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Kurzfassung

Die Physik subatomarer Teilchen wird durch das sogenannte Standardmodell der
Teilchenphysik beschrieben. In der mathematischen Formulierung einer Quanten-
eichfeldtheorie beschreibt es die Phanomene von Elektromagnetismus, der schwachen
und der starken Wechselwirkung. Innerhalb des Standardmodells werden Ubergénge
zwischen Quarks unterschiedlicher Generationen durch den sogenannten Cabibbo-
Kobayashi-Maskawa (CKM)-Mechanismus beschrieben. Der CKM-Mechanismus
wird dargestellt durch die unitare 3x3 CKM-Matrix V', welche Massen-Eigenzustande
der Quarks in ihre schwachen Eigenzustinde rotiert. Die Unitaritit reduziert die
freien Parameter der CKM-Matrix auf drei Winkel und eine komplexe Phase. Diese
sind fundamentale Parameter des Standardmodells, das heifit sie werden darin nicht
vorhergesagt und miissen experimentell bestimmt werden. Das Ziel dieser Analyse
ist die Messung des Betrags von V,;, — jenem Element der CKM-Matrix, welches fiir
Ubergiinge von Bottom-Quarks zu Charm-Quarks verantwortlich ist.

Die hochstmogliche Prézision in der Messung von |V| kann durch die Analyse
semileptonischer B-Meson Zerfalle erreicht werden. Die B-Mesonen fir diese Ana-
lyse wurden am Belle Experiment am KEKB Elektron-Positron Beschleuniger in
Tsukuba, Japan tiber die Y (4S5)-Resonanz produziert. Eine hohe Luminositdt und
der dominante Zerfallsmodus Y (4S) — BB ergeben einen Datensatz reich an B-
Mesonen.

In jlingster Zeit gibt es ein gestiegenes Interesse an |V|-Messungen mit semi-
leptonischen B-Zerfallen, das sich darin begriindet, dass die beiden am besten ge-
messenen Zerfallskanale B — D*/v, und B — X_.lv, Diskrepanzen in der Grofle
von zwei bis drei Standardabweichungen zeigen. In dieser Arbeit wird der Zerfall
B — D{v, zum ersten Mal mit dem vollen Belle-Datensatz an der Y(45) Resonanz
analysiert, welcher rund 770 Millionen BB Ereignisse beinhaltet, um Einsichten in
diese Diskrepanz zu erhalten und |V;| mit héherer Prézision zu bestimmen.

Einer der zentralen Aspekte dieser Arbeit ist die volle Rekonstruktion von Ereignis-
sen durch Zusammensetzen auch des zweiten B-Mesons aus dem Y(4S) — BB Zer-
fall in einem hadronischen Modus. Dies fithrt zu der Kenntnis der Viererimpulse
aller Teilchen eines Ereignisses mit Ausnahme des Neutrinos. Auf dieses kann man
jedoch durch Viererimpulserhaltung Riickschliisse ziehen und somit Signal von Un-
tergrund trennen. Der dazu verwendete Parameter ist die fehlende rekonstruierte
Masse in dem Ereignis. Die volle Rekonstruktion resultiert in einer starken Re-
duktion von kombinatorischem Untergrund und erhoht die Prazision, mit der die
Kinematik des Zerfalls gemessen werden kann.

I1I



Die Extraktion von |V,] fithrt iiber die differentielle Zerfallsbreite von B — D{u,.
Diese kann in einen leptonischen Strom und einen Formfaktor, welcher die hadro-
nische Komponente beschreibt, faktorisiert werden. Ich messe die differentielle Zer-
fallsbreite in 10 Bins der kinematischen Variable w = vp,v},, wobei vp, und vf,
jeweils die Vierergeschwindigkeiten des B- und D-Mesons sind. Um |V,3| zu berech-
nen, nutze ich Formfaktor-Berechnungen von Gitter-QCD Gruppen und zwei ver-
schiedene Methoden der Formfaktor-Parametrisierung. Ich interpretiere die gemes-
senen Zerfallsbreiten zuerst mit der Parametrisierung von Caprini, Lellouch und
Neubert, und verwende eine Messung des Formfaktors bei w = 0 der FNAL/MILC
Kollaboration. Daraus erhalte ich den Wert new|Vs| = (40.12 £ 1.34) x 1073,
wobei ngw nicht faktorisierbare elektroschwache Korrekturen beinhaltet. Eine etwas
hohere Prazision konnte ich erreichen, indem ich die modellunabhéngige Parametri-
sierung von Boyd, Grinstein und Lebed und mehrere Formfaktor-Daten von den
Kollaborationen FNAL/MILC und HPQCD in einem kombinierten Fit verwendet
habe. Dies resultiert in dem Wert ngw|V| = (41.10 £ 1.14) x 1073, Beide Werte
liegen zwischen jenen der Messungen von B — D*/v, und B — X {1, ohne eine
davon klar zu favorisieren.

Des weiteren habe ich die Verzweigungsverhéltnisse des Zerfalls B — D/{v, be-
stimmt und erhalte den gemittelten Wert B(B® — D~ ¢*y,) = (2.31 & 0.03(stat) +
0.11(syst))%.
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Abstract

The physics of subatomic particles is described by the so-called Standard Model
of particle physics. It is formulated as a quantum gauge field theory and success-
fully describes electromagnetism, weak interaction and strong interaction. Within
the Standard Model, the Cabibbo-Kobayashi-Maskawa (CKM) mechanism describes
the transitions between quarks of different generations. This is expressed in the 3 x 3
CKM matrix V which rotates the mass eigenstates of quarks into their weak eigen-
states. The unitarity of the matrix constrains it to 4 independent values: 3 angles
and 1 complex phase. These are fundamental parameters of the Standard Model and
thus need to be determined experimentally. The aim of this analysis is to measure
the magnitude of V;, the entry in the CKM matrix responsible for the transition of
bottom to charm quarks.

The highest precision available for the determination of |V;| can be achieved
by analyzing semileptonic B meson decays. The B mesons studied in this thesis
were produced at the Belle experiment at the KEKB electron-positron collider in
Tsukuba, Japan via the T(45) resonance. This offers a perfect environment for the
study of semileptonic B decays due to the high luminosities and the dominant decay
mode of Y(4S5) — BB, resulting in a data sample very rich in B mesons.

Recent years have seen a lot of interest in semileptonic B decays due to discrep-
ancies in the order of two to three standard deviations in |V| between the best
measured decay modes B — D*fv, and B — X .lv,. In this analysis B — D/{y,
is analyzed for the first time using the full Belle data sample at the Y(4S) reso-
nance containing about 770 million BB pairs to give insight into this problem and
to increase the precision of the value of |Vy|.

One of the key components of this thesis is the full reconstruction of events by also
assembling the second B meson from the Y(4S) — BB decay in a hadronic mode.
This results in the knowledge of the kinematics of all involved final state particles
with exception of the neutrino. 4-momentum conservation can then be used to infer
the neutrino and distinguish signal from background via the mass missing in the
decay. Full reconstruction greatly reduces combinatorial background and allows for
high precision measurements of the B — D/{v, decay kinematics.

|Vp| is extracted using the differential decay width of B — D/{v, which can be
decomposed into the leptonic current and a form factor describing the hadronic
components. I determine the B — D/{v, decay width in 10 bins of the kinematic
variable w = v B#U%, where vp,, and vl are the 4-velocities of the B and D mesons.



In order to measure |Vg| I use calculations of the form factor by Lattice QCD
groups and two different parameterization schemes. Interpreting the decay width
with the B — D/{v, form-factor parameterization by Caprini, Lellouch and Neubert
and using the predicted form factor at zero hadronic recoil by FNAL/MILC, the
value new|Ve| = (40.12 £ 1.34) x 1073 is obtained, where ngw accounts for non-
factorizable electroweak corrections. A slightly higher precision is possible utilizing
the model-independent form-factor description by Boyd, Grinstein and Lebed and
using multiple form-factor data from FNAL/MILC and HPQCD, leading to the value
new| V| = (41.10 4 1.14) x 1073, In relation to |V| determined from B — X lu,
and B — D*{v,, these values fall into the middle, not clearly favoring either.

I further determine the branching ratios of the decay B — D/{v; to be B(B® —
D~ (Ty,) = (2.31 £ 0.03(stat) £+ 0.11(syst))%.
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1. Introduction

The theoretical description of particle physics is currently based on the so-called
Standard Model (SM). The SM is formulated as a quantum gauge field theory of
the gauge group SU(3) x SU(2) x U(1) assembled from electroweak physics which
combines U(1) electromagnetic and SU(2) weak interactions, and SU(3) quantum
chromodynamics.

In the electroweak part of the Standard Model the so-called Cabibbo-Kobayashi-
Maskawa (CKM) mechanism accounts for transitions between the six fundamental
particles called quarks. This mixing can be described by the unitary 3 x 3 CKM
matrix which can be reduced to 3 mixing angles and one complex phase. Those 4
parameters are fundamental properties of the SM and thus need to be measured by
experiment. This analysis aims at measuring the magnitude of the matrix element
V., which accounts for the transition of bottom to charm quarks. Additional mo-
tivation for the measurement of |V,,| comes from conflicting past measurements of
|Vp| in the two most precise decays B — D*{v, and B — X lv,.

I extract |Vy| by analyzing the decay B — D{v, in the 711 fb™' data sample
recorded by the Belle experiment at the T(45) resonance. The B mesons are pro-
vided by the decays of T(4S) — BB amounting to over 96 % of the Y(4S) decay
width. This results in about 772 million BB pairs produced at Belle giving it the
name of a B Factory. The B — D/{v, decay is reconstructed by searching events
for a charged lepton and assembling the D meson from exclusive hadronic decay
products.

The neutrino is not directly detectable in the Belle detector. Its loss is com-
pensated however, by full hadronic reconstruction of the second B meson from the
Y(4S) — BB decay and by applying 4-momentum conservation. |V| can then be
extracted by analyzing the differential decay width in dependence of the decay kine-
matics. Additionally the branching fractions of the decay and multiple parameters
of the used decay models are measured.

