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Abstract
The aim of navigation is to determine the position and the spatial orientation of a moving
vehicle. This so-called trajectory can be achieved by using the combination of multiple
sensors. The advantages of such a setup is that the benefits of the different systems are
used to obtain improved navigation information. A possible multi-sensor system is the
integration of GNSS1 and IMU2, where GNSS provides accurate position information and
in contrast, the inertial sensor captures high-dynamic movements and provides a direct
orientation determination. At GNSS outages (loss of signal), the navigation information
is based on the IMU until the GNSS solution is available again. One of the limiting factors
are the temporal increasing sensor errors of the inertial navigation. To achieve a navi-
gation solution in the cm-range, these sensor errors must be modelled. Furthermore, the
IMU measurements contain vehicle vibrations and measurement noise beside the actual
vehicle motion wanted. Therefore, the resulting position error is proportional to these
disorders. The entire multi-sensor navigation solution will most likely be improved when
these disorders get eliminated.
In this thesis, the wavelet analysis is used to minimize the undesirable effects due to
measurement noise and other disturbances. Kalman filtering is used for the sensor in-
tegration of GNSS and IMU and in addition, the sensor errors can be estimated within
this technique. Finally, the effect of preprocessing the IMU observables is analysed within
the multi-sensor navigation system. Thereby improvements of the initial orientation have
been achieved, which leads to a smaller position and orientation error at the beginning
of the trajectory. Likewise, it was shown that undesirably recorded vibrations can be
eliminated, resulting subsequently in a smaller position error at GNSS outages.

1Global Navigation Satellite Systems, e.g. GPS
2Inertial Measurement Unit
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Kurzfassung
Ziel der Navigation ist die zeitliche Bestimmung der Position und der räumlichen Ori-
entierung eines bewegten Fahrzeuges. Diese sogenannte Trajektorie kann mit Hilfe der
Kombination von mehreren Sensoren ermittelt werden. Dabei werden die Vorteile der un-
terschiedlichen Systeme genutzt, um eine verbesserte Navigationsinformation zu erzielen.
Ein mögliches Multi-Sensor-System wäre somit die Integration von GNSS3 und IMU4. Bei
dieser Sensorenintegration liefert GNSS die präzise Positionsinformation und im Gegen-
satz dazu zeichnet der Trägheitssensor hoch-dynamische Bewegungen auf und liefert eine
direkte Orientierungsbestimmung. Bei GNSS-Ausfällen (Signalverlust) übernimmt der
Trägheitssensor die Positionierung, bis die GNSS-Lösung wieder möglich ist. Einer der
limitierenden Faktoren ist, dass das inertiale Navigationssystem von Sensorenfehlern stark
beeinflusst wird. Um trotzdem eine Navigationslösung im cm-Bereich zu erreichen, müssen
diese Sensorenfehler modelliert werden. Des Weiteren enthält die inertiale Sensormes-
sung außer den tatsächlichen Fahrzeugbewegungen auch Vibrationen und Messrauschen.
Daher sind die resultierenden Positionsfehler proportional zu diesen Störungen. Es ist
anzunehmen, dass die gesamte Multi-Sensor-Navigationslösung verbessert wird, wenn
diese Störungen bestmöglich eliminiert werden.
In dieser Arbeit werden mit Hilfe der Wavelet-Analyse die unerwünschten Effekte auf
Grund des Messrauschens minimiert. Die Kalmanfilterung wird für die Sensorintegration
von GNSS und IMU verwendet. Zusätzlich können mit dieser Technik die Sensorenfehler
mitgeschätzt werden. Am Schluss wird analysiert, wie sich diese Arbeitsschritte am Multi-
Sensor-Navigationssystem auswirken. Dabei wurden signifikante Verbesserungen der An-
fangsorientierung erreicht, was zu einem geringeren Positions- und Orientierungsfehler zu
Beginn der Fahrzeugbewegung führt. Ebenso wurde gezeigt, dass unerwünscht aufgeze-
ichnete Vibrationen eliminiert werden können, was in weiterer Reihenfolge zu einem gerin-
geren resultierenden Positionsfehler bei GNSS-Ausfällen führt.

3Globales Navigationssatellitensystem, z.B. GPS
4Inertiale Navigation bzw. Trägheitsnavigation
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1 Introduction

The field of navigation deals with the determination of the position and the spatial orien-
tation of a moving object. With the help of this information, several applications such as
routing or guidance can be performed. A technology used most often in practice to achieve
the requested navigation information uses satellite systems. It is possible to estimate the
position information directly with Global Navigation Satellite Systems (GNSS) like the
well-known GPS. To achieve information about the spatial orientation of the vehicle, it is
possible to work with multiple GNSS antennas (see page 288 in Hofmann-Wellenhof et al.
[2003]). The navigation information can be provided completely by GNSS without any
additional sensors. The problem with such a setup is that the navigation solution is just
based on one single positioning system and the weaknesses of GNSS directly influences
the navigation performance. A disadvantage of GNSS may be the relatively low data rate
(<10 Hz), which causes problems with high kinematic applications. Additionally, in the
case of GNSS outages, which is common in dense urban areas or when driving through a
tunnel, the navigation information cannot be provided because of a loss of satellite track-
ing. Therefore, GNSS is not suitable enough for many applications. To avoid such cases,
GNSS is combined with another navigation sensor which is based on a totally different
measurement method that performs a relative positioning (dead reckoning). A common
assistant technique to support GNSS are Inertial Navigation Systems (INS). An inertial
navigation system uses an IMU (Inertial Measurement Unit) to measure forces and ro-
tation rates. Position, velocity and attitude can be computed from this information at a
very fast rate. The big drawback of this navigation system are the uncertainties due to
sensor errors, which increase with time. Therefore, the big advantage of an integration
of GNSS and INS is that the weaknesses of both systems are quite complementary and
so the systems support each other perfectly. GNSS works as a position-fixing system
and delivers a position and velocity estimation of high quality, which is used to correct
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fig. 1.1: A typical integrated navigation architecture [Groves, 2008]

the navigation solution from the INS (see figure 1.1). In contrast, the INS provides the
position, velocity and attitude estimation at a high data rate and is able to bridge when
the GNSS solution gets lost. In practice it is common to use a Kalman filter for the sensor
integration of GNSS and IMU.
But there are also some limiting factors: The inertial sensor outputs also contain sensor
errors and measurement noise beside the actual vehicle motion. The schematic frequency
spectrum of IMU measurements in figure 1.2a shows that the actual motion of interest is
superimposed by noise and errors due to IMU sensor instability. As the inertial navigation
system is a relative positioning technique, the error accumulates, which subsequently leads
to poor long-term stability. This means that the IMU computed solution contains an error
accumulation depending on time. To achieve the best result, also the sensor errors and
measurement noise must be considered. One established strategy is to estimate the IMU
sensor errors within the sensor integration algorithm. The multi-sensor setup is used to
calibrate the IMU sensor drift in real-time. Additionally, it is a well-known fact that the
IMU suffers from very high measurement noise. This noise affects the IMU measurement
accuracy, which leads to inaccurate navigation information. If such a noise component can
be sufficiently removed, the overall navigation solution is expected to improve. Figure 1.2
represents the schematic spectrum of IMU measurements after preprocessing and sensor
error estimation within the IMU/GNSS integration.

In this thesis, the basics of the inertial navigation are described first (chapter 2.1), followed
by a short introduction into the fundamental techniques which were important for this
thesis: Wavelets analysis (3.1), Kalman filter (3.3) and sensor integration strategies (3.2).
The practical part starts with chapter 4 and includes the implementation of the sensor
fusion of GNSS and IMU. Sensor integration was performed by using a Kalman filter.
Furthermore, the algorithm was extended to estimate the inertial sensor errors in real-
time. To gain information about the noise characteristics of the recorded IMU data, signal
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.
fig. 1.2: Schematic frequency spectrum of inertial measurements: (a) before filtering,
(b) after IMU/GNSS integration and optimal low-pass filtering [Skaloud et al., 1999]

analysing was carried out. The preprocessing of the IMU data part (chapter 5) deals with
analysing the spectrum of the IMU measurements to figure out its noise characteristics.
Additionally, synthetic noise is added to the inertial measurements (section 5.1.3) to stress
the navigation system and to analyse its behaviour in such situations. Another step is
to improve the IMU measurement by de-noising the signal with the wavelet thresholding
technique (section 5.2). Chapter 6 deals with the analysis of the alignment by using noised
and de-noised IMU data and GNSS outages are simulated to research the behaviour of the
multi-sensor system in such situations. Finally, chapter 7 summarizes the results achieved
and lists impulses for future work in this field of research.
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2 Navigation Systems

2.1 Inertial Navigation Systems
This chapter presents a short overview about inertial navigation. The overview is based
on the books [Hofmann-Wellenhof et al., 2003] and [Jekeli, 2001]. Inertial navigation
is a dead-reckoning technique to determine position, velocity and attitude of a vehicle.
Observed accelerations and rotation rates in a well-defined reference frame are used to
obtain the navigation information. The accelerations are sensed by a force measurements
system called accelerometer. Gyroscopes are used to stabilize the reference frame (usually
denoted as navigation frame) by monitoring their angular motions.

Starting from a known velocity ẋ(t0) at the time t0, the current velocity is computed by
integration of the vehicle accelerations ẍ(t):

ẋ(t) = ẋ(t0) +
∫ t

t0
ẍ(τ)dτ (2.1)

With a further integration, the current position x(t) relative to the start position x(t0)
can be obtained:

x(t) = x(t0) +
∫ t

t0
ẋ(τ)dτ (2.2)

In formula 2.1 and 2.2 some pre-information is needed: The initial velocity vector ẋ(t0)
and the position vector x(t0) of a certain time t0 must be known. In addition, the attitude
of the vehicle, i.e. the rotation of the body frame with respect to the navigation frame,
must also be determined. Measurements take place in the body frame (the coordinate
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2.1. INERTIAL NAVIGATION SYSTEMS

frame of the vehicle), but they have to be transformed to the navigation frame. The
process of obtaining the pre-information is called initialization or alignment and will be
explained in section 2.1.4. But first of all, a short overview of coordinate frames which
are important for inertial navigation is introduced.
The term inertial navigation system (INS) is used to describe the combination of an IMU
(inertial measurement unit), the navigation equation and a processor.

2.1.1 Coordinate Frames
In inertial navigation, some coordinate frames have to be considered. A brief description
of these frames follows.

The inertial frame (ri) is a reference frame that does not accelerate or rotate. The
Newton’s laws of motion apply in such a system. In navigation applications we use a
coordinate frame which has its origin at the earth’s center of mass but does not rotate
with earth. Due to the earth orbiting the sun, accelerations occur and therefore this
frame is called quasi- or pseudo-inertial frame. Nevertheless, the classical Newtonian
dynamics apply, because the gravitational field of the solar system is relatively weak and
the curvature of space-time is very small [Jekeli, 2001].

The earth-fixed frame (re) has its origin at the earth’s center of mass, but it follows
the rotation of the earth. The x-axis points toward the Greenwich meridian, the z-axis is
a mean direction of the rotation axis of the earth and the y-axis completes the system to
become a three-dimensional, orthogonal right-handed system [Hofmann-Wellenhof et al.,
2003]. The implementation for such systems are WGS84 (reference frame for GPS) or
ITRF (Inertial Terrestrial Reference Frame).

The local-level frame or navigation frame (xl) is a locally defined cartesian co-
ordinate system. Its origin is a point on a reference ellipsoid and its axes point toward
the north (forming a tangent to the meridian), east (forming a tangent to the circle of
latitude) and down (ellipsoidal normal). The navigation information such as the velocity
of a vehicle is often described in this frame.

The body frame (xb) is defined by the axes of the IMU, which is mounted onto the
vehicle. Normally they are supposed to point in the vehicle directions front, right and
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2.1. INERTIAL NAVIGATION SYSTEMS

down (see figure 2.1). The angles which describe the rotation from the body to the local-
level frame are usually called roll η, pitch χ and yaw α (Euler angles).

fig. 2.1: Body system [Blauensteiner, 2008]

The measurements and the calculation of the position, velocity and attitude of the trajec-
tory refer to different coordinate systems. It is therefore essential to transform between the
individual coordinate systems. In general, a coordinate transformation between systems
of the same origin is written as:

xq = Rq
px

p (2.3)

In this formula, the vector xp is defined in the p-frame and xq is the same vector defined
in the q-frame. The transformation matrix Rq

p is an orthogonal matrix and describes the
transformation from p-frame into q-frame. Several possibilities exist how to define the
transformation matrix. It can be described, for example, by Euler angles or Quaternions.
For more information the reader is referred to Jekeli [2001].

2.1.2 Inertial Measurement Unit
Inertial navigation requires orthogonal triads of accelerometers and gyroscopes (abbr.
gyros) to measure the full acceleration and angular velocity vectors, which affects an
object [Gebre-Egziabher et al., 2009]. The accelerometers are used to measure the specific
force vector f b along the axis of a coordinate frame and the triad of gyros are used to
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2.1. INERTIAL NAVIGATION SYSTEMS

sense the spatial orientation ωbib. The inertial measurement unit (IMU) combines those
two triads on a platform (see figure 2.2). According to Hofmann-Wellenhof et al. [2003],
there are two types of platforms: gimbaled and strapdown.

fig. 2.2: Schematic representation of an IMU [Blauensteiner, 2008]

Gimbaled or stabilized system: The orientation of this type of platform is kept stable
with respect to the chosen navigation frame. This means that the platform is isolated
from the rotational dynamics of the vehicle. This is done by three orthogonal gimbals.

Strapdown system: The platform is mounted onto the vehicle and tracks all motions
performed by it. All measurements are performed in the body frame and the gyros are
used to determine the rotation of the body frame in relation to the navigation frame.

Due to the technical development of the sensors and the high technical effort at the
gimbaled systems, most navigation systems are nowadays realized as strapdown systems.
Typically output rates vary between 100 and 1000 Hz [Groves, 2008]. Strapdown system
technique is also used in this thesis. Depending on the chosen navigation frame, two
considerations have to be made:

• The force f measured from the IMU includes the acceleration information a wanted
and the local gravity vector g.

f b = ab + gl (2.4)
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2.1. INERTIAL NAVIGATION SYSTEMS

• So-called apparent forces occur due to the rotation of the body frame in relation to
the inertial frame (centrifugal and coriolis force).

