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Abstract

This thesis focuses on a well-known issue of discretization techniques for solving the in-
compressible Navier Stokes equations. Due to a weak treatment of the incompressibility
constraint there are different disadvantages that appear, which can have a major impact
on the convergence and physical behaviour of the solutions. First we approximate the
equations with a well-known pair of elements and introduce an operator that creates a
reconstruction into a proper space to fix the mentioned problems.

Afterwards we use an H(div) conforming method that already handles the incompress-
ibility constraint in a proper way. For a stable high order approximation an estima-
tion for the saddlepoint structure of the Stokes equations is needed, known as the
Ladyschenskaja-Babuska-Brezzi (LBB) condition. The independency of the estimation
from the order of the polynomial degree is shown in this thesis. For that we introduce
an H?-stable extension that preserves polynomials.

All operators and schemes are implemented based on the finite element library Net-
gen/NGSolve and tested with proper examples.
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1 Introduction

Computational fluid dynamics, or as commonly abbreviated CFD, is a huge part in the
field of numerical mathematics and engineering. For a long time, scientists and engineers
have been trying to find a way to describe the motion of fluids and gases. Using the basic
rules of physics, namely Newton’s laws, one can derive different models for all kinds of
fluids. This thesis considers the incompressible Navier Stokes equations which describe
a flow of an incompressible fluid by the velocity u and the pressure p:

?;Z—VAu—I—(u~V)u+Vp =f inQ,

divy =0 in ),

with suitable initial and boundary conditions. Due to the nonlinear structure and the
incompressibility constraint this set of partial differential equations can not always be
solved in an explicit form, and a discretization technique has to be used. The method
considered in this thesis is a mixed finite element approximation, therefore the approach-
ing derivations are treated in a weak sense. Although this works for a large amount of
problems it may happen that the resulting solutions are affected with a large error and
show a non physical behaviour. The occurring problems can be distinguished when we
look at the error estimation of the mixed problem:

U —U < inf ||lu—wv + inf — )
Ju=unlly < inf = enlly + inf o= ailg

We observe that the error of the velocity not only depends on the best approximation
of the velocity, but also on the best approximation of the pressure. A pressure robust
scheme, as it is mentioned in [Linl3|, overcomes this dependency and also results in
proper physical solutions. In this thesis we introduce pressure robust methods with an
optimal convergence order.

Outline of the thesis:

In the first two chapters we focus on the derivation of the Navier Stokes equations and
post some known results and approximation properties. We are going to distinguish the
main causes for the resulting lack that we mentioned above and try to understand how
we can solve this problem.

In chapter three we introduce two versions of a reconstruction operator for the well-
known Taylor-Hood element. This operator corrects the divergence of the solution by
equilibrating the error in a proper space. We show that this reconstruction does not af-
fect the convergence order of the method, thus an optimal error estimation is provided.



1 Introduction

We finish this chapter with some numerical examples, including steady and unsteady
flows and a two phase Stokes example.

In the fourth chapter we consider a discretization that was already introduced in a
hybridised version of the method from Cockburn, Kanschat and Schétzau (see [CKS05])
by Christoph Lehrenfeld and Joachim Schéberl in [LS15], namely a high order hybrid
discontinuous Galerkin ansatz. This mixed method fulfills the properties that lead to
a proper physical description and an independent velocity error. Still, for a stable and
optimal convergence it remains to show the independency of the LBB-constant 3 of the
polynomial degree, so 3 # B(k). For this proof we need an H?-continuous extension that
preserves polynomials. Under this assumption we show the k-robust LBB-condition and
finish the chapter with a numerical example, namely an unsteady laminar flow around
a cylinder.

The aim of the last chapter is to show the existence of such an H?-continuous extension.
We split the result in three theorems. In the first step we show the existence of an exten-
sion for fixed values of the tangential gradient on the boundary. The second theorem is
used to weakly correct the values of normal derivative under certain assumptions of the
input. Finally we close the statement by showing that the error due to the assumptions
of the second step is small enough.

Implementation:

All numerical examples were implemented and tested in the finite element library Net-
gen/NGSolve, see [Sch97] and [J.14].



Notation:
In this thesis we stick to the following notation:

Q bounded subdomain of R? or R3

T quasi uniform mesh on
h global element size of T
T reference element

wy vertex path
wr element path
IT*(T) polynomials of order k on T
IT*(7T) element wise polynomials of order &
standard nodal interpolator
1 ,?DMk BDM interpolator
H% Clement operator
gd Fortin operator
7352 L? projection on a Hilbert space Q

”Pg(w) L? projection on constants on the domain w
F linear mapping from the element to T
P Piola transformation
C covariant transformation

RZ reconstruction operator defined by a vertex equilibration
Rz reconstruction operator defined by an element equilibration

By a < b we mean that there exists a constant ¢ independent of a,b, k, h such that
a<ch






2 Navier Stokes equations

In this chapter we derive the incompressible Navier Stokes equations which are a system
of non linear partial differential equations and describe the motion of a fluid in space
and time. For the derivation we concern conservation properties derived from physics.
We proceed as in [SS14], [SAO8] and [Brals].

2.1 Description model

A fluid can be described in two ways:

i. Using a Lagrangian model, one considers a fluid as an amount of particles and
describes them with their trajectories and their streamlines. Using this description,
one can determine the position in space for every particle at each point in time.

ii. Using an Eulerian model, one considers a fixed domain and describes the fluid by
determining the velocity at each point in space for each point in time.

In fluid dynamics the Eulerian model is more common (see [SS14]) and is also used for
this thesis, but we want to remind that both descriptions can always be transformed
into the other one.

2.2 Physical quantities

In this thesis we assume a bounded fixed domain Q C R? where d = 2 or 3, with
0 =T'NyUTp, where I'p = I';;, U4 is a Dirichlet boundary that describes either an
inflow condition (u(z,t) = u;n(z,t)) or a no-slip condition on walls (u(x,t) = 0) and I'x
the Neumann boundary where we assume a do-nothing outflow. For the time we define
an interval It = [0,7] with 7" > 0. The physical quantities that appear are
i. p(z,t) € CHQ x Ir) ...Density of the fluid

ii. u(z,t) € [C?(Q x I7)]? ... Velocity of the fluid

iii. p(z,t) € CH(Q x Ir) ...Pressure of the fluid

iv. f(x,t) € [C%(Q x Ir)]? ...Volume force that acts on the fluid

v. o(z,t) € [CH(Q x I7)]?*? ...Stress tensor on the surface

forallz € Q and t € I.
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2.3 Mass derivation

Due to the two models for a fluid we have to consider two different derivations. Let
b € C! be an arbitrary function then we define

i. % ...The change of time one observes at a fixed point x €

ii. % ... The mass derivation which describes the change in time when one follows the
particle.

Using those two descriptions we observe that in a fluid with the velocity u we get the
equivalence (see [SA0S])

Db 0Ob

2.4 Conservation of mass
Using the density p we can determine the mass of an arbitrary volume V' (t) C Q by

m::/ pdx Vtelp.
V()

The conservation of mass implies that

Dm D
— == dz = 0.

As V() is transported with velocity u in time, we have to be careful when we want to
change the integral and the derivation. Using the mass derivation (2.3.1)), the Reynolds
transport theorem (see appendix, [7.1.1)) and V' = V(0) we can show that

D Dp ap
— de = | — diveder = | —— +di drx =0
Dt V(t)p T /{/Dt—i_’a wu dz /Vat+ v pu dx ,
and thus, as V was arbitrary, we get the point wise equivalence
0
8—5 + div (pu) = 0.

In this thesis we always assume a constant density in space and time, so we get the
well-known incompressibility constraint for the velocity

divu = 0. (2.4.1)

2.5 Conservation of momentum
The first law of classical mechanics (Newton’s first law) states that the rate of change
of the momentum of a body is balanced by the forces applied on this body:

DP
— =F
Dt



2.6 Stokes fluid

Considering a fluid we can define the momentum of a body, thus a constant set of
particles, by

P= / pu dx.
V()

Using the stress tensor o on the boundary and the volume force f as acting forces on
the fluid we get

D pu dx:/ a'nds—}-/ pf dz. (2.5.1)
Dt Jy @ oV (¢) V(t)

Similar to before, due to the the properties of the mass derivation and the transport

theorem of Reynolds ([7.1.1),

D D
Di Vpu dx:/Vle: dxz/vdiva—i—pf dz, (2.5.2)

and so, as V was arbitrary, we get the equations of the conservation of momentum

pD—ZL =dive + pf.

2.6 Stokes fluid

To close the set of equations we have to derive a dependency of the stress tensor o of
the velocity u and the pressure p. For this thesis we consider a Newtonian and Stokes
fluid which has the properties ([Bral5])

i. 0 =o0(e(u)) with e(u) = 3(Vu + VuTl)

ii. ¢ is homogeneous

—-

iii. o is isotropic
iv. If s(u) = 0 then Ul'j = —p(sij.

Using those properties we get

Du
PDr = pAu —Vp+pf,
or
ou -
5 —vAu+ (u-V)u+Vp = f, (2.6.1)

where p is the dynamic viscosity, v = % is the kinematic viscosity and p = % is a scaled
pressure.

Remark 1: From now on we always write p for the scaled pressure.



2 Navier Stokes equations

2.7 Navier Stokes equations

The incompressibility constraint (2.4.1)) and the equations derived from the conservation
of momentum (2.6.1]) are called the unsteady incompressible Navier Stokes equations:

g;L—I/AU‘F(U‘V)U—va =f in Q
dive =0 in € (2.7.1)
u =1ujy, only,
u =0 on Fwall
2.8 Stokes equations
A characteristic number for fluid dynamics is the Reynolds number defined by
UL
Re = 7, (281)

where U and L are a characteristic velocity and length. This number can be used
to measure the ratio between inertia and friction forces. In the case of a steady flow
(Ou/0t = 0) and a very small Reynolds number Re we can make an asymptotic expansion
of the velocity to see that the convective term (u - V)u in the Navier Stokes equations
(2.7.1)) vanishes ([Bral5]). We get the steady Stokes equations:

—vAu+Vp =f in
divue =0 in
(2.8.2)
u =uy  on Iy,

u =0 on Fwall



3 Discretization of the Stokes and the
Navier Stokes problem

In this chapter we present discretization techniques for the steady Stokes problem
and introduce a time discretization for the unsteady Navier Stokes equations .
We consider the weak formulation and analyze the problem to derive a condition that is
necessary for a stable method. For the approximations we also study the properties of
the error and identify a problem that arises using most of the standard methods. This
leads us to the main aspects considered in chapter [4| and

3.1 Weak formulation

3.1.1 Stokes problem

As the Stokes equations (2.8.2]) can be seen as a set of partial differential equations for
the velocity and the pressure we have two spaces for our solutions and test functions:

Vi=[H} Q)¢ and Q:=L2={qeL?*Q): / q dz = 0}. (3.1.1)
Q

We multiply the first equation of (2.8.2) with a test function v € V and the second
equation with a test function ¢ € () and integrate over {2 to get

/—uAuvdx—i—/vadx—/fvdx
Q Q Q

/divuqd$:O.
Q

Next, assuming homogeneous boundary conditions u = 0 on 92, we apply integration
by part on the integrals of the first line

/—I/Auvdx—l—/vadx:/VVu:Vvdx—/divvpdx,
Q Q Q Q

and so by defining two bilinear forms
a(u,v) = / vVu : Vo dz
Q
b(v,q) = / divv q dz,
Q

we get the variational formulation:
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Problem 1: Find (u,p) € V x Q so that

a(u,v) + b(v,p) = (f,U)LQ(Q) YveV
b(u, q) = 0 Vg e Q

(3.1.2)

Remark 2: To get a symmetric saddlepoint structure in the variational
formulation the pressure p was scaled with a minus.

Remark 3:  The space Q was chosen as for v € [HE(Q)]? and ¢ € H(2)
b(v,q) = / dive g doz = —/ vVq dz,
Q Q
so the bilinear form b(v,q) does not change if we add a constant to q.

3.1.2 Convective term of the Navier Stokes equations

To discretize the Navier Stokes equations we also have to find a weak formulation in-
cluding the term (u- Vu). For that we multiply the convective term with a test function
v € V and integrate over ) to get

c(u,u,v) := / (u-V)u-v de.
Q
By that we define the variational formulation
Problem 2: Find (u,p) € V x Q so that

a(“? ’U) + b(’U,p) + C(U, u, U) = (f> U)LZ(Q) VoeV
b(u, q) =0 Vg € Q.

(3.1.3)

A common approach to find a discretization of the Navier Stokes equations is to use this
variational formulation as continuous basis, because the discretization properties of a
convective term similar to (b- V)u, for an arbitrary but fixed function b, is well-known.
A different approach is the following. We take a closer look on c¢(u, u,v):

/(u V)u- vdx—/ZuZ uj)v; da

i,7=1
d
/E:uZ j)vj do — /QZ w; . Jv; dz
,j=1 2,7=1
B
d B)
+/ U; u; )v; dx
QZ.;1 (8 ; ) J

10



3.1 Weak formulation

Using the product rule on one component

0 10

“il5e; % = 30,

(ul)QUja

we can write A as

1 2
/Z:uZ ui)v; doe = /2289:] u;) v]da:—Z/QV(u)-vdx,

1,j=1

2

where u* = u - u. Next we integrate by part, to get

1 1 1
/V(uQ)-vdx—/(uQ)divv dx—i—/ (u*)v - n ds.
2 Ja 2 Ja 2 Joa

For B we observe that in the case of ¢ = j the terms vanish, and so by using the outer
product (for d = 3)

Ou;  du  duy

_ ouz  Ouz  Ou2

(u ® V) - o1 0o oxs
Quz  OQuz Jug

o1 0o oxs

and

u1v1 U1V UuU1vs3 v1U1 ViU vius
URUV—VRU = | Ut UV2 ugv3 | — | vouq VU2 VU3
UuU3v1 UuU3v2 u3v3 v3U1 v3Uu2 v3u3
0 U1V — V1U2 U1v3 — v1U3
= U2V1 — VU1 0 U2V3 — V2U3 ,

u3v1 — v3ul u3zvy — V3U2 0

we can write B also as

0
E s ( —ui(g—u)vjde = [ —(u®V): [uv—v®u dz,
81’2 8.%'] Q

,Jl

or
/Q—(u®V):[u®v—U®u] dx:/Q(qu)-(uxv) dz.
Using the identity a- (b x ¢) = ¢ (a x b) = (a x b) - ¢ and V X u = curl u we get
/Q(qu)-(uxv)dx:/(curluxu)-vdaj,

Q

and so

1 1
/(u-V)u-vdm:/(curluxu)~vdx+/(uz)divvdx—i—/ (u*)v - n ds.
Q Q 2 ) 2 Joo

11



3 Discretization of the Stokes and the Navier Stokes problem

Defining

Court (U, U, V) 1= /(curl uxu)-vde,
Q

we get the variational formulation

Problem 3: Find (u,p) € V x Q so that

a(u7 ’U) + b(’l),p + 1/2U2) + ccurl(u7 u, ’U) = (f7 ’U)LQ(Q) VoeV (3 1 4)
b(u, q) =0 VgeqQ.

Remark 4: In this thesis we call the curl formulation of the Navier
Stokes equations.

Remark 5: Due to b(v,p + 1/2u?) the pressure p is scaled with 1/2u?. We
call this scaled pressure py == p + 1/2u® the Bernoulli pressure.

Remark 6: As we defined the variational problem with homogeneous Dirich-
let boundary conditions, the boundary integral |, 8Q(u2)v -n vanishes. When
we want to solve a domain including Neumann boundaries, we have to in-
clude this integral on the right hand side of the variational formulation.

3.2 Analysis of the saddle point problem

3.2.1 Abstract theory
A mixed variational formulation implies two Hilbert spaces V and @), bilinear forms

a(u,v) : VxV =R,
b(u,q) : VxQ—R
and continuous linear-forms
fv): V=R,
9(q) : Q@ = R.
The problem is to find u € V and p € @ such that
a(u,v) +b(v,p) = f(v) YveV
b(u, q) = 9(g) VgeQ.

One can also add up the two lines and define the bilinear form B(-,-) : (VxQ)x(VxQ) —
R by

B((u,p), (v, 9)) = alu,v) + b(u, q) + b(v, p), (3.2.1)

to write the mixed method as a single variational problem:

Find (u,p) €V xQ: B((u,p), (v,q)) = f(v) +g(q) V(v,q) €V xQ, (3.2.2)
see [Sch09].

12



3.2 Analysis of the saddle point problem

3.2.2 LBB-condition and the Brezzi theorem

To guarantee a stable and unique solution for the mixed problem we introduce the
theorem of Brezzi including the LBB-condition named after Olga Alexandrowna La-
dyschenskaja, Ivo Babuska and Franco Brezzi.

Theorem 3.1 (Brezzi’s theorem). Assume that a(-,-) and b(-,-) are continuous
bilinear forms

< afulvielly Vu,v eV,

< Belvlivilgle Vv eV,vqeQ.
Assume a(.,.) is coercive on the kernel, i.e.,

a(u,u) > aq|ull? Yu eV

with Vo :={v € V : b(v,q) = 0 ¥q € Q}, and the LBB-condition is fulfilled

b(v,q)
sup
vev |[vllv

> Billglle Vg€ Q. (3.2.3)

Then the mixed problem is uniquely solvable, and the solution fullfills the

stability estimation

[ullv +llplle < cllifllv- + llglle-},

with the constant ¢ depending on a1, as, b1, Ba.

From the Brezzi theorem it also follows that the bilinear form B(-,-) fulfills the inf-sup
condition

- B((u,p), (v,q))

in sup =
v,4€VxQ ypevxq ([vllv + llgllQ)(lullv + lIpllQ)

va#0  u,p£0

See [Sch09].

