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Kurzfassung

Zeit-orientierte Daten sind von großer Bedeutung, da sie beinahe in jedem Datenbestand
vorkommen. Sei es nun in Form von Stundenlisten über die Arbeitszeiten der Mitarbeiter
oder in detaillierten Listen über die Verkaufsstatistiken eines Onlinehändlers. Wie alle
anderen Datensätze neigt auch diese Art von Daten dazu fehlerhaft zu sein. Diese Fehler
manuell zu korrigieren würde viel Zeit und Aufwand bedeuten und somit auch hohe
Kosten verursachen. Manche Schätzungen besagen sogar, dass bis zu 40% der Daten in
einer Datenbank mangelhaft sind [24].

Obwohl es bereits viele Methoden und Tools gibt, um ‘schmutzige’ Daten zu berei-
nigen, so werden die speziellen Charakteristiken von zeitbezogenen Daten nur selten
berücksichtigt. Ansätze können ausgewählte Probleme, die bei zeit-orientierten Daten
auftreten, beheben, aber kaum wird Zeit als potentielle Fehlerquelle berücksichtigt.

Daher haben wir einen wissenschaftlichen Prototypen entwickelt, der (halb-)automat-
ische Operationen zur Verfügung stellt um möglichst viele Fehler in zeit-orientierten
Daten beseitigen zu können. Die meisten Operationen setzen kein spezielles Wissen über
die angewandten Methoden voraus und sind daher für eine breite Masse zugänglich und
verwendbar.

In einer Evaluationsstudie haben wir die Nützlichkeit des entwickelten Prototypen
untersucht und einige Verbesserungsmöglichkeiten abgeleitet.
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Abstract

Time-oriented data are of great importance as they are found in almost any database.
May it be in terms of a record of working hours or a detailed list of sales statistics in an
online shop. However, as it is the case with any other data these records tend to contain
errors and correcting them manually would require a lot of effort and time, and thus,
high costs. Some estimations go so far as to say that up to 40% of data contains errors
[24].

There are many methods and tools that focus on cleansing ‘dirty’ data, however, they
rarely focus on time-oriented data. Some tools may help with a few time-oriented data
problems, but time is hardly considered to be the main target. Those, who set a goal
to deal with ‘dirty’ time-oriented data are mostly focused on a visual representation to
make the task of error detection easier for the user.

This led us to implement a research prototype that provides (semi-)automatic oper-
ations in order to take care of many possible time-oriented quality problems. Most of
them do not require any further knowledge of the methods applied and hence, are ready
to use by a large audience.

We have evaluated the prototype in a usability study and derived suggestions for
possible improvement.
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CHAPTER 1
Introduction

1.1 General Introduction
There are three common and quite different approaches when it comes to working with
complex data and understanding it. Each of them has another purpose and thus, answers
different questions. In [15] these methods are compared and their goals are highlighted.

• Statistics is mostly concerned with finding an appropriate model for a set of data.

• Data Mining deals with finding interesting facts and supports the user in testing
hypotheses [24].

• Information Visualization (InfoVis) systems are especially helpful when performing
exploratory tasks. That means it provides aid when we are simply looking at
data without having a specific question in mind, but our goal is to learn more
about data and gain new insights. Visual Analytics (VA) is tightly coupled with
InfoVis systems. While InfoVis systems are focused on “producing views and
creating valuable interaction techniques for a given class of data” [34, p. 158],
VA methods are designed to combine the human’s visual and perceptual abilities
with automatic data processing [34]. Keim et al. provide the definition: “Visual
analytics combines automated analysis techniques with interactive visualizations
for an effective understanding, reasoning, and decision making on the basis of very
large and complex datasets.” [34, p. 157]

All three approaches have one commonality, they rely on the quality of the gathered
data. Gupta [24] states that 40% of collected data in warehouses are erroneous, while in
[51] it is suggested that one to five % of large datasets are corrupted if an enterprise is
taking extraordinary measures to prevent errors. Otherwise error rates can be up to 30%.
Odewahn [44] estimates for projects, which analyze data, that about 80% of the time
and effort are spent on data cleansing activities.
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There are different kinds of so-called ‘dirty’ data as mentioned in [4, 36, 41, 45]. For
example, it is possible that certain values are missing or that entries are duplicated. A
main source for errors in datasets is the usage of different types of data files [23], for
instance from unstructured text files to Excel [40] files and databases.

This work will lay its focus on cleansing time-oriented data. Due to special charac-
teristics it is quite different from other data types, i.e., string and number formats.
Time-oriented data may consist of points of time or intervals. Allen [3] describes 13
possibilities of relationships between intervals. These intervals and their relationship can
cause problems. For example, a dataset about working hours revealed one employee was
working from 9pm to 5am. Thus, not only do we have to check and correct syntax errors,
but also keep in mind that intervals must be reasonable. In our example we could say
that the main office hours are from 9am to 3pm and it opens at 6am and closes at 9pm.
Therefore, it should not be possible to record any working hours between 9pm and 6am.

Data cleansing is also known as data cleaning, scrubbing, reconciliation or wrangling
[23, 41]. The work is focused on providing data analysts with a tool that allows user-
definable cleansing operations (e.g., through regular expressions). There is existing work
that deals with cleansing operations and time-oriented data, however they either lack
the flexibility (e.g., no support of user-definable operations or limited interactivity) of
different cleansing operations or are not dealing with the problems of time-oriented data.

1.2 Research Questions
The question, which is most important is:

• How to support data analysts dealing with erroneous time-oriented data?

Furthermore, we can derive additional questions that arise from that main question:

• Which methods need to be applied in order to improve the data quality?

• Which types of errors can be handled by automatic operations and how to support
this task?

• Which types of errors need to be handled manually and how to support this task?

To answer these questions, we decided to integrate means for data cleansing into an
existing research prototype that visualizes data and allows error recognition. Furthermore,
the prototype will be evaluated to get feedback regarding the usability.

1.3 Methodological Approach
The methodological approach consists of the following steps.
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1. Literature Review.
At first it is necessary to gather information of existing approaches and programs
that will serve as theoretical basis.

2. State of the Art Report.
Once the information is available, we will analyze these approaches and programs
in order to realize what has been done already. Afterwards, we will discuss this
report to find out what still needs to be done, which problems exist and which gaps
will have to be filled by this work.

3. Conceptual Design of VA prototype.
A theoretical design of what and how to implement it. The conceptual design will
provide a clear vision for the technical realization and thus, helps us to save time
during the implementation itself.

4. Implementation.
This step covers the technical realization of the prototype in Java and will result in
a working tool that can be applied in order to automatically cleanse time-oriented
data.

5. Qualitative Evaluation.
Subsequently, the prototype will be evaluated by performing qualitative evaluation,
preferably by a data analyst. This will not only provide answers to research
questions, but also necessary feedback in order to complete the following step.

6. Discussion and Future Work.
We will critically review the results of the work shown by the evaluation and state
future research work within the area.

7. Conclusion.
At last a conclusion will be provided, which summarizes what has been done and
learned and what the benefits and shortcomings of the work are.

1.4 Structure of the Thesis
The thesis is structured into five chapters in accordance with different steps of the
methodological approach.

• Chapter 2, Related Work, State of the Art: this chapter will introduce
current methods, concept and tools that can be used to correctify ‘dirty’ data.
Towards the design and implementation it is necessary to be aware of existing
concepts and find out what operations current tools are covering. In the end of the
section a comparison between different tools will be made.

• Chapter 3, Design: within this chapter the design process will be described. In
order to find out the necessary functions that have to be implemented, we need
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to know the requirements and data problems we face. The taxonomy provided by
Gschwandtner et al. [23] will be considered for operations that can take care of
various problems.

• Chapter 4, Implementation: The implementation section will show the current
version of the prototype as well as give an insight into the implementation of the
cleansing operations.

• Chapter 5, Evaluation: The evaluation will point out how effective the prototype
is in terms of functionality and provide results of a usability study.

• Chapter 6, Conclusion & Future Work: The conclusion will summarize the
findings in the previous chapters. Furthermore, it will provide an outlook of future
work that might follow the thesis.
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CHAPTER 2
Related Work

Since data quality problems have been identified and awareness has been raised that
such problems easily cost millions of dollars [14], many approaches were made to improve
dealing with ‘dirty’ data. We discuss theoretical approaches and tools that support data
analysts.

Many errors can be avoided with proper usage of a relational database management
system (RDBMS) [4]. In SQL, for example, missing data can be avoided with the usage
of the NOT NULL constraint or the CHECK constraint helps to avoid out of range values.
Proper usage refers to the fact that a NOT NULL constraint does not necessarily increase
data quality, because users may enter dummy values to avoid warnings and errors.

However, more often than not it is necessary to work with files that do not come
from an RDBMS, for example Excel [40] files. Thus, we need possibilities to fix ‘dirty’
data since we cannot avoid them completely - even an RDBMS cannot help to avoid
inconsistencies or name conflicts [4]. Time-oriented data also introduce further problems
that cannot be handled easily without further examination of the data, for instance
outdated temporal data or no proper dealing with summer timechange.

Therefore, several tools were introduced that can be used to repair one or more data
quality issues (see Section 2.3). Barateiro and Galhardas [4] examine different tools on
their generic functionalities, i.e., which type of interface do they use, do they provide
versioning and many more. Whereas Müller and Freytag [41] compare five approaches
regarding what types of anomalies they can cleanse.

2.1 General Approach
Maletic and Marcus [38] describe a basic approach before starting with data cleansing in
general. They mention three phases before the actual process takes place:

1. Define and determine error types. For this task Gschwandtner et al. delivered
many useful error types in [23] with regard to time-oriented data. Thus, it is known,
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which possible errors have to be taken care of within the scope of this work. It does
not matter whether a problem is only occurring to single or multiple sources, or to
points of time, intervals or time-dependent values. The latter should be understood
as events that take place at a certain point of time or within an interval.

2. Search and identify error instances. While this is a very important part that finally
leads to cleansing itself, it will not be part of this work since this work will be
integrated into a larger prototype which already tackles this part.

3. Correct the uncovered errors. The next section will provide an overview of existing
approaches that aim on correcting these errors. This work aims at providing the
user the possibility to specify his/her own cleansing operations and manipulate
data within visualizations.

2.2 Cleansing Approaches
In this section we will go into detail of different theoretical concepts of data cleansing.
The methods are diverse as some require mathematical understanding while others are
rather easy to apply. The applicability of a certain approach depends on the structure
of the dataset (e.g., percentage of missing values) or the trend of certain values (e.g.,
seasonality).

2.2.1 Conflict Resolution

In [47] it is suggested that certain transformation steps are needed in order to apply any
further cleansing techniques. They address single-source problems to prepare data for
integration with other sources. These steps are the following:

1. Extracting values from free-form attributes. Free-form attributes usually contain
more than one individual value, for example an address could contain postal code,
city, and street. Thus, it is helpful to achieve a more concrete representation (i.e.,
use three different columns instead of only one), so eliminating duplicates becomes
easier.

2. Validation and correction. This basically deals with mistypings and tries to correct
them automatically. For example, dependencies such as date and birthday can be
used to replace missing values or correct wrong values (the age of a person).

3. Standardization. This means converting attribute values to a permanent and
homogenous format, such as all dates to YYYY-MM-DD HH:mm.

2.2.2 Missing Values

Missing values is a common problem that occurs in many datasets. Possible reasons for
them are errors that occur when inserting records due to sloppiness or when merging
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different databases. These databases might have different structures and thus, if an entry
is only recorded in one database it will miss certain values that are stored in the other
database. Some values can be of statistical importance and therefore, the analyst must
decide whether they want to replace them. Sometimes it is helpful to leave missing values
empty and do not include them into any further research. However, if that is not the
case the analyst has to decide which method is the best to deal with missing values.
Further problems can emerge when smoothing outliers (see Section 2.2.4) is part of the
cleansing process as some methods only work for time intervals of the same length. That
means if one interval can not be used due to missing data these methods might not work
properly. Acuña and Rodriguez state in [1] that rates of missing values below one %
are considered marginal and one to five % manageable. However, when five to 15% of
the entries contain missing values one needs to use reasoned methods to deal with them
and over 15% influence any kind of interpretation. We will introduce some methods to
impute missing values.

Open Refine [29] (see also Section 2.3.4) handles missing values in a very simplified
way. Once the data is sorted they simple copy the value from existing entries and paste
them into empty fields, the operation is called fill down. While this approach is not
applicable to numerical fields, it is helpful when dealing with textual data. For example,
Student A has written several exams, yet forgot to fill out his first name at one exam. If
the entries are ordered by registration number one could simply ‘fill down’ the missing
values.

The data mining program WEKA [25] allows the user to perform several cleaning
operations, yet with another intention (e.g., classification and clustering of data). However,
their approach is intuitive, easy to implement, and more effective than Google Refine
when working with numbers. All they do is replacing missing values with the mean of
the remaining observations.

Acuña and Rodriguez [1] introduces two further approaches. One of them is quite
similar to what WEKA uses. Instead of the mean of an attribute the median is used.
This is helpful when outliers should not bias the missing values.

The other one is k-nearest neighbor (KNN) imputation. The idea behind this strategy
is to group the data into two sets. The first set does not contain any missing values, while
the other set does. Afterwards for each item in the second set the distance1 to all items
of the first set is calculated. The missing value is then replaced with the mean of the
‘k-nearest’ attributes. On the one hand this method performs superior to the previous
methods as it is very robust. On the other hand there are some disadvantages. Firstly,
there are different ways to calculate the distance and the most popular method might
not always outperform the others. Secondly, as the algorithm runs through a big part of
the dataset it is time consuming, especially if we are dealing with big data. Lastly, the
choice of k is of importance too. The choice of 10 seems accurate, although a smaller
number can be chosen for smaller datasets [1].

1There are several methods to calculate the distance, i.e., Euclidean, Manhattan, Pearson, etc. [1].
Euclidean appears to be the most popular method.
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Acuña and Rodriguez [1] identified KNN to be the best method, especially when the
percentage of missing values is high, i.e., up to 20%. The results were even satisfying
when about 60% of the instances contain missing values. However, if the percentage
of missing values is lower there is not a significant difference between mean, median or
KNN imputation. Mean imputation performs worse than the other strategies if there are
several outliers in the dataset.

ERACER [39] (see Section 2.3.6) uses relational dependency networks (RDNs) to
derive missing values. In their article Mayfield et al. provide a relatively easy example of
an RDN, which is about sensor networks. A sensor basically measures temperature and
humidity, additionally each sensor has neighbors that are placed within a certain distance
(meters). They observed errors in about 18% of the data, for instance temperatures of
over 100 ◦C and relative humidity values of -4%. These values were set to NULL and
treated like missing values. The resulting RDN of these example can be seen in Figure
2.1.

Figure 2.1: An example for an RDN given in [39]. Edges illustrate statistical dependencies.
If they are within the plate they symbolize dependencies among random variables of the
same tuple.

There are several functional dependencies involved with sensors, for example when the
temperature rises it is very likely that also a decrease of humidity can be observed. Thus,
they used linear regression in order to determine missing values. They modeled the
regression in the following way [39]:

S.t ∼ βt
0 + βt

1 ∗ S.h+ βt
2 ∗ avg(N.t) + βt

3 ∗ avg(N.h) (2.1a)
S.h ∼ βh

0 + βh
1 ∗ S.t+ βh

2 ∗ avg(N.t) + βh
3 ∗ avg(N.h) (2.1b)

Whereas avg(N.t) and avg(N.h) stand for the average temperature of neighboring sensors
respectively for the average humidity. ERACER estimates the coefficients offline in R,
making use of linear model fitting and then record the resulting estimates in the database
[39].

2.2.3 Eliminating Duplicates

At the very beginnings in the field of data cleansing the first approach was to eliminate
duplicates. This issue is also known as the merge/purge problem [28]. Typically, we face
this kind of error when dealing with data from multiple sources. Two other possible error
sources are mistypings, such as Max Musterman and Max Mustermann, or inconsistencies,
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i.e., the same name, but different birth dates [19]. Galhardas et al. further describe in
[19] the necessary measures to eliminate duplicates:

1. Mapping, i.e., standardizing data formats (e.g., dates). If the methods of conflict
resolution were not applied already.