2.1.3 Navigation Equation
The aim of navigation systems is to deliver the position re, velocity vl and attitude Rl

b of
a moving object at any point in time. This information can be derived from IMU sensors
measurements. The relationship between quantities measured by the IMU (accelerations
f b and angular velocity ωbib) (2.5) and the information wanted (2.6) is given by a system of
differential equations. These differential equations are referred to as navigation equations.

f b =


f bx

f by

f bz

 ωbib =


ωx

ωy

ωz

 (2.5)

re =


φe

λe

he

 vl =


vN

vE

vD

 Rl
b = R(η, χ, α) (2.6)

The navigation equations depend on the chosen frame. In fact, it is commonly a combina-
tion of the local-level frame and earth-fixed frame. The position coordinates are described
in an earth-fixed frame and on the other hand, the velocity vector is required to be known
in a local-level frame. A third piece of information wanted is the rotation of the vehicle
with respect to the navigation frame. In formula 2.7, the final navigation equation can be
seen. The base of the derivation of the navigation equations (2.7) is Newton’s law, which
enables the description of a moving object in inertial space and can be found in Jekeli
[2001].

8



2.1. INERTIAL NAVIGATION SYSTEMS

ṙe = D−1vl (2.7a)

v̇l = Rl
bf

b − (Ωl
il + Ωl

ie)vl + gl (2.7b)

Ṙl
b = Rl

b(Ωb
ib −Ωb

il) (2.7c)

In this thesis, the position is described in ellipsoid coordinates (φe, λe, he) and therefore
the matrix D−1 in 2.7a performs the transformation between the local-level frame and
the earth-fixed frame.

D−1 =


1

M+h 0 0

0 1
(N+h)cosφ 0

0 0 −1

 (2.8a)

with: M = a(1− e2)
(1− e2sin2φ) 3

2
N = a2

√
a2cos2φ+ b2sin2φ

(2.8b)

In the formula above, M and N are the meridian and prime vertical radius of curvature
of the ellipsoid. a denotes the major radii and e the eccentricity of the reference ellipsoid.

It was mentioned in the last section that the quantities measured are superposed by earth
gravity and must therefore be corrected by the gravity vector gl. The effective gravity
depends on the spatial position and includes also the centrifugal force. Information on
how this effective gravity vector can be evaluated and, in addition, information about
some position depending gravity models can be found in Jekeli [2001]. The Coriolis
acceleration, which occurs due to the motion of the vehicle relative to the rotating earth,
is symbolized in the second term of 2.7b. The third and final navigation equation describes
the relationship between the gyro measurements Ωl

ib and the rotation matrix Rl
b. The

rotation matrix between the body and the local system Rl
b is known as attitude matrix.

As only the angular velocities between the local and the body frame are required, the
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2.1. INERTIAL NAVIGATION SYSTEMS

gyro measurements are compensated by the rotation rate of the local-level frame relative
to the inertial frame, parametrized in the body frame Ωb

il [Hinterberger et al., 2011].
The position, velocity and attitude information can now be obtained by integration.

2.1.4 Initialization and Alignment
As already mentioned, various conditions must be determined before an inertial navigation
system is ready to perform. Initialization is the process of obtaining the

• initial position (φ0, λ0, h0),

• initial velocity (vN,0, vE,0, vD,0),

• initial orientation of the IMU with respect to the navigation frame (η0, χ0, α0).

Information about position and velocity must be initialized using external information.
This may be achieved by importing it manually by the user or by getting it delivered from
another navigation system like GNSS. A procedure to determine the initial orientation is
called course alignment. In this approach, the vehicle must stay in idle state (vl = 0);
the IMU just senses static data. The IMU measurements (the specific force vector f b

and rotation rate vector ωbib) are provided in the body frame and a relationship with two
known quantities can be established: the rotation rate of the earth ωlib and the local-level
gravity vector gl. These quantities are normally known in a local frame and they are used
to provide the initial alignment of the IMU. According to Jekeli [2001], a third vector cb is
defined by forming the cross product between the measured gravity vector and the earth
rotation rate vector, which leads to following relationships:

f b = −Rb
lg

l (2.9a)

ωbib = Rb
lω

l
ib (2.9b)

cb = f b × ωbib = Rb
l (−gl × ωlib) (2.9c)

10



2.1. INERTIAL NAVIGATION SYSTEMS

It was mentioned above that the gravity vector and the earth rotation vector of the
initialization position (φ0, λ0) must be known (2.10). The information about gravity can
either be obtained from by gravity measurements or theoretically determined by gravity
models.

gl =


0

0

g

 , ωlib =


ωecosφ0

0

−ωesinφ0

 (2.10)

With this information, the following relationship can be established (see 2.11):

(
f b ωbib cb

)
= Rb

l


0 ωecosφ0 0

0 0 −gωecosφ0

−g −ωesinφ0 0

 (2.11)

The rotation matrix Rb
l can now be calculated at each epoch by solving the equation 2.11:

Rb
l =

(
f b ωbib cb

)


0 ωecosφ0 0

0 0 −gωecosφ0

−g −ωesinφ0 0


−1

(2.12)

Because of the high sensor noise of accelerometers and gyros, the components of the
rotation matrix have to be averaged over some epochs. The averaging process usually
requires some minutes of static data. The time length depends on the sensor noise and
can be shortened by using noise filter methods (see section 6.1). After that, the Euler
angles (roll η, pitch χ, yaw α) can be extracted from the rotation matrix. These angles
are used to indicate the rotation between body and local coordinate frame.

Rb
l =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.13a)
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2.1. INERTIAL NAVIGATION SYSTEMS

(a) Roll alignment (b) Pitch alignment

(c) Yaw alignment

fig. 2.3: Determination of the Euler angles

η = arctan

(
r21

r11

)
, χ = arcsin(−r31), α = arctan

(
r32

r33

)
(2.13b)

Figure 2.3 shows how the choice of the initialization time affects the alignment. Therefore,
the Euler angles at a certain time are calculated and displayed. It can be seen that roll η
and pitch χ can be obtained with a higher accuracy than the yaw α angle. The reason for
this is that the determination of roll and pitch are based on the local gravity vector, which
is a much stronger signal than the earth rotation vector. The yaw angle is just based on
the earth rotation rate data sensed. That leads to a worse possibility of determining the
yaw angle.
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2.1. INERTIAL NAVIGATION SYSTEMS

2.1.5 System Performance
The operation of an inertial navigation system is limited as a result of data errors. Ac-
cording to Titterton and Weston [2004], the error sources which determine the navigation
performance can be categorized as:

• Initial Alignment Errors

• Sensor Errors

• Computational Errors

Inaccuracies arise in such a system because of initial alignment errors and imperfections
in the performance of the IMU. Also the speed of the computation must be high enough.
Otherwise, significant errors can arise because it is not possible to sense and record the
actual motion. The initial alignment and sensor error sources are introduced in this thesis.
The following sections deal with these errors and how they affect the navigation system
performance.

Sensor Errors
It was mentioned before that the quality of the inertial navigation information depends
on the inertial sensor errors, which cause a rapid degradation in the integrated navigation
solution, when not treated properly. The growth of these errors depends on the type
of the inertial sensor. Normally they are categorized in high-, medium- or low-graded
IMUs, based on the increase rate of the horizontal position error in nautical miles per
hour [Jekeli, 2001]. The major error sources in gyroscopes and accelerometers can be
divided as follows:

• Bias or Drift is a result of manufacturing imperfections of the sensors. It is the
constant offset of the sensor measurement from its true value (zero point shift) and
does not depend on the measurements.

• Scale factor is the ratio of the output and the true physical quantity being mea-
sured. In contrast to the bias offset, the scale factor is proportional to the measure-
ments and increases at highly dynamic movements.

• Axis misalignment arises from the misalignment of the sensitive axes with respect
to the orthogonal axes of the body frame due to manufacturing limitations.
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2.1. INERTIAL NAVIGATION SYSTEMS

• Random noise are random errors in the measurements and has white noise char-
acteristics. It can be reduced with wavelet thresholding. (see chapter 3.1.3)

Using the notation from Groves [2008], the following equations show the main error sources
of accelerometer δf b and gyroscope δωbib:

δf b = ba +Maf
b +wa (2.14)

δωbib = bg +Mgω
b
ib +wg (2.15)

Where f b,ωbib denote the true force and angular rate vector, ba, bg denote the corre-
sponding biases and wa,wg random noise. The matricesMa,Mg include the scale s and
misalignment m factors.

Ma =


sa,x ma,xy ma,xz

ma,yx sa,y ma,yz

ma,zx ma,zy sa,z

 Mg =


sg,x mg,xy mg,xz

mg,yx sg,y mg,yz

mg,zx mg,zy sg,z

 (2.16)

The accelerometer and gyro errors of an inertial navigation system consist of two parts: a
deterministic part and a random part [Nassar and El-Sheimy, 2005]. The deterministic or
systematic part can be corrected by the IMU processor using laboratory calibration data
([Groves, 2008], p.112). Random errors can be studied and modelled as stochastic pro-
cesses. These stochastic models can be considered by a Kalman filter to provide optimized
estimation of the navigation parameters. The stochastic model in the navigation filters is
normally a random constant (RC), a random walk (RW), a Gauss-Markov model (GM),
or autoregressive (AR) processes. For more information about this stochastic models and
how to model IMU sensor errors the reader is referred to Nassar [2003].

When not using high-grade IMUs, it is necessary to estimate the random sensor errors
mentioned above. Only then it is possible to achieve the best inertial navigation perfor-
mance. The random part consists of a high-frequency and a low-frequency component
and cannot be corrected by calibration. De-noising techniques like wavelet thresholding
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can filter the high-frequency term. According to El-Diasty and Pagiatakis [2008], the low-
frequency random errors (bias and scale) can usually be modelled by stochastic models
inside a Kalman filter at each epoch and then simultaneously removed during the navi-
gation equation implementation. This can be achieved through integration with another
navigation sensor (e.g. GNSS).

Initial Alignment Errors
Coarse alignment is a straightforward method that requires high-quality gyros and ac-
celerometers with small biases and high signal-to-noise ratio to get useful results. A
disadvantage of this method is that no information on the accuracy of the orientation is
achieved during this process. The alignment solution is largely determined by the preci-
sion of the measurements from the instrument outputs. According to Rogers [2003], only a
rough estimation can be carried out. In this approach the navigation frame misalignments
in north εN , east εE and down εD depend on the sensor errors (δf , δw).

εN = −δfy
g

(2.17a)

εE = −δfx
g

(2.17b)

εD = δfy
g
tanφ0 + δωy

ωecosφ0
(2.17c)

It was shown in figure 2.3 that the roll and pitch angle are faster adjusted than the yaw
angle. The reason for this is that roll and pitch is based on gravity vector measurements.
On the other hand, the reason for the difficult determination of true yaw angle stems from
the fact that it can just be determined by earth rotation rate measurements. This can be
seen in formula 2.17c. The earth rotation rate signal is weak and therefore often hidden
behind noise. The overall coarse alignment procedure suffers extremely from the sensor
errors and additionally from the sensor noise. It is difficult to give an exact statement
about the accuracy of the alignment because it depends on the IMU sensor quality. In
order to improve the precision of the alignment, a data de-noising procedure, such as
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the wavelet thresholding introduced in chapter 3.1.3, can be applied [El-Sheimy et al.,
2004]. The improvements of de-noising IMU data for initialization is shown in chapter
6.1.2. Another improvement of the initialization can be achieved by adding external
information like azimuth measurements or by estimating the sensor errors with the help
of a Kalman filter (zero velocity update). Furthermore, a so-called kinematic alignment
is possible if external information like GNSS observations are available [Jekeli, 2001].

16
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2.2 GNSS as an Aiding System
Global Navigation Satellite Systems (GNSS), which were originally designed for military
purposes, enable a global and accurate determination of the position and the velocity
of a moving object. The systems are designed that the navigation information can be
obtained anywhere in the world and in addition, GNSS perform at any time and in any
weather condition. These are useful characteristics for the purpose of navigation. World-
wide various satellite positioning systems are in operation. The most famous one is the
American GPS, but also the Russian GLONASS, European GALILEO or the Chinese
BeiDou operate worldwide. All different satellite positioning systems are combined in the
term Global Navigation Satellite Systems GNSS. For more information about the GNSS
architecture and observables the reader is referred to e.g. Hofmann-Wellenhof et al. [2012].

Navigation information delivered by GNSS can be derived in different quality. In the
navigation approach of this thesis, GNSS measurements are used to update the navi-
gation information from the inertial sensors (see chapter 4). The position and velocity
information delivered is subsequently used to reset the time-depending IMU sensor drift
and in addition, to estimate the IMU sensor errors. Therefore, a position accuracy of few
centimeters is needed. This can be reached by observing the carrier-phases. To solve the
ambiguities kinematic relative positioning is performed. In this approach, the GNSS mea-
surements, collected by the vehicle’s receiver (rover), are compared with measurements
from one or more reference stations. A reference station (base) is a receiver on a known
point. This base station data stems either from a real located receiver or from a so-called
virtually located reference station (VRS). Assuming that the GNSS receivers observe the
same satellites simultaneously, double-differences can be built to resolve the ambiguities
and to eliminate error sources. Therefore, relative positioning determines the vector be-
tween the two receivers (rover - base), which is called baseline [Hofmann-Wellenhof et al.,
2012]. The resulting rover’s position solution refers to the coordinate frame of the base.
An important fact is that the reliable ambiguity solution depends on the distance between
the receivers. It is supposed that the signal paths to the two receivers are almost identical,
because there are also some limitations due to distance-depending errors mainly caused
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by signal delays in the atmosphere.

The resulting position accuracy depends on the distance between the GNSS receivers. To
achieve a reliable result, the maximum baseline length should not exceed 20 km.
Ambiguity resolution in relative positioning can be performed either in post-processing
or on-the-fly in real-time called Real-Time Kinematik (RTK ). In this thesis, GNSS data
were collected and stored to estimate the position in post-processing mode. Thereby,
after accomplishing to solve the ambiguities, cm-level position accuracy can be achieved.
Additionally to the position information, GNSS delivers also velocity information. This
is performed through Doppler-shift measurements.

In contrast to inertial navigation systems, GNSS is a position fixing system. Thus, no in-
formation on previous positions of the receiver is necessary. This characteristics of GNSS
is used to achieve high-precision position measurements, which subsequently update the
multi-sensor system. In addition to the GNSS position delivered at a certain time, its
stochastic information is gained. This information is directly adopted in the stochastic
model of the Kalman filter (see section 4.1.3) and is needed in the Kalman gain compu-
tation. The Kalman gain is used to specify the weighting of the measurements and is
introduced in chapter 3.3.
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3 Fundamental Techniques

3.1 Wavelets
In this thesis, wavelets are used to analyse and de-noise the IMU sensor outputs. Wavelet
technology enables possibilities that other signal analysis techniques miss. Detecting
trends, discontinuities or sharp spikes in the signal is made possible. Wavelets are also
capable of compressing or de-noising a signal without degradation of the original signal.
[Grap, 1995]
In inertial navigation the gyroscope and accelerometer output suffers from relatively high
measurement noise. The noise affecting the inertial sensor contains two parts:

• Low frequency component: Has random process characteristics which can be mod-
elled with sufficient accuracy.