This thesis is organized as follows. In chapter 2 I present an introduction to the
SM followed by a more detailed description of the decay B — D{v,. Chapter 3
describes the current experimental status of |V,,| measurements. In chapter 4 the
Belle experiment is introduced. Chapter 5 details the data sample taken at Belle on
which this analysis is based. In chapter 6 I explain the experimental procedure for
measuring the differential decay width and in chapter 7 verifications of this procedure
on Monte Carlo data are shown. Chapter 8 describes corrections applied on Monte
Carlo data to account for differences to real data. In chapter 9 the resulting measured
widths, branching fractions and their systematic errors are presented. Finally, in
chapter 10 the widths are interpreted and |V,| is extracted.



1. Introduction

1.1. Natural Units

The preferred unit of energy for subatomic physics is the electron volt eV. Due to
the energy scale of the Belle experiment most values in this text will be in the order
of GeV. I follow the standard in particle physics and utilize “natural units” which
set c =1, h=1 and ¢y = 1. This directly relates different quantities such as length,
time and momentum to powers of energy. FE.¢g. momentum is expressed as energy
and time is expressed as inverse energy. I omit the use of ¢ and A in the units, e.g.
momenta are given in GeV and not GeV/c. Missing units of ¢ and & can easily be
recovered via dimensional analysis.



2. Theory

This analysis is based on the description of particle physics by the Standard Model.
In this chapter I give an overview over its constituent parts with a special focus on
the ingredients vital to the decay B — D{v, and the theoretical description of its
properties.

2.1. The Standard Model of Particle Physics

The Standard Model (SM) is one the most successful theories in modern physics. It
describes the behaviour of subatomic particles with a very high precision. Since the
completion of its formalism in the 1970s it has been verified with great scrutiny, the
most recent success being the discovery of the predicted Higgs Boson in 2012 at the
Large Hadron Collider accelerator at CERN. While there are known deficiencies of
the model, most prominently the facts that it does neither describe dark matter nor
include gravity, a replacement not only capable of explaining the missing phenomena,
but also holding up to experimental verification has yet to come.

While I will point out multiple important aspects of the SM, especially those of
relevance to this analysis, the SM and its mathematical foundation are incredibly
complex and can thus only be glossed over in a thesis. Therefore I will leave out
many points of interest and recommend the books [1] and [2] for the quantum field
theoretical description and [3] for a good overview and introduction into the matter.

Excluding gravity, the SM contains the other known fundamental forces of elec-
tromagnetism, the weak and the strong force. Within the SM these are actually
two forces since electromagnetism and weak interaction are combined into the elec-
troweak interaction. Likewise attempts are made at including the strong force into
a so-called “Grand Unified Theory” (GUT). While at the low energy scale typical
to human experience! electromagnetic, weak and strong force exhibit separate be-
haviors, at higher energies between the GeV and TeV scale electroweak unification
becomes visible at modern particle physics facilities. At even higher energies of 106
GeV —the so-called GUT scale — grand unification of electroweak and strong interac-
tion is expected. Finally, at the even higher energies of the Planck scale at 10! GeV,
a further inclusion of gravity is necessary. Although probing effects on these scales
is highly desirable, current machines — even using indirect detection mechanisms —
are far from probing those energy regions and thus the SM completely suffices for
the prediction of most phenomena.

Visible light has an energy in the order of O(eV), thermal processes at room temperature have
an energy in the order of O(0.01eV).



2. Theory

The formalism of the SM is that of a quantum gauge field theory based on the
gauge groups of SU(3) x SU(2) x U(1), where SU(2) x U(1) correspond to the
electroweak interaction and SU(3) to the strong interaction. I will discuss the im-
plications of the different gauge groups in the following sections.

Table 2.1 lists all particles of the Standard Model and some of their properties.

Leptons Gauge Bosons Higgs Boson
H
125.09 + 0.24 GeV
0 0
.mass
Quarks spin electric charge

Table 2.1.: The fundamental particles of the Standard Model with their mass, spin
and electric charge.

They can be categorized into four groups:

e Leptons are fermions with a spin of 1/2. There are three generations increas-
ing in mass®. Each generation contains a charged lepton (electron e, muon
p and tau 7) with an electric charge® of —1 and a neutrino with no electric
charge. While charged leptons have antiparticles (i.e. with an electric charge
of +1) it is not yet clear whether neutrinos are their own antiparticles or not.
Leptons are subject to the electroweak force but not to the strong force.

2While originally neutrinos where assumed to be massless, it is meanwhile clear that they too
must have mass - albeit small. Whether they follow the same order of higher masses for higher
generations is an ongoing research.

31 list the electric charges of the particles since this is a very prominent internal quantum number.
However, there are many more available such as weak isospin, color, lepton number and quark
flavor numbers such as strangeness. I will depict those in the respective sections on the different
interactions.
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2.1. The Standard Model of Particle Physics

e Quarks are fermions with a spin of 1/2 and a charge of either +2/3 (up-
type quarks named up wu, charm ¢ and top t) or —1/3 (down-type quarks
named down d, strange s and bottom b). Like leptons, quarks come in three
generations increasing in mass. Each quark has a corresponding antiparticle.
Quarks are subject to all known fundamental forces. Due to confinement (see
section 2.1.4) quarks are found only within composite particles called hadrons.
These can be further classified into mesons which contain a quark and an
antiquark, and baryons which contain three quarks.

e Gauge Bosons are the force carriers of the Standard Model with a spin of 1.
Photons () relay electromagnetic interactions and are massless. This results
in the infinite range of electromagnetism. They possess no electric charge and
are their own antiparticles.

W= and Z° bosons convey weak interactions. The two W bosons carry an
electric charge of plus or minus one and are each other’s antiparticle. The Z°
boson has no electric charge and is its own antiparticle. The high masses of
W= and Z° lead to the short distances of the weak force and are what makes
the weak interaction weak at low energy scales.

Finally, 8 types of gluons (g) are the quanta of the strong interaction. While
they are massless, the gauge group SU(3) from which they arise causes the
range of the strong interaction to be very short.

e The Higgs Boson is the only fundamental particle with spin 0. In 2012
it was discovered at the mass of ~ 125GeV at the LHC and completed the
list of fundamental particles predicted by the SM. Its importance stems from
being a manifestation of the Higgs-mechanism, which is an integral part of the
electroweak sector of the SM. The Higgs boson carries no electric charge and
is its own antiparticle.

2.1.1. Quantum Electrodynamics

The simplest sector of the Standard Model and its historically first and widely
successful part is Quantum Electrodynamics (QED). It combines quantum effects
with special relativity to describe electromagnetic interactions. Its success made it
a blueprint for the other interactions of the Standard Model. For this reason I will
review some of its details representative of the SM.

On the mathematical level QED is specified by the lagrangian density

L =(y" D, —m)y — EFWFW : (2.1)



2. Theory

What follows is a short derivation? of this equation. Since charged leptons are spin
1/2 particles I start with the lagrangian for a free spin 1/2 particle:

Efree,s:l = 1/}<Z7Hau - TTL)Q/} . (22)

2

I now require invariance under a local U(1) gauge transformation:
Y — 9@y (2.3)
Inserting the transformed 1 results in

Lies = V("0 — m)) — Dy"60,0(x). (2.4)

Invariance under local gauge transformations is then recovered if the additional term
on the right vanishes. Since the free lagrangian does not satisfy this requirement, I
add an interaction term with a new field A, and a coupling constant e:

L =(iy"0 — m)y — ey Ay (2.5)
If A, transforms under local gauge transformation as

A, — A, — 8,1@ , (2.6)
then applying a local gauge transformations to equation 2.5 results in the two extra
terms compensating and local gauge invariance is thus restored by the addition of
the vector field.

Having introduced an additional field I need to add its free field term to the
lagrangian. Note that this term needs to be gauge invariant as well which is exactly
satisfied by the lagrangian

1
£free,s:1 = _ZFIU,I/F“V (27)
v — grAY — 97 AP (2.8)

which is invariant under the transformation
A, — A, — (9#)\(90) , (2.9)

for any function A(z), i.e. it is also invariant under \(x) = 6(x)/e.

4Derivation is maybe too strong a word. I am using gauge invariance as a starting point to
arrive at the QED lagrangian. Gauge invariance is also what leads to the electroweak and
strong lagrangians and it thus seems to be a common characteristic of the mathematics that
govern our world. However, gauge invariance is merely a first principle from where to start.
The fact that the resulting lagrangian indeed seems to model particle physics is what gives it
justification.



2.1. The Standard Model of Particle Physics

Therefore gauge invariance leads to a coupling with and the introduction of a
massless vector field®. The free term can be identified as the lagrangian that governs
the Maxwell equations and thus describes electromagnetism. The full lagrangian of
QED can be written as

£ = B0, — m — ety Ay — 1 P (2.10)
= P(iy" Dy — m)y — iF“”FW (2.11)
= (i) —m)p — iF“”FW : (2.12)

In the second line I introduced the covariant derivative D,, = 0, + ieA, and in the
last line I introduced the so-called slash notation: v#X, = X.

In order to derive cross sections or differential decay widths of processes described
by this lagrangian, the typical procedure is to start from the free fields and introduce
the interaction terms as perturbation® For this, one derives the interaction Hamilto-
nian from the interaction term in the lagrangian. The evolution of an initial state to
a final state is then governed by a time operator evaluated between initial and final
state. The time operator consists of a time ordered exponential of an integral of the
interaction Hamiltonian. For any order n of the Taylor expansion of this exponential
one then has one or more integrals over multiple time ordered operators. All field
operators are then decomposed into creation and annihilation operators and initial
and final state are written as creation operators acting on the vacuum. The prob-
lem is then to evaluate the time ordered operators. This can be done using Wick’s
theorem. It prescribes how a time ordered sequence of operators can be written as a
sum of multiple normal-ordered operator terms multiplied with so-called Feynman
propagators. This is then a situation that can be solved, since Feynman propagators
are just complex numbered functions and normal ordered operators can be applied
directly on initial and final states. After inserting multiple vacuum-identities, and
integrating over resulting delta functions one finally arrives at the amplitude for the
interaction of two states in a given order of the expansion. One then sums up the
amplitudes until an order that gives sufficient precision.