3.2.3 Analysis of the Stokes problem

We now want to use the Brezzi theorem for the Stokes problem. For the analysis we use
the norms

I-lly =V - HHl(Q)a

1
H'HQ = \ﬁ” ) HL2(Q)-

13



3 Discretization of the Stokes and the Navier Stokes problem

We already defined the bilinear forms for the weak formulation (3.1.2), so by using the
Cauchy Schwarz inequality we see

C.S.
aw0) = [ v9uTv o< fully ol
Q
. C.S. .
b(v, q) = /Q divo g do < [[div ol 2o lall 2@ < 1ol lallo-

On the kernel Vp := {v € V : [, divv ¢ dz = 0 Vg € Q} we observe coercivity by using
the Poincare inequality (see appendix, theorem [7.18)

alu,w) > ar [lull? (3.2.4)

where a7 depends on the shape of €. The LBB-condition was first shown by Necas
by proving an equivalent inequality for the dual operator of the divergence, namely
the gradient. We observe that V : L2(Q) — [H~1(Q)]¢ has a closed range and Necas
(INec67]) showed that

lall 2@ < ) IVallg-10) Va e Q.
By that ([Bra00][154]) we get

dive g dx
qup Jodivy g de

> Billgllq Vg€ Q. (3.2.5)
vev  |lvllv

Using Brezzi’s theorem we find stable and unique solutions u and p of the steady Stokes
problem.

3.3 Approximation of the Stokes problem

In this section we want to take a closer look on the approximation of the saddle point
problem. Note that the discrete version of the LBB-condition can not be derived from

the continuous one ([3.2.5).

3.3.1 Basic results

We define the finite-dimensional subspaces V;, C V and @, C Q. The h refers to a quasi-
uniform triangulation 7 (see appendix) which these approximation spaces are derived
from. The discrete variational formulation is

Problem 4: Find (up,pp) € Vi, X Qp so that

a(up,vp) +b(vh,pn) = (f,on)rzi  Von € Vi

(3.3.1)
b(un, qn) =0 Vg, € Qp.

14



3.3 Approximation of the Stokes problem

The continuity results of the bilinear forms follow from the infinite dimensional case and
the coercivity on Vj, g := {vp, € Vj, : fQ div oy, qn, de = 0 Vg, € Qp} again can be derived
from the Poincare inequality. The discrete LBB-condition

Jo divo, g d
sup =

> Billanlle  Van € Qn (3.3.2)
on€Vi |vallv

is the constraint that arises for the definitions of the approximation spaces. For example,
it is not possible to use Vj, := [II2(Q)]? and Qy, := I1?(Q2) (for d = 2). In this thesis we
use different couplings for V;, and Q)p,. In section we present two standard elements
and in chapter [5| we use a hybrid discontinuous Galerkin ansatz introduced by Christoph
Lehrenfeld and Joachim Schéberl ([LS15] and [Leh10]).

3.3.2 Error analysis

Due to an approximation we are always interested in the error [[u — upl|y, and [|p — ppl|g-
We show different results similar to [BE91].
Remark 7: In this section we always refer on the constants that appear in
Brezzi’s theorem considered for the discrete Stokes problem . As
mentioned a1 depends on 2 and as = 1, but also B = 1 as the scaling with
v is hidden in |- o-

Proposition 1. Let (u,p) be the solution of and (up,pp) be the solution
of . Then we have

az) . B2 .
uU— U < |1+ — inf Jlu—w + — inf — . 3.3.3
o=l < (1422) ot fu-uly+2 nf l-ale:  (333)

Proof. Let vj, be an arbitrary element of V},. As v, — up, € Vj, o we have (coercivity)
2
aq |lvp, — uplly < alvy, — up, vh — up) = a(vp, —u, vy — up) + au — up, vy — up).
For the second term we observe

a(u — up, v —up) = a(u, vy, — up) — alup, vy — up)
= f(vn — un) — b(vp — up,p) — f(vn — un) — b(vp — up, pn)
= —b(vn, — un,p — pn),

and so

at |Jon — unlly < alvp — u,vp — up) — b(vy — up,p — )

< oy [Jon —ully lvn —unlly + B2 [[on — unlly llp = prllg

and

(65 /32
— < 22y — + 22— _
v = unlly < ) [|u — vnlly ) Ip thQ
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3 Discretization of the Stokes and the Navier Stokes problem

Using the triangle inequality
lu = unlly < llu—wally + llon = ually
we get the result. O

Until now we only have an estimation on the manifold V}, of discrete divergence-free
test functions. For the error estimation on the full space V} we show

Proposition 2. Let (u,p) be the solution of and (up, pp) be the solution
of . Assume that B is the constant of the discrete LBB-condition (3.3.9).

Then we have

. 52) .
inf |[lu—wp|y, <14+ =| inf |[Ju—vpl .
= wally < (1+92) . u vy

UhEVh’o

Proof. Let wy, be an arbitrary element of V},. First we observe that the discrete LBB-
condition is equivalent to the existence of a solution of the variational problem

Problem 5: For all gy, € Qp find up, € V, so that

b(un, qn) = (gn: an) 12 Yan € Qn (3.3.4)
funlly < 5 g, - (3.3.5)
We solve the equation
b(ras qn) = (u — wn,qn)  VYgn € Qn, (3.3.6)

and get

1 1 b(u —wn,qn) _ B2
Irnlly < 2 llu —whllg, = 5= sup ——————= < == |lu— wly -
V=B @ Bigeqn  lanlg 5 v

Next we define vy, := 7, + wy, and as

b(”h? Qh) = b(’l“h, qh) + b(wh7 qh)
= b(ua Qh) - b(’(Uh, Qh) + b(th, Qh) = 07

the test function vy, is an element of the kernel V}, o. Finally we get

Ba
[ = vnlly = llw = wn = 7ally < llu=whlly + llrally < <1 5, ) e = wlly -
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3.3 Approximation of the Stokes problem

So all together we get

Corollary 1. Let (u,p) be the solution of and (up,pp) be the solution of
. Assume that 1 is the constant of the discrete LBB-condition, then

Qg B2\ . B2 .
U —U < |14+ = 1+=) inf |lu—w + == inf — .
H hHV o ( al) ( 51) vhEVh ” hHV a1 qh€Qhp Hp qhHQ
(3.3.7)

Two major aspects can be indicated looking at this error estimations. First of all, we
observe that the error of the velocity approximation depends also on the solution of
the pressure discretization, and secondly we notice that we can not guarantee a small
error when the constant of the discrete LBB-condition tends to zero. Both problems
can be eliminated by using proper spaces and a Fortin operator, respectively. Before we
continue examining cases where we can improve the approximation error for the velocity
we also bound the pressure error.

Proposition 3. Let (u,p) be the solution of and (up,pr) be the solution
of . Assume that 5 is the constant of the discrete LBB-condition, then

Ba, . Qs
—pnllo A+ 52 inf |lp—aullo + == ||lu — unl|y -
P = prllg < ( Bl)qhthllp anllg 5 [ %

Proof. For v = v, and ¢ = ¢ subtract equation from to get
a(u — up,vp) + b(vp, p — pr) =0,
or
b(vn, qn — pr) = —a(u — up,vp) — b(vp, P — qn).
Using the discrete LBB-condition and the continuity of the bilinear forms we get

1 b(vp,qn —pp) 1 —a(u — up,vp) — b(vp, p — qn)

lan —pullp £ ——————> =
=81 wlly b1 |vnlly

o) B2
< —lu—unlly + 5 IIP— qllo -
2w unlly + 22 Ip— anllg
and thus

52 . [(6%)
—prllo < (1 4+ ==) inf —qnllp + = |lu — uplly -
P —pnllg < ( Bl)qhthllp anllg 3, I [
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3 Discretization of the Stokes and the Navier Stokes problem

Discrete kernel subset property

Analysing the proof of proposition [I| we see that the error of the pressure arises in the
continuity estimation of b(vy, — up,p — pp). We know that vy, — uy, is an element of Vj, o,
so the problem is that b(vp, — up, p) does not have to be zero for every choice of V}, and
Qp- This is indeed the case when we have the discrete kernel subset property

Vio C Vo, (3.3.8)
as in this case b(vy, — up,p) = 0.

Corollary 2. Let (u,p) be the solution of and (up,pp) be the solution of
3.3.1), and assume that Vj,o C Vj,. Then we have

a2 .
= <(14— f = . 3.3.9
=il < (1+22) it = unlly 339
Proof. Follows from proposition |1 and b(vy, — up,p — pp) = 0. O

Fortin operator

As mentioned above the case 7 — 0 can cause a loss in precision and even a lack

of convergence ([BEF91][58]), so it is really important to study the behaviour of this

constant. One approach is to use a Fortin operator II7 : V' — V}, with the properties
b7 u—u,q) =0 Vgn € Qn

3.3.10
(0%l < clully (3310

with ¢ # ¢(h). If we have this properties we see that

sup b(Uh,Qh) > su b(H}—U7Qh) _ b(v>qh)
onevin onlly — wev TPy, vev [T o]y,
b
> sup 20 ) 5 By
veV CHU”V c

and so the discrete LBB-condition follows from the continuous one. Using a Fortin
operator also delivers an error estimation that is independent of the LBB constant (.

Corollary 3. Let (u,p) be the solution of and (up,pp) be the solution of
. Assume we have a Fortin operator II7 with the properties (3.3.10), then

we get

a2 F B2 .
U — U <(14+ —||lu—-1II"ul||,, + — inf - .
=y < (14 2) =17, + 2 it o= anllg

Proof. Follows from proposition [I| and the properties (3.3.10)) of the operator ITI7. [
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3.3 Approximation of the Stokes problem

The construction of such a Fortin operator is normally not intuitively but is often con-
structed in the following way. First one constructs an operator Hf , which delivers a
“best approximation” with a certain continuity. After that a second operator I pro-
vides local corrections to preserve the properties , so we have:

Proposition 4. Assume Il : V =V}, and 113 : V — V}, such that
7 wlly, < e flully

and for all w € V

(I u—u,qn) =0 Vgu € Qn,

85 (u = O )|, < c2 flully
then for 7w := I (u — I w) + II{ u properties are fulfilled with ¢ =
c1 + cg.

Proof. We observe

b u, q,) = b(TT (v — T w), qn) + b(TT w, 1)
= b(u — I u, qp,) + b(IT] u, 1)
= b(u, qn),

and

[0y < 0 e = F )+ O < e+ )l

3.3.3 Exact divergence-free

In section we defined the weak formulation (3.3.1). Therefore, if one can solve the
discrete problem, the velocity wy only fulfills

/ divuyp, g, dz =0 Vg, € Qn,
Q

which we call discrete divergence-free. In this section we want to analyze the problem
under an even sharper assumption for the approximation. Assume we have the property
that the divergence of a velocity test function vy, is an element of the pressure space @y,
thus

div V}, C Q. (3.3.11)

Then we have that from discrete divergence-free follows exact divergence-free, namely

/ divvp, g, dz =0 Vqp € Qh = divoy, =0, (3.3.12)
Q
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3 Discretization of the Stokes and the Navier Stokes problem

and so also for the solution wuy,
div Up = 0.

We mention three advantages if this property is fulfilled.

Remark 8: As divu € L?(Q2) a point evaluation is not legit, so divvy, = 0
is meant almost everywhere in § .

Remark 9:  There are examples, which fulfill , e.g. the Scott Vogelius
element (see [BF91]), but they are in general computationally expensive. In
chapter@ we use a recent approach that has the property and is also
cheap to compute. We also want to mention that one could use isogeometric
methods from isogeometric analysis to fulfill this property.

Discrete kernel subset property

With (3.3.11)) it is clear that we have Vjj, C Vj as

b(uh,q):/gdivuhq:() Vq € Q,

and so due to corollary [2| we get a better approximation of the velocity.

Energy losses

Consider the unsteady Navier Stokes equations ([2.7.1)) with density p = 1, v = 1, no
volume forces f and homogeneous Dirichlet boundary conditions. Due to the friction of
the particles the kinetic energy should decrease in time, so

d
& [l 720y < 0.
Using (2.7.1) and integration by part we observe
1d 2112 /
oW |u HLQ(Q) = Quu dz = QU(VAU —(u-V)u+Vp) dz

:/—VVu:Vu—(u-V)uu—divupdx.
Q

The convective term can then be written as

ou 1ou? ,
/Q(U.V)uudx—/ Z Uia./ﬁide_/Q,Z Uiy U dz

Q=123

1 1
:/U-VUQda::/diVUUde,
2 Jo 2 Jo

and, using the in compressibility constraint divu = 0, we get

1d
2 dt

HuQH;(Q) = /Q —vVu : Vudz <0.
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3.3 Approximation of the Stokes problem

The question is if this is still valid for the approximation of u:

d 2112 1 . 2 .
— = | —vVuy :Vuy doe — - [ div dx — [ div dx .
: HuhHLQ(Q) / vVup up Ax 2/ W up up Az / 1V up pp dx

N—
<0 =0

Due to u% ¢ Qp, the convective part does not vanish as uy, is only discrete divergence-free,
but if (3.3.11)) is fulfilled we also observe the proper physical behaviour

d
& Hui”fy(m = /Q —vVuy, : Vuy, doe < 0.

Helmholtz decomposition

The last point we want to mention is an algebraic property that arises from exact
divergence-free functions and the resulting impact on the Stokes and Navier Stokes
equations (see [Linl3]). First we observe that an arbitrary irrotational field V¢ and a
divergence-free field w with homogeneous boundary values are orthogonal with respect
to the L? scalar product as

/V¢wdx:—/¢divwdx+/ ¢ w-nds=0. (3.3.13)
Q Q o0

Next we define the orthogonal complement of V; due to the scalarproduct induced by
the bilinear form a(-,-)

Vit ={veV:alv,w)=0 Ywe Vp}.

By that and the orthogonality (3.3.13)) we observe that the weak formulation of the
Stokes equations (3.1.2)) splits into two parts. We get the variational formulation:

Problem 6: Find (u,p) € Vo x Q so that
/ vVu: Vv de = / fodz Yvel, (3.3.14)
Q Q

and

—/va:/fv Yo e Vit
Q Q

Assume we use a gradient field for the right hand side, namely fv := V¢, then we
observe that

/VVUZV’UdJJ:/fv’UdCCZO Yu € VW,
Q Q

and

—/vaz/fvv dz VveVDL,
Q Q
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3 Discretization of the Stokes and the Navier Stokes problem

and thus the solution is (u = 0,p = ¢), so the irrotational force was completely balanced
by the pressure. When we want to approximate this we observe that in the case of
div V}, C Qp, the solution is given by (up, = 0, pp = Péi ®), where Péi is the L? projection
on (). This can be seen as for all v, € V}, we have

/ div oy, PS¢ de = / div vy = / Vpop,
h

and so (up = 0,pp, = Péi(b) solves li with f = V¢. In the case of using discrete
divergence-free velocity fields this may not be fulfilled and we get a nonphysical velocity
field wuy, # (0,0).

Analyzing the curl formulation of the Navier Stokes equations (3.1.4)) we recall the iden-

tity (u- V)u = (V x u) x u+ 3V (u?), and the resulting pressure p + u®. Again using

only discrete divergence-free test functions results in a bad approximation due to the
appearing gradient term V(u?). In chapter |4 we introduce a reconstruction operator to
solve this problem and compare the results of discrete and exact divergence-free ansatz
spaces in an unsteady Navier Stokes example.

3.3.4 Aubin Nitsche technique for the Stokes problem

In this section we present a standard Aubin Nitsche technique to show that the con-
vergence rate in the L? norm of the velocity is one order higher than in the H' norm.
For this we first define the dual problem of the Stokes problem using the bilinear form
(13.2.1)):
Problem 7: Find (w,\) € V x Q so that
B((U7 Q)ﬂ (wa )‘)) = (fa ’U)LQ(Q) Vv e V,Vqg € Q. (3315)

For the Aubin Nitsche technique we have to assume a regularity property of the solution,
which is presented in [KO76] on proper domains.

Theorem 3.2. Assume that the solution of the discrete Stokes problem
fulfills

lw = unll g1 () < h* lull grsry  and  |[p = pall2q) < h* 120l ey »
and that the dual problem fulfills an H?/H?' regularity, namely
lwll gz < Mfllze)  and M@ < 1F 122 ()
then we have the L? estimation

k k
= wnll g2y < Bl v gy + B 1Dl ey -
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3.4 Finite elements for the Stokes problem

Proof. We first solve the dual problem with the error v — uy as right hand side:
B((v,q), (w,\)) = (u—up,v) 2y Vv € V,Vq € Q.
Next we choose the test functions v := v — uy, and ¢ := p — pp, and get
(u — up,u — up)r2() = B((u — up, p — pn), (w, A)).
Together with the Galerkin orthogonality of the Stokes problem
/QV(U —up)Vwp + /Q divwp(p —pp) =0

/ div (v — up)Ap =0,
Q

for an wy, € V3, and A, € @y, and the standard interpolator I ,{Il and [ ,{IO (see appendix),
we get
1 0
lu — uhH%Q(Q) = B((u—up,p = pn), (w = I w, A = I" N)).

Using the continuity of the bilinear form B (see Brezzi’s theorem for the Stokes problem
3.1)) we first see

g I1° -
B((u—un,p—pp), (w = I w, A =17 A)) S [lu— unll g g Hw — wHHl(Q)

0

L2(2)
Hl
+ Hw —1I w”Hl(Q) 1P = pullr2) »
and so using the assumption of the discrete error and the error assumptions of I}}k
(k=0,1) we get
lw = unllZ2g) < B* lull ey B 1wl g2
k
+ hE |l gy P o)
k

+ hllwll g2y A7 ol -1 -

Together with the regularity estimates and after dividing one factor we have

lu = wnll 20y < W [ull grsi gy + R PN ey

3.4 Finite elements for the Stokes problem

We have seen in the last sections that the choice of the approximation spaces has to
fulfill the discrete LBB-condition to guarantee a stable and unique solution. In
this chapter we introduce two different elements for the Stokes equations and show their
approximation properties. Using the P, — P; Taylor-Hood element leads to a continuous
pressure, but the test functions only preserve a discrete divergence-free property. How
to eliminate this disadvantage is the subject of chapter @l The P, — Py element leads to
a discontinuous pressure and an element wise conservation of the divergence, but has a
worse error convergence rate.
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3 Discretization of the Stokes and the Navier Stokes problem

3.4.1 Taylor-Hood element

Trying to solve the mixed formulation we could make the choice of using the
same polynomial degree for the approximation of the velocity and the pressure. This
was quite famous when people started to approximate the Stokes equations as the results
looked satisfying. Soon it came up that in this case the stability of the solution highly
depends on the mesh as the kernel of the gradient can become big for some triangulations
(IBEF91][210]). This unpredictable behaviour of equal order interpolation methods for the
velocity and the pressure was the impetus to find proper elements. An approach was
given by Taylor and Hood ([HT73]) by using an approximation for the pressure of one
degree lower than the velocity. We give a 2D example by analyzing the P, — P; element.
For a given triangulation 7 we choose the spaces:

Vi = [T N[CY(Q)]? and Qp :=TII(T)NCOQ).