2. Matching, i.e., finding two different entries by comparing fields that are matching
certain criteria.

3. Clustering, i.e., generating groups of matching entries with a high alikeness.

4. Merging, i.e., either removing duplicate entries or creating a new entry. This is
applied for every cluster resulting from the previous activity.

With respect to time-oriented data, we will probably have to deal with duplicates of same
intervals with the same data. Moreover, there can be inconsistent duplicates, for instance
patient A has an appointment at 8am and at 8:30am, which is not plausible [23].

2.2.4 Smoothing Time Series Outliers

There are two categories for outliers described in [17, 27]:

1. Additive Outliers, i.e., so-called ‘hiccups’, where in a series one value is an outliers
and the time series continues to normality right afterwards.

2. Innovation Outliers, which are caused by a single ‘innovation’ [17] and affect not
only one value, but also values that follow. An example for this phenomenon is
sensors, for example a thermometer that is exposed to a flame. The temperature
will rise and slowly drop until it reaches the room temperature again. While the
room temperature is constant all the time, the records will state the opposite.

Additive outliers are relatively easy to smooth, for example using the average of the last
x Mondays. However, innovation outliers are a different topic. A widespread method to
deal with them is the exponentially weighted moving average (EWMA) [27]. There are
other approaches to calculate the moving average, but we will only have a look on EWMA.

2.2.4.1 Exponentially Weighted Moving Average

EWMA, also known as exponential smoothing, is mainly used for forecasting (e.g., in
[20] or [31]). Since outliers have an influence on forecasting methods, smoothing them is
necessary to get appropriate results. While we are not interested into forecasting, we can
apply similar methods in order to smooth the curve shown in visualizations. Basically,
there are three kinds of exponential smoothing [21, 31, 56], namely simple [7], double,
and triple exponential smoothing [57].

The difference between these three approaches is that double exponential smoothing al-
lows trends and triple exponential smoothing allows both trends and seasonal outliers [31].
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Simple Exponential Smoothing [7, 31, 56]:

St = α ∗Xt + (1− α) ∗ St−1 0 < α < 1 (2.2)

Simple exponential smoothing was first proposed by Brown in [7]. The equation is
shown in 2.2. It takes both the current observation (Xt) and the previous statistic
(St−1) into account and calculates a new statistic (St). The new value replaces Xt, thus,
outliers are smoothed. α is the weight assigned to the current observation, i.e., if it is
zero the current observation has no effect on St and is completely replaced with the
smoothed value that results of previous statistics. The selection of α and St is a challenge
and has a strong influence on the outcome of the smoothing [31]. While α has a range
from 0 to 1 in best practice only values between 0.1 and 0.3 are used, as mentioned in [20].

Double Exponential Smoothing [31, 56]:

St = α ∗Xt + (1− α) ∗ (St−1 + bt−1) 0 < α < 1 (2.3a)
bt = β ∗ (St − St−1) + (1− β) ∗ bt−1 0 < β < 1 (2.3b)

2.3a does not look too different from the single exponential smoothing equation. However,
bt (calculated in 2.3b) is used to smooth the underlying trend of the data and thus, β is
the smoothing factor of the trend.

Triple Exponential Smoothing
Triple exponential smoothing is needed because time series can exhibit unique charac-
teristics and one of them is seasonality. An example for seasonality is that sales of toys
increase every year in November and December. The reason for this increase is Christmas.
After Christmas the sales go back to their normal level. We differentiate between additive
and multiplicative seasonality [31].

We speak of additive seasonality when the sales increase by one million dollar each
year. The term multiplicative seasonality is used when there is a factorial increase every
year, i.e., the sales increase by 40% and therefore we use the factor 1.4 [31]. Multiplicative
seasonality might vary a lot, because it depends on the previous sales of the year while
additive seasonality is independent of such figures.

Formula [46, 56, 57]:

St = α ∗ Xt

It−L
+ (1− α) ∗ (St−1 + bt−1) 0 < α < 1 (2.4a)

bt = β ∗ (St − St−1) + (1− β) ∗ bt−1 0 < β < 1 (2.4b)

It = γ ∗ Xt

St
+ (1− γ) ∗ It−L 0 < γ < 1 (2.4c)

The important change here is the equation 2.4c and the addition of the seasonal index
(It) in the general equation 2.4a. Each season is a cycle of the length L. In order to
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Figure 2.2: We can observe a lag between the real-world data (black) and the moving
averages (red and blue). However, the (red) MA with the greater interval is smoother
and more lagging, while the other (blue) with a shorter interval is less lagging and more
bumpier [50].

consider seasonal influences at least one season of data is needed. Furthermore the trend
factor between periods has to be calculated, so it is advisable to use two complete seasons
(2L) before starting the smoothing process [46].

Raudys et al. in [50] stated that triple exponential smoothing is a very effective method
to smooth data as its smoothness/lag ratio is one of the best. Lag is problematic as the
observations at time t are displayed at a later point of time (t+ lag) (see Figure 2.2).
This leads to a wrong interpretation of data, for instance sales before Christmas could be
displayed as sales afterwards and thus, may lead to the wrong assumption that a lot of
people are spending money before New Year’s Eve.

2.2.5 User Definable Cleansing Operations

Regular expressions are the most common way to allow users to define his/her own
operations, especially for String manipulation and filtering. However, they are limited in
their use and not easy to understand for non-programmers.

FraQL allows the user to write his/her own functions in Java as described in [52]
(also see Section 2.3.3). Thus, the use of such functions can overcome limitations posed
by query languages.

Google introduced their own expression language (GREL) in their software Google
Refine (now known as Open Refine, see Section 2.3.4) [29]. Operations, which are definable
by the user are mostly used for transformations. Nonetheless, they are also helpful in
the process of data cleansing, in particular for eliminating duplicates. Different date
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formats may convey the impression that two entries are not duplicates depending on the
clustering rules. However, the language also has its limitations, for instance, it is not
possible that operations include numbers of another column. This, for example, means
one cannot calculate the sum of two different columns.

Wrangler [32] (see Section 2.3.5) allows the user to apply natural language descriptions.
Each other language or tool requires knowledge of programming languages or expressions
(although GREL provides a documentation and is quite intuitive to use). Additionally,
Wrangler suggests which operations to use, for example when the user selects a row,
such as delete row 11 or delete empty rows (this suggestion is shown if row 11
is empty).

2.3 Cleansing Tools

This section will provide a closer look at different approaches, scientific ones as well
as commercial tools, and explain their functionalities. They implement one or more
cleansing techniques introduced in Section 2.2 to provide data analysts with tools to
apply them.

2.3.1 AJAX

This system was mainly provided to support transformations in order to eliminate
duplicates. “AJAX provides an expressive and declarative language for specifying data
cleaning programs.” [19, p. 2] This language can be compared to SQL statements
extended with certain macro-operations (primitives) for mapping, matching, clustering,
and merging (see Section 2.2.3). Whenever the automatic transformation experiences
difficulties, i.e., a dubious cluster during the merging operation, a human expert is
required to take care of the conflict. Additionally, AJAX is an extensible framework.
That means, it allows customization in various ways, for instance more complex data
cleaning programs can be formulated by combining pre-defined macro-operations with
pure SQL statements. Also functions written in Java can be included in the program,
for example to extract certain Strings out of a database attribute [13]. A metadata
repository allows the back-tracking of activities, i.e., which transformations were applied
and what were the existing results [19].

An example given by Galhardas in [18] is the following match operation that matches
authors with similar names with the goal to find possible duplicates:

Listing 2.1: Matching Operation in AJAX

CREATE MATCH MatchDirtyAuthors
FROM DirtyAuthors a1 , DirtyAuthors a2
LET d i s t anc e = edi tDis tanceAuthors ( a1 . name , a2 . name)
WHERE d i s t ance < maxDist
INTO MatchAuthors
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Figure 2.3: Tabular layout used by Potter’s Wheel [49].

editDistanceAuthors() is a function that can be specified in Java. This allows
different calculations of the distance. Dos Santos Dias defined two roles in [13]. The first
role is the designer, who writes both SQL statements and necessary Java classes. The
second role is the user, whose task is to execute the data cleaning process by defining
which cleansing operations to use and when. AJAX provides a GUI for the user, which
allows them to view a graphical representation of the data cleaning graph, i.e., which
steps are performed at a certain time. Furthermore, the GUI supports browsing the data
to analyze initial, intermediate, and final data and debugging of the cleaning process [13].

2.3.2 Potter’s Wheel

As described in [48, 49] Potter’s Wheel allows the resolution of conflicts. It provides
several features in order to fix the problems that arise when working with free-form
attributes. To support the user it shows a small exemplary fraction of the data collection
(see Figure 2.3). Each transformation rule is visualized on this example and thus, gives
the user the chance to see the effects of their change.

The supported transformation actions are format, add, drop, copy, merge, split, divide,
fold, and select. In Figure 2.4 we see different actions performed on a dataset. On the
left-hand side a divide action is performed, which simply divides columns that contain a
comma from columns that do not. Afterwards a split action could be executed to convert
Such,Bob into two separate columns Such and Bob. A merge operation could be used
to merge Such in the column of Ann and Bob in the column of Davis. In the middle
formatting, folding, and splitting is demonstrated on the example of fixing higher-order
variations. On the right-hand side we can see how unfolding works. All operations can
be exported either as C or Perl program or a Potter’s Wheel macro. This allows the
execution on larger sets as transformations applied on the sample seen in the GUI are
not invoked on the rest of the data. The macros can also be used on datasets that are
different from the actual one.

Furthermore, Potter’s Wheel offers a discrepancy detection, i.e., if a column is specified
as [A-Za-z]* [0-9]*, [0-9]* it only allows dates in the form of April 20, 2015.
Other formats will be highlighted as wrong. Besides defining a customized format there
are a number of formats available to use, such as Names, Money, or ISpellWords (English
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Figure 2.4: Examples for the supported transformation actions. [49].

words that are checked with iSpell). These formats are defined by using an interface
provided in Java. Hence, some methods can be extended to do more than simply check
for errors - for example updateStats could be used to eliminate duplicates by using
hash tables [49].

2.3.3 FraQL

FraQL is a multidatabase query language and enables a user to use query operations
for the integration and transformation of heterogeneous data [53]. Its main goal is
the resolution of integration conflicts [52] and supporting the data mining process (as
described by Han et al. in [26] and Chapman et al. in [10]) [53]. The data mining process
does not only require data transformed into an appropriate format, but also cleansed
data. Thus, FraQL provides operations for transformation and also a framework that
supports the elimination of duplicates, dealing with missing values, detecting outliers,
and handling noise in data. Nevertheless, the language still requires to write code (in
Java) to make use of these operations. The language makes the task of data cleansing
easier, but demands knowledge of SQL, programming, and methods to get rid of ‘dirty’
data. Another drawback is that the language runs on a special query processor.

2.3.4 Open Refine

Open Refine [29], formerly known as Google Refine, is an open source project for data
transforming and cleansing. The interface is kept in the style of a spreadsheet (see Figure
2.5). Operations such as filtering, transforming, clustering, and merging are provided.
T y are either predefined or users themselves can specify the operations. Specifications
can be entered as regular expressions or as Google Refine Expression Language (GREL).
GREL supports users by providing a syntax that reminds of a programming language.
For example, users can convert different date formats into one consistent format by using
the expression:

value.toDate(’MM/yy’, ’MMM-yy’).toString(’yyyy-MM’).
Data functions are one part of the expression language, while other prominent functions
are Boolean, String, or Math. Google Refine also partly allows the usage of regular
expressions within GREL (replace, match, partition, rpartition, and split functions).
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Figure 2.5: Open Refine Interface [29]. On the right side the data is displayed and on
the left side different values of a column are shown. For numeric values a histogram is
provided.

However, Google Refine is only able to handle file based data, i.e., data cannot be
imported from databases directly.

2.3.5 Profiler and Wrangler

Profiler was introduced in [33] and offers a variety of visualizations in order to detect
data quality problems. Besides, it offers an anomaly detector to support the user. While
some issues are clear errors, such as missing values, extreme values are not and thus,
visualizations are needed. Moreover, visualizations foster to recognize the reasons for
erroneous data, for instance see Figure 2.6. The user can decide which fields they want to
examine closer. This can be done by double clicking in the Schema Browser or dragging
them from there into the visualization form. Clicking on the Motion Picture Association
of America (MPAA) Rating in the Anomaly Browser causes the highlighting seen in the
example.

Eliminating duplicates is supported by a short overview of duplicates that can also be
filtered (see Figure 2.7). This avoids removing duplicates, which are none and the filter
operation allows the user to reduce the number of recognized duplicates significantly. If
any of the duplicates are real ones the user can remove them - instead of forcing the
merge operation.

Wrangler was described in [32] by Kandel et al. The tool is used for interactive data
transformation and uses Profiler to detect quality problems. The operations are expressed
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Figure 2.6: Profiler’s interface. Here it is shown that missing values in the MPAA Rating
fields (marked orange within other attributes) highly correspond to an older release date
[33].

Figure 2.7: Profiler’s Duplicate Detection. On the left-hand side all movie titles clustered
by Levenshtein distance can be seen (over 200). On the right-hand side we see all
duplicates where the year is added to the detection algorithm (only 10 findings) [33].
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Figure 2.8: Wrangler Interface [32]. The left panel contains three parts. The history
of executed transformations, a transform selection menu, and automatically suggested
transforms based on the current selection. The right panel visualizes an interactive data
table and above each column is a quality meter.

in natural language descriptions (see also Section 2.2.5) and it is possible to preview
them visually. Both of these features should support the user, novice or expert. The
user either types or selects (automatically generated suggestions based on which line is
selected) the needed transformation (see Figure 2.8) or if necessary they can undo or
modify already executed transformations within the transform history. The transform
history can be exported and “run in a web browser using JavaScript or translated into
MapReduce or Python code” [32, p. 2].

The functionality of Wrangler can be compared to Potter’s Wheel (Section 2.3.2).
However, Kandel et al. in [32] did only use Potter’s Wheel as a starting point and
extended the language afterwards. They added the following new features [32]:

• Map: maps one row of input data to zero, one or multiple output data rows.

• Lookups and joins: with Wrangler one can integrate data from external sources.
For example, if only ZIP codes are known one can join them with other databases
to obtain the state or city names.

• Reshape: allows to manipulate both table structure and schema. The two operators
for reshaping are fold and unfold.

• Positional: fill and lag are the operators for positional transforms. Fill can be used
to write values for neighboring cells in a row or column (e.g., fill empty cells with
preceding non-empty values). Lag shifts values of a column up or down by a certain
number of rows.
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Figure 2.9: Editable Natural Language Descriptions within Wrangler [32]. The fill
operator can be altered in different ways. The example shows how the change of
a parameter is done. If the user selects moving average instead of copying then an
additional parameter has to be specified, i.e., number of values.

• Other operators: Besides the operators mentioned above Wrangler also supports
sorting, aggregation, and key generation as well as schema transforms.

The automatic suggestions are administrable in three ways. Firstly, by providing examples,
for instance on how to split columns, and the automatic suggestions will adapt to these
samples. Secondly, filtering is possible by selecting an operator, i.e., all suggestions will
contain only the selected function. Lastly, suggested transformations are editable by
clicking on bold written text (see Figure 2.9).
The visual transformation previews are shown in-place, that means within the same panel
as the source data. The advantage is that also slight changes are recognizable and that
the user does not need to change focus. In Figure 2.10 we can see the preview of an
unfold operation on a given dataset. The input data is highlighted in the same way, i.e.,
color, as the output data.