Although this is a very brief description, one sees how this process is very tedious.
However, it follows a fixed set of rules and the terms appearing from Wick’s theorem
follow the same combinatoric patterns each time. It is thus, that Feynman intro-
duced the Feynman rules which relate the terms from Wick’s theorem to graphical
representations, so-called Feynman diagrams, together with a prescription on how
to collect the terms that appear in the amplitude.

5There is a more general form of a lagrangian for a spin 1 field which includes a mass term.
However, this mass term makes gauge invariance impossible and thus the mass must be zero if
gauge invariance is to hold. This basic problem is what made the Higgs mechanism necessary
in order to introduce mass-like behavior of W and Z bosons without an initial mass term in
the free lagrangian.

6Perturbative treatment works very well for the QED lagrangian, however the strong interaction
in the low energy regime cannot be treated this way.



2. Theory

The Feynman rules for QED are’:

For each particle in the initial state an incoming line is drawn and for each
particle in the final state an outgoing line is drawn.

Time runs symbolically from left to right.

Photons are drawn as wavy lines, fermions as straight lines with an arrow that
denotes particles (in the direction of time) or antiparticles (opposite direction).

Vertices are connected with a line allowed by conservation laws (e.g. electric
charge conservation).

Each line has a 4-momentum. The outer lines correspond to the 4-momenta of
the physical particles. Internal lines may have 4-momenta which do not match
the mass of the particle - so-called “off-shell” or “virtual” particles.

Each vertex conserves 4-momentum.
The terms in the amplitude can be assembled as a product of the following

constituents:

— Each external fermion results in a spinor (typically u or v for incoming
and u, v for outgoing ones).

— Each external photon gives a polarization vector (typically e*).

— Each vertex contributes with iey*.

— Each internal fermion gives i(f+m2) ,
q?—m

fermion.

where ¢ is the 4-momentum of the

— Each internal photon gives % :

— Each vertex contributes a momentum conserving delta function.
One then integrates over the momentum of the internal line.

Diagrams are summed up for every topologically different setup including a
minus sign for diagrams that differ only in exchange of two fermions of same

type.

The result is iM(27)40%(p1 + po — p3 — pa), where M is the amplitude of the
scattering process as it would have been derived in the classical fashion.

The genius of the Feynman diagrams is then not only the simplification of the
calculation but also the foundation to talk and describe physical processes on the
particle level with an easy picture language. An example of Feynman diagrams is
shown for the tree level contributions to electron-positron scattering in Figure 2.1.

"For the sake of brevity the Feynman rules presented here only describe tree level events with
four external lines and one internal one.
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< 1

Figure 2.1.: The two Feynman diagrams on tree level that contribute to electron-
positron scattering - so-called Bhabha scattering.

2.1.2. Symmetries

Having introduced the QED lagrangian is a good point to discuss symmetries in the
Standard Model. There are multiple symmetries under which the Standard Model
or rather its lagrangian is invariant.

Being formulated in a special relativistic fashion the Standard Model implicitly
exhibits the symmetries of the Poincaré group and thus is symmetric with respect to
translations, rotations and relativistic boosts. The Noether theorem [4] states that
for any differentiable symmetry of the action of a system there exists a corresponding
conserved quantity. For translational symmetry (in space and time) the conserved
quantity is the 4-momentum and for rotations the conserved quantity is angular
momentum®.

While the Poincaré symmetries are continuous, there also exist 3 important dis-
crete symmetries:

e Charge conjugation (C') changes the signs of all internal quantum numbers of
the involved particles. Internal quantum numbers include electric charge (thus
the name of the symmetry), color charges, lepton numbers, etc. They do not
include spin, mass or 4-momentum.

e Parity transformation (P) changes the sign of all spatial coordinates and is
thus a reflection w.r.t. the origin of the coordinate system.

e Time reversal (7)) reverses the direction of time.

Formulated as operators the eigenvalues of these symmetries are always 4+1 and
applying them twice results in the original state.

81 left out the conserved quantity corresponding to the boost. After all the Poincaré group has 10
degrees of freedom: 341 for spatial and time translation, 3 for rotation and another 3 degrees
of freedom for boosts. The last three result in a conservation of the position of the center of
mass at time zero. Since this quantity seems trivial and has usually little impact, it is seldom
mentioned in texts.
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One very important aspect of these three symmetries is shown by the C'PT theo-
rem [5]: the combined application of C'PT is a fundamental symmetry of any Lorentz
invariant local quantum field theory with a lower bound on the Hamiltonian (and
thus a stable vacuum). It is not possible to formulate such a theory that violates
CPT symmetry. So far no experimental violations of C'PT have been found. Such
a discovery could be considered a revolution in particle physics.

The discussed QED lagrangian is not only invariant under C'PT but also under
the single C'; P and T transformations. Since parity plays an important role in weak
physics as discussed later, I want to have a look at the parity transformation in QED.
Under parity transformation scalar fields stay unchanged, while vector fields have
the sign of their spatial coordinates reversed. With that in mind, it is obvious that
the free electromagnetic field term will stay exactly the same since the vector field
only comes in pairs and any sign reversals will cancel?. The term with the spinors is
more interesting. As is shown in chapter 3 of reference [2] spinors transform under
parity as:

P: Yt %) — %Yt —7). (2.13)

One can then see how the left side of the QED lagrangian is P invariant. From the
spinors on the sides one gets two 7° matrices. In the middle every term changes sign
in the spatial components due to the parity inversion. Moving the right 4° through
to the left will change the signs in the spatial components back to their original
state, because 7 anticommutes with the 7* matrices, while the time-component
stays untouched as " trivially commutes with itself. Once «° arrives on the left
side it annihilates with the other 7° (7°4° = 1) and the equation is back where it
started.

This is only possible because of the 7* in between the spinors. In general any
spinor bilinear can be decomposed into 5 different types:

e 1) a scalar,
e 1751 a pseudoscalar,
o )y") a vector,
e "5 a pseudovector,
e Yoty an antisymmetric tensor, with o = L[y*, "] .
Every bilinear can be written as a combination of those five types. Note that while
the scalars have one free component, the vectors have four and the antisymmetric

tensor has 6 components. In sum those cover all 16 components of a real bilinear
product. This grouping is very useful as each type specifies how it acts under parity.

90f course the signs of the coordinates have changed from & to —& but that has no impact since
in the action the lagrangian is integrated over the whole space.

10
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Scalars will — as the name suggests — keep unchanged under parity, pseudoscalars
on the other hand will reverse their sign. Vectors will change the sign in the spatial
(u = 1,2,3) components, while pseudovectors do not. Finally, the antisymmetric
tensor changes sign in the cases where exactly one of its indices is spatial.

QED thus describes a so-called vector coupling and one can very quickly see that
it is parity invariant. On the other hand, I will later show that the addition of a
pseudovector component in the lagrangian of the weak interaction is what violates
parity. There I will also write about the combined C'P symmetry and its violation.

The next interesting symmetry is the one I applied as first principle - the gauge
invariance. Since it is a complex phase it can be categorized as U(1) gauge invariance,
where U(1) denotes a 1 x 1 unitary complex matrix in group theory. A similar —
albeit more complex — situation will arise in the weak interaction with the group
SU(2) and in QCD with the group SU(3). While the gauge symmetry is local,
within all possible transformations it also contains a global symmetry - i.e. where
the phase does not depend on space. Thus it also gives rise to a conserved quantity,
which is the electric charge.

2.1.3. Electroweak Quantum Field Theory

One of the great successes of the Standard Model is the unification of electromag-
netism and the weak interaction into an SU(2) x SU(1) gauge theory. As such
the photon of QED and the gauge bosons of the weak interaction (W* and Z°) all
originate from the same set of massless gauge bosons of electroweak theory - the W;
and B. A gauge theory cannot be constructed with mass terms from the outset, but
the addition of the Higgs-field leads via spontaneous symmetry breaking to effective
mass terms of the weak gauge bosons while the photon stays massless. The resulting
bosons after symmetry breaking are linear combinations of the originals:

1
W= = — (W, FiW. 2.14
\/5( 1 FiWa) (2.14)
v = cosby B + sinfy W (2.15)
Z° = cosby W5 — sinfy B, (2.16)

with the so-called “weak mixing angle” 0y,

The lagrangian of electroweak theory after symmetry breaking can be split into
many separate terms. These include Higgs boson interactions with itself or other
particles, three and four point interactions of W* and Z°, interactions between weak
gauge bosons and fermions, and kinetic terms of all involved particles.

Of most interest for this analysis is the term describing the interaction between
W* and fermions, the so-called charged current:

1-— 1
Ecc = _i HZFYMT%V;]d] +D27H

V2

— 5

G| W+ hee. (2.17)

11



2. Theory

Here, g denotes the weak coupling constant, u; represents up-type quark spinors
(i.e. u, ¢, t) and d; represents down-type quark spinors (i.e. d, s, b). All spinors
are given in their mass eigenstates. Charged lepton spinors are denoted with ¢; and
neutrino spinors with ;. The index ¢ is the generation number and the complete
lagrangian would include a sum over ¢ from one to three.

It is instructive to compare this lagrangian to the QED lagrangian. Looking at
the leptonic part on the right, one sees that additional to a vector term (v*) a
pseudovector term (v*75) appears. As discussed in section 2.1.2 it behaves under
parity not like a vector, but rather an axial vector in that its spatial components
do not change their signs under parity transformation. As was shown for QED, the
vector component leads to a conserved parity. The pseudovector on the other hand
adds a violation of parity symmetry. In early descriptions of weak interactions often
the form «*(1+ e75) was used, assuming a small deviation from parity conservation.
It turned out however, that ¢ = —1 and parity is thus maximally violated in the
weak interaction.

