformation. In Proc. of
Intl. Conf. on Model Driven Engineering Languages and Systems (MoDELS), pages
623–637, 2011.

[WWB+13] Tim Waizenegger, Matthias Wieland, Tobias Binz, Uwe Breitenbücher, Florian
Haupt, Oliver Kopp, Frank Leymann, Bernhard Mitschang, Alexander Nowak, and
Sebastian Wagner. Policy4TOSCA: A Policy-Aware Cloud Service Provisioning
Approach to Enable Secure Cloud Computing. In Proc. of Intl. Conf. on the Move to
Meaningful Internet Systems (OTM), pages 360–376, 2013.

[XLH+07] Yingfei Xiong, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato Takeichi, and Hong
Mei. Towards Automatic Model Synchronization from Model Transformations. In
Proc. of Intl. Conf. on Automated Software Engineering (ASE), pages 164–173, 2007.

209

Curriculum Vitae

Alexander Franz Bergmayr

Maria-Tusch-Straße 7/251
1220 Wien
Austria

Email: bergmayr@big.tuwien.ac.at
Web: http://www.big.tuwien.ac.at/staff/abergmayr
Date of Birth: 14-Aug-1980
Nationality: Austria

Work experience

07/2012 – present Researcher
Business Informatics Group, TU Wien, Austria

Main activities and responsibilities:
 ARTIST project, http://www.artist-project.eu, FP7 EU-funded, 317859 (09/2012 – 09/2015)
 Doctoral dissertation, “An Architecture Style for Cloud Application Modeling” (05/2016)

Master thesis co-supervision:
 Stefan Weghofer, “Moola: Model Operation Orchestration Language” (ongoing)
 Michael Kühberger, “MOF-based Metamodel Generation from (E)BNF Grammars” (ongoing)
 David Madner, “Model-based Deployment and Provisioning of Applications to the Cloud” (2014)

Bachelor thesis co-supervision:
 Michael Mittermayr, “Code generation for multiple class inheritance and enumeration
 inheritance” (2015)
 Alexander Altenhuber, “UML2Java – A Literature Review on Code Generation” (2015)

Research topics:
 Modeling & Metamodeling
 Software Modernization
 Reverse & Forward Engineering
 Cloud Applications & Environments

09/2008 – 07/2012 Researcher and Lecturer
Knowledge Engineering Group, University of Vienna, Austria

Main activities and responsibilities:
 PlugIT project, http://plug-it-project.eu, EU-funded 231430 (03/2009 – 08/2011)
 Teaching: Metamodeling (S2009, S2010, S2011, S2012), Modeling (S2012),
 IT Organisation (W2009), Large Scale IS (W2009),
 IS Infrastructure (W2010), IS Technology (W2010)

Research Topics:
 Modeling & Metamodeling
 Business-IT Alignment

05/2008 – 09/2008 Developer
team Communication Technology Management GmbH, Austria

Main activities and responsibilities:
 Software development in the area of road traffic management

05/2008 – 07/2008 Researcher
Institute of Application Oriented Knowledge Processing, Johannes Kepler University of Linz, Austria

Main activities and responsibilities:
 Contract research in the area of data migration

Research topics:
 Data Migration
 Software Modernization

09/2007 – 12/2007 Project assistant
Institute of Telecooperation, Johannes Kepler University Liny, Austria

Main activities and responsibilities
 ModelCVS project, http://www.modelcvs.org, FFG-funded FIT-IT-810806

Research topics
 Modeling & Metamodeling
 Model Comparison & Versioning

Education

2002 – 2008 Bachelor/Master Studies Informatics (passed with distinction)
Johannes Kepler University Linz, Austria

01/2007 – 07/2007 Exchange semester
University of Reading, England

Publications

Journal articles

Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel. Leveraging
Annotation-based Modeling with JUMP. To appear in Software and Systems Modeling (SoSyM), 2016

Conference papers

Alexander Bergmayr, Uwe Breitenbücher, Oliver Kopp, Manuel Wimmer, Gerti Kappel, and Frank
Leymann. From Architecture Modeling to Application Provisioning for the Cloud by Combining UML
and TOSCA. Accepted for publication in the Proceedings of the International Conference on Cloud
Computing and Services Science (CLOSER), 2016 (nominated as best paper candidate)

Patrick Neubauer, Alexander Bergmayr, Tanja Mayerhofer, Javier Troya, and Manuel Wimmer.
XMLText: From XML Schema to Xtext. In Proceedings of the International Conference on Software
Language Engineering (SLE), 2015

Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel. UML Profile
Generation for Annotation-based Modeling. In Proceedings of Software Engineering & Management:
Multikonferenz der GI-Fachbereiche Softwaretechnik und Wirtschaftsinformatik, 2015

Alexander Bergmayr, Javier Troya, and Manuel Wimmer. From Out-Place Transformation Evolution to
In-Place Model Patching. In Proceedings of the International Conference on Automated Software
Engineering (ASE), 2014

Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel. JUMP – From Java
Annotations to UML Profiles. In Proceedings of the International Conference on Model-Driven
Engineering Languages and Systems (MoDELS), 2014 (among the best papers)

Alexander Bergmayr, Michael Grossniklaus, and Manuel Wimmer. Cloud Modeling Languages by
Example. In Proceedings of the International Conference on Service Oriented Computing &
Applications (SOCA), 2014