2.3.6 ERACER

ERACER, presented by Mayfield et al. in [39], is an iterative statistical framework for
deriving missing values and correcting them automatically in the environment of RDBMs.
Additionally, it provides means to identify and clean potentially corrupt values. The
name is an acronym for the major phrases of their framework [39]:

1. Extract: with the use of domain knowledge (i.e., model templates) the graphical
model structure is built.

2. RDNs: learn the parameters for each applicable (RDN) (see 2.2.2 or [42] for further
information) component model.

3. Apply: every time a variable is modified, the relevant models are applied to
update the output distribution ‘message’, which is sent to all related variables (i.e.,
neighbors) in the next step.

4. Combine: aggregate the resulting predictions to deal with heterogeneity.
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Figure 2.10: Wrangler’s Visual Transformation Preview [32]. The user selects two columns
(Year and Property_crime_rate) and wants to perform an unfold operation. The result
is presented to simplify the user’s decision whether they want to execute the action or
not.

5. Evaluate: for each variable, the previous and current inferred distribution are
compared. Depending on the result the changes are accepted or rejected.

6. Repeat: until the update count is close to zero.

The user has to define three relations as input for the whole cleaning process [39].

(a) The model, which contains the learned parameters for the desired inference func-
tions (e.g., coefficients for regression).

(b) node, which corresponds to vertices and

(c) link, which represents the edges of the graphical model.

node and link can be both defined using SQL statements. The last step after defining
them is to execute the erace aggregation query, which delivers the updated version of
each node (i.e., “inferred values filled in and/or corrected values identified” [39, p. 80]).
The result can be stored in a new table or used to update existing ones. The erace
query does not automatically repeat the process (as the missing ‘r’ suggests), therefore
the user has to execute the query again (multiple times) manually.
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Figure 2.11: The visual interactive preprocessing approach mentioned in [6]. In the
bottom part the current time series is compared to the results of the previous preprocessing
steps, in the upper part it is compared to the original data. The user can adapt the
moving average interval by clicking the + respectively the - Button or change it manually.

2.3.7 Visual-Interactive Preprocessing (VIP) of Time Series Data

Bernard et al. describe an approach in [6] that aims to improve preprocessing of time-
oriented data. The user can select several modules, which are used in the workflow of
data cleansing. Such a module would be moving average or removing outliers. However,
in contrast to black box approaches, where a user can try certain operations and see
what the outcome looks like, it provides a preview of the result after applying operations
(see Figure 2.11). This, for example, is helpful when the user applies a moving average
operation and is unsure, which interval is best used to represent the data.

2.3.8 TimeCleanser

In [22] a tool is introduced that primarily deals with problems of time-oriented data (see
Figure 2.12). The main focus lies on detecting quality problems in time-oriented data
through visualization, however it also provides some cleansing operations.
TimeCleanser provides operations to tackle different time-oriented data quality problems.
These functionalities are [22]:

• Correcting Syntax : operations that allow String manipulation of dates, for example
replacing ‘-’ with ‘/’ or switching month and day.

• Smoothing Outliers and Getting Rid of Noise: by applying a moving average to the
dataset.

• Removal of Missing Values

• Eliminating Duplicates: i.e., merging identical timestamps.
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Figure 2.12: TimeCleanser’s Interface [22] for correcting syntax errors. It consists of four
parts, (a) shows the error types, (b) the possibilities to correct these errors. (c) Single
errors that can be corrected manually. (d) The navigation through the cleansing process
is wizard-like.

All of the mentioned cleansing operations are applied to the whole dataset at once, however
the tool provides means to change single entries manually as well. The underlying design
principle regarding data cleansing is that this process is a sequential task with loops.
This means that certain quality issues must be solved in order to discover and resolve new
ones. Gschwandtner et al. defined five steps in [22], which extend Shneiderman’s Visual
Information Seeking Mantra (“overview first, zoom, and filter, then details-on-demand”
[55, p. 337]) and Keim’s Visual Analytics [35] Mantra:

1. Correct Syntax First: Erroneous syntax prevent data from being processed, visu-
alized or analyzed. Hence, correcting the syntax is a prerequisite for any further
cleansing step.

2. Assign Semantic Roles: For each column a semantic role should be defined. In
the context of time-oriented data this, for example, means that the user has to
declare, which column corresponds to ‘from’ values and which column contains the
‘to’ values.

3. Overview: A selected column is plotted along a time axis. Thereby, suspicious
entries can already be spotted.

4. Zoom and Filter : As the user might be only interested in some values (e.g., sales
data of last month), the tool provides methods for filtering and zooming.

5. Data Analysis and Details-on-demand: Furthermore, the program provides auto-
matic as well as user-defined checks for data quality analysis. Again, a certain
sequence is necessary to get meaningful results.
Firstly, time values are checked against predefined constraints, such as all intervals
must be of the same length or some gaps are required (no working hours in the
middle of the night).
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Secondly, the validity of data values gets checked - it is important that time values
are already corrected, as data values could be wrong beforehand (e.g., if the data
of a shop is recorded within different intervals the sales figures are biased, i.e.,
between 9am and 12pm more toys were sold than between 12pm and 1pm).
Lastly, the user can resolve value sequences (e.g., correct timing of values generated
by sensors) and multiple datasets (e.g., heterogeneity of scales, i.e., different time
intervals in two documents).

Another design principle is that visualizations and raw data tables are not mutually
exclusive. While visualizations are very helpful when it comes down to seeing patterns,
outliers, and strange behavior in the observed dataset, users tend to switch back to data
tables to see the raw values or for double-checking [22].

2.3.9 DataCleaner

DataCleaner [12] is (commercial) open source software, i.e., some functions are only
available when purchasing commercial editions. This includes duplicate detection and
merging. However, transformations are available regardless of the user’s license. Dispos-
able transformations are:

• Conversions (e.g., change the format from string to date)

• String manipulations (e.g., concatenate, removal of unwanted characters or regex
search and replace)

• Data and time operations (e.g., convert a date into age, generate a timestamp (from
date to a more grained format) or format date)

• Matching and standardization (e.g., country (into different ISO formats or the full
name), e-mail or name standardizer)

• Manipulations of numbers (e.g., generating an ID, increment a number or writing a
math formula)

• Scripting, i.e., using an expression language or JavaScript to perform transformations
that are not predefined.

Figure 2.13 illustrates how a ‘job’ is displayed and built in DataCleaner. It requires a
data set, which can be imported from different sources, i.e., databases such as, Microsoft
SQL 2, PostgreSQL 3, Oracle 4 or MongoDB 5, or files (e.g., Excel [40] or plain text).
This set is then used to apply different analysis or transformations, however, sometimes
transformations require some cleansing beforehand. For example, Convert to date (named

2http://www.microsoft.com/en-us/server-cloud/products/sql-server/
3http://www.postgresql.org/
4https://www.oracle.com/database/index.html
5https://www.mongodb.org/
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Figure 2.13: DataCleaner’s Interface [12]. In the panel on the left side the data can be
chosen (data stores contains all imported tables) as well as operations (transform and
improve) and tools for data analysis (analyze). They can be dragged into the panel on
the right and linked to each other (visualized by arrows). Additionally, a large text field
informs the user whether the job is ready for execution or if there are any components
left to configure.

‘Birthdate (as date)’) has to applied before Date to age (renamed to ‘Get age in years’) if
the birthdate field in the source is not recognized as date. Usually, transformations are
only applied on the current job. The user has to apply a Write operation to store changes
permanently. If the source is a database it is possible to perform update operations,
otherwise the user needs to save it as a new file or create a new database table.

2.3.10 Data Match 2013

Data Match 2013 [37] is another commercial data cleansing product. As DataCleaner
(Section 2.3.9) it supports many different types of file formats, for instance, Excel [40],
Text (.txt and .csv) and databases such as Oracle, MySQL 6 and Microsoft SQL. Its main
cleansing operations are eliminating duplicates and syntax error checks (e.g., checking
the syntax of e-mail addresses, see Figure 2.14). The tool suggests to go through the

6https://www.mysql.com/
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Figure 2.14: Data Match 2013’s Interface [?]. The interface supports a straight forward
process, i.e., it starts with Data In and ends with Final Export. In the screenshot the
automatic syntax check on e-mail addresses is performed. There are suggestions on how
to correct them, but one can also decide to alter them manually.

cleaning process step by step, i.e., starting with removing different syntax errors and
conducting the deduplication afterwards.

The interface consists of a table that shows the current data and checkboxes to select
different options. These options can be, which field should be checked or which field
is important to recognize duplicates. After a matching process the user can select the
Master data (the entry that should exist after the merging process) and state whether
an entry is a duplicate or not.

2.4 Discussion

2.4.1 Visual Interactivity

From the review of related work we observe different approaches that aim to include
(visual) interactivity. Some data cleansing approaches do not aim to provide visual
interactivity or support at all (e.g., [19, 39, 52, 53]), i.e., the data cleansing operations
have to be defined without a graphical user interface. Their method of resolution is to
use a language that enhances SQL. Thus, a specialized user benefits insofar as they can
use a language they know, but with several possibilities to improve the data quality.

However, the lack of visualization makes it harder to check if an executed command
succeeded, i.e., after a cleansing operation the user needs to perform a SELECT query to
scan through the data. Potter’s Wheel [48, 49] or Open Refine [29] provide a table view
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Figure 2.15: The visual interactive preprocessing approach provides a visually interactive
selection of the workflow [6]. Different data cleansing operations are shown in (1) and
can be dragged into (2). All operations in (2) are consecutively executed.

and refresh it each time a transformation was executed. Potter’s Wheel only updates the
dataset for domains the user is currently viewing. That means the shown table is a small
sample of the whole dataset and only if the user scrolls other areas are updated. Open
Refine additionally provides small visualizations, i.e., distributions of numeric values.
These visualizations are interactive to such a degree as one can limit the area of interest.
This area is shown in the data table and thus, helps to identify possible outliers and
the reason for being one. For example, the numeric attribute of a profit organizations
generated the last year - however, some values are very high and others very low. A
reason for this observation could be that some values are stated in billions (e.g., 8.532
billion dollars) and others are stated in thousand dollars (e.g., 17,321.45 thousand dollars)
while the majority of the data is displayed as millions.

Wrangler [32] (Section 2.3.5) provides a visual preview of the table before changes are
applied. Therefore, it is easy for the user to grasp the impact of the chosen transformation.
Despite these previews and automatically generated suggestions, it is very hard to work
with Wrangler for inexperienced users. While having some operations in mind that
need to be executed, it is oftentimes hard to find the corresponding transformations.
Hence, one has to be familiar with the consequences and results of each transformation,
because trial and error is not a promising approach in this case. In [32] an evaluation was
conducted and all participants were all professional data analysts or graduate students,
who work with data on a regular basis. After a short tutorial they had to complete three
tasks with both Wrangler and Excel [40]. The results were that the median performance
of Wrangler was more than twice as fast as Excel. Thus, given an adequate introduction
one can benefit a lot from this tool.

While table views are certainly very helpful, they are best used in combination with
visualization, as Gschwandtner et al. stated in [22]. Visualization itself is a very powerful
way to support users that are working with data. With respect to data cleansing it is
helpful insofar as it eases the search for information and improves the recognition of
patterns [8]. When it comes down to working with time-oriented data it is unthinkable
to work without any visualizations. In [6] and [22] two tools focusing on time-oriented
data are presented. Both approaches heavily rely on visual representations of the data.

An important concept of interactive visualizations is brushing and linking. Brushing
is first described by Becker and Cleveland in [5]. The basic idea of brushing is to
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highlight data that is selected in another diagram or in the table. This enables the user
to understand reasons for erroneous data (as it is used in Profiler [33]), but is also a
promising approach for data cleansing. For example, selecting data and then executing
certain cleansing operations, such as merging or standardizing. The name linking is
derived from the fact that brushing links different views on the data [2].

Yet visual interactivity can be understood in many ways. Not only working with
data in diagrams is visually interactive, but also using a drag and drop menu for data
cleansing operations, as it is done in [6] (see Figure 2.15).

2.4.2 Support of Time-Oriented Data

AJAX (Section 2.3.1) is not designed to solve problems we face when working with
time-oriented data. However, as it is a highly flexible and customizable tool (e.g., using
Java to tackle different problems) one can eliminate duplicates of the same time or
interval. The missing support for these issues requires a lot of work and customization,
thus it only partly supports time-oriented data problems.

Like AJAX FraQL (Section 2.3.3) is also a highly flexible language and supports
many cleansing operations as well as the possibility to apply them to time-oriented data.
However, these operations do not only require a lot of knowledge regarding the FraQL,
but also a lot of trust in one’s skills. This is because there is no preview provided and thus,
for example, a merging operation could go terribly wrong. The focus on time-oriented
data is only partially given as there are some aspects that are not considered, i.e., only
exact duplicates are recognized. Thus, it is not possible to deal with inconsistencies.

Potter’s Wheel (Section 2.3.2) is rather focused on transformations. Besides a
discrepancy detection that allows to find incorrect date formats there is not much it
does to support the cleansing of ‘dirty’ time-oriented data. The same can be said about
Wrangler (Section 2.3.5), however, with the addition of Profiler (Section 2.3.5) it at least
allows to detect and further eliminate duplicates. Nevertheless, the key aspect of both
Wrangler and Profiler is not on time-oriented data.

Google Refine (Section 2.3.4) allows syntax checks and transformation, which are
prerequisites of further cleansing operations, however, these operations do not support
time-oriented data. The elimination of duplicates with Google Refine geared to merge
entries with typos or different spellings (e.g., Microsoft Corp., Microsoft Corporation
and MS Corporation), thus, only one column is regarded, which does not work with
time-oriented data (two entries with the same timestamp are not always duplicates - it
depends on additional values).

While not providing too many cleansing operations, ERACER (Section 2.3.6) offers
support for time-oriented data problems. TimeCleanser (Section 2.3.8) and VIP (Section
2.3.7) are the only two tools with special focus on time-oriented data.

DataCleaner (Section 2.3.9) provides conversions as well as examinations of dates
(e.g., distribution of birth dates for each month). Compared to Google Refine it is possible
to eliminate duplicates by considering further values. Thus, it is rather suited to cleanse
‘dirty’ time-oriented data, but overall the aim to cleanse ‘regular’ data, for instance,
customer data.
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AJAX − m l − l − m

Potter’s Wheel l m l − − m −
FraQL l l l m l − m

Google Refine l m l l l m −
Profiler
Wrangler l l l m m l −

ERACER − l − m − − l

VIP − l l l − m l

TimeCleanser m l l l − m l

DataCleaner l − l − l l −
Data Match l − l − − l −

Table 2.1: Comparison of different tools.
l means something is fully supported,

m refers to a partial support or the possibility to define an operation yourself and
− stands for not supported.

Data Match 2013 (Section 2.3.10) is not applicable on time-oriented data.

2.4.3 Comparison

As the literature review shows there are a lot of different approaches for the task of
cleansing data. However, they differ in purpose and the methods they support. The
following table will provide a short overview of the different cleaning tools presented in
Section 2.3 with respect to the methods they support, visual and interactive features and
special regards to time-oriented data.
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CHAPTER 3
Design

3.1 Requirements
In order to start the implementation we had to find out what is expected of the prototype.
We based our requirements on a taxonomy of time-oriented data quality problems by
Gschwandtner et al. [23]. The next step was to classify and categorize each possible
data quality problem that might occur when working with time-oriented data as well as
finding a possible solution.

Within the scope of this work, we focused on cleansing time-oriented data quality
problems of data from a single source only. However, some of our cleansing operations
allow coping with quality issues stemming from multiple sources as well. After analyzing
the taxonomy we figured out that at least six distinct operations were necessary to deal
with the mentioned problems1.
These categories of cleansing operations are the following:

• Change values: modifying values, for example, through calculation.

• Transform: changing the column’s content by changing its representation.

• Edit intervals: editing intervals, for instance, standardizing their length to a
certain time span.

• Correct implausible values: correcting outliers (e.g., applying a method men-
tioned in Section 2.2.4).