• High frequency component: Has white noise characteristics and is not possible to
model.

The performance of inertial measurements is expected to improve if the white noise com-
ponent can be removed from the original signal. This can be achieved by using a de-noising
technique like wavelet decomposition. [Nassar and El-Sheimy, 2005]
In this chapter, the basics of wavelets and wavelet transform are described first, following
by wavelet multi-resolution analysis (3.1.3) which can be used to de-noise signals. Keller
[2004] gives a good introduction into the wavelet theory and therefore, the following
overview about wavelets is based on this book.
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3.1.1 Definition
The technique of using wavelets is based on analyzing a signal through signal window-
ing with variable window sizes. Wavelets ψ(t) are small wave-packages where following
conditions are fulfilled (cf. [Keller, 2004], p. 31):

• ψ(t) must decay quickly at both ends:

0 < cψ = 2π
∫ ∞
−∞

|Ψ(ω)|2
|ω|

dω <∞ (3.1)

Where Ψ(ω) is the Fourier transform of the wavelet ψ(t).

• From equation 3.1 it follows that ψ(t) must be an oscillatory function with zero
mean:

0 = Ψ(0) = (2π)− 1
2

∫ ∞
−∞

ψ(t)dt (3.2)

For the approximation of a signal a set of wavelets is used. Each wavelet is derived from
the so-called mother wavelet ψ by scaling a and shifting b .

ψa,b(t) = 1√
|a|
ψ

(
t− b
a

)
, a ∈ IR\{0}, b ∈ IR (3.3)

There are many kinds of mother wavelets that have been documented in the literature.
For example figure 3.1 shows the Morlet and Mexican hat wavelet.

3.1.2 Wavelet Transform
Conventional Fourier transform of a signal has one big drawback: When looking at the
Fourier transform of a time domain signal, it is not possible to identify when a particular
event took place (e.g. change of frequency). To overcome this drawback, the wavelet
transform is based on a windowing technique with variable window size to analyse a
signal (see example in Keller [2004], p. 32-34). Therefore wavelets are localised in both
time (via translation) and frequency (via scaling) domains.
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fig. 3.1: Morlet wavelet and Mexican hat wavelet [Misiti, 2006]

The wavelet transform is defined in a continuous (CWT) and discrete (DWT) way. The
CWT of a function f(t) is expressed in formula 3.4.

Wψ(a, b) = 1√
|a|

∫ ∞
−∞

f(t)ψ∗
(
t− b
a

)
dt, a ∈ IR\{0}, b ∈ IR (3.4)

In this formula, Wψ(a, b) is called wavelet coefficient of the function f(t) with respect to
the mother wavelet ψ(t). The index ∗ indicates that the complex conjugate must be used
in case of a complex wavelet. Figure 3.2 illustrates the steps of CWT schematically.

In practice, it is time-consuming to calculate the wavelet coefficients at every possible
translation b and scale a and in addition, inertial sensor data are supplied discretely.
Therefore, the CWT is performed at discrete grid points which are selected from a subset
of all possible scales and translations. [Keller, 2004]

In the discretized continuous wavelet transform the continuous parameters a and b are
sampled with the constant number α to the power of n:

a = αn and b = mαn (3.5)
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(a) Selecting mother wavelet
and calculating correlation (b) Shifting the wavelet (c) Scaling the wavelet

fig. 3.2: Continuous wavelet transform [Misiti, 2006]

Here n and m are integer numbers presenting the discrete scaling and translation. By
substituting formula 3.5 into 3.4 the DWT of a discrete signal f(k) can be described:

Wψ(m,n) = 1√
αn

∑
k

f(k)ψ∗(kα−n −m) (3.6)

According to studies, if the base of the exponentiation α is two, the analysis is much
more efficient and just as accurate and because of that it is used for the DWT algorithm.
[Misiti, 2006].
For many signals (especially IMU sensor data) the high frequency component indicates
the noise and the low frequency component is the one of interest, because it gives the sig-
nal its identity. [Nassar and El-Sheimy, 2005]. The next chapter shows how to separate
the wanted components from the raw signal.

3.1.3 Wavelet Multi-Resolution Analysis
The continuous wavelet transform of chapter 3.1.2 performs a multi-resolution analysis of
a signal to obtain its different frequencies with different resolutions. Information about
low frequencies is achieved with high-scaled wavelets and high frequencies with low-scaled
wavelets. In discrete wavelet transform (DWT) the multi-resolution is obtained by split-
ting the signal into two parts: an approximation part (low frequency) and a detail part
(high frequency). This is done by passing the signal through two complementary filters:
a low-pass and high-pass filter (see figure 3.3).
The result is two sets of coefficients: approximation coefficients cA1 and detail coefficients
cD1. For the mathematical implementation of an efficient algorithm please refer to the
corresponding chapter on Mallat algorithm in Keller [2004].
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fig. 3.3: Decomposition of a signal

If fs is the sampling rate of the data (e.g. data from the inertial sensor), the maximum
detectable frequency is fs/2, according to the Nyquist theorem. When using DWT to
analyse the data, the cutoff frequency of the filters is exactly one half of the maximum
detectable frequency. The approximation part will have frequencies less than fs/4 and the
detail part will consist of frequencies from fs/4 to fs/2. In a next step the approximation
part will be further divided into two parts, the decomposition will be done iteratively.
This technique is called Wavelet Multi-Level of Decomposition (LOD) (figure 3.4). As a
consequence, the signal is broken down into many signal components with lower resolu-
tion. The original signal can be represented by a finite sum of components at different
resolutions. The decomposition with A representing the approximation, D the detail parts
and n the wavelet LOD is depicted in 3.7. This is one of the powerful properties of using
wavelets for signal processing or analysing [Goswami and Chan, 2011].

signal = A1 +D1

= A2 +D2 +D1

= An +Dn +Dn−1 + ...+D1

(3.7)

At each step of decomposition, the highest observed frequency fa in the approximation
wavelet coefficients can be calculated from the sample frequency fs as:

fa = fs
2n+1 (3.8)

As an example, figure 3.5 shows the frequency spectrum from a gyroscope measurement
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fig. 3.4: Multi-level decomposition

with different levels of decomposition. In this example, the sample frequency of the raw
data is 100 Hz. Therefore, the raw data can represent frequencies up to 50 Hz (Nyquist
theorem). According to formula 3.8, the signal after the second level of decomposition
includes frequencies up to 12.5 Hz and the signal after the fourth decomposition represents
only frequencies below 3.125 Hz.
It can be seen that this decomposition process can be done many times and after each
step the inertial sensor measurement is broken down into many lower-resolution compo-
nents. Theoretically, since the decomposition process is iterative, it can be done infinitely.
Practically, the wavelet decomposition can only continue until the part consists of only a
single frequency.

3.1.4 Signal Denoising
In the previous section, a technique was explained how to analyse and decompose a signal.
The second part deals with the process of how the components can be composed again
without any information loss and with additionally removing the unwanted noise. The
mathematical implementation is called the inverse discrete wavelet transform (IDTW).
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fig. 3.5: Frequency spectrum of gyroscope measurements with different level of decom-
position

f(t) =
∞∑

m=−∞

∞∑
n=−∞

Wψ(m,n)ψm,n(t), with: ψm,n(t) = 1
2nψ(k2−n −m) (3.9)

If the aim is to de-noise the signal, not every wavelet coefficient is used for the recon-
struction. A technique called wavelet thresholding works in the following way: The idea
of thresholding is to set all coefficients which are below a defined threshold to zero. The
reason for this is that some of the resulting wavelet coefficients related to details in the
signal are small. Those might be excluded without affecting the main features of the
data set. It is assumed that the magnitude of the wanted signal is greater than the noise.
Thresholding generally gives a kind of low-pass filtering of the original signal [Grap, 1995].
Merry [2005] mentioned that the technique is a significant step forward in handling noisy
data, because no sharp structures from the original signal are smoothed out. The result
is a cleaned-up set of data that still shows important details.
In practice, the thresholding technique is classified into two most used operators: soft and
hard thresholding. In the case of hard thresholding, all wavelet coefficients below a defined
threshold are replaced by zero (3.10a). The remaining coefficients are kept without any
modification. With soft thresholding, all coefficients below the threshold are replaced by
zero too, but all coefficients above the selected threshold are reduced by the threshold
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value (3.10b).

ηhard =


w, |w| > t

0, |w| ≤ t
(3.10a)

ηsoft =


sign(w)(|w| − t), |w| > t

0, |w| ≤ t
(3.10b)

Here w represents the wavelet coefficient and t the chosen threshold. Comparing the two
methods, the soft thresholding technique is known to have a better performance in the
case of de-noising data than the hard thresholding technique [Kang et al., 2011]. This is
due to the fact that the noise power is smaller than the power of the signal. Therefore
the soft thresholding technique is used in this thesis.

There are different approaches how to define the threshold. A general threshold, which
just takes the level of decomposition n into account, is determined by the formula 3.11:

t =
√

2log(n) (3.11)

According to Misiti [2006], the de-noising procedure can now be carried out in three steps:

• Decompose: Choose a wavelet, choose a level of decomposition and compute the
wavelet coefficients of the signal.

• Apply thresholding: For each level, select a threshold and apply soft thresholding
to the coefficients.

• Reconstruct: Compute inverse wavelet transform to reconstruct the de-noised
version of the signal.

In general, the terms wavelet multi-resolution analysis, wavelet decomposition or wavelet
thresholding are used for the wavelet de-noising technique. For more information about
wavelet thresholding and how to define thresholds refer to Donoho and Johnstone [1994].
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3.2 Integration of IMU and GNSS

3.2.1 Complementary Nature of IMU and GNSS
GNSS and inertial navigation techniques differ in many cases. First of all GNSS is an
absolut positioning system where inertial navigation is a dead-reckoning technique which
uses measured forces and rotation rates to obtain its position relative to its last position.
The relatively low data output from GNSS my cause problems at kinematic operations
where the inertial sensor can supply between GNSS epochs at high temporal resolution.
The error dynamics of an IMU are very complicated (chapter 2.1.5). It has a high short-
term stability, but because of its dead-reckoning principle, residual errors accumulate
which leads to a bad long-term behaviour. In contrast GNSS positioning derives from a
direct measurement of distances where errors do not accumulate with time. But in short-
term, where it is not possible to average, the errors are larger. GNSS positions, when
derived from phase-observation data, can be used to calibrate the long-time IMU sensor
errors. The GNSS system, however, depends on the space segment and a direct line of
sight to the satellites is necessary. This disadvantage is eliminated in inertial navigation,
because this sensor works independently (except required initial position and velocity).
Therefore IMU can bridge between GNSS epochs or even when the GNSS solution is lost
[Jekeli, 2001]. Table 3.1 compares the main features of GNSS and inertial navigation.

3.2.2 IMU-GNSS Integration Types
There are different methods to link GNSS and IMU. The integration depends on how the
different sensor outputs are combined. The GNSS receiver can either supply raw signals,
raw measurements (phase- or code-pseudoranges) or already processed information (po-
sition, velocity and time). An IMU supplies the acceleration and angular velocity related
information [Gebre-Egziabher et al., 2009]. There are different approaches how these data
are brought together. But in all strategies the integration is performed by means of a
Kalman filter. The following section gives a short overview of different integration types.
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tab. 3.1: Characteristics of GNSS and inertial navigation (from [Jekeli, 2001] and
[Hofmann-Wellenhof et al., 2003])

Characteristics GNSS Inertial navigation

Information absolut relative
Operation nonautonomous autonomous
Measurements pseudocode, phase, doppler shift acceleration, rotation rate
Navigation solution position, velocity, time position, velocity, attitude
Output rate low (< 20 Hz) high (< 1000 Hz)
Short-term accuracy low high
Long-term accuracy high low
Availability limited unlimited

Uncoupled Integration
The simplest integration type is known as uncoupled. It is a decentralized approach
which is characterized by a sequential processing of information. Both systems provide
their solution independently. In the case of GNSS position, velocity, time; and for INS
position, velocity and attitude. A master processor combines to a final solution. Following
(Jekeli [2001] p. 311) the combining processor may be accomplished with a simple selection
algorithm. The output relies on the inertial navigation only if GNSS is not available.

r
v


k

=



rGNSS
vGNSS


k

, if GNSS solution is available

rINS
vINS


k

+

rGNSS − rINS
vGNSS − vINS


0

, if GNSS solution is not available

(3.12)

Formula 3.12 represents the decision algorithm where the index k is the current epoch
and 0 indicates the last epoch where GNSS was available. The inertial solution is reset
to zero at GNSS update because of the IMU sensor drifts and GNSS long-term stability.
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Loose Integration
In loose architecture the inertial navigation and GNSS processor calculates their naviga-
tion information also independently. A third navigation solution is estimated by fusing
them. In contrast to the uncoupled scheme the usefulness of this loose integration type
is to extract the attributes wanted from IMU and GNSS while holding the unwanted at-
tributes down. The merged navigation solution is normally estimated by a Kalman filter
(see chapter 3.3). But each sensor works as a separate navigation system. The result is
a high data rate position information from the IMU and bounded errors from the GNSS.
The GNSS solution resets the IMU sensor error. The loosely coupled schema is shown in
figure 3.6. The box with dashed lines symbolizes that it is common to model the system-
atic IMU sensor errors to improve the navigation solution. Such a construction is also
called feed-forward. To get useful results this architecture just works for high-end inertial
sensors because of smaller random error characteristics of the IMU and its stability. Like
it was shown in chapter 2.1.5 the IMU errors can be modelled and used for the integrated
navigation solution.

fig. 3.6: Feed-forward configuration in loose integration

Closed loop: Configuring a feedback loop for the intertial navigation processor is an-
other method to reduce the inertial sensor errors. The IMU errors are estimated by the
Kalman filter and the accelerometer and gyro outputs are corrected. The effect is that the
sensors are calibrated in real-time. In figure 3.7 the dashed line symbolizes the feedback
path. The feedback configuration is necessary for low-cost IMUs, because of their large
output errors. For high-quality IMUs the feedback loop is not essential. Error character-
istics are known better and they are more stable, but a closed-loop configuration can also
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fig. 3.7: Feedback configuration in loose integration

improve the navigation solution.
Gebre-Egziabher et al. [2009] mentioned that the advantage of the loose integration ap-
proach is that it is relatively easy to implement because the integration occurs at the
position, velocity and time level and not at the sensor level. This means that just little
modification of the basic INS or GNSS algorithms is needed. A big advantage of loosely
coupled systems is that the system still delivers a navigation solution if one of the two
sensors fails, because they work independently.