Using a standard interpolation operator I X and a Clement operator (see appendix) H%
leads to

lv - I}YUHHl(Q) < hlgs) and g - H%QHB(Q) < Wlpl )

Assuming enough regularity for the exact solutions u and p, we get the interpolation
error of the solutions wuy, and py, of (3.3.1) for the Taylor-Hood element in the H' norm
by
2 2
lw = unllgr ) + 1P = Prll 2 () < 27l (q) + P7IplE2(0)
and in the L? norm (see

lu = unll 2y < P lulas) + h°|plaz@),
thus an optimal convergence order of the velocity and pressure error. For the discrete
LBB-condition we refer to [GR86], but state the needed assumption on the mesh 7
T has a set of interior nodes {V; }*; such that {wy, }2 | with

wy, = U T (3.4.1)
T:v.€T

is a partition of 2

Although the fact that the Taylor-Hood elements are quite popular due to an easy
implementation and analysis, they do not have the property divV} C @, and so only
provide discrete divergence-free solutions.

3.4.2 Discontinuous pressure

Instead of approximating the pressure with a continuous ansatz it is also possible to
use a P, — Py element, namely an approximation with polynomials of order two for the
velocity and a piecewise constant approximation for the pressure, so

Vi o= (TP N [C%(Q))? and Q :=1(T).
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3.4 Finite elements for the Stokes problem

By that the divergence-free condition can be written as

/divuhdx:/ up-nds=0 VI'eT,
T T

which reads as a conservation of mass on each triangle. Using a standard interpolation
operator [ X and the Clement operator (see appendix) Hg, we see that we lose one order
of accuracy due to the poor approximation of the pressure

[0 =10l 1 gy < P*olmsy and g = Tiall o) < hlalm ey
To show the LBB-condition for the P, — Py element, we construct a Fortin operator

that fulfills (3.3.10)) and proceed as in proposition 44 The idea of the construction of the
second operator I is that b(u — 113 u, gr,) = 0 now reads as

/div(u—H{u) d:r::/ (u—Hgfu)'ndS:O.
T oT

Lemma 3.3. The choice
Vi = [IX(T)PN[CY(Q)]* and Qpn:=1(T)

fulfills the discrete LBB-condition .

Proof. Let II{ be a Clement operator Hg. By that we get
[ ol < flolly -
f
Hv -1y UHQ < hvly -
Define Hg: on all triangles in the following way

(I u) (V) =0 i=1,2,3

J

where V; are the vertices of the triangle. Note that Hf v € V},, as the second condition
can be fulfilled by a correct choice of (I3 u)(V;;) where V;; is the middle point of edge
E;;. Then by construction we get

Hfu-nds:/ v-nds 4,j=1,2,3 i# ],
FE,

iJ ij

/ div (v — Hgv)qh dr =0 Vq, € Qp,
T

and using a scaling argument we get

— 1
F _ F ~ N -
I el iy = O]y < Wl < 5 Iellgem + lellvery
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3 Discretization of the Stokes and the Navier Stokes problem

where |[-[|y/(7) and ||-[|g(7) are with v scaled H Y(T) and L?(T) norms, respectively. Next
we observe that

g (0 = i o)y = Y 0 (0 = 1 0)|[}, g
TeT

A

1
< 2 5 1T =T gy + 1 =T[5y < N0l
TeT

Defining 17 v := II{ v + I (v — II v) and using proposition {4 the lemma is shown. [

3.5 Time discretization

In this section we want to discuss the discretization of the unsteady Navier Stokes
equations . For this we use an additive decomposition method, the IMEX scheme,
which stands for an IMplicit EXplicit splitting method (see [ARS97]). The main idea is
to handle the nonlinear convection term explicitly and use it as a force for the implicit
scheme. The implicit part of the equation is the diffusion term and the incompressibility
constraint. Due to that, we ensure that this constraint is fulfilled in each time step. For
the ease, we use f := 0 in this section.

3.5.1 Basic definitions

For the time dependent discretization we use an approximation for the velocity uj, and
the pressure p;, given by

Ny Np
up(e,t) =Y wi(t)pi(x) and  pp(z,t) =Y pi(t)ihi(x),
i=1 =1

with w(t) := {u;(t)} N, p(t) == {pi(t)}ﬁ\;pl and {¢;}N as a basis for V}, and {wi}ﬁvz”l as
a basis for ). By that we define the matrices

M e RNw>Nu pp; ;:/Q@i-<pj dz Vi,j=1,...,Ny,

A RNuxNu 4, = /Qqupi :Vojde Vi,j=1,...,Ny,

D e RN Ne D, = /Qdivgoi Yjde Yi=1,...,N,and Vj =1,..., N,
and for an arbitrary v := {vi}f-v:"l and w := {wi}ﬁ\ﬁ‘l the vector

Clow e RN ¢ = / (on - Vn)r da
Q

Ny, Ny
with  vp(x,t) := Zvi(t)goi(x) and  wp(z,t) = sz(t)%(:c)
i=1 i=1

Using those definitions and the finite element discretization for the spatial domain (see
(3.1.2)and (3.1.3])) we have the problem:

26



3.5 Time discretization

0 0 0 0 0

fly 117 y v ¥ 0 0
1 6 1—-06 O

B 5 1-6 0

Table 3.1: Butcher tableaus for 2 step, L-Stable IMEX scheme

Problem 8: Find (u,p) € RNete 50 that

0
Ma—%—i-Ag—i-Dg—i—C(g)g = 0 in It
DTy = 0 mn Ip (3.5.1)
u(0) = U

3.5.2 First order IMEX

Assume that the time interval I is divided in equidistant steps
O=tg<t; < - <tn, =T,

with length At =¢,49 —t; foralli=1,..., N; — 1. We use the following approximation
for the time derivation of w(t)

u u
ot~ At

with u” := u(t,), p" := p(t,). Using an implicit Euler method for the stiffness A and
the divergence constraint D and an explicit Euler method for the convection C' leads to
the system
(M + AtA)u™t + AtDp"™ = Mu™ — AtC(u")u"
DTQTH_l = 0.

Note that the convection term only appears on the right hand side of the system as the
vector C'(u)u™ can be calculated for each new time step.

3.5.3 Second order IMEX

Instead of using first order Euler schemes for A, D and C we now use a diagonal Runge
Kutta method. By that, the resulting IMEX scheme can be represented with the Butcher

tableaus 1’ with vy :=1— \/g and § :=1— % The obtained systems are:

(M +~yAtA)u' +yAtDpt = Mu™ — yAtC(u")u"
DTyl = 0
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3 Discretization of the Stokes and the Navier Stokes problem

and

(M +yAtA) U™t + yAtDp" T = Mu™ — At(1 — ) Au'
—At (1= 6)C(ul)ul — 6C(u™)u™)

DTQTH_l = 0.
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4 Reconstruction operator for the
Taylor-Hood element

In the last chapter we introduced the P, — P; Taylor-Hood element using
Vi = TP N[C(Q)? and Q =1Y(T)NC%(Q)

as approximation spaces for the Stokes problem. The disadvantage of the element is
that the velocity test functions preserve only a discrete divergence-free property

/ div(vg) qn dz =0 Vg € Qp.
Q

In this chapter we introduce two versions of reconstruction operators R that cure this
drawback. The first one deals with local problems on vertex patches and can handle
the problem we observed due to the Helmholtz decomposition . The second one
preserves also a proper approximation convergence and will fulfill enough regularity for
an L? error estimation using an Aubin-Nitsche duality argument.
Remark 10: In this thesis we construct an operator for the Po — Py Taylor-
Hood element, but we want to mention that the reconstruction is also possible
for a bigger class of elements as for example the mini-element and high
order Taylor-Hood elements. This is the topic of a paper in preparation with
Joachim Schoberl, Alexander Linke and Christian Merdon.

4.1 Basic definitions
For the reconstruction we define the spaces
S, := BDM?(T) € H(div)(Q) and Qp :=IIY(T)/R C L(Q). (4.1.1)

Note that @h are piecewise polynomials of order one and do not have to be continuous
over element edges. For the construction we use the L? projection onto constants defined

by
7715(‘”) :LQ(w) —R
1
U= — / v dr =: "
|wl Jo

for all w C §2, and define the vertex patch wy C € by

wy = U T

T:VeT
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4 Reconstruction operator for the Taylor-Hood element

for all vertices V € T and the element patch wr C € by

wr = U T

T:TNT#0
for all T € T. On this patches we furthermore define the local spaces
Yholwi) :={m € X : 7, -n=0o0n dw;} and @h(wi) = Hl(wi)/R,

with i € {T,V'}.

4.2 Vertex reconstruction
4.2.1 Construction of R}
The main idea for the reconstruction operator is to find a function o, € ¥j, that fulfills
div oy, = divuy,
exactly and then define the vertex reconstruction by
R,‘{(uh) = up — O

To find op, we solve local problems on all vertex patches wy to get local solutions oy .
By summing up the local corrections we then have oy,.

Problem 9: For a given wy, € II'(wy), find (0} ,A\n) € Sho(wy) X Qn(wy)/R
so that

/ 0,‘{ -1y, dx +/ divrpdp de =0 V715, € X 0(wy) (4.2.1)
wy wy

/ div o} ¢y, dz = / (Gv divewn)(hn — ") dz Wby, € Qnlwy)/R

wy

where ¢y is the hat function corresponding to the vertex V.

Remark 11: The right hand side of the second line of problem s a
valid linear form on the factorized space Qp(wy)/R as it does not depend on
the representative of one equivalence class. This is fulfilled as when we add
a constant to Yy it is eliminated on the right hand side as we subtract the
mean value, and on the left side due to 01‘1/ =0 on Jwy.
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4.2 Vertex reconstruction

Lemma 4.1. FEquation has a unique solution (o), \y) satisfying
1.

divay =P5 | ((1 — Py, div wh) on 9, (4.2.2)

(wv

where a,‘; is trivially extended by O onto Q. In particular, if

(divwn, gn)r2) =0 Van € Qn,

then divo) = P»g (¢y divawy,).
h

(wv)

. HU,YHLQ(Q) < hf|div ws | 2 (q)

Proof. First we show the existence and uniqueness of the saddlepoint problem (4.2.1]).
On the spaces Xp(wy) and Qp(wy) we choose the norms

I17hllss, vy 7= 170l 2oy + ANV Thll 20y ) »

and

1
Hwh”@h(w\/) = n HwhHLQ(wv) )

and get
CS.
ao(Oh, Th) 12/ op - Tp do < HUhHZh(wV) HThHEh(wV)
wy

C.S.
b (Th, Up) = / divry, ¥n dz < |7lls, ) 19013, (o) -

wy

For the coercivity on the kernel we point out that due to div X o(wy) C @h(wv) /R it
follows that an element in the kernel fulfills an exact divergence-free property divr, =0
and we get

2 2
Ao (Th, Th) = / Th " Th = HThHLQ(wv) = HThHéh(w)'
wy

It remains to show the discrete LBB-condition to use Brezzi’s theorem. We first show
the LBB-condition on the reference patch wy and then on wy . It should be mentioned
that there exist different reference patches due to the number of elements that belong to
a vertex, but for each triangulation 7 there exist a finite number of reference patches.
We use the BDM interpolator [ }?DMQ that provides (see appendix)

bo (IEPM 7, 4) = by (7, 000)  Vion € Qu(@v)
and

< Ilgiay vrelH @)

2
-

‘H(div ) (@v)
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4 Reconstruction operator for the Taylor-Hood element

As [HY(@v)]? € H(div)(@v) we get for all ¢, € Qpn(wv)/R

-, b, JBDM?~ ] (7 P
sup bo (Th, 1n) o EBDhMA 7,0n) - sup bA (7,vn)
ThEXR,0(0V) ||Th||H (div)(@v) TE[H (w0v))? HIh THHI(@) Fe[HY(oy)]? ||T||H1(6‘\/)

Next we use the continuous LBB-condition (3.2.5) to get

sup = ||¥n

Thezho UJV HThHH dlv)(wv)

bo (Th, V1) H .

L2@v)

To show the condition on wy we choose for an arbitrary v, the functions T/;h = 9y, and
T, := P(73,), where P is the Piola transformation (see appendix). By that we get

ap olmatn) Jury AV T
ThEXh 0(wy) ||7—h||2h70 ThEDR,0(wy) ||Th||L2 (wy) +h”d1VTh”L2(w )
fA d1VTh¢h
= sup
25 0(@v) ||7'h||L2(wV) + [[div 7ol 2 ()
wh L2(wv) ||¢h‘||L2(wv) ”whHQh

Using Brezzi’s theorem- 3.1] the existence and uniqueness is proven. Next we observe that
for ¢, € R we get 77 *ev) 1y, = 1y, and together with

oy divawy, (Y, —¥p"") de =0,

wy

and

/ diVO’;‘L/I/)h d:czi/)h/ UX~nda::0,
wy Owy

it follows that the second line of problem (4.2.1]) is also fulfilled for constants and thus
we get,

/ div o) 1y, do = / oy divwy (b — 0" ) dz Y, € Qn(wy).

wy

Using the locality of the L? projection on constants and an arbitrary g € L?(Q) we see
/ dive) ¢ dz = / dive) q dz = / (py divwp,)(I — 77 (WV))PLQ (q) dz
Q wy oy Qnlwv)
_ L2 _ pLP(wy) :
= /wv P@h(wv) ((I Py )(oy div wh)) q dex,

so the first equation is shown. If

(divwn, gn)r2) =0 Van € Qn,
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4.2 Vertex reconstruction

we get
1
Pg(w)(gbv divwp) = — / oy divwy, dz = 0, (4.2.3)
|WV‘ wy
as ¢y € @y, and therefore div O’h PL (¢y divwy,). The estimation for the norm is

Qr(wv)

given due to stability estimation prov1ded by Brezzi’s theorem, thus

o ey = 0% luny = |[PE oy (Ov diven)] 5
th

< h[divwn | p2 gy < BV g2
O

Now we can construct the reconstruction operator. Note that JX € Ypo(wy), so it has
a 0 normal trace and by that we can define

op = ZJ;‘{EEh.

VeT
Theorem 4.2. The operator defined by
Ry, (wn) := wp, — on,

fulfills
i. If (divwn, gn)z2() = 0 VYan € Qp, then (div R} (wp), dr)r2(q) = 0 Vdn € Qn

i |Jwn = RY (wn) || 2y < P ldivwnll 2o

Proof. We observe that

div R} (wy) = divwy, — div ey, = divwy, — Z div o)

VeT
. 2 L?(w .
= divwy, — Z Pé}L(UJV) ((I - Pr ( V))d)v div wh)
VeT
=divwy, — Péi Z oy divwy, — PQ (@) Z 73L (@v) oy divwy,
VeT _0
=1
= (I — Péi) divwh J_L2 @h)
and
[|wn — R, (wp, N 2@ = llonll 2o < > HUXHLQ(W)
veT
=< Z h Hdiv wh||L2(wv) <h ”divwhHL2(Q)

VeT
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4 Reconstruction operator for the Taylor-Hood element

4.2.2 Error analysis

The reconstruction operator is used for the right hand side. Now we have the problem

Problem 10: Find (up,pp) € Vi, X Qp so that

a(up,vp) + b(op,pr) = (f, RX(WL))L%Q) Yup, € Vi (4.2.4)
b(un, qn) =0 Van € Qn.

Due to the Helmholtz decomposition, a discrete divergence-free velocity test function
can result in a velocity up # (0,0) when using a gradient field as force f = V¢ (see

, but for the solution of the problem we get

a(un,vp) = (Vo, Ry (va)) 20y = (6, div R} (vp)) 2@y =0 Yoy € Vi
=0

and thus up, = (0,0). For the error analysis we use the first lemma of Strang that
provides an estimation for the velocity error (see [BE91][108]) and the error estimation
from section to get

(f7 wh)L2 - (f7 R}‘z/(wh))LQ

- < inf |ju— £
u=wlly < inf u=vally+ inf lp=ailg+ sup

wpEVh HwhHV
(4.2.5)
The last term can be estimated due to
(fywn)r2) = (s RE (wn) (@) < 11l p2qy [lwn = RE (wn)| 120
< 2@ b llwnll g o
And so, using the error analysis for the P, — P; Taylor-Hood element
lu = unlly < B2ulgs@) + 2 plaz@) + 2l Fll 2 ) - (4.2.6)

For the pressure we also use the Strang lemma to get

. fown) e — (f, RY (wp)) 12
lp=prlly < inf [lp—anllg+ [lu —unlly + sup (frwon) 2 = (- Ry, (wn))
qh€Qn whEVR HwhHV

Similar to before we get for the Taylor-Hood element

lp — phllr2(q) h2|U|H3(Q) + hQIP\m +h HfHL2 (4.2.7)

Here we see the problem. Due to the dominant h term, the error has a worse convergence
rate than we would expect (O(h?)). This is fixed in the next section.
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4.3 Element reconstruction

4.3 Element reconstruction

4.3.1 Construction of R}

Analogue to RX we solve local problems to find a global reconstruction operator. The
difference is that we use element patches (see section {.1|) instead and a smoothing
operator on the test functions of the mixed problem. We define

S:Qn—Q
with the properties
i 8Slg, =id,
i if G € R = S(dn) = dns
iii. the smoothing operator is quasi local, namely if g, = 0 on wr = S(gr) =0 on T.