• Impute missing values: filling missing fields (e.g., using an approach stated in
Section 2.2.2).

• Deduplication: detecting and removing duplicates (see Section 2.2.3).
1Except ambiguous and outdated data. For those no solutions are presented in this work. For further

information see Section 6.1.
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• Remove: removing rows that are incorrect.

Not all of the methods are not only suited to correct time-oriented data problems, but
they can also be applied to regular data without any time fields. However, all of them
were extended to work properly for fields that contain time or date values, whereas some
methods will be disabled if the data set does not contain any time or date columns. The
next sections will introduce the theory behind cleansing operations in detail and explain
the time-oriented data problems that can be solved by applying them.

3.2 Design of Cleansing Operations

The following sections describe which methods are necessary to deal with most of the
identified problems by Gschwandtner et al. [23].

3.2.1 Change Values

These methods can be used to modify certain data, i.e., all data within one column,
by applying semi-automatical changes. Some operations are rather static and do not
require the user to specify many parameters (e.g., change time), while others are highly
flexible and completely user-definable (e.g., calculations). Additionally, the user can
set restrictions, i.e., only the data within a certain month and a certain year should be
changed.

3.2.1.1 Calculations

The Calculations function allows correctifying wrongly recorded data, which have a
reference to one or more other values. In terms of time-oriented data this could be a
rather simple calculation, for example, the field Working Hours is defined as difference
between Work Begin and Work End. In order to make sure that this is correct for
all entries the calculation Work End - Work Begin has to be executed. Moreover,
calculations allow the usage of constants to correct time shifts, for instance, if the clock
that recorded the data was one hour ahead (e.g., did not switch to wintertime accordingly).
Thus, a simple solution would be to subtract one hour of all in wintertime. Thus, it is
possible to apply calculations only to rows that fulfill a certain condition (e.g., month >
10 || month < 6) and subtract one hour of them.

As Table 3.1 shows, calculations can be an effective way to deal with time-oriented
data problems. Furthermore, they allow to compute other parameters such as profit (e.g.,
volume of sales * 0.82) or turnover per employee (e.g., volume of sales /
employees at store). These calculations will not be essentially important in order
to correctify ‘dirty’ data, but allow the user to use the prototype throughout the whole
process of data processing without having to switch tools in order to execute any equations.

2Regular value added tax (VAT) rate in Austria.
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3.2.1.2 Change Time

This is a more accurate method to deal with dates and an extension of Calculations.
Since dates have many components, i.e., day, month, year, hour, and minute at least,
it is desirable to alter only one of them. Furthermore, dates are somewhat difficult to
modify by entering an equation (e.g., date - 10-1-1 to subtract ten years), hence,
it should be possible to specifically change dates by picking a parameter to change and
enter the desired value (e.g., year and -10). Also, calculations have some disadvantages
regarding time-oriented data. For example, to adjust a time to the correct time zone
someone might simply use a calculation (e.g., time + 07:00). This might work in
many cases, however, it will cause problems if the original time is at or after 19:00. For
example, if the time is 19:30 the calculation will display 24:30 instead of 0:30 and a shift
in date. Therefore, changing time takes care of such issues. It will not only increment
the time accordingly (starts with 0:00 if 23:59 gets increased by one minute), but also
increment the date, i.e., adding one minute to 2015-01-01 23:59 results in 2015-01-02
00:00.

3.2.2 Transform

Transformation is a rather imprecise term as it could mean anything. In this case, we are
referring to any changes within the data structure of the table. These changes support
the user in displaying the data as needed (e.g., changing the date format or split the date
(DD-MM-YYYY HH:mm) into a date (DD-MM-YYYY) and a time field (HH:mm)), adding
new columns, or removing existing columns. A rather special and time-oriented case is
transforming a time column to an interval column. This transformation is only possible
if there is a reference column, for example, the data contains two time or date columns
(start and end) and end should be shown as interval. If the time in start was 08:30
and the time in end 09:45, end will be displayed as 75'.

Table 3.2 shows common issues that can be dealt with by using Transformations.
However, there are some cases which the prototype cannot handle (see Section 6.1),
because certain formats will not be recognized as time fields (e.g., 7h42'or 03-22) and
thus, cannot be treated accordingly.

3.2.3 Edit interval

Editing Intervals is a kind of transformation, because some operations alter the table
structure with respect to some changes in the interval structure (e.g., aggregating intervals
which results in merging some rows of the table). Intervals require two columns, which
contain dates. It does not matter whether these columns are date, time, or interval
columns.

3.2.3.1 Standardization

For instance, one feature is the Standardization of interval lengths within the whole table.
Let us consider a case in which some entries cover a time span of 30 minutes, while others
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Category Title Description (Example) Possible Solution

Implausible
values

Implausible
Range

Very early date / time in the future
(Date: 1899-03-22); (date:
2099-03-22); (date: 1999-03-22,
duration: 100y)

year - 100 where
year == 2099

Wrong data

Wrong data
type

No time / interval
Date: AAA; duration: *

Calculate duration
or
Previous time + x hours

Coded wrongly
or not conform
to real entity

Wrong time zone
UTC data in stead of local time Change time: +/- x hours

Valid time/interval, but not
conform to the real entity
(Admission: 2012-03-04) vs. (real
admission: 2012-03-05)

date + 1 day

Domain
violation
(outside
domain range)

Minimum / maximum violation for
given time/interval/type of day
Sales at night even though no
employees were present

Set Sales to 0 where
time > 20:00 &&
time < 08:00

Sum of sub-intervals impossible
Seeing the doctor + working hours
longer than regular working hours

Set working hours to
working hours -
hours at doctor’s
office

Start, end, or duration do not form
a valid interval
(End ≤ start); (duration ≤ 0)

Set end time to start
time + duration

Incorrect
derived values

Error in computing duration
Computing the number of work
hours per day without deducting the
breaks
No proper dealing with summer time
changes

Set work hours to
works hours -
breaks
Add/subtract one hour
within the period where
the time change was not
properly dealt with.

Table 3.1: Problems defined by Gschwandtner et al. [23] that can be solved with
Calculations.
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Category Title Description (Example) Possible Solution

Wrong data

Wrong data
format

Wrong
date/time/datetime/duration
format
(Date: YYYY-MM-DD) vs. (date:
YY-MM-DD); (duration: 7.7h) vs.
(duration: 7h42')

Change format accordingly

Misfielded
values

Time in datefield, date in
time/duration field
(Time in datefield: 14-03, date in
timefield: 12:03:08)

Switch fields (and change
format)

Embedded
values

Date+time in date field, timezone
in time field/duration field
(Time: 22:30) vs. (time: 22:30
CET)

Delete ‘CET’ from the cell

Heterog.
syntaxes

Different table
structure

Time separated from date vs.
date+time or start+duration in one
column
(Table A: start-date, start-time) vs.
(table B: start-timestamp

Split/merge date and time
fields, so both tables have
the same structure

Table 3.2: Problems defined by Gschwandtner et al. [23] that can be solved with
Transformations.

cover an hour and again other entries cover two or more hours. By standardizing these
entries they all can be set to a user-specified time span (whether it’s on a fine level, e.g.,
10 minutes, or a rather coarse one, e.g., four hours).

3.2.3.2 Aggregation

Furthermore, intervals cannot only be aggregated within a day, but also on a coarser level
(e.g., a number of days or even months). This might be of interest to the user if he/she
is interested in seeing the sales of a month rather than the sales of each hour. In order
to make this possible the user can define which columns are time-relevant, i.e., which
columns must be adjusted to the new time interval. For example, workers at a shop might
not be relevant when changing the interval length (the same two salesmen are in the
office all day), however, the number of sales will obviously depend on the length of the
interval. Thus, the prototype needs to provide means for the user to interactively select
the columns that should be summed up with respect to the aggregated time interval.

3.2.3.3 Restrict Intervals

Another operation would be to restrict intervals to a certain time range, i.e., only allow
intervals from 08:00 to 20:00 (e.g., because the shop is closed the other hours). Intervals
outside the specified range can be deleted or marked as erroneous. Additionally, it
is possible to define a minimum off-time (e.g., between shifts). Again, the prototype
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Category Title Description (Example) Possible Solution

Implausible
values

Unexpected
low/high
values

Too long/short intervals between
start-start/end-end
Below one second at the cash desk

Standardize the interval
duration

Too long/short intervals between
start-end/end-start
Off-time between two shifts less than
8 hours

Define a minimum off-time
duration

Too long/short overall timespan
(first to last entry)
Continuous working for more than
12 hours

Limit the maximum
interval length

Wrong data

Wrong data
format

Times outside raster (e.g., for
denoting end of day)
1-hour-raster but time is 23:59:00
for the end of the last interval

Standardize interval length
to 1-hour

Domain
violation
(outside
domain range)

Uneven or overlapping intervals
Turnover data for 8:00-9:00,
9:00-11:00, 11:00-12:00

Standardize interval length

Heterog.
semantics

Heterogeneity
of scales
(measure units
/ aggregation)

Different granularities; different
interval length
(Table A: whole hours only) vs.
(table B: minutes)

Standardize the interval
length to a common format

Table 3.3: Problems defined by Gschwandtner et al. [23] that can be solved with Edit
Interval operations.

needs to provide simple means for the user to delete, annotate, or shift the hours so the
minimum off-times are not violated anymore.

3.2.4 Correct Implausible (Values)

Implausible values are similar to outliers (see Section 2.2.4). This section introduces two
ways on how to deal with this type of data quality problem.

3.2.4.1 Outlier Correction by Applying Moving Average

The prototype offers smoothing methods such as exponentially weighted moving average,
which have been discussed in the referenced section. However, it further allows to apply
a weighted moving average with focus on time series. That means, that the user can
select whether he/she wants to apply a moving average on the last n entries or the last n
entries that share the same time/weekday/day within a month/day within a year. Thus,
it is possible to correctly deal with outliers where a common pattern can be identified
(e.g., increased number of sales before Christmas and Easter compared to other times of
the year), instead of just using the last couple of entries to calculate a plausible value.
Exponential smoothing in general requires some knowledge, so the user can decide which
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Category Title Description (Example) Possible Solution

Implausible
values

Unexpected
low/high
values

Deviations from daily/weekly ...
profile or implausible values
(Average sales on Monday: 50) vs.
(this Monday: 500)

Moving average of last n
Mondays

Changes of subsequent values
implausible
(Last month: 4000 income) vs. (this
month: 80000 income)

Exponential smoothing

Same value for too many succeeding
records
17 customers in every interval of
the day

Exponential smoothing

Wrong data

Misfielded
values

Values attached to the
wrong/adjacent time/interval
GPS data shows sprints followed by
slow runs although the velocity was
constant

Denote outliers as missing
values and replace them
with the mean value

Domain
violation
(outside
domain range)

Outliers in % of concurrent values
(attention with small values) for a
given point in time/interval
On average (median) 30 customers
in a shop in a given hour - in a
10'interval within that hour, a value
of 200 is present

Denote outliers as missing
values and replace them
with the median value of
that day

Table 3.4: Problems defined by Gschwandtner et al. [23] that can be solved with Correct
Implausible.

operation, i.e., single, double, or triple, fits his/her requirements best. An alternative
method is using this implementation of a weighted moving average which is a simpler
concept to comprehend and can be just as powerful as exponential smoothing (depending
on the data structure).

3.2.4.2 Outlier Correction by Imputation

Another method is to define all outliers as missing values and impute an average. This
average can be either the mean, median, or computation of the k-nearest neighbors.
Mean and median may not be as precise as moving average methods, yet they allow
correctifying outliers where no pattern can be identified. KNN is something in between
as it searches for the most similar entries and these can be defined over time (even though
this is not always the case as it depends on the number of different fields), but it does
not necessarily take the last n entries into consideration but those, who have a good
general fit. For example, instead of using the sales figures of the 23rd December of 2008
to 2013 (n = 5) to correct the outlier that was found on 23rd December 2014 it may take
the 23rd December of 2004, 2005 and 2009 as well as the 21st December of 2011 and the
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22nd December of 2014.

3.2.5 Impute Missing Values

Category Title Description (Example) Possible Solution

Missing data

Missing value

Missing time/interval and/or
missing value
(Date: NULL, items-sold: 20)

Impute missing intervals
(if there is a missing gap
within dates, e.g.,
20-01-2015 is missing,
NULL will be replaced
with that date)

Dummy entry
Date: 1970-01-01); (duration: -999)

Impute the mean or find
the real date of the entry

Missing tuple Missing time/interval + values
The whole tuple is missing

Impute missing intervals as
well as missing values for
each field that is neither
interval start/end nor date

Wrong data Wrong data
type

No time/interval
Date: AAA; duration: *

Impute missing values
(e.g., duration mean)

Table 3.5: Problems defined by Gschwandtner et al. [23] that can be solved with
Imputation of Missing Values.

As already mentioned in the previous section, the methods of imputation are mean,
median, and k-nearest neighbors. Additionally, it should provide the user with some
tailored operations regarding time-oriented data. The prototype needs to provide means
for imputing missing intervals, for example, if there is an interval gap between 12:00-14:00,
or imputing missing times, i.e., the interval end of an entry is missing. However, we
know that an average interval is two hours long, so with regard to the start time we can
basically impute start time + 2h.

All imputation means allow to replace both time/interval fields as well as numerical
(e.g., sales or profit) and non-numerical (e.g., name or gender) values.

3.2.6 Deduplication

The definition of duplicates in the context of time-oriented data can differ from its usual
definition. Each entry that occurs at the same time may be a duplicate with respect to
different key entities (e.g., two different workers can work at the same time but two entries
of the same worker at the same time would be a duplicate). The goal of Deduplication is
both to remove overlapping or identical intervals, but also to find and eliminate highly
similar entries. For example, if two entries are almost the same, but the date is different,
there is a high chance these two are duplicates and there is a typo in the date column.
Thus, it is not enough to simply check if two entries share the same time or not. The
prototype needs to provide means to identify possible duplicates. After identifying them
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Category Title Description (Example) Possible Solution

Duplicates

Unique value
violation

Same time/interval (exact same
time/interval though time/interval
is defined as unique value)
(Holidays: 2012-04-09; 2012-04-09)

Detect duplicates of the
same time and remove one
of them

Exact
duplicates

Same time/interval and same values
(Date: 2012-03-29, items-sold: 20)
is in table twice

Inconsistent
duplicates

Same real entity with different
time/interval or values
(Patient: A, admission: 2012-03-29
8:00) vs. (patient: A, admission:
2012-03-29 8:30)

Detect duplicates that are
very similar with focus on
patient name and
admission date and remove
one of them, if these are
duplicates

Same real entity of time/interval
(values) with different granularities
(rounding)
(Time: 11:00 vs. 11:03); (Weight:
34,67 vs 35)

Search for similar entries
and remove the unwanted
duplicate

Wrong data

Domain
violation
(outside
domain range)

Circularity in self-relationship
Interval A ⊂ interval B, interval B
⊂ interval A, A 6= B

Detect them as duplicates
and remove one

Table 3.6: Problems defined by Gschwandtner et al. [23] that can be solved with
Deduplication.

the user must be able to select which entries are actual duplicates and how they should
be dealt with.

3.2.7 Remove

The last cleansing operation introduced in this chapter is also the operation that should
only be applied as a last consequence, i.e., if no other cleansing operation provides the
necessary means to cope with a time-oriented data quality problem.