Another way to describe this effect is to look at the property of the 1_% operator.
Acting on a spinor this operator behaves as a projection onto left handed chiral
states. One can thus say that weak interaction only acts on left handed fermions (or
right handed anti-fermions). This parity violation had a huge impact on physics,
because each single symmetry of C'PT is conserved in both electromagnetic and
strong interactions both in theoretical description and experiment!®. In 1957 the
famous experiment by C. S. Wu [6] added the experimental data on the situation for
weak processes by examining the beta decay of Cobalt-60. The emitted electrons
were observed to be preferentially emitted in the direction of the Cobalt spin and
thus violated parity symmetry.

After it was clear that P symmetry was violated by the weak interaction, the
question arose whether the combined C'P symmetry would still hold. That this is
not the case can be seen in the left term of equation 2.17; more specifically by the
introduced matrix V;;. This Cabibbo-Kobayashi-Maskawa matrix includes a C'P
violating phase as I will discuss in section 2.1.3.1.

For now I want to briefly discuss other symmetries of the weak lagrangian. The
conserved quantity corresponding to the SU(2) gauge invariance of the lagrangian
is the so-called weak isospin. The name derives from the earlier idea of isospin.
Neutrons and protons behave like similar particles under strong interactions, dif-
fering only by a quantity called isospin. Due to its SU(2) nature its mathematical
description resembles that of spin. The same idea was then later used to describe
the weak interaction. Weak isospin 7' is - like spin - a vector, and the conserved
quantity is actually its third component T5. However, the third component is often
referred to as weak isospin as well.

10Tn general the strong interaction has the capability to violate CP and thus also T symmetry.
The parameter that governs the strength of this violation however is a free parameter and seems
to be zero, resulting in C'P conservation in the strong interaction. So far there is no confirmed
explanation of why this is the case and thus presents a typical fine tuning problem, which in
literature is called the “strong C'P problem”.

12
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Charged leptons and up-type quarks have T3 = +%, while neutrinos and down-
type quarks have T3 = —%. W= bosons which couple down-type quarks to up type
quarks and charged leptons to neutrinos thus carry a third isospin component of £1.
This further differentiates them from photons in that they carry charge themselves
and this results in self-coupling terms in the lagrangian.

There are further symmetries of the electroweak lagrangian which are also true
for the strong lagrangian and thus the overall SM. These are the lepton numbers!!
(electron number, muon number and tau number) and the quark number. Each of
those is conserved in the SM and experimentally no deviations have been found!2.

Finally I want to introduce the two most important contributions to Feynman
diagrams used in this analysis: the W propagator and the weak vertex factor. The

weak vertex factor is'?:

;%7“(1 — ) (2.18)

And the W propagator is:
_Z‘(gwf - QMQV/m%/V)

2 2
q- — My,

(2.19)

For decays with ¢ far smaller than the W mass'* that propagator can be replaced
with:

LG
my,

(2.20)

2.1.3.1. The Cabibbo-Kobayashi-Maskawa Mechanism

It is a peculiarity of the weak interaction that its quark eigenstates differ from
their mass eigenstates. It is therefore that in equation 2.17 the so-called Cabibbo-
Kobayashi-Maskawa (CKM) matrix V;; is used to rotate the mass eigenstates into
the weak eigenstates.

1T,epton numbers are only exact symmetries for the case of massless neutrinos. Since the existence
of neutrino masses is meanwhile established, lepton numbers are only approximate symmetries
of the Standard Model.

12There is however a good reason to assume that quark number is violated somewhere. As we
can observe, the universe seems to contain mostly matter over antimatter. To achieve such an
asymmetry the quark number must be violated. Interestingly, there are two further require-
ments for matter-antimatter asymmetry, one of which is C'P violation at a level much higher
than is allowed by the weak interaction.

13This weak vertex factor is given for weak eigenstates. If one works with the mass eigenstates
one has to add the corresponding CKM matrix element.

14This is the case for the B — Dfv,; decay. In the B rest frame the energy of the B meson is
mp = 5.28 GeV. The largest ¢? value is reached when the D meson gets the minimum amount
of energy and is also produced at rest, requiring and energy of mp = 1.87GeV. This leaves
5.28 — 1.87 = 3.41 GeV and thus ¢2,, ~ 11.63 GeV2. Compared to m¥, = 6461.75 GeV? this is
below 0.2%.

13
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The first one to apply this principle was Cabibbo in 1963. In a time where only
up, down and strange quarks where known'® he suggested a 2 x 2 mixing matrix
and thus explained how the strange quark could change into an up quark. A unitary
matrix of size N x N is reduced by unitarity to N? real parameters. The number
of free parameters can be further reduced by absorbing phases into the quark fields.
There are 2N fields, so since one overall phase is unphysical, 2N — 1 degrees of
freedom can be subtracted. This leaves (N — 1)? free parameters. The Cabibbo
matrix thus only has one free parameter - a mixing angle.

In 1973 Kobayashi and Maskawa extended the matrix to 3 quark generations'® in
order to account for C'P violation. With N = 3 the free parameters are 3 mixing
angles and one complex phase. This complex phase is the source of all C'P violation
in the Standard Model. The CKM mechanism thus explained C'P violation and
predicted a third quark generation which indeed was found later.

Denoting weak eigenstates of down-type quarks with a subscript w and their mass
eigenstates with subscript m the CKM matrix rotates one into the other as

dw vud Vus Vub dm
Sw = ‘/cd ‘/05 ‘/cb Sm . ( 2.21 )
bu Vie Vis Vi b

Note that it is only conventional to rotate the down-type quarks, one could as well
rotate the up-type quarks.

Naming the complex phase e, the three rotation angles 615, 613 and 63, and
abbreviating sine with s and cosine with ¢ the CKM matrix can be written as

1)

C12C13 S12C13 S13€
_ is is
Vij = | —5S12C23 — C12823513€"°  C12C23 — S12523513€ 523C13 : (2.22)
6 i
512823 — C12C23513€" —C12823 — S12C23513€" C23C13

To give an overview of the relative sizes, the approximate values of the magnitudes
are

Vadl Vsl | Vol 0.97 0.23 0.004
Veal [Ves| |Vl | = [ 023 097 0.04 | . (2.23)
Vidl [Vis| |V 0.01 0.04 0.999

15 Actually, when he proposed this mechanism in 1963 the quark model was just at its start. Gell-
Mann had already proposed the Eightfold way, but the term quark itself was only coined in
1964 and quarks were not confirmed until 1968. It is easier however from a modern viewpoint,
to see it as a quark eigenstate problem.

16This proposal was as remarkable as Cabibbos. While the existence of quarks was already con-
firmed in 1973, only the lightest three quarks — up, down and strange — were known. Thus half
the quarks necessary for the CKM mechanism to work were unknown when it was proposed.

14
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2.1.3.2. CP Violation in the Bottom Quark Sector

The study of C'P violation is a very wide field within particle physics. It can
be studied in kaon, D and B meson systems, and via multiple decay topologies
with different magnitudes of effect, interferences, and theoretical and experimental
limitations. For example, one of the simpler modes, the decay of a K? meson to
either 7~ e*v, or e~ 1, shows direct C'P violation via its different decay rates to
those two final states. However, the size of the effect is below the percent level. In
the B meson system on the other hand much stronger effects can be observed in the
mixing of neutral B mesons and the subsequent decays into C'P eigenstates.

A thorough description of C'P violation in multiple sectors can be found in ref-
erence [7] and a good introduction into its measurements at B factories is given in
reference [8]. While C'P violation has a negligible impact on the decay B — D/,
I want to briefly introduce it for two reasons. First, the main motivation behind
the Belle experiment was the study of C'P violation and the CKM mechanism in B
meson systems. And second, |V.3| plays a role in the determination of the properties
of the CKM matrix. As mentioned in the previous section the elements of the CKM
matrix are all connected through unitarity of the matrix. Different measurements
yield constraints of single CKM parameters as in this analysis, or yield combinations
of those. In order to determine the entire matrix a combined fit including as many
measurements as possible is desirable. This is done by groups such as the CKMfitter
group [9] and |V, is one of multiple input parameters.

C'P violating decays can be grouped into three distinct categories:

e (P violation in decay happens when the amplitudes for a decay and its C'P
conjugation have different magnitudes. The mentioned K? — n~eTv, decay
is an example of this. An example in the B meson sector as studied at Belle
is the decay BT — KtK 7" [10].

e ('P violation in mixing only concerns neutral particles and denotes C'P
violation in the mixing between the two neutral states. An example of this
are the decays B® — X~ (Tv,, where C'P violating mixing with B° results
in a slightly different amplitude than for the conjugate mode B® — X ¢~ .
However, this effect is very small, below 0.001.

e C'P violation in interference between a decay without mixing and a
decay with mixing describes asymmetries in the rates of the direct decay
B — f and the decay over mixing B — B — f, where f is a common final
state to both B and B. An example is the decay B® — J/WKY [11].

The largest impact of C'P violation in the B sector is seen in the third category,
and the decay B — J/WK?Y is considered its golden mode. Experimentally the
J/U — (T¢~ decay has a very clean signature, and the K3 — 777~ decays are also
well reconstructable. From a theoretical viewpoint the decay has the advantage of
a very small contribution from so-called “penguin” diagrams.

15
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The asymmetry of the decay is given by [7]:

I'(B° = J/WKY) —T(B® — J/UKY)
T(B° — J/WKY) +(B° — J/UK?)

A(t) = = sin(|Aml|t)sin(2¢1) . (2.24)

Here, Am is the mass difference between the two mass eigenstates of the neutral
B mesons and ¢ is an angle defined as!'":

—Ved ’Z)
=aqrg| —2) . 2.25
" g( o (2.25)

In experiments such as Belle, the B® and B° meson are produced from the Y (45)
resonance in an entangled state - a typical example of an Einstein-Podolsky-Rosen
situation. When one of them decays, the wave function collapses and the type of
the second meson is determined!®. Determining the type of one B meson — so-
called tagging — allows knowledge about the second one. This leads to a formulation
similar to equation 2.24, but with a time At relative to the decay time of the tagged
B meson. However, an average over time would integrate out the asymmetry. Thus
measuring C'P violation in such a setup requires to resolve the decay times of both B
mesons. Unfortunately, the lifetime of the B meson limits its flight length to about
30 um in the YT (4S5) rest frame. That is much too short for measuring the decay
times via vertex displacement. As I will explain in chapter 4 this had an important
impact on the design of the Belle experiment.