Using the smoothing operator for the right hand side we define the problem on wr by

Problem 11: For a given wy, € I (wr), find (o], \n) € Sholwr) x Qn(wr)/R
so that

/ U}j; -1y, dx —I—/ divrpdp de =0 V71, € X 0(wr) (4.3.1)
wr

wT

/ div o) ¢y, da = / divws (b — S(n)) dw Viby, € Qulwr)/R.

wr T

Lemma 4.3. Equation has a unique solution (J,:f, An) satisfying
i. (divol,dn) 2 = (divws, §h — Sdr) 2y Van € Qn()

2. HGEHH_I(Q) '\< h2 ”leUhHLZ(Q)

Proof. The existence and uniqueness is shown analogue as in lemma Due to the
second property of the smoothing operator S we have for a ¥, € R

/ div 'wh(’(/)h - Swh) dx = 0,
T

and due to the zero boundary values of o,{ also

/ div o} ¢y, do = wh/ of -ndx=0.
wr owr

By that the second line of (4.3.1)) is also valid for constants and thus

/ divol oy, do = /Tdiv wp (Y, — S(Wp)) dz Vaby € Qu(wr).
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4 Reconstruction operator for the Taylor-Hood element

Using the quasi locality we can finally expand the equation on @h- To see this we
choose an arbitrary ¢, € Qp and split it into ¢, = (j,ll + Lj,zl with supp((j,ll) = Q/wr and
supp(q7) = wr. Then we get

/ divol g, de = / divo] g dax —|—/ divel ¢ do =
Q Q/wr T wr

= / divwp (G — S(G7)) do = / div wp (G — S(qn)) dz.
T T

Finally we show the estimation in the dual norm. For that we choose an arbitrary
g € [M°(w7)]? and v € I (wr) such that Vi) = g and observe

/ U,:f-gda::/ U;:C'dexZ/ Ug-nwds—/ divol 4y dx
wT wT BOJT wr

:/divwh(I—5)¢ dz =0,
T S————

=0onT
and so
T
HU/?H B sup fQ a,:f cw dx — s fwT oj - w dx
—1 — -
2@ pem@p wlme werr@p 1vlme
— s Jool (I - [Pﬂf(wﬂ?)w dz sup HU;{HLz(wT) hllwl g1 (e
welH(Q))? wll g1 () T welHL(Q)? lwll g1
T
= h|loy HLQ(wT) :

Together with the estimation of Brezzi’s theorem we have

||Uf:zFHL2(wT) < hlldivwn| g, -

Similar to before we can sum up all local reconstructions 0']7; to define

op = Z of €%
TeTc

Theorem 4.4. Let szh = wy, — oy, then

1. ]f (diV wh,qh)Lz(Q) =0 Vgn € Qpn, then

(div RE (w), @r)r2(0) = 0 Van € Q-

ii. |Jwy — RZ(wh)HH_l(Q) < 2 [div wh |l L2 ()
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4.3 Element reconstruction

Proof. For an arbitrary wy, with (divwp, qn)r2(q) = 0 Vg, € Qp and a g, € Qp, we have:

(div R (wh), @n) r2() = (divwn, Gn)r2) — Y (diver ,Gn) 12

TeT
= (divwn, Gn) 12(0) — Y (divwn, Gh — SGr) 127

TeT
= (divwn, Gn) r2() — (divwh, §n) r2(0) + (divws, SGn) r2(q)-

€Qn

For the estimation in the dual norm we use the properties of each ah shown in lemma
. so for wy, — Rhwh = op, we get

T
-w d
B Joon-wdzr fQTZe:TJh v
HUhHH—l(Q) = sup “————— = Sup
werrr @) 0l wem@p  wlp g
> [, of-wda > [, of-(I- PR (WT))w dz
Ter " Ter "
= sup = sup
werrr @ 1wl e welHL(Q)]? lwll g1

%:T Hf"f:erw(wT) hllwll g o

< <h 7
we[illiP()Q)P ”wHHl(Q) 7;THOVL HLZ(LUT)

< R || divwp | 2y

Remark 12:  An example for the smoothing operator S from IIY(T) —
Y (7)) N CO(R) is given by averaging the values of the discontinuous linear
polynomials in each vertex of T', also called Oswald-interpolator see [Osw93).

4.3.2 Error analysis

As for the first operator RhV we observe the same properties for the element reconstruc-
tion Rg with respect to the problems due to the Helmholtz decomposition (see section
4.2.2)). The main advantage can be seen in the error analysis. Again using Strang’s
lemma we get

(f,wn) 2 — (f, RY (wp)) 2

= unlly < inf flu —wnlly + iof ip—anlly;, + sup
v EVY qh

wh EVY, HwhHV
, W —(f,RY (w
o =mlly < inf o= aillo+ inf flu— iy + sup s wn)e — (F, Ry, (wn)) 2
wpEVY, HwhHV

The last term can be estimated using the dual norms

(fswn — Riy (wn)) z2() = (wh — Rhwh, [ -1
Hwh — RE (wp, HH @ 1z q)

B wnll gy 11 ey -
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4 Reconstruction operator for the Taylor-Hood element

Using the error analysis for the P, — P; Taylor-Hood element we get
llw = unlly + 2 = pall 2y < PPlulms ) + W2 1plaz) + 12 1 f [l ) -

We see that the error still has the convergence order O(h?), so the reconstruction opera-
tor had no impact on this property. For the L? error we use an Aubin Nitsche technique
as presented in [3.2] but due to the non conforming right hand side we can not proceed in
the same way. As in section we assume enough regularity of the dual problem and
solve the problem with the error v — uj, as right hand side to get

(u —up,u —up)p2q) = B((w — up, p — pp), (w, A)).

Similar to the proof of theorem we use the Galerkin orthogonality to subtract I,Ellw
and I,I;IO)\, but due to the different right hand sides another term appears and we get

e = unllfao) = B((w = wn,p = pn), (w = i w, A= LEN)) = (f I w = RE(T w)).
The first term is bounded similarly to theorem
B((u—un,p—pn), (w — I w, A= LX) <02 [Jull g o) b w20
+ 02 |ull s oy B I )
+ I ||lwll g2 h? 120l 22 -
For the second term we use

1 1 1 1
(1w = RET w)) ey < |10 = REGTw)|| 11y

H-1 (@)
and theorem [4.4]

HI,?lw—R{(I,?Iw)H < hQ(

. 1
div I}! w‘

H-1(Q) L2(Q)

As the solution of the dual problem fulfills divw = 0, we can subtract this term to get

HI,?Iw—RZ(I}}lw)H < h2‘

- o1 .
div IIFw — dlvw‘

H-1(Q) L2(Q)

2 || 711t 3
<h HIh w—wHHl(Q) < 7wl g2y
and thus

lu = unll 2y < B lull sy + B2 1Pl 2y + B2 1 ey -

4.4 Numerical examples

In this section we present four different numerical examples using the reconstruction
operators R,‘Zf and R:,f In the first example we compare the convergence orders of the
standard Taylor-Hood element with and without the reconstruction for the right hand
side. In the second example we solve a standard Stokes problem with non homogeneous
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4.4 Numerical examples

boundary conditions that induce a flow and use the operators to correct the divergence of
the solution. In the third problem we concern a Hagen-Poiseuille channel flow by solving
the unsteady Navier Stokes equations in time. The convection term is implemented in
a curl formulation (see equation which results in a bad approximation due to the
Helmbholtz decomposition (see when we use discrete divergence-free test functions.
Finally we look at a two phase Stokes flow where the pressure is discontinuous over the
surface of a bubble.

4.4.1 Convergence rates for a smooth solution

In the first example we want to examine the convergence rates of the pressure and the
velocity error measured in the H' and the L? norm. The domain is the unit square
Q:=(0,1) x (0,1) and the exact velocity and pressure is given by

w:=curl ¢ with ¢:=z2%z—1)%2@y—1)>
1

_ .3 3_ =
p=z"+y 5"

In figure we can see the exact solutions. For the error observation we use different
viscosities » = 1,1073,10~® and either no reconstruction or RX and Rz on the right
hand side.

6 1.000&+00

W\IIHHIID‘SHHIHHDW

0.000e+00 0.0025 | ‘D‘D|D|5‘ U ‘0‘0‘07‘5‘ L1 001 1.200e-02 -5.000e-01 -03 0

(a) Velocity field and absolute value |u] (b) Pressure p

Figure 4.1: Exact solutions of the first example
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4 Reconstruction operator for the Taylor-Hood element

10_1 %‘ T —— \\‘ T T \\\‘ E
10-2 | .
1073 % é I 12
i S h3
1074 1 | —a—
: | lw = unll g
10-5 L 117 [ = unll 20
; 1= lp = pull 2
1076 | e
10—7 T\ Lol Lol |
102 103 104

Number of dofs

Figure 4.2: Convergence rates of the P, — P; Taylor-Hood
element for v =1

Classical Taylor -Hood

In section [3.4.1] we observed the classical convergence rates for the P, — P; Taylor-Hood
element

lw = unll gy + 1P = Pall o) < PP lulms) + P2 Iplm ()
and
lu = unll 20y < P ulgs@) + 1P plr2@)-

In figure [£.2] we observe the expected rates but we also distinguish a lack of accuracy
that appears using a small viscosity, see figure Although the convergence rate is still
O(h?) the error gets really high. This can be seen when we look at the error analysis in
section as the () norm was scaled by % and the V norm with /v and so

: L.
lu = unl g1 () < vifg/h llw = vall g1y + > thgcgh P —anllg -

Note, that the pressure is induced by a gradient field (3z2,3y?), so an error in the
approximation of the pressure results in an even bigger error for the velocity.

Vertex reconstruction

Now we use the vertex reconstruction R}‘L/ for the right hand side and again analyze the
error. Due to the properties of the operator we expect a lower convergence rate, namely

lu = unll g1y + 1P = Pall o) < P2 lulms@) + P2Iplr2@) + B Fll 2 »
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4.4 Numerical examples

[w = unl g1

106 T T T T T T 7777 T T T TTTT] T T
10° | 1
——— h2
0 —— =1
107 | |—e—v=10"
—— 1 —6
1073 - T
10—6 1l | Lo il | Lo il | L
107 10 10

Number of dofs

Figure 4.3: H' convergence rate for u of the P, — P; Taylor-
Hood element for different viscosities

so only a linear convergence. In figure[d.4] we see that the error of the velocity still has an
O(h?) convergence, which is better than expected. The reason for this is not yet known,
but still the convergence of the pressure error is less than compared to the Taylor-Hood
element, namely O(h3/2). Anyway, the reconstruction helped in the dependency of v as
we can observe in figure [4.5] where we see no impact at all.

Element reconstruction

Finally we use the element reconstruction R:,f for the right hand side. Again we observe
the error and expect to see the same rates as for the Taylor-Hood element

lu = unll g1y + 1P = Pl 2y < P2lulms) + P2 [plr2@) + B2 oy »
and
lu = unll g2y + 1P = Pall g2y < B2 lulms@) + 22 [plaz@) + B2 1) »

but no impact of the viscosity. In figure we see, that compared to the vertex re-
construction, the pressure has also an O(h?) convergence rate and in figure we can
observe that changing the viscosity v makes no difference.
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4 Reconstruction operator for the Taylor-Hood element

10°
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Figure 4.4: Convergence rates of the P
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side

=

1072

1073

1074

Ll

Ll

H

S —
S
—_
|
w

[
jen)
[

10°

10%

Number of dofs

Figure 4.5: H' convergence rate for v of the P, — P; Taylor-
Hood element for different viscosities using R,‘l/
for the right hand side
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4.4 Numerical examples

10_1 %‘ T T \\\‘ T T \\\‘ E
10-2 | .
1073 % é I B2
i i h3
1074 E 34| =
g ] Hu_uhHHl(Q)
10-5 L 17 [ = unl| g2 (q)
; 1 [ llp = pallr2q)
1076 | g
10—77\\ Lol Lol |
102 103 104

Number of dofs

Figure 4.6: Convergence rates of the P» — P; Taylor-Hood
element for ¥ = 1 using Rg for the right hand
side

T =
1072 i

: : ———— h2
10735* 4 —— U=

: 1|~V 1073

i 1 |—+—v=10"°6
1074 1 &

7\1 Ll Ll |

102 103 10*
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Figure 4.7: H' convergence rate for u of the P, — P; Taylor-
Hood element for different viscosities using Rz
for the right hand side

4.4.2 Stokes example with post processing

In this example we use the reconstruction operator R}C as a post processing tool to
generate a divergence-free velocity R} (up,). The domain is the unit square € := (0,1) x
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4 Reconstruction operator for the Taylor-Hood element

(0,1) and we induce a flow by non homogeneous boundary conditions

u=(0,y(1—y) on {0}x(0,1)
u=(0,0) on 90\ {0} x (0,1).

The viscosity is chosen as v = 1. In figure[d.8|the induced flow field uj, and the pressure pj,
is shown, and in ﬁgurewe can observe an O(h) convergence of the error ||div up||2(q)
although the error is really high, so the incompressibility constraint is not approximated
very well. When we use the reconstruction the divergence is reduced to a value O(1e16)
for each refinement level. Due to the error analysis of the reconstruction operator, we
also expect a good convergence in the H' and the L? norm.

0.000e+00 0.05 1] ‘Oil‘ UL l‘] 2.078e-01 -1.000e+01 -7 -3.5 Uil ‘[‘]‘ UL H?:|5| 7 1.000e+01

15

(a) Velocity field and absolute value |up| (b) Pressure pp,

Figure 4.8: Approximated solutions of the second example

4.4.3 Hagen-Poiseuille channel flow using the curl formulation of the Navier
Stokes equations

Until now we only focused on the steady Stokes equations. In this example we want to
analyze a Hagen-Poiseuille channel flow approximated by the unsteady Navier Stokes
equations. We consider the domain ©Q = (0,10) x (0,2) with Dirichlet and Neumann
boundaries

FN = {10} X (0, 2) and FD = OQ\FN,

viscosity v = 1073 and together with

Ceurt (Up, Up, V) = /(curl up X up) vy Yop € Vy
Q
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4.4 Numerical examples

1071 T TTTT T TTTT

1= ldivug |l 2 ()

T

102

103 104
Number of dofs

Figure 4.9: ||div up||2(q) for the P» — P Taylor-Hood ele-
ment

we solve the unsteady Navier Stokes equations using a first order IMEX scheme in-
troduced in section [3.5.2] with timestep At = 0.001 and a steady Stokes solution as
startvalue u(z,0) = ugokes- Using the boundary conditions

u=(10y(2—-1y),0) on {0} x (0,2)
UZ(O,O) on FD\({O}X(O,Q)UFN),

the exact solution is given by:
u= (10y(2 —y),0) and p=0.02z—0.1 (4.4.1)

This example is chosen so that the convective term of the Navier Stokes equations is
equal to zero

(u-V)u=0.
Using the identity
1
(u-V)u =curl uxu+ §Vu2
we get
o o
curl u X u = —§Vu .

In this case the convective term is a gradient field and so due to the Helmholtz de-
composition [3.3.3] we expect a bad approximation using discrete divergence-free test
functions like the P, — P; Taylor-Hood element preserves. To solve this problem we use
the reconstruction operator in the convective term, namely

Court (Up, Up, V) = / (curl uy, x RY (up)) - RE(vy) dz VYo, € V.
Q
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4 Reconstruction operator for the Taylor-Hood element

We use the reconstruction operator on the one hand for the test function v, to get
rid of the mentioned problem above and on the other hand on wuj to make the term
antisymmetric. In figure [4.10| we compare the two approximations at ¢ = 0.5s. We see
that the reconstruction operator has a major impact on the exactness of the solution.

Remark 13: The curl formulation is chosen to present the properties of the
extension operator. Although a standard convection formulation may result
in a proper approrimation for this example, there are cases where this is not
valid anymore, so a curl formulation including the reconstruction can help.

0.000e+00 . . 1.001e+01

Figure 4.10: Absolute value |up| of the approximation of the Hagen-Poiseuille flow at
t = 0.5s. The upper picture is with the reconstruction RZ and the lower
without

4.4.4 Two phase bubble Stokes example

The last example we give is a two phase Stokes flow. For this problem the exact solution
is given by a discontinuous pressure that we approximate with continuous linear poly-
nomials. Due to the coupling of the pressure and the velocity this bad approximation
results in a non-physical behaviour of the velocity. We consider the domain 2 = Q1 Uy
with

Qo= {(z,y) : 2> + 4> < 0.5} and Q:=(-1,1) x (=1,1)\ Q,
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4.4 Numerical examples

zero volume forces and introduce a force on the interface 9€2 to solve:

—vAu+Vp=0 in;,i=1,2
divu=0 inQ;,i=1,2
[ul =0 on 099
[—vVu-n+p-n]=fs ond
u=0 on 0.

On the interface we use the surface tension force given by

fSZT/ k- n ds,
002

where 7 is a constant and k is the mean curvature. In the case of a circle it is given by

where R is the radius. For 029 and 7 = 1 this results in

fs = —2/ n ds.
0o

With K := 7 the exact velocity and pressure is given by

u = (0,0) in
D= —0.5K in Ql
p=—0.5K +2in Q.

We see that the pressure is discontinuous across the boundary 92 and the velocity is
constant zero. Using the standard Taylor-Hood element results in a bad approximation
of the pressure and due to that an influence on the velocity so up # (0,0). In figure
we see the solution for v = 1e~2 for the Taylor-Hood element and in figure using
the reconstruction on the surface tension. In figure [{.13] we also plotted the pressure of
the two solutions along the line from (—1,0) to (1,0). One can see that the standard
Taylor-Hood element produces oscillations in contrast to the reconstruction.
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4 Reconstruction operator for the Taylor-Hood element
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(a) Absolute value |up| (b) Pressure pp,

Figure 4.11: Approximated solutions of the fourth example with the standard Taylor-
Hood element
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Figure 4.12: Approximated solutions of the fourth example using the reconstruction op-
erator on the surface tension
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4.4 Numerical examples

|
-1 —0.5 0 0.5 1

Number of dofs

Figure 4.13: Pressure of the fourth example from (—1,0) to
(1,0) for the Taylor-Hood element with and
without using the reconstruction operator on
the surface tension

In figure we see the error of the standard Taylor-Hood element. The L? error of
pressure and the H' error of the velocity seem to converge only with order O(h'/?) and
the L? error of the velocity converges with a rate between O(h) and O(h*/?). Still, all
errors are really high. In figure we can see the effect of using the reconstruction
operator RZ on the surface tension force. The L? and H' error of the velocity is reduced
close to zero and the L? error seems to converge with order @(h'/2). The L? pressure
error (see figure also seems to converge with order O(h'/?).
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Figure 4.14: Error convergence of p, and wuy for the two
phase bubble flow without the reconstruction
of the surface tension
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4 Reconstruction operator for the Taylor-Hood element
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Figure 4.15: Error convergence of uy, for the two phase bub-
ble flow with reconstruction of the surface ten-
sion
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Figure 4.16: Error convergence of pj, for the two phase bub-
ble flow with reconstruction of the surface ten-
sion
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5 Hybrid discontinuous Galerkin method for
the Navier Stokes equations

In this chapter we use a discretization method that was introduced by Joachim Schéberl
and Christoph Lehrenfeld in [Leh10] and in [LS15]. In section 3.4 we already introduced
a finite element pair with a discontinuous pressure that leads to an element wise di-
vergence preserving velocity field but has a worse convergence order. The introduced
method goes even further by using a hybridised discontinuous Galerkin approach for
the velocity as well as a discontinuous pressure approximation. In the first section we
present the method and show some existing results. We see that there already exists an
h independent version of the discrete LBB-condition, so showing also the independence
of the polynomial order k is the outcome of the second section. In the third section we
introduce an implementation of the curl convection and finally show a numerical result
in the last section.

