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Kurzfassung

Bodenfeuchte ist einer der wichtigsten Treiber im globalen Wasserkreislauf. Globale
Bodenfeuchtemessungen sind daher unerlässlich um hydrologische Phänomene im System
Erde wie den Klimawandel, Vegetationswachstum und andere zu erforschen. Die Wichtigste
Quelle solcher Daten sind satellitengestützte Mikrowellensysteme, allerdings unterliegen die damit
gewonnenen Beobachtungen diversen Ungenauigkeiten. Die korrekte Interpretation und Nutzung
solcher Daten erfordert daher ein umfassendes Verständnis und die Kenntnis um ihre Fehler.

Die sogenannte Triple Collocation (TC) Analyse ist eine Methode zur individuellen Schätzung
der Signal- und Fehlervarianzen von drei Datensätzen mit untereinander unkorrelierten Fehlern,
ohne dabei einen hochgenauen Referenzdatensatz zu benötigen. Sie ist daher eine der wichtigsten
Methoden zur Schätzung von Fehlerstrukturen in satellitenbasierten Bodenfeuchtedaten. Das volle
Potential der Methode ist jedoch noch nicht voll ausgeschöp� und nach wie vor Gegenstand
aktueller Forschung. Allerdings basiert die Methode auf einigen Annahmen über die Struktur
der zu Grunde liegenden Daten, deren Gültigkeit ebenfalls noch nicht ausreichend untersucht
wurde.

Ziel dieserArbeit ist dieWeiterentwicklung der TCMethode für eine verbesserte und vollständigere
Beschreibung der Fehlerstrukturen von satellitenbasierten Bodenfeuchtemessungen. Bestehende
Implementierungen der Methode werden Begutachtet, die zugrunde liegenden Annahmen
evaluiert und die Methode erweitert beziehungsweise generalisiert zum Zwecke einer objektiveren
Schätzung der Datenqualität von Bodenfeuchteprodukten, sowie zur Schätzung von räumlichen
Fehler Autokorrelationsstrukturen und Fehler Kreuzkorrelationsstrukturen.
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Abstract

Soil moisture is one of the most important drivers of the hydrological cycle. �erefore, global soil
moisture records are needed to study hydrology driven phenomena of the earth system such as
climate change, vegetation growth, and many others. �e most important sources for global soil
moisture records are space borne microwave instruments. However, such satellite-derived soil
moisture products are subject to errors and their correct interpretation and application requires
an in-depth understanding of their accuracy.

Triple collocation (TC) analysis is a method for estimating the individual signal- and random
error variances of three collocated data sets with mutually uncorrelated errors without relying on a
high-quality reference data set. It has therefore evolved as one of the most important methods for
estimating error structures in remotely sensed soilmoisture data sets. Nevertheless, the exploitation
of the full potential of the TC method is still subject to ongoing research. On the other hand, TC
analysis is based on a variety of assumption on the structure of the underlying data sets whose
validity hasn’t been fully investigated yet.

�is thesis further develops the TCmethod, aiming for an improved andmore complete estimation
of error structures in remotely sensed soil moisture data sets. Existing TC implementations
are reviewed, assumptions underlying the method are evaluated, and novel generalizations and
extensions to the method are proposed, which allow for a more objective interpretation of soil
moisture data quality as well as for the additional estimation of spatial error auto-correlation and
mutual error cross-correlation structures.
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"Uncertainty is an uncomfortable position.
But certainty is an absurd one."

- Voltaire -

1



2



Chapter 1

Introduction

�e invention of space-borne remote sensing techniques in the late 20th century has heralded a
new era for our understanding of the Earth system by enabling frequent global observations of the
state and dynamics of biogeophysical parameters. Soil moisture is among these one of the most
important drivers of the global hydrological cycle, in�uencing processes such as land-atmosphere
energy �uxes, climate change, vegetation growth, and many others (Legates et al., 2011).

To date, the most important sources for global soil moisture records are satellite-based microwave
radar and radiometer instruments (Liu et al., 2011b). However, soil moisture retrievals from
these instruments are - as all measurements - subject to errors which originate not only from
noise in the measurement system itself, but also from simpli�cations, violated assumptions and
miscalibrations in the retrieval models that are used to extract soil moisture information from
raw satellite measurements. �erefore, the exploitation of soil moisture data requires an in-depth
understanding of their accuracy.

Traditionally, the accuracy assessment of any measurement system is based on relative inter-
comparison with high-quality reference data acquired from high-accuracy instruments under well-
controlled laboratory or �eld conditions. However, the estimation of errors in satellite observations,
particularly frommicrowave instruments, is not as straight forward because they sample the Earth
surface with measurements that integrate over several hundreds of square kilometers. Such large
footprints are virtually impossible to sample in situ, especially on a global scale which would be
required to characterize the quality of soil moisture retrievals taken over di�erent land cover types
and under varying climatic conditions.

Nevertheless, soil moisture is a large-scale phenomenon that attains a certain degree of temporal
stability (Vachaud et al., 1985) which means that measurements taken at single locations can be -
in the temporal domain - more or less representative for soil moisture dynamics over larger areas.
�erefore, in the past, many studies have attempted to built up in situ networks with a high spatial
sensor density in order to generate reliable reference data for the validation of satellite-based soil
moisture retrievals (Jackson et al., 2010). However, such high-density networks are still scarce on a
global scale (Dorigo et al., 2011a) and most available in situ reference data are - in addition to their
inherent measurement errors - still subject to representativeness errors which o�en even exceed
current soil moisture product accuracy targets. (Miralles et al., 2010; Gruber et al., 2013).
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A remedy to this issue is provided by the so-called triple collocation (TC) method, which was �rst
proposed by Sto�elen (1998) for sea winds and later applied also to soil moisture (Scipal et al., 2008;
Dorigo et al., 2010) and other geophysical variables (Vogelzang et al., 2011; Caires and Sterl, 2003;
Roebeling et al., 2012; Fang et al., 2012). TC changes the paradigm of relying on a relative inter-
comparison with high-quality reference data and instead uses three (erroneous) data sets with
mutually uncorrelated errors in the analysis in order to simultaneously separate the signal and error
components of each individual data set. More speci�cally, TC analysis allows for the estimation
of both absolute random error variances of the data sets and relative scaling coe�cients between
the data sets. Absolute systematic errors with respect to the truth, however, remain unknown but
they are usually anyhow considered as being of minor importance since most applications require
information on temporal soil moisture dynamics rather than on absolute soil moisture levels (Crow
and Van den Berg, 2010).

Even though TC analysis has been recognized as one of the most important methods for estimating
error structures in remotely sensed soil moisture data sets there are still several research gaps. First
of all, TC analysis is based on a variety of assumptions. Even though their validity is questioned
frequently (Yilmaz and Crow, 2014), they have hardly been investigated, not least due to the lack
of su�cient data or appropriate methods to do so (Gruber et al., 2016a). However, while these
assumptions are o�en considered unique to TC analysis it also hasn’t been investigated in how far
they are relevant to conventional relative error metrics.

�e most critical assumption is probably the assumption of mutually uncorrelated errors between
data sets (Yilmaz and Crow, 2014). A violation of this assumption induces biases in the TC-based
error estimates. On the other hand, even if the errors of di�erent data sets may be estimated
in a consistent manner by carefully selecting independent triplets, the subsequent simultaneous
use of data sets with correlated errors in any statistically rigorous data assimilation or merging
scheme requires an accurate parameterization of their error correlation magnitude (Crow et al.,
2015). However, no method is currently available to provide such estimates.

While the estimation of error cross-correlations remains an unresolved issue, TC analysis has been
applied to estimate temporal error auto-correlation structures (Zwieback et al., 2013). Following
this method, TC analysis may also be used to estimate error auto-correlations in the spatial
domain. Such approach hasn’t been reported in literature yet; most likely because spatial error auto-
correlations do not a�ect the consistency of TC-based error variance estimates. Nonetheless, the
existence of spatial error auto-correlation potentially allows for laterally propagating soil moisture
information across grid cells using two-dimensional (2D) data assimilation strategies.

Finally, several studies have reported the potential of extending TC analysis to more than three
data sets (Zwieback et al., 2012; Su et al., 2014a; Pierdicca et al., 2015), yet it remains unknown which
additional information can be gained from doing so.
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1.1 Study objectives

�is study aims to �ll some of the above described research gaps by further developing the TC
method.�e speci�c objectives of the three research articles upon which this study is based are:

I Review on the state-of-the art in TC analysis

(a) Reviewing existing TC implementations

(b) Evaluating the assumptions underlying TC analysis and investigating their relation to
other performance metrics

(c) Investigating the contribution of representativeness errors to TC-based error estimates

(d) Identifying/de�ning an optimal TC-based approach for assessing soil moisture data
quality

II Estimation of spatial error auto-correlation structures

(a) ExtendingTCanalysis for estimating spatial error auto-correlations in soilmoisture data
sets

(b) Implementing a 2D Kalman �lter that utilizes spatial error auto-correlation estimates
for propagating soil moisture information in space

(c) Analytically investigating the sensitivity of such �lter to non-zero spatial error auto-
correlations

III Estimation of error cross-correlation structures

(a) Generalizing the TC method to allow for the inclusion of an arbitrary number of data
sets

(b) Utilizing gained degrees of freedom for estimating error cross-correlations between soil
moisture data sets

(c) Implementing a least-squares solution to the collocation system of equations to increase
the precision of the estimates
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1.2 Summary of the publications

1.2.1 Publication I: Recent advances in (soil moisture) triple collocation
analysis

�e �rst publication (Gruber et al., 2016a) is a review paper on existing triple collocation
implementations. Di�erent notations which have been used in the past to formulate and solve
the TC problem - either based on data set covariances or cross-multiplied di�erences - are shown
to be mathematically identical. However, TC implementations di�er in the way the obtained error
estimates are presented: usually as (scaled) absolute error variances. More recently, also signal-
to-noise ratio (SNR) related metrics, i.e., metrics which relate the error variances to the variance
of the underlying soil moisture signal, have been proposed as more objective quality indicator. In
this publication we propose and demonstrate the combined investigation of the SNR expressed in
logarithmic units, the unscaled error variances, and the soil moisture sensitivities of the data sets
as an optimal strategy for the evaluation of remotely-sensed soil moisture data sets.

Moreover, this publication provides an evaluation of the assumptions underlying the triple
collocation method, which are: (i) linearity between the true soil moisture signal and the
observations, (ii) signal and error stationarity, (iii) independency between the errors and the soil
moisture signal (error orthogonality), and (iv) independency between the errors of the data set
triplet (zero error cross-correlation). While these assumptions are o�en considered to be unique
to the TC method we show analytically that they are also implicitly made in the application of
other conventional performance metrics such as the correlation coe�cient or the Root-Mean-
Square-Di�erence (RMSD). Moreover, while a variety of diagnostic studies indicate that some of
these assumptions are not always met, only few TC modi�cations have been proposed to mitigate
the impact of violations thereof. �is publication identi�es the assumption of zero error cross-
correlation as potentially the most critical one, yet up to now no method was available for testing
its validity. A potential remedy to this problem is provided in the third publication (Gruber et al.,
2016b), where we propose an extension to the TC method which allows to estimate error cross-
correlations under certain conditions (Section 1.2.3 and Chapter 4).

Finally, this publication shows analytically the impact of representativeness errors on the individual
TC-derived error variance estimates of the data sets when they di�er in their spatial resolution.

1.2.2 Publication II: The potential of 2D Kalman filtering for soil moisture
data assimilation

�e second publication (Gruber et al., 2015) aims for the estimation and exploitation of spatial error
auto-correlation structures in soil moisture data sets. While temporal error auto-correlations in
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single data sets andmutual error cross-correlations between data setsmainly introduce biases in the
validation or application of soil moisture products, non-zero error auto-correlations in modelled
and/or remotely sensed data provide an opportunity for laterally propagating soil moisture
information to neighboring modelling pixels by utilizing a 2D data assimilation strategy.

To date, most 2D land data assimilation systems have been based on relatively crude and
approximate guesses on error correlation structures. In this publication we propose a novel method
as an extension of triple collocation analysis for reliably estimating spatial error auto-correlations.
�e method is validated using synthetic data sets and applied to drive a 2D Kalman �lter both in a
synthetic experiment and in a real-data scenario. Results of the real-data experiment are validated
using well-controlled in situ reference stations as well as modelled reference soil moisture �elds.

�e synthetic experiment shows that themethod is able to recover true spatial error auto-correlation
levelswithout a bias andwith negligible RMSE.Moreover, by using these estimates, a signi�cant skill
gain of the 2D �lter with respect to a one-dimensional (1D) �lter (in terms of correlation with the
synthetic truth) is achieved. However, while considerable spatial error auto-correlation also exists in
the errors for all three real-data products, the inclusion of this information into the 2D assimilation
system does not signi�cantly improve the performance of the system relative to to 1D baseline.�is
result is explained via an analytical evaluation of the impact of spatial error auto-correlation on the
steady-state Kalman gain, which reveals that 2D �ltering requires the existence of large error auto-
correlation di�erences (between the assimilation model and the assimilated observations) in order
to enhance the analysis relative to a 1D �ltering baseline. As a result, large error auto-correlations
alone (in both the model or the observations) are not su�cient to motivate the application of a 2D
land data assimilation system.

Moreover, the �ndings of this publication reveal that (commonly made) crude assumptions of
spatial error statistics in a 2D system will at best maintain the performance of a 1D approach
or - more likely - worsen the �lter forecasts because an over- or underestimation of error auto-
correlation di�erence can lead to an overestimation (in absolute terms) of the Kalman gain weight
for neighboring pixels.

1.2.3 Publication III: Estimating error cross-correlations in soil moisture
data sets using extended collocation analysis

In the third publication (Gruber et al., 2016b), the TC method is generalized to allow for the
inclusion of an arbitrary number of data sets - referred to as extended collocation (EC) analysis -
which not only increases the precision of the error estimates of the individual input data sets but also
allows to relax the assumption of zero error-cross correlation between some data set combinations,
which further allows for the estimation of some non-zero error cross-correlations.�e number of
non-zero error cross-correlations that can be estimated is limited by the overall number of data sets
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used and by their underlying error cross-correlation structure: Each member of the data set pairs
with assumed non-zero error cross correlationmust also be a member of at least one data set triplet
with fully independent errors. Remaining degrees of freedom are used to solve the collocation
system of equations in a least-squares sense.

A synthetic experiment shows that EC analysis is able to reliably recover true error cross-correlation
levels. Applied to real soilmoisture retrievals from theAdvancedMicrowave Scanning Radiometer-
EOS (AMSR-E) C-band and X-band observations together with Advanced Scatterometer (ASCAT)
retrievals, modeled data from the Global Land Data Assimilation System (GLDAS)-Noah and
in situ measurements drawn from the International Soil Moisture Network (ISMN), EC yields
reasonable and strong non-zero error cross-correlations between the two AMSR-E products.
Against expectation, non-zero error cross-correlations are also found between ASCAT and AMSR-
E.

Even though only demonstrated for four and �ve data sets, the EC method proposed in this
publication is readily applicable to an arbitrary number of data sets, which would facilitate the
estimation ofmore non-zero error cross-correlation terms (e.g., when using 3 passive data sets such
as SMAP, AMSR2, and SMOS together with 2 active data sets such as ASCAT onboard MetOp-
A and MetOp-B).�erefore, it represents an important step towards a fully-parameterized error
covariance matrix which is vital for any rigorous data assimilation framework or data merging
scheme.

1.2.4 Author’s contributions

My personal contributions to these publications are as follows:

• Publication I: Conduction of the literature review, analytical proof of the similarity
between di�erent TC implementations, analytical demonstration of the similarity between
assumptions made in TC and other conventional performance metrics, analytical
investigation of the impact of representativeness errors on TC error estimates, demonstration
of the logarithmic SNR as ideal validation strategy, major part of the writing

• Publication II: Development of the method for estimating spatial error auto-correlations,
implementation and application of the 2D Kalman �lter, validation of the proposed method,
analytical evaluation of the empirical �ndings, major part of the writing

• Publication III: Development and implementation of the extended collocation method,
validation of the method, major part of the writing
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1.3 Scientific impact

�e key �ndings and major scienti�c contributions of this study which - to my best knowledge
- haven’t been published before elsewhere in peer-reviewed literature are summarized as the
following:

I Existing TC implementations and solutions are shown to be mathematically identical

II �e logarithmic SNR is demonstrated as ideal representation for soil moisture data quality,
especially for the relative comparison amongst di�erent products

III It is shown analytically that the assumptions on error orthogonality and zero-error cross
correlation are not unique to TC analysis but also implicitly made in other conventional
(covariance-based) performance metrics such as the correlation coe�cient or the RMSD

IV �e contribution of representativeness errors to error estimates gleaned from TC analysis is
shown analytically

V TCanalysis is generalized to allow for the inclusion of an arbitrary number of data sets solving
the collocation system of equation in a least-squares sense

VI �e proposed generalization of TC allows to estimate error cross-correlation structures
between soil moisture data sets

VII An alternative extension of TC is proposed which allows for the estimation of spatial error
auto-correlations in soil moisture data sets

VIII It is shownboth empirically and analytically that 2D�ltering approaches require the existence
of large spatial error auto-correlation di�erences between the assimilation model and the
observation data set rather than the mere existence of large spatial error auto-correlations in
the data sets

�e scienti�c publications on which this study is based are presented in the following chapters.
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Chapter 2

Recent advances in (soil moisture) triple
collocation analysis

To date, triple collocation (TC) analysis is one of the most important methods for the global-
scale evaluation of remotely sensed soil moisture data sets. In this study we review existing
implementations of soil moisture TC analysis as well as investigations of the assumptions
underlying the method. Di�erent notations that are used to formulate the TC problem are shown
to be mathematically identical. While many studies have investigated issues related to possible
violations of the underlying assumptions, only few TC modi�cations have been proposed to
mitigate the impact of these violations. Moreover, assumptions, which are o�en understood as
a limitation that is unique to TC analysis are shown to be common also to other conventional
performance metrics. Noteworthy advances in TC analysis have been made in the way error
estimates are being presented by moving from the investigation of absolute error variance
estimates to the investigation of signal-to-noise ratio (SNR) metrics. Here we review existing
error presentations and propose the combined investigation of the SNR (expressed in logarithmic
units), the unscaled error variances, and the soil moisture sensitivities of the data sets as an optimal
strategy for the evaluation of remotely-sensed soil moisture data sets.

∗�is chapter is an edited version of: Gruber, A., Su, C.H., Zwieback, S., Crow,W., Dorigo,W., &Wagner,W. (2016).
Recent advances in (soil moisture) triple collocation analysis. International Journal of Applied Earth Observation and
Geoinformation, 45, 200-211.
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2.1 Introduction

Soil moisture is one of the most important drivers of the hydrological cycle. �erefore, global soil
moisture records are needed to study hydrology driven phenomena of the earth system such as
climate change, vegetation growth, and many others (Legates et al., 2011). �e most important
sources for global soil moisture records aremicrowave radar and radiometer instruments (Liu et al.,
2011b), and land surface models (Reichle et al., 2002). However, both satellite measurements and
model predictions are subject to errors and their correct interpretation and application requires an
in-depth understanding of their accuracy.