3.2.7.1 Removal as a Last Resort

While removing is certainly not a well-established technique for dealing with problems
of data quality it might be the only choice to solve some issues, especially if no further
context is available. For example, in a quarterly record of sales figures without any gap
in time, a record with a date 2099-01-01 is found. As there are no gaps or missing dates
in the remaining data table, this entry is not just a valid entry with a wrong date. Thus,
the choice is either to leave the entry the way it is and ignore it or simply removing it.
Removing whole entries should be the last choice and only executed if they are completely
meaningless (because there is no way to interpret them in the right way).
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Category Title Description (Example) Possible Solution

Missing
data Missing values

Dummy entry
(Date: 1970-01-01); (duration:
-999)

Remove the entry if the
missing values made it
meaningless

Implausible
values

Implausible
range

Very early date / time in the future
(Date: 1899-03-22); (date:
2099-03-22); (date: 1999-03-22,
duration: 100y)

Remove the entry

Wrong data

Domain
violation
(outside
domain range)

Minimum / maximum violation for
given time/interval/type of day
Sales at night even though no
employees were present
Start, end, or duration do not form
a valid interval
(End ≤ start); (duration ≤ 0)
Circularity in self-relationship
Interval A ⊂ interval B, interval B
⊂ interval A, A 6= B

Delete either A or B

Table 3.7: Problems defined by Gschwandtner et al. [23] that can be solved by Removing
Entries, if the other means are not applicable.

3.2.7.2 Removal & Deduplication

Additionally, removing is also needed to deal with duplicates and thus, the function has
its right to exist. Furthermore, the operation gives users the possibility to delete entries,
which are annotated (e.g., missing values or outliers). This way the user does not have
to select each entry manually if he/she only wants to target dirty entries.

3.2.8 Non-Cleansing Features

Besides the mentioned cleansing methods the prototype should also provide the user with
two further features, namely a history and the execution of commands via a command
line. Additionally, the prototype should provide the user with a help function as some
operations require many parameters and are hard to comprehend (e.g., triple exponential
smoothing requires parameters called α, β, γ and l).

3.2.8.1 History

The History should allow the user to undo his/her last n operations and also to redo
them. However, a redo is only possible if the user has not executed any further operations
after the undo operation. That is because some operations would have a different result
if they are applied on a different data set (e.g., the Imputation of a Mean is different if
all data is taken into consideration or if 50% of all entries are deleted).
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3.2.8.2 Command Line

This feature is intended for the use of user definable cleansing operations (see Section
2.2.5). The Command Line supports a faster input of operations that do not require
many parameters. Calculations can be seen as user definable as there are no limitations
(except not all operators are supported, depending on the type of data). The idea is to
support the user in doing routine tasks in a faster way (typing the command is usually
faster than opening dialogs and selecting parameters).
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CHAPTER 4
QualityTime

4.1 Extension of TimeProfiler
The cleansing operations are an extension to an existing prototype, namely TimeProfiler,
written by Theresia Gschwandtner and Benjamin Klaus, at the Vienna University of
Technology. The code of the prototype is written in Java and TimeProfiler reads input
from .csv (comma separated values) files. The separators between fields depend on the
used software and user settings, and thus, TimeProfiler can process files with different
separators: comma, semicolon, tabulator, or space.

Figure 4.1: The data is shown in a fisheye table, i.e., the hovered row and neighbor rows
are bigger than the rest. In this screenshot different checks were performed and detected
data quality issues are highlighted by background color. A short details-on-demand
description of the hovered problem is also provided.
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The functionality of TimeProfiler allows the representation of data in the form of a
fisheye table (see Figure 4.1) as well as the recognition of erroneous data. Partly the dirty
data is identified during the process of reading in and converting the file (e.g., missing
values); other types of faulty data can be identified by running checks (e.g., finding
outliers regarding interval length). Running checks is helpful and sometimes mandatory
before applying cleansing operations as some of these cleansing operations only focus
on annotated entries (e.g., correcting values which have been previously identified as
outliers). It also helps to get a better overview of the data set and to guide the user to
what corrections have to be applied (e.g., setting the interval length to a minimum of
one hour).

The visualization, i.e., the storing of the entries are supported by using a slightly
altered version1 of the prefuse visualization toolkit2.

4.2 Architecture
The general architecture of the prototype is a model-view-controller design pattern [11],
which is kept during the addition of cleansing operations.

• Model: The raw data table, namely the DirtyTable class, that contains the
columns as well as tuples, i.e., each entry/row is stored as a tuple.

• Controller: The checks and cleansing operations represent the controller. The
controller performs as intermediary between view and model. Thus, the view has
no direct access to alter data in the model via operations (however, single cells can
be edited in the table).

• View: The view consists of the fisheye table and dialogs that are used to enter
parameters for different checks and operations. The user input is forwarded to the
controller and afterwards the fisheye table gets updated accordingly (e.g., visualizes
annotations or the changed data (structure)).

Nevertheless, it is necessary to make some further architectural changes in order to
implement a history, i.e., undo and redo operations (see Section 4.3.2.11). Most promising
option for the realization is the command pattern [11], which allows objects to call apply
or revert of other objects. The structure of this pattern is also used in Open Refine [30]
and due to its efficiency and simplicity it is the basis of our implementation.
The most important classes of the structural additions (see Figure 4.2) are History,
HistoryEntry, and Change.

• Change: each instance of Change implements the actual cleansing operation that
is executed on the model. For example, the cleansing operation to add a column
can be found under ColumnAddChange and the operation to impute the mean is
located at ImputeMeanChange.

1https://github.com/ieg-vienna/ieg-prefuse
2http://prefuse.org
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• HistoryEntry: each Change is stored in a HistoryEntry, which accesses the
necessary methods to apply or revert (undo) an operation. Redo is simply to be
understood as a repetition of the apply method.

• History: each HistoryEntry is stored in the History either as past or future
entry, i.e., past entries can be undone and future entries can be redone.

In order to simplify the creation of HistoryEntry and Change objects a further type
of class is introduced. AbstractCleansingOperation is an abstract class, which
extensions are accessed by the view, for instance, AddColumnTransformation. The
functionality of this class is to check whether all parameters are correct, i.e., correct
naming of the new column (e.g., an existing name cannot be used twice), as well as
transforming user input if necessary. An example for such a transformation would be the
input of a calculation, i.e., checking the semantics and checking if the used column names
exist or if the constants fit the type of the target column (e.g., while 03:00 would work
for time columns it would not work for any number columns).

Figure 4.2: Structure of QualityTime visualized as UML diagram using the example of
adding a new column to the table.

Lastly, the singleton design pattern [11] is used in order to ensure all cleansing operations
access the same table and that only one History exists. We called this class Manager,
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which grants access to the History and to the ModelManager. The ModelManager
class enables access on the model and notifies the view in case of changes (if so, the view
will be updated accordingly).

4.3 Design and Implementation of Cleansing Operations

4.3.1 QualityTime User Interface

TimeProfiler’s user interface was extended by adding four tabs in the menu (Table/File,
Cleansing Operations, History, and Help) and a command line (Figure 4.3). A status bar
informs the user about what happened after the execution of a cleansing operation, i.e.,
a message that contains the number of rows affected, or a general update (e.g., ‘New
column name of type type has been added’), or an error message in case the entered
parameters were not correct. In Figure 4.3 two tabs of the menubar were highlighted,
because they are essential for cleansing.

Figure 4.3: QualityTime’s UI consists of 4 parts. (a) shows the menu bar. Highlighted are
Table/File and Cleansing Operations. The Table/File tab contains the transformation to
change the date format, whereas the Cleansing Operations tab holds all other operations.
(b) visualizes the command line and (c) a status bar that shows feedback for each
executed check or operation. The fourth part is the fisheye table already introduced in
TimeProfiler.

4.3.1.1 The Menu Bar

The menu bar is the key element of QualityTime as it provides access to all available
features, whereas the command line (see Section 4.3.1.2) only covers operations that do
not need a lot of parameters. It includes the following menus:

1. ‘Table/File’:
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• ‘Open’ (see Section 4.3.2.2)
• ‘Save as . . . ’ (see Section 4.3.2.2)
• ‘Set Date Format’ (see Section 4.3.2.3)

2. ‘Checks’: In this work we do not focus on the available checks as they were
implemented in a previous work.

3. ‘Cleansing Operations’:

• ‘Impute Missing Values’ (see Section 4.3.2.4)
• ‘Correct Implausible Values’ (see Section 4.3.2.5)
• ‘Detect/Correct Duplicates’ (see Section 4.3.2.6)
• ‘Change Column’ (see Section 4.3.2.7)
• ‘Add Column’ (see Section 4.3.2.8)
• ‘Change Rows’ (see Section 4.3.2.9)
• ‘Sort Rows’: sort entries with respect to different criteria
• ‘Edit Intervals’ (see Section 4.3.2.10)

4. ‘History’:

• ‘Show History’ (see Section 4.3.2.11)

5. ‘Help’

• ‘Show Help’ (see Section 4.3.2.12)

4.3.1.2 The Command Line

Purpose of the command line is to grant easy access to basic features. Basic features
are those which do not require many parameters. For example, adding a new column
only requires two parameters (see Figure 4.3), the name of the column to insert and its
type. On the contrary, imputing missing values with the method of k-nearest neighbors
requires at least three parameters, however, up to seven parameters can be specified for
an advanced usage. The difficulty thereby would be on how to process the input if the
user wishes to set parameters 1, 2, 3, and 6 (without needing parameters 4, 5, and 7).

The commands can be entered in two possible ways:

• <columnToChange>.<operationName>(<parameters>)

• <operationName>(<columnToChange>, <parameters>).

The following eleven operations can be executed by using the command line (see
Section 4.3.2):

• Add column
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• Remove column

• Rename column

• Split column

• Merge column

• Delete column part

• Set value/calculate

• Switch columns

• Remove rows

• Change interval representation

• Change date format

These are mostly transformations, because transformations work on a highly generalized
level, e.g., the table structure does not matter on whether you can add or remove a
column. Additionally, most of them only need the specification of a few column names in
order to perform a cleansing operation.

4.3.1.3 Dialogs

If the user wants to apply advanced operations or is not interested in using the command
line the input is entered into dialogs (Figure 4.4). For each menu entry (in Section 4.3.1.1)
there is a dialog that supports using the correct input for each cleansing operation.

4.3.2 Features

In this section the implemented features are explained in detail. Furthermore, several
examples are provided to better grasp the concept of each feature.

4.3.2.1 The Key Column Field

Almost every cleansing operation has an optional parameter, called key column. This
field is needed if there are several different entries within the same data set. For
example, a mother company (e.g., REWE3) keeps track of all sales and other activities
of their daughter companies (for REWE that would be Merkur, Billa, Bipa, ADEG, and
Pennymarkt). Obviously, sales figures and corresponding profits are deviating, because
of different strategies (e.g., Pennymarkt is positioned in the lower price segment whereas
Merkur is concentrated on the higher price segment), shop size, or different goods (Bipa
sells mainly cosmetic products but the other shops are focused on selling food). For

3https://www.rewe-group.at/Startseiten/Startseite/rg_Homepage.aspx
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Figure 4.4: The Correct Implausible Values dialog. It consists of four parts: (a) mandatory
parameters for all methods to be found in the dialog, (b) the different methods available for
this cleansing operation, (c) operation dependent parameters (some of them mandatory,
others optional - which is described in (d) a short help overview).

instance, a database contains sales values of different stores. If there are some missing
values for one store, it does not make sense to compute a mean sales value for this store
from all available sales values (including all stores and missing values). Thus, we only
use non-missing sales values for this specific store to compute the mean sales value for
this store. Additionally, the user can select which entity of the key column he/she wants
to update, i.e., he/she can update all supermarkets or just Merkur for example.

4.3.2.2 Open / Save as . . .

Open is a very basic feature that allows the user to load a new .csv file into the table. The
changes on the current table will be lost if the user does not save his/her previous work.
As mentioned earlier there are several types of .csv files, because possible delimiters are
‘;’ (German), ‘,’ (English) and ‘tab stop’. Choosing the wrong format (e.g., ‘,’ instead
of ‘tab stop’) will cause the table to be displayed incorrectly, i.e., one column contains
all the data that should be displayed in various columns.

Safe as . . . is simply used to write a new .csv file and the user can select the delimiter
that should be used.
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4.3.2.3 Set Date Format

This feature allows the user to change the date format of one or of all date columns.
The format specification is similar to what Java uses4, for instance, displaying a date
in the American date format (mm/dd/yyyy) would require the input of MM/dd/yyyy.
These changes only affect the visual appearance, but do not change the data in particular.
When loading a new data set the format is automatically converted to a European format,
i.e. dd.mm.yyyy, thus changing the position of month and day will result in problems
when reloading the data.

4.3.2.4 Impute Missing Values

The Imputation of Missing Values is only available to interval, numerical, and alpha-
betical (including Boolean) columns. We do not support the imputation of date values
as it would not be helpful to replace a dummy or missing date value with the average.
Most likely, it would lead to duplicates because of two or more entries at the same time.
However, we introduce a method that can help to find the right date for an erroneous
entry (see Impute Missing Intervals).

Impute Mean/Median

These two features are almost identical as they only differ in the statistical measure that
is used. We can distinguish between imputing missing values into time columns, i.e.,
columns that solely contain times, but not dates, and numerical or alphabetical columns.

For the Imputation of Missing Values in time columns it is possible to define a
so-called reference column, which is used to determine the average distance between two
time columns. For example, we have three entries with two columns (start and end)
that contain the following value pairs: (08:00, 16:00 ), (09:00, 17:00 ), (12:00, -). If we
simply use the mean/median value for imputation the result would be 16:30, however
the average duration is eight hours, thus, making use of a reference column would result
in imputing 20:00.

In case of imputing missing values into a numerical column there is the possibility
to impute values considering the length of the respective time interval. For example,
we have a table with three columns, two of them represent the interval on a certain
day (like in the previous example) the third one is a time-related field, sales during that
interval. To simplify the table representation I will use the difference between the two
interval columns and only write the interval length. These value pairs are in our table: (2
hours, 24 ), (1.5 hours, 18 ), (2.5 hours, -). If we imputed the mean without considering
the interval length of each entry, we would get an average of 21.5 (or 22 if only whole
numbers are accepted) sales, otherwise the figure would be 30.

Imputing values into alphabetical fields is done by searching for the most frequent
string and inserting it.

4http://docs.oracle.com/javase/7/docs/api/java/text/SimpleDateFormat.html
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The mean/median is always calculated once for the whole data set and afterwards
imputed in each field that is annotated as missing value. In case of data from different
sources within the same table (e.g., different stores), the imputation can be adapted to a
selected column, i.e., only the matching entries for each missing value (same store name)
are taken into consideration.
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Impute KNN [54]

K-nearest neighbors also supports the usage of reference columns for time columns and
for interval columns when it comes to imputing numerical values, like mean and median
do.

Further options are distance calculation (Euclidean or Manhattan), whether Leven-
shtein distance [9] should be applied to nominal values (i.e., non-numerical fields), if the
distance should be standardized, and whether special attention should be paid to date
fields. The latter means that not only the time difference (in hours) is taken into account,
but also whether the dates are on the same day, month, year, and so forth. That way
two entries on the same day, but in a different year (e.g., 2015-08-20 and 2014-08-20 )
are very close, whereas under the aspect of a normal distance calculation they would be
very far apart.

In order to get the value for imputation the mean of the k-nearest neighbors is
determined.

Impute Missing Intervals

This feature covers the Imputation of Missing Intervals, i.e., gaps in time that should
not exist. The user can specify which interval spans should be covered on each day of
the week (on weekdays, weekends, or the whole week) and the tool will close any gaps
during that time.
Figure 4.5 visualizes how the parameterization of this method looks like. Besides the
regular specification (interval start and end, and date in case interval start is only a time
field), it is possible to set intervals for each day, instantly impute missing values that
occur when a new entry is created (a new entry will only consist of a date (if interval
start is not a date already), interval start and end) and set a fixed length for newly
inserted intervals. The fixed length is working insofar as the desired interval length fits
the gap. For example, if the gap is two hours long, the interval length of 60 minutes can
be inserted twice. If the gap is only 1.5 hours, the first interval will have a length of 60
minutes whereas the second interval is only 30 minutes long.

As we have mentioned at the beginning of this section, it is not directly possible to
impute missing date values, because if there is an entry that consists only of a start and
end point in time, but the date is NULL or a dummy value, it will be held back until a
certain gap fits exactly the start and end time of that entry. If the entry does not fit
any gap the date will not be changed from its faulty value. Additionally, it is possible
to avoid overlapping intervals, i.e., the imputed interval ends before the next one starts
(e.g., end: 13:59, start:14:00 ).