5.1 Hybrid discontinuous Galerkin method for the Stokes
equations

5.1.1 Hybrid discontinuous Galerkin method

We want to use a discontinuous Galerkin (DG) approach but want to construct a method
that can generate exact divergence-free flow fields. This yields to an H(div)(€2) conform-
ing discretization, namely to normal continuous velocity components over edges of finite
elements. Therefore we introduce the space

Wy, := {ul € ()] : [up, - n]z = 0VE € F},

where E is an element of the triangulation skeleton F and [uy, - n] is the jump on the
common edge F of two elements T and T3

[un - n]p = (“h|T1 - uh‘Tg) “ny.

For the pressure we use the space Q) := kal(’T). By that we get the property
div(Wy) = Qp, see ([LS15]). As functions of W} do not belong to H'(f2) anymore
we use the interior penalty method introduced in [Arn82] to weakly enforce continuity
of the velocity flow field but use a hybridised version to avoid a full coupling between
neighbours. For this we add additional unknowns on the skeleton and define the facet
space as

Ep = {ul e [M*(F)4: uf -n=0},

for the tangential trace of the velocity and introduce the velocity space as Vy, := W}, x F},.
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5 Hybrid discontinuous Galerkin method for the Navier Stokes equations

Remark 14: The space F}, was only introduced to implement a more efficient
handling of linear systems, see [LS1J], in fact it is essentially the same as
the interior penalty DG formulation.

Remark 15:  For the construction of W, we used BDM* finite elements

Remark 16: In this thesis we only consider the two dimensional case d = 2.
By that we can define a tangential vector T on each edge.

5.1.2 Approximation of the Stokes equations

Using the interior penalty method [Arn82] and the notation uj, = (u} ,ul ), v, = (v}, v})
and [v]] := [(v] —vf) - 77 and [u]] := [(ul —uf) - 7]7 we define the bilinear forms for
the Stokes problem as in [LS15] by

o T
appc(up,vp) Z / vVl - Vol d:v—/ VL[[Uh]] ds
TeT oT On

vl Qo oo o
—/ u—a [ur] ds +/ E[[uh]][[vh]] ds,
oT oT

n

bupa(un, an) == Y / div uj, gy dz.

TeT
Using the norm
2 k2 T2
”UhHH}_IDG(Q) =Y IVonlZae + 7 MvRlllz2om
TeT

we can show for sufficiently large « continuity of the bilinear forms agpg(-,-) and
brpa(+,-) and coercivity on the kernel. This was shown for an h-version already in
[Leh10] where an inverse trace inequality (see [WHO3|) was needed

k‘2
IVan - nll 2 o) < N IVanllpery  Van € [I*(T)]2.

We use this inequality also to see that thH?{}{ e is equivalent (on the discrete space
Wp) to

2 2
”UhHH}{DG(Q) = thHH}IDG*(Q)

2 kQ 7112 h
=Y IVl Zae + 7 Mvrlllzzom) + 12
TeT

T2
ovy,

5 (5.1.1)

L2(9T)

Also the discrete LBB-condition

div vy qn
sup Jodivon an > Bnllanllz2)  Van € @n
v EVY ||vh||H}{DG(Q)

with 3 # B(h) was proven in [Lehl0]. In the next section we present a proof that we
also have 8 # B(k), and so an independence of the polynomial degree k.
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5.2 High order discrete LBB-condition

5.2 High order discrete LBB-condition

As mentioned in remark the facet space Fj was only introduced for an efficient
handling of linear systems. Due to that fact we change to a DG formulation and notation
in this section. Under the assumption that the polynomial degree k£ > 2, we want to
show the global discrete LBB-condition for Vj, = BDMy(T) and Qj, = ITF~1(T), so

Jodivo, g dz
sup “———

7 Bllanll2)  Van € Qn (5.2.1)
vpEVR ”’UhHHbG(Q)

: 2 .
with thH?{bG(Q) =2 rer IVunll 2y + X per N [on - T]]”%%E) and 8 # B(k). For this,
we split the proof in two steps:

i. First we prove the local LBB-condition on the reference element T for test functions
q € IF-Y(T) N L3(T).

ii. We show the global LBB-condition using a transformation to the reference triangle.

For the first step we use an extension that is continuous with respect to the H? norm
and preserves polynomials.

Theorem 5.1. Assume a given function u € [ITF(T)]? where T is the reference
Element and [y7u-n dz = 0. Then there exists an operator € : [II*(T)]* —

IT*HY(T) so that for ¢ = E(u) we have

curl ¢-n=wu-n on T (5.2.2)
1

[ (u — curl ¢) - T”L%@T) < % HUHH1(T) (5.2.3)

161l 27y < el (5.2.4)

The existence of such an extension is not trivial and is proven in the last chapter [6]

5.2.1 Local LBB-condition

Theorem 5.2. Let T be the reference element with the vertices (0, 0), (0,1),(1,0).
Then

fT div vy, qp dx

sup > Bllanll 2y Van € THT)NLHT)  (5.2.5)

v, EBDME (T) HUhHHbG’O(T)

With BDM§(T) = {v € BDM*(T) : v-n = 0 on 0T} and [vn]3
DG,0

IVonlazy + 3 K2 lon - 722z, and B # B(k).
ECoT

@) =
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5 Hybrid discontinuous Galerkin method for the Navier Stokes equations

Proof. Choose an arbitrary p € Hk_l(T )N L%(T) We define a Poincare-Operator Z, by

Z, I YT) — [ITF(T)]?
1
P Za(p)(@) = (z — a) / tp((2)) dt,

with a € T and ~(t) := a + t(x — a), and define Z by

where 6 € CgO(T) and [;6 dz = 1. By that we get div Z(p) = p and as the operator is
also continuous with respect to the H'! norm (see [CMO0S]) we have for u; := Z(p)

lwall oy < 1PN L2y - (5.2.6)

In figure [5.1] we can see an example for p = 122y — 1 and the corresponding velocity field
Z, for a = (0.2,0.2)
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L‘Jt[iﬁgr@fﬁ/

ﬁh ;;w ’%}/;,//
TN
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Figure 5.1: Pressure p, absolute value | Z,| and the velocity field Z,. The upper scale is
for the pressure, the lower for | Z,|

—
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C
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Next we use theorem 5.1/ to find a function ¢ € II*+1(T") with

curl g n=—-u;-n on T
1
(ur + curl 6) - 7l agom < 3 sl (5.2.7)
O1) ™ [ (T)

”¢HH2(T) < “U1|’H1(T)-

Let uo := curl ¢ and u := uy + ug, then

ulgp - n= (ungp + uzfyp) 0= (] yp —walyp) m =0
divu = divu; 4+ divuy = p + diveurl ¢ = p.
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5.2 High order discrete LBB-condition

In figure 5.2 we can see the vector field curl ¢ and the resulting velocity u for the example
from above. Note that the normal trace of the result is equal to zero.

0.05 0.15 02

AN

(a) Absolute value of |curl ¢| and |u|

—
7 //777/7
Vi

ayy »i
2 i)

(b) Left we see the field of curl ¢ and right the resulting field u

Figure 5.2: Result after the correction v = uy + curl ¢

For the u we have the estimation

2 2 2
||u||H%)G,0(T) < ||U1||H%)G,0(T) + Hu2”HbG,o(T)
2 2 2
< HUIHHBGO(T) + ”V“2HL2(T) + Z K [[us - 7'HLQ(E)

— Y EcoT

<l + D0 Fllur-7lzamy + D K lluz - 7llTas -
ECoT ECoT
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5 Hybrid discontinuous Galerkin method for the Navier Stokes equations

Together with

1
[ (w1 + ug) - T||%2(E) <32 \\U1|’§{1<T)

and the triangle inequality we get

2 2 2
Hu”Hzl)G,o(T) < ||U1HH1(T) =< HPHLQ(T) . (5.2.8)
With that we see
=p
. ~= 2
fQ divoy p dz fQ divu p dz ||PHL2(T)
sup e =
v, €BDM (1) ””hHH}JG’O(T) HUHH%)G,O(T) H“”HBG’O(T)
lullgrr ) Pl 2
”ul’j‘cﬁ R s HpHL2 : (529)
HpgoT)
O

5.2.2 Global LBB-condition

Theorem 5.3. Let k > 2, Vi, = BDM(T) and Q;, = II*"1(T). Then we have

Jodivoy g dz
sup “A—— —

> Bllanll o) Van € Qn (5.2.10)
VREVR ”UhHH}JG(Q)

with ||Uh||%1]‘~3g(ﬂ) = > rer IVOrll 21y + X per e o T172(m) and B # B(k).

Proof. To show the global LBB-condition we proceed in two steps. First we construct
a low order function uj; and then we define a correction uy o using the local LBB-
condition (5.2.5)).

Step 1: Assume an arbitrary p, € II*71(T). First we construct a function up; €
([H2(7')]2 N [C’O(Q)]2) C [HY(Q)]? with

-7 -
div Up,1 = phTa
where

phT}T—/Tph de VI'eT.

To find up,; we solve a kind of Stokes problem on [H'()]? with a different right hand
side for the divergence
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5.2 High order discrete LBB-condition

Problem 12: Find (us,ps) € ([H'(2))? x L3) so that
/uVu:Vv d:v—{—/ divps ¢qdz,=0 YveV
Q Q

/divusqu,:/p;Lqux Vg € Q
Q Q

Due to the LBB-condition for the continuous Stokes problem (3.2.5) this problem has
an unique solution and we have

divus =pr’ and Jusllo) < P27 | 20y -
Next we use the Fortin II7 operator we introduced in section to define
un =17 (us) € (TP N [CO(Q))?

Using the properties of II¥ we have

/divuh,1 de = / divug dz :/phT de VT eT
T T T
—T
H“llzqu(Q) < usllgrq) < Iz HL2(Q)‘
Step 2: Next we define
P =pp —divy), € MY (T)NLA(T) VT eT.
Now for all T' € T we look for a function u}f with
div ug = p%‘T
ul -n=0ondT
T 2
iy oy < PRI L2y

We do that by solving a problem on the reference element. For each element we define
a reference right hand side p := h? pi o~ Due to the local LBB-condition l) we find
a function @ with

diva =p
@-n=0ondl
HﬁHH})GVO(T) = Hﬁ”]ﬂ(ﬁ'
Now we use the Piola transformation P (see appendix) to get the solution on 7'

B 1
o det(J)

ul == P(1) Ja,
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5 Hybrid discontinuous Galerkin method for the Navier Stokes equations

where J is the Jacobian matrix of the finite element mapping F' : T — T. Due to the
properties of P we get
1 1
divul = ———divii= —p = p?
——
=h2
ul -n=0on ol

and as
N ~112 2
HUHH})G’O(T) = "VU\\Lz(T) + Z k2 [l - THL2(E)
ECOT
— 2w T2 B2 K 2 < |I5l12 — n2[1p2|1?
=1 uhHL2(T) + Z n [ 'THL2(E) S HpHB(T) = thHL2(T)
ECaT
h2||“£”iz}jc(m
we get
T 2
HuhHHlDG(T) < thHL2(T)'
Summing up the element wise solutions leads to up o == ) u:}f and we observe

TeT
divauy o = p,%.
Using this correction uy := up 1 + up 2 we get
div(up) = div(up,1) + div(up2) = div(up,1) + prp — div(us,1) = pr,

and

2 2 2 - 2 )
lunlliey oy < Nunallirs o)+ lunalliy o < 17 oy + D Nunalliy o
N e TeT

:H“h;lHiJl(n)

< Ipnllzzg) + D 1R < IallF2g0 -
TeT

Finally we have

sup Jo divoppy, dz N Jodivuppy dz [ (py)? dz

VR EVR ||vh||HbG(Q)

HuhHH%)G(Q) - ||Uh||ngG(Q)

lunll 0 1Pnll L2 ()

7 Ipnllr2q) -
lunll a0
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5.3 Curl convection for the hybrid discontinuous Galerkin method

5.2.3 Numerical estimations

In the previous section we showed that in the two dimensional case the discrete LBB
constant is independent of the polynomial order k (on triangles). We also calculated the
LBB constant numerically. The results are shown in table As we can see the results
are satisfying and also in the three dimensional case (for a tetrahedron) the independency
seems to be fulfilled.

k 4 8 16 32
2D/trig  0.167 0.190 0.201 0.205
3D/tet 0.104 0.105 0.106 -

Table 5.1: Numerically calculated discrete LBB constant for the HDG method for 2 and
3 dimensions

5.3 Curl convection for the hybrid discontinuous Galerkin
method

In this section we show an implementation of the curl convection cqypi(u,u,v) for the
HDG-method. For the time discretization we use the methods introduced in section
so the convection term only appears in an explicit form. The problem that appears is
that for a function u € H(div)(7) the curl is only defined in a distributional sense. To
see this choose an arbitrary function ¢ € C§°(Q2) and the definition of the weak curl to
formally get

(curl u, p) ::—/u-curlgpdx:Z/u-curlcpdx
Q

TeT T
—Z/curlu-gpdx+2/[[uxn]]wpds.
TeT /T ger’E

Using this for functions wy, up, vy € Wy and a standard DG upwind value ﬁz leads to

Court (Wh, Up, Vy) = Z / curl wl - (ul x ol dz
TeT /T

+ Z / (uﬁg X n) (uFovl) ds — / (wg X n) (ul'vl) ds.
geor’F E
It remains the implementation of the boundary term that leads to the Bernoulli pressure
1 2
— [ (u*)v-nds,
2 Joo

in the case of Neumann boundaries. For the HDG method this leads to
ul)2 + (uF)2
i) i= Y [ LR Gr ) s
E

2
FEel'y
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5 Hybrid discontinuous Galerkin method for the Navier Stokes equations

Remark 17: The choice of the upwind value appears only for the facet values
v,f in the curl convection. This leads to a stable discretization although this
is not natural for the tangential components.

Remark 18: We saw in section that a reconstruction on exact
divergence-free velocity functions improves the solution when using a curl
formulation for the convective part of the Navier Stokes equations. We im-
plemented the curl convection for the HDG method to show that due to the
property divVy, C Qp, namely an exact divergence-free approximation, we
can also use the curl formulation to get proper solutions. In [LS15] also the

standard convection form was implemented.

5.4 Approximation error

Due to the properties we are now able to show an optimal error convergence, namely an
independent constant ¢ # ¢(k, h) in the error estimation. We start with the approxima-
tion error for the exact solutions (u,p) and the approximation u;, and the L? projection
pL D

Qn

12
[ = unll gy )+ HPth - ph‘

L2(Q)
Next we add and subtract a BDM interpolator to get
_ L2 _ /BDMF*
I = i+ [ P8R = g < =,

ML

HY pe 2(Q)
For the third and fourth term we use the inf-sup condition for the bilinear form B and

the Galerkin orthogonality to get

) + HP{jip—ph)

M — |PG.p =
H h U — up 1 () + |7qQ,P — Ph L) =
k
1 B((IPPM w — wp, P p — pr), (vn, qn))
- sup
s vh,zzi‘:%Qh ”UhHH}IDG(Q) + HQh||L2(Q)
1 B((IPPM u — u, PE p — p), (vn, qn))
= — sup J
B vhvphe‘/hXQh ||vh||H}{DG(Q) + th||L2(Q)
Vh,qn 70

Next we use the definition of B and the commuting properties of the BDM interpolator
and the L? projection, namely

k 2
brpe(IyPM w —u,q4) = bupa(vn, P, p — p) =0,
to get
= | [Pép =
H h U — up H%zpc(ﬂ)+ QnP — Ph 12(9)
1 aHDC,v(I}]?DMku —u,vp)
B [onll 1, ) )

60



5.5 Numerical example

Due to the definition of agpa we can bound it with the HDGx* norm, and use the

equivalence ((5.1.1)) to get

| 70N — onlly

aHpg(I}]?DMku —u,vp) HY e () DG« ()
)
lonllg1, @) lonllg1, @)
BDMF
th v UHH}IDG*(Q) thHH}{DG(Q)
thHH}iDG(Q)
< |lyBOM*,, H
B H h " ! H}-IDG*(Q)’

and so altogether

k
< cHu — M uH

2
lv —unllgy, ) + HPth - ph‘ e =

)
Hlpe ()

with ¢ # ¢(h, k).

5.5 Numerical example

In the end we show an example using the curl formulation and the HDG-method to solve
the Navier Stokes equations using a first order IMEX scheme [3.5.2] The example we
chose is the well-known benchmark of a laminar flow around a cylinder, see [ST96]. We
simulate the 2D example with the inflow condition

~ 6y(0.41 —y)

’U,(07 y) - 0412 ’

which yields to a Reynolds number Re = 100 and induces an unsteady flow. In figure[5.3
one can see the solution at ¢ = 3s and in figure the drag and lift coefficient defined
by

2Fp q 2FT,
cp=—7= and cp=—7=
b pu’D L pu’D’
with
0 0
Fp = /C(Val:ny —png)ds and Fp=— /C(l/alsnx + pny) ds

where I, is the boundary of the cylinder, are plotted. For the simulation we use a mesh
with 315 elements and chose the polynomial degree k = 3.
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5 Hybrid discontinuous Galerkin method for the Navier Stokes equations
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Figure 5.3: Absolute value of the velocity |up| and pressure p of a laminar flow around
the cylinder
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Figure 5.4: Drag and lift coefficient for a laminar flow
around a cylinder
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6 H’-extension

In this section we prove the existence of an H?-continuous operator £. Note that &
enforces exact tangential values of the gradient on oT although the properties in
demand an exact normal trace. This can be done by switching from the V operator to
the transposed V71 operator in The proof is analogue, but the tangential and the
normal values change their position.