Triple collocation (TC) analysis is a method for estimating the random error variances of three
collocated data sets of the same geophysical variable (Sto�elen, 1998). It does not require the
availability of a high-quality reference data set and has therefore evolved as one of the most
important evaluation methods in earth observation. In this study we will focus exclusively on the
evaluation of remotely sensed soil moisture, even though some of the discussions and �ndings are
of general validity to other variables in hydrometeorology and oceanography (Vogelzang et al., 2011;
Caires and Sterl, 2003; Roebeling et al., 2012; Fang et al., 2012).

Since its development in 1998 a host of research has been carried out to investigate the limitations
of TC analysis, most of which are related to violations in the underlying assumptions that are made
on the structural properties of the considered data sets. However, only a few studies have proposed
methods to mitigate the impact of such violations. Moreover, the assumptions made in TC analysis
are o�en considered to be unique to the method, yet most of them are also implicitly made in
the application of conventional performance metrics, which has not been explicitly pointed out
in existing studies. �is study will provide a comprehensive discussion of the assumptions that
are made for TC analysis and the impact of possible violations, together with a review of already
existing investigations and proposed modi�cations of the TCmodel. Also, we will demonstrate the
similarity between the assumptions that are made for TC analysis, and those made for the most
important alternative performance metrics such as the linear correlation coe�cient and the root-
mean-squared-di�erence (RMSD).

Moreover, di�erent notations are being used to formulate and solve the TC problem, based either
on cross-multiplied di�erences between the data sets, or on combinations of the (co-)variances
between them (Sto�elen, 1998; Loew and Schlenz, 2011; Scipal et al., 2008; Dorigo et al., 2010;
Su et al., 2014b; McColl et al., 2014). �is has fostered the impression of structurally di�erent
implementations, yet all proposed notations are mathematically identical. �is identity will be
analytically clari�ed in this study.

While the fundamental underlying maths and the required assumptions have remained unchanged
over time, useful advances have beenmade in theway the obtained error estimates are presented and
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interpreted. In the literature, most studies investigate error variance estimates directly. Recently,
several studies proposed to investigate errors relative to the underlying signal, i.e., as a direct or
indirect representation of the signal-to-noise ratio (SNR) (Draper et al., 2013; Su et al., 2014b;
McColl et al., 2014). Even less common than the investigation of the SNR is the investigation of soil
moisture sensitivities, which can also be estimated using TC analysis (Sto�elen, 1998;McColl et al.,
2014). In this study we will review the proposed metrics and demonstrate their similarities as well
as their respective advantages and disadvantages. Finally, we propose the combined investigation
of the SNR (expressed in logarithmic units), the unscaled error variances, and the soil moisture
sensitivities of the data sets as an optimal combination to evaluate remotely sensed soil moisture
data sets, which best exploits the complementary information content of the available performance
metrics.

Section 2.2 compares the di�erent notations used to formulate the TC problem. Section 2.3 provides
a comprehensive discussion on the underlying assumptions. Section 2.4 compares di�erent error
presentations and demonstrates the proposed optimal evaluation strategy.

2.2 Triple collocation formulation

2.2.1 Error model

�e most commonly used error model for TC analysis has the following form:

i = αi + βiΘ + εi (2.1)

where i ∈ [X ,Y , Z] are three spatially and temporally collocated data sets. Θ is the unknown true
soil moisture state; αi and βi are systematic additive and multiplicative biases of data set i with
respect to the true state, and εi represents additive zero-mean random noise. Note that the additive
bias αi represents an o�set between the temporalmean of data set i and the true soil moisturemean.
�erefore, relative di�erences between α coe�cients of di�erent data sets can be easily corrected
for by matching their temporal mean. Relative correction of the β coe�cients is less trivial and will
be discussed in Section 2.2.3.

�e underlying assumptions for the error model in (2.1) are: (i) Linearity between the true soil
moisture signal and the observations, (ii) signal and error stationarity, (iii) independency between
the errors and the soil moisture signal (error orthogonality), and (iv) independency between the
errors of X, Y and Z (zero error cross-correlation). A detailed discussion on these assumptions will
be provided in Section 2.3.
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In TC analysis, the mean squared random error of all three data sets (i.e., the respective error
variance σ2ε i = ⟨ε2i ⟩, where ⟨⋅⟩ denotes the temporal average) are estimated individually. Unlike
the conventional (root-)mean-square-di�erence, TC estimates the error variances independently
from the errors in a chosen reference data set. �e most common way to solve for the σ2ε i is - as
proposed by Sto�elen (1998) - by cross-multiplying di�erences between the three a-priori rescaled
data sets. Sto�elen (1998) also proposed an alternative formulation (for the estimation of σ2ε i ), which
is based on combinations of the covariances between the data sets. Even though both approaches
aremathematically identical, the latter has been used only in a small number of recent studies (Loew
and Schlenz, 2011; Su et al., 2014b,a;McColl et al., 2014). For the remainder of this paper, the former
approach will be denoted as di�erence notation and the latter as covariance notation.

It is worth noting that standard triple collocation analysis based on (2.1) is a form of instrumental
variable (IV) regression and that the framework of IVmay provide an opportunity for extending the
analyses to include several more variables (>3 data sets) and polynomial models (Su et al., 2014a;
Bowden and Turkington, 1990). An alternative form of IV implementation is to use time-lagged
versions of a data set as a third variable. Under the condition of weakly auto-correlated errors in
the lagged variable, such an IV analysis yields the same results as TC but without the need for
three coincident data sets. �is is invaluable in practice when sampled data are limited due to
limited spatio-temporal coverages of measuring systems or non-stationarity issues. For a detailed
discussion on the relation between TC and IV we refer the reader to Su et al. (2014a) as this is
beyond the scope of this paper.

2.2.2 Difference notation

When using the di�erence notation (Sto�elen, 1998; Scipal et al., 2008; Dorigo et al., 2010), the
data sets �rst have to be rescaled against an arbitrarily chosen reference data set (this will be X
for the following example). Subsequently, error variances can be estimated by averaging the cross-
multiplied di�erences between the three data sets:

σ2εX = ⟨(X − YX)(X − ZX)⟩
σ2εXY

= ⟨(YX − X)(YX − ZX)⟩
σ2εXZ

= ⟨(ZX − X)(ZX − YX)⟩
(2.2)

where the superscript X denotes the scaling reference. A detailed derivation of (2.2) is provided in
2.A.

Since (2.2) requires rescaled data as input, it also estimates the error variances within the data space
of the chosen scaling reference. Any error in the rescaling of the data will in turn lead to errors in
the estimated error variances. In particular, these will not converge to the actual error variances,
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if the estimates of the scaling parameters themselves do not converge to their actual values as the
number of samples increases. In other words, these scaling parameters have to be inferred using a
consistent estimator.

2.2.3 Consistent estimation of scaling parameters

In the literature, many di�erent rescaling techniques (e.g., linear regression, standardization,
normalization, and others) have been applied. However, the only method that provides consistent
estimates of (linear) scaling parameters also in case of di�ering signal-to-noise ratios (SNR) is triple
collocation (Sto�elen, 1998; Yilmaz and Crow, 2013). It can be regarded as a form of instrumental
variable regression, where a third variable (for instance, Z) is used as an instrument to resolve
the relationship between erroneous measurements of two variables (X and Y) (Su et al., 2014a).
Similarly, Y can act as an instrument to resolving the X-Z relationship. �e resultant consistent
estimates of the scaling factors βi in these relationships yield the following solutions:

β∗Y = βX

βY
= ⟨(X − X)(Z − Z)⟩

⟨(Y − Y)(Z − Z)⟩ =
σXZ
σYZ

β∗Z =
βX

βZ
= ⟨(X − X)(Y − Y)⟩

⟨(Z − Z)(Y − Y)⟩ = σXY
σZY

(2.3)

�e overbar denotes the mean value of the time series, and β∗X and β∗Z are the rescaling coe�cients
which match the underlying true soil moisture signal variances or, more precisely, the soil moisture
sensitivities (i.e., the variances of βiΘ in (2.1)) through:

YX = β∗Y(Y − Y) + X ZX = β∗Y(Z − Z) + X (2.4)

Note that the above described scaling parameters could also be used to convert the scaled error
variances - obtained from (2.2) - back into their own data space, but usually they are kept in a
common data space to allow for a meaningful inter-comparison (see Section 2.4).

2.2.4 Covariance notation

An alternative approach for deriving the error variance (and scaling parameter) estimates is the
aforementioned covariance notation (Sto�elen, 1998; Loew and Schlenz, 2011; Su et al., 2014b,a;
McColl et al., 2014). It utilizes the data set variances (σ2i ) and covariances (σi j), which can be written
as:

σ2i = β2i σ
2
Θ + σ2ε i

σi j = βiβ jσ2Θ
(2.5)
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with i , j ∈ [X ,Y , Z] and i ≠ j. σ2Θ is the variance of the true jointly observed soil moisture signal;
the term β2i σ

2
Θ can be interpreted as the sensitivity of data set i to variations in this true signal.�at

is, the higher βi , the stronger is the response of measurement i to soil moisture changes. Using the
covariance notation allows to solve for the unscaled error variances directly through:

σ2εX = σ2X −
σXYσXZ

σYZ
σ2εY = σ2Y −

σYXσYZ
σXZ

σ2εZ = σ2Z −
σZXσZY

σXY

(2.6)

Using (2.5) also allows to estimate the TC-based rescaling parameters directly, as it can be seen
from (2.3). A detailed derivation of (2.5) and (2.6) is provided in 2.A.

In summary, both the di�erence and the covariance notation can be used to estimate random
error variances as well as (linear) rescaling parameters. In the di�erence notation, error variances
are estimated within a common (arbitrarily chosen) reference data space, having the possibility
of converting them back using the a priori (mandatorily) estimated scaling parameters. �e
covariance notation, on the other hand, directly estimates unscaled error variances, which could be
then scaled into a common data space using a posteriori (optionally) estimated scaling parameters.
�e choice of whether to use scaled or unscaled error variances depends on the application, yet the
choice of the notation is trivial as they provide identical results (see 2.A).

�e reason for using the covariance notation instead of the di�erence notation is that it provides
also estimates of the sensitivity of the data sets to soil moisture changes - represented by the β2i σ

2
Θ

parameters in (2.5) - in addition to the error variance estimates, whereas the di�erence notation
estimates only the latter.�ese soil moisture sensitivity estimates are obtained through:

β2Xσ2Θ = σXYσXZ
σYZ

β2Yσ2Θ = σYXσYZ
σXZ

β2Zσ2Θ = σZXσZY
σXY

(2.7)

�e investigation of soil moisture sensitivities provides additional opportunities for the validation
and inter-comparison of data sets, which have not been fully exploited yet and will be discussed
in Section 2.4. Before that, the following section discusses the assumptions that are made in TC
analysis and the impact of their possible violation and/or relaxation.
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2.3 Discussion of underlying assumptions

�e assumptions underlying the error model used in Section 2.2 are: (i) linearity between the
true soil moisture signal and the observations, (ii) signal and error stationarity, (iii) independency
between the errors and the soil moisture signal (error orthogonality), and (iv) independency
between the errors of X, Y and Z (zero error cross-correlation).

Many studies investigated the validity of these assumptions and proposed alternative strategies to
circumvent or minimize the impact of possible violations. Yet, the originally proposed formulation
of Sto�elen (1998) (as shown in Section 2.2), which is based upon these assumptions, is still the
most commonly used andmost robust implementation. Even though a variety of diagnostic studies
indicate that some of the assumptions are not always met and would require an adaptation of the
model, few studies have proposed viable alternatives. Moreover, no evidence has been provided that
any of the proposed adaptations led to an enhanced accuracy or reliability of the error estimates.

�e following sections will provide a detailed discussion of the key assumptions and strategies that
have been proposed to mitigate a violation of them.

2.3.1 Linearity

�e assumption of linearity between the signal and the errors determines the shape of the error
model in (2.1), i.e., i = αi + βiΘ + εi . It assumes the presence of additive and multiplicative
biases (αi and βi) as well as additive zero-mean random noise (εi), and only zeroth- and �rst-order
relationships to soil moisture.

While the covariance notation implies such linear model by de�nition (see Section 2.2.4), several
studies have attempted to apply a non-linear model to the di�erence notation by using non-
linear rescaling techniques such as cumulative distribution function (CDF-) matching. However,
common non-linear methods will fail in matching the underlying soil moisture signal unless the
SNR of the data sets are equal (as do also common linear methods other than the triple collocation
based rescaling described in Section 2.2.3) (Drusch, Wood, and Gao, 2005; Yilmaz and Crow, 2013).
�is, in turn, can bias TC error estimates as discussed in Section 2.2.2. Moreover, this bias due
to suboptimal scaling parameter estimation in a non-linear model might even exceed the bias
introduced via the application of a linear model to a non-linear system, provided that the apparent
non-linearities are small.

For instance, an in situ study by De Lannoy et al. (2007) indicates such a (third degree) polynomial
relationship between point-scale soil moisture with �eld areal average. Non-linear relationship is
also found between in situ, satellite-retrieved and modelled soil moisture by Su and Ryu (2015).
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However, other studies also suggest that soil moisture dynamics become progressively more linear
at coarser scales (Crow and Wood, 2002).

One important source of non-linearities is related to the aforementioned assumption of signal
stationarity, which will be discussed in the following section.

2.3.2 Stationarity

In TC analysis stationarity is usually assumed for both the soil moisture signal and the random
errors, i.e., their mean values and variances are assumed to remain constant over time.

2.3.2.1 Stationarity of the signal

Soil moisture is very unlikely to be stationary as rainfall and temperature patterns show a distinct
seasonal pattern inmost regions of theworld, which results in a distinct climatology in soilmoisture
records. Such violation of signal stationarity does not a�ect TC analysis per se, as it considers
temporally collocated triplets, which di�er from a hypothetical stationary mean and variance by
the same magnitude.

A problem arises if the climatology of the three used data sets di�er from one another. �is can
happen for two reasons. Firstly, the data sets are very unlikely to have exactly the same spatial
support.�erefore, they could be a�ected by physical processes which might in fact have di�erent
seasonal patterns, such as the growing cycle of di�erent vegetation types which will in�uence the
underlying soilmoisture regime. Amore comprehensive discussion on the impact of varying spatial
supports will be provided in Section 2.3.5. Secondly, the data sets can have a systematic error in
capturing the seasonal pattern, represented as temporally varying αi and βi coe�cients in (2.1).
�is too is not a problem in itself, provided that the (wrong) variations of αi and βi are the same for
all data sets. However, this is very unlikely as such variations usually arise from di�erent sources,
e.g., from a di�erent (imperfect) vegetation treatment in the retrieval of the data sets.

No matter what the source, di�erences between the climatologies of the data sets manifest as non-
linearities between them.�ese non-linearities are of signi�cant importance as they might occur at
di�erent time scales (Drusch et al., 2005; Su and Ryu, 2015). Consequently, their correction would
involve multi-scale rescaling (Su and Ryu, 2015). In particular, time series from individual data sets
can be decomposed into variations occurring at di�erent time scales, and linear inter-data relations
- as those in (2.1) - have to be treated at individual time scales separately with di�erent β values.

As an alternative, many studies attempt to tackle the root of the problem by individually removing
the climatology of the data sets directly, that is, transforming the observations into the anomaly
space (Sto�elen, 1998; Miralles et al., 2010; Crow et al., 2012b; Draper et al., 2013). However, this
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requires a reliable estimation of the climatology, which is susceptible to estimation errors especially
when the data are erroneous and/or short, and to the chosen length of the intervals over which
temporal averages are taken.

2.3.2.2 Stationarity of the (random) errors

TC usually requires a large data sample (i.e., for satellite soil moisture a data set covering several
years) for the estimated random error variance to converge to the true value with a su�cient
precision (Zwieback et al., 2012). �is estimate represents the average random error variance of
the entire period. Invoking error stationarity requires that the error variance remains constant
throughout the considered years and, more importantly, between di�erent seasons. A violation of
this assumption does not harm the reliability of the estimated average random error variance per se,
but it limits its representativeness for particular subsets of the considered time period.�erefore, a
time-variant characterization of errors might be bene�cial for a large variety of applications (Crow
et al., 2005). Agricultural applications, for instance, require a precise error estimation at key crop
development points within the growing season. Consequently, an error estimate that is dominated
by large o�-season errors would lead to a wrong judgement of the quality of the considered data
set.

Such non-stationary random errors are very likely related to imperfections in the treatment of
seasonalities of contributing processes (such as vegetation growth) in the retrieval model of the
data sets. An apparent non-stationarity in the (true) soil moisture signal should have no impact
on the stationarity of the errors as this would violate the assumption of error orthogonality (see
Section 2.3.3).

Recently, Loew and Schlenz (2011) proposed a dynamic TC approach to obtain continuous
fortnightly TC error estimates by applying TC analysis within 30-day windows centered over all
fortnightly periods, respectively. However, the very short time period considered in this approach
leads to an extremely low sampling density and thus to very low precision estimates (Zwieback
et al., 2012). Note that such a window-based approach can potentially account for time-variant
biases between the data sets due to di�erent underlying climatologies, as discussed in the previous
section. If, by contrast, such time-variant biases are not accounted for, the deviations between
the di�erent soil moisture data sets will tend to persist over time. �ey are thus closely related to
temporal auto-correlations of the errors (Zwieback et al., 2013).�e latter will reduce the precision,
but not the consistency of the estimated error variances (Zwieback et al., 2013).

An alternative approach to deal with non-stationary is to estimate multi-annual window-based
error variances for each day of the year (Su et al., 2014a). However, this approach reduces the
sampling density signi�cantly as compared to a classical implementation, which could also reduce
the precision of the estimates below a critical value given the rather short temporal overlap of to
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date available independent data set triplets (5 years with approximately 1-3 daily measurements).
�erefore, most studies rely on annual error variance estimates based on a large sampling density
rather than on less precise seasonal estimates whose sampling uncertainties might exceed their
actual inter-annual variability.

2.3.3 Error orthogonality

Error orthogonality means that the errors are independent from the true soil moisture signal, i.e.,
⟨θεi⟩ = σθε i = 0. Even though this assumption is commonly made in TC analysis, relatively little is
known about its validity.

�e �rst investigation of this assumption was recently made by Yilmaz and Crow (2014) both
analytically and numerically using four heavily equipped in situ sites. Results of this study suggest
that the assumption on error orthogonality does not hold for typical surface soil moisture data
sets, yet the impact of this violation is generally negligible as the bias in error variance estimates
due to error non-orthogonality is dampened by the application of rescaling parameters or even
compensated if the magnitude of non-orthogonality is approximately the same for all considered
data sets. However, if more than one time series is non-orthogonal, the non-orthogonality problem
implies also cross-correlated errors, which were found by Yilmaz and Crow (2014) to be of greater
importance than non-orthogonality. Error cross-correlations will be discussed in the following
section.

2.3.4 Zero error cross-correlation

�e validity of the assumption of independent (random) errors depends not only on the absence of
error non-orthogonality but also on the choice of the data sets. Combinations, which are commonly
assumed to ful�ll this requirement are any triplets consisting of (i) active microwave retrievals, (ii)
passive microwave retrievals, (iii) in situ measurements, or (iv) land surface models, provided that
neither of them is dependent on another member of the triplet (e.g., a model that assimilates the
microwave retrievals) (Scipal et al., 2008; Dorigo et al., 2010; Crow and Van den Berg, 2010; Draper
et al., 2013).