Tight Integration
In this architecture type the sensors are reduced to their basic sensor outputs. In the case
of IMU accelerations and gyro measurements and for GNSS pseudoranges and pseudor-
ange rates. Pseudorange rates Ṗ can be calculated from the observed doppler-shift ∆fD
using the carrier frequency fs and speed of light c:

Ṗ = − c

fs
∆fD (3.13)

These raw measurements are used in one central Kalman filter to generate one single
navigation solution. Therefore it is also known as centralized architecture.

Closed loop: In tight architecture integration there are also subvariants. As shown in
figure 3.8 the dashed line indicates a feedback loop. Information about position and/or
velocity from Kalman filter is fed back to the receiver of the GNSS to improve its perfor-
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fig. 3.8: Tight coupled integration with feedback loop

mance and IMU sensor error estimations are fed back to the IMU. This information from
the filter can shorten the acquisition or reacquisition time of the GNSS signal and, in
addition, the velocity information can be used to aid the code and carrier tracking loops
in the GNSS receiver [Gebre-Egziabher et al., 2009]. This allows the receiver to continue
tracking signals even in high dynamic motions where loosely coupled systems might have
problems.

Loose against Tight Integration
It should be noticed that in tight integration the GNSS raw measurements are not pro-
cessed in a separate step any more but they are directly combined in one unique filter.
That leads to a more accurate and more robust result than a loose integration. On the
other hand, the separate filters in the loose approach have the advantage that their state
vectors are smaller than of the corresponding Kalman filter in a tight configuration. That
yields to faster processing times which can be useful in real time applications. The en-
hanced accuracy in tight strategy is, in part, due to the fact that the GNSS information
used by the Kalman filter shows less temporal correlation than the processed navigation
solution in loosely coupled systems [Gebre-Egziabher et al., 2009]. One main problem in
loose coupled system that is mentioned in Petovello [2003] is that the estimated position
supplied from the GNSS receiver is mostly Kalman filtered and the errors of Kalman
filter outputs are time correlated. Whereas the Kalman filter, which finally estimates
the merged navigation solution, assumes that the measurement errors are uncorrelated
in time. In a tightly coupled architecture, the two Kalman filters of the loosely coupled
architecture are combining into one and that eliminates the statistical problems [Groves,
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2008]. The gain of robustness comes from the possibility to extract useful GNSS infor-
mation even when less than four satellites are available. This information supports the
IMU and the integrated system still delivers a navigation solution where a single GNSS
solution would not be possible. The big drawback of tight integration is that no mul-
tiple independent navigation solution exists like in loose integration. That means that
the GNSS receiver is no longer independent from the IMU any more. A badly working
IMU sensor affects the solution which in turn will affect the performance of the GNSS re-
ceiver. Given the same inertial instruments and the same GNSS user equipment, a tightly
coupled IMU and GNSS almost always perform better than its loosely coupled counter-
part in terms of both accuracy and robustness [Groves, 2008]. But, on the other hand,
loose architecture is a simple and flexible approach, which gives the possibility to fuse the
existing GNSS-IMU system with other sensors. The multi-sensor system can be extended.

A summary of the individual benefits is provided in the following table 3.2.

tab. 3.2: Characteristics of loose and tight architecture [Abdel-Hamid, 2005]

Loose integration Tight integration

Uses positions and velocities from GNSS Uses range and range rate measurements
from each satellite

No GNSS solution if less than 4 satellites Use every single satellite
More vulnerable due to jamming Better jamming resistance
Lower performance in case of high dynam-
ics

Reliable tracking under high dynamics

Temporal correlation because of cascade
architecture

Central architecture

Multiple navigation information Single navigation information
Simple and flexible approach (possible to
extend with other sensors)

Difficult to apply multi-sensor aid

Small filter size Large filter size

Deep Integration
Another integration type, which just will be mentioned shortly, is called deep or ultra-
tight. In this approach the GNSS receiver architecture is totally different from GNSS
receivers which are used at the loose or tight method. The GNSS and INS devices no
longer work as independet systems. GNSS measurements are used to estimate IMU errors
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and IMU measurement to aid GNSS receiver tracking loops during interference or oth-
erwise degraded signal conditions like jamming [Petovello, 2003]. This approach requires
access to the GNSS receiver’s firmware or the tracking loop information and is typically
only implemented by equipment manufacturers. Therefore it is not treated in this thesis.

A final remark in this section is, that the loosely GNSS - IMU integration will be the one
adopted herein, and will therefore be implemented for processing the inertial and GNSS
measurements in this thesis. Chapter 4 will present the practical implementation of GNSS
and IMU by using an extended Kalman filter which is introduced in chapter 3.3.
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3.3 Kalman Filter
The basic technique of the Kalman filter algorithm was developed by Rudolf Kalman in
1960 and can be found in Kalman [1960]. It is an optimal least square estimator for
dynamic systems. The Kalman filter is a recursive algorithm using a system model and
measurement model to obtain an optimal state vector estimation. It is a favourite integra-
tion method for navigation sensor data to achieve an optimal overall system performance
and has quickly become very popular since its invention [Hofmann-Wellenhof et al., 2003].

3.3.1 Structure
The key advantage of the Kalman filter over other stochastic estimation methods is its
iterative structure which qualifies for use in real-time applications. As stated in Groves
[2008], the algorithm consists of 5 core elements:

a) The state vector is a set of parameters which are used to describe the dynamic
system. In the case of navigation, the state vector describes the trajectory and consists of
components of position, velocity and attitude but also sensor errors. Related to the states
are their corresponding covariances, which represent the uncertainty of the Kalman filter
state estimation.

b) The system model (also called prediction model) is a function of time which
describes the continuing behaviour of the state vector and its stochastic information.
Normally, linear dynamic systems can be expressed with formula 3.14. Here it must be
noted that manipulating variables like wind or temperature can also be modelled. But in
order to simplify the following formulas, they are ignored.

ẋ(t) = F (t)x(t) +C(t)w(t) (3.14)

In the formula above, x(t) represents the state vector and F (t) is called system ma-
trix. C(t) represents the noise distribution matrix and system noise is denoted as w(t)
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and generally describes the uncertainties of modelling the dynamic system behaviour
[Hofmann-Wellenhof et al., 2003]. As measurement updates take place at discrete time
stamps, the system model must be expressed discretely. In the discrete Kalman filter the
state vector estimation can be achieved as a linear or linearized function of its previous
state:

xk+1 = Tk,k+1xk + Sk,k+1wk (3.15)

In 3.15, xk describes the state vector at a certain time; wk is system noise, which should
be Gaussian distributed with zero mean (w ∼ N(0,Qk)) and Sk,k+1 represents the noise
coefficient matrix. The system transition matrix Tk,k+1 updates the state vector from
epoch tk to the epoch tk+1. It is usually calculated by a power-series expansion of system
matrix F as follows. (cf. [Jekeli, 2001], page 221):

Tk,k+1 = exp(F (t− t0)) =
N∑
i=0

(F
i

i! (t− t0)i)) (3.16)

c) The measurement vector is a set of measurements of properties of the system.
For example it can be the position and velocity measurement from GNSS. In association
with the measurement vector, its covariance matrix describing the uncertainty of the
measurements must be provided.

d) The measurement model combines the measurement vector with the state vector.
It is be used to update the state vector estimation with a set of measurements. In a
standard Kalman filter the measurement vector l(t) is modelled as a linear function of
the state vector x(t), where A(t) presents the measurement matrix (or design matrix)
and v(t) the noise term.

l(t) = A(t)x(t) + v(t) (3.17)

If the measurement vector is taken at discrete time stamps, 3.17 becomes:

lk = Akxk + vk (3.18)
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e) The Kalman filter algorithm is the centerpiece. It uses system model, measure-
ment vector and measurement model to obtain optimal state vector estimation. It consists
of three main steps:

• Step 1: Time update (prediction)
For the time update step, no measurements are required. The prediction is based
only on the system model and is done at a user-defined interval. Starting from the
estimated state vector at epoch tk, the system states are predicted forward in time
using:

x̄k+1 = Tk,k+1x̂k (3.19)

while the propagation of the parameter covariances Σx̄x̄ at epoch tk+1 is given by:

Σx̄x̄,k+1 = Tk,k+1Σx̂x̂,kT
T
k,k+1 +Qk (3.20)

• Step 2: Gain computation
On arrival of a new measurement l at epoch tk+1, the measurements of the true
system must be compared with the predicted system. Depending on the stochastic
properties of the measurements and system states, a so-called gain-matrix is cal-
culated to specify the weighting of the measurements or predictions. The Kalman
gain K is computed using the covariance matrix of the innovation D:

Kk+1 = Σx̄x̄,k+1Ak+1D
−1
k+1 (3.21)

with : Dk+1 = Σll,k+1 +Ak+1Σx̄x̄,k+1A
T
k+1 (3.22)

• Step 3: Measurement update (correction)
The measurement is used to update the prediction to achieve the best estimation.
First, the measurement innovation d is computed by calculating the difference of
the measurement vector l with the predicted measurements delivered by Ak+1x̄k+1.
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dk+1 = lk+1 −Ak+1x̄k+1 (3.23)

The estimation of the state parameters x̂k+1 is now done as a weighted merge of the
predicted state vector with the observations using the innovation and Kalman gain.

x̂k+1 = x̄k+1 +Kk+1dk+1 (3.24)

While the estimated covariance matrix of the states is given by:

Σx̂x̂,k+1 = Σx̄x̄,k+1 −Kk+1Dk+1K
T
k+1 (3.25)

The schematic algorithm of the Kalman filter is presented in figure 3.9.

3.3.2 Extended Kalman Filter
The Kalman filter algorithm is designed for linear systems, but in real applications like
inertial navigation systems this is not the case. The functional dependencies of the mea-
surement and/or system model are non-linear. The system matrix F (t) and/or mea-
surement matrix A(t) are replaced by non-linear functions f(x(t)) and a(x(t)). Linear
approximation has to be applied. This can be achieved by linearization to a predetermined
trajectory (Linearized Kalman filter) or to the predicted one (Extended Kalman filter).
"The advantage of using a predicted trajectory for the linearization is that the discrepan-
cies are usually smaller compared to using an nominal trajectory." ([Hofmann-Wellenhof
et al., 2003], page 278)
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fig. 3.9: Kalman filter algorithm

The system model of 3.14 becomes:

ẋ = f(x(t)) +w(t) (3.26)

Linearizing the system model with respect to the predicted trajectory x̂ for epoch k is
done by evaluating the Jacobian:

Fk = ∂fk(xk)
∂x

∣∣∣∣∣
x=x̂k

(3.27)

Now the system transition matrix Tk,k+1 can be computed with formula 3.16 which is used
for every time update step. If the measurement model a(x(t)) is non-linear, linearizing of
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the design matrix must also be carried out:

l(t) = a(x(t)) + v(t) and Ak = ∂ak(xk)
∂x

∣∣∣∣∣
x=x̂k

(3.28)

After these steps, the discrete Kalman filter algorithm can be used as given in the previous
section. Only the following changes must be made:

• System states are now predicted with:

x̄k+1 = fk(x̂k) (3.29)

• Innovation is calculated using:

dk+1 = lk+1 − ak+1(x̄k+1) (3.30)

It was shown that the Kalman filter algorithm has a recursive structure which qualifies
for use in real-time applications. Therefore, it has become a favourite integration method
for navigation sensors. In chapter 4 the practical sensor fusion of IMU and GNSS is
performed by using an extended Kalman filter.
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4 Practical Implementation of the Sensor
Fusion

Different integration concepts to combine an IMU with GNSS were introduced in chapter
3.2.2. The integration type that was chosen for the sensor fusion in this thesis was the
loose architecture with a closed-loop Kalman filter. This Kalman filter integration algo-
rithm is an estimator where multiple sources can be combined; in addition to that, the
closed-loop approach enables the Kalman filter to correct the system itself, because the
error states are fed back at every iteration step. The big advantage of a loosely coupled
system is that its approach is simple and flexible and can be extended with other naviga-
tion sensors in future. In the integration scheme used, the positions and velocities from
GNSS are used to update the predictions which are derived from the IMU measurements.

The Kalman filter integration of IMU and GNSS was developed by the research group
Advanced Geodesy at the Department of Geodesy and Geoinformation at TU Wien. The
basic concept of the sensor fusion was implemented by Franz Michael Blauensteiner (see
Blauensteiner [2008]) and extended by Fabian Hinterberger (see Hinterberger et al. [2011]).
The most important steps to implement the integration of IMU and GNSS using a Kalman
filter are explained in the following section.

4.1 Extended Kalman Filter Design
The Kalman filter technique is based on the fundamental assumption of linearity. The
problem in real applications is that this assumption cannot always be applied, because
the observation equations and/or the system dynamics are non-linear. In our case, the
system equations (equations of motion) are clearly not linear. Therefore, an extended
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Kalman filter (EKF) has to be used for the GNSS/INS integration. The EKF is designed
for non-linear systems. This algorithm has two positive aspects (see section 3.3): Kalman
filters generate optimal estimates of the navigation states by minimizing the covariance
of the estimation error and their recursive form makes them well-suited to efficient imple-
mentation.

The first step to implement a Kalman filter centers on the question of state space. It
is standard that the state vector is described in error-state instead of total state [Jekeli,
2001]. This means that the state parameters describe the differences between the esti-
mated position, velocity, and attitude and the true position, velocity, and attitude (for-
mula 4.1).

δxk = (δφ δλ δh︸ ︷︷ ︸
δre

δvN δvE δvD︸ ︷︷ ︸
δvl

εN εE εD︸ ︷︷ ︸
εl

)Tk (4.1)

Furthermore, the error-state vector is extended with inertial sensor errors. Inertial sensor
errors were introduced in section 2.1.5. The sensor bias bba, bbg and the scale factor sba, sbg
for each gyroscope or accelerometer are estimated as well. In total, the state vector δxk
consists of 21 states.

δxk = (δre δvl δεl bba sba bbg sbg)Tk (4.2)

The true value of the navigation information (re, vl, Rl
b) can be calculated with the help

of the IMU derived navigation information (reIMU , vlIMU , Rl
bIMU) and the error-states

from the estimated state vector and is expressed by the equations 4.3.

reIMU = re + δre (4.3a)

vlIMU = vl + δvl (4.3b)

Rl
bIMU = (I −E)Rl

b (4.3c)
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with : I =


1 0 0

0 1 0

0 0 1

 , E =


0 −εD εE

εD 1 −εN

−εE εN 0



4.1.1 System Model
It was introduced in chapter 3.3 that the system model (or prediction model) is one
fundamental part of the Kalman filter. Its equation, which describes the continuing
behaviour of the state vector, is presented here in formula 4.4 again.