Theorem 6.1. Assume a given function u € [ITF(T)]? where T is the reference
element and [y7u -7 dz = 0. Then there exists an operator € : [II¥(T)]* —

ItY(T) so that for ¢ = E(u) we have

Vé-T=u-7 ondT (6.0.1)
1

1= 6) -l 2oy < 7 Il (6.02)

||¢||H2(T) < ||u||H1(T)- (6.0.3)

Due to the different demands of the extension £(u), we show three theorems with dif-
ferent kinds of properties and use them afterwards to prove theorem

First we see that the tangential gradient of £(u) has the same values as the tangential
trace of u. How to find a function that has this property is shown in the first theorem
We start with an extension that preserves a proper tangential gradient on the first
edge. Afterwards we correct the error of the tangential gradients on the other two edges
by defining two more extensions. The main challenge is the H?-estimation where we
use different techniques and the definition of the H'/2 seminorm. The final result £ (u)
then fulfills

VEP(u) -7 =wu-7 on dT.

After the first step the normal gradient of £ (u) does not coincide with the normal trace
of u at all. The second theorem is used to correct the error u. = (u —-vepb (u)) - n.
This can be done under certain assumptions, so we split the error u. in a good term u?,
where we can use theorem and a bad term u’. The constructed extension for the
proof of the second theorem is also split in three parts correcting the values edge by
edge. Again the H?-estimation is a big challenge and uses similar techniques as in the

proof of theorem

That the splitting of w. in two parts is a stable operation and how to handle ulc’, is
considered in the last theorem We show that there exists a polynomial whose norm
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6 H?2-extension

is bounded in a proper way by the polynomial order k. For that we use a Lagrangian
function to find a minimum under certain conditions. Finally we show the proof of
in section

Before we continue with the theorems and we show a lemma which uses the
technique of K-functionals.

Lemma 6.2. Let By = (0,1) and assume a function a(s) € CYEy) and u €
H'?(Ey). For (x,y) € T we define

1
g(z,y) ::/0 a(s)u(x + sy)ds.

Then we have

9l gz < el grarany -

Proof. Due to ||g||§{1(T) = HQH%?(T) + HVQH%Q(T) we show the proof in two steps. First
we bound the L? norm and then the H'! seminorm.
For an arbitrary y we define the horizontal line L, := {(¢,y) : t € [0,1 —y]}. By that we
get, using Cauchy Schwarzs inequality,

2

9 B 1—y ) B 1-y 1
l9llz2z,) = ; g(x,y)” dow = ; ; a(s)u(z +sy) ds | dz
cs. 1y rl 1 1-y rl
< / / a(s)? ds/ u(z + sy)* ds dz < / / u(z + sy)? ds da.
0 0 0 0 0

Using the substitution t = x + sy we get

1-y 1-y
/ / u(z + sy) 2dsdz = - / / 2 dt da.

In the next step we use Fubini’s theorem to first change the order of the integration
variables and then increase the integrated area, namely

[ 7L aans ] et aeR [ o o

0<z<l—y 0<t<1
r<t<lz+y t—y<az<t

and so
2 1 ! 2 !
Il < 3 [ 2 [ dr= 02 @t =l < Bl
——

By that we can bound the L? norm on T

1
2 2 2
R R S VS 1 s
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To bound the H' seminorm we use the theory of interpolation spaces (see appendix
7.5). In the first step we make an estimation for the z derivation and then for the y
derivation. Due to

) L
seae) = [ (e + spals) ds.

we get analogue as before
o 2
Hag(lﬂ y) <
v L3(Ly)

2
10| 2 ) (6.0.4)
Next we observe that by using integration by part we can write the x derivation also as

1
aaxg(a:,y) = /0 u'(z + sy) a(s) ds

=y Ssula+sy)
1/t , 1
= /0 a'(s)u(x + sy) ds + " (a(Du(z +y) — a(0)u(z)).
=:A —'B

For the first term we proceed as before to get

1
HAHL2 (Ly) = 7 HUHL2 (E1) - (6.0.5)

For the second term we get

1

1-y
1B1,) = o / (a(Du(z +y) — a(0)u(@))? d <

and together with the substitution t =z 4+ y

1—y 1
IBI132 1, < / m+/ dr <5 e, - (6.0.6)

Using estimation (6.0.4]), (6.0.5) and (6.0.6)) and the definition of the K-functional we
have

1
Y2

1-y
/ u(z +y)? + u(x)? de,
0

0 . 1 2 2 1
— < f — / < -K(y,u),
| stz o ok 3 ol + ke < S0
and so
B, 2 Lo 2
Hag(x,y) =/ o —9(z,y) dy
X (1) Jo L2(Ly)

1
/ SR dy < [ 5K dy =l

For the y derivation we observe that

0 t
8—yg(w,y) = /0 u'(x + sy)sa(s) ds.

So by defining a(s) = sa(s) we proceed similar to the x derivation to finish the proof. [
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6 H?2-extension

6.1 Tangential extension £7

Theorem 6.3. Assume a given function u € [IIF(T))? where T is the reference
element and [yru -7 ds = 0. Then there exists an operator EP . Mmk(M)? —

ITFtY(T) so that for ¢, = EP(u) we have
Vér-T=u-7 ondl (6.1.1)

Proof. For the proof we split the extension £ in three edge extensions ElE i,&f “/ and

Efi. The main idea is to first extend the values of the lower edge and correct the values
on the other two edges afterwards. All following examples are visualized in a three
dimensional perspective, see figure [6.1

(0,1)

(0,0)
Figure 6.1: Three dimensional perspective of the reference element T

Step 1: The first extension Sf ¢ has no further restrictions. For the ease we set E; = E;
and define 7g, as the tangential vector on Ej. For u, = u - 75, we set

P(x) = /Ox ur(s,0) ds + ¢,

where ¢ can be an arbitrary constant and

1
glEl (u)(z,y) = ¢1(z,y) == /0 Y(x + sy) ds.

We observe that

a¢1 ! / !
—_/ :/ V' (z + sy) ds:/ ur(z + sy) ds
aCC 0 0
o . . (6.1.3)
it :/ W (x + sy)s ds:/ ur(x + sy)s ds
dy 0 0
and so
1
Vi - 7’1|E1 = 6;;1 . :/0 uT(x) ds = uT(x) =Uu-T. (6.1.4)
1
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6.1 Tangential extension EP

In figure we can see the values and the partial derivation of the first extension ¢ for
ur = 62(1 —x) — 1.

1.0 09 0.6 0.3 0 0.3 0.5

B i —

Figure 6.2: Extension ¢1, %¢1 and %L;l for ur =6z(1 —z)—1

We now show
H¢1Hi]2(jﬂ) = H¢1“iz('jﬂ) + \|V¢1f|§p(f) < ”unip(jﬂ) .

For the L? estimation we proceed as in the proof of lemma

1-y
||¢1||%Z(Ly)=/ /wx+sy s e [ /w:c+sy ds da

1
<l = [ [ o0 @2 asZ [ [Tunts 07 ds a

2
< ”uTHL?(El ||u.,-||H1/2 (By) S ”uHHl(T)

and so

1
o1, = [ Ialas,y du < Tl

we use lemma for each partial derivative (6.1.3)), and so we

To bound ||V ||§{1(T‘)
get

2
||v¢1||H1(T ||UT||H1/2 (B1) ”UHHl(T)a

and

|’¢1HH2(T) ”UHHl(T) (6.1.5)
Step 2: For 85 “J we have the restriction that

Vé’fi’j (u) - TE, b= 0.

J
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6 HZ?-extension
Again we set I; = 1 and Ej = E». For an arbitrary 4 we define
U, i=1U"TE,,
and
T . o 1
o () :—/ ug,7(s,0) ds —1p2  with )9 :—/ ug,7(s,0) ds.
0 0

With that we define the extension
5 1 y 1
& () (2, y) = d2(z,y) = / Ya(z + sy) ds — 1:n/ Ya(z + s(1 — 2)) ds,
0 —Z Jo

or using integration by part for the second term

y 1 1
11‘/ Yo(x +s(1—x)) ds = —y/ h(z + s(1 —x))s ds

—Z Jo 0

1
= _y/ ug r(x + s(1 —x))s ds,
0

we can write the extension as

1 1
do2(z,y) —/0 Vo (x + sy) ds—i—y/0 ugr(x +s(1—xz))s ds.

-~

=& (@) (@) =45
On Fy we have y =1 — x and so
¢2|E2 = 07

and due to a constant value on the edge F» also

Ve - Ty, = 0. (6.1.6)
On F; we have y = 0 and so
0o (T _
Vo|g, B = 1/;92; ) _ Ugr =U-Tp, - (6.1.7)

In figure we can see the values and the partial derivations of the correction term
¢5°"" and the resulting extension ¢y for the same example ug , = 62(1 —2) — 1 . Note
that the correction does not change the values and the derivation with respect to x on
the edge Ej.
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6.1 Tangential extension EP

0 09 06 || \'0"3\ Ll \[‘] | 03 03

I

S —

M cornr 6¢§OTT 8¢§OTT
(a) Correction ¢5°™", =3 — and =3,

10, 09 06 || \'0"3\ RN \?\ 03 05

B L

(b) Extension ¢, % and %

Figure 6.3: Values and partial derivatives of the correction ¢5”" and the extension ¢9
for ug ; = 62(1 —x) —1

It remains to show the H? estimation. For the first part E°(@)(x,y) we showed the
estimation in step 1, so we have

[ @] ez, = Nty

It remains the estimation for ¢§”"". Again we split the norm in

corr Ccorr corr CcorTr 2
195 ”?12@) = ||¢5 ||iz(f) + Vg3 Hiqﬂ =+ |W2¢2 HLQ(T)-
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6 H?2-extension

For the first term we get
5 1 11—z 9
1057 sy = [ [ (0570 dy e

= /01 /le <y /Olug,T(x +s(l—x))s ds)2 dy dz

2

L () oo

N——

<1
1 pl-z pl 1 pl-z pl1
< / / / UQ,T(t)Z dt dy dz < / / / u2,T(t)2 dt dy dz
0 0 x 0 0 0

< Nwgrllpz gy < Nl g ) -

Next we calculate all partial derivatives up to order 2 (always using integration by part
for the uj . terms)

corr 1
%:y/ uh(z+s(1—2)) (1—3s)sds=
ox 0 i

=L Ly - (ats(1-))

1
- L /0 s (@4 5(1— 2))(25 — 1) ds + ugr (@ + s(1 — 2))(1 — 5)s ;
-0
1
- w/ war (2 + 5(1 — 2)) (25 — 1) ds,
- 0
6%5;””’” _ /1 wsr (2 4+ s(1— 2))s ds,
0
H2peorr 1
&fgx -5 —y:v)2/0 s (4 (1 — 2))(25 — 1) ds
1
. y . / (2 + (1 —2))(2s — 1)(1 — 5) ds
- 0
1
_ (1_1/90)2/0 war (2 + s(1 — 2))(25 — 1) ds
1
+ ﬁ /0 ug(x +s(1—2))(4s —3) ds + ﬁm,f(ﬂv)a
82¢§orr 1

1
drdy 1_33/0 ugr(x +s(1 —z))(2s — 1) ds,
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6.1 Tangential extension P

and finally

2 jcorr
0”5 _0
oydy

We start with the mixed second order derivative. First note that

1
/ 2s —1ds =0,
0

by that we can substract the meanvalue

1 1
w ) = / us.o(s) ds,

1-2z
to get
82 corr 1 1
aféy =1 . /0 ug(x+s(l—x))(2s —1) ds
1 1
=1 / (UZT(ZE’ +s(l—x)) — W(z’l)) (2s — 1) ds.
—Z.Jo

And so using the Cauchy-Schwarz inequality
11—z 82¢cor7’
dy d
' L2(F / / (f‘h’ay) -
82¢§or7’ 2 -z
= dy d
/0 (39333/) /0 v
cs. 11 1 2
— _7(x’1)
</O 1—x/0 (ugvT(w—i—s(l x)) — Uz, ) ds dz

1 1 1 2
=y [ (et ) arae
0 - T

The inner integral can also be written as

82 ¢gar7’
0xdy

/z 1 (uQ,T(w —WJ(“))Q dt = 2(11_95) / 1 / 1 (uz,r (1) — uz,r(s))? dt ds,

and so using Fubini’s theorem

' ;»4/0 (1—z)3 // Uz (t) — ug(s))” dt ds dz
= I e

r<s

32 ¢§orr
oxdy

x<t
0<s,t<1

1 1 pmin(s,t) 1 , o
< ) — s |
/0 /0 /0 (1—2)3 dz (ug,r(t) — ug,+(s))” dt ds
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6 H?2-extension

For the inner integral and w.l.o.g. assuming that s < ¢t we get

/min(sﬂf) 1 do — 1 2 < 1 2 _ 1 2
0 (1—x)3 T 1 — min(s, t) “\1l-s) “\t—-s/) "~
2
' / / Uz (t “227( D™ a1 ds.
L2 t— 8

Using the definition of the Sobolev Slobodeckij norm (see appendix) we get

uQT UQ 7'( )) 2
dt ds = |ug.+ i
LQ(T / / t— ’ 2, ‘H1/2 (E1) = H HHl(T)

2¢2

and so

82 ¢§or7’
oxdy

62 ¢cor7‘
0xdy

. Note that we have *— < 1 and so we

Next we look at the second derivative of
get

2 corr
o 1
Oxox 11—z

1
/o up(x+s(1—x))(2s—1) ds

+

1
/ ug(x+s(1—x))(4s —3) ds + 1 i ug (),
0 x

1-—2z
or by adding and subtracting an integral

82¢§orr - 1
0rdx ~ 1—x

1
/0 ugr(x+s(1—2))(2s—1) ds

+1—ZE‘

1
1—=x

1
/0 ug (x4 s(1 —z))(4s —2) ds

+

1
/0 ug,r(x) —ug (x+s(l—x))ds.

=:A

2 corr
The first and the second term can be estimated in the same way as aq;a We focus

on the third term A. Again using the Cauchy Schwarz inequality and Fubini’s theorem
the L? norm is bounded by

1-x
‘A“Lz / / A dy dx / 1—w/ U+ (z) — ug,(z + (1 — z))? ds da

_/0 (1—33)2/56 (ug.r(2) — g+ (t) dtdx// 2 1__;‘27(”)2 d(,t)
// s 7 ( :E_:?T( d(z. 1) // (u2,r( x_?af(t)) do dt

t>x

(Ey) S HUHHl(T)
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6.1 Tangential extension P

2 corr
and by that the estimation for fa is given. It remains to bound the first order

2 scorr

derivatives. The estimation for 2 derivation is similar to 2 d¢ by because y < 1, and for
the y derivation we observe as before

2 11—z 2
/ / </ UQTZE+S(1—[L')SdS> dy dx
LX(T)

11
< / (1-— x)/ ug (x4 s(1 — x)* ds do = / / ug - (t)? dt dz
0 0 0 Ja

< iz 2y = sy -

H a¢corr

All together we have
02z < 12 - (6.18)
Step 3: For Sf ¢ we have the restriction that
Vé’fi(u) ‘TE; 5, =0 for j#i.

Again we set F; = F1 and j = 2,3. For an arbitrary @ with
/(9T&~Td820 and 4|, - TE, = Ulg, - TR, =0 (6.1.9)
we set
U3 r = U TE,

and
T) = : +(s,0) ds.
Y3(x) /0 us, (s,0) ds

By that we define the last extension as

1 1
& (@) = datann) == [ (o +sp) ds = 2 [Csa a1 - ) as

::d)go'r'r,l
y 1 1
- P3(s(z +y ds+y/ P3(s) ds
[t ) dsy [l
::¢§orr,2 ::¢§orr,3

Similar to the second extension we observe that on Fy due to y =1 — x and on F3 due
to x = 0 the extension is constant, and so

Voslp, T, = Voslp, - 7B =0, (6.1.10)

and

Véslp, T =3 = usr =0 Tp, . (6.1.11)
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6 HZ2-extension

corr,2

In figure we can see the values and the partial derivations of the correction ¢;

and the resulting extension ¢3 for the same example us , = 6x(1 — ) — 1. Note that
¢’corr,2

on the edge F5 the partial derivation with respect to y of the correction % is the
negative value of %% in figure This leads to V3| gy TEs = 0.