However, by investigating a set of these four observation types both numerically and analytically,
Yilmaz and Crow (2014) recently found that signi�cant non-zero error cross-correlations exist
even in some of the data set combinations which are are commonly assumed to lack them, i.e.,
between active and passive satellite-based data. Moreover, they found that error cross-correlations
have a greater in�uence on the error variance estimates than non-orthogonality because they are
- unlike non-orthogonality - not compensated when being of equal magnitude for all data sets.
Note, however, that the study of Yilmaz and Crow (2014) is based on heavily equipped watershed
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sites, which are rarely available on a global scale. No reliable method for estimating error cross-
correlations over larger areas has yet been proposed even though this would serve a large variety of
applications, in particular data assimilation.

2.3.5 Representativeness

From the error model in (2.1) it can be seen that all data sets are assumed to represent exactly
the same soil moisture state, which is very unlikely, given that the three data sets typically have a
di�erent spatial measurement support (including also the sampling depth) and di�erent sampling
intervals (especially for satellite-derived data). However, soil moisture shows a large degree of
temporal stability due to its time-integrative nature and also becausemost of its hydrological drivers
(e.g., precipitation and evapotranspiration) take place at very large scales (Vachaud et al., 1985;
Wagner et al., 2008). Consequently, a large fraction of the di�erences between the sampled (true)
soil moisture states will be of a systematic nature, represented by di�erent αi and βi coe�cients,
which do not a�ect the error variance estimates of TC analysis as they can be accounted for via
appropriate rescaling. In addition, some parts of the di�erences between the sampled (true) soil
moisture states can have a non-systematic nature. �ese di�erences originate from processes that
a�ect only one or two of the data sets and can lead to biases in theTC-based error variance estimates,
referred to as representativeness errors.

�ere are two likely scenarios in soil moisture TC analysis where representativeness errors might
occur. In the �rst scenario, TC is applied on one point-scale in situ data set together with two
coarse-scale data sets that have a comparable spatial representativeness such as active- and passive
satellite retrievals. While all processes that lead to soil moisture variations at the in situ site also
a�ect the coarse-scale average, there might be soil moisture variations within the support of the
coarse-scale data sets that do not take place at the site location (e.g., localized rainfall events). In
this case, TC will penalize the in situ site for its missing ability to resolve coarse-scale soil moisture
features while the error variance estimate for the coarse-scale data sets will remain unbiased.

�e second scenario is when applying TC on three data sets with signi�cantly di�ering spatial
representativeness such as a combination of an situ site, a medium-scale land surface model, and
a coarse-scale satellite data set. In this case, TC will penalize both the point-scale and the coarse-
scale data set with representativeness errors (manifested in di�erent ways), while the error variance
estimate for the medium-scale data set will remain unbiased.

Both scenarios are demonstrated analytically in 2.B. Note that particularly the �rst scenario should
be seen as an opportunity rather than as a problem, because (i) it allows to estimate the coarse-scale
representativeness of in situ sites (Gruber et al., 2013; Miralles et al., 2010; Crow et al., 2012b), and
(ii) it allows to estimate error variance estimates of coarse-scale data sets independent from the
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representativeness of the used in situ site. Even the second scenario allows for the unbiased error
variance estimation of at least one of the data sets (i.e., the intermediate-resolution data set).

2.3.6 Relation of assumptions in TC analysis and other performance
metrics

While the above described assumptions are being heavily discussed in the literature and o�en
described as a unique limitation for TC analysis, it is worth noting that such assumptions can
be equally important for most other conventional performance metrics used for the evaluation of
coarse-scale soil moisture records.

�e validation of coarse-resolution data usually requires an a priori rescaling in order to account
for the systematic di�erences between the data sets due to di�erent spatial support, measurement
depth, sampling intervals, etc., which give rise to the issues discussed in Sections 2.3.1, 2.3.2 and 2.3.5,
and, consequently, requires the assumptions on linearity, stationarity, and equal representativeness.
Moreover, most other conventional performance metrics are - just like triple collocation - based
on data set variances and covariances. �erefore, they too require the assumptions discussed in
Sections 2.3.3 and 2.3.4, i.e., error orthogonality and zero error-cross correlation.

�e most important conventional performance metrics - whose relation to the above described
assumptions shall be demonstrated here - are the Pearson correlation coe�cient (R) and the Root-
Mean-Square-Di�erence (RMSD) (Entekhabi et al., 2010).�ey are de�ned as:

Ri j =
σi j√
σ2i σ2j

RMSDi j = ⟨(i − j)2⟩ 12
(2.8)

with i ≠ j. As the Pearson correlation coe�cient is linear, it is appropriate to apply the error model
in (2.1), which allows to rewrite R using the full variance and covariance de�nitions from (2.A.8):

Ri j =
σi j√
σ2i σ2j

= βiβ jσ2Θ + β jσΘε i + βiσΘε j + σε i ε j√
(β2i σ

2
Θ + 2 βiσΘε i + σ2ε i)(β2jσ

2
Θ + 2 β jσΘε j + σ2ε j)

(2.9)

Obviously, both error orthogonality and error cross-correlation terms are present. Assuming those
to vanish - as it is made in TC analysis - simpli�es (2.9) to:

Ri j =
σi j√
σ2i σ2j

= βiβ jσ2Θ√
(β2i σ

2
Θ + σ2ε i)(β2jσ

2
Θ + σ2ε j)

= 1√(1 +NSRi)(1 +NSR j)
(2.10)

where NSRi = σ 2ε i
β2i σ 2Θ

and NSR j =
σ 2ε j

β2j σ
2
Θ
are the noise-to-signal ratios of the data sets. �e "signal"
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of the NSR refers to the soil moisture sensitivity of the respective data set and not to the true soil
moisture signal variance.

Note that (2.10) does not contradict the common interpretation of the correlation coe�cient. R
describes the ability of a data set to capture temporal soil moisture changes, while (2.10) allows for a
meaningful interpretation of the sources of decorrelation, namely the noise level of the contributing
data sets relative to their respective soil moisture sensitivity. However, (2.10) additionally reveals
that the interpretation of R is conditional on the same assumptions as made in TC analysis.

�e dependency of the RMSD on the assumptions discussed in Section 2.3 can be easily shown
by decomposing it into a bias-in-mean, bias-in-variance, and a correlation-dependent component
(Gupta et al., 2009):

RMSDi j =
√

(i − j)2 + (σi − σ j)2 + 2σiσ j(1 − Ri j) (2.11)

�e implicit dependency of the RMSD on R, which becomes apparent from (2.11), directly shows
that it too depends on the assumptions described above.

In summary, even though error orthogonality and zero error cross-correlation (besides the other
above described assumptions) are commonly understood to be unique limitations of a TC analysis,
one should keep in mind that they equally a�ect other conventional performance metrics. Here we
picked R and the RMSD for demonstration purposes as they are the most commonly used metrics
for (coarse-scale) soil moisture validation. However, the same considerations can bemade for other
(co-)variance based metrics (e.g. the slope of the linear regression, which is commonly used to
evaluate downscaling performance).

It should be mentioned that conventional performance metrics usually assume - in addition to
the previously described triple collocation assumptions - that the chosen reference data set is free
of (random) errors. However, observations are never perfect and obtaining a reliable reference in
particular for spatially integratedmeasurements is virtually impossible. Even in situmeasurements,
which are o�en used for this purpose, might be highly accurate on a point scale - provided that a
proper calibration has been performed, which is not always the case - but they are very likely to
contain representativeness errors (see Section 2.3.5) and are therefore of limited reliability at coarser
scales (Gruber et al., 2013).�ere are in fact heavily equipped in situ watersheds (Jackson et al., 2010)
- also referred to as core sites or cal/val sites - which are o�en expected to be more representative
also at coarse scales but they are very limited in number on a global scale and still rely on a near-
perfect sensor calibration, which is not always given. Triple collocation analysis, on the other hand,
assigns these sensor- and representativeness errors to the in situ data set itself (see 2.B) and can
be therefore considered in general as a more robust error estimation method than conventional
metrics, also when using in situ data.
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2.4 Error presentation

While the fundamental underlying error model and assumptions made in TC analysis remained
relatively unchanged, signi�cant progress has been made recently in the presentation and
interpretation of error estimates.�ese advances will be presented in the following sections.

2.4.1 Absolute error variance

In the past, most evaluation studies focussed exclusively on the absolute error variance estimates
obtained from TC analysis. As mentioned in Section 2.2.3, a meaningful inter-comparison of these
estimates required them to be rescaled to a common reference data space in order to account for
di�erent units and for di�erent soil moisture sensitivities of the data sets. Even though the choice
of the reference does not in�uence the relative error ranking, it will introduce a dependency of the
error estimates on the soilmoisture sensitivity of the scaling reference.�is is particularly important
when comparing spatial error patterns as they will contain the spatial climatology of the reference
data set, i.e., its soil moisture sensitivity pattern (see Figure 2 ofDraper et al. (2013)). Also, absolute
noise levels alone provide only limited information about actual data set quality, as will be shown
in the following section.

2.4.2 Relative error variance

In order to overcome the dependency of scaled error variance patterns on the spatial climatology of
the chosen scaling reference,Draper et al. (2013) recently proposed to normalize the unscaled error
variance estimates with the corresponding total data set variance. �e resulting metric is referred
to as fractional root-mean-squared-error (fRMSE). For consistency reasons we will drop the square
root here and use the fractional mean-squared-error (fMSE):

fMSEi =
σ2ε i
σ2i

= σ2ε i
β2i σ

2
Θ + σ2ε i

= 1
1 + SNRi (2.12)

�is provides a normalized representation of the signal-to-noise ratio (SNRi = β2i σ 2Θ
σ 2ε i
), which is

scaled between 0 and 1 where 0 means that the observed soil moisture signal is free of noise, 1
means that no soil moisture signal is observed at all, and 0.5 means that the noise variance is just
as high as the observed soil moisture signal variance.

Relating the noise estimates to the underlying soil moisture sensitivity individually does not only
remove the dependency of error patterns on the spatial sensitivity pattern of the scaling reference,
it also allows for a better quantitative assessment of actual data quality. If there is a strong soil
moisture signal or if the data set is very sensitive to changes therein - higher error levels are usually
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tolerable. Conversely, in areas with a very low soil moisture variability such as desert regions or very
low soil moisture sensitivity, even a very low error level might be critical for a certain application.
�is aspect of data quality can not be investigated from absolute errors alone (Su et al., 2014b).

Remember that the "signal" of the SNR refers to β2i σ
2
Θ, i.e., to the soil moisture sensitivity of the

data set.�erefore, a measurement system that is overly sensitive to soil moisture changes (having
a multiplicative bias βi > 1) could have a better SNR than an unbiased system (i.e., βi ≈ 1) if
their absolute noise level is equal. Moreover, multiplicative biases are usually of minor concern
for coarse-scale data sets as their spatial support is usually not well de�ned (or known). Hence,
they are usually rescaled to �t the model dynamics of a certain application. Such rescaling, on the
other hand, preserves the SNR even if the bias is perfectly corrected for.

More recently,McColl et al. (2014) proposed to use TC analysis to estimate the (linear) correlation
coe�cient of the individual data sets with the underlying true signal. �is is done by exchanging
the error variance σ2ε i in the numerator of (2.12) with the signal sensitivity β2i σ

2
Θ, as it was estimated

from (2.7):

R2i =
β2i σ

2
Θ

β2i σ
2
Θ + σ2ε i

= SNRi

1 + SNRi
= 1
1 +NSRi (2.13)

Note that for consistency reasons we express the correlation to the true signal Ri as coe�cient of
determination, i.e., as R2i . �is too is a normalized representation of the SNRi , scaled between 0
and 1. In fact, it is just the reverse of the fMSEi (R2i = 1−fMSEi). However, an important insight
can be gained when comparing it to the conventional linear (Pearson) correlation coe�cient Ri j

in (2.10). While R2i is solely determined by the noise and the soil moisture sensitivity of data set i,
Ri j is determined by the noise and the sensitivity of both contributing data sets. Consequently,
if considering one data set as validation reference, Ri j will depend on its spatial error pattern,
just like the scaled absolute error estimates depend on the spatial sensitivity pattern of the chosen
scaling reference. �at is, the TC-derived absolute coe�cient of determination R2i - and also the
fMSEi - are in any case better indicators of the data sets capability to capture temporal soil moisture
variations than the Pearson correlation coe�cient, also not least because all three metrics are based
on the same underlying assumptions. Given the above described identical information content of
fMSEi and R2i we will limit discussions of these metrics for the remainder of this paper solely to the
fMSEi .

2.4.3 Logarithmic signal-to-noise ratio

One issue in the interpretation of the fMSEi is its inherent non-linear (1+x)−1 behavior, as it can be
seen in (2.12) and (2.13). If the SNRchanges by a factor of λ, then themagnitude bywhich the fMSEi
changes due to this factor depends on the absolute fMSEi level. Consequently, also the impact of
uncertainties in fMSEi estimates depend on the absolute fMSEi level. �e highest impact of error
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Figure 2.1: a) Transformation function between the SNR[dB] (y-axis), and R2i and fMSEi (x-axis),
and b) between the SNR[dB] (y-axis) and the SNR in linear units (x-axis). �e length of the major
andminor axis of the grey ellipses correspond to the change in the respectivemetrics (SNR[-], SNR[dB],
R2i , and fMSEi), if the TC-based SNR estimate was wrong by 15%.

or signal changes and, consequently, of estimation uncertainties on fMSEi estimates is found at
fMSEi = 0.5, that is, if β2i σ

2
Θ = σ2ε i .

For this reason, we propose to linearize the fMSEi behavior by using the SNR directly, and
converting it into decibel units (dB):

SNRi[dB] = 10 log(SNR) = 10 log(β2i σ
2
Θ

σ2ε i
) = −10 log( σ2i σ jk

σi jσik
− 1) (2.14)

where log(...) denotes the decadic logarithm. �e use of the SNR as a performance metric,
particularly when expressed in dB, is widespread in other disciplines such as electrical engineering
and signal processing because of its convenient properties. Using dB makes the SNR symmetric
around zero (see Figure 2.1). A value of zero means that the signal variance is equal to the noise
variance, and every± 3 dB correspond to an additional doubling/halving of the ratio between them.
�at is, +3(+6) dBmeans that the signal variance is twice (four times) as high as the noise variance,
-3(-6) dB means that the signal variance is half (one fourth) of the noise variance, and so forth.
Consequently, the SNR[dB] shows the highest sensitivity to performance changes in regions where
β2i σ

2
Θ ≈ σ2ε i , which are usually of highest interest in cal/val studies because the largest performance

improvements a�er algorithmic updates can be expected there. Conversely, extreme values of linear
SNR estimates for very small β2i σ

2
Θ or σ2ε i are suppressed. Furthermore, due to the linearization

also the impact of TC estimation uncertainties in (2.6) and (2.7) does not depend on the absolute
SNR[dB] level any longer (as it is the case for the fMSEi).

It should be emphasized that the proposed SNR[dB] does not provide di�erent information than
the fMSEi ; it simply eases a physically meaningful interpretation of the obtained numbers.�is can
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be seen fromFigure 2.1a, which shows the transformation function between them aswell as between
the SNR[dB] and the SNR in linear units. Note that inmost parts of the important value ranges, i.e.,
between about +6 and -6 dB (where β2i σ

2
Θ is between four times and one forth of σ

2
ε i ), the fMSEi and

the SNR[dB] are approximately linearly related.�emain di�erence is that the SNR[dB] is centered
around zero, which may provide a better feeling for the physical meaning of the numbers. More
important for the choice of using one or the other metric is the impact of estimation uncertainties,
which is indicated as the major and minor axes of the ellipses in Figure 2.1a. One can see that TC
estimation uncertainties have a greater impact on the fMSEi estimate, the closer the (linear) SNR is
to 1.�e SNR[dB], on the other hand, is equally sensitive to estimation uncertainties over its entire
range. In Figure 2.1b, the need for the conversion to dB units becomes apparent, given the highly
non-linear behavior of the SNR in linear units.

2.4.4 Demonstration

In this section we will demonstrate the strengths, weaknesses, and similarities of the metrics
described above. Furthermore we will demonstrate the potential of investigating also soil moisture
sensitivity estimates in addition to (unscaled) error variance and/or SNR estimates, which can
provide useful complementary information that has not been fully exploited yet. �erefore, TC
analysis is applied to soil moisture data acquired from: (i) active satellite retrievals, (ii) passive
satellite retrievals, and (iii) a land surface model, covering the time period from January 2007 to
October 2011.

�e active satellite-based soil moisture data set is the H-25 SM-OBS-4 MetOp-A ASCAT time
series product, retrieved using the TUWien algorithm versionWARP 5.5 R2.1 (Wagner et al., 1999;
Naeimi, 2009). ASCAT operates at C-band and estimates soil moisture as degree of saturation at a
spatial resolution of 25 km, regridded to a 12.5 kmDiscrete Global Grid (DGG) andwith a temporal
resolution of 1-3 days.�e WARP Surface State Flag (SSF; Naeimi et al., 2012) was used to remove
measurements taken under frozen or freezing/thawing conditions.

Passive satellite-based soilmoisture estimates are retrieved from theAdvancedMicrowave Scanning
Radiometer - Earth Observing System (AMSR-E) onboard the Aqua satellite, using the Land
Parameter Retrieval Model (LPRM) Version 5 (Owe et al., 2008), provided by the VU University
Amsterdam (VUA). Both C-band and X-band observations are considered, which achieve a spatial
resolution of 73*43 km2 and 54 *30 km2, respectively. Data is provided in volumetric units on a
regular grid with 0.25 degrees grid spacing. �e Vegetation Optical Depth (VOD) estimates are
used to �lter out retrievals with a high uncertainty due to dense vegetation, while Radio Frequency
Interference (RFI) estimates are used to switch from C- to X-band retrievals in RFI-contaminated
areas (Owe et al., 2008).
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Figure 2.2: SNR[dB] estimates (le�) and R2i estimates (right) for ASCAT (top) and AMSR-E (bottom)
over the contiguous United States (CONUS). Results are only shown for areas where all three data sets
achieve a signi�cant positive correlation (p < 0.05).

�e land surface model that was used for this study is the Global Land Data Assimilation System
(GLDAS-) Noahmodel, which provides soil moisture data for four di�erent depth layers at a spatial
resolution of approximately 0.25 degrees in a 3-hourly sampling rate. Only the top layer (0-10 cm)
was used in this study. GLDAS-Noah also provides soil temperature estimates and an estimate
of snow water equivalent. �ese were used to mask soil moisture measurements for which the
temperature was below 0○C and for which the snow water equivalent estimate was not zero.