ẋ(t) = F (t)x(t) +C(t)w(t) (4.4)

In the formula above, x(t) represents the state vector; F (t) is called system matrix;
C(t) represents the noise coefficient matrix and w(t) is system noise. The system equa-
tions of the IMU-GNSS Kalman filter are called error dynamic equations and are derived
from the navigation equations (2.7). The navigation equations are non-linear and by
linearization the final error dynamic equations are achieved (formula 4.5). According to
Gebre-Egziabher et al. [2009], this can be performed by a first-order Taylor series ex-
pansion or perturbation analysis. Their derivation can be found e.g. in Jekeli [2001] or
Reinstein [2010].

δṙe = Fṙrδr
e + Fṙvδvl (4.5a)

δv̇l = Fv̇rδr
e + Fv̇vδvl − εl × f l +Rl

bδf
b + δgl (4.5b)

ε̇l = Fε̇rδr
e + Fε̇vδvl − ωlil × εl −Rl

bδω
b
ib (4.5c)

In addition, it was mentioned in chapter 2.1.5 that it is necessary to estimate the inertial
sensor errors (δf b, δωbib) in order to achieve the best navigation performance. The equa-
tions for the modelled sensor errors were already shown in 2.1.5. In the implementation,
which is presented in this section, bias b and scale factor s of the accelerometers and gyros
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are taken into account (axis-misalignments are not modelled in this implementation). The
simplified form of 2.14 and 2.15 are presented again in formulas 4.6a and 4.6b.

δf b = ba +Maf
b with : Ma =


sa,x 0 0

0 sa,y 0

0 0 sa,z

 (4.6a)

δωbib = bg +Mgω
b
ib with : Ma =


sa,x 0 0

0 sa,y 0

0 0 sa,z

 (4.6b)

In this implementation, the biases for accelerometers and gyroscopes are modelled as ran-
dom walk and the scale factors as random constant. The chosen type is of interest in the
stochastic model of the Kalman filter implementation (section 4.1.3), because a random
constant has zero variance.

The matrices Fij from 4.5 are sub-matrices of the system matrix F and are listed below.

Fṙr =


0 0 − vN

(M+h)2

vE∗sinφ
(N+h)cos2φ

0 − vE

(N+h)2cosφ

0 0 0

 (4.7)

Fṙv =


1

M+h 0 0

0 1
(N+h)cosφ 0

0 0 −1

 (4.8)

Fv̇r =


−2ωevEcosφ− v2

E

(N+h)cosφ 0 vNvD

(M+h)2 + v2
Etanφ

(N+h)2

−2ωevDsinφ+ 2ωevNcosφ+ vEvN

(N+h)cos2φ
0 − vEvD

(N+h)2 − vNvEtanφ
(N+h)2

2ωevEsinφ 0 v2
E

(N+h)2 + v2
N

(M+h)2 − 2γ√
MN+h

 (4.9)
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Fv̇v =


vD

M+h −2ωesinφ− 2vEtanφ
N+h

vN

M+h

2ωesinφ+ vEtanφ
N+h

vD

N+h + vN tanφ
N+h 2ωecosφ+ vE

N+h

− 2vN

M+h −2ωecosφ− 2vE

N+h 0

 (4.10)

Fε̇r =


−ωesinφ 0 − vN

(N+h)2

0 0 vN

(M+h)2

−ωecosφ− vE

(N+h)cos2φ
0 vEtanφ

(N+h)2

 (4.11)

Fε̇v =


0 1

N+h 0

− 1
M+h 0 0

0 − tanφ
N+h 0

 (4.12)

f l =


0 −fD fE

fD 0 −fN

−fE fN 0

 (4.13)

ωlil =


0 −ωesinφ− vEtanφ

N+h
vN

M+h

ωesinφ+ vEtanφ
N+h 0 ωecosφ+ vE

N+h

− vN

M+h −ωecosφ− vE

N+h 0

 (4.14)

Finally, the system matrix F can be composed as shown in formula 4.15.
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F =



Fṙr Fṙv 0 0 0 0 0

Fv̇r Fv̇v −f l Rl
b Rl

bfb 0 0

Fε̇r Fε̇v −ωlil 0 0 −Rl
b −Rl

bωb

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0



(4.15)

The system transition matrix Tk,k+1 is now computed by power-series expansion of the
system matrix F (formula 3.16) by implying only the linear part (i = 1).

Tk,k+1 = I + F∆t (4.16)

A prerequisite for the elimination of higher order terms is that the state variables are
correspondingly small. It can also be seen that the system equations require measurements
(fb, ωb) for the system update. In the absence of IMU measurements the system cannot be
updated any more, which is different from the classical Kalman filter. The big advantage
of this approach is that the measurement equations are particularly simple [Blauensteiner,
2008].
In the system model, the system noise term generally describes the uncertainties of mod-
elling the dynamic system behaviour (see equation 3.14). In this implementation the
system noise vector w consists of the following unmodeled residual errors in position δre,
velocity δvl, attitude δεl, gravity model δgl and IMU sensor error model δbba,g, δsba,g. Each
of this residual error terms have the dimension of three, which subsequently leads to a
total dimension of 24 for the system noise vector.

w =
(
δre δvl δεl δgl δbba δsba δbbg δsbg

)T
(4.17)
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The corresponding noise coefficient matrix is represented below and has the dimension of
21× 24:

S =



Fṙv 0 0 0 0 0 0 0

I 0 0 I 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 I 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 I 0

0 0 0 0 0 0 0 0



(4.18)

4.1.2 Measurement Model
The measurement vector of the IMU-GNSS integration describes the differences of the
GNSS position and velocity and of the IMU derived position and velocity.

l =

reGNSS − reINS
vlGNSS − vlINS

 (4.19)

Since in this implementation the position is given in ellipsoidal coordinates, the differences
in latitude and longitude in radians are extremely small. Therefore, in order to receive
meters as units these two observations are transformed to the local-level frame by using
formula 2.8. Thus, the measurement vector changes to:

l =



(M + h)δφ

(N + h)cosφδλ

δh

δvN

δvE

δvD


(4.20)
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Finally, the design matrix A is given by:

A =



(M + h) 0 0 0 0 0

0 (N + h)cosφ 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


(4.21)

4.1.3 Stochastic Model
In the stochastic model of the system and measurement equations, the uncertainty of the
models will be taken into account. The variance information of the states are included in
Σxx (see formula 4.22).

Σxx = diag(σ2
r σ2

v σ2
ε σ2

b,a σ2
s,a σ2

b,g σ2
s,g) (4.22)

When starting the Kalman filter procedure, the variance information is delivered from the
initialization step. Further, it is propagated in the time update phase using formula 3.20.
The covariance matrix of the system noise Σww includes the uncertainty of the system
noise. It must be noted that the system noise variables are modelled as random walk,
except for the scale factors of accelerometers and gyroscopes. These are modelled as a
random constant. Therefore, the variance of the scale factors is zero.

Σww = diag(σ2
δr σ2

δv σ2
δε σ2

δg σ2
δb,a 0 σ2

δb,g 0) (4.23)

The system noise matrix, which is requested at each time update at a time update is
derived with the following formula 4.24.

Q = SΣwwS
T (4.24)
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The measurement covariance matrix Σll is derived at every measurement update from the
GNSS positioning process (see section 2.2).

Σll = diag(σ2
δφ σ2

δλ σ2
δh σ2

δvN
σ2
δvE

σ2
δvD

) (4.25)

48



5 Preprocessing of the IMU Data

This chapter deals with analysing and preprocessing of the inertial observables. The raw
inertial data is analysed and synthetic noise is added. Afterwards, the inertial data is
preprocessed by filtering with the de-noising technique from section 3.1.3. These results
are used in chapter 6 to analyse the multi-sensor performance.

5.1 Evaluation of the IMU Data
In real inertial navigation applications the IMU sensor outputs (acceleration and angular
rates) contain the following signals:

• Vehicle motions

• Earth gravity components

• Sensor biases

• Sensor noise

• Other effects (e.g. engine vibrations)

It can be seen that the vehicle motion information wanted is superimposed by other com-
ponents. The gravity component must be known and is considered in the navigation
equation. Sensor biases can be determined in a calibration step, or estimated in real-time
by using stochastic process models and a sensor integration. The other components are
hard to split. Sensor noise, which has white noise characteristics, and other random pro-
cesses like engine vibration are expected to disturb the measurement especially in the high
frequency component. Therefore, if such noise components could be removed from the
measurements, improvements in inertial navigation are expected and in turn, the overall
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navigation accuracy will be improved [Nassar, 2003].

Wavelet techniques, which were presented in chapter 3.1.3, can be applied for removing
the high frequency noise. Undesirable effects of sensor noise and other high frequency
disturbances will be minimized.

5.1.1 IMUWaveletDenoising: Developed IMU Analysing
Tool in Matlab

In order to detect and remove undesirable effects in the IMU data, the tool IMUWavelet-
Denoising was developed during the course of this thesis. This tool was developed in
MATLAB and can be used to analyse and de-noise IMU measurements. The user inter-
face of IMUWaveletDenoising is presented in figure 5.1.
The tool consists of four main features:

(1) Import data: The tool imports IMU measurements from a csv-file where each line
represents measurements at a certain time. Each line must contain 7 elements:

tab. 5.1: IMU file structure

time accX accY accZ gyroX gyroY gyroZ

With importing data, it is also possible to downsample the IMU measurements. IMUs are
available which record at a very high data rate (e.g. 1000 Hz) and such a bulk of data is
rarely required. Therefore, in order to decrease the file size, it is possible to downsample
the IMU data.

(2) Analysing: To detect undesirable effects in the IMU data, the tool enables the
possibility to analyse the measurements. It is possible to plot the amplitude frequency
spectrum, power spectral density (PSD) or the time series for the different IMU measure-
ments. This feature is subsequently used to analyse the characteristics of the different
IMU measurements in section 5.1.2.

(3) Wavelet de-noising: Wavelet thresholding, which was presented in chapter 3.1.3,
is applied to remove the noise term from the measurements. The user can select the
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fig. 5.1: User interface of the developed analysing tool IMUWaveletDenoising

wavelet decomposition level and take a look on the filtering result by using the analysing
plot options from (2).

(4) Export data: After analysing the measurements and choosing the appropriate level
of decomposition for the filtering step, the filtered data can be exported. A csv-file with
the chosen sampling frequency from (1) is created.

The tool IMUWaveletDenoising was used to analyse the different IMU datasets in section
5.1.2 and in addition, the preprocessing of the IMU data in chapter 5.2 was also performed
with the help of this tool.
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5.1.2 Raw Data
For this thesis, three data sets from different IMU measurements are analysed. Each of
these datasets covers time series of accelerometer and gyroscope measurements with an
high update rate. The following list gives a short overview of the data available:

• Helicopter flight Laa an der Thaya

IMU: iNAV-FJI-001

Data rate: 1000 Hz

Data length: 100 min

• Helicopter flight Lanzenkirchen

IMU: iNAV-FJI-001

Data rate: 1000 Hz

Data length: 150 min

• Train ride ÖBB from Vienna to Breclav

IMU: AEROcontrol IMU-IIf

Data rate: 400 Hz

Data length: 4 h

As the different datasets show similar behaviour, just one dataset is chosen to be presented
here. The following diagrams are related to the helicopter flight Laa an der Thaya.
Figure 5.2 displays the accelerometer time series in x-direction, while figure 5.3 shows the
respective gyroscope measurements. The data can be split into two parts.

• static: IMU is in rest relative to the earth surface. The data recorded include earth
gravity, earth rotation and noise.

• kinematic: IMU is in motion. The data recorded include vehicle dynamics, earth
gravity, earth rotation and noise.

During the first ten to twenty minutes of each measurement, only static data are recorded
and subsequently used to determine the initial orientation (see section 2.1.4). The reason
for the offset in the static accelerometer time series (fx,static 6= 0) is because leveling of
the IMU was imperfect. Therefore, a part of the local gravity is measured in x-direction.
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fig. 5.2: Accelerometer measurements in x-direction
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fig. 5.3: Gyroscope measurements in x-direction

In order to obtain information whether dominant frequency components are present in the
time series a Fourier transform is computed to display the amplitude frequency spectrum.
As one aim of this thesis is to analyse the signal’s noise characteristics and to try to remove
them, it is of interest which frequencies are included in the static and kinematic data.
Figure 5.4 shows the frequency spectrum of ten minutes of static data in x-direction and
z-direction. Referring to figure 2.1, the x-axis of the IMU points in front of the helicopter
and the z-axis points downwards. Some pronounced peaks at certain frequencies are
visible. One reason for this could be residual vibrations of the platform which the IMU
was mounted onto and which were not compensated by the shock absorbers. In addition,
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it seems that the peaks appear periodically at about 20, 40 and 60 Hz (especially visible
in figure 5.4c). This constant frequency offset may be caused by an aliasing effect. The
white noise term is not very dominant in these measurements.

(a) Accelerometer measurements in x-direction (b) Gyroscope measurments in x-direction

(c) Accelerometer measurements in z-direction (d) Gyroscope measurments in z-direction

fig. 5.4: Frequency spectrum of static data of Laa an der Thaya

Within the frequency spectrum of the kinematic test data in figure 5.5 the bandwidth
containing the majority of the motion dynamics falls into the low frequency band of the
spectrum (< 7 Hz). An additional remark is that the disturbing frequency at 20 Hz is still
present in the data (especially noticeable at gyroscope measurements) and in addition,
a dominant frequency component at 26 Hz occurs now in the kinematic data set. This
dominant frequency is not present in the spectrum of the static time series and appears
only when the helicopter is in motion. The peaks at about 10 to 40 Hz are most probably
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due to the vibrations of the engine or rotor motion. How such undesirable high-frequency
components can be removed was introduced in chapter 3.1.3 and this technique is used
to eliminate the noise from the data set in chapter 5.2.

(a) Accelerometer measurements in x-direction (b) Gyroscope measurments in x-direction

(c) Accelerometer measurements in z-direction (d) Gyroscope measurments in z-direction

fig. 5.5: Frequency spectrum of kinematic data of Laa an der Thaya

The temporal progress and the amplitude spectrum above are just shown for acceleration
and gyroscope measurements in x-direction and z-direction, but the spectrum character-
istics in y-direction of the IMU sensors are quite similar.
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5.1.3 Adding Synthetic Noise
In the last section, the recorded raw data sets were presented. Some undesirable effects,
which may come from engine or rotor vibration, are made visible. One point of interest
is the following: Does this error source influence our multi-sensor system performance?
Another approach is whether we can still deliver a useful navigation solution if the noise
sources increase? To make this analysable, the measurements will be overlaid with syn-
thetic noise. Two noise sources are chosen to be added to the original data. First, it is an
important fact that low-grade IMUs have bad signal-to-noise ratio and suffer from extreme
white noise. Thus, it is interesting to find out how the navigation solution will behave if
the original measurements are overlaid with white noise. This means, a low-grade IMU
is simulated. Secondly, it is worthwhile to know what will happen if vibrations of the
engine increase. Therefore, a synthetic disturbing source at a certain frequency band will
be added.