2.1.4. The Strong Interaction

The final ingredient to the Standard Model is the strong interaction. Historically a
hint about its fundamentals was presented with the A™* meson. Consisting of three
up quarks with aligned spin and with no further angular momentum it provided a
conundrum: how can three identical fermions exist in a bound state all in the same
configuration without violating the Pauli principle? The answer was the addition of
another internal quantum number: color charge, which obviously needs (at least) 3
possible values, which are called red, green and blue. The color scheme is a useful
visualization since in the additive color model their combination results in white
and all known hadrons are in a “white” configuration. These colors are what lends
the theory of strong interaction its name of quantum chromodynamics (QCD).

"The unitarity of the CKM matrix can be expressed with so-called “unitarity triangles”. There
are six such triangles, the most prominent one arises from the unitarity equation V4V, +
VeaV 4+ ViaVy; = 0. Three complex values summing up to zero can be expressed as a triangle
in the complex plane. ¢1, ¢2 and ¢3 are then the angles of this triangle. In the CKM mechanism
all triangles have the same non-zero area and thus finite angles.

8Note that the type of the second B meson is only fixed for the moment in which the first one
decays. Afterwards it will keep mixing with its conjugate state.
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A gauge theory resulting in 3 charges is reached by using the SU(3) gauge group.
Using SU(3), QCD can be constructed in the same fashion as QED, but the differ-
ence between U(1) and SU(3) leads to fundamental changes. First, the quantum of
the interaction field — the gluon — is massless like the photon, but in contrast carries
color charge itself. For this reason the gluons couple to themselves. The impact of
that can hardly be overstated. A property of QED I have not mentioned so far is
the so-called “screening”. The effective charge of any electromagnetic particle de-
creases with distance. This is due to vacuum polarization: virtual electron-positron
pairs shield the charge - analogous to polarization in a dense medium. In terms
of Feynman diagrams this comes dominantly from chains of electron-positron loops
(see Figure 2.2). Summing over these components in higher and higher orders leads
to a decrease in coupling with higher distances (or equivalently lower energies).

Figure 2.2.: An electron-positron pair loop in QED in the one-loop order. The dom-
inating contribution to vacuum polarization in QED comes from chains
of such loops.

The quark-antiquark loops of QCD have exactly the same effect. However, ad-
ditional to virtual quark-antiquark pairs the self-coupling of gluons adds similar
diagrams with gluon loops (see Figure 2.3). Summing over these contributions from
gluon loops has the opposite effect of screening, termed “anti-screening”.

(a) (b)

Figure 2.3.: Possible contributions to vacuum polarization in QCD in the one loop
order. a) shows a quark-antiquark loop which results in screening. b)
shows a gluon-gluon loop which contributes to anti-screening.

In sum, the impact of the gluons loops exceeds the impact of the quark-antiquark
loops. This results in a running coupling that is the opposite of that in QED: the
lower the energy (or the higher the distances) the stronger the color force gets. The
coupling constant goes as

1
11n — 2f)In(|¢?|/Adcp)

as(|¢’]) o ( (2.26)
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The constant Agcp is in the order of 200 MeV. The integers n and f are the number
of colors and flavors in QCD respectively. Thus it is due to the 3 colors and 6 flavors
of quarks that QCD exhibits an anti-screening behavior. There are two phenomena
linked to the running coupling constant. First, at high energies quarks and gluons
act like free particles and can be treated perturbatively. This is called asymptotic
freedom. On the other hand for low energies the force between quarks increases
linearly with distance. Quarks and gluons are confined to colorless compounds. If
the distance of a quark from the others within the colorless compound grows, the
energy increases linearly with the distance until new particles are created that lead
to two separate colorless states. One can thus never find quarks or gluons in an
unbound state. This is called confinement!®. The problem is, that this behavior
makes QCD not accessible to perturbation theory at small energies.

The lagrangian of QCD is?

1
GG (2.27)

L = to (i) 0p — Mbap) V5 —

This resembles the lagrangian for QED, but instead of U(1), the symmetry group

at hand is SU(3). This results in the sums over a and § which run from 1 to

3, representing the three colors and in the field strength tensor having an index

a running from 1 to 8. Further, an additional term appears in the field strength
tensor:

G, = 0, AL — 0, AL + gf " AL AC (2.28)

where A? are the gluon fields and fe¢ are the so-called structure constants of QCD.
It is the additional term which gives rise to the gluon carrying color charges and
consequently its self-interactions.

2.1.4.1. Lattice QCD

Asymptotic freedom of QCD means that one can calculate high energy interactions
such as jets with perturbation theory, but low energy states like bound states cannot
be treated perturbatively.

The idea behind lattice QCD (LQCD) is to evaluate the system at hand on a
discrete Euclidean space-time grid. On this grid the path integrals (from the path
integral formulation of QCD) can be evaluated numerically. Fermions are placed on
the lattice sites and gluons on the links between those sites. The lagrangian can then
be formulated in such a way that when the lattice spacing is taken to zero the action
of the continuum theory is recovered. Hadronic states are then placed and calculated
on the lattice in different spacings and then extrapolated to the continuum.

9Proving confinement in QCD is highly non-trivial. To this day there is no analytical proof of
this phenomenon although it can be shown to arise in Lattice QCD.
20For the sake of brevity the sum over flavors is omitted here.
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While LQCD is a great way to calculate low energy QCD from first principles
without relying on phenomenology, it has multiple complications. First, the eval-
uation of the path integrals is computationally intensive and since it is done on a
multidimensional grid the required computing power rises very fast with more lattice
points or smaller lattice spacing. LQCD thus requires modern supercomputers to
perform its calculations.

Other difficulties arise from artifacts of the discrete lattice. For example, fermions
on the lattice come with the usual derivative term in the action. Working on a lattice,
the derivative is replaced with a symmetric difference. This however introduces for
every fermion a second unphysical fermion called “doubler”. The Nielsen-Ninomiya
theorem [12] states that it is impossible to define lattice fermions with continuum-
like (chiral) symmetries without introducing these doublers. To counteract their
impact, so-called “clover” fermions are used which introduce additional terms to
the lagrangian resulting in doublers vanishing in the continuum extrapolation.

Similar to this example there is a multitude of specialized techniques to deal with
artifacts, to reduce computational load or to reduce statistic and systematic errors.
The two Lattice QCD calculations I am using in this analysis contain multiple of
those. However, since LQCD is a very wide and complicated topic in itself I will
not go into its details here. For a good introduction see the review chapter “Lattice
quantum chromodynamics” in reference [13].
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2. Theory
2.2. The Description of the Decay B — D/{y,

With the Standard Model introduced, I want to discuss the specifics of the decay
B — D/{y, which I will use to extract |V|. In this section I will show how to derive
the differential decay width and discuss some of the aspects that enter into into the
calculation.

2.2.1. Differential Decay Width

The differential decay width of B — D/{v, can be found in the literature [8] as

dr _ G%m3,
dw 4873

(mp +mp)*(w® = 1)* iy | Vi G (w)?. (2.29)
Here, w is the product of the 4-velocities of the B and D meson
w = vp,vh, (2.30)

and G is the Fermi constant defined as

V243
Gp = W 2.31
F 8ms, ( )

mp and mp are the masses of the B and D meson respectively. The electroweak
correction factor ngw takes into account electroweak interactions between leptonic
and hadronic current and will be discussed in section 2.2.4. |V, is the magnitude of
the CKM matrix linking b and ¢ quarks. Note that the charged lepton ¢ discussed
here is a light charged lepton, i.e. electron or muon. For taus both theoretical de-
scription and experimental reconstruction exhibit additional complications. Finally,
G(w) is a hadronic form factor which takes into account the hadronic dynamics of
the decay.

In order to derive this formula I start at Fermi’s golden rule for a relativistic
quantum field theory

1
dl' = —— | M |2dII 2.32
2mB|M| 3 ( 3 )

where dIl; is the Lorentz invariant phase space (LIPS). In the following, I will first
calculate the matrix element M starting from the Feynman rules and then derive
the corresponding phase space before combining the results.
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2.2.1.1. The Feynman Diagram

Treating only the bare quarks involved in the weak process of the decay, the Feynman
diagram looks as in Figure 2.4a. Using the Feynman rules for weak interaction

0+ 0t
W " W

Vi
b ¢ B €D
(a) (b)

Figure 2.4.: Feynman diagram of the semileptonic decay of a b to a ¢ quark, with bare
quarks (a) and within the context of the mesons of the B — D/v, decay
(b). The multiple gluon lines in the hadrons symbolize the complicated
nature of the bound hadronic state.

discussed in section 2.1.3 one can write down the matrix element M as

—1i WG |, —1
M = | 2\%%#(1 —7s) v,,] ﬂz—%v {c Vch—jg/’y”(l — )b (2.33)
where uy, v, ¢ and b are the spinors of the charged lepton, neutrino, charm quark
and bottom quark respectively. Note that no integration over internal W momentum
(q) is involved since I used the W propagator for low energies from equation 2.19.
This is often referred to as “integrating out” the degrees of freedom of the W.
Reorganizing and using the Fermi constant G results in

G _ _
M=—i—Ly, (@Y (1 — v5)vu] [e7u(1 — 75)b] . (2.34)
V2
For the complete B — D/{v, decay as shown in Figure 2.4b one needs to include
the interaction of the b and ¢ quark with their hadronic environment and thus insert
the states of B and D meson:

Gr
V2

I will refer to the left bracket as the leptonic current L* and the right one as the
hadronic current H,,:

M = —i—=Vy [ugy" (1 — v5)v, ] (D]evy,(1 — 75)b| B) . (2.35)

LF = apy"(1 = s)v, (2.36)
H, = (D], (1~ 5)0/) (2.37)
M= —iCy,vm, (2.38)

\/5 c
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2. Theory

The reason semileptonic decays such as B — D/{y, are preferred for |V,| mea-
surements is this factorization into a leptonic and hadronic current which can be
evaluated separately. This is not possible for hadronic decays. However, the fac-
torization presented here is only valid at the tree level and higher order corrections
need to be taken into account with an electroweak correction factor. This will be
discussed in section 2.2.4.