Figure 2.2 shows a comparison between the SNR[dB] andR2i over the contiguousUS (CONUS).�e
majority of pixels achieve a SNR[dB] between -9 and +9, which is the range where both metrics are
approximately linearly related (see Figure 2.1). Slight, but negligible di�erences in the visual pattern
can only be found at the positive and negative extremes. However, we prefer the SNR[dB] over the
R2i for the reasons discussed in Section 2.4.3. �at is, because (i) the interpretation of the physical
meaning of the numbers is more intuitive, and (ii) it is less sensitive to estimation uncertainties in
these value ranges (see Figure 2.1). Note that the fMSEi patternwould look identical to that of the R2i
but with an inverted value range as fMSEi = 1−R2i . For a comparison between the SNR[dB] (or the
fMSEi) and scaled error variances we refer the reader to Draper et al. (2013) who comprehensively
demonstrated the bene�t of investigating SNR-related estimates rather than scaled absolute error
variances.

Novel insights can be gained through the simultaneous evaluation of the SNR[dB] (or the fMSEi)
together with both unscaled error variances and the soil moisture sensitivities, which is shown in
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Figure 2.3: SNR[dB] estimates (top), soil moisture sensitivity estimates (middle), and (unscaled) error
variance estimates (bottom) for ASCAT (le�) and AMSR-E (right) over the contiguous United States
(CONUS). Results are only shown for areas where all three data sets achieve a signi�cant positive
correlation (p < 0.05).
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Figure 2.3.�e SNR[dB] pattern of ASCAT pretty much coincides with its sensitivity pattern, while
the error variances are rather homogeneous over CONUS (except for some areas with slightly larger
error variances, which are concentrated mainly in the central US). On the contrary, the signal
sensitivity of AMSR-E shows a well-pronounced west-east gradient (low sensitivity in the west
and high sensitivity in the east) while its SNR[dB] shows an inverse behavior. �is is because it
is dominated by a strongly pronounced negative west-east gradient of the error variances. In other
words, the SNR[dB] of ASCAT is mainly dominated by its sensitivity pattern whereas the SNR[dB]
of AMSR-E is mainly dominated by its error variance pattern.

Such �ndings may have an important impact on the development and improvement of novel and
existing retrieval models as they allow to pinpoint areas in which the sensor and/or the algorithm
are prone to noise and in which areas they have a reduced sensitivity to soil moisture. �erefore,
such areas can be related to geographic features such as rainfall patterns or vegetation, as targeting
these problems requires di�erent strategies. However, this is beyond the scope of this paper.

2.5 Summary and Conclusion

To date, triple collocation (TC) analysis is one of the most important methods for the global-scale
evaluation of remotely sensed soil moisture data sets. It aims to estimate the random error variances
of three collocated data sets and does not require the availability of a high-quality reference data
set.

Di�erent notations have been used in the past to formulate and solve the TC problem - based
either on cross-multiplied di�erences or on covariances between the data sets - which has fostered
the impression of structurally di�erent implementations. In this study, the mathematic identity of
existing notations was demonstrated analytically.

Furthermore, a detailed discussion of the assumptions underlying TC analysis was provided. Even
though a variety of diagnostic studies indicate that some of the assumptions are not alwaysmet, few
studies have proposed viable alternatives to mitigate violations of the assumptions. Moreover, we
demonstrated that most of the assumptions made in TC analysis, which are o�en considered to be
unique to themethod, are also implicitlymade in the application of other conventional performance
metrics.

However, the number of - particularly satellite based - measurement systems for the global
observation of soil moisture dynamics is rapidly increasing, not only at coarse scales (e.g., through
the recent launch of the Soil Moisture Active Passive (SMAP) mission) but also at higher spatial
resolution (e.g., through the recently launched Sentinel-1 mission). Moreover, also the temporal
coverage of existing soil moisture records is consistently growing.�is progress can be expected to
facilitate the development of advanced strategies to tackle issues related to violations of assumptions
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made in TC analysis, in particular issues related to non-stationarity, non-linearity, and error cross-
correlation.

Useful advances have been made in the way the obtained error estimates are presented and
interpreted, particularly using signal-to-noise ratio (SNR) metrics, i.e., by relating the error
variances to the variance of the underlying soil moisture signal. A comparison of existing metrics
and a discussion on their similarity as well as their respective advantages and disadvantages was
provided.

Finally, we proposed the combined investigation of the SNR (expressed in logarithmic units),
the unscaled error variances, and the soil moisture sensitivities of the data sets as an optimal
evaluation combination for remotely sensed soil moisture data sets, which best exploits the
complementary information content of the available performancemetrics.�is will not only help in
the understanding and improvement of existing satellite- ormodel-based soilmoisture data sets, but
will also facilitate the development of new models and retrieval algorithms for novel soil moisture
missions such as SMAP.
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Appendix

2.A Analytical investigation of the difference and covariance
notations in triple collocation analysis

As mentioned in Section 2.2 are the di�erence and the covariance notations mathematically
identical formulations of the same problem. �is section will show the derivation of the target
estimates for both notations in detail in order to demonstrate their identity analytically. Starting
point is again the error model which was introduced in Section 2.2.1:

X = αX + βXΘ + εX

Y = αY + βYΘ + εY

Z = αZ + βZΘ + εZ

(2.A.1)

2.A.1 Difference notation

For the di�erence notation one data set is arbitrarily chosen as reference data set (this will be data
set X for the following demonstration), against which the other two data sets are rescaled in a linear
fashion:

YX = β∗Y(Y − Y) + X ZX = β∗Z(Z − Z) + X (2.A.2)

where β∗Y = βX
βY
and β∗Z = βX

βZ
.�e superscript denotes the scaling reference. Note that the additive

bias αi represents an o�set between the temporalmean of data set i and the true soil moisturemean.
�erefore, matching their temporal mean matches also their α coe�cients. �e multiplicative
rescaling parameters β∗Y and β∗Z can be derived from (2.A.1) by combining the three data sets in the
following way:

⟨(X − X)(Z − Z)⟩
⟨(Y − Y)(Z − Z)⟩ =

βXβZ⟨(Θ −Θ)2⟩ + βX⟨(Θ −Θ)εZ⟩ + βZ⟨(Θ −Θ)εX⟩ + ⟨εXεZ⟩
βYβZ⟨(Θ −Θ)2⟩ + βY⟨(Θ −Θ)εZ⟩ + βZ⟨(Θ −Θ)εY⟩ + ⟨εY εZ⟩

⟨(X − X)(Y − Y)⟩
⟨(Z − Z)(Y − Y)⟩ = βXβY⟨(Θ −Θ)2⟩ + βX⟨(Θ −Θ)εY⟩ + βY⟨(Θ −Θ)εX⟩ + ⟨εXεY⟩

βZβY⟨(Θ −Θ)2⟩ + βZ⟨(Θ −Θ)εY⟩ + βY⟨(Θ −Θ)εZ⟩ + ⟨εZεY⟩

(2.A.3)

Since the errors are assumed to have zero mean, ⟨εXεX⟩ = σ2εX , ⟨εY εY⟩ = σ2εY , and ⟨εZεZ⟩ = σ2εZ
represent the error variances of X, Y , and Z, respectively, ⟨εXεY⟩ = σεX εY , ⟨εXεZ⟩ = σεX εZ , and
⟨εY εZ⟩ = σεY εZ represent the error covariances between X,Y , and Z, respectively, and ⟨(Θ−Θ)εX⟩ =
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σΘεX , ⟨(Θ − Θ)εX⟩ = σΘεY , and ⟨(Θ − Θ)εZ⟩ = σΘεX represent the covariances between the soil
moisture signal and the errors of X, Y , and Z, respectively. As described in Section 2.3, the errors are
assumed to be uncorrelated (σεX εY = 0, σεX εZ = 0, and σεY εZ = 0) and orthogonal (σΘεX = 0, σΘεY = 0,
and σΘεZ = 0).�erefore, (2.A.3) reduces to a consistent estimate of the rescaling parameters:

β∗Y = βX

βY
= ⟨(X − X)(Z − Z)⟩

⟨(Y − Y)(Z − Z)⟩ =
σXZ
σYZ

β∗Z =
βX

βZ
= ⟨(X − X)(Y − Y)⟩

⟨(Z − Z)(Y − Y)⟩ = σXY
σZY

(2.A.4)

�e rescaled data sets can then be written as:

X = αX + βXΘ + εX

YX = αX + βXΘ + β∗Y εY

ZX = αX + βXΘ + β∗ZεZ

(2.A.5)

Averaging over cross-multiplied di�erences of these rescaled data sets yields:

⟨(X − YX)(X − ZX)⟩ = ⟨εXεX⟩ − β∗Y⟨εXεY⟩ − β∗Z⟨εXεZ⟩ + β∗Yβ∗Z⟨εY εZ⟩
⟨(YX − X)(YX − ZX)⟩ = β∗Y

2⟨εY εY⟩ − β∗Y⟨εY εX⟩ − β∗Yβ∗Z⟨εY εZ⟩ + β∗Z⟨εXεZ⟩
⟨(ZX − X)(ZX − YX)⟩ = β∗Z

2⟨εZεZ⟩ − β∗Z⟨εZεX⟩ − β∗Zβ∗Y⟨εZεY⟩ + β∗Y⟨εXεY⟩
(2.A.6)

�e above described assumption of zero error cross-correlation reduces also (2.A.6) to a consistent
estimator for the (rescaled) error variances:

σ2εX = ⟨(X − YX)(X − ZX)⟩
β∗Y
2σ2εY = σ2εXY

= ⟨(YX − X)(YX − ZX)⟩
β∗Z
2σ2εZ = σ2εXZ

= ⟨(ZX − X)(ZX − YX)⟩
(2.A.7)

Note that even though the error variances of Y and Z are estimated within the data space of the
chosen scaling reference (X in this case), they could be converted back into their own data space a
posteriori since the rescaling coe�cients β∗Y and β∗Z are known from (2.A.4).

2.A.2 Covariance notation

For the covariance notation, the error model (2.A.1) can be considered as a sum of two random
variables, namely soil moisture (Θ) and the random error (εi) with i ∈ [X ,Y , Z]. Consequently,
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the (co-)variances of the data sets can be written as:

σ2i = β2i σ
2
Θ + 2 βiσΘε i + σ2ε i

σi j = βiβ jσ2Θ + β jσΘε i + βiσΘε j + σε i ε j

(2.A.8)

with i , j ∈ [X ,Y , Z]. If we further assume error orthogonality (σΘε i = 0) and zero error-cross
correlation (σε i ε j = 0 for i ≠ j), (2.A.8) simpli�es to:

σ2i = β2i σ
2
Θ + σ2ε i

σi j = βiβ jσ2Θ
(2.A.9)

�e variance of data set i is thus a sum of its error variance (σ2ε i ) and the term β2i σ
2
Θ (i.e., the true

soil moisture variance σ2Θ multiplied with the (squared) multiplicative bias of the data set), which
re�ects the sensitivity of data set i to soil moisture changes. �at is, the higher βi , the stronger is
the response of i to soil moisture changes. �is soil moisture sensitivity can be estimated for each
data set individually by combining their covariances in the form:

β2Xσ2Θ = σXYσXZ
σYZ

β2Yσ2Θ = σYXσYZ
σXZ

β2Zσ2Θ = σZXσZY
σXY

(2.A.10)

Estimates of the error variances σ2ε i can be then be obtained by subtracting the soil moisture
sensitivities of the data sets from their total variance:

σ2εX = σ2X −
σXYσXZ

σYZ
σ2εY = σ2Y −

σYXσYZ
σXZ

σ2εZ = σ2Z −
σZXσZY

σXY

(2.A.11)

Note that the error variances are now - unlike in the di�erence notation - estimated in their own
data space. However, even though the covariance notation does not require an a priori rescaling of
the data sets, (2.A.9) also allows for the direct estimation of the linear rescaling parameters:

β∗Y = βX

βY
= σXZ

σYZ
β∗Z =

βX

βZ
= σXY

σZY
(2.A.12)

which is identical to (2.A.4). �ese rescaling parameters could be used to convert the error
variance estimates obtained from (2.A.11) into a common reference data space a posteriori, which
would yield values identical to those obtained from (2.A.7), i.e., to the error estimates which were
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estimated in the reference data space directly using the di�erence notation. �is mathematical
identity will be demonstrated in the following section.

2.A.3 Mathematical identity of difference and covariance notations

�e mathematical identity of the di�erence and the covariance notation can be shown by
decomposing (2.A.7) (i.e., the error variance estimates obtained using the di�erence notation)
similar to the decomposition of the RMSD, which was made byGupta et al. (2009). Let us therefore
insert (2.A.2) into (2.A.7) and extract the mean value of the unscaled data set:

σ2εX = ⟨[X + (X − X) − β∗Y(Y − Y) + X][X + (X − X) − β∗Z(Z − Z) + X]⟩
β∗Y
2σ2εY = ⟨[β∗Y(Y − Y) + X − (X + (X − X))][β∗Y(Y − Y) + X − β∗Z(Z − Z) + X]⟩

β∗Z
2σ2εZ = ⟨[β∗Z(Z − Z) + X − (X + (X − X))][β∗Z(Z − Z) + X − β∗Y(Y − Y) + X]⟩

(2.A.13)

Expanding the brackets and completing the average yields:

σ2εX = σ2X − β∗YσXY − β∗ZσXZ + β∗Yβ∗ZσYZ

β∗Y
2σ2εY = β∗Y

2σ2Y − β∗YσXY − β∗Yβ∗ZσYZ + β∗ZσXZ

β∗Z
2σ2εZ = β∗Z

2σ2Z − β∗ZσXZ − β∗Zβ∗YσZY + β∗YσXY

(2.A.14)

Expressing the rescaling coe�cients β∗Y and β∗Z in (2.A.14) as covariance ratios (see (2.A.12)), and
correcting for the rescaling coe�cients on the le� hand side of the equation further yields:

σ2εX = σ2X −
σXYσXZ

σYZ
σ2εY = σ2Y −

σYXσYZ
σXZ

σ2εZ = σ2Z −
σZXσZY

σXY

(2.A.15)

which is identical to the error variance estimates in (2.A.11), which were obtained using the
covariance notation. Note that this identity only holds if the TC-based rescaling - as proposed
by Sto�elen (1998) - is used as the a priori rescaling in the di�erence notation. However, the use of
any other rescaling method can be considered as non-optimal TC implementation.

36



Chapter 2. Recent advances in (soil moisture) triple collocation analysis

2.B The impact of representativeness errors on TC error
variance estimates

Here we will demonstrate the impact of di�ering spatial representativeness of the data sets by
means of di�ering underlying soil moisture signal components using the covariance notation. Note
that this approach is not di�erent to other approaches, where the correlated signal components
are considered as cross-correlated random errors in the data sets (Sto�elen, 1998; Vogelzang and
Sto�elen, 2012). Two di�erent cases will be distinguished: (i) one point-scale in situ measurement
together with two coarse-scale data sets that have a comparable spatial representativeness, and
(ii) three data sets with signi�cantly di�erent spatial representativeness. �e �rst scenario will be
denoted as two-scale problem and the second as three-scale problem.

2.B.1 Two-scale problem

In this scenario we consider a soil moisture signal within an area A j that is jointly observed by all
three data sets, and an additional signal within an area Ac that is common only to the two coarse-
scale data sets. �e coarse-scale data sets are therefore assumed to sample the entire area A j + Ac

while the point scale observations are assumed to be representative forA j only.�e signal withinAc

originates from soil moisture variations that do not take place at the point location (e.g., localized
rainfall events). Both signal components are assumed to be orthogonal and mutually uncorrelated.
�e point-scale data set will be denoted as X, and the coarse-scale data sets as Y and Z, respectively.
Following (2.5), their variances can be written as:

σ2X = β2Xσ2Θ j
+ σ2εX

σ2Y = β2Y
1

(A j + Ac)2
(A2jσ2Θ j

+ A2cσ
2
Θc) + σ2εY

σ2Z = β2Z
1

(A j + Ac)2
(A2jσ2Θ j

+ A2cσ
2
Θc) + σ2εZ

(2.B.1)

and their covariances as:

σXY = βXβY
A j

(A j + Ac)σ2Θ j

σXZ = βXβZ
A j

(A j + Ac)σ2Θ j

σYZ = βYβZ
1

(A j + Ac)2 (A
2
jσ
2
Θ j
+ A2cσ

2
Θc)

(2.B.2)

where σ2Θ j
is the joint soil moisture signal that is observed by all three data sets, and σ2Θc

is the soil
moisture signal that is observed only by the coarse-scale data sets. �e error variance estimator
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(2.6) therefore expands into:

σ2X −
σXYσXZ

σYZ
= σ2εX + β2Xσ2Θ j

⎛
⎜⎜⎜
⎝
1 − 1

1 + A2cσ 2Θc
A2jσ

2
Θ j

⎞
⎟⎟⎟
⎠

σ2Y −
σYXσYZ

σXZ
= σ2εY

σ2Z −
σZXσZY

σXY
= σ2εZ

(2.B.3)

�at is, TC will penalize the point-scale data set for its limited representativeness at the coarse
scale, whereas no representativeness error is assigned to the error estimates of the coarse-scale data
sets. Note that the representativeness error also depends on the fraction between Ac and A j. �e
larger the area for which the point scale measurement is representative, the smaller is the impact of
representativeness errors, even if the soil moisture variations that are observed only by the coarse-
scale data sets are very strong.

2.B.2 Three-scale problem

In this scenario we have three data sets of signi�cantly di�erent spatial representativeness such
as a point-scale in situ-measurement, a medium-scale land surface model, and a coarse-scale
satellite data set. �ese will be - in the same order - denoted as X, Y , and Z, respectively. �e
coarse-scale observations are assumed to sample the entire area A j + Am + Ac , the medium-scale
observations are assumed to sample only the area A j +Am and the point observations are assumed
to be representative for the area A j only.�e soil moisture signals within A j, Am, and Ac are again
assumed to be orthogonal and mutually uncorrelated.�e variances of the data sets are given as:

σ2X = β2Xσ2Θ j
+ σ2εX

σ2Y = β2Y
1

(A j + Am)2 (A
2
jσ
2
Θ j
+ A2mσ2Θm) + σ2εY

σ2Z = β2Z
1

(A j + Am + Ac)2
(A2jσ2Θ j

+ A2mσ2Θm + A2cσ
2
Θc) + σ2εZ

(2.B.4)

and their covariances as:

σXY = βXβY
A j

(A j + Am)σ2Θ j

σXZ = βXβZ
A j

(A j + Am + Ac)σ2Θ j

σYZ = βYβZ
1

(A j + Am)(A j + Am + Ac)(A
2
jσ
2
Θ j
+ A2mσ2Θm)

(2.B.5)
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where σ2Θ j
is again the joint soil moisture signal observed by all three data sets, σ2Θm

is the soil
moisture signal that is common to the medium- and the coarse-scale data set, and σ2Θc

is the soil
moisture signal that is observed by the coarse-scale data set only. All three signal components are
assumed to be orthogonal. In this case, the error variance estimator (2.6) expands into:

σ2X −
σXYσXZ

σYZ
= σ2εX + β2Xσ2Θ j

⎛
⎜⎜⎜
⎝
1 − 1

1 + A2mσ 2Θm
A2jσ

2
Θ j

⎞
⎟⎟⎟
⎠

σ2Y −
σYXσYZ

σXZ
= σ2εY

σ2Z −
σZXσZY

σXY
= σ2εZ + β2Z

A2c
(A j + Am + Ac)2 σ2Θc

(2.B.6)

While TC still penalizes the point-scale data set - this time for its limited representativeness at
the medium scale - it additionally assigns a representativeness error to the coarse-scale data set,
represented by its sensitivity to the soil moisture variations that are not observed by the other data
sets. �e error variance estimate for the medium-scale data set remains unbiased. Note that the
representativeness errors again depend on the relative fraction of the areas for which the di�erent
data sets are representative.
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Chapter 3

The potential of 2D Kalman filtering for soil
moisture data assimilation

We examine the potential for parameterizing a two-dimensional (2D) land data assimilation
system using spatial error auto-correlation statistics gleaned from a triple collocation analysis
and the triplet of: (1) active microwave-, (2) passive microwave- and (3) land surface model-
based surface soil moisture products. Results demonstrate that, while considerable spatial error
auto-correlation exists in the errors for all three products, the inclusion of this information into
a 2D assimilation system does not signi�cantly improve the performance of the system relative
to a one-dimensional (1D) baseline. �is result is explained via an analytical evaluation of the
impact of spatial error auto-correlation on the steady-state Kalman gain, which reveals that 2D
�ltering requires the existence of large auto-correlation di�erences (between the assimilation
model and the assimilated observations) in order to enhance the analysis relative to a 1D �ltering
baseline. As a result, large error auto-correlations alone (in both the model or observations)
are not su�cient to motivate the application of a 2D land assimilation system. �ese results
have important consequences for the development of land data assimilation systems designed
to ingest satellite derived surface soil moisture products for water resource and climate applications.