Alexander Bergmayr, Hugo Bruneliere, Javier Luis Canovas Izquierdo, Jesus Gorronogoitia, George
Kousiouris, Dimosthenis Kyriazis, Philip Langer, Andreas Menychtas, Leire Orue-Echevarria, Clara
Pezuela, and Manuel Wimmer. Migrating Legacy Software to the Cloud with ARTIST. In Proceedings
of the European Conference on Software Maintenance and Reengineering (CSMR), 2013

Alexander Bergmayr, Manuel Wimmer, Werner Retschitzegger, and Uwe Zdun. Taking the Pick out of
the Bunch – Type-Safe Shrinking of Metamodels. In Proceedings of Software Engineering: Fachtagung
des GI-Fachbereichs Softwaretechnik (SE), 2013

Florin Abazi and Alexander Bergmayr. Knowledge-Based Process Modelling for Nuclear Inspection. In
Proceedings of the International Conference on Knowledge Science, Engineering and Management
(KSEM), 2009

Workshop papers

Alexander Bergmayr, Hugo Bruneliere, Jordi Cabot, Jokin García, Tanja, Mayerhofer, and Manuel
Wimmer. fREX: fUML-based Reverse Engineering of Executable Behavior for Software Dynamic
Analysis. Accepted for publication in the Proceedings of the International Workshop on Modeling in
Software Engineering (MiSE) co-located with the International Conference on Software Engineering
(ICSE), 2016

Alexander Bergmayr, Alessandro Rossini, Nicolas Ferry, Geir Horn, Leire Orue-Echevarria, Arnor
Solberg, and Manuel Wimmer. The Evolution of CloudML and its Manifestations. In Proceedings of
the International Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE) co-
located with the International Conference on Model-Driven Engineering Languages and Systems
(MoDELS), 2015

Javier Troya, Alexander Bergmayr, Loli Burgueno, and Manuel Wimmer. Towards Systematic
Mutations for and with ATL. In Proceedings of the International Workshop on Mutation Analysis
(MUTATION) co-located with the International Conference on Software Testing, Verification and
Validation (ICST), 2015

Alexander Bergmayr, Javier Troya, Patrick Neubauer, Manuel Wimmer, and Gerti Kappel. UML-based
Cloud Application Modeling with Libraries, Profiles and Templates. In Proceedings of the
International Workshop on Model-Driven Engineering on and for the Cloud (CloudMDE) co-located
with the International Conference on Model-Driven Engineering Languages and Systems (MoDELS),
2014

Alexander Bergmayr and Manuel Wimmer. Generating Metamodels from Grammars by Chaining
Translational and By-Example Techniques. In Proceedings of the International Workshop on Model-
driven Engineering By Example (MDEBE) co-located with the International Conference on Model-
Driven Engineering Languages and Systems (MoDELS), 2013

Alexander Bergmayr. ReuseMe – Towards Aspect-Driven Reuse in Modelling Method Development.
In Proceedings of Models in Software Engineering, Workshops and Symposia at the International
Conference on Model-Driven Engineering Languages and Systems (MoDELS), 2010

Margit Schwab, Dimitris Karagiannis, and Alexander Bergmayr. i* on ADOxx®: A Case Study. In
Proceedings of the International i* Workshop (iStar) co-located with the International Conference on
Advanced Information Systems Engineering (CAiSE), 2010

Thomas Reiter, Kerstin Altmanninger, Gabriele Kotsis, Wieland Schwinger, and Alexander Bergmayr,
Models in Conflict - Detection of Semantic Conflicts in Model-based Development. In Proceedings of
the International Workshop on Model-Driven Enterprise Information Systems (MDEIS) co-located
with the International Conference on Enterprise Information Systems (ICEIS), 2007

Tool demonstrations

Alexander Bergmayr, Michael Grossniklaus, Manuel Wimmer, and Gerti Kappel. Bridging Java
Annotations and UML Profiles with JUMP. In Proceedings of the Demonstrations Track of the
International Conference on Model-Driven Engineering Languages and Systems (MoDELS), 2014
(received best tool demonstration award)

	Abstract
	Kurzfassung
	Introduction
	Problem statement
	Aim of the thesis
	Scientific approach
	Application scenario
	Structure of the thesis

	Preliminaries
	Cloud services and environments
	Architecture viewpoints
	Model-based engineering

	Review of cloud modeling languages
	Review framework
	Review process
	Results
	Summary
	Related surveys

	Cloud application modeling
	Motivation
	UML-based language for cloud application modeling
	Extensions to UML for target platforms in the cloud
	Extensions to UML for target cloud environments
	Summary
	Related work

	Cloud application provisioning
	Motivation
	TOSCA metamodel
	Intensional and extensional deployment modeling
	Bridging UML and TOSCA
	Framework for architecture modeling and application provisioning
	Summary
	Related work

	Cloud model patching
	Motivation
	Model transformation evolution
	Model patches for out-place transformations in ATL
	Generation of patch transformations
	Summary
	Related work

	Evaluation
	Methodological evaluation
	Quality evaluation
	Performance evaluation
	Practical relevance

	Conclusion
	Summary
	Outlook

	Research prototypes
	CAML and PetApp artifacts
	Bibliography
	Curriculum vitae