4.3.2.5 Correct Implausible Values

Implausible values are time-relative values that do not follow a given trend or are certainly
recorded incorrectly. Thus, only numeric fields can be affected in this category.
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Figure 4.5: Dialog to impute missing values. In this example, we are trying to impute
missing intervals into a shop’s data. The shop’s usual opening hours during the week are
from 9:00 to 20:00, except on Thursday the shop is open an hour longer. On Saturday
the shop is open from 9:30 to 18:30. Moreover, the new inserted intervals should be 60
minutes long and using KNN imputation fills all other fields.

Average of Last N

This operation is based on simple [46] or weighted moving average5, however, we do not
simply use the last n entries, but the users can specify which last entries they want to
use. These last entries can be of the same time, for instance, if we detect an outlier on
Thursday in the interval of 13:00 to 15:00, we will use the last n entries at the same time,
i.e., Wednesday 13:00 to 15:00, Tuesday 13:00 to 15:00 and so on. Additionally, the user
may choose if the last entries should occur on the same weekday (only Thursdays in our
example), same day of the month (e.g., only the second Thursday of the month), or same
day of the year (e.g., the 20th of December).

5http://fxtrade.oanda.com/learn/forex-indicators/weighted-moving-average
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Exponential Smoothing

As discussed in Section 2.2.4, this is the implementation of various kinds of exponential
smoothing. Depending on the data structure the user can decide whether single, double,
or triple exponential smoothing fits his/her needs best. Besides previously detected
outliers it is possible to define a certain tolerance for deviations between calculated and
actual data. Figure 4.6 shows the preview that pops up after submitting a parameter
setting. This is because of the relative complex operation especially for inexperienced
users.

Figure 4.6: Preview dialog of Exponential Smoothing. Yellow entries marked with an
asterisk are detected outliers and will be replaced. A blue column header shows which
columns are compared.

The users can try different settings and see the effect of a change in parameters before
they update any values. Furthermore, they may choose to update one key set (in the
example shown Figure 4.6 only outliers for Australia would be corrected), by entering a
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key column beforehand.

Set Null and Impute

All identified outliers (by applying a check on the data) will be treated like NULL or dummy
values and replaced with the selected technique (see Section 4.3.2.4 for available methods).

Cumulated Value Outliers

A special case of time-related values are cumulative values. For instance, if a company
keeps track of the stock of inventory by adding up the numbers for each day. The sequence
of the resulting values is cumulative, i.e., on the first day 20 items are in stock, on the
second day 38 items are in stock (e.g., 30 which are newly stored and 12 of them left the
stock) and so on.

All the methods regarding outliers mentioned so far will not work for that structure
of data, thus, it is necessary to provide an operation to correct dirty data in this case.
The values are determined by calculating the mean for the first n values. There are
two options to compute the mean for the difference between two start points or for
the difference between start and end point. Afterwards, the mean is used to correctify
annotated entries, i.e., previous value + mean replaces the old value, whereas the mean
is adjusted to the interval length depending on the chosen option. It is also possible to
correct these outliers by using calculations (see Section 4.3.2.7).

4.3.2.6 Detect/Correct Duplicates

This part consists of two steps, at first possible duplicates need to be recognized and
then they can be handled by three different approaches.

Detect Duplicates

There are two kinds of duplicates. The first type only concerns time-oriented data.
Intervals have to be unique within each data set, unless there are more instances (see
Section 4.3.2.1), for instance, shop A and B can be open at the same time.

The second sort of duplicates is what people usually understand as duplicates - two
very similar or even equal entries within the same data set. In order to improve the
search for duplicates it is possible to a) specify the search accuracy and b) assign a weight
to each column, i.e., if certain columns are not relevant for a duplicate search (e.g., shop
staff present at a certain interval might not be relevant, because there is always a very
similar number of them in the shop) or if a column is more important than others. The
method to calculate the similarity of one entry to another is only a slight modification of
the distance calculation KNN uses.

Correct Duplicates
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Figure 4.7: Possibilities to deal with detected duplicates. To make a decision easier the
number of possible duplicates is shown. In case of a high number of conflicts it might
prove tedious to look at each single group of possible duplicates.

Figure 4.8: Manual removal of duplicates. These two entries show a high similarity,
however, since the name and ID of the employees are different they are hardly real
duplicates. Ultimately, the user can decide which entry should be kept and which should
be deleted (if he/she found real duplicates). The entry that is deleted is also used to fill
potential missing values from the master entry.

We implemented three ways to deal with possible duplicates (see Figure 4.7).

• Keeping the first entry of each duplicate. If the user is sure that all found duplicates
are actually duplicates he/she can solve all conflicts by choosing this option.

• Removing those entries that cause the largest number of conflicts. This operation
removes as many entries as necessary to clear all conflicts.

• Manual removal of duplicates (see Figure 4.8). The user has to look at each set of
duplicates and decide whether two or more entries are duplicates or not.
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4.3.2.7 Change Column

This section mainly consists of two parts. The first part is about transformations and
changing the table structure and the second part offers a user interface for calculations.

Transformation

Figure 4.9 provides an overview which operations are to be understood as transformation.
These transformations are:

• Delete Column: Delete a column and its values.

• Rename: Change the name of a column.

• Split: Split a column at a certain character (which gets lost within the operation,
e.g., @-symbol for mail addresses into name and domain or space character to split
a datetime column into a date and a separate time column) and adds a new column
with a given name and type.

• Merge: The counterpart of the split operation. Merge two columns into an existing
one by removing the second column. For example, a date and a time column can
be merged into a single datetime column under the name of the date column. The
time column is deleted within the process of merging.

• Delete Content: Delete everything within a column including the appearance of
a certain sign. For example, removing the part of an e-mail address after (and
including) the @-sign.

• Interval Representation: Changes the representation of a date or time column into
an interval column. For example, if you have two time columns namely Start and
Stop, you can display Stop as an interval with respect to the value at Start.
For the value pair (12:00; 12:30), we will get (12:00; 30').

Calculation

Calculations make use of columns, certain rows of columns, and constants. They can be
applied to all types of columns, but date and Boolean ones. The semantics for entering
an equation is

‘Columnname’ + constant + ‘Columnname[rowNumber]’
There is no limitation of constants or column names as long as they are of the right
type. The type is defined by the target column of the calculation, i.e., targeting a time
column allows the usage of date columns, time columns and time constants (e.g., 03:00).
A number column allows whole number and decimal columns, but the constants must be
of the correct type (e.g., a double value for an integer column will result in an error) and
text columns allow any input.
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Figure 4.9: Transformations available for change column. Depending on the type of
the selected column more or less operations are available. Here we can see a merge
transformation for a date column. It can be merged with a time column (e.g., Hinein
in the screenshot) and furthermore a separation character can be added (default would
be a space sign).

There are two ways to reference rows. The user can either make a static reference to
a field (e.g., [1] always uses the value of the entry in the first row) or a dynamic reference
(e.g., [-1] always uses the value of the previous row of the current one). Using dynamic
references enables the user to generate cumulated values, for instance, executing the
equation ‘Sales[-1]’ + ‘Sales’ on the Sales column results in adding up the
sales figures. There is a second opportunity to create a sequence of values with respect to
key columns. Either by using the command sumUp(Equation, Key Column) or by
ticking the checkbox in the dialog. It will create a sequence for the values of the target
column for each key value (e.g., summing up the total working hours for each employee).

The user can also decide whether he/she wants to update all rows with the entered
equation or only annotated, i.e., erroneous, rows. This is especially important when
dealing with very large datasets and in case the majority of values was computed correctly.
An example would be to impute missing values via calculations (e.g., total working hours
= end of work - start of work, should be correct for most entries but some entries are
missing these values even though start and end values exist).

Date columns can only be used to determine results for time columns, i.e., if start and
end intervals are given as dates and it is desired to calculate the difference between these
two it is possible. Moreover, it is possible to include more than two date columns but
with special rules. The first rule is that only the difference of two dates can be calculated
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and the second one follows from the first rule that only an even number of date columns
can be used. A short example would be that the total working hours equals the difference
between the end and the start date of work minus the difference between the end and
the start of the lunch break. The equation must look like this:

(‘Work End’ - ‘Work Start’) - (‘Break End’ - ‘Break Start’)

Another type of calculation is especially tailored to time and date columns. That means
that certain time units can be added to existing fields. For example, adding 5 hours to a
time field in order to regulate a wrongly recorded time zone. Instead of using calculations
it is recommended to make use of Change Time (see Figure 4.10). This is because adding
hours to a time field might result in a change of date as well and this would not be
possible with equations.

Figure 4.10: Change Time dialog. Options are to specify a condition to update only
designated rows, to update all fields of the same type, as well as using a date and a
reference column in case a change in time results in a change in date.
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Using a reference column makes sense if you are expecting that a change of time
results in having two times on two different days. Let’s have a look at our work example
again. If you have working hours that range from 09:00 to 18:00 (or later) and you make
a time shift of seven hours. Then you will see working hours from 16:00 to 01:00 and
only one date (depending on which column was selected it will be either the same day or
the next day), which does not make much sense. Thus, by specifying a reference column
a second date column will be added in case that any row will contain two times at two
different dates. So, if both times were on the 1st December 2015, after the calculation
16:00 would be on the 1st December and 01:00 on the 2nd.

The third part of calculations are conditional calculations. The functionality is equal to
the equations we described earlier, the only difference is that an equation can be executed
on a specific set of rows. For example, a condition might be Weekday == Monday &&
Month == 8, so only entries that are on a Monday in August will be changed.

4.3.2.8 Add Column

This is a simple operation that adds a column with a given name and type. All values of
the column will be missing values and can be imputed via calculation, as there are no
values in the newly added column that can be used for an imputation method.

4.3.2.9 Change Rows

This feature contains the application of Conditional Calculations, but also the possibility
to Remove certain rows. For example, we have some erroneous date values (e.g., date in
the future) and to get rid of them we can use year > 2015 as condition and choose
to remove all rows that fulfill this condition. Another option is to remove all erroneous
rows that fulfill a condition, i.e., removing all entries for a certain condition that contain
missing values, outliers, or any other data problem.

4.3.2.10 Edit Intervals

Editing Interval operations are tailored to meet the specific requirements when cleansing
time-oriented data. The operations available under this menu point are:

• Standardize Interval Length: using this operation the user can change all intervals
to a desired length. However, since time-related values depend on the length of the
interval the user has to specify which columns should be adjusted to the new size as
well. For example, while there are three salesmen in the shop the whole day (and
therefore, no adjustment is necessary), the number of sales depends on the interval
duration. The only problem is if the interval size gets smaller the sales are only
estimated values, i.e., if one reduces the size from one hour intervals to 20 minutes
and within the one hour interval 6 items were sold, each 20 minute interval will
show 2 sales. Even though it is quite possible that there were a different number of
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sales for each interval within this hour. However, choosing to not adjust the values
will result in 6 items sold every 20 minutes, which is obviously wrong.

• Group By Date: by applying this transformation the user will get an overview of all
intervals within a day/month/year. Thus, if a day contains 24 one hour intervals all
will be shown as one interval within a day and as it is possible with standardizing
the interval length, column values can be adjusted to this new interval length, i.e.,
summing up the values of all 24 one hour intervals.

• Set Limits: setting limits allows the user to avoid intervals at given times. For
example, if the opening hours of a shop are from 08:00 - 18:00, any intervals outside
this time span are most likely erroneous. Thus, the user can set possible intervals
for each day (or weekday, weekend, whole week) and decide whether he/she wants
to delete them (if the interval is completely outside the given boundaries), adjust
them (if the interval is partly within the boundaries, i.e., 17:00 - 18:30 becomes
17:00 to 18:00), or annotate them as outliers. These boundaries are not saved for
further entries or dates, but have to be applied again in case further entries are
added.

• Minimum Off-Time: such off-times are common in almost every business, but easily
overseen in factories where people work in shifts. That is so because, with many
different end and start times and possibly with a large number of workers it is hard
to check each entry. Setting a minimum off-time for an employee (the key column
in this example), for example, eight hours, will find all entries that violate this
condition. The user has three options to deal with that, namely

– deleting the entries because they are erroneous,
– annotating them to further investigate the situation (e.g., if there were real

violations or simply wrong recordings),
– shift them in time so they do not violate the condition any longer.

• Split Intervals for each Day: is appropriate if the user does not want to have any
entries that overlap days, i.e., an interval starts at 20:00 on Monday and ends on
6:00 on Wednesday. Hence, it is possible to split this interval into three parts: 20:00
- 23:59 on Monday, 0:00 - 23:59 on Tuesday and 0:00 - 6:00 on Wednesday. This is
even more important when dealing with time columns, because if an interval starts
at 16:00 and ends at 12:00 this is either an error or the interval ends on the next
day. So splitting this interval will give us an additional date column that records
the day after the interval start (e.g., 2015-12-02 if the interval start is at 16:00 on
2015-02-01).

• Correct Overlapping Intervals: If someone wishes to have no overlapping intervals
(i.e., one interval ends at 12:00 and another starts at the exact same time). The
corrective method is to let the previous interval end one minute early (11:59 instead
of 12:00).
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4.3.2.11 History

The History enables the users to view all previous operations they executed. Furthermore,
they can reset the data to any point within these steps, for instance, undoing the last
three operations (see Figure 4.11). In case the users changed their mind and only wanted
to undo the last two operations they can redo one operation (or all three they undid
earlier). However, once a new operation was applied on the data set the future history will
vanish and the new operation will be added on top of the previous operations. Technically,
it would be possible to redo operations even after executing a new operation, but it might
lead to different results as earlier (e.g., imputing missing values might not be the same
after applying a calculation on a column).

Figure 4.11: History dialog. Opening the history after undoing the last three options:
they are available for redoing while the previous operations still can be undone.

4.3.2.12 Help

The Help is available at any point during the prototype. It is either accessible by pressing
F1 or clicking the icon in the dialog. The tab of Help will adjust to the current position,
i.e., if you press F1 in the table view it will open a guide containing a list of the available
commands and if the user clicks the button in the, Correct Implausible, dialog the help
will show all information regarding removing outliers. The dialog (see Figure 4.12)
usually shows information about each parameter for every operation and gives some
further explanation should the concept of a parameter be harder to grasp. We figured
out providing a help function is important, because sometimes labeling a parameter,
i.e., text field, so everyone understands it immediately, is not easy. Especially the terms
key column and reference column might be unclear to the user. While the key column
(see Section 4.3.2.1) is often equal to the key column as understood in SQL6, this is not
always the case, i.e., a foreign key could be the key column for a certain operation. For

6http://www.w3schools.com/sql/sql_primarykey.asp
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example, if a table contains the columns ‘shop’ (primary key) and ‘employee’ (foreign
key) and the user wants to set the minimum off-time for an employee the key column
would not be equal to the primary key. Instead the key column would refer to the foreign
key, because ‘employee‘ is the main focus of the operation whereas it does not matter
which ‘shop’ he/she is employed at.

Figure 4.12: Help dialog. The dialog consists of explanations, links, and parameter
descriptions for each category of cleansing operations.
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CHAPTER 5
Evaluation

In order to evaluate the usefulness of QualityTime we will look at it in two different
ways. The first one is to see how many data problems can be tackled by applying the
operations of the prototype. The second one is to conduct a heuristic evaluation that
aims at finding out how effective the tool can be used in terms of usability.

5.1 Operation Coverage

In order to answer the research questions which types of errors can be handled by automatic
operations and how to support this task? and which types of errors needs to be handled
manually and how to support this task? we have to look at the operations QualityTime
provides and which tasks can be solved by applying them.

We have already covered the supported operations with regards to the time-oriented
data quality problems determined by Gschwandtner et al. [23] in Section 3. However,
there are several problems that cannot be solved by using QualityTime. The reason
behind this is that either a lot of knowledge is required concerning the ‘dirty’ data or the
input cannot be processed properly. For a detailed list of unsupported errors see Table
5.1.