∗�is chapter is an edited version of: Gruber, A., Crow, W., Dorigo, W., & Wagner, W. (2015).�e potential of 2D
Kalman �ltering for soil moisture data assimilation. Remote Sensing of Environment, 171, 137-148.
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3.1 Introduction

Most current applications of satellite-based surface soil moisture retrievals involve their
assimilation into a continuous surface water balance model to produce a merged (model/remote-
sensing) soil moisture analysis product (Bolten and Crow, 2012; Brocca et al., 2012; de Rosnay et al.,
2013).�e accuracy of such analyses depend in part on the appropriate statistical parameterization
of errors in both the diagnostic remote sensing retrievals and the prognostic water balance
model (Crow and Van Loon, 2006; Reichle et al., 2008). To date, most land data assimilation
systems have been based on relatively crude and approximate treatment of such errors. �is error
parameterization challenge becomes even greater when data assimilation are expanded from a
one-dimensional (1D) form (where observations are used to update only horizontally-collocated
model states) to a two-dimensional (2D) structure (where observations of a particular grid cell
are horizontally-transported to update the state in neighboring grid cells as well). In such a 2D
approach, the spatial auto-correlation of observation and modeling errors must be parameterized
in addition to their 1D variances (Reichle and Koster, 2003).

Recent progress has been made in leveraging the simultaneous acquisition of surface soil moisture
retrievals acquired from active and passive microwave observations to provide an improved error
parameterization for a 1D data assimilation system (Crow and Yilmaz, 2014). �e basis of such
approaches is the application of so-called triple collocation (TC) analysis to a triplet of soil moisture
estimates acquired from three independent sources (typically activemicrowave, passivemicrowave,
and soil moisture estimates derived from a water-balance model) (Sto�elen, 1998; Scipal et al., 2008;
Dorigo et al., 2010). However, relatively little is known about the potential for applying TC to
estimate spatial error auto-correlation parameters required to parameterize a 2D �lter. Even more
fundamentally, the role of spatial error auto-correlation in determining the relative advantage of 2D
approaches (versus a simpler 1D baseline) has not fully been explored in land data assimilation.

�is analysis will leverage the simultaneous availability of surface soil moisture retrievals from:
the active-microwave-based Advanced SCATterometer (ASCAT) instrument (Wagner et al., 1999;
Naeimi, 2009) and the passive-microwave-based Soil Moisture andOcean Salinity (SMOS)mission
(Kerr et al., 2010) to explore the potential advantages of parameterizing a 2D data assimilation
system using error parameters gleaned from a TC analysis. Special emphasis will be placed on
the ability of a TC-based system to acquire su�ciently accurate spatial error auto-correlation
parameters to motivate the expansion of a (simpler) 1D data assimilation into a full 2D approach. It
should be mentioned that the presence of non-zero temporal observation error auto-correlation is
neglected in this study as its impact on data assimilation systems has already been investigated by a
large number of studies (Crow and Van den Berg, 2010). However, the TC-based system presented
here does not require temporally white errors in order to provide unbiased results, therefore our
�ndings are directly transferable to the presumably more realistic case of error auto-correlation in
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both space and time.

�e 2D Kalman �lter and the TC-based method for estimating spatial error cross-correlations are
described in Section 3.2. A synthetic and a real data experiment are employed in Section 3.3.
Section 3.4 provides an analytical investigation of the obtained �ndings. A summary and
conclusions are provided in Section 3.5.

3.2 Background

3.2.1 2D Kalman filter

Our methodology is based on the application of 1D and 2D data assimilation approaches to
assimilate surface soil moisture observations into a simple auto-regressive soil moisture model:

θm
x ,t = γxθm

x ,t−1 + Pm
x ,t (3.1)

where θm is the modeled soil moisture state; x is the spatial location; t is the daily time index; γ is a
dimensionless loss variable, and Pm is a satellite-based estimate of accumulated daily rainfall. Note
that - despite their extreme simplicity - simple auto-regressive models like (3.1) perform just as well
as more complex (nonlinear) models when applied to large-scale applications such as agricultural
droughtmonitoring (Crow et al., 2012a). In addition, they provide a transparent basis for evaluating
new land data assimilation methodologies. For convenience, all soil moisture and precipitation
quantities referenced below are considered to be seasonal anomalies obtained by �rst subtracting
out a seasonal climatological cycle. Note that, due to its linearity, this anomaly decomposition does
not a�ect the validity of (3.1).

A single, spatially-distributed set of remotely-sensed soil moisture (anomaly) retrievals (θo) are
then assimilated into (3.1). Both model and observed soil moisture anomalies are assumed to have
a linear relationship with (unknown) true soil moisture anomalies (θ):

θm
x ,t = θx ,t + εmx ,t

θo
x ,t = βo

x(θx ,t + εox ,t)
(3.2)

where βo is a constant scaling factor to correct for systematic errors in the observations, and εm

and εo are Gaussian-distributed, zero-mean errors in the model-estimates and observed surface
soil moisture, respectively. Note that (3.2) follows the required data assimilation assumption that
the model lacks systematic errors. �erefore, prior to data assimilation, observations θo

x ,t must be
rescaled by a factor of (βo

x)−1 to produce a bias-corrected set of anomaly observations θ̂o
x ,t which

are systematically consistent with the model .
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�e covariance matrices for model forecast noise (Q) and (rescaled) observation error (R) are then
given as:

Q = (1 − γ2x)⟨ε⃗m ε⃗m⊺⟩ R = ⟨⃗̂ε o⃗̂ε o⊺⟩ (3.3)

where the brackets ⟨⋅⟩ denote temporal averaging and the error vectors ε⃗ = (εx1⋯εxn)⊺ contain the
errors in model estimates and observations at n adjacent spatial locations.

Note thatQ represents the variance of the white noise that is added during each forecast step of the
model in (3.1) - due to the random error in the precipitation data set Pm - whereas the ⟨ε⃗m ε⃗m⊺⟩
term alone represents the integrative steady-state impact of this noise on θm

x ,t , i.e., the red noise
variance of the model due to its auto-regressive structure.

�e spatial error covariance matrix of the model background forecast is given as:

Mt = γ⃗Mt−1γ⃗⊺ +Q (3.4)

where γ⃗ = (γx i⋯γxn)⊺. Using the (rescaled) observation state vector Y⃗t = (θ̂o
x1 ,t⋯θ̂o

xn ,t)⊺, the model
state vector X⃗t = (θm

x1 ,t⋯θm
xn ,t)⊺, and - as only one observation data set is assimilated - an n × n

identity matrix as the observation operatorH, we can write the Kalman gain as:

Kt =MtH⊺(HMtH⊺ +R)−1 (3.5)

and the state and forecast error covariance update equations as:

X⃗
′

t = X⃗t +Kt(Y⃗t −HX⃗t)
Mt

′ = (I −KtH)Mt
(3.6)

�ese equations are developed here for the simple case of assimilating only one type of soil moisture
observations; however, they are readily scalable to the case of multiple observation data sets.

3.2.2 Parameter estimation

For the 1D Kalman �lter with k observations, one has to estimate 2k+ 1 parameters prior to �ltering
- namely the scaling coe�cients between the model and the observations - and the model and
observation error variances (i.e., (βo

x)−1,Qxx , and Rxx).�e 2D case further requires the knowledge
of the spatial error auto-covariances, which entails the estimation of one additional parameter for
each assimilated neighboring pixel for each data set, respectively.

Triple collocation (TC) (Sto�elen, 1998) has been previously applied in 1D Kalman �ltering
to provide unbiased estimates of model and observation error variances and relative scaling
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coe�cients (Crow and Yilmaz, 2014). It requires exactly three collocated data sets with orthogonal
errors and zero error cross-correlation.�ese requirements are commonly assumed to bemet when
using a soil moisture triplet composed of: 1) active microwave satellite retrievals (θa), 2) passive
retrievals (θ p) and 3) model-based soil moisture estimates (θm). However, to date, TC has not been
applied to estimate spatial error auto-covariance statistics.�erefore, our goal here is the application
of TC to estimate the entire observation error covariance matrices (Ra and Rp) and model forecast
noise matrix (Q) required to parameterize the 2D Kalman �lter described in Section 3.2.1. Note
that this requires the estimation of both diagonal (i.e., variance) and o�-diagonal (i.e., spatial auto-
covariance) matrix components.

Here we will apply the covariance notation of Sto�elen (1998) to the TC problem. By using the
error model in (3.2), the respective model and observation variances and covariances at a single
coinciding spatial location can be written as:

Var(θ i
x) = βi

x
2Var(θx) + βi

x
2Var(εix)

Cov(θ i
x ,θ

j
x , ) = βi

xβ j
xVar(θx)

(3.7)

where i and j denote either the model (m) or an active (a) or passive (p) observation data set.
Combining the covariances of all three data sets (i, j, and k) allows us to estimate the (individually
biased) true signal variance (McColl et al., 2014):

βi
x
2Var(θx) = Cov(θ i

x , θ
j
x)Cov(θ i

x , θk
x)

Cov(θ j
x , θk

x)
(3.8)

Following the typical data assimilation assumption that the model lacks systematic error (i.e.,
βm = 1), estimates of the scaling coe�cients - required to correct for the systematic error in the
observations - can be obtained as:

(βa
x)−1 =

Cov(θm
x , θ

p
x)

Cov(θa
x , θ

p
x)

(βp
x)−1 = Cov(θm

x , θa
x)

Cov(θ p
x , θa

x)

(3.9)

Subtracting the (biased) true signal variance - as obtained from (3.8) - from the respective total
data set variance in (3.7) and correcting for the bias using (3.9) yields unbiased estimates of the
individual error variances as:
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Qxx = (1 − γ2x)Var(εmx ) = (1 − γ2x)[Var(θm
x ) − Cov(θm

x , θa
x)Cov(θm

x , θ
p
x)

Cov(θa
x , θ

p
x)

]

Ra
xx = Var(εax) = (βa

x)−2[Var(θa
x) −

Cov(θa
x , θm

x )Cov(θa
x , θ

p
x)

Cov(θm
x , θ

p
x)

]

Rp
xx = Var(εpx) = (βp

x)−2[Var(θ p
x) − Cov(θ p

x , θm
x )Cov(θ p

x , θa
x)

Cov(θm
x , θa

x)
]

(3.10)

Note that even though we assume that the model lacks systematic error (i.e., βm = 1), we need to
correct the model error variance estimate for the model-memory through (1 − γ2x).

In a similar way, we can obtain the spatial auto-covariances between errors at two adjacent locations
x1 and x2 from the spatial covariances of a single data set i and between two data sets i and j,
respectively, where i and j correspond again to either active (a), passive (p), or model (m) derived
products:

Cov(θ i
x1 , θ

i
x2) = βi

x1β
i
x2Cov(θx1 , θx2) + βi

x1β
i
x2Cov(εix1 , ε

i
x2)

Cov(θ i
x1 , θ

j
x2) = βi

x1β
j
x2Cov(θx1 , θx2)

(3.11)

Just like the error variances before, the spatial error auto-covariances of the model and the
observations can be obtained from (3.11) as:

Qx1x2 =
√

(1 − γ2x1)(1 − γ2x2)[Cov(θm
x1 , θ

m
x2) −

Cov(θm
x1 , θ

a
x2)Cov(θ p

x1 , θ
m
x2)

Cov(θ p
x1 , θa

x2)
]

Ra
x1x2 = (βa

x1β
a
x2)−1[Cov(θa

x1 , θ
a
x2) −

Cov(θa
x1 , θ

m
x2)Cov(θ p

x1 , θ
a
x2)

Cov(θ p
x1 , θm

x2)
]

Rp
x1x2 = (βp

x1β
p
x2)−1[Cov(θ p

x1 , θ
p
x2) −

Cov(θ p
x1 , θ

m
x2)Cov(θa

x1 , θ
p
x2)

Cov(θa
x1 , θm

x2)
]

(3.12)

In this way, TC can be applied to estimate all of the statistical parameters required to parameterize
a 2D Kalman �lter.

Note that (3.12) is identical to themethodof triple collocation based temporal error auto-covariance
estimation proposed byZwieback et al. (2012) - except that the temporal lag has been replaced by the
spatial lag. Spatial error auto-correlations of the model (CQ) and the active (CRa ) and passive (CRp )
observations can be further derived as CQ = Qx1x2(Qx1x1Qx2x2)−

1
2 , CRa = Ra

x1x2(Ra
x1x1R

a
x2x2)−

1
2 , and

CRp = Rp
x1x2(Rp

x1x1R
p
x2x2)−

1
2 .�e method will be validated in Section 3.3.1.1.

46



Chapter 3. �e potential of 2D Kalman �ltering for soil moisture data assimilation

3.3 Demonstration

In this section we will evaluate the parameterization of a 2D Kalman �lter using the TC-based
error parameter estimates introduced in Section 3.2.2. Evaluations will be based on both synthetic
identical twin experiments (Section 3.3.1) and a real data analysis evaluated using comparisons
against independent ground-based surface soil moisture measurements (Section 3.3.2). Particular
attention will be paid to the added skill associated with applying a 2D �ltering strategy versus
a 1D baseline approach which ignores the presence of spatial auto-correlation in modeling and
observation errors. Only one type of satellite-based observation will be assimilated here since
the simultaneous assimilation of two observation data sets gives rise to additional issues (e.g.,
the accurate characterization of error cross-correlation) which are beyond the scope of this paper.
However, the second observation data set is needed as an instrument in the TC analysis in order to
estimate the error variance and auto-covariance structures of both the model and the observation
data set to be assimilated.

3.3.1 Synthetic experiment

Synthetic experiments were based on: 1) the generation of a soil moisture reference product
representing the truth via an unperturbed integration of (3.1), 2) the arti�cial perturbation of this
product using noise with covarianceR to generate synthetic observations, and 3) the re-assimilation
of these synthetic observations back into (3.1) a�er the model has been arti�cially perturbed using
forecast noise consistent with Q. True soil moisture products generated in the �rst step contained
values for one center pixel and neighboring pixels in each of the four cardinal directions. In this
way, the 2D assimilation problem is e�ectively localized within a single pixel length in each cardinal
direction.

Results were generated for a large number of di�erent cases. In particular, the spatial error auto-
correlation levels of the model and the observations (CQ and CR) were systematically varied
between 0.05 [-] and 0.95 [-] in increments of 0.05 [-]. In addition, three separate cases of di�erent
relative error levels between the center and the neighboring pixels of themodel and the observations
(expressed as error ratios δQ = Qx2x2 ⋅ (Qx1x1)−1 and δR = Rx2x2 ⋅ (Rx1x1)−1, where x1 denotes the
center pixel and x2 denotes the neighboring pixel) are investigated, namely δQ = 0.8/1.0/1.2 and
δR = 1.2/1.0/0.8.�e sample size of the data sets was 5000 days.�e absolute error variances of the
model and the observation data sets were held �xed at 110 mm2 and 450 mm2, respectively, so that
the correlation of the synthetic data sets with respect to the reference (i.e., the synthetic truth) were
comparable to those observed at the watershed sites in the real data experiment (see Section 3.3.2).
Combined, these synthetic cases required the generation of 16245 separate synthetic data sets.
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Figure 3.1:�e median and the inter-quartile-range (IQR) of estimated spatial error auto-correlations
(y-axis) for di�erent true auto-correlation levels (x-axis). �e whisker length is 1.5*IQR. �e dashed
line is the 1:1 line.

3.3.1.1 Estimation of spatial error auto-correlation

As an initial veri�cation, Figure 3.1 shows the estimation accuracy of the TC based error auto-
correlation estimates for di�erent model and observation error auto-correlation levels. Cest

represents the CQ , CRa , and CRp estimates - as derived from (3.10) and (3.12) - of all 16245 synthetic
data sets.�e corresponding synthetically generated true error auto-correlation levels (Ctrue) can be
recovered with a negligible bias and a Root-Mean-Square-Error (RMSE) below 0.02 [-].�erefore,
the application of TC to accurately estimate error auto-correlation information appears plausible.
�e precision of the estimates is slightly higher at high error auto-correlation levels because of
their non-linear dependency on the uncertainties of the error variance estimates, which originates
from the conversion of error auto-covariances to error auto-correlations. �e precision of error
auto-covariance estimates alone does not show such dependency on absolute error auto-covariance
level. Notice that the RMSE of the estimator is a function of sample size, which is in our case
very large (n = 5000 days). Moreover, the results presented here are based on well-controlled
synthetic observations which represent a "perfect" soil moisture signal perturbed with a Gaussian
noise component. Hence, higher estimation uncertainties are expected when using (imperfect) real
data.

3.3.1.2 Impact on soil moisture analysis accuracy

Here we evaluate the improvement in forecast skill with respect to the 1D �lter implementation in
terms of the correlation to the (synthetically generated) truth.�e average correlation of the open
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Figure 3.2: Improvement of Pearson correlation (versus synthetic truth) of a 2D Kalman �ltering
analysis with respect to the 1D �ltering case (∆ρp) for di�erent δQ and δR. CQ levels are plotted
on the x-axis and CR levels on the y-axis.

49



Chapter 3. �e potential of 2D Kalman �ltering for soil moisture data assimilation

loop run with the true time series is 0.53 [-], the average correlation between the truth and the
1D �lter analysis is 0.75 [-]. Figure 3.2 shows the correlation improvement (above the 1D baseline)
gained from 2D �ltering as a function of CQ , CR,δQ, and δR.

�e observed pattern in Figure 3.2 is somewhat counter-intuitive. From �lter theory, one might
expect that a high spatial error auto-correlation in either the model or the observation data set
would lead to a higher weighting of the neighboring pixels of that particular data set, leading to an
improvement with respect to a 1D �lter. However, a signi�cant skill improvement is only observed
in cases where the model and the observation error auto-correlations have large relative di�erences
(i.e., ∣∆C∣ ≫ 0, where ∆C = CR − CQ). Conversely, if ∆C ≈ 0 there is no skill improvement with
respect to the 1D case, even if CQ and CR individually are close to unity.