White Noise
In this thesis, medium-grade IMUs are used. The signal-to-noise ratio is quite good,
compared to a low-grade IMU. With low-grade IMUs the expected signal is buried behind
white noise. A white noise process is a random process of random variables that are
uncorrelated over time, have zero mean and finite variance. Formally, w is a white noise
process if:

E(wt) = 0, var(wt) = σ2, cov(wt, ws) = 0 for t 6= s (5.1)

Normally, a white noise process is present over the whole frequency band. It is of inter-
est how the navigation performance will behave if the signal-to-noise ratio of our IMU
output is low. This can be evaluated by adding white noise to the original data. This is
graphically demonstrated in figure 5.6. The magnitude of the noise is about one tenth of
the maximally occurring amplitude in the frequency spectrum of the static raw data.
Figure 5.7 represents the noisy data set of static accelerometer and gyroscope measure-
ments in x-direction.
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fig. 5.6: Adding synthetic white noise

(a) Accelerometer measurements in x-direction (b) Gyroscope measurments in x-direction

fig. 5.7: Spectrum of static accelerometer and gyro data with added white noise

Band-Limited Noise
In the frequency spectra 5.4 and 5.5 also a prominent disturbing signal at 20 Hz is visible.
This is most probably due to engine or rotor vibration. This noise source will now be
increased in order to make the influence more demonstrable. Therefore, the original signal
will be overlaid with an oscillating noise at a defined frequency band. Figure 5.8 shows
the IMU output superimposed with generated band-limited noise. One question deals
with the scaling of the noise amplitudes. In order to generate realistic noise, the scaling
of the noise amplitude depends on the static raw data. Therefore, the amplitude of the
added noise adhere to the maximally occurring amplitude in the frequency spectrum of
the static raw data (see figure 5.4). The maximum amplitude of the noise is twice of the
original maximum amplitude. To implement a band-pass, a hamming window is used to
cut out the frequency region wanted from the generated noise (20-22 Hz). This remaining
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fig. 5.8: Adding synthetic white noise

frequencies are subsequently added to the static data. For example, figure 5.9 shows the
spectrum of static accelerometer and gyroscope data with added synthetic noise. The
superimposed noise is visible just between 20 and 22 Hz.

(a) Accelerometer measurements in x-direction (b) Gyroscope measurments in x-direction

fig. 5.9: Spectrum of static gyro data with added band-limited noise

In this section, the IMU output was overlaid with noise to deteriorate inertial signal
quality. These measurements with superimposed synthetic noise are subsequently used
to analyse the performance of the navigation system. How the noise affects the initial
alignment is shown in chapter 6.1 and the behaviour at GNSS outages is presented in
chapter 6.2. But, in practice, it is more important to improve the IMU output, therefore
the next chapter deals with removing the noise component from the inertial data.
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5.2 Denoising of the IMU Data
Inertial data suffer from different noise sources like sensor error noise, engine vibration or
even white noise. If such noise components can be removed as well as possible, the overall
navigation solution is expected to improve. This chapter deals with de-noising inertial
data with wavelet thresholding, which was introduced in section 3.1.3.
First, it will be explained why wavelet thresholding has been chosen for de-noising inertial
data instead of the classical low-pass filter techniques.

5.2.1 Wavelet Thresholding vs. Low-Pass Filter for
Inertial Data

It was mentioned in chapter 5.1 that vehicle motion is superimposed by other signals like
earth gravity, sensor noise or other effects like engine vibration. The aim is to remove
the noise from the inertial data without affecting the wanted components. Classic low-
pass filters have the characteristics to remove all frequencies above a certain frequency.
If important information exists in the high-frequency component, it will be filtered out,
which results in a loss of information. An example of inertial navigation are sudden
changes in the vehicle accelerations. As it is shown in Kang et al. [2011] the low-pass
filter distorts this change of the signal. As visible in figure 5.10 the red dashed line
presenting the low-pass filtered data leads to a signal distortion. On the other hand,
de-noised data using the wavelet threshold technique reduces the noise level with hardly
any distortion (green line).
Therefore, using low-pass filters is not the best choice for processing IMU data. Instead,
the approach wavelet decomposition and thresholding presented in chapter 3.1.3 overcomes
the shortages of the dynamic behaviour of low-pass filters. Therefore, this filter technique
is used in this thesis. It must be noted that the selection of an appropriate level of
decomposition is based on removing the high-frequency noise while keeping all the useful
information (especially the vehicle motion) contained in the signal. Therefore, the level
of decomposition has to be chosen wisely.
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fig. 5.10: Change in signal using wavelet denoising and low-pass filter [Kang et al., 2011]

5.2.2 Selection of the Wavelet Level of Decomposition
In chapter 3.1.3, a technique to split a signal into two parts was presented. This is done
by passing the signal through two complementary filters. The result is a low-frequency
(approximation) and a high-frequency (detail) part. In a next step, the approximation
part is further divided into two parts. The decomposition is done iteratively, so that the
inertial sensor measurement is broken down into many lower-resolution components. Each
level of decomposition has a maximally occurring frequency, which can be calculated with
formula 3.8. The maximally occurring frequency for each level of decomposition of the
data set available can be seen in table 5.2.
The question is: What is the appropriate level of decomposition? In practice, a suitable
number of levels based on the nature of the signal would be selected. According to De
Agostino [2008], in the case of static inertial data, the sensor outputs contain the physical
components (earth gravity or earth rotation rate) and the sensor long-term errors (such as
biases). For kinematic inertial data, effects of the actual vehicle motion dynamics and the
sensor noise as well as some other effects, such as vehicle engine vibrations, are recorded.
This is why the criterion for the selection of the appropriate level of decomposition for
de-noising is distinguished for the static and kinematic cases in the following section.
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tab. 5.2: Level of decomposition: Maximal frequency component

Laa an der Thaya Lanzenkirchen ÖBB
frequency [Hz] frequency [Hz] frequency [Hz]

Sample rate 1000 1000 400

LOD 0 500 500 200
LOD 1 250 250 100
LOD 2 125 125 50
LOD 3 62.5 62.5 25
LOD 4 31.25 31.25 12.5
LOD 5 15.625 15.625 6.25
LOD 6 7.813 7.813 3.125
LOD 7 3.906 3.906 1.563
LOD 8 1.953 1.953 0.781
LOD 9 0.977 0.977 0.391
LOD 10 0.488 0.488 0.195
LOD 11 0.244 0.244 0.975

Static Inertial Data
El-Sheimy et al. [2004] suggested that the cut-off frequency of static IMU data should
be 0.5 Hz. The earth rotation rate and gravity as well as the long-term inertial sensor
errors should be completely included in this approximation part. Wavelet decomposition
is not able to separate the earth-related components from the long-term sensor errors.
But El-Sheimy et al. [2004] also mentioned that such long-term errors have minor effects
on the performance of inertial sensors during the alignment process. As a next step in this
thesis, it is proved if this strict cut-off frequency can also be used for the IMU measure-
ments available. Therefore, the signal-to-noise ratio (SNR) is calculated depending on the
level of decomposition. The signal wanted is assumed to be the average of the measured
static IMU data, because the earth rotation rate and earth gravity vector should remain
constant in the static phase. The SNR at each filter level is calculated for the raw data
set and the synthetically noised data set of Laa an der Thaya (see section 5.1.3). It is
expected that at each filter level the SNR will improve.
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SNR [dB] = 10 ∗ log10

(
signal

noise

)
(5.2)

with: signal = 1
n

n∑
i=1

(static raw data)

noise = (filtered static data)LOD −
1
n

n∑
i=1

(static raw data)

On the other hand, care has to be taken that the filter technique does not affect the
original signal. Therefore, the difference of the mean value of the static raw data and the
mean value of the wavelet filtered data at each decomposition level is calculated.

∆signal = 1
n

n∑
i=1

(filtered static data)LOD −
1
n

n∑
i=1

(static raw data) (5.3)

When the filter process affects the signal, the calculated mean value of the filtered data
should differ from the value of the original data. The behaviour of the SNR and the mean
of the static data are shown in figure 5.11.
What is striking in figure 5.11 is that the SNR improves with each decomposition level
(blue line). This is expected, because wavelet tresholding should remove the noise term.
When looking at the SNR progress of the raw data (5.11a, 5.11b) it can be seen that the
maximum is at a decomposition level of ten. In table 5.2 the LOD of ten corresponds
to 0.488 Hz. This value meets the cut-off frequency of 0.5 Hz proposed by El-Sheimy
et al. [2004]. But on the other hand, after nine to ten levels of decomposition the value
of the difference between the original mean and the filtered mean increases (red line).
This increasing offset demonstrates a deterioration of the physical signal measured, which
should be avoided. At the data set with synthetic white noise added (5.11c, 5.11d), also a
deterioration of the signal is expected after a LOD of ten. With band-limited noise added
(5.11e, 5.11f), the best performance is expected after seven levels of decomposition.
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(b) Gyroscope measurement
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(c) Accelerometer measurement with synthetic
white noise
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(d) Gyroscope measurement with synthetic
white noise
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(e) Accelerometer measurement with band-
limited noise
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fig. 5.11: Calculated SNR and difference to the origin mean from data set Laa an der
Thaya
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(b) Gyroscope measurements

fig. 5.12: Static data of Laa an der Thaya

As an IMU de-noising example, figure 5.12 shows the signals measured of the static data
of Laa an der Thaya in x-direction (blue signal). Furthermore, the wavelet de-noised
signals after nine levels are shown (red signal). It is noticeable that nearly everything of
the random noise term is removed and in addition, the peaks measured at time 15.1 h are
almost totally mitigated. In section 6.1, it will be figured out if these filter values really
improve the initialization phase of the multi-sensor system.

Kinematic Inertial Data
To obtain the cut-off frequency of kinematic data, a spectral analysis has to be performed
to ensure that the decomposition process does not disturb any actual motion information.
Figure 5.13 demonstrates gyroscope measurements in x-direction of the three data sets
available. The frequency spectrum is just shown up to 50 Hz, because beyond that value
there is just white noise. The figures clearly show that the motion term can be separated
from the noise term visually. The cut-off frequency is at about 10 Hz. In the case of the
ÖBB data, the value is a little bit higher, at about 15 Hz.

As soon as this spectral analysis has been completed and the approximate cut-off fre-
quency is determined, information about the possible level of decomposition can be de-
livered. The appropriate level of decomposition for each data set can be found in table
5.3. As an exemplary result, figure 5.14 represents the filtered part of the gyroscope data
after six decompositions.
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(a) Laa an der Thaya (b) Lanzenkirchen

(c) ÖBB

fig. 5.13: Amplitude spectrum of kinematic gyro measurements

tab. 5.3: Possible level of decompostion

Laa an der Thaya Lanzenkirchen ÖBB

static LOD 10 LOD 10 LOD 8
kinematic LOD 5-6 LOD 5-6 LOD 3-4
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(a) Amplitude spectrum of the original
data

(b) Amplitude spectrum after 6 decompo-
sitions
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(c) Section of the temporal process

fig. 5.14: Gyroscope measurements of Laa an der Thaya

Of course, with this visual interpretation, it is not sure if the decomposition level chosen
really improves the performance of the multi-sensor system, or if it influences the navi-
gation performance negatively, because motion information is filtered out. Therefore, in
chapter 6, it will be analysed how much the level of decomposition of the inertial data
filtered influences the navigation performance.
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6 Analyses and Results

In this chapter, the results of the analyses are presented. In section 3.1.3 a technique
to decompose a signal was introduced. This procedure was implemented for the inertial
measurements in chapter 5.2. It is now analysed in which way the de-noising technique
influences the multi-sensor system performance. Therefore, the wavelet thresholding tech-
nique is used for the original and synthetically noised inertial data. Their effect is shown
in two steps of the multi-sensor navigation process. Firstly, it is analysed how the noised
IMU data affects the alignment process and subsequently, it is shown that the alignment
procedure can be improved with the help of wavelet de-noising. The second analysing
step takes the behaviour of the navigation system into account if GNSS updates are not
available. It is of interest if the de-noising technique of the inertial data improves the
overall position error. Figure 6.1 shows the navigation process with the analysis points
chosen schematically.
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fig. 6.1: Block diagram of the modified multi-sensor system with the analysis points:
Analysis of the Alignment and Analysis of GNSS outages
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6.1 Analysis of the Alignment
A misalignment of the multi-sensor system can be an important error source for the over-
all navigation system. It was mentioned before in section 2.1.4 that during the alignment
process an averaging of the calculated rotation matrix for some epochs has to be done.
This leads to the situation that the high sensor noise and other periodic effects of the
static data are reduced. The noise reduction depends on the time interval where static
data is available. Usually, some minutes are required. To obtain a reference alignment, an
alignment based on the raw data of the inertial data sets was performed. The mathemati-
cal background of the course alignment of IMU data was introduced in chapter 2.1.4. The
final alignment orientation after 10 minutes of static data is calculated by using formula
2.13 and is presented in the following table (6.1).

tab. 6.1: Computed initial alignment

roll pitch yaw
[°] [°] [°]

Laa an der Thaya 0.075 4.727 195.718
Lanzenkirchen 0.231 0.505 286.822
ÖBB 0.570 180.070 -45.483

This initial alignment is now used as a reference. In the next section, it is shown how the
added synthetic noise affects the result of the alignment.

6.1.1 Alignment with Noised Inertial Data
To demonstrate the effect of noise interfered inertial data at the initialization step, the
course alignment is computed with the synthetically noised data shown in chapter 5.1.3.
Due to the high sensor noise of the IMU, an averaging of the calculated rotation matrix
has to be performed. The averaging process usually requires some minutes of static data.
This averaging time is needed in order to reduce the noise components of the signal.
Figure 6.2 points out how the choice of the averaging time of the initialization affects
the final alignment. In this figure, the difference of the computed pitch and yaw angle
of the noised data and the reference value (table 6.1) is shown. It is necessary to know
that roll and pitch show similar behaviour and therefore, just the alignment of pitch is
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(a) Alignment of the pitch angle
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(b) Alignment of the yaw angle

fig. 6.2: Course alignment with the IMU observables of Laa an der Thaya

presented here. The reader should notice the different vertical axis scales in the pitch and
yaw alignment progress.
In figure 6.2 it is demonstrated that ten minutes of course alignment process of the
synthetically white noised data are not enough for the yaw alignment. The alignment
of the Euler angle has not reached its final value. Some more minutes of recorded static
data would be necessary. On the other hand, the alignment with added band-limited noise
affects the final computed yaw angle. The band-limited noise influences the initialization
process in such a way that the final yaw alignment differs from the reference alignment
resulting in a wrong initialization. In this example, the difference of the final yaw angle
and the initial one is 8.2°. In the case of roll or pitch alignment, no significant difference
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from the reference values can be observed.