0, 98 06 L | \'0"3\ Ll \[|]\ 03 05

B

L —

‘

2 corr,2
. corr,2 9937 9¢3"
(a) Correction ¢5°""", —4— and —

10, 09 06 L1 \'0"3\ HEEEEN \(‘j | 03 05

B L —

(b) Extension ¢3, % and %

Figure 6.4: Values and partial derivatives of the correction ¢§Orr’2 and the extension ¢3

for ug , = 62(1 —z) — 1

Again we have to show the H? estimation. The first term of ¢3 can be written as Ef !
where we already have the estimation. The second term is the same as for £, so it

remains to show the estimations for ¢5"% and ¢5”"®. Note that we have 3(0) = 0,
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6.1 Tangential extension P

and by that we can write

corr,2
¢z "= —

1
[l ) s

1
=y [ il —1) ds—

1

o Us(s ) s — D)

1
—y [ sl + ) (s - 1) ds
0
and due to (6.1.9) also ¥3(1) =0, so
. 1 1 1 1
37" = y/ P3(z) ds = —y/ Ph(s)s ds + wg(s)s}o = —y/ uz,(s)s ds.
0 0 0
With similar techniques to the proofs for the estimation of 5{3 ! and EQEl we can bound

For ¢§07‘r,2 we make the estimations part by part. Together with % < 1 the L?
estimation follows from

‘ pagh CS//lx /u3 y)? ds dy dz
//lwary/x uz +(s(z +y))* ds dy dz

< Hu3,7”L2(E1) S “u|’H1(T)-

,3 ~
¢§OM < |’U”H1(T)-

‘H2 (1)

corr,2
3

Next we calculate all partial derivatives using integration by part on all integrals where
uj . appears to get:

o ¢cor7‘ 2 y

1
or x+y/0 ugr(s(z +y))(1 —2s) ds

a¢corr2 1
oy /0 u(s(r+y)(s—1)ds+

y 1
" /0 us -(s(z+y))(1—2s) ds

T

82¢COTT 2 _
o0xox

1
$+y2/0 ug,-(s(x +y))(1—2s) ds
1
2/0 ugr(s(z+y))(4s —2) ds
1
x+y2/0 ugr(s(z+vy)) —ug-(z+y)ds
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6 H?2-extension

62¢corr,2 - 1
89038y - (l‘ 4 y)2 /0 U3,T(S(CC + y))(l — 28) ds

y 1
-+@+yyllwaam+wX%—2wh

1
- ﬁ /0 uz,r(s(z +y)) —usr(z+y) ds

82¢§0r7‘,2 1 1
_ . 1-2s)d
S = s | el )1 - 29) ds

1
x
4+ — us +(s(x + 1—2s)ds
s | a1 - 29
y 1
+ / uz(s(z+y))(4ds —2) ds
(@+y)?2Jo 7
y 1
— - ds.
+ o y)2 / ugr(s(x +y)) —us,(x+y)ds
Again we use that m_";y <land -~ 5 < 1 on T. We start with the L2 norm of the first
2¢CO’V"I‘

order z-derivation and proceed s1m11ar to the estimation of —5- 5

H a¢cor7‘ 2

/1 /1 T /z—l—y/ ( ))2
< (uz,+(t) —us (s dt ds dy dzx
o Jo (30 + y)

:/01 /01 x/Oery/Oery (ugT((t;+Z§2T( 5))? dt ds dy dz
2

HY/2(E)
ast—s<t<xz+y, and so
a¢corr2
T or A < usrl iz e, < HUHHl(T)
LA(T)

We continue with the y derivation. First observe that the second integral is the same as
the = derivation, so we have

11—z
// /U37— (x+19))? ds dy dz +

corr,2 corr,2
8<Z> ¢3

LX(T) LX(T)
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6.1 Tangential extension P

Using Fubini’s theorem and { = = + y we observe

1 pl—z 1 1 opl-z g 1
/ / / uz - (s(x +y))? ds dy do = / / / u - (t)? dt dy da
o Jo 0 o Jo x+ylJo
L rCq1 ¢
4 / / - / ug - (t)? dt da d¢
o Jo CJo

< ||“3,THL2(E1),

and so also

D™ 2 i

H o RIS

Finally we define two functions

1 1

€= [ (sle )1 - 29) ds
and
1 1
0= [ (sl 4 9) — o+ 9) ds.

to bound the L? norm of the second order derivation with the L? norm of linear combi-
nations of £ and 6. For the estimation of £ we proceed similarly for ¢3 but have to

use Fubini’s theorem due to the higher power of the x + y term.

< [ [ [ A
//// - x+ZST( D" 4(s,t,y) da

s—x<y
t—x<y
0<¢,s<1

Fb. f1oploplopl 1 9
< ——— dy (uz (t) —u3-(s))” dt ds dz.
/0 /O /0 /rnax(s—:p,t—x) (.’L‘ + y)3

Without loss of generality let s < ¢ to get

' <2< 2

max(s—x,t—z)

[\

! 1 —2
/ g dy = 2
max(s—z,t—x) (‘T + y) (‘T + y)

||f||L2(T) /// 4 t_ng( )) dt ds dzx.

< |u3,T’H1/2(E1) = ||U|’H1(T)-

and so

77



6 H?2-extension

For 0 we get

1 1—x 1
16 . —u3, 2 dtdyd
00y < [ [ [ ettt ) = unsto+ ) aray as

1 11—z T4y 5
(1) — uz, dt dy d
<[] HyQ/O (v (8) = oo+ ) it dy o
1—x 3:+y
// / (uar(t) = ussr (@ + )" dt dy de.
1‘+y)

Together with |t — (z 4+ y)| < [t| + | + y| < 2|z + y| for t <z +y we get

1—x x+y U37— U37($+y))
(9 dt dy d

< ’u37T‘H1/2(E1) S |’U”H1(T)-

62(;5007"7'2

“oror ) < H‘9||i2(f) + Hf”iz(;ﬁ)

L2(T)

82¢cor7“2
ayay R < HHHiz(T) + H§||i2(j~)

LA(T)

82¢corr2

L2(T)

we finally have
1631l g2y < Nl gy - (6.1.12)

Step 4: Now we can construct £P. Assume a given u with

/ u-7ds=0.
oT

First we define the linear transformations F5 and F3 defined by the transformations of
the vertices

,00 — (1,0 , = (0,0
Fy: (0,00 — (0,1) and F3: (0,1) — (1,
, — (0,0 , - (0,1

and the corresponding covariant transformations Cq,C3 (see appendix) to define proper
extensions from the other edges, so

&7 (w)(w,y) = (&7 (Cow)) (Fala.y).
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6.1 Tangential extension P

with
e @, < 1670 o,
and
&P () @,y) = (&7 (Cu)) (By(e, ).
with
Hng(v)‘ H2(T) < Hgfl(v)‘ H2(T)
By that we define
o1 = " (u)

by = b1+ E (u— V)
b3 = po + EF® (u— Vo),

and set £P(u) = ¢3. Note that due to Green’s theorem the surface integral over 91" of
the tangential component of V¢o is 0, and so also

/ u— Vo -7ds=0,
oT
and as
U_V¢Q‘El 'TEI = u_v¢2|E2 'TEQ :0

assumption for €53 is fulfilled. Also we see that due to the construction of the

A

extensions by integrals of u we get a function £P(u) € II*+1(T"), and using the properties

(6.1.6), (6.1.7) and (6.1.10)), (6.1.11]) we have

VEP ()|, - By = Véalg, - Tr + VE (u— Ven) g TE

=0

= Voilp, e+ VE (u— V) p T
=0

= V¢1|E1 TR, = U TR,

VEP ()|, - By, = Volg, - TE, + VE® (u— Ven) g TE
=0
= Voilp, 7B + VE P (u— V) p TP

= v¢1’E2 " TRy + (u_ V(bl)‘EQ "TEy, = U~ TE,
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6 H?2-extension

. TE3
3

VEP W)y, - By = Véalg, - TEy + VE (u— Vo)

= V¢>2|E3-7'E3—|- (u—v¢2)|E3'TE3 =U-TE;-

The H? estimation follows from (6.1.5), (6.1.8) and (6.1.12)), so

HgD(U)HHz(T < b2l g2y + Hng (v - v¢2)HH2(T)
E
ol + Hg =900 | gy +

1011l g2y + [l = Vol g +|IUHH1

N

N

< @1l gy + Nl gy < HUHHl(T)

6.2 Normal extension &V

Theorem 6.4. Assume a given function u € II*(E) where By = [0, 1] is an edge
of the reference element and has a zero of order two in the vertices. Then there
exists an operator EN : TIF(Ey) — TIMY(T) so that for ¢p = EN (u) we have

¢n =0 on 0T
Vo, -n=u on E;
Vo, n=0 onaf’\El

H¢n||H2(rf) < ||UHH(%2(E1) :

Proof. The idea of the proof is similar to the proof of theorem First we extend the
values of the lower edge and correct the trace and the normal derivative afterwards. For
the corrections we use cubic blending coefficients. Due to that it is not trivial that the
corresponding extension still fulfills £V (u) € TIF+(T'). Before we start with the proof
we remind the reader of the definition of the ||-| Y2 () ROT

2
a2 12 g, =l + ||u|rL2

// )dedy—l—/:(llx-l-i)u?(x)dx.

All following examples are visualized in a three dimensional perspective, see figure
Step 1: In the first step we define

1
i(5,y) =y /0 ar(s)u(z + sy) ds,
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6.2 Normal extension £V
with a;(s) = 6s(1 — s), and so

1 1
/ ai(s) ds=1 and / aj(s)sds=—-1 and a(0)=a(l) =0.
0 0
For the gradient we use integration by part to get

0 1 ,
o= | et — s as

and

o 1
81;;1 = / ay(s)su(z + ys) ds.

0

By that we observe

$1lp, =0

and

1
Vor niilp, =~ = —u [ ai(9)s ds = u(o)

In figure we can observe the first extension ¢; for the example u = 102%(1 — x)2.
Due to the constant value ¢1 = 0 on the lower edge E7 the derivation with respect to z
is also zero.

-1.0 -0.7 -0.35 0 0.35 0.7 10

W\\\\\\\\\I\\\\\\|\\w

Figure 6.5: Values and partial derivatives of the extension ¢; for u = 1022(1 — x)?

Using lemma [6.2] we observe that
H 9¢1

< ellivragey < Nl gogs

HY(T)

o

HI(T ”uHHl/z(El) # ||u||Héé2(E1)
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6 H?2-extension

and due to
) Ll 1
lorltasy = [ [ (] aruta+ ) d9? ay as
cs. [l pl-z 1
#// > u(z + sy) 2 ds dy dz
o Jo 0
1 pl—z 2
= dt dy dz
/0/0 1_93/ u(t)? dt dy
11—z
/ / / u(z + sy) 2 ds dy dx
<l oy < el
we have

H¢1HH2(T HUH 1/2(E1).

Step 2: In the next step we correct the values on the second edge Fs. For that we use
two cubic polynomial blending functions, namely

a(s) =35> — 25 and b(s) = s — 5%,
with the properties

a(0)=d(0)=d(1)=0 and a(l)=1 (6.2.5)
b(0) =b'(0)=b(1) =0 and V(1) =
and define
oalan) = one) = a (2 ) e -0 -0 (L) -0 w1 - )

The first polynomial a corrects the values, the second one b corrects the derivative on
the edge F». Due to the zero values on the lower edge, the extension from the first step
¢1 does not change on Ej. In figure we can see a(s) and b(s) on (0,1).

0.8 |- - -

0.6 A |- als)

0.4} -’ -

0.2 |- .o 2

—0.2 1 -

Figure 6.6: a(s) and b(s) on (0, 1)
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6.2 Normal extension EN

On the edges F1 and FE» we now have

bal, = b1l — a(0)br(z, 1 — ) — b(O)(1 — ) 8‘21 (2 1—2) =0

b2l = b1l — a()y (1 — 2) — b(1)(1 — ) 8;;1 (.1 — )

:d)l(wal_w)_gbl(fﬂal_x) =0.

In figure[6.7| we can observe the extension ¢9 including the first correction for the example
u = 102?(1 — x)2. Note that the values and partial derivatives on the second edge F
are corrected.

-1.0 -0.7 -0.35 0 0.35 0.7 1.0

EEE— |
0 0.02 0.04 0.05
S —

T

Figure 6.7: Values (lower scale) and partial derivatives (upper scale) of the extension ¢
for u = 1022(1 — z)?

Next we calculate the derivations using the chain and the product rule

0
%(xay) = a_$(x7y)

_8%(1395)“/(1335) ¢1(z,1- )
—a(lfx) (%(:L",l—x) ;;2( ,1—3:))
o (152)

4’(1:) (8:1:8 (2,1 -2) - gjg;(x’l_x))

091 0 Y / Y
% ) = e - (e (5

_ %( Y )b/ (13‘%) (1 —m)%(x,l —$)-

1—=x
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6 H?2-extension

and observe

e UL TR
= %], =@
s0 Vo - ni |, = ulx), and
% b, g, Toa
_ f’gllu _ x)a;;l(x, 1—2)
:%?@,1—3;)—%*;(3;,1—:5):

Due to the constant value of ¢o = 0 on the edge Eo we have

Do

0= — 02| _ 992 _
8yE2

v¢2 : TEQ |E2 = a$

2
and so Vg - np,|p, = 0. It remains to show the H 2 estimation. For the first term of
¢9 we already showed the estimation in the first step. For the rest we split ¢o into

w:—a(lf:c)@(m—x) and f:—b<12x>(1—1‘)8a(21($1—w)

We first show the estimation for i

2

Y 1
W) = G0 —2) = 2) [ e (0= ) (s) ds.

For all estimations we use the Cauchy Schwarz inequality, Fubini’s theorem and that
£ <1onT. By that we get

1 1—x
4612 ) = / v dy da

1 :1:
31 —x) —2y)/ u(z +s(1 —2))* ds dy dx

1 1
= 3(1 —x) —2y)? / u(t)? dt dy dz
0 JO 1 - T

1 l—x 1
<[ w02 atay a <l < k-
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6.2 Normal extension EN

We continue with the first order derivatives.

O _ oy (1_ y )/Olu(x—i—s(l—x))al(s)ds

oy 1—z 11—z
) 2 !
55_6(1333)2 <1— 13 /0 u(z+ s(1 —x))ai(s) ds

For the y-derivation we have

CS 1—x
H // / (x+s(1—2x)) ds dy dz
L2
1—x
:// . /u(t)2 dt dy dx
-z
1—x 1
// /“ dt dy dz

< llullZae,) < Il 172

(Br)

Due to the structure of the z-derivation we bound the norm similar to the y-derivation,
to get

It remains the estimation for the second order derivatives.

0? 1 2 !
83/(;2 = 61 — (1 1 —yac> /0 u(x 4+ s(1 —x))aq(s) ds

< Jull?, 172

(Er)”

1
(1- x)/o u(z + s(1 —x))ai(s) ds

S— —
/\H

D

SR

—

[Va)

N—

—aj(s)s)u(z +s(1 —z)) ds
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6 H?2-extension

2 2 3 1
;xgx - (18(1 g )2 24 1 E $)3> (1- ZC)/O uw(x + s(1 —x))ai(s) ds
1
) [ s~ ahtoute + 561 - )

Ta i)? (3 -2 ) b (/01““1(8) — dy(s)s)u(z + s(1 - 2)) ds)
)3) (1—=z) /01 u(z + s(1 —x))ai(s) ds

1
[ (@is)s = st + (1 - ) ds
0

)
+(132x)2<3_213x> 1ix/0 (365 — 60s + 18)u(z + s(1 — x)) ds
2

We start with the second derivative with respect to y.

H821/’ L2(F //lxl_x / u(z + s(1 —x))* ds dy da

0ydy
:/01_93)2/36 u(t)? dt dz

Fub

0<;v<1 t<1
<t :(;<t

2
/ / 1 — x dx u / u di < HUHHS({Z(EH ’

The first term of the mixed derivation can be estimated as || || r2(7) and the second term

924
0yoy

, SO we also get

0?1
0yox

2
< [lu .
ey < e s,

It remains the second order derivation of z. Again the first three terms can be estimated
similar to before. It remains the last term

(1 EQ:E)Q (3 - 2&) 1 E - /01 uw(z) —u(z +s(1 —x)) ds.

COTT

8x81

in the proof of theorem to bound

L2(D)

the L? norm with |u 12(E)- Altogether we have
HY/2(Ey)

0%
O0x0x

2
< ||lu
@) H ||H362(E1)’
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6.2 Normal extension EN

and so
||¢||H2(T) < ||u||Hég2(E1)'

The estimations for £ can be done in the same way by using the introduced techniques,
and thus we get

1602ty < Nl and I€allpary < el goge g

Step 3: For the last step we define
£ e 9) = dalon) = ontep) o () a0 )

_b(xiy) @+ 220,21 y)

o
Y P
wo(S1 ) @R )

and have

¢3‘E1 = ¢2|E1 =0
¢3|E2 = ¢2|EQ —a(y) ¢2(0,1)
~——

=0
—b(1 —x) %(0, 1) +b(1 — z) %(0, 1)=0
x—o $—0

P3lp, = ¢2lp, —a(1)d2(0,y) =
= ¢2(0,y) — ¢2(0,y) = 0.

In figure [6.§ we can observe the final extension ¢3 including the first and the second
correction for the example u = 102%(1 — x)%.

-1.0 07 035 0 0.35 07 1.0
HIHH|IHHI\H‘I\

0 0.02 0.04 0.05
S —

Figure 6.8: Values (lower scale) and partial derivatives (upper scale) of the resulting
extension ¢3 for u = 102%(1 — x)?2
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6 H?2-extension

The first order derivations are given by

993,y = 992

(:an) - 826 (x,y)

ox
TP '(ﬂﬁ‘bz@ﬁy)
() S
ot () e gies Ty
_b<a:—?|J—y> <%§2(0,x+y)+(:v+y)$gz(o,x+ )>
Exeil <x1y> @+ 95200 +y)

0o
<y(0,a: +y)+ (. + y)ayay(o,x + y)>

and

093 _ O¢o
T)y( ,Y) n (z,y)
x / Yy
(@ +y)? <w+y> (0,2 +9)

(z +y)?
y P2 R
2o () (FR0atn+ @ ng ot
On the edges we observe
93 92
—| == =ulx)= Vo2 -ngl|p =ux),
8y B ay £, ( ) ¢2 E ‘El ( )
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6.2 Normal extension EN

and

%23 = 3;;2 L zd (1 — 2)¢2(0,1) — a(l — x)a;if(& 1)
— (1 — x)%(& 1)
b1 —2) 8%2(0, 1) + 3;22(07 1))
+ 2b' (1 — :c)aa;(o, 1)
+b(1 - ) ((%;(0, 1)+ gz? 0, 1)>

so again similar to ¢g it follows Vo - ng, | g, = 0. Finally on the last edge we have

Dol =52 - L Wen04) - a2 0.
E3 ES
) 9 0’
- G20 -0 (G200 + 5ot 0.)
i) d 0’
+ 520 +00) (5200 + g 220
O da o0

~ oz (an) dy (an) O (07 y) + aiy(oa y) =0,

oz
estimation for ¢9 so we have

and so also Voo -npg,| By = 9¢3 b = 0. The H? estimation for ¢3 is analogue as the
3

H¢3||H2(T) < Hu”HééZ(El)'

It remains to show that the extension £V (u) belongs to IT*+1(T"). Due to the definition by
integrals of u we raise the polynomial order by one, but by using the blending coefficients
a(y/(1—x)), b(y/(1—x)), a(y/(y+=)) and b(y/(y—+x)) the result may not be a polynomial
anymore. To see that this is still fulfilled, we use that the given polynomial u has a zero
of order two in the vertices, and so there exist polynomials v,w € Hk_Q(E) so that u
can be written as
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6 H?2-extension

For ¢o we observe

e =onten) ~a (2 ) rtot -0 -b () 005 @)

1—=x
1
—y [ ot + ) ds
0

_ 3l - — 2y —z 1a s)u(z + s(1 —x)) ds
=) [ et s - ) d

3 _ 21 =2 ! /
_ y(ly—(l')a)(l x)/o a1(8)5u(x+ (1 —x)s) ds.