�is behavior further shows a certain dependency on di�erences between the error ratios of center
and neighboring pixels of the model and the observations, respectively (i.e., di�erences between
δQ and δR). If δQ = δR, then the skill improvement due to ∆C ≠ 0 is symmetrical around the
∆C = 0 line with zero skill improvement on this line. Again contradicting intuition, an increase in
the error level of a neighboring pixel of either of the data sets causes a larger improvement of the 2D
�lter skill with increasing spatial error auto-correlation of that data set, but only if the error level in
the neighboring pixel of the other data set does not increase by the same factor.

In summary, the skill improvement of a 2D �lter with respect to a 1D �lter appears driven mainly
by di�erences between the spatial error auto-correlations of the model versus the observations (i.e.,
∆C) and by di�erences between the error ratios of center and neighboring pixels of the model
and the observations, respectively (i.e., di�erences between δQ and δR), and not by the absolute
values of these quantities. However, even if the additional assimilation of spatially displaced pixels
was shown to potentially improve forecast skill, the maximum achievable improvement is only
marginal. For the well-controlled synthetic cases presented here, the mean andmaximum obtained
correlation improvements (versus synthetic truth) over the entire ∆C range are 0.03 [-] and 0.16 [-],
respectively.

Note that all synthetic results presented above are based on correctly-estimated error structures and
statistics. Assigning large error auto-correlation di�erences where there are none due to estimation
uncertainties when using real data (i.e., over- or underestimating the error auto-correlation in one
data set) would further degrade 2D results andmight even degrade 2D�lter performance compared
to the 1D case. �erefore, in order to provide a more thorough and realistic assessment, the next
section examines the behavior of the 2D �lter in a real data scenario. In addition, theoretical
background for these results will be presented in Section 3.4.
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3.3.2 Real data experiment

In addition to the synthetic experiment presented above, the data assimilation system described in
Section 3.2 was also applied using actual satellite data.�is section illustrates results for TC-based
error auto-correlation estimates over the Contiguous United States (CONUS) and evaluates 2D
�ltering results (based on these estimates) over both four heavily-instrumented in situ watersheds
which are highly representative at the coarse model scale and 228 single-site ground stations which
are homogeneously distributed over CONUS.

�e soil moisture model (θm) is driven by daily satellite-based rainfall estimates derived from
Version 7 of the TMPA 3B42 algorithm (Hu�man et al., 2010). �is algorithm generates TRMM-
adjusted merged-infrared (IR) daily accumulated rainfall estimates using rainfall measuring
instruments onboard the TRMM satellite - the Precipitation Radar (PR), the nine-channel passive
microwave radiometer (TMI), and the �ve-channel Visible and Infrared Scanner (VIRS) - to adjust
merged IR data which consists of GMS, GOES-E, GOES-W, Meteosat-7, Meteosat-5, and NOAA-12
data. Accumulated rainfall estimates are provided in mm/day at 00:00 UTC with a 0.25-degree by
0.25-degree spatial resolution.

�e active satellite-based soil moisture estimates (θa) used here are those from the H-SAF H25
SM-OBS-4 Metop-A ASCAT time series product, retrieved using the TU Wien algorithm version
WARP5.5 R2.1. Soil moisture is estimated as degree of saturation at a spatial resolution of 25 km,
resampled to a 0.25-degree by 0.25-degree grid using aHammingwindow approach. Measurements
are provided with a temporal resolution of 1-3 days, according to the repeat cycle of ASCAT.�e
ASCAT Surface State Flag (SSF) (Naeimi et al., 2012), derived from backscatter data using an
empirical threshold-analysis algorithm, is used to detect and mask measurements taken under
frozen or freezing/thawing conditions.

�e passive satellite-based soil moisture estimates (θ p) are extracted from the SMOS L3 product
version 5.01, which provides global daily soil moisture maps resampled to 00:00 UTC and a
spatial resolution of 0.25-degree by 0.25-degree. �e original revisit time is 1-3 days, the temporal
resolution at the center �eld of view (FOV) 35 km.

As already mentioned, only ASCAT retrievals are assimilated. Since such active microwave-based
retrievals are assumed to be relatively una�ected by the orbit direction (i.e., the observation time),
no distinction was made between retrievals from ascending and descending satellite orbits in order
to increase the temporal measurement density. SMOS retrievals are solely used as the third data
set in the TC analysis. As in the synthetic study, the 2D Kalman �lter analysis (for a given pixel)
is localized to consider only observations within that pixel or within any of the four neighboring
pixels in each cardinal direction. Missing or invalid retrievals are treated as retrievals with very
large errors so that their weights in the Kalman gain matrix vanish. �at is, �ltering updates were
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Figure 3.3: Station locations for the SCAN (green) and USCRN (red) soil moisture networks.

always performed if at least one valid pixel was available, irrespective of them being a center or a
neighboring pixel.

�e four watershed sites used were: the Reynolds Creek (RC) in Idaho, the Little Washita (LW) in
Oklahoma, the Walnut Gulch (WG) in Arizona, and the Little River (LR) in Georgia. All four are
operated as experimental watersheds by the United States Department of Agriculture’s Agricultural
Research Service (USDA ARS). Within each, multiple spatially-distributed ground-based surface
(0-5 cm) soil moisture measurement were aggregated within the 0.25-degree pixels to provide a
high-quality soil moisture representation at the satellite scale (Jackson et al., 2010).�e watersheds
RC, LW, and WG provide representations for three, and LR for seven di�erent 0.25-degree pixels.
�eir locations are indicated in subsequent �gures.

�e 228 single ground stations were drawn from the International Soil Moisture Network (ISMN;
Dorigo et al., 2011b) and are based on sites operated by the USDA Soil Climate Analysis Network
(SCAN) and the U.S. Climate Reference Network (USCRN). Station locations are shown in
Figure 3.3. Only surface soil moisture sensors that are placed within the �rst 10 cm of the soil were
used. Single measurements have been masked based on an automated quality control procedure
(Dorigo et al., 2013).

3.3.2.1 Estimation of spatial error auto-correlation

Figure 3.4 shows the spatial error auto-correlation estimates of the TRMM-driven open-loopmodel
run (CQ) and ASCAT (CR), as well as the error auto-correlation di�erence (∆C = CR − CQ) over
CONUS for a lag distance of one pixel (i.e., 0.25-degrees). Individual correlations are calculated
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Figure 3.4: Spatial error auto-correlations (averaged over all cardinal directions) for soil moisture
estimates derived from TRMM using (3.1) (top) and for ASCAT surface soil moisture retrievals
(middle), and the error auto-correlation di�erence between them (bottom). Red circlesmark theUSDA
ARS watershed locations.
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in each of the four cardinal directions; however, for display purposes, values plotted in Figure 3.4
represent an omni-directional average. Overall, error auto-correlation levels of both soil moisture
data sets are very high (typically > 0.8 [-]).�e lower values of CQ in theWestern US are potentially
related to increased topographic complexity, which leads to a much higher spatial heterogeneity in
local precipitation patterns. High - and rather homogeneous - values of (CR) can be explained by
the spatial Hamming window resampling, which is applied in the retrieval algorithm. As a result,
values of ∆C are typically close to zero with signi�cantly non-zero areas concentrated mainly in
theWestern US. Figure 3.5 further shows estimates of the error variance ratios of the TRMM-based
open-loop model run (δQ = Qx2x2 ⋅ (Qx1x1)−1), and of ASCAT (δR = Rx2x2 ⋅ (Rx1x1)−1), respectively.
�eir lower quartiles are 0.9 [-] and 0.9 [-], the medians are 1.0 [-] and 1.1 [-], and the upper
quartiles are 1.2 [-] and 1.6 [-], respectively. �e overall patterns follow those of the spatial error
auto-correlations but appear to be noisier, which indicates generally higher sampling uncertainties
in the TC based error variance estimates.

Taken at face value, the high spatial error auto-correlations in Figure 3.4 would seem to motivate
the application of a 2D �lter. However, synthetic experiment results in Section 3.3.1 suggest that
the assimilation of neighboring pixels only leads to an improvement if the di�erence in the model
and the observation error auto-correlation (i.e., ∆C) is large. �e impact of these sampled error
auto-correlations on real data assimilation results is examined numerically in Section 3.3.2.2 and
analytically in Section 3.4.

3.3.2.2 Impact on soil moisture analysis accuracy

Figure 3.6 shows the correlation coe�cients between the watershed-averages and the �ltered
satellite time series for the open-loop run lacking ASCAT assimilation and the 1D and 2D �ltering
cases a�er assimilating ASCAT. Despite the presence of signi�cant spatial auto-correlation in
TRMMandASCATerrors (Figure 3.4), 2D�ltering is not associatedwith a signi�cant improvement
in performance at any watershed site. At a few stations (RC-2, RC-3, WG-3, and LR-6), a slight (but
statistically insigni�cant) improvement is apparent. However, in the majority of cases the skill of
the 2D �lter is almost the same as that of the 1D �lter or, in some cases, even slightly lower (e.g.,
RC-1, WG-3, LR-2, LR-3, and LR-5). No relationship between skill improvement and the weight
that is given to neighboring pixels is observed. Note that in theory, even if the neighboring pixels
contain no information to update the state of the center pixel, their consideration in a 2D �ltering
analysis should not degrade the quality of the analysis with respect to the 1D �lter. Instead such
neighboring pixels should simply be assigned a weight of zero.

In order to evaluate results over a wider range of land surface conditions and measurement sites,
Figure 3.7 plots correlation coe�cients with all sites within the SCAN and USCRN networks

54



Chapter 3. �e potential of 2D Kalman �ltering for soil moisture data assimilation

Figure 3.5: Spatial error ratios (averaged over all cardinal directions) for soilmoisture estimates derived
from TRMM using (3.1) (top) and for ASCAT surface soil moisture retrievals (bottom). Red circles
mark the USDA ARS watershed locations.
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Figure 3.6: Pearson correlation (ρp) between the open-loop model run without assimilating ASCAT
observation (OL), the 1D Kalman �ltering (1D) and 2D Kalman �ltering (2D) estimates when
assimilating ASCAT, and ground-based surface soil moisture observation results for individual 0.25-
degree pixels located within each USDAARSwatershed site. Omnidirectionally averaged Kalman gain
weights applied to observations within neighboring pixels are shown in brackets.

Figure 3.7: Pearson correlation (ρp) between the soil moisture analysis and measurements acquired
at SCAN and USCRN sites (le�) for both the 1D �lter case (x-axis) and the 2D �lter case (y-axis), and
a histogram of the average weights that are given to the neighboring pixels in the 2D �lter case at the
site locations (right).
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for both the 1D and 2D �lter cases. Note that even if these sites might have a reduced coarse-
scale representativeness compared to the watershed-averages, the relative performance increase or
decrease of the di�erent �ltering approaches (i.e., 1D vs. 2D) should remain reliable in a statistical
sense (Liu et al., 2011a). �e weights that are given to neighboring pixels, i.e., the �rst row of the
steady-state expression of the Kalman gain in (3.5) for t ≫ 0 (at each station averaged over all
cardinal directions), are distributed from about -0.2 [-] to about +0.25 [-] with the majority of
weights being close to zero, but with a slightly higher tendency for negative values. �e average
correlation of the 2D �lter w.r.t. the ground stations remains with an ubRMSD of 0.05 [-] essentially
unchanged relative to the 1D �lter. As in the watershed case presented above, the magnitude of the
weights does not correlate with the performance increase or decrease (p < 0.01).

In summary, despite the presence of large spatial auto-correlation in both modeling and
observations errors little or no improvement (and in some cases even degradation) is noted upon
the transition between 1D and 2D �ltering. �e lack of signi�cant improvement (between 1D vs.
2D �ltering) is related to the rather lowweighting of neighboring pixels originating from very small
error auto-correlation di�erences, and the noisy appearance of performance increase/decrease is
likely related to the sensitivity of the weights to sampling errors in the error variance and error
auto-covariance estimates.�e following section explores these issues in greater analytical detail.

3.4 Analytical investigation of the Kalman gain behavior

Taken as a whole, the paradoxical �nding of of Section 3.3 is that - despite the apparent presence
of very high levels of error auto-correlation in (3.1) and in remotely-sensed surface soil moisture
retrievals (Figure 3.4) - the assimilation of these retrievals into the model does not bene�t
signi�cantly from the introduction of a 2D �ltering strategy. Numerical results in Section 3.3.2
suggest that this lack of sensitivity results from (i) a lack of relative di�erence between the auto-
correlation of modeling versus observation errors, and/or (ii) inaccuracies in estimated weights of
neighboring pixels originating from uncertainties in TC-based error (co-)variance estimates.

In this section, we will develop an analytical explanation for this result. In particular, we will
analytically investigate the expected impact of assimilating neighboring pixels by means of their
given weight. For simplicity and without lacking generality we will restrict this consideration to
one observation at the time t = 0, where the neighboring pixel at location y is used to update
the pixel at location x. �e optimal weighting that should be applied to the observation in pixel y
(when updating the state in pixel x) is thus the o�-diagonal element of the Kalman gain in (3.5)
when replacingMt withQ (i.e., the initial value in (3.4) at t = 0), which can be written as:

wy =
Qxy(Qxx + Rxx) − Qxx(Qxy + Rxy)

(Qxx + Rxx)(Qyy + Ryy) − (Qxy + Rxy)2 (3.1)
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Further justi�cation for this simpli�cation of the steady-state Kalman gain expression is provided
in Appendix 3.A.

Let us now express the error variances at the two di�erent locations x and y in terms of their ratio,
i.e., Qxx ≡ Q and Qyy = QδQ with δQ = Qyy ⋅ (Qxx)−1 and likewise Rxx ≡ R and Ryy = RδR
with δR = Ryy ⋅ (Rxx)−1. Let us further express the spatial error auto-covariance of the model
and the observation data set (i.e., the Qxy and Rxy) in terms of a linear correlation coe�cient (i.e.,
as CQ and CR) and these spatial error auto-correlations in terms of their relative di�erence, i.e.,
Qxy = CQQ

√
δQ and Rxy = (CQ +∆C)R√δR with ∆C = CR −CQ . We can then rewrite (3.1) to:

wy = QRCQ(
√

δQ −√
δR − QR∆C

√
δR)

(Q + R)(QδQ + RδR) − (CQQ
√

δQ + CQR
√

δR + ∆CR√δR)2 (3.2)

In (3.2) the signi�cant dependency of the 2D Kalman gain weights on di�erences in the error
characteristics of the model and the observations - observed earlier in numerical results - becomes
apparent. �at is, if the error properties are very similar (i.e., δQ ≈ δR and ∆C ≈ 0), then the
numerator in (3.2) will approach zero whereas the denominator will approach (Q + R)2(1 − CQ

2).
�is behavior is illustrated in Figure 3.1. Even if δQ and δR slightly deviate from each other,
the approximate (1 − CQ

2) proportionality in the denominator will cause wy to remain almost
zero for absolute CQ (and CR) values below 0.7 - 0.8 [-] (Figure 3.1a). For higher CQ (and CR)
values,wx becomes very sensitive to �uctuations in absolute error variance and covariance estimates
(Figure 3.1b) but remains zero if ∆C = 0 and δQ = δR. As a consequence, Kalman gain weights
that are signi�cantly di�erent from zero and relatively robust against �uctuation in error parameter
estimates can only be obtained if ∆C ≫ 0 (Figure 3.1c,d). Conversely, this implies that caution is
required when implementing a 2D �lter in all cases when ∆C is relatively small, and - given the low
∆C noted in real data results (Figure 3.4) - explains our lack of success in applying a 2D �lter to real
data cases (Figures 3.6 and 3.7).

�e calculated simpli�ed Kalman gain weights - as obtained from (3.1) - are shown in Figure 3.2.
�e patterns roughly follow the distribution of the error auto-correlation di�erences (Figure 3.4)
but with amuch stronger estimation noise, which likely originates from the noise in the spatial error
variance di�erence estimates (Figure 3.5). However, the results of the analytical investigation of the
optimumKalman gain weights are in agreement with numerical results shown earlier in Section 3.3.
�at is, in the case where δQ = δR, negligible weight is given to the neighboring observations if
∆C ≈ 0. In the case of δQ ≠ δR, no weight is given in the case of

√
δQ −√

δR = QR∆C
√

δR).
In these cases, the 1D and 2D �ltering cases should converge. In areas where non-zero weights are
present (i.e., where δQ ≠ δR and CQ > 0.7 - 0.8 [-], or where ∆C ≠ 0), these weights are very
sensitive to parameter estimation noise which in most cases equals or even outweighs the marginal
accuracy improvement associated with the transition from 1D to 2D �ltering. �erefore (3.1) and
(3.2) provide an analytical explanation for themajor qualitative results presented in Section 3.3.�at
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Figure 3.1: Optimal Kalman gain weight (based on the simpli�ed expression given in (3.1)) for
observations in neighboring pixels as a function of δR (x-axis) and δQ (y-axis) for di�erent CQ and
∆C ((a)-(d)).
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Figure 3.2: Optimal Kalman gain weights for neighboring pixels calculated using the simpli�ed
expression in (3.1). Plotted values re�ect an average across all cardinal directions and red circles mark
the USDA ARS watershed locations.

is, the dependency of 2D Kalman �ltering performance on relative spatial error auto-correlation
di�erences between themodel and the observations and the lack of any performance increase when
introducing a 2D �ltering strategy.

3.5 Summary and conclusion

Land data assimilation systems represent the most common pathway by which remotely-sensed
soil moisture products are integrated into existing climate, agricultural, and water resources
applications. Such systems are usually applied using a 1D strategy where models are updated
only with spatially-collocated observations. Nevertheless, if the errors in the model and/or the
observation data sets are auto-correlated in space, soil moisture information can also be laterally
propagated to neighboring modeling pixels by utilizing a 2D data assimilation strategy.

Information regarding the statistical structure of errors in remotely-sensed and modeled soil
moisture is required to e�ectively parameterize data assimilation systems - particularly for such 2D
cases. Here we develop and apply a triple collocation (TC) based approach to estimate statistical
error parameters via the cross-comparison of active-microwave, passive-microwave, and model-
based soil moisture estimates. In particular, a novel extension of TC is introduced which allows for
the estimation of spatial error auto-correlation information.
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In a synthetic experiment, the achieved RMSE of the error auto-correlation estimates was below
0.02 [-]. An application to real remotely-sensed (i.e., ASCAT-based) and modeled (i.e., TRMM-
based) soil moisture datasets reveals that signi�cant auto-correlations exist in all examined soil
moisture products (Figure 3.4).