2.2.1.2. Reference Frames

Before evaluating the matrix element and the phase space, it is useful to define the
reference frames which will be used in the process and to establish some relations.
There are two reference frames which are especially convenient: the rest frame of
the virtual W boson (W-frame) and the rest frame of the B meson (B-frame). I
first define ¢* as usual as the 4-momentum of the virtual W:

¢" =pw =g —Pp =+, (2.39)
Its square (¢*> = ¢*q,) is then the mass of the virtual W.

W-Frame I will denote quantities in the W-frame with a hat, such as p. Figure 2.5
shows a schematic of the W-frame.

S

D
AN
3

Figure 2.5.: Kinematics in the W-Frame. Charged lepton and neutrino are produced
back-to-back, i.e. with opposite 3-momenta. The D meson carries the
same 3-momentum as the incoming B meson.

Without loss of generality I choose the direction of the B meson as the negative
z-axis and the plane in which the decay happens as the yz-plane. Since the W is at
rest and due to 3-momentum conservation it follows that

~

fo= . (2.40)

Assuming zero lepton mass®!:

ﬁz@@)ﬂ%<@4> (2.41)
De —De

21Since I am working with light charged leptons, their masses (m. ~ 0.5 MeV and my, =~ 106 MeV)
are much smaller than the involved momenta.
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2.2. The Description of the Decay B — D/lv,

From
) +05)° = ¢*, (2.42)
follows
5| = g (2.43)

The 3-momentum of the B meson is completely passed on to the D meson:
s =P, (2.44)

and the 4-momentum of the B can thus be written as:

ﬁ’é:(EﬁﬁiﬁED):(qiED). (2.45)
Pp Pp

The invariant mass of the B meson can then be expressed as

mp = bp (2.46)
= ¢* +29Fp + E}, — |pp|? (2.47)
=>4+ 2¢Ep +m% . (2.48)

Rearranging for Ep yields

2 2 9
Bp="'B ;;D 7 (2.49)

The magnitude of the D momentum is then

| =\ B3 —m3, (2.50)

(mQ _ m2 _ q2)2
- \/ B 4q§ —m2 (2.51)

B-Frame I will denote quantities in the B-frame with a tilde, such as p). In the
B rest frame the B meson has zero 3-momentum:

m=("). 2:52)

and
0
ﬁ%zﬁ’é—d“z(mE ! ) (2.53)
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2. Theory
This time I use the invariant mass of the D meson

m}, = py,
=m} —2mpd + (§°)* — |¢?
=m% —2mpd + ¢,

and solve for ¢°:
o mp—mp+ ¢

2mB

The energy of the D meson is thus

P _mp+mp — ¢
D — 2mB )

and the magnitude of its 3-momentum can be evaluated to be

o] = \/ E} — m3,
. (m2B + m% —q%)? 2
B

(2.54)

(2.55)
(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

To relate this quantity to the same quantity in the W-frame I multiply by mpg/q:

malpol _ [(md +my — )2 mim3
q 4q> q?

_ \/<sz +mb —g)? — dmim,
44>

4q?

\/ (m —mi, — )2 — dmbg?

4q?
m% — m? — ¢2)2 .
o e
and thus:
|Z%»D‘ _ mB|ﬁD|
q
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(2.61)

(2.62)

(2.63)

(2.64)

(2.65)

(2.66)



2.2. The Description of the Decay B — D/lv,

2.2.1.3. The Squared Matrix Element

In this section there will be a lot of indices. As a general rule v and ¢ are used

exclusively to denote the charged lepton and the neutrino and are not used to

indicate a co-and contravariant indices.
Squaring equation 2.38 yields

Gy Va|?

2 _

LALPH, H . (2.67)

The Leptonic Matrix [ will start by examining the leptonic matrix L* LF*
LALP* = [uey" (1 — y5)v, ] [wey? (1 — y5)v,]" . (2.68)

This equation still contains multiple spin configurations. Since I am only inter-
ested in the spin-averaged result, I use the trace-formula for spin averaging (see e.g.
chapter “Spin Sums” in reference [1]).

L' =Triy"(1 = 35) (B, + m)V (7 (1 = %) (g, + me)] (2.69)
=Trly “(1—’75)?7( ( )"y pe] (2.70)
(2.72)

= pyaprTh (1 — Y5)7 ™y (1 — ¥5)7" 1) .

Here, I first ignored the light masses of the leptons, applied the hermitian conjugate
and then moved the momenta outside the brackets. Multiplying out the brackets
and using Tr(A+ B) = Tr(A) + Tr(B) gives

LML = puapes {Triy"v*y" 199 %] + Trin* 579157717

— Tr[y* 577y Ty°yP) — Tr[yPy v y597 1409 P] } (2.73)

Moving the 5 matrices to the left taking into account that they anticommute with
the other gamma matrices, results in

LFLP* = puapes {20 797 P T90P) + 2Tr [ysy#y 2y PP 14047} (2.74)
= puabes {217 [V v 7P| + 2T [y vy P) } (2.75)

Formulas for traces of gamma matrices can be found in most quantum field theory
textbooks, for example in the section “Trace Technology” of reference [2]. Here, I
will use

Trly'y°9°7%) = 4(g"g" — g""9*" + 9" 9") (2.76)
Triysy y*y*yP) = —dietorP (2.77
And thus:
LML = 8pyapes(g"® g™ — g9 + g"7g*" — ie'*"”) (2.78
= 8(pipf — 9" (Puab?) + PLPY) — Bipuapese ™. (2.79)
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2. Theory

This expression further simplifies in the W-frame. As a reminder, in the W-frame:

Py =D, = 3 (2.80)
Pe= =Dy (2.81)
05 q2
PPy = _Z (282)
e T
Puabf = 5 - (2.83)

With this, the non-spatial components (i.e. where p and/or p are 0) vanish. To see
that this is indeed the case, I start with the energy component (1 =0, p = 0):

LOL* = 8(p5p) — 9™ (puapf) + DIP)) — 8iprapise’™™” (2.84)
2 2 2
¢ P q
LT T 2,
s(L-L+ 1) (2.85)
—0. (2.86)

Next, I will examine the mixed components by looking at =0 and p=17=1,2,3.

LOL™ = 8(p)p; — 9" (Dvab?) + DIDL) — 8ipuapese®™” (2.87)
= 8(pyp; — Pepy) — SiPvapese™™” (2.88)
= —8ipsaprpe™ ™’ (2.89)
= —8i(PvjPer — PukPej) (2.90)
2 2
= —8i(—qz + qz) (2.91)
=0. (2.92)

From equation 2.89 to equation 2.90 I used that for any given i the e"* has only
two non-zero components, €* and €%, with k # i # j. Since they differ by a
single permutation, they have opposite signs. Without loss of generality let j have
a value such that €%% = 1, then "% = —1.

With the non-spatial components all zero, I restrict the further calculation to the
spatial part of the leptonic matrix which I will denote as L. Consequently, only
the spatial components of the hadronic matrix will have impact on the product in
the W-frame. L% can be simplified to

L7 = 8(p 0y — 9" (Puad}) + D)) — SibuaPese™ ™’ (2.93)
q2 o “q2 q2 o i
= 8(= 0 + 0V — ) + Bi2puipyie”t (2.94)
2 2 2
_ 8(5”% . %é’bé]> o 8i%éiéj6ijk (295)
_ 4q2(5ij - élé] _ Zéléjeljk) ) (296)
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2.2. The Description of the Decay B — D/lv,

From equation 2.93 to equation 2.94 I introduced é°, the unit vector of the lepton
direction. I also reduced the dimension of the Levi-Civita tensor with the following
argument:

DoaDes€ ™ = puopere™® + Pyrproe™° (2.97)
= ﬁeoﬁzkﬁw b ﬁ%ﬁe%m 0 (2-98)
= Deobere”" + Perpeoe™" (2.99)
= 2pgopere " (2.100)
= —2pgpee’ " (2.101)

where I used that since ¢ and j are not zero, either a or  has to be zero in order to
give non-vanishing factors. This again results in exactly two components.

The Hadronic Matrix For a given ¢ the hadronic current can be constructed
from the available four-vectors. Since B and D are pseudoscalars, there are no
polarization vectors and there are thus only two independent 4-vectors for which
usually pi + pl, and p'y — p, = ¢" are taken. The dependence on ¢* can then be
encapsulated into two form factors:

H, = (D|ey,(1 —15)b|B) = Fi(¢°) (P + Ppy) + F-(%)q, - (2.102)
Of those two form factors only F; contributes to the differential decay width since
L', =0. (2.103)

This can most easily be seen in the W-frame where L* has only a spatial component
and ¢, has only an energy component since the W is at rest. This argument of
course only holds for negligible lepton masses and thus can only be applied to the
light leptons. For the differential decay width of B — D/{v, the hadronic current
thus reduces to

H, = F+(q2)(p3u + Pop) - (2.104)
I will again switch to the W-frame, where as just discu§sed only the spatial compo-

nents contribute. I therefore reduce the treatment to H:

H = F(¢*) (s +p) (2.105)
= 2F, (¢*)pp (2.106)
= _2F+(q2)|ﬁD|éz- (2.107)

Here, €, is the unit vector in z-direction. Switching from the D momentum in the
B-frame to the one in the W-frame will be useful later. Using equation 2.66 yields

o mp,= |5
H= —2F+(q2)TB|pD|eZ. (2.108)
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2. Theory

Product of Leptonic and Hadronic Matrices Inserting equations 2.108 and 2.96
into equation 2.67 results in:

IM|? = G%M’)'Q A6 — é'eT — id'él M) 42 (g )”;—§B|5D|2éziézj (2.109)
— 8G§\mb| F?(qQ)mgyﬁDF((sw el —ieiel MY e (2.110)
= 8G2| VP F2(¢®)m3|pp (1 — cos®d,) (2.111)
= 8G%| VP F2(¢*)m% |pp|*sin0, . (2.112)

Here, I used that ¢’ is in the yz plane and é'é¢/¢”* thus points into = direction and
is therefore perpendicular to é.;.