Overall, QualityTime can handle 87% (29 of 33) of single source problems with ‘dirty’
time-oriented data and additionally, provides means to prepare data to merge them with
other sources (e.g., standardize the schema of two data sources).

5.2 Usability Testing

To evaluate the cleansing operations QualityTime provides, we decided to conduct a
usability study. The study should cover several operations that may be executed within a
realistic scenario and show their usefulness to the participants. We conducted a heuristic
usability inspection [43] with three participants having different background knowledge
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Cate-
gory Title Description (Example) Reason for Nonsupport
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ta
Only old versions available
Same values from last year

It is impossible to derive the correct values
for duplicates of this sort. One option might
be to use exponential smoothing, but that
will only lead to some success if the data of
many previous years are correct.

New version replaced by old version
Project plan tasks overwritten by
prior version

Even though QualityTime provides a history
it only helps to undo applied cleansing
methods. Changes must be saved in order to
be kept, otherwise they will be lost as old
data is not stored.

A
m
bi
gu

ou
s
da

ta

A
bb

re
vi
at
io
ns

or
im

pr
ec
ise

or
un

us
ua

lc
od

in
g

Ambiguous time/interval/duration
due to short format
(Date: 03-06-05) vs. (Date:
06-05-03); 5'interval encoded as
‘09:00’: (interval: 8:55 - 9:00) vs.
(interval: 9:00 - 9:05)

As the date format is determined while
reading the table it is not clear how the date
should be interpreted. It would be necessary
to define the date format beforehand, which
is not part of the prototype. Thus, keeping a
precise date format is a prerequisite. Also
intervals should be kept within two columns,
i.e., (start: 9:00 and end: 5') would be clear.
A start time without an end time cannot be
interpreted.

Extra symbols for time properties
+ or * or 28:00 for next day

+ and * would not be recognized as a
time/interval and therefore, the prototype
would not be able to interpret them
accordingly. Dealing with 28:00 would be
possible but requires two steps. At first the
date would have to be increased for all times
greater 24:00 and then 24 hours have to be
subtracted from the time.

Table 5.1: (Single Source) Problems defined by Gschwandtner et al. [23] that cannot be
solved by using QualityTime.

about cleansing tools. The first participant has already worked a lot with Open Refine
[29] (see Section 2.3.4), the second one was familiar with the concepts of cleansing,
whereas the third participant has not used any cleansing tools so far. In order to evaluate
the prototype this variety was welcome, because ultimately anyone should be able to use
the tool after all. Nevertheless, eventually data analysts will have to use the tool during
the task of data preparation.

5.2.1 Testing Method

We used a set of 10 heuristics especially tailored to evaluate usability in the context of
visualization approaches by Forsell and Johansson [16]. The participants absolved the
study separately and were asked to assign each problem they detect to a heuristic as well
as rate its severity.

After an explanation of the heuristics and what is expected of them, the participants
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were introduced to QualityTime and the data set. The data represented sales figures of
two imaginary coffee houses. It contained some errors that could easily occur within a
real data set and the tasks during the study were targeted at solving them. The study
contained seven tasks, which were logically ordered, i.e., it would not make much sense
to complete task three before task one and two, because it is a logical consequence.
These tasks contained the following operations:

1. Splitting intervals in order to get homogenous data.

2. Apply a calculation on a date column that has to fulfill a certain condition.

3. Limit the interval lengths, so the data represents the correct opening hours of a
store.

4. Impute missing intervals so the data does not contain any gaps.

5. Correct implausible values to get rid of outliers.

6. Add a column and use an equation in order to add useful information to the data.

7. Change the date format.

Every time the participants encountered a problem or were not able to solve a task on
their own (within reasonable time) they were asked to define the problem (and state a
possible solution) and rate its severity. Afterwards, we helped them with their problem.
For example, if the user was not able to find the correct menu, the naming of menus
was explained to them, i.e., that operations regarding time were most likely to be found
under Edit Intervals.

5.2.2 Results

All questions and statements were recorded while we monitored the participants. All
usability problems the participants found where rated with a low to medium severity
(one to three). The most prominent problem was Orientation and Help (9 out of 19
issues), followed by Spatial Organization (3 out of 19), and Information Coding (2 out of
19). The most important findings were:

• Orientation and Help: At the beginning all participants struggled to find the
right menus for the task to solve (e.g., a common mistake was that they looked
within the menu Correct Implausible Values’ when an interval should be adjusted).
However, this was due to the fact that the preparation phase was rather short and
they were asked to solve tasks before getting familiar with the prototype. Once
they completed some tasks and understood the structure of the menu they were
able to complete tasks a lot faster.

‘At first it was confusing that time is treated differently,
but I got used to it now.’ (A1)
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• Spatial Organization: Some dialogs are structured differently (e.g., two rows
of available operations instead of just one, see Figure 5.1), which confused the
participants. Additionally, the table used to preview the results of exponential
smoothing did not resize properly.

• Information Coding: Two participants thought it would be helpful to highlight
entries that changed after applying a cleansing operation.

• Acceptance of Command Line: All participants preferred to use the menu over
the command line, which is due to the fact that the command line is designed to
cater the needs of more experienced users and getting used to the syntax would
require more time than to click through menus.

• Acceptance of Non-Cleansing Features: Both non-cleansing features, Help
and History, were used and appreciated by the participants. The first, and most
experienced, participant was confident he would have been able to solve all tasks
without any assistance, but with more time and the help menu.

‘The history is great, very meaningful.
The help is amazing as well. All operations are explained in a sufficient way.’ (A2)

• Overall: The prototype in general received very positive feedback regarding func-
tionality and flexibility (especially with the introduction of calculations).

‘I really liked the freedom the tool gives to the user.
It is very flexible because of calculations.’ A3

Figure 5.1: Edit Interval dialog. The available operations extend across two rows, which
was confusing for the participants as they thought the second row was an additional
setting after selecting an operation in the first row.
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CHAPTER 6
Future Work & Conclusion

6.1 Future Work

6.1.1 Enhancing Usability

During the usability study (see Section 5.2) several issues were identified that could be
improved to make it easier for the user to navigate through the tool and find required
operations faster.

• Highlighting: The feedback via the status bar is nice, but to mark changed rows
until the execution of further operations would be helpful (e.g., using a color scheme
similar to GitHub1: red for removed columns/rows, yellow for modified entries and
green for newly added columns/rows).

• Menu Structure: Instead of using one dialog to impute missing values and
intervals, it would be more user friendly to use two separate dialogs and two menu
entries. The same is true for changing a column - one menu entry for transformation
and another one for calculation.

• Labeling: While it is hard to find meaningful labels for different kinds of menus or
variables, we could try to improve the names with a small group of representative
users. For example, one participant did not understand interval as time interval,
but as a mathematical set of variables. The background of a user can alter the
interpretation and as developer one can easily suffer from tunnel vision.

• History: The history is only visible in a dialog, but one participant suggested to
(add an option to) make it visible the whole time (as it is implemented in Wrangler
[32], see Section 2.3.5).

1https://github.com
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6.1.2 Improving Algorithms

Although the ,‘Detecting Duplicates’, operation is working quite nicely when specifying
different weights for each column (including ignoring columns by assigning to them a
value of zero), the computation is slow when it comes to larger data sets that contain a
lot of similar data. For instance, without any weights detecting duplicates in a table that
contains about 500 entries and working times of each employee (they often start at very
similar times), takes about 4 minutes to complete on a relatively fast computer (MacBook
Pro2 (late 2013): 2GHz Intel Core i7, 8GB 1600 MHz DDR3, 512GB SSD). Even though
clustering is applied to avoid unnecessary comparisons of rows it does not work as desired
in data sets with small differences. Additionally, displaying the current status of the
comparisons might be helpful (e.g., comparing row 5 to row 488, 11% complete . . . ).
Currently, only a busy mouse pointer and a note in the help overview inform the user
that the process might take a while to complete.

6.1.3 Data Sources

At the moment all data is obtained from .csv files, but a lot of data is stored in
different environments (e.g., relational databases (mySQL3, MSQL4, Oracle5, . . . ) or even
document-oriented databases (MongoDB6, DocumentDB7, . . . ). Since in TimeProfiler
the data is stored in a so-called DirtyTable, only the way how the input is processed has
to be changed, i.e., switching the model or rather the way to retrieve the model. However,
the user would have to specify the table schema beforehand and it could become difficult
and costly if a table references to many other tables.

6.2 Conclusion

In this thesis a research prototype to cleanse erroneous time-oriented data was developed
and evaluated. The demand for such a tool was identified by literature research. The
most important operations were found out by analyzing a taxonomy of time-oriented
data by Gschwandtner et al. [23]. Some methods work equally well for any kind of data
including time-oriented data while others are not useful without the information of time
and intervals. Before implementing the cleansing operations, they were designed and
refined, and thought was put into the needed parameterization. The prototype was then
evaluated by a heuristic usabilitiy study to detect potential usability deficiencies.

The prototype was developed in order to answer the research question, ‘How to
support data analysts dealing with erroneous time-oriented data?’ : It provides means to
cleanse many time-oriented data quality problems mentioned in [23] and the conducted

2http://www.apple.com/macbook-pro/specs-retina/
3http://dev.mysql.com/
4http://www.microsoft.com/en-us/server-cloud/products/sql-server/
5https://www.oracle.com/database/index.html
6https://www.mongodb.com/
7https://www.documentdb.com/sql/demo
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study proves its suitability to tackle these problems. The further questions that arose
from the main research question can also be answered:

• Which methods need to be applied in order to improve the data quality?
We derived existing approaches from a literature review (see Section 2.2) and
adapted specific methods for cleansing time-oriented data. Moreover, we added
further methods (e.g., calculations) during the design process (see Section 3). Thus,
we end up with a collection of cleansing methods suited to improve data quality
(see Section 4.3.2 for a complete list of implemented cleansing methods).

• Which types of errors can be handled by automatic operations and how to support
this task?
We identified a comprehensive list of types of errors that can be supported by
(semi-) automatic operations from literature research (see Section 3.2 for a complete
list of error types handled by our prototype). However, there are also types of
errors that are hard to tackle by automatic methods. These include all types of
errors where human judgment is required, such as implausible values.

• Which types of errors need to be handled manually and how to support this task?
We evaluated the prototype regarding supported, but also unsupported operations.
In Table 5.1 we give a list of errors that need to be handled manually (such as
ambiguous time due to short format) together with explanations why they cannot
be supported by automatic means.

In context of this thesis we have designed and developed QualityTime, a scientific proto-
type to tackle the problem of cleansing time-oriented data. In addition we successfully
evaluated the prototype and derived answers to our research questions.
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APPENDIX A
Appendix

A.1 Dialogs and Parameters
Parameter names in italic are optional. However, some parameters are only needed in
some occasions, i.e., the date field is often required when interval start is not a datetime
value, but only contains a time. For an explanation on how and when to use a key column
see Section 4.3.2.1.

A.1.1 Impute Missing Values

Parameter Explanation
Column that contains missing
values

Name of the column that should be cleansed of
missing values.

Use interval duration to adjust
missing values

Tick if the mean of a number column should be
adjusted to the respective interval size.

(Start, end) The names of the corresponding start and end interval
column.

Use intervals instead of raw columns Tick if a time column should be adjusted to a
reference column instead of simply imputing its mean.

Reference column The name of the time column that has a reference to
the column that should be cleansed of missing values.
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Parameter Explanation

Date column The name of the date column that is needed if criteria
for the mean calculation are given.

Criteria

A list of criteria (same time, same weekday/same day
of the month/same day of the year) that an entry
must fulfill in order to be heeded towards the
calculation of the mean. Depending on the criteria a
date column and/or the two interval columns have to
be specified.

Table A.1: Imputation of Missing Values - Mean parameters.

Figure A.1: Imputation of Missing Values - Mean dialog for a number respectively a
time column.
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Parameter Explanation
Column that contains missing
values

Name of the column that should be cleansed of
missing values.

Use interval duration to adjust
missing values

Tick if the mean of a number column should be
adjusted to the respective interval size.

(Start, end) The names of the corresponding start and end interval
column.

Use intervals instead of raw columns
Tick if a time column should be adjusted to a
reference column instead of simply imputing the
median.

Reference column The name of the time column that has a reference to
the column that should be cleansed of missing values.

Table A.2: Imputation of Missing Values - Median parameters.

Figure A.2: Imputation of Missing Values - Median dialog for a number respectively a
time column.

73



Figure A.3: Imputation of Missing Values - KNN Dialog for a number column.

Parameter Explanation
Column that contains missing
values

Name of the column that should be cleansed of
missing values.

Use interval duration to adjust
missing values

Tick if the mean of the k nearest neighbors of a
number column should be adjusted to the respective
interval size.

(Start, end) The names of the corresponding start and end interval
column.

k Number of nearest neighbors that will take into
consideration for the mean computation.
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Parameter Explanation

Use Levenshtein distance for
nominal values

Tick if the Levenshtein distance should be calculated
instead of using 0 (= match) or 1 (= different) for
nominal values
(e.g., Thomas vs. Tomas, Levenshtein = 1, default =
1; Thomas vs. Peter, Levenshtein = 6, default = 1)

Distance Choose between Euclidean and Manhattan Distance
[54].

Standardize values for distance
calculation

All distances between values are between 0 and 1,
thus, the impact of columns containing huge values is
reduced (e.g., age would have a lower impact than
salary, because it is most likely between 18 and 65,
whereas salary could be between 20,000 and 60,000)

or

Special remark on date

Instead of comparing dates hour-wise day, month,
year, hour and minute are compared. Therefore,
2015-01-01 10:00 and 2014-01-01 10:00 would have a
smaller distance than 2015-01-01 10:00 and 2014-12-12
23:00.

Select columns that should be
ignored

Names of the columns that will not count towards the
distance calculation.

Table A.3: Imputation of Missing Values - KNN parameters.

Parameter Explanation
Interval start and end The names of the interval start and end columns.
and

Date column The name of the date column (if the interval start
column is time only).

Use standardized interval length The length of each imputed interval (if possible) in
minutes.

Avoid overlapping intervals

The inserted intervals will end before the next one
starts, i.e., if an interval ends at 14:00 and another
one starts at 14:00 they basically overlap in a strict
sense. This option avoids such scenarios and the
interval will end at 13:59.

Fill non-interval/date fields using

Choose between mean, median and KNN. As a new
entry will only contain a date and two times all other
fields will be empty, i.e., missing values. This option
will see them automatically filled.
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Parameter Explanation

Select intervals that should exist for
different days

Specify the desired interval frame for each day. You
can also use weekday, weekend and week to generalize
your specifications. A more precise input will ignore
the less precise one, i.e., Monday is more important
than weekday and weekday is more important than
week.

Criteria
If mean imputation should be applied to newly
inserted intervals then special criteria may be
specified.

Table A.4: Imputation of Missing Intervals parameters.

Figure A.4: Imputation of Missing Intervals dialog.
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A.1.2 Correct Implausible Values

Figure A.5: Correct Implausible Values - Average of Last N dialog.

Parameter Explanation

Column with incorrect values The name of the (number) column that contains
implausible values.
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Parameter Explanation

n The number of the last entries that fulfill the specified
requirements under criteria.

Use weight on average The most recent entries count more towards the
calculation of the new value than the older ones.

Date column The name of the date column (if the interval start
column is time only).

and

Interval start, interval end The name of the column that represents the interval
start respectively the end of the interval.

Choose criteria that should be
fulfilled by the previous n entries

The possibilities are:

• same time, i.e., same interval start and end but
different date,

• same day of the week, i.e., if the incorrect value
belongs to a Monday all Mondays are taken into
consideration,

• same day of the month, i.e., all entries that are
on the same day and week of the month (e.g.,
3rd Wednesday),

• same day of the year, i.e., all entries on the
same date, but different year.