Such signi�cant auto-correlation would seem to imply a large advantage associated with the
application of a 2D data assimilation approach relative to a 1D baseline system. However, based
on validation results against ground-based observations, no such advantage was observed (Figures
3.6 and 3.7).�is lack of sensitivity is clari�ed via an analytical derivation of the (simpli�ed) steady-
state 2D Kalman �lter gain (Section 3.4). �e derived gain reveals that the optimum Kalman gain
weight applied to neighboring pixels is highly dependent on the presence of di�erences between
model and observation error variances and covariances rather than on their absolute values. If
these di�erences are small, no weight is given to neighboring pixels, even if the absolute model and
observation error auto-correlations are very high. Furthermore, even if non-zero, the estimated
optimum weights are very sensitive to error parameter estimation noise. �at is, even small
variations in the error variance and/or spatial error auto-correlation estimates can lead to large
�uctuations in the estimated optimal weights applied to neighboring pixels.�is suggests that the
application of a localized 2D Kalman �lter to this particular assimilation problem will be relatively
non-robust and highly-sensitive to relatively small variations in error parameters.

In a synthetic experiment, a signi�cant skill gain of the 2D �lter with respect to a 1D �lter (in terms
of correlationwith the synthetic truth) is achieved for very large absolute di�erences betweenmodel
and observation error auto-correlations (∆C > 0.7 - 0.8 [-]). However, for the well-controlled
synthetic case presented here, the mean and maximum obtained correlation improvements over
the entire ∆C range are 0.03 and 0.16, respectively.�at is, the maximum achievable improvement
of the 2D �lter is only marginal.

For a real-data experiment, triple collocation was applied over the entire (contiguous) United
States to investigate error variance and error auto-correlation di�erences between the model and
the assimilated observations. Model versus observation error auto-correlation di�erences were in
general rather low (Figure 3.4). Based on synthetic results presented in Figure 3.2, this would seem
to suggest only modest advantages associated with the 2D assimilation of ASCAT observations
into (3.1). To con�rm this, an in situ evaluation of the �lter performance was carried out over
four heavily-equipped watershed sites as well as over 228 single ground stations, homogeneously
distributed over the US, covering a large variety of possible weight levels. On average, the
performance of the 2D �lter (measured as the correlation with the in situ observations) is the same
as that of the 1Dbaseline (ubRMSD= 0.05 [-]) with a very slight tendency of a performance decrease
for the 2D case. No relationship between �lter performance and average weight level of neighboring
pixels is observed. A clear analytical justi�cation for this lack of signi�cant improvement is
presented in Section 3.4.
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�ese results are somewhat at odds with previous studies which identi�ed greater levels of
improvement associated with the transition to a 2D data assimilation scheme (e.g., Reichle and
Koster, 2003; Han et al., 2012). However, it should be noted that most of these previous studies
were based on synthetic twin experiments which: 1) neglect the potential consequences of mis-
parameterizing a data assimilation system (since error statistics are perfectly known) and 2) are
based on (relatively) ad hoc assumptions concerning the spatial error characteristics of the model
background and the assimilated soil moisture observations. �is study improves on both of these
points by characterizing errors using a TC strategy and then objectively evaluating the robustness
of a real-data 2D KF implementation (based on this characterization) via comparison against
independent observations. Our �ndings reveal that (commonlymade) crude assumptions of spatial
error statistics in a 2D systemwill at bestmaintain the performance of a 1D approach or -more likely
- worsen the �lter forecasts because an over- or underestimation of error auto-correlation di�erence
can lead to an overestimation (in absolute terms) of the Kalman gain weight for the neighboring
pixel.

However, it is worth noting that previous studies identi�ed increased value in 2D �ltering when
compensating for permanent spatial gaps in the availability of soil moisture observations (Han
et al., 2012). It should be stressed that this particular case is not examined here and no updating is
attempted for pixels consistently lacking remotely-sensed soil moisture retrievals (see e.g., masked
areas in Figure 5). A fuller application considering this gap-�lling potential may lead to a slightly-
modi�ed assessment of 2D soil moisture data assimilation.
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Appendix

3.A Justification for using a simplified steady-state Kalman
gain expression

�e weights that are given to neighboring pixels are determined through the o�-diagonal elements
of the steady-state Kalman gain K, which is obtained from (3.4)-(3.6) for t ≫ 0. For simplicity,
let us consider only one neighboring pixel for the assimilation, so that K reduces to a 2 × 2 matrix
where the o�-diagonal element is the direct weight for this pixel. Due to the temporal memory of
the model, the steady-state Kalman gain has to be solved by combining (3.4)-(3.6) as:

K =MH⊺(HMH⊺ +R)−1

M = γ[M −MH⊺(HMH⊺ +R)−1HM] γ⊺ +Q
(3.A.1)

However, the analytical steady-state solution of this quadratic matrix equation is mathematically
demanding and produces a complex, and di�cult to interpret, analytical expression (even for low-
dimensional cases).

For investigating the impact of spatial error auto-covariances on the weight of the neighboring pixel
we can simplify things by neglecting the temporalmodel memory (i.e., assuming γ = 0 for the auto-
regressive model in (3.1)) so thatMt = Q.�is leads to a greatly simpli�ed (andmuchmore readily
interpretable) expression for the steady-state Kalman gain, given as:

K = QH⊺(HQH⊺ +R)−1 (3.A.2)

whose o�-diagonal element is the simpli�ed weight given in (3.1).�is simpli�ed weight deviates
from the full weight through a (slightly non-linear) scaling function. Due to high mathematical
complexity of the analytical solution of (3.A.1) we will omit its derivation and calculate it
numerically by iterating over (3.4)-(3.6) until t ≫ 0. Figure 3.A.1 shows a comparison between the
thereby obtained full weights and the simpli�edweights obtained directly from (3.1) - calculated for
all 16245 synthetic data sets described in Section 3.3.1. One can see an almost perfect, slightly non-
linear correlation (ρp = 0.96; ρs = 1.00), which is valid for a wide range of values. Note that also the
majority of weights estimated in the real data experiment fall within this valid range (Figure 3.7).
�erefore, the use of the simpli�ed analytical expression in (3.1) for these weights (in Section 3.4)
appears to be well-justi�ed.
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Figure 3.A.1: Scatterplot of optimal weights (for observations in neighboring pixels) derived using the
simpli�ed analytical expression in (3.1) vs. full weights calculated via the numerical iteration of the
full Kalman �lter for all 16245 synthetic data sets. ρp is the Pearson- and ρs the Spearman correlation
coe�cient. Vertical lines represent the 5% and 95% quantile (dotted), the upper and the lower quartile
(dashed), and the median (solid) of full optimal Kalman gain weights calculated at the 228 SCAN and
USCRN sites (Figure 3.7).
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Chapter 4

Estimating error cross-correlations in soil
moisture data sets using extended
collocation analysis

Global soil moisture records are essential for studying the role of hydrologic processes within the
larger earth system. Various studies have shown the bene�t of assimilating satellite-based soil
moisture data into water balance models or merging multi-source soil moisture retrievals into a
uni�ed data set. However, this requires an appropriate parameterization of the error structures
of the underlying data sets. While triple collocation (TC) analysis has been widely recognized
as a powerful tool for estimating random error variances of coarse-resolution soil moisture
data sets, the estimation of error cross covariances remains an unresolved challenge. Here we
propose a method — referred to as extended collocation (EC) analysis — for estimating error
cross-correlations by generalizing the TC method to an arbitrary number of data sets and relaxing
the therein made assumption of zero error cross-correlation for certain data set combinations. A
synthetic experiment shows that EC analysis is able to reliably recover true error cross-correlation
levels. Applied to real soil moisture retrievals from Advanced Microwave Scanning Radiometer-
EOS (AMSR-E) C-band and X-band observations together with advanced scatterometer (ASCAT)
retrievals, modeled data from Global Land Data Assimilation System (GLDAS)-Noah and in situ
measurements drawn from the International Soil Moisture Network, EC yields reasonable and
strong nonzero error cross-correlations between the two AMSR-E products. Against expectation,
nonzero error cross-correlations are also found between ASCAT and AMSR-E. We conclude
that the proposed EC method represents an important step toward a fully parameterized error
covariance matrix for coarse-resolution soil moisture data sets, which is vital for any rigorous data
assimilation framework or data merging scheme.

∗�is chapter is an edited version of: Gruber, A., Su, C. H., Crow, W. T., Zwieback, S., Dorigo, W. A., & Wagner,
W. (2016). Estimating error cross-correlations in soil moisture data sets using extended collocation analysis. Journal of
Geophysical Research: Atmospheres, 121(3), 1208-1219.
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4.1 Introduction

Consistent global soil moisture records are essential for studying hydrology driven phenomena of
the Earth system such as climate change, vegetation growth, and many others (Legates et al., 2011).
Various studies have shown the bene�t of blending satellite-based soil moisture observations from
multiple platforms into a uni�ed data set (Liu et al., 2011b, 2012) or assimilating them into water
balance models in order to generate a continuous merged (model/remote-sensing) soil moisture
analysis product (Bolten and Crow, 2012; de Rosnay et al., 2013). However, such merging and
assimilation frameworks require an appropriate statistical parameterization of the error structures
of both the land surface model and the remote sensing data, which is o�en di�cult to obtain in
practice. �is error parameterization problem becomes even more challenging if errors between
di�erent input data sets are correlated as this requires the parameterization of error covariances
(i.e., the o�-diagonal elements of the error covariance matrix) in addition to error variances (i.e.,
the diagonal elements of the error covariance matrix).

In the past, o�-diagonal elements in the error covariance matrix were commonly neglected as there
was no method available for reliably estimating these elements (Yilmaz et al., 2012). At the same
time, the increasing simultaneous availability of various active and passive satellite-based sensors
(e.g., ASCAT onboard MetOp-A and MetOp-B, SMAP, SMOS, AMSR-E, AMSR2, etc.) inevitably
leads to the need for a fully parameterized error covariancematrix, which is vital for any statistically
rigorous attempt to merge multi-source soil moisture retrievals into a uni�ed data set (Crow et al.,
2015).

Triple collocation (TC) analysis (Sto�elen, 1998) has been widely recognized as a powerful tool
for parameterizing the diagonal elements of the error covariance matrix (Crow and Van den Berg,
2010). A �rst attempt to additionally estimate o�-diagonal elements of the error covariance matrix
was made by Crow and Yilmaz (2014) who analytically combined TC analysis with Kalman �lter
innovation analysis - referred to as Auto-Tuned Land Data Assimilation System (ATLAS) - yet the
stability of the thereby obtained error cross-covariance estimates has not been proven over larger
scales. More recently, Crow et al. (2015) proposed a TC-based approach to estimate o�-diagonal
elements by using lagged variables (i.e., temporally shi�ed representations of a particular data set; Su
et al., 2014a) to generate data set triplets with uncorrelated errors, which can also provide consistent
error variance estimates. Subtracting these estimates from error variance estimates obtained from a
triplet using the corresponding data set together with two data sets that have correlated errors then
yields an estimate of their error covariance. However, error cross-covariance estimates produced by
this technique can become biased in the presence of temporal error auto-correlation (Crow et al.,
2015). Another extension of TC that also tolerates the existence of non-zero error cross-correlations
when usingmore than three data sets for the collocation was proposed by (Pan et al., 2015). It solves
the collocation problem through Pythagorean constraints in Hilbert space, yet it does not yield
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estimates for non-zero error cross-correlations. Instead, it splits all considered data sets into so-
called structural groups, whithin which the data sets are likely to have correlated errors. Random
error variances of each data set in each group are then estimated as two components: One part
that is correlated with the errors of the other data sets (within the same group), and the remaining
part that is entirely independent from all other data sets (within all groups). Summing these two
components up yields estimates for the individual total error varaince of all data sets.

Here we propose an alternative method for estimating error cross-correlations by generalizing TC
analysis to an arbitrary number of N > 3 data sets following Zwieback et al. (2012) and relaxing
the assumption of zero error-cross correlation for a limited number of data set combinations.�e
resulting method is referred to as extended collocation (EC) analysis and allows for the estimation
of a limited number of non-zero error cross-correlations - in addition to error variance and scaling
coe�cient estimates for all considered data sets - depending on the number of data sets used and
their assumed underlying error structure. Of particular importance will be the estimation of error
cross-correlation amongst di�erent active-satellite-based data sets (e.g., MetOp-A and MetOp-B
ASCAT), amongst passive-satellite-based data sets (e.g., SMOS, AMSR2 and WindSat), amongst
data sets derived from the same sensor using di�erent retrieval algorithms (e.g., SMOS L3, SMOS
LPRM), and amongst land surface models with similar atmospheric forcing (e.g., ERA-Land and
GLDAS-Noah), all of which are simultaneously resolvable in the EC analysis framework.

For simplicity and without any loss of generality, the method will be discussed and demonstrated
using maximum �ve data sets. Note that Pierdicca et al. (2015) recently proposed to extend
TC analysis with a fourth data set and to solve this quadruple collocation (QC) problem as
an overdetermined system of three possible triplets in a least-squares sense. �is minimizes
the uncertainty of the individual error estimates, but still requires uncorrelated errors between
all four data sets. For the EC method proposed here we follow Pierdicca et al. (2015) in
solving the collocation system of equations in a least-squares sense in cases where the system
remains overdetermined a�er additionally leveraging some degrees of freedom to estimate further
parameters (i.e., error cross-correlations). It is worth mentioning that even though only soil
moisture data sets are considered in this study, EC is - just like TC - also applicable to other
geophysical variables in hydrometeorology and oceanography (e.g., Vogelzang et al., 2011; Caires
and Sterl, 2003; Roebeling et al., 2012; Fang et al., 2012).

�e method will be derived in Section 4.2. Section 4.3 shows an evaluation of the method using
both synthetic identical twin experiments and a real data experiment.
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4.2 Background

Our proposed EC method is a generalization of the well-known triple collocation (TC) analysis
(Sto�elen, 1998), which is commonly used for estimating the individual error variances of three
spatio-temporally collocated soil moisture data sets with mutually uncorrelated random errors
(Scipal et al., 2008; Dorigo et al., 2010). In the following sections we will derive the estimators
using the so-called covariance notation for the collocation problem (Sto�elen, 1998; Su et al., 2014b;
Gruber et al., 2015).

4.2.1 Triple collocation

Classical TC analysis assumes a linear error model of the following form:

i = αi + βiΘ + εi (4.1)

with i ∈ [a, b, c] representing three spatially and temporally collocated soil moisture data sets; Θ is
the true soil moisture state; αi and βi are additive and multiplicative biases in data set i; and εi is
zero-mean random noise. By using the error model in (4.1), the data set variances and covariances
can be written as:

σ2i = β2i σ
2
Θ + 2 βiσΘε i + σ2ε i

σi j = βiβ jσ2Θ + β jσΘε i + βiσΘε j + σε i ε j

(4.2)

with i , j ∈ [a, b, c]. TC analysis assumes error orthogonality (σΘε i = 0), and zero error cross-
correlation (σε i ε j = 0 for i ≠ j). (4.2) thus simpli�es to:

σ2i = β2i σ
2
Θ + σ2ε i

σi j = βiβ jσ2Θ
(4.3)

From (4.3) we can now derive direct estimates for both the soil moisture signal variances (β2i σ
2
Θ)

and the random error variances (σ2ε i ) of the individual data sets as:

β2i σ
2
Θ = σi jσik

σ jk
σ2ε i = σ2i −

σi jσik
σ jk

(4.4)

with i , j, k ∈ [a, b, c] and i ≠ j ≠ k. �ese are the �nal error estimates obtained from TC analysis,
which allow for either a direct investigation of the error variances (σ2ε i ), or for an investigation of

the signal-to-noise ratios (SNRi = β2i σ 2Θ
σ 2ε i
) of the data sets. However, these estimates become biased

in the presence of non-zero error cross-correlations and/or non-orthogonal errors, as it can be seen
in (4.2).�e �rst quantitative investigation of such biases due to violations in TC assumptions was
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recently made by Yilmaz and Crow (2014). While results of this study suggest that both non-zero
error cross-correlation and non-orthogonal errorsmay exist in typical soil moisture data sets, it was
also found that the impact of error cross-correlations are of greater importance than that of error
non-orthogonalities.�is is because the impact of the latter can be dampened or even compensated
if their magnitude is approximately equal for all data sets, and also because errors of di�erent data
sets that are non-orthogonal are typically also cross-correlated.

4.2.2 Extended collocation problem

Let us now generalize the TC problem in (4.3) for an arbitrary number of N data sets (Zwieback
et al., 2012) and relax the assumption of zero error cross-correlation for some data set combinations
while maintaining the assumption of orthogonal errors for all data sets. According to (4.2), the data
set covariances then write as:

σi j =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

βiβ jσ2Θ ∀ i , j where σε i ε j = 0
βiβ jσ2Θ + σε i ε j ∀ i , j where σε i ε j ≠ 0

(4.5)

with i ≠ j. Cross-covariances between errors in i and j can then be directly estimated from (4.5)
as:

βiβ jσ2Θ = σikσ jl

σkl
σε i ε j = σi j −

σikσ jl

σkl
(4.6)

with i ≠ j ≠ k ≠ l where σε i εk , σε jε l , and σεk ε l are required to be zero. Error cross-correlations can
be further derived by simply dividing (4.6) through the error standard deviations obtained using
(4.4) applied on data set triplets with mutually uncorrelated errors, provided that they are available
(see Section 4.2.4).

Notice that (4.6) uses a combination of exactly four di�erent covariances (between four data sets
pairs), three of which are required to have uncorrelated errors. However, the availability of four
data sets already provides six possible data set pairs (i.e., six di�erent covariances), increasing with
the number of data set sets (N) as N!

2(N−2)! . �erefore, we can typically de�ne a certain number of
redundant estimators for σε i ε j .�e same holds for the signal- and error variance estimates, i.e., for
the β2i σ

2
Θ and σ2ε i obtained from (4.4), which require three data set pairs, all of which must have

uncorrelated errors.�is redundancy allows us to solve the EC problem in a least squares sense in
order to reduce estimation uncertainties in the error variance and -covariance estimates (Su et al.,
2014a; Pierdicca et al., 2015).
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4.2.3 Least-squares solution

Let us therefore summarize the �nal collocation system of equations as:

σ2i = β2i σ
2
Θ + σ2ε i ∀ i

σi j = βiβ jσ2Θ + σε i ε j ∀ i , j where σε i ε j ≠ 0
σi jσik

σ jk
= β2i σ

2
Θ ∀ i , j, k where σε i ε j = σε i εk = σε jεk = 0

σikσ jl

σkl
= βiβ jσ2Θ ∀ i , j, k, l where σε i εk = σε jε l = σεk ε l = 0

(4.7)

In matrix notation (4.7) writes as:

y =

⎛
⎜⎜⎜⎜⎜⎜
⎝

σ2i
σi j

σi jσi k
σ jk

σi jσk l
σ j l

⎞
⎟⎟⎟⎟⎟⎟
⎠

A =
⎛
⎜⎜⎜⎜⎜
⎝

1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎟⎟⎟
⎠

x =
⎛
⎜⎜⎜⎜⎜
⎝

β2i σ
2
Θ

βiβ jσ2Θ
σ2ε i

σε i ε j

⎞
⎟⎟⎟⎟⎟
⎠

(4.8)

where y = Ax; y is the (known) observation vector; A is the design matrix, and x is the vector of
unknown parameters. �e actual dimensions of y, A, and x depend on the number of data sets
used and on the number of data set pairs which are (a-priori) assumed to have correlated errors.
�is also determines the degree of redundancy inAx. As an example, for the case of four data sets -
referred to as the quadruple collocation (QC) scenario with i , j, k, l ∈ [a, b, c, d] - with only a and
b having correlated errors (σεa εb ≠ 0), (4.8) takes the form:

y =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

σ2a
σ2b
σ2c
σ2d
σab

σacσad
σcd

σbcσbd
σcd

σacσcd
σad

σbcσcd
σbd

σadσcd
σac
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⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

β2aσ2Θ
β2bσ2Θ
β2cσ2Θ
β2dσ2Θ

βaβbσ2Θ
σ2εa
σ2εb
σ2εc
σ2εd

σεa εb

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(4.9)
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�e least-squares solution for the parameters x is then given as:

x̂ = (A⊺A)−1A⊺y (4.10)

Notice that the QC case (N = 4) with only one non-zero error cross-correlation was chosen merely
as an example for demonstration purposes. (4.9) can be easily extended to any number of N > 4
data sets, which allows also for the estimation ofmore than one non-zero error cross-correlation, for
example between multiple active satellite-based and multiple passive satellite-based soil moisture
data sets. However, regardless of the number of data sets used in EC analysis, not every possible
error structure is resolvable.