2.2.1.4. Phase Space

The Lorentz invariant phase space from Fermi’s golden rule is defined as

dpp dpy dp,,
T)32Ep (27)32E, (2m)32E,,

dlly = (27)'6* (pl — Pl — 14 —pﬁ)(2 (2.113)

And thus

1 dpp dpy / dp,
dll; = SH(p = —pl—ph) . (2.114
/ 57 (2n)p / (27r)32ED/ (2r)2E, | (2r)2E, (Pp—pp—pe—py). (2.114)

I derive the following identity with the usual ¢* = pt + ph:

[ [ 5 -t = [algpeE, - (BB (2115)
_ / dE,5(E, — (E+ E,)) (2.116)
—1. (2.117)

Here, T used d¢®> = 2E,dE,. Inserting this identity into equation 2.114 and using
q" = pt + ptt = ply — plf, yields

1 dpD dpé / dpu
dll
/ i (27T)5/ /2ED/2EZ

(Pl — Py (2.118)
_ 1 2 4/ dq / dpD N N
~ o / dq’(2m) (@x)2E, | (2r)2E5° Wy —vp = ")
dﬁe dﬁl/ 4 m I n
o 2.11
! / /dl‘[2 (B, D q)/dm(q,e, V). (2.120)
7T
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2.2. The Description of the Decay B — D/lv,

The problem thus reduces to the LIPS integral of two separate two-body decays.
The evaluation of this quantity can be found e.g. in the review “Kinematics” of
reference [13]:

1 |p]

M, — P 40,
all, (4m)2 M

(2.121)
Here, p; and €2; are the momentum and solid angle of the first decay particle in the
reference frame of the mother particle. The mass of the mother particle is denoted

with M. Without the integral sign this results in

L1 ol 1 |ml

dll; = — dq2d)pd) 2.122
3T on (4n)2 mp (dm)2 g (L ODE (2.122)

1 |5D| 2 163 A
— YPLaa2dQpdS), . 2.123
(477')5 mp q b ¢ ( )

Here, I used |p| = ¢/2.

2.2.1.5. Combining Phase Space and the Matrix Element

Putting the results together yields

1
dl = —— | M2dIl 2.124
o M, (2.124)
1 2 Ppl on o
= ———dg*“dQpdS) 2.125
2m% M| (47)® @B Epasie ( )
= iG2 V|2 F2(¢?)m% sin?0, Pl* dg?dQpdSy, (2.126)
ma el B (4m)® '
LI V|2 F2(¢?)m% sin?6, pl* dq?dSy, (2.127)
m% FiTel 7+ B (47)* '
4 8m |5D|3
= —GE|Val*F2(@P)my— ~—=dg° 2.128
m2B Fl b| +(q )mB 3 (47’(’)4 q ( )
Thus I arrive at the differential decay width in dependence of ¢?
dl'  GZ|Val =
i —§4W3 1pp*F2(q°) . (2.129)

2.2.1.6. From ¢ to w

Equation 2.129 can already be found in some of the literature, but a more common
form uses w and a different form factor G. The definition of w is

w = vt . (2.130)
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2. Theory

Using
¢ = (ply — P)* = mp +mi, — 205ppy (2.131)
m% +m3 — ¢*
Ppou = ———5 (2.132)

one can write w as

_ Pppu _ mp+mp — ¢’

— ) 2.133
v mpmp 2mBmD ( )
I can now rewrite the differential width in terms of w:
—dq2

dwy = ——— 2.134
v 2mBmD ( )

dl’ dr
— =2 — 2.135
dw TP dq? ( )

G|V |? -

= %mBmDmDF’FAw)Q. (2.136)

Note that the minus sign from the transformation is dropped since I also reverse
the future integration order of w so that I can integrate from low w values to higher
ones. I now need to evaluate |pp|® in dependence of w.

- m2, +m2, — ¢%)>2 3

i = (= ) (2.137)

3

(2mpmpw)? 5 > z
= (ERETDY) g, (2.138)

(o
3

= (mphw* —m3)? (2.139)
= m? (w? —1)° . (2.140)

Inserting this into the differential decay width

dl’ G2 |‘/cb|2 3
= ﬁmgmé (w? = 1)% Fy(w)?, (2.141)
and switching to the form factor G(w) which is defined as
2
(R
Fy(w)” = ~—mp—6(w)", (2.142)
mp

results in the formula typically found in the literature
@ Gm,
dw 4873

I also included the electroweak correction factor (ngw) which I will discuss in sec-
tion 2.2.4.

(ms + mp)® (w* — 1) 1y Ve G (w)? (2.143)
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2.2. The Description of the Decay B — D/lv,

2.2.2. Heavy Quark Effective Theory

Before introducing the form-factor parameterizations used in this analysis I need
to mention Heavy Quark Effective Theory (HQET) which is a constraint for one of
the parameterizations. The hadrons involved in the decay B — D{v, represent a
special situation insofar that both the B and the D meson consist of two quarks
where one is much heavier (b, ¢) than the other (u, d). The scale of QCD denoted
by Aqep ~ 200 MeV governs in which momentum transfer region coupling is large
(< 200MeV) or small (> 200 MeV). In a bound state the velocity of the heavy
quark (here denoted as @) will then be in the order of:

ol A
7| = el Aacn (2.144)
mq mq

If the heavy quark had an infinite mass it would thus sit still in the center of mass
frame of the meson and behave like a static color field. The magnetic color moment
is proportional to 1/mg and would thus decouple from the dynamics in this limit.
Further, if both the b and ¢ quark were such infinitely heavy quarks, replacing the b
quark with a ¢ quark would have no impact on the QCD interaction as long as they
both have the same velocity. This is called “heavy quark symmetry”.

Of course this limit is violated by both b and ¢ quarks having high (relative
to Aqep) but finite masses. The idea behind HQET is then to use heavy quark
symmetry as a starting point and to make an expansion in E/mg, where E denotes
the studied energy. Heavy quark symmetry is the leading order contribution to this
expansion. Working close to the heavy quark symmetry, HQET usually uses the
velocities rather than the momenta of the quarks to describe the system and thus
w is often preferred over ¢

The kinematic situation where there is no velocity change between the b and ¢
quark and thus between the B and D meson is called “zero recoil”, as the the D
meson does not recoil from the B meson. The large overlap of initial and final
state leads to the form factor being highest at this kinematic point. It is also at
this point that the theoretical description of the form factor via LQCD is most
precise. For this reason LQCD measurements were only available at zero recoil for
a long time until with the improvements in lattice simulation recent studies now
include additional kinematic points. Note that at zero recoil w = wp;, = 1 and
¢ = ¢, = (mp —mp)? =~ 11.63GeV?. The opposite kinematic point is called
maximum recoil and corresponds to w = Wy ~ 1.6 and ¢* = ¢, ~ 0 GeV?.
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2. Theory

2.2.3. Form Factor Parameterization

Although the form factor is maximum at zero recoil, one can see from equation 2.29
that zero recoil is also the point where B — D/{v, is most suppressed kinematically
and thus experimentally the smallest amount of events is available there. To suc-
cessfully combine LQCD data which are usually either at zero recoil or in its close
vicinity, and experimental data which range over the whole kinematic region, it is
necessary to find a common parametrization of the form factor which can be used
for a combined fit.

I will introduce two different parameterizations here, the Boyd Grinstein Lebed
(BGL) parametrization [14] and the Caprini Lellouch Neubert (CLN) parameteri-
zation [15]. BGL is the more general one. It is model independent, while CLN adds
model dependent HQET constraints. Historically, CLN was widely used in |V
measurements because its additional constraints result in only two free parameters
in the form-factor parameterization. With recent improvements on both the theoret-
ical and experimental side, enough data is available to utilize the model-independent
approach with more free parameters. Further, the precision of |V,,| has meanwhile
reached a level where the systematic error CLN introduces (estimated to be < 2%)
stops being negligible.

Both parameterizations revolve around the so-called z-expansion, where z is de-
fined as

Vuri- 3
T VurleE

Mapping to z has the effect that all physical values of the form factor lie on the
real axis between zero and one (for B — D{v, only between 0 and ~ 0.06). Poles
in the form factor which can arise from resonant states appear on the negative real
axis and on the unit circle. One can then introduce so-called “Blaschke factors” to
cancel poles and make a Taylor expansion in z:

z(w) (2.145)

1 il o
fZ(Z) = W nz;amz , L=+, 0. (2146)

This is already the BGL parameterization. P;(z) are the Blaschke factors containing
the explicit poles (e.g. the B, or B} poles) in ¢* and ¢;(z) are the “outer functions,”
which are arbitrary but required to be analytic without any poles or branch cuts.
The a;, are free parameters and N is the order at which the series is truncated.
The index ¢ denotes the type of form factor, where f, and f, are defined as

M2 — M? M2 — M?
%Qu "‘fo(qZ)%%-

(2.147)

(D|eyu(1 = 75)b|B) = f+(¢*) | (p5 + D)y —
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2.2. The Description of the Decay B — D/lv,

Comparing these to the definitions of F'; and F_ I made in equation 2.102 there
are two things to notice*?. First, the f; term has an additional dependence on g,,.
However, this term does not contribute to the decay width in the limit of zero lepton
mass. Second, the F_ form factor is replaced with the fy form factor which differs
by the factor (M3 — M3)/q* from F_.