Same time can be combined with each of the other
three choices whereas only of these three can be
selected at once.

Table A.5: Correct Implausible Values - Average of Last N parameters.

Parameter Explanation

Column with incorrect values The name of the (number) column that contains
implausible values.

Method Single, double or triple exponential smoothing (see
Section 2.2.4).

Method specific parameters α, β, γ and l depending on the chosen method.

Adjust the calculated values to the
intervals (from, to)

In case the values are assigned to intervals of different
lengths, the calculation will be executed with remark
on the interval length (only available for single and
double exponential smoothing).

Replace values that deviate from the
calculated average by (in %)

This criteria can be used to detect outliers that were
not detected through checks.

Table A.6: Correct Implausible Values - Exponential Smoothing parameters.

78



Figure A.6: Correct Implausible Values - Exponential Smoothing dialog.
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Figure A.7: Correct Implausible Values - Set Null and Impute dialog.

Parameter Explanation

Column with incorrect values The name of the (number) column that contains
implausible values.

Use interval duration to adjust
missing values

Tick if the mean of the k nearest neighbors of a
number column should be adjusted to the respective
interval size.

(Start, end) The names of the corresponding start and end interval
column.

Method Mean, Median or KNN for imputation after setting
outliers to NULL.

Method specific parameters See Section A.1.1 for further information.

Table A.7: Correct Implausible Values - Set Null and Impute parameters.
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Figure A.8: Correct Implausible Values Cumulated Value Outliers dialog.

Parameter Explanation

Column with incorrect values The name of the (number) column that contains
implausible values.

n The number of entries that are used to calculate the
mean, which will be used on the following entries.

Date(-Time) column(s)

The name of the column that represents the start of
the interval. If the column is a date no further input
is required, if it is of type time a date column must be
specified.

Adjust mean to interval duration Whether the mean should be calculated with respect
to the interval duration.

2nd column The name of the column that represents the end of
the interval.

Table A.8: Correct Implausible Values - Cumulated Value Outliers parameters.
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A.1.3 Deduplication

Figure A.9: Deduplication Detection dialog.

Parameter Explanation

Sa
m
e
T
im

e

Exact same time Whether it is forbidden that two entries occur at the
same time.

Exclude key column Unless their key column entry is different.

Date column The name of the date column (not needed if interval
start is a date.

Interval start The name of the (date-)time column that represents
the interval start.

Interval end The name of the (date-)time column that represents
the interval end.
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Parameter Explanation

Si
m
ila

rit
y

Similarity Whether entries should be checked on how similar
they are.

Precision
How similar they should be (it is suggested to start
with a higher similarity and lower it if the found
matches were not satisfying)

Set column weights

How much weight should be assigned to a column.
Default value is 1, 0 means ignoring a column and
every value greater 1 is especially important for
duplicate detection.
It is recommended to assign weights, especially
ignoring unimportant columns.

Table A.9: Deduplication Detection parameters.

Figure A.10: Deduplication Method dialog.

Parameter Explanation

St
ra
te
gy

Remove all but the first
entries of possible
duplicates

As the name says; the first entry is always the entry
that appeared first, i.e., the one with the lower row
number (does not require further input).

Remove the most
conflicted entries first

Entries that conflict with many others are removed
first (does not require further input).

Manual selection of
entries that should be
kept or deleted

See Figure A.11 and Table A.11.

Table A.10: Deduplication Detection parameters.
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Figure A.11: Manual Duplicate Removal dialog.

Parameter Explanation

Master Entry The entry to be kept in case the found duplicates are
actual duplicates.

Merge/Delete
The entry/entries that should be deleted or in case
the master entry does contain empty fields these will
be used to fill them.

Next Duplicates Continue to the next possible matches.

Skip Other Findings
Cancel the cleansing operations. Every match that
was marked as duplicates, i.e., master and
merge/delete entries were specified, will be merged.

Table A.11: Manual Duplicate Removal parameters.
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A.1.4 Change Column

Figure A.12: Change Column - Delete dialog.

Parameter Explanation
Column to change The name of the column to delete.

Table A.12: Change Column - Delete parameters.
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Figure A.13: Change Column - Rename dialog.

Parameter Explanation
Column to change The name of the column to rename.
New name of the
column The name the column should carry (must not exist).

Table A.13: Change Column - Rename parameters.
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Figure A.14: Change Column - Split dialog.

Parameter Explanation
Column to change The name of the column to split.

Split field at A character or a String that separates the old values from the new
(as in the values of the new column) values.

Name of the new
column The name the column should carry (must not exist).

Select type of the new
column

The type of the new column (must fit the split, i.e., cannot assign
a text to a number column).

Table A.14: Change Column - Split parameters.
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Figure A.15: Change Column - Merge dialog.

Parameter Explanation
Column to change The name of the column that is the target to the merge.

Separate merged
columns with

A character or a String that separates the current values from the
new (as in the values of the column to merge) values (when
merging a date and a time column that sign will automatically be
set as space character!).

Merge target column
with The name the column should be merged into the .

Table A.15: Change Column - Merge parameters.
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Figure A.16: Change Column - Delete Content dialog.

Parameter Explanation
Column to change The name of the column of which content should be deleted.
Delete column content
after (and inclusive) A character or String and all that follows will be removed.

Table A.16: Change Column - Delete Content parameters.
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Figure A.17: Change Column - Interval Representation dialog.

Parameter Explanation
Column to change The name of the column to change its representation.

Reference column
The name of the column that defines the start point of the interval
(e.g., Column ‘Interval Start’: 08:00 and Column ‘Interval End’:
10:00 will result in changing ‘Interval End’ to 120').

Table A.17: Change Column - Interval Representation parameters.
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Figure A.18: Change Column - Apply Equation dialog.

Parameter Explanation
Column to change The name of the column that is the goal of the calculation.
Equation The equation to be applied.

Create a sequence Whether the result of the calculation should be cumulated (e.g., here, all net
profits are added up).

Using key to
group For which key entries the accumulation should be created.

Only update fields
with annotations

Whether only annotated fields should be updated with the result of the
calculation.

Table A.18: Change Column - Apply Equation parameters.
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Figure A.19: Change Column - Change Time dialog.

Parameter Explanation
Column to change The name of the column that is the goal of the change in time.
Apply condition Whether an condition should be applied.
Condition The conditional input an entry must fulfill in order to be target of the changes.

Change in time The number and the unit of the change in time (- can be used if time should
be subtracted).

Update all other
fields with the
same time shift

Whether the change in time should be applied to all columns of the same type.
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Parameter Explanation

Use date column
Whether a date column is linked to the column to change. Otherwise changes
that will result in a shift of date (e.g., adding 24 hours) will not be noted
properly).

Date column The name of the linked date column.
Use reference
column Whether another (time) column is linked to the column to change.

Reference column
The name of the linked (time) column (in case the date changes for one time
column the second time column will be linked to a new date column so it
becomes obvious that only one column was changed).

Table A.19: Change Column - Change Time parameters.

Figure A.20: Change Column - Conditional Equation dialog.

Parameter Explanation
Column to change The name of the column that is used for the condition.

Equation The equation to be applied (including the column that is the goal of the
equation).

Only update fields
with annotations

Whether only annotated fields should be updated with the result of the
calculation.

Table A.20: Change Column - Conditional Equation parameters.
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A.1.5 Add Column

Figure A.21: Add column dialog.

Parameter Explanation
Type of the new
column

Whether the new column should hold date, time, text, integer, double or
Boolean content.

Name of the new
column The name of the new column.

Table A.21: Add Column parameters.

94



A.1.6 Change Rows

Figure A.22: Change rows dialog.

Parameter Explanation
Condition column The name of the column that is used for the condition.

O
pe

ra
tio

n

Apply equation Whether an equation should be applied to the
relevant rows.

Equation The equation (including the target column).
Remove all rows that
satisfy the condition All rows for which the condition is true are removed.

Remove all erroneous
rows

All rows that contain dirty data and match the
condition are removed.

Table A.22: Change Rows parameters.
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A.1.7 Sort Rows

Figure A.23: Sort rows dialog.

Parameter Explanation
Column to sort The name of the column that is the main criterion for sorting.
Choose more
columns for
sorting

Add further names that will determine which row comes first if the main
criterion is equal.

Table A.23: Sort Rows parameters.
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A.1.8 Edit Intervals

Figure A.24: Edit Interval - Standardize Interval Length dialog.

Parameter Explanation
Interval columns
(start, end) The name of the start respectively the end interval column.

Date column The name of the (key/main) date column.
Interval length (in
minutes) The length that intervals should have after the operation.

Start/End of
interval The range of intervals that should be transformed to the new length.

Value adjustment
Add all columns that should be adjusted to the new length (e.g., if the
interval was one hour and the new length is two then the values of the selected
column(s) will be doubled).

Table A.24: Edit Interval - Standardize Interval Length parameters.
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Figure A.25: Edit Interval - Group by Date dialog.

Parameter Explanation
Interval columns
(start, end) The name of the start respectively the end interval column.

Date column The name of the (key/main) date column.
Unit for grouping Whether the entries should be grouped by day, month or year.

Value adjustment
Add all columns that should be adjusted to the new length (e.g., if the
interval was one hour and the new length is two then the values of the selected
column(s) will be doubled).

Table A.25: Edit Interval - Group by Date parameters.
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Figure A.26: Edit Interval - Set Limits dialog.

Parameter Explanation
Interval columns (start,
end)

The name of the start respectively the end interval
column.

Date column The name of the (key/main) date column.

M
et
ho

d

Delete all entries
outside the boundaries Remove all entries that do not fit the limits.

Add annotations to all
intervals outside the
limits

Annotates entries without deleting them.

Se
le
ct
io
n Day To which day (weekday/weekend/week) the limits
should be applied.

Interval start The lower boundary of the limit for a certain day.
Interval end The upper boundary of the limit for a certain day.

Table A.26: Edit Interval - Set Limits parameters.
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Figure A.27: Edit Interval - Minimum Off-Time dialog.

Parameter Explanation
Interval columns (start,
end)

The name of the start respectively the end interval
column.

Date column The name of the (key/main) date column.
Date column (interval
end)

If the interval end column has a date column linked to
it use the name of it here.

Length & unit How much time should pass between the end of an
entry and the start of the next one.

M
et
ho

d

Delete intervals All entries that violate the minimum-off time
requirement are deleted.

Annotate intervals Violations are annotated, but no rows are deleted.

Shift intervals Violated entries are shifted by the exact amount of
time, so they do not violate the requirement anymore.

Table A.27: Edit Interval - Minimum Off-Time parameters.
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Figure A.28: Edit Interval - Split Intervals for each Day dialog.

Parameter Explanation
Interval columns (start,
end) The name of the start respectively the end interval column.

Date column The name of the (key/main) date column.
Date column (interval
end)

If the interval end column has a date column linked to it use the
name of it here.

Delete date column
(interval end)

Deletes the date column that is linked to interval end, because
after the split the date of interval start and interval end is the
same.

Value adjustment
Add all columns that should be adjusted to the new length (e.g.,
if the interval was one hour and the new length is two then the
values of the selected column(s) will be doubled).

Table A.28: Edit Interval - Split Intervals for each Day parameters.
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Figure A.29: Edit Interval - Correct Overlapping Intervals dialog.

Parameter Explanation
Interval columns
(start, end) The name of the start respectively the end interval column.

Date column The name of the (key/main) date column.

Table A.29: Edit Interval - Correct Overlapping Intervals parameters.
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QualityTime - Introduction 
 
QualityTime is a tool that supports the recognition and cleansing of `dirty` time-oriented data. 
The interface is structured in the following way: 
 

 
 
It consists of (a) a menu that allows access to Checks and Cleansing Operations, (a2) which 
can also accessed via the command line - however, only basic operations are supported this 
way, complicated operations with many input parameters must be executed using the menu. 
The data is presented in form of a fisheye-table and shows (b) annotated, i.e., erroneous, 
entries and gives hints, which problems exist. At last, (c) a status bar visualizes what 
happened during the last check or cleansing operation (e.g., number of changed rows). 
 
Further help regarding cleansing operations can be accessed by pressing F1 or navigating 
to Help via the menu. Additionally, each cleansing operation dialog will offer a short 
explanation of the most important input parameters - if any question should arise “F1” will 
provide more information. 
 
In case a mistake happens (e.g., wrong parameterization leads to undesired results) the 
History can be used to undo (or redo) operations. 
 
QualityTime - The Data 
 
QualityTime reads .csv files and visualizes them in the table. The file (Data.csv) you will be 
working with is purely fictional and has no reasoning behind it. The data itself is supposed to 
present sales and profit figures of two coffee houses that were recorded from 29.12.2014 to 
31.03.2015. Sometimes programs used to record data produce faulty values, moreover, user 
input can be wrong (typos) and thus, several data problems can occur and will be introduced 
step by step of the tasks that need to be completed during the study. 
  

A.2 User Study Material
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QualityTime - User Study 
 
 
Task 1 - Two or more days and one entry  
Sometimes the software did not correctly recognize the closing of the shop and did not 
create a new entry for a new day (e.g., the shop closed on the 1. January 2015 and re-
opened at the 2. January 2015, but the data lists them as one entry ranging from 1. January 
2015 to 2. January 2015). The first task is to remove such errors and list them as two 
separate entries. However, splitting one entry into two separate ones results in problems 
with parameters. Think about which parameters have to be adjusted when splitting them. 
 

 
 
Task 2 - Opening hours 
Buckstar’s systems did not correctly set the time after changes were applied on the 28. 
February 2015. The time now is one hour behind the actual time. Make sure both date 
columns, Date and End Date are correctly set. 
 

  
 
Task 3 - Limit the interval to the regular opening hours 
In Task 1 you were asked to split days. However, the days now do not contain the correct 
opening hours. Moreover, some opening hours are not correctly set for weekends. 
The opening hours for Buckstar are: 
Monday - Friday: 06:30 - 21:00 
Saturday & Sunday: 08:00 - 21:00 
 

 
 
 
Task 4 - Impute Missing Intervals 
Unfortunately, some records were lost and could not be retrieved. Thus, it is necessary to 
impute missing intervals.  
The opening hours for MacD Cafe are: 
Monday - Sunday: 09:00 - 23:00 
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In order to save some work impute all missing values during the same step. Consider that 
the sales figures strongly depend on the weekday (more sales on weekdays, but more profit 
on weekends (because people take more time and order cake instead of only a coffee to 
go). 
 

  
 
 
Task 5 - Correct Implausible Values 
Run “Checks - Find Outliers” to detect implausible values throughout the data set w.r.t. to 
Sales figures (parameters see Figure).  
 
After detecting the problems use two different methods in order to resolve them: 
 

● Apply Moving Average - Triple Exponential Smoothing on Buckstar (only). 
○ Note: L stands for the number of entries during one cycle. 
○ α: assigns a weight to the current (perhaps faulty) entry. 
○ Allow deviations in the range of 20 to 25 percent. 
○ The table needs to be sorted ascending by Company Name and Date. 

● Apply Set Null - Impute Mean afterwards (please note: since Buckstar was cleansed 
of incorrect values only MacD Cafe will be affected by these changes, hence it is not 
necessary to specify MacD Cafe exclusive (however, specifying the key column is 
important regarding the mean calculation!). 

 

105



 
 
Task 6 - Advanced calculation: Calculate donations 
For this task three separate steps are necessary. In case you are stuck with task 6b make 
sure to check out the provided help. 
 
Task 6a - Add new column: type: Double (Decimal), name: Donation sum (hint: if you 
prefer entering commands textually do so) 
 
Task 6b - Advanced calculation: each company donates 0.05€ per sale. The donations 
should be summed up, i.e., 1€ donations on the first day, 2€ donations on the second day 
should be displayed as 1€ on the first day, 3€ on the second, etc. 
 
Task 7 - Change date format 
Because both companies are located in the US, the company headquarters wants to read 
Date as 29-12-2014 for example (but keep the time as it is!). 
 
Thank you for participating in the study! 
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