4.2.4 Resolvable error structures

In (4.6) we see that the consistency of the error cross-covariance estimator requires zero error cross-
covariance between some speci�c data set combinations, i.e., σε i εk = σε jε l = σεk ε l = 0. �e same
holds for the signal- and error variance estimators in (4.4), which require σε i ε j , σε i εk , and σε jεk to
be zero. If any of these were allowed to be non-zero, the matrix (A⊺A) would become singular and
the collocation system of equations in (4.10) cannot be solved. However, regardless of the number
of data sets used we can de�ne the requirement on the invertability of the the matrix (A⊺A) as
follows: Each member of the data set pairs with cross-correlated errors must also be a member of
at least one data set triplet with mutually uncorrelated errors. For example, when using two passive
satellite-based data sets - which are those assumed to have correlated errors - together with one
active satellite-based and one modelled data set, we can de�ne two triplets comprised of the active
microwave based, themodelled, and one passive satellite-based data set, respectively, both of which
have fully independent error structures. In this case, (A⊺A) can be inverted, and the collocation
system of equations can be solved. More generally speaking, A⊺A has to have full rank.�erefore,
the rank of A⊺A (and thus also of A) has to be equal to the size of x.

4.3 Demonstration

In the following sections we will evaluate the EC method using both synthetic identical twin
experiments and a real data analysis. For simplicity and without any loss of generality we will limit
the demonstration to scenarios where either four or �ve data sets are available.
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4.3.1 Synthetic experiment

For the synthetic experiment we limit the number of data sets (N) toN = 4 (i.e., to theQC scenario)
with only one data set pair having cross-correlated errors. �is represents the worst case (in the
synthetic case) since the inclusion of more data sets would increase the degrees of freedom in the
collocation system of equations, which would lead to an increased precision of the estimates.

A true soil moisture reference Θ is �rst generated via an unperturbed integration of the Antecedent
Precipitation Index (API) model (Θt = γΘt−1 + Pt ; where t is the time index, the loss variable
γ is held �xed at 0.85, and the precipitation P is modelled as a Possion process (Crow et al.,
2012a)). Four soil moisture data sets are then generated by arti�cially perturbing the soil moisture
reference with random noise containing varying cross-correlations, drawn from a multivariate
normal distribution.

Synthetic soil moisture quadruplets are generated for a large number of di�erent cases. Error cross-
correlation levels between two of the data sets are systematically varied between 0.0 [-] and 1.0
[-] in increments of 0.1 [-], and error variance levels are varied in all four data sets between 40
mm2 and 600 mm2 in increments of 80 mm2, which corresponds to a SNR between about −6 dB
and +6 dB, which is a typical range for soil moisture data sets (Gruber et al., 2015). Altogether,
this requires the generation of 45056 separate synthetic data sets. �e sample size of each data
set is 750 days which is approximately the average sample size that is available for the real data
experiment (see Section 4.3.2).�e EC based error cross-correlation estimates for these 45056 data
sets - obtained using (4.10) - are shown in Figure 4.1. True error cross-correlation levels can be
recovered without bias and with negligible RMSE (0.08 [-]), which decreases with increasing error
cross-correlation.�erefore, the application of EC for accurately estimating error cross-correlations
appears plausible. Note that the apparent increase in estimation accuracy with increasing error
cross-correlation magnitude originates from the non-linear (⋯)−1 dependency on error variance
estimates when converting the error cross-covariance estimates to error cross-correlations. �e
uncertainties of the error cross-covariance estimates alone do not show such a dependence.

4.3.2 Real data experiment

In this section we further evaluate the ECmethod by applying it to real data.�e soil moisture data
sets used for this study are: (i) passive satellite-based retrievals from the AMSR-E C-band channel,
(ii) passive satellite-based retrievals from the AMSR-E X-band channel, (iii) active satellite-based
retrievals fromASCAT, (iv) soil moisture estimates from theGLDAS-Noah land surfacemodel, and
(v) ground measurements from globally-distributed in situ stations drawn from the International
Soil Moisture Network.
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Figure 4.1: �e median and the inter-quartile-range (IQR) of estimated error cross-correlations (y-
axis) at di�erent true cross-correlation levels (x-axis) and di�erent error variance levels. Whiskers
represent 1.5 times the IQR.�e estimation bias and RMSE averaged over all samples are provided on
the top le� hand corner. �e sample size is 750 days.

While active-based, passive-based, modelled, and in situ soil moisture estimates are widely-
assumed to have mutually independent error structures, the two AMSR-E data sets from two
di�erent frequency channels are very likely to have signi�cant non-zero error cross-correlation due
to instrumental and algorithmic identity. Here we use EC analysis to estimate these supposed error
cross-correlations between multi-frequency AMSR-E retrievals and further test the assumption of
zero error cross-correlation between AMSR-E and ASCAT retrievals.

Soil moisture estimates from AMSR-E are retrieved using the Land Parameter Retrieval Model
(LPRM) Version 5 (Owe et al., 2008) and provided by the VU University Amsterdam (VUA).
Data is provided in volumetric units on a regular grid with 0.25 degrees grid spacing. Vegetation
Optical Depth (VOD) estimates are used to �lter out retrievals with a high uncertainty due to dense
vegetation (Parinussa et al., 2011). Usually, Radio Frequency Interference (RFI) estimates are used
to switch from C- to X-band retrievals in RFI-contaminated areas (Owe et al., 2008). Here we
consider both C- and X-band retrievals separately in order to estimate their mutual error cross-
correlation. RFI estimates are used to mask out areas with high contamination in either of the
frequency bands.

�e active satellite-based soil moisture data set is the H-25 SM-OBS-4 MetOp-A ASCAT time
series product, retrieved using the TUWien algorithm versionWARP 5.5 R2.2 (Wagner et al., 1999;
Naeimi, 2009). ASCAT operates at C-band, retrieved soil moisture estimates are provided as degree
of saturation at a spatial resolution of 25 km, regridded to a 12.5 km Discrete Global Grid (DGG).
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�eWARP Surface State Flag (SSF;Naeimi et al., 2012) is used to removemeasurements taken under
frozen or freezing/thawing conditions.

�e Global Land Data Assimilation System (GLDAS-) Noah model provides soil moisture data
for four di�erent depth layers at a spatial resolution of approximately 0.25 degrees in a 3-hourly
sampling rate (Rodell et al., 2004). Only the top layer (0-10 cm) is used in this study.

In situ data is drawn from the International Soil Moisture Network (ISMN), which is a data hosting
facility that collects and harmonizes data fromnetworks and �eld validation campaignsworld-wide,
and makes them available to the users on a centralized web platform (Dorigo et al., 2011a,b). For
this study we consider all stations that lie within the temporally overlapping period of ASCAT and
AMSR-E, i.e., January 2007 - October 2011. Measurements from sensors which are placed deeper
than 10 cm below the surface are excluded. �e ISMN also �ags suspicious measurements such
as spikes or signal saturation as well as measurements taken under frozen conditions or exceeding
physically meaningful value ranges, based on automated quality control procedures (Dorigo et al.,
2013). Measurements �agged as suspicious are excluded in this study. Data sets that meet the
above described requirements are provided by the networks: AMMA-CATCH(Pellarin et al., 2009),
ARM (http://www.arm.gov/), COSMOS (Zreda et al., 2008), GTK, HOBE (Bircher et al., 2012), ICN
(Hollinger and Isard, 1994),MAQU(Su et al., 2011),MOL-RAO (http://www.dwd.de/mol/), OZNET
(Smith et al., 2012), PBO-H2O (Larson et al., 2008), REMEDHUS (http://campus.usal.es/˜hidrus/),
SASMAS (Young et al., 2008), SCAN (http://www.wcc.nrcs.usda.gov/), SMOSMANIA (Albergel
et al., 2008), SNOTEL (Leavesley et al., 2008), SWEX-POLAND (Marczewski et al., 2010), UDC-
SMOS (Schlenz et al., 2012), UMBRIA (Brocca et al., 2011), USCRN (Bell et al., 2013), andUSDA-ARS
(Jackson et al., 2010).

4.3.2.1 EC analysis over the ISMN

Asmentioned in Section 4.2.4, EC requires at least two data sets whose errors are fully independent
from the errors of all other data sets in addition to the data sets with assumed non-zero error cross-
correlation.�erefore, both modelled and in situ data need to be included in the EC analysis when
assuming non-zero error cross-correlations between ASCAT and AMSR-E. However, this results in
spatially incomplete estimates due to the limited global coverage of available ground stations.

Figure 4.2 shows the error cross-correlation statistics between retrievals from the two AMSR-E
channels, between ASCAT and AMSR-E C-band retrievals, and between ASCAT and AMSR-E X-
band retrievals, respectively, for both absolute values (median: 0.82 / 0.27 / 0.25) and anomalies
(median: 0.78 / 0.21 / 0.20) for all available stations. Anomalies were calculated by subtracting
a �ve week moving-average window based climatology. Figures 4.3 and 4.4 further show the
spatial distribution of error cross-correlation over regions with a higher station coverage, i.e., the
Contiguous United States, Europe, and New South Wales (Australia) for absolute measurements

74



Chapter 4. Estimating error cross-correlations in soil moisture data sets using extended collocation
analysis

Figure 4.2: �e median and inter-quartile-range (IQR) of error cross-correlation estimates for soil
moisture retrievals obtained from: the AMSR-E C- and X-band channels, ASCAT and the AMSR-E
C-band channel, and ASCAT and the AMSR-E X-band channel for both absolute values (le�) and
anomalies (right). Whiskers represent 1.5 times the IQR.�e sample size is 283 stations.

and anomalies, respectively. As expected, cross-correlations between the errors of the AMSR-E data
sets are very high in almost all regions. A detailed discussion on AMSR-E error cross-correlation
will be provided later in Section 4.3.2.3. Against expectation, non-zero error cross-correlations
exist - even though much lower - also between ASCAT and both AMSR-E frequency channels.
�ese are slightly higher for absolute soil moisture retrievals than for anomalies and show some
distinct spatial patterns: higher error cross-correlations over the Western US, which are more
pronounced for absolute values than for anomalies, higher cross-correlations between errors of
absolute values over the Mississippi region, which are not present in the anomalies, and higher
values over agricultural areas in Australia for both absolute values and anomalies.

Most of the observed non-zero error cross-correlations seem to be located in areas where in situ
stations typically have a limited spatial representativeness, for instance in theWestern USwhere the
topographic complexity is very high, or in the heavily irrigated Mississippi region. �erefore, the
question arises whether the observed error cross-correlations in these regions are arti�cial biases
due to limited representativeness of the ground measurements. In classical TC analysis, limited
spatial representativeness causes a bias in the error variance estimates of the groundmeasurements,
i.e., TC assigns them an additional representativeness error term (Vogelzang and Sto�elen, 2012;
Miralles et al., 2010; Crow et al., 2012b; Gruber et al., 2013, 2015). �e error variance estimates
of the coarse resolution data sets, on the other hand, remain unbiased. In the following section
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Figure 4.3:Estimated cross-correlations between the errors in absolute soilmoisture retrievals obtained
from: ASCAT and the AMSR-E C-band channel (le�), ASCAT and the AMSR-E X-band channel
(middle), and the AMSR-E C- and X-band channels (right) for the Contiguous United States, Europe,
and New South Wales (Australia).

Figure 4.4: Estimated cross-correlations between the errors in anomalies of ASCAT and AMSR-E C-
band channel (le�), ASCATandAMSR-EX-band channel (middle), and bothAMSR-EC- andX-band
channels (right) for the Contiguous United States, Europe, and New South Wales (Australia).
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we investigate the impact of representativeness errors on error cross-correlation estimates in EC
analysis analytically.

4.3.2.2 Representativeness errors in EC analysis

Following Gruber et al. (2015) we can split the observed soil moisture signal Θ into a joint signal
component Θ j, which is observed by all data sets, and a coarse-scale component Θc , which is
observed by the coarse-resolution data sets only. Let us now consider four data sets a, b, c and d,
where a represents a point-scale in situ data set, and the others represent data sets with comparable
coarse spatial resolution - such as for instanceGLDAS-Noah, ASCAT, andAMSR-E -with the errors
between data sets c and d being correlated.�e covariances between the data sets then write as:

σab = βaβbσ2Θ j

σac = βaβcσ2Θ j

σad = βaβdσ2Θ j

σbc = βbβc(σ2Θ j
+ σ2Θc)

σbd = βbβd(σ2Θ j
+ σ2Θc)

σcd = βcβd(σ2Θ j
+ σ2Θc) + σεc εd

(4.1)

From (4.1) we can see that the error cross-covariance estimators σεc εd = σcd − σacσbd
σab

= σcd −
σadσbc

σab
in (4.6) remain unbiased. �at is, even though non-zero error cross-correlations between

ASCAT and AMSR-E are observed mainly in areas where in situ stations are expected to have
limited representativeness, these representativeness errors should not induce biases in error cross-
correlation estimates. Instead, the same phenomena that decrease spatial representativeness of
point measurements, i.e., highly localized soil moisture variations, might also induce correlations
between retrieval errors of di�erent satellites.

4.3.2.3 Global EC analysis

In Section 4.3.2.1, spatially limited in situ data were required to estimate error cross-correlations
between the errors of ASCAT andAMSR-E.Herewewill exclude the in situ data fromEC analysis in
order to estimate error cross-correlations between the AMSR-E products globally, yet it requires the
assumption of zero error cross-correlation between ASCAT and AMSR-E. Even though we found
that this assumption is not always ful�lled, observed non-zero error cross-correlations between
ASCAT and AMSR-E are in general rather low (median ≈ 0.25) compared to those between the
two AMSR-E products (median ≈ 0.8). �erefore - keeping a possible violation in mind - we will
assume the cross-correlations between ASCAT and AMSR-E to be negligible.
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Figure 4.5: Global error cross-correlation estimates for AMSR-E C- and X-band soil moisture
retrievals. White shading indicates areas where estimates did not converge to a meaningful value.
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Figure 4.5 shows the error cross-correlation estimates between the C- and X-band soil moisture
retrievals from AMSR-E for both absolute values and anomalies. White shading indicates areas
where estimates did not converge to a meaningful value (i.e., where the cross-correlation estimate
was below −1.0 or above 1.0 [-]). As already observed in the in situ analysis, very high error cross-
correlations exist in most regions.�e 5, 25, 50, 75, and 95% quantiles are 0.42, 0.76, 0.87, 0.92, and
0.97 [-] for absolute values, and 0.16, 0.70, 0.82, 0.90, and 0.99 [-] for anomalies, respectively. As
mentioned before, these error cross-correlation estimates might be biased due to the presence of
non-zero error cross-correlations betweenASCAT andAMSR-E.However, the average value ranges
are comparable to those obtained in Section 4.3.2.1, where globally-distributed in situmeasurements
were included as a ��h data set in EC analysis so that the error cross-correlation estimates for
the AMSR-E products remain una�ected by non-zero error cross-correlations between ASCAT
and AMSR-E.�is suggests that the possible biases in the AMSR-E C- and X-band error cross-
correlation estimates from the global EC analysis presented in this section are largely negligible.

Clear spatial patterns exist which suggest that the method is not overly sensitive to estimation
noise, which is expected given the large number of temporally matching observations (median:
781). Likely drivers for these apparent error cross-correlation patterns are the di�ering spatial
resolution and penetration depth of the two AMSR-E frequency channels, their di�ering sensitivity
to vegetation, topographic complexity and possibly also other land cover features, and - most
importantly - radio frequency interference (RFI). Indeed, regions with low error cross-correlation
show good agreement with regions where RFI is expected (de Nijs et al., 2015): C-band RFI
contamination is expected mainly in the US, the Middle East and Japan, whereas X-band RFI
is expected mainly over England and Italy. RFI in both frequencies is also expected in Europe,
especially around densely urbanized areas. In most of these regions, also lower error cross-
correlations are observed. �is good agreement is a �rst indicator for the reliability of EC error
cross-correlation estimates. However, additional validation is required before the approach can be
applied with full con�dence.

4.4 Summary and outlook

A method for estimating error cross-correlations between soil moisture data sets was developed
by generalizing the well-known triple collocation (TC) analysis to an arbitrary number of data sets
and relaxing the assumption of non-zero error cross-correlation for some data set combinations,
referred to as extended collocation (EC) analysis. �e number of allowed non-zero error cross-
correlations between data set pairs is mainly limited by the overall number of data sets used and
by their underlying error cross-correlation structure: Each member of the data set pairs with
assumed non-zero error cross correlation must also be a member of at least one data set triplet
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with fully independent errors. Furthermore, remaining degrees of freedom can be used to solve the
collocation system of equations in a least-squares sense.

�e proposed EC method was evaluated using both a synthetic identical twin experiment and
real data experiments. In the synthetic experiment, EC analysis was able to recover true error
cross-correlation levels with an average RMSD of 0.08 [-] and a negligible bias. In the real data
experiments EC analysis was applied to satellite-based soil moisture retrievals from ASCAT, the
AMSR-E C-band channel, the AMSR-E X-band channel, modelled soil moisture estimates from
GLDAS-Noah, and in situ soil moisture measurements drawn from the International Soil Moisture
Network. Results suggest that signi�cant error cross-correlations exist between the AMSR-E
C-band and X-band channels (median = 0.82 and 0.78 [-] for absolute values and anomalies,
respectively), which are likely driven by their di�ering spatial resolution, sampling depth, sensitivity
to vegetation and other land cover features, and -most importantly - RFI.Moreover, slight non-zero
error cross-correlations were found also between ASCAT and AMSR-E (median = 0.25 and 0.20 [-
] for absolute values and anomalies, respectively). �ese non-zero error cross-correlations may
slightly bias the error cross-correlation estimates between the AMSR-E C- and X-band channels.

It should be emphasized that - even though only demonstrated for four and �ve data sets - the
EC method presented in this study is readily applicable to an arbitrary number of data sets, which
would facilitate the estimation of more non-zero error cross-covariance terms (e.g., when using 3
passive data sets such as SMAP, AMSR2, and SMOS together with 2 active data sets such asMetOp-
A and MetOp-B).�erefore, it represents an important step towards a fully-parameterized error
covariance matrix which is vital for any rigorous data assimilation framework or data merging
scheme.
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