Following reference [16], I choose?® P;(z) = 1 and the outer functions as

Gy (2) = 1.1213(1 + 2)%(1 — 2)"2[(1 4+ 7)(1 — 2) + 2v/r(1 + 2)]° (2.148)
do(2) = 0.5299(1 + 2)(1 — 2)*2[(1 + r)(1 — 2) + 2v/7(1 + 2)] 2. (2.149)

Here, r denotes the ratio of the D and B meson mass 7 = mp/mpg. This choice of
outer functions is based on the ones by Boyd, Grinstein and Lebed in reference [14]
and results in a unitarity inequality of the simple form

N
D ainl* <1, (2.150)
n=0

for any order N.
The CLN parametrization adds further constraints from Heavy Quark symmetry
(corrected in leading order) to reduce the number of free parameters:

G(2) =G(1)(1 — 8p?z + (51p® — 10)2* — (252p* — 84)2%) . (2.151)

Note that CLN is typically given for G(w), while BGL uses f,. One of the advantages
of the CLN parametrization is that it contains only two free parameters. G(1) is the
form factor at zero recoil and can be determined in lattice QCD. This makes the
separate treatment of experiment and theory especially easy since one only needs to
fit the product ngwG(1)|V| and the form factor slope p? on the experimental side,
and can later divide by G(1) as determined by LQCD.

For the BGL parameterization on the other hand, the best approach is a combined
fit of both LQCD and experimental data with the a;,, as free parameters. One slight
advantage of BGL is that the parametrized fy can be included into the fit (if LQCD
data for fy is available) since fy and f, can be related by a kinematic constraint:

fO(wmax) - f+(wmax> . (2152)

This constraint follows from the poles in equation 2.147 for ¢*> = 0 (i.e. for w =
Wmax)- In order for the poles to cancel, the kinematic constraint has to be true.

22There exists a multitude of possible form factor definitions depending on what constants one
chooses to be contained within the form factors and on what pair of 4-vectors is used as base. In
the literature these form factors are further often denoted with varying letters (often f, h, F' or
() and subscripts (usually 0, 1, + and —) which are not necessarily consistent across different
authors. In this thesis I use the F; and F_ form factors as defined in equation 2.102, the form
factor G as defined in equation 2.142 and the form factors f; and fy as used by FNAL/MILC
in reference [16].

231t was verified in [16] that the omittance of poles has no relevant impact on the fits of B — D/v,.
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2. Theory

2.2.4. Electroweak Correction Factor

My initial derivation of the differential decay width started with the assumption that
there is no further interaction between the leptonic and hadronic current. While this
is true on the tree level decay description, higher orders can add terms with photons,
W=, Z° or the Higgs boson. The highest impact in the leading order comes from the
electromagnetic interactions depicted in Figure 2.6, so-called radiative corrections.
Calculating those contributions not only involves higher order terms, it also involves
contributions from all three sectors of the Standard Model and is thus quite complex.
Therefore I will only present the result of such calculations here. The derivation can
be found in reference [17].

In the limit of high Z boson mass, the contributing terms in first order lead to a
correction of the Matrix element M of

Mol = 1M (14 200("2) ) = AP g (2153

Here, « is the fine-structure constant

e2

= 2.154
=, (2154

«
m is the mass of the Z boson and p is the mass scale characterizing the process at
hand. Finally, ngw is the electroweak correction factor which I already introduced
in equation 2.29. Using the mass of the B meson for the mass scale and varying it
by a factor 2 to estimate the error of ngw one gets:

new = 1.0066 = 0.0016 . (2.155)

This value only depicts the leading order correction and is often termed as “Sirlin
factor”. The optimal way to calculate further electroweak contributions outside the
Sirlin factor is currently an ongoing discussion within the CKM community and no
final consensus has been found yet. For this reason I prefer to give my results includ-
ing the electroweak correction factor. Ultimately a world average for |V,| without
new has to be averaged from multiple experiments using one common electroweak
correction method. This is for example done by the Heavy Flavor Averaging Group
(HFAG) which in its next publication will include the ngw|Ve| results from this
thesis.

Figure 2.6.: Photonic terms contributing to the leading order electroweak correction.
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3. Experimental Status of |V

In this chapter I outline the motivations for the common decays used in |V,| mea-
surements and their landscape together with the resulting average values. The |V|
values measured in this analysis are excluded in this overview.

Although the CKM element V,, affects every bottom to charm quark transition,
only a subset is accessible to precise experimental measurements. In order to exclude
contributions to the decay width from other quark transitions, tree-level decays are
preferred for |V,;| measurements. B and B, mesons offer the necessary b quark
content. While B, mesons have advantages in their theoretical description! they have
the large drawback of not having a production channel comparable to Y(4S) — BB.
For this reason B, production plays a minor role at the B Factories?. This is
illustrated by the fact that Belle has only a data sample of 121 fb™! at the Y(55)
resonance — i.e. less than a fifth of the T(4S) sample — which via Y(55) — B((:))B((:))
produces By mesons. BaBar has not produced B, mesons at all.

There are then two categories of B decays involving b to ¢ transitions: hadronic
and semileptonic decays. In the hadronic decay mode the B meson decays into a
meson containing a ¢ quark and a second spectator meson, i.e. the W decays into
hadronic products. While such modes can easily be reconstructed on the experi-
mental side, the theoretical description is very hard due to the QCD interactions
between the two resulting hadronic currents. Semileptonic decays on the other hand
can reasonably well be modeled due to the factorization of leptonic and hadronic
current (see section 2.2). The biggest experimental obstacle to semileptonic decays
is the impossibility to directly measure the neutrino. This can be compensated by
inferring it indirectly from 4-momentum conservation as is the case in this thesis
(see chapter 6).

Semileptonic decays can be measured either in an inclusive decay mode B —
X vy, where X, is a sum over all final states containing a charm quark within a
given region of phase space, or from exclusive decays B — D*{v, or B — D/{uj,.

IThe higher mass of the s quark compared to light quarks reduces its kinematic components
relative to sea quarks and gluons allowing for a more precise simulation in Lattice QCD.

2The same argument holds for baryonic states containing b quarks and neither BaBar nor Belle
have energies high enough for their production. An example of a measurement with baryons at
an experiment that is not at a B Factory is the recent study at LHCb [18] of A, decays for the
determination of |Vy|/|Ves|. However, since |V,5| has a much larger error than |Vg| this does
not contribute to the determination of |V|. Further studies of decays such as Ay — A.uy, for
a direct |V,p| measurement at LHCb are currently ongoing efforts, but due to the complicated
experimental situation precisions below those from semileptonic B decays are expected.
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3. Experimental Status of |V|

The decay B — D*(vy, has been measured by Belle [19] and BaBar [20] and
resulted in a determination of npwF(1)|V,s| with a precision of about 3%, where
F(1) is the normalization of the decay form factor similar to G(1) for B — D{u,.

The current world average value obtained by the Heavy Flavour Averaging Group
(HFAG) is [21]

MEwF (1) Vao| Bos Doty = (35.81 & 0.1140a¢ % 0.4445) x 1072 (3.1)

The decay B — D/{v, has been measured in fully reconstructed events by BaBar [22],
leading to a determination of nrwG(1)|Vy| with a precision of about 5%. Though
still worse than B — D*{v, this is much better than the most precise Belle mea-
surement of B — D/{v, prior to this analysis, which determined ngwG(1)|Ves| to the
level of 17% [23]. A measurement of B — D/{v, with the full Belle data sample was
thus highly motivated. For the world average of ngwG(1)|Vy| without the results
from this analysis, HFAG obtained

1EwG (1)|Vip| oD, = (42.65 £ 0.7240¢ £ 1.35455) X 1072 . (3.2)

Table 3.1 compares the resulting exclusive |V,;| values based on the mentioned
world averages and using different form factor predictions (F(1) and G(1)) by mul-
tiple Lattice QCD and Light Cone Sum Rule calculations. Here, the Sirlin factor of
new = 1.00662 was used.

B — D*ly,
Method new F () V] (10°7)
Lattice QCD  0.912 £+ 0.013 [24] 39.27 £ 0.50¢xp &= 0.56¢y
Sum rules 0.866 £ 0.020 [25]  41.35 = 0.52x, = 0.964,
B — Dgyg
Method mewd (1) [Ve| (107°)

Lattice QCD  1.0611 & 0.0084 [16] 40.19 =+ 1.44., & 0.32y,
Lattice QCD  1.0418 4 0.040 [26] ~ 40.94 + 1.47., & 1.57,,
Sum rules 1.047 +0.020 [27]  40.74 & 146y, + 0.784,

Table 3.1.: Results for |V| from exclusive decays obtained using the HFAG aver-
ages [21] and different form factor normalizations.

This can be compared to |V,| obtained from the inclusive decay B — X fv, and
theoretical expressions calculated using the Heavy Quark Expansion [28],

|Vib|inctusive = (42.42 £ 0.86) x 107 . (3.3)

Assuming the most precise lattice QCD form factor measurements, there is thus
a discrepancy of two to three standard deviations between |V| from B — D*{y,
and inclusive decays. This difference can be due to underestimated experimental or
theoretical systematics or shortcomings of the underlying models. Using |V| from
B — D/{y, decays for the comparison yields a smaller difference (~ 1.3 ), but comes
with high experimental errors. Improving this uncertainty and thus giving a better
grasp on the inclusive-exclusive discrepancy is one of the main aims of this analysis.
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4. The Belle Experiment

As discussed in section 2.1.3.1 the CKM mechanism predicted a third generation of
quarks together with a C'P violating phase. After first discoveries of C'P violation
(1964 indirectly with neutral kaon decays [29]) and the discovery of the b quark in
1977 [30] there was a great motivation in the 1980s to build experiments testing C'P
violation in B meson systems. From a multitude of proposals the two B Factories
Belle and BaBar emerged. Their basic mode of operation was the same: using a
high luminosity electron-positron synchrotron to produce B mesons via the Y (45)
resonance.

Being energetically just above the rest mass of two B mesons, the T (4.5) resonance
predominantly (> 96% [13]) decays into a BB pair. As described in section 2.1.3.2
the measurement of C'P violation with neutral B mesons requires measuring the time
difference between two B decays. This can best be done at a collider by determining
the difference in positions of the B decay vertices. This not only requires high
vertexing capabilities of the detector, but also a high displacement between the two
vertices. If the T(4S) resonance were created at rest in the lab frame, the two B
mesons would decay almost at the same position making decay time measurements
impossible. For this reason the colliding electron and positron beams at Belle (and
BaBar)