Conclusion: The course alignment procedure is not suitable for data with a dominant
noise term (low SNR). With this simple alignment procedure, the yaw angle cannot be
determined in a sufficient accuracy and the averaging time would take more than 10
minutes to reach its final state. Therefore, for low-graded IMUs, the course alignment is
not enough. The reason for this is that in this case usually gyroscopes with noise levels
larger than the earth’s rotation rate are used and as a result, low-graded IMUs cannot
be aligned in static mode during the course alignment. Subsequently, either a technique
called fine alignment or external yaw measurements has to be performed. External yaw
measurements, which use a magnetic compass, provide the alignment (see pages 234-252
in [Jekeli, 2001]). A second remark is that in the case of inertial measurements with a
band-limited noise term, the yaw angle converges to a wrong value. In this case, more
averaging time would not eliminate the wrong alignment.

6.1.2 Alignment with Denoised Inertial Data
An improvement with regard to providing more accuracy and shortening the averaging
time can be obtained by using wavelet de-noised inertial data. A strict cut-off frequency for
static IMU data of 0.5 Hz was suggested in section 5.2.2, which leads to an approximation
part of the signal with frequencies below 0.5 Hz. This approximation part should include
only the earth-rotation rate and the local gravity component is used for the alignment
process. Nearly all of the measurement noise which influenced the alignment process
negatively should be eliminated.

a) Original inertial data: To prove whether the wavelet de-noising enhances the align-
ment result, the initialization of the multi-sensor system was performed with different
filter steps. Ten levels of decomposition equal about 0.5 Hz (referring to table 5.2) and
therefore, for example, figure 6.3 demonstrates that after de-noising with a level of de-
composition of 10, the Euler angles align faster. This effect is especially noticeable in the
yaw determination. A second interesting fact is that the final solution of the de-noised
yaw alignment differs from the initial alignment solution at about 0.2 degree. A reason for
this difference may be that the recorded inertial raw data is influenced by a noise source.
It was mentioned and shown in section 5.1.2 that the Fourier transform of the static raw
data points out a dominant frequency component at about 20 Hz. This error source is a
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(a) Alignment of the pitch angle
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(b) Alignment of the yaw angle

fig. 6.3: Course alignment of Laa an der Thaya after ten levels of decomposition

kind of band-limited noise and it was shown in figure 6.2 that such noise leads to a differ-
ent final alignment angle. At a decomposition level of ten, this noise is removed from the
data and does not affect the alignment any more. Therefore, such noise characteristics
might be responsible for the alignment differences.

b) Inertial data with added synthetic white noise: Additionally, it is of interest
if the wavelet de-noising technique can remove the white noise term from the inertial
data, which in turn should decrease the averaging time for the alignment procedure.
Therefore, the inertial data with added synthetic white noise is de-noised with several
levels of decomposition. It can be seen in figure 6.4 that after applying the wavelet filter,
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(b) Alignment of the yaw angle

fig. 6.4: Course alignment of Laa an der Thaya with added white noise

the Euler angles do not converge faster. For example, after ten decompositions the final
state of the alignment is still not reached. The reason for this is that the white noise term
influences information all over the whole frequency bandwidth. Therefore, the earth’s
rotation rate and gravity component are also superimposed by noise and the alignment
needs more time to converge to its final state. More minutes of static measurements would
be required in order to increase the averaging time and subsequently reduce the influence
of the noise component. The de-noising filter has the effect that the alignment process is
smoother.

c) Inertial data with added synthetic band-limited noise: As inertial data with
a band-limited noise term is present, the wavelet de-noising technique should remove the
noise term without manipulating the original information, which in turn should remove
the large yaw alignment difference between the inertial raw data and noised data (cf.
figure 6.2). Figure 6.5 presents that after ten levels of decomposition, the band-limited
term is totally removed and the result of the alignment of the synthetically noised data
equals the initial alignment from table 6.1.

Conclusion: The analysis of the course alignment of the raw inertial data has shown
that the measurements recorded were influenced by a noise component at a certain fre-
quency, which can be removed by applying wavelet thresholding. In the case of a huge
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fig. 6.5: Course alignment of Laa an der Thaya with added band-limited noise

white noise term in the inertial data, the convergence time stays the same, but the ran-
dom noise level is lower, which leads to a smoother curve progression. The information
wanted (earth’s rotation rate and gravity component) is buried behind the white noise
component, too, and this cannot be separated from the superimposed noise. If the residual
noise component is too dominant, no improvement of shortening the convergence time can
be obtained. Additionally, it was shown that disturbing noise which occurs at a certain
frequency band can be removed by de-noising the inertial data.

As a final remark, it is of interest how the course alignment depends on the wavelet level
of decomposition. Therefore, the course alignment is performed with different levels of
decomposition (figure 6.6). It is obvious that the chosen decomposition level has nearly
no impact in the case of inertial data with the added white noise term. The difference to
the initial value stays nearly constant at each decomposition level. Compared to figures
5.11c / 5.11d, where the SNR increases at each decomposition step, the final alignment
angle is not affected by the lower temporal resolution of the signal. Therefore, the earth’s
components cannot be separated from the noise any more. But the improved SNR might
have advantages in the case of the convergence time when using a Kalman filter, when
subsequently a fine alignment or kinematic alignment takes place. In the case of band-
limited noise, a significant improvement of the difference of the yaw angle can be achieved
after five levels of decomposition. After the fifth level, the signal is broken down to a
lower resolution signal where the disturbing frequency band is excluded. When compared
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(b) Difference of the yaw angle

fig. 6.6: Differences of the alignment of Laa an der Thaya data after certain wavelet
LODs

to the SNR pre-analysis shown in figure 5.11e / 5.11f, this result was expected, because
the SNR increases rapidly after five decomposition levels. Additionally, it can be seen
that after ten levels of decomposition, the difference of the alignment starts to increase.
The reason for this is that with further decompositions, the filter procedure influences
the earth’s component signal wanted. It may be that the cut-off frequency, suggested by
El-Sheimy et al. [2004], of 0.5 Hz is too strict.

6.1.3 Effect of an Inaccurate Alignment
The last section dealt with an analysis of the alignment of the multi-sensor navigation
system and how undesirable effects like noise influence the course alignment solution.
Partly, the undesirable noise can be removed or at least reduced by wavelet thresholding.
In this section, the effect of an inaccurate initialization alignment is analysed. It is shown
how the further navigation solution is affected by an inaccurate initial alignment. It
was shown in section 2.1.4 that the determination of yaw is difficult and therefore more
inaccurate, when compared to roll and pitch. Therefore, it is analysed how a wrong
initialization of the yaw angle affects the navigation information, which is estimated by
the IMU-GNSS Kalman filter. Table 6.2 represents the yaw alignment error used for this
analysis.
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tab. 6.2: Yaw alignment error
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fig. 6.7: Difference of yaw with wrong initialization

If no GNSS updates are available in the multi-sensor navigation system, the system oper-
ates as a INS stand-alone system. In such a case the navigation system cannot eliminate
the orientation error derived from the initial alignment. The alignment error is carried
on to the trajectory estimation. As in the present multi-sensor system GNSS is available
as a supporting sensor, a kinematic alignment takes place after the vehicle object starts
moving. This leads in turn to an improvement of the vehicle alignment as long as the
vehicle is moving. The following figure 6.7 shows the influence of the wrong initial yaw
alignment. In the static phase (the vehicle is in rest), no GNSS based improvement of the
wrong alignment can be achieved. The initial yaw error remains the same. As soon as the
vehicle starts moving (kinematic phase), the GNSS measurements are used to support the
current alignment of the vehicle, which in turn leads to a reduction of the yaw alignment
error with time.
The length of the convergence time till the yaw error is eliminated depends on the initial
alignment error and the GNSS measurement update rate. In this example, GNSS positions
are available every 0.2 second. Table 6.3 shows the time till the yaw error falls below 0.1
degrees after the vehicle has started moving (kinematic alignment).
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tab. 6.3: Convergence time until |yaw − yawinit| < 0.1◦

[°] [°] [°] [°]
initial yawerror 0.2 1 4 8

convergence time [s] 3.7 10.2 74.4 240.7
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fig. 6.8: Position error after wrong initialization

The wrong yaw initialization angle does not only affect the orientation of a vehicle, but
also subsequently the trajectory estimation. Figure 6.8 indicates the position error in the
static phase and after the vehicle has started moving.
One thing that is striking is that a wrong initial alignment directly influences the position
error. A yaw error of eight degrees causes a position error in the navigation frame of
more than half a meter if the initial position is obtained using GNSS measurements. The
reason for this error is the so-called level-arm. Normally, the IMU and GNSS receiver
are two separate measurement systems and have different spatial positions. The spatial
vector which describes the distance between IMU and GNSS in the body-system is called
level-arm. The level-arm of the data set Laa an der Thaya is as follows (6.1).

∆rb =


3.727 m

0.141 m

−0.592 m

 (6.1)
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The yaw angle describes the rotation of the body frame around the vertical axis with
respect to the local-level frame (see section 2.1.1 about coordinate frames). If yaw is
wrongly determined and includes a yaw error δα, this error causes a rotation of the level-
arm ∆rb.

∆rbwrong = Rz(δα)∆rb (6.2a)

with : Rz(δα) =


cos(δα) sin(δα) 0

−sin(δα) cos(δα) 0

0 0 1

 (6.2b)

This rotation of the level-arm due to an inaccurate yaw estimation leads to the following
position error δr.

δr =

√√√√(∆rbwrong −∆rb
)2

(6.3)

Table 6.4 summarizes the position error due to a wrong yaw estimation.

tab. 6.4: Position error in static phase

[°] [°] [°] [°]
yawerror 0.2 1 4 8

position error [cm] 1.3 6.5 26.0 52.0

As soon as the vehicle starts moving, the yaw determination improves but also the posi-
tion, which can be seen in figure 6.8. Table 6.5, depicts the period after which the position
error falls below 5 cm due to a wrong yaw estimation.

An error in the yaw determination causes a rotation around the z-axis of the body frame.
Normally the z-axis of the body frame points down, which subsequently leads to a horizon-
tal position error. Figure 6.9 indicates that especially latitude and longitude are affected
by the yaw error.
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tab. 6.5: Time until position error < 5 cm

[°] [°] [°] [°]
initial yawerror 0.2 1 4 8

time [s] 0 6 29.4 93.6
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fig. 6.9: Position error after wrong initialization

Conclusion: It was shown that the convergence time of the Euler angles in kinematic
alignment depends on the error magnitude. But in addition, the convergence time depends
on the interval of the GNSS updates, too. In this example, GNSS measurements were
available every 0.2 seconds, which leads to a very dense measurement update. When the
time between GNSS measurements increases, the convergence time will also increase. As
the vehicle is in rest, the position error depends both on the alignment error and the
level-arm. If the yaw estimation is inaccurate, the horizontal coordinates are affected
most.
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6.2. SIMULATING GNSS OUTAGES

6.2 Simulating GNSS Outages
In this section, the usefulness of estimating the inertial sensor errors during the Kalman
filter process is presented. It was shown in chapter 4 that the IMU-GNSS sensor inte-
gration was performed by a loose coupled architecture with a closed-loop Kalman filter.
The closed-loop approach allows the Kalman filter to correct the system itself. At each
iteration step, the modelled inertial sensor errors (see section 2.1.5) are estimated. At
GNSS outages, no GNSS updates are possible, which means that GNSS does not aid the
inertial sensor any more. The multi-sensor system operates as an INS stand-alone system.
The navigation accuracy in such situations is mainly specified by the inertial sensor errors
which were estimated in the Kalman filter process. Therefore, it is of interest at which
accuracy the multi-sensor system can operate in such situations and, in addition, whether
the wavelet filter technique can improve the navigation performance.

To achieve a reference, the trajectory of Laa an der Thaya is estimated using GNSS up-
dates every 0.2 seconds and the original inertial data (without synthetic noise added).
This is performed by using the sensor integration script which was developed by the re-
search group Advanced Geodesy at TU Wien. The basic concept of the sensor fusion
is explained in chapter 4. In figure 6.10, the estimated reference trajectory is shown in
top and side view. Additionally, it can be seen that the standard deviation in latitude,
longitude and height of the trajectory is between one to two centimeters. The reason for
this precise position estimation is due to the fact that GNSS updates are available every
0.2 seconds and the trajectory is calculated in post-processing while fixing most of the
GNSS ambiguities. The difference of the behaviour of the multi-sensor system compared
to this estimated trajectory is shown further.

80



6.2. SIMULATING GNSS OUTAGES

λ [◦]
16.4 16.5 16.6

φ
[◦
]

48.2

48.3

48.4

48.5

48.6

48.7

48.8

(a) Reference trajectory (top view)

h
[m

]

200

300

400

500

600

λ [◦]
16.4 16.5 16.6

(b) Reference trajectory (side view)

time [min]
0 20 40 60 80 100 120

s
t
a
n
d
a
r
d
d
e
v
ia
t
io
n
[m

]

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

σφ

σλ

σh

(c) Standard deviation of the estimated trajectory

fig. 6.10: Estimation of the trajectory Laa an der Thaya
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It was mentioned before that a deeper look at the estimation of the inertial sensor errors is
done in this section. This is accomplished by simulating GNSS outages, which means that
GNSS does not aid the inertial navigation system any more and the performance of the
navigation system is based on the last estimated sensor errors. It is expected that if these
estimates were fairly appropriate, the resulting position errors at theses GNSS outages
keep within limits. In total, 16 outages with the period of one minute each are simulated.
Between each outage, there is a period of five minutes when GNSS measurements are
available again, so that the navigation system can converge again. Therefore, the errors
obtained during any outage are independent of the other outages. In figure 6.11, the
resulting position errors at these simulated GNSS outages compared to the reference
trajectory (6.10) are shown.
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fig. 6.11: Position errors at sixteen simulated GNSS outages

The maximum resulting magnitude of the position error at the end of outage periods is
about 2.5 meters. The average position error is 0.68 meter. Furthermore, before and after
any GNSS outage, errors are reset almost to zero.