And as
w(z+s(1—z) =01 —z—s(1—2))v(x+s(l—z))
= (1=2)(1 =) v(z +s(1 - x))
= (1—2)*(1 - s)*w(z+s(1 —z))
we have

1
ba(ey) = y /0 ar(s)u(z + sy) ds

_3y2(1—x)—2y3 — )3 la S —s)Yv(z+s(l—z S
1 —2)p (1 )/0 1(8)(1 = s)v(z +s(1 —x)) d

3 421 — g ! /
PSP [ - 92t + (1 a)s) ds

and so ¢y € IIFH1(T'). Similar for ¢3 we have

bt = ontap) ~a (1) a0 )

0
(L) G0ty

(] L)

= ¢2<$7 y)

2(p — 23 !
_ 3y ((x—:—yzi)?’ % (z +y)/0 ar(s)u(s(z +y)) ds

3 2(x iy
S ) [ttt ) ds

v~y (e +y) L
+ W($+y)/o ay(s)su(s(x +y)) ds,

and together with

u(s(z +y) = s*(z +y)*w(s(z +y))
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6.3 Correction theorem

we see
b3(x,y) = d2(2,y)
- 3@’2(@13’;); L 01 ()5 (st + ) ds
SO g [t utste o)
LYty (mer(:;er (& 4 Ola (s(z +)) ds,
and so &N (u) € TIF1(T). O

6.3 Correction theorem

Theorem 6.5. Assume a given function u € II*(AT) and v = 0 on dT \ E; where
E, =[0,1]. Then we have

s / 2

i [ (0] < K2 ol g
ii. There ezists a function e, € II*(E) with €} (1) = 1 and €},(0) = ex(0) =

erx(1l) =0 so that

1
lewll gagzimy < 32
1
lexll2(my) < 23

(6.3.1)

(6.3.2)

Proof. We first show statement . For the ease we show the estimation on F = (—1,1),
the theorem follows with a transformation to E; = (0,1). We use a special basis for
IT%(E), namely integrated Jacobi polynomials (see appendix and [BS06] and [AS65]).
We define

PO @) =1,
with the properties
01 =0 1<n<k
(1) =n 0<n<k
@n+ DPPO = (n+ )P —nPLY
Pp1,0) mitl nizo@n +1)P0)
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6 H?2-extension

We also use integrated Legendre Polynomials
1

Li(@)i=— [ POV(s) ds
T

with the representation (using Pﬁol’o) =—1)

(2n+1)Lpyr = POV - POY n>1,

We are looking now for a function é given by the argument of the minimum of the
weighted H! seminorm

1
€ := arg min / (1—2)v'(z)? dz = arg min ’/U|%11(E),

vellf J vell
v(1)=0 v(1)=0
v'(1)=1 v'(1)=1

with the weight w = 1 — z. For this we set

with ag = 0. Note that due to the choice of our basis we have

1 1
/ (1= 2) P (2) PO () ds = / (1 - 2)PA0 (@) PM) () ds = by —

-1 —1 n —+ 1
and so
- (10) : 2
2 21 p(1,0)2
‘U’Hl(E):Za]’Pj ‘Hl(E)iz T541
j=1 j=1
v(l)=0
3
V(1) = Zozjj.
j=1

We use the technique of Lagrangian multipliers to find the minimum. We define

k k
2 .
L(al,...,ak,)\):Za?%+k(2ajj—l),
— Jj+1 —
7j=1 7=1
and get
oL 4 o J(1+7)
—_— = ——q A=0 = = — A
do; 1150t “ 4
and

k ko .
oL , 721+ 5)
T =N a-1=Y LT
N & 2
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Solving this set of equations leads to

\ —48
k(E+1)(k+2)(3k+1)
- —125(1 + )

a; =

k(k+1)(k+2)3k+1)
Using this coefficients we have

k

6.3 Correction theorem

12252(1 + 5)?

2 _—
[l ) E: §:1+gk%k+

.3 k .3

J
Z 2(k+2)2(3k + 1 ; k8 —

and so
1 - 1
vl e) < 13 = lelmye) < 13-

1)2(k + 2)2(3k + 1)

3

k
821:7
=1

Next we also bound the L? norm. Due to the properties of the chosen basis functions

we can write v also as

k 1
1,0
v = E —aj/ Pj(_l)(s
j=1 v

k 7j—1 1

1
RN Z/
j=1 i=1 %

k 1 1j—1
Jds=Y-a, [ 232
j=1 x J 5

(2 + )PV (s) ds

J/

(O O)( ) P(O 0) (:E)

1) PO (s) ds

’L+1
k
Qg 0,0 0,0 0,0 0,0
= -2 (PO2) + PY(@) - B @) - PSV (@)

—
J

Eooo

=> - (F) + A @).
=1 7
Using this representation we get
a 11| 5(0,0) (0.0)[?
2 _ 2 :
ol - St | 20,
k.4 .k
I~ 1 poo)? J
42@?"% ‘LQ(E) < EZI S5
Jj=1 —_—— j=1
2
25+1
and so
1 . 1
1lir2m) < 25 = lellram) < 45
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6 H?2-extension

Due to [BMO97][Page 253] we also have

(6.3.3)

el

el ey <

Next we use a transformation F' from F = (—1,1) to E; = (0,1) and define ex(z) :=
é(F~1(x))z?, and observe that e(0) = e;(1) = 0 and also

ef(z) = 28 (2)x* + é(x)2z = €}, (0) =0 and €, (1) = 1.
The norms can also be bounded by
lerll 2z, <

lerll gz <

w'\ wa‘ —

As ey is zero in the vertices it also belongs to H}(FE;). Next we use the technique of
interpolation spaces (see appendix) namely

Hoy (Ex) = [L2(En), Hy(E0)] - with Jull e o < \flull gy Nl g

1 1

It remains statement i. For this we use an extension of u given by

and so we have

1
o1(z,y) = /0 a(s)u(z + sy) ds with a(s) =4 — 6s.

and so

u'(1) = a5";1(1,0).

Note that we have
1 1
/ a(s) ds=1 and / a(s)s ds =0,
0 0
so together with lemma [6.2] we have
101l g1y < Nwll v sy -

Next we use an average operator to define

Y ! o = 1 T —2)s) ds
! (x) := /0 o1(z, 8) ds—/0 o1(z, (1 )s) d

1—=x

with

@ gy () = 10N oy < D1l gy < Nl gz, -
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6.4 Proof of the H?-continuous extension £

By the definition of € as the minimum of the H seminorm it also follows
@) W] < K[ a0y <8 Nl gz, -
And so due to

(x,(1—x)s) — sa;yl(w, (1 —2x)s) ds

ooy
0 ox

(@) (@) =

we have

and so finally

/ 2
[ (O] <Kl gasa ey < el oo

6.4 Proof of the [H?-continuous extension &
Proof of theorem [6.1 Using the extension of theorem [6.3{ we set ¢, = £ (u) and define
Ue = U — Vr.
Due to the properties of £P we see that
U T=u-T—V¢;-7T=0 on oT.

Now let n; be the normal vector on the edge E; of the reference triangle, and u; := u.-n;.
In the first step we look on the lower edge E; = [0, 1]. We want to use theorem for
u1, but it is not zero on 97 \ Ej. Therefore we define

ul i=u, - ((z,y) — Vo) € TFTY(T),
where V5 = (0, 1) is the vertex opposite to E7, and observe that
UHEZ = Uc " (:L' — ‘/2)|E2 = Ue * (CT2)|E2 = 0

u.:SL‘E’; = uc- (¢ — VQ)‘ES = Uc - (673)\193 =0,

T
1
1 _ us,x -0 y=0£n FE1q - B
US|E1 - ul : y—]_ = Ue,y = UL,
s7y

1 k T
ug |,z € I°(OT).

and

SO
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6 HZ?-extension

Due to theorem we can find a function e ; and a function ey o with

eﬁm (1)=1 and ¢€},,(0) =ex1(0) =e€r1(1)=0

5

1 1
(O) =1 and 6;970(1) =e,0(0) =exo(l) =0,

where e, o was defined by mirroring the edge in theorem Using this functions we
define

uf = (ug] ) (Wer + (uy] ) (0)ero

g ._ b
ui = u1|E1 —uy.

We observe that ui’ has a zero of order two in the vertices and so we can use theorem
4 to define ¢! := &N (uf). As for u; we proceed analogue for the other edges Es and
E3 to get @2 := EN(uj) and ¢3 = EN(uf) and finally

E(u) = ¢ = b7 + ¢y + 01 + i
We observe that on T

Vé-7=Vo, T74+Ve: -7+ Ve2 -7+ VS -1,
N’

=u-T

and as ¢!, = 0 on o7 the tangential gradient V¢! - 7 = 0, and we get property (j
Vo-T=u-T.

Next we observe that

2 2 112 22 32
For ¢} we have (see theorem [6.4])
b b
H(z)nHHQ |u1” 1/2( - Hul - ul”Hé/z(E) HU1|| 1/2(E) + HU1||H3(§2(E)
1/
<l gy + a2 Ollenlgags gy + 2 O)llenoll ogs
and as

1/ 21,1
! (O] < R e
1

lenaliggs ) < 72
and the similar bounds for e; o we get
1
H¢”||H2(T) HU1|| 1/2 (E) + HusHHéé?(E)

1

Note that on E; we have u; = ul, and so as u!l is 0 on T \ E; we can bound the

Hééz(El) with the H'(T"). To see this assume an arbitrary function v with v = 0 on F.
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6.4 Proof of the H?-continuous extension £

Then we can define the value of v on Ej as an integral over L, defined as the line from
(0,z) to (x,0)

x C.S.
o(,0) = / (L, —1)T - Vuls, 2 — y) ds % Vo, /1V0l 2z

and by that we can bound the weighted L? norm

1
1 2 2
| @07 <190l
SO
ol a2z < 1900ty

The same can be done with the edge Eo. Using this for ul we get

1 1
lonll oy = sl apn gy < sl ey < el ey -
Analogue we bound the H? norms for ¢2 and ¢3 and get
H¢H?{2(jﬂ) < H¢TH§{2(T} + Huc”Hl(T) = ||UH§{1(T) + ”u - v‘b’r”fql(jw) < ”uH?ql(jw) ’
—_———

2

so the H? continuity (6.0.3) is shown. For the last inequality (6.0.3) we first observe
that on the boundary 9T we get

Vé-n=Vo, n+> Vel - n=Vé -n+Y u!=Vo, n+> u-Y ul

:quﬁT-n—l—u-n—quT-n—Zu?:u-n—Zuf,
i i

using ub‘ =0 for ¢ # j, and so

E;

[(u— Vo) ”HL2(3T) L2(E

Taking a closer look on the first term u$ we see that

4

!/
< IUi (WHlewr,all 2 E1) + 1y O llexoll 2,y < ||us|| 1/2(E)

1
- Hulqu T) HUCHHI(T) % [lu — V¢T|’H1(T) < % HUHHl(T) )

L2(Ey)

and so with the similar estimation for the other two terms we have

1
I(u = Vo) -nll 2 o) < < 7 Ml gy

L2(E
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7 Appendix

In this chpater we show some basic definitions and results based on [Sch09],[BF91],
[BL76], [SA08][32] and [Ste08]. We restrict the results to the two dimensional case in

this thesis.

7.1 Transport theorem of Reynold

Theorem 7.1 (Reynold’s transport theorem). Let V() C Q be an arbitrary mass
fized volume in the fluid that is transported with the velocity w, and let b € C* be
an arbitrary function. With V.=V (0) we get

D/ 0b /
— bdx = — dx + b(u-n) ds. 7.1.1
Dt /., . ad - (u-n) (7.1.1)

7.2 Jacobi Polynomials

Definition 7.2. Let w = (1 — 2)%(1 — 2)?. We define the n'-order Jacobi poly-
nomials P,(Za’ﬂ ) by the Rodrigues’ Formula as

1 dr

PP(@) = (=2)*nlw(z) dz»

(w(x)(l = 3:2)”) )

Theorem 7.3. The Jacobi polynomials fulfill the orthogonality relation

1 yearast (n+ a)l(n+ B)!
P(eB) () pled) 5
/_1w" (@) Py () dz = on, 2n+a+B+1 nl(n+a+ )’

and

Parameters can be shifted by

@n+a+APE) = (nta+ 5P (@) — (n+ HPY (@),

99



7 Appendix

7.3 Sobolev Slobotezki space

Definition 7.4. We define the Sobolev-Slobodecki spaces for s € (0,1) and k € N
as

k+s o .
Wy (Q) := {u € LP(Q) : HUHW;H(Q) < o0}

where

p R p |Dau($),Dau(y)‘p dr d
bl = g+ 32 | [ ae

7.4 Finite Elements

Ciarlet’s definition of a finite element:

Definition 7.5 (Finite element). A finite element is a triple (T, Vr, VUr), where
1. T is a bounded set
ii. Vo= {¢n,... ,¢¥T} is a function space on T of finite dimension Nt

1. Up = {w%, ey ng} is a set of linearly independent functionals on Vi

Definition 7.6 (Triangulation). A regular triangulation T = {T1,..., Ty} of a
domain € is the subdivision of a domain Q in closed triangles T; such that Q = |JT;
and T; N T} is either

1. empty
it. a common edge of T; and Tj

iti. or T; =T} in the case of i = j.
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7.4 Finite Elements
Deﬁnitign 7.7 (Linear mapping). We define the linear mapping of the reference
triangle T to T € T by
Fr(2) = ar + Brg,
with ar € R? and By € R?>*2. For a shape regular triangulation, namely
IT| = h2 VT €T
with hy = diam(T) we have

| Br| =~ hr

1B || ~ Az

We further call a triangulation quasi uniform if all elements are essentially of the
same size, so there exists one global h such that

hr~h VT €T

Definition 7.8 (Standard nodal interpolator). Let v € C™(T). We define the
standard nodal interpolator It as

Nt
Irv =Y ¢y INv=3" Irv.

i=1 TeT

Definition 7.9 (Clement operator). We define IS as in [CIE75]. Assume a given
function w € L2(). Let ¢; be the basis of I¥(T), and let S; := supp(¢;). We
define q; as the L? best approxzimation of w on S;, namely

(u = qi,vi)L2(5i) =0 VY € Hk(Sz)
We set

I, = Z i (4:) s,

where 1; is the corresponding functional of ¢;. Then we have for uw € H™(Q)
e = T gy < P Nl

form>0m>nn<1andm<k+1.
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7 Appendix

Lemma 7.10 (BDM interpolator). The BDM interpolator satisfies

/ div (IE’DMku) q dz = / divu ¢ dz Vg € TI"Y(T)
T T

Lemma 7.11 (Bramble Hilbert lemma). Let U be some Hilbert space and L :

H®(Q) — U be a continuous linear operator such that Lqg = 0 for polynomials
q € II*"Y(Q). Then we have

[ Lolly < ‘U‘H’“(Q)-

Lemma 7.12. Let (T, Vp, ¥r) be a finite element such that the element space Vp
contains polynomials up to order k. Then we have

v = Irv||l gy < Clvlgmay Vv € H™(T) (7.4.1)

forallm>1and m <k+1.

Theorem 7.13. Assume that
i. the solution of a problem i smooth: w € H™(Q) for m > 2
i. all element spaces Vip contain polynomials TIF(T) for k > 1
151. the mesh is quasi uniform.

Then we have

ht Hu — I,I}ku

’ + Hu—I,I}ku
L2(T)

min{m—1,k}
oy S el gy -

Definition 7.14 (Piola transformation). Let Fr be the linear mapping of T and
op € [L*(T))? a given vector function. Then we define the Piola transformation
as

1

op(@) = Pop(a) i= 1o

Jop(2), (7.4.2)

where J is the Jacobian of Frp.
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7.4 Finite Elements

Definition 7.15 (Covariant transformation). Let Fr be the linear mapping of T
and o¢ € [L*(T)]? a given vector function. Then we define the covariant transfor-
mation as

oc(x) = Coc(x) == T Toe(#), (7.4.3)

where J is the Jacobian of Frp.

Lemma 7.16. For op € H(div)(T) we have

divop = div op. (7.4.4)

N
det J

Let € be an edge of the reference triangle T and e = F(é) then

/0p~nd5:/(fp'nds.

Remark 19: Due to the preservation of the normal flow we can construct
H(div)(Q) conforming approximations.

~

Lemma 7.17. For o¢ € H(curl)(T) we have

curl o¢ = curl oc. (7.4.5)

1
det J

Let € be an edge of the reference triangle T and e = F(é) then

/Uc'TdS:/dC'TdS.

Theorem 7.18 (Poincare inequality). Assume a bounded domain Q C R? and let
T'p C 99 be of positive measure |Up|. Let Vp = {v € H(Q) : trr,v = 0}. Then

vll2@) < IVUllp2@@) Vv € Vb,

where tr is the trace operator tr : HY(Q) — L2(09).
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7 Appendix
7.5 Interpolation spaces

Definition 7.19. Let Vi C Vy be Banach spaces with a dense and continuous
embedding and define the K-functional by

K:R"xV, =R

o g 2 2 2
() = Kt = _inf ol + 2 ]y
u=up+u1i

By that we define for s € (0,1) the interpolation norm as

[e'e) t_28 1/2
HW@=</ Kmufm) ,
0 t

and the interpolation space

Ve =[Vo, V1] :={u € Vo : ||ulls < oo},
with

1—
lully, < llullv,® lully, -

Theorem 7.20. Let Q = (0,1). Then
H'2(Q) = [L*(Q), B ()],

and

umemz(é ﬂK@m2&> |

Theorem 7.21. Let Q = (0,1). Then

Hy)*(9) = [L2(9), Hy ().
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