6.2.1 GNSS Outages With Noised Inertial Data
In the last section, a reference trajectory of the dataset Laa an der Thaya was computed.
Additionally, sixteen GNSS outages with a period of one minute each were simulated.
In this section, the effect of noisy inertial data at these GNSS outages is demonstrated.
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Therefore, the trajectory of Laa an der Thaya is estimated with the synthetically noised
inertial data from section 5.1.3. In addition, the same GNSS outages displayed in figure
6.11 are simulated. The resulting position error is calculated for added synthetic white
noise (simulating a low-grade IMU) and added band-limited noise (simulating engine
vibrations).
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fig. 6.12: Position errors at each outage with different inertial data

In figure 6.12, the position errors at the end of the sixteen outage periods defined are
plotted. As expected, it can be seen that the added noise affects the navigation perfor-
mance of the multi-sensor system, which in turn leads to an increase of the position error
at GNSS outages. Only at outage number seven and eight a different behaviour can be
obtained. There the raw data has the highest error magnitude. This is probably due to
an erroneous estimation of the sensor errors at the begin of the outage period. Table 6.8
summarizes the resulting position errors.

tab. 6.6: Position error at GNSS outages

Mean Max
[m] [m]

Raw data 0.682 2.456
White noise added 1.291 2.224
Band-limited noise added 1.217 3.114
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6.2.2 GNSS Outages With Denoised Inertial Data
As a next step, it is of interest if de-noising the inertial signal with wavelet thresholding
at different decomposition levels can improve the inertial sensor error estimation, which
in turn may reduce the resulting position errors.

a) Original inertial data: In figure 6.13, GNSS outages are simulated for inertial data
with the decomposition levels of 3, 6 and 9.
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fig. 6.13: Position differences with respect to the reference trajectory

Figure 6.13 demonstrates that the level of decomposition does not affect the trajectory
estimation significantly when GNSS is available (between outages). On the other hand,
figure 6.13 shows directly that the magnitude of the resulting position error changes with
each LOD, especially for a level of decomposition of nine. To illustrate the dependence
of the position error for each decomposition level, the position difference to the reference
trajectory at the end of the outage periods is plotted (6.14). It seems that an LOD of
9 manipulates the original signal, because motion information is filtered out and, subse-
quently, the position error at each GNSS outage increases. A second aspect is depicted
in figure 6.14: the decomposition levels of 3 and 6 have nearly no effect on the maximum
position error. The position error equals the results of the unfiltered inertial data.
It seems that de-noising the signal does not really improve the sensor error estimations.
It is now of interest to find out whether the choice of the decomposition level affects the
inertial sensor error estimation. For that, the temporal progress of the estimated sensor
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fig. 6.14: Maximum position error for different decomposition levels

errors (biases and scale factors) is represented in figure 6.15. This figure shows that the
decomposition level directly affects the estimated sensor errors. The estimated sensor
biases and scale factors are clearly correlated with the decomposition level. The result
of de-noising inertial data leads to different sensor error estimations. It can also be seen
that after an LOD of nine the sensor errors cannot be obtained in a sufficient accuracy
any more and the values start drifting away.

As a last step in this section, the magnitude of the position error at the simulated outage
periods is computed, using the original and de-noised inertial data. The wavelet de-
noising is performed by applying decomposition levels from one to nine. The results
are summarized in table 6.7. Here it can be seen that the best result is obtained at a
decomposition level of three, even though the effect is minimal. The average values of
these errors are presented in figure 6.16. It seems that after six levels of decomposition,
the inertial sensor error estimations start to deteriorate, which may be rebalanced by
adjusting the stochastic model of the Kalman filter.
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fig. 6.15: Estimated inertial sensor errors
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tab. 6.7: Position error for each GNSS outage and with different filter steps

Outage
No

Raw
data

LOD
1

LOD
2

LOD
3

LOD
4

LOD
5

LOD
6

LOD
7

LOD
8

LOD
9

[m] [m] [m] [m] [m] [m] [m] [m] [m] [m]

1 0.485 0.485 0.484 0.479 0.492 1.058 1.026 1.034 0.995 0.966
2 0.834 0.833 0.834 0.831 0.882 0.621 0.760 0.767 0.770 0.645
3 0.727 0.730 0.728 0.747 0.726 0.774 0.823 0.906 1.0682 3.460
4 0.447 0.447 0.451 0.449 0.390 0.373 0.328 0.319 0.317 0.560
5 0.347 0.347 0.347 0.348 0.391 0.399 0.400 0.386 0.416 1.212
6 0.212 0.209 0.208 0.189 0.212 0.364 0.277 0.263 0.252 0.554
7 1.430 1.429 1.430 1.447 1.485 1.655 1.715 1.706 1.688 2.018
8 2.456 2.455 2.454 2.451 2.510 2.436 2.438 2.394 2.423 4.009
9 0.512 0.511 0.512 0.503 0.475 0.507 0.472 0.458 0.477 1.962
10 1.046 1.048 1.046 1.075 1.021 0.977 1.022 1.029 0.987 2.082
11 0.325 0.326 0.326 0.322 0.333 0.354 0.317 0.318 0.312 1.107
12 0.927 0.925 0.925 0.920 0.919 0.906 0.923 0.914 0.891 2.201
13 0.205 0.205 0.207 0.173 0.302 0.764 0.787 0.777 0.889 2.257
14 0.285 0.286 0.285 0.286 0.302 1.106 1.008 0.981 1.149 3.320
15 0.339 0.339 0.339 0.339 0.339 0.340 0.340 0.340 0.341 0.338
16 0.328 0.328 0.327 0.327 0.328 0.329 0.329 0.329 0.329 0.332

Mean 0.682 0.682 0.681 0.680 0.694 0.810 0.810 0.808 0.832 1.689

Conclusion: It has been shown that the wavelet level of decomposition has nearly no
influence on the resulting position errors at GNSS outages. The reason for this is that
the inertial sensor errors, which are estimated by the Kalman filter, are adjusted in every
case. A mere manipulation of the original signal can be achieved by choosing a too large
decomposition level, which of course should be avoided. Improvements may be obtained
if the stochastic model of the Kalman filter, especially the system noise, is adjusted for
every decomposition level.
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fig. 6.16: Mean position error for different decomposition levels (see table 6.7)

b) Synthetically noised inertial data: The resulting position difference is specified
by the estimated inertial sensor errors. The better the sensor errors are estimated, the
smaller is the resulting position error at the end of the outage periods. It is shown in
table 6.8 that using inertial data with a larger noise term increases the average position
error, because the noise term influences the estimation of the sensor errors. The sensor
error estimation is more difficult and therefore more inaccurate. Next, it is of interest if
wavelet decomposition can actually remove or reduce the negative effect of this synthetic
noise.

Therefore, the trajectory inclusive GNSS outages is estimated with different levels of
decomposition and by using the synthetically noised data from section 5.1.3. When inertial
data with huge white noise is used, an improvement cannot really be obtained by filtering
the data (see figure 6.17). The reason for this was already mentioned in alignment with
denoised inertial data (section 6.1.2). The white noise term influences the information
all over the whole frequency band and superimposes the motion term of the vehicle.
Wavelet thresholding does reduce this effect but the residual noise influences the sensor
error estimations. As mentioned before, after an LOD of nine the filter technique starts
to downgrade significantly the signal. If band-limited noise is added to the inertial data,
an improvement can be obtained (see figure 6.18). At the decomposition levels of three
and six, the position error decreases at most GNSS outages. Therefore, the influence of
the band-limited noise added has been reduced or even eliminated.
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fig. 6.17: Position errors at different decomposition levels by using inertial data with
added white noise

outage number
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

p
o
s
it
io
n
e
r
r
o
r
[m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

 Band-limited noise added

 LOD = 3

 LOD = 6

 LOD = 9

fig. 6.18: Position errors at different decomposition levels by using inertial data with
added band-limited noise

Table 6.8 summarizes the maximum position error at different decomposition levels for
white and band-limited synthetically noised inertial data. The average values of these
errors are presented in figure 6.19.
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tab. 6.8: Resulting position errors in the case of synthetically noised inertial data for
each GNSS outage and different filter steps

Outage
No

White
noise
added

LOD
3

LOD
6

LOD 9 Band-
limited
noise
added

LOD
3

LOD
6

LOD
9

[m] [m] [m] [m] [m] [m] [m] [m]

1 0.959 0.949 0.963 0.885 1.982 0.479 1.026 0.842
2 1.377 1.375 1.268 0.943 0.550 0.831 0.760 0.645
3 1.686 1.727 1.835 4.389 2.285 0.747 0.823 3.460
4 1.572 1.568 1.658 2.359 0.478 0.449 0.328 0.560
5 0.907 0.905 0.884 1.948 0.327 0.348 0.400 1.212
6 2.224 2.188 2.284 1.770 0.887 0.189 0.277 0.554
7 1.362 1.379 1.632 1.897 1.219 1.447 1.715 2.018
8 1.569 1.565 1.572 2.828 1.846 2.451 2.438 4.009
9 0.775 0.769 0.738 1.573 1.299 0.503 0.472 1.961
10 1.112 1.075 1.080 0.606 3.114 1.075 1.022 2.082
11 1.637 1.636 1.694 2.612 0.434 0.322 0.317 1.107
12 0.941 0.936 0.918 2.504 0.691 0.920 0.923 2.201
13 1.151 1.178 1.904 3.291 0.600 0.173 0.787 2.260
14 0.435 0.438 0.828 3.052 1.196 0.286 1.008 3.320
15 1.593 1.594 1.594 1.615 0.402 0.339 0.340 0.338
16 1.364 1.374 1.378 1.379 2.167 0.327 0.329 0.332
Mean 1.291 1.291 1.389 2.103 1.217 0.680 0.810 1.681
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(a) Synthetic white noise added inertial data
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fig. 6.19: Average position errors at different decomposition levels

Conclusion: It has been shown that the wavelet level of decomposition has nearly no
influence on the resulting position errors at GNSS outages, when dealing with synthet-
ically white noised data. The reason for this is that white noise influences information
all over the whole frequency band and therefore superimposes the motion term wanted.
Wavelet thresholding cannot separate the noise from the real motion information in the
low frequency field. This residual noise is directly adopted in the inertial sensor errors,
which are estimated by the Kalman filter. But they cannot be computed in the same
quality as it is the case when dealing with the original data. In the case of band-limited
noise added, an improvement can be obtained. The decomposition limits the noise and
the sensor error estimation can be achieved in a sufficient accuracy again.

91



7 Conclusions

This thesis discussed an IMU-GNSS multi-sensor system in the field of navigation. At
the beginning, the basic concept of inertial navigation was introduced and how GNSS
can aid the navigation system. The integration type chosen for the sensor fusion was
the loose architecture with a closed-loop Kalman filter. In addition, it is a well-known
fact that the IMU sensor suffers from temporarily increasing uncertainties due to sensor
errors. Therefore, in order to achieve navigation information in a cm-range these sensor
errors were estimated within the Kalman filter process. Three datasets with IMU and
GNSS measurements collected were analysed:

• Helicopter flight in Laa an der Thaya

• Helicopter flight in Lanzenkirchen

• Train ride ÖBB

The main emphasis was put on the helicopter flight Laa an der Thaya. Another central
question in this thesis was to take a specific look on the quality of the IMU output. There-
fore, the Matlab tool IMUWaveletDenoising was created to analyse the IMU observables.
With the help of this tool, the frequency band describing the motion information of the
moving object can be determined. The bandwidth containing the motion dynamics fell
into the low frequency band of the spectrum (< 10 Hz). In addition, some undesirable
disturber present in the dataset can be detected. Thereby, noise sources were revealed in
the dataset Laa an der Thaya: A disturber at 20 Hz, and in addition, with the helicopter
starting to move, another disturber at about 26 Hz are present (cf. 5.5). One suggestion
was that the entire multi-sensor navigation solution will most likely be improved as soon
as these disorders get eliminated. Therefore, the wavelet thresholding technique was in-
troduced which allows, by decomposition of the signal, eliminating noise sources. This
technique was also implemented in the Matlab tool in order to analyse and de-noise IMU
measurements.
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A next step was stressing the multi-sensor system. Therefore, the IMU measurements were
superimposed by synthetic noise. Two kinds of noise were chosen and added: White noise
(simulating a low-grade IMU) and band-limited noise (simulating vehicle vibrations). It
was shown that band-limited noise can be eliminated by wavelet de-noising. The white
noise term cannot be totally eliminated, because white noise influences information all
over the whole frequency band and therefore also superimposes the motion term wanted.
Alongside with this, an improvement of the signal-to-noise ratio was achieved (cf. 5.11).
The effect of de-noised and synthetically noised IMU data was analysed in two steps
of the multi-sensor navigation process. First, it was analysed how the noised IMU data
affects the alignment process and subsequently, it was shown that the alignment procedure
can be improved by applying wavelet de-noising. Band-limited noise can be removed,
which would lead to an incorrect alignment determination and subsequently to a longer
convergence time in the case of kinematic alignment. The second central point to be
worked out was the question if preprocessing IMU data helps the Kalman filter to estimate
the sensor errors. Therefore, GNSS outages were simulated. In such a situation the
navigation system works as an INS stand-alone system and its performance is specified
by the last estimated sensor errors. It has been shown that wavelet decomposition has
nearly no influence on the resulting position errors at GNSS outages. The reason for this
is that the inertial sensor errors, which are estimated by the Kalman filter, are adjusted in
every case (cf. 6.15). Only a mere manipulation of the original signal can be achieved by
choosing a too large decomposition level, which of course should be avoided. In the case
of synthetically noised data, the resulting position error at the GNSS outages increased.
With wavelet decomposition, band-limited noise can be excluded and the sensor error
estimation can be achieved in a sufficient accuracy again. When dealing with white noise
added data (low-grade IMU), wavelet thresholding cannot completely separate the noise
from the real motion information wanted. This residual noise is directly adopted in the
inertial sensor error estimates, but they cannot be computed in the same quality as it is
the case when dealing with the original data.
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7.1 Prospects of Future Work
Below follows a brief overview of possible further assignments to be considered.

• It would be of interest whether improving the SNR during wavelet de-noising might
help the Kalman filter to converge faster in kinematic alignment.

• The de-noising of the IMU observables was just performed in post-processing. Can
this technique also be applied in near real-time?

• Backward smoothing (reverse filtering) would improve the performance during GNSS
outages.

• To improve the initial alignment also some external information such as magne-
tometer can be used.

• The multi-sensor system can be extended with another navigation sensor like an
odometer.

• A prerequisite of Kalman filtering is that the input does not have any time corre-
lation. Does the preprocessing of the IMU data thus influence the Kalman filter
performance?

• Improvements may be obtained if the stochastic model of the Kalman filter, espe-
cially the system noise, is adjusted for every decomposition level.

• A gain of robustness and accuracy can be achieved if the sensor integration is per-
formed as tight integration, because the navigation system will extract useful GNSS
information even if less than four satellites are available.
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