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Kurzfassung

Der wissenschaftliche Fortschritt wäre nicht ohne besondere Tools, Software und Prozesse
möglich, die es Forschern ermöglichen, Daten zu verknüpfen, zu transformieren, zu visuali-
sieren und zu interpretieren. Workflowsysteme erlauben es, die Komplexität der zugrunde
liegenden Infrastruktur zu verdecken, und sowohl die Wiederverwendung (reuse) als auch
die Verifizierbarkeit der wissenschaftlichen Prozesse zu fördern. Neueste Ergebnisse zeigen
jedoch, dass viele öffentlich verfügbare Workflows nicht mehr ausführbar sind. Darüber
hinaus zeigte sich, dass low-level Abhängigkeiten, wie zum Beispiel das Betriebssystem
oder Softwarebibliotheken, eine Auswirkung auf das Endergebnis der Berechnung haben.

Aktuelle Technologien bieten keine Garantie, dass die für die Workflowausführung not-
wendigen Daten verfügbar sind und der Workflow selbst ausgeführt werden kann. Obwohl
aktuelle Workflowsysteme Metadaten zur Ausführung von Workflows anlegen, dokumen-
tieren diese nicht vollständig den ganzen Prozess und die darin verarbeiteten Daten sowie
Datenflüsse. Sogenannte Provenancedaten reichen nicht aus, um den Workflow vollständig
zu erfassen. Beispielsweise sind oftmals keine Information bezüglich der Laufzeitumgebung
vorhanden, in der ein Workflow ausgeführt wurde. Diese kann sich jedoch von System
zu System unterscheiden und ist daher ein wichtiger Faktor für die Reproduzierbarkeit.
Daher müssen wir nicht nur nachvollziehbar zeigen, welche Daten gesammelt werden müs-
sen, sondern es müssen auch die Verarbeitungsschritte systematisch organisiert werden.
Nur so kann ein automatischer Vergleich der Workflowausführungen ohne gleichzeitigen
Zugriff auf beiden Systeme gelingen.

Verifizierung und Validierung ist heutzutage ein wichtiger Teil der Softwareentwicklung.
Die entsprechenden Praktiken sind auch in der Domäne der wissenschaftlichen Work-
flows wichtig. Deswegen schlagen wir das VFramework vor, das die Korrektheit einer
Workflowausführung verifizieren und validieren kann. Das VFramework prüft, ob die
erneute Workflowausführung dasselbe Ergebnis liefert, das auch von der ursprünglichen
Workflowausführung produziert wurde. Demzufolge ermöglicht das VFramework die
weitere Verifizierung der Korrektheit des wissenschaftlichen Experimentes.

Workflows können die gleiche Infrastruktur mit anderen im Betriebssystem laufenden
Software teilen. Workflows können auch besondere Tasks delegieren, damit sie durch
die in der Laufzeitumgebung installierten Tools ausgeführt werden können. Solche Tools
können auch eine spezifische Konfiguration und die Verfügbarkeit von anderen Tools
benötigen, die auch von den spezifischen Softwarebibliotheken oder dedizierter Hardware
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abhängig sein können. Alle diese Abhängigkeiten beeinflussen den Ausführungskontext
eines Workflows. Dieser Kontext muss erfasst und verifiziert werden, um zu prüfen,
ob die Workflowausführung die Ergebnisse auf korrekte Art und Weise produziert hat.
Das VFramework nutzt das Kontext Model, das eine umfassende Beschreibung eines
Workflows liefert. Es beschreibt nicht nur das Workflow Model, sondern es integriert auch
zusätzliche Informationen aus unterschiedlichen Quellen in ein Gesamtbild. Das Kontext
Model beschreibt auch die Abhängigkeiten, die während der dynamischen Analyse der
Workflowausführung identifiziert wurden. Es beinhaltet auch Information über externe
Services auf die während der Ausführung zugegriffen wurden. Wir vergleichen die Kontext
Modelle der Workflowausführungen miteinander, um die erneute Workflowausführung
entsprechend zu verifizieren.

Workflows können verteilte Systeme (distributed systems) nützen um entweder Daten von
einem Dritten abzufragen, oder Tasks an eine spezialisierte Infrastruktur zu delegieren.
Diese Services können sich im Lauf der Zeit ändern und die Workflowausführung kann
sich somit ebenfalls verändern oder gar unterbrochen werden. Für Workflows, die Web
Services einsetzen, haben wir das Web Service Monitoring Framework entwickelt, mit dem
identifiziert werden kann, ob ein Service deterministisch ist. Er nützt vorab gesammelte
Daten um eine Attrappe (mock-up) eines zustandslosen Services zu entwickeln, die als
ein Ersatz für den ursprünglichen Service genutzt wird. Daher sind die widerholbaren
Bedingungen garantieret und die Workflowausführung kann verifiziert werden.

Workflows bearbeiten Daten in einer Reihe von Schritten. Manchmal ist nur das Ender-
gebnis der Berechnung wichtig für die Forscher. In anderen Fällen ist auch das Zwischen-
produkt wichtig, insbesondere wenn Workflowkomponenten in anderen Experimenten
wiederverwendet werden. In allen Fällen müssen die Forscher imstande sein, die teilweise
oder komplett erneute Ausführung zu validieren. Aus diesem Grund haben wir eine
Workflowprobe analysiert und die Voraussetzungen definiert, welche die Korrektheit der
Daten auf allen Etappen der Workflowausführung prüfen. Wir haben auch den VPlan
entwickelt. Der VPlan erwitert das Kontext Model mit Validierungsvoraussetzungen,
Metriken für ihre Quantifizierung, sowohl die Messpunkte. Die Messpunkte verknüpfen die
Validierungsvoraussetzungen mit dem Workflow Model und stellen dadurch dar, welche
Datei für die Quantifizierung verwendet wird. Der VPlan beinhaltet ein umfassendes
Vokabular von Metriken, welches die Validierungsvoraussetzungen beschreibt.

Das VFramework wurde ausführlich mit der Taverna Workflow Engine evaluiert. Wir
haben fünf wissenschaftliche Workflows aus drei Domänen verwendet: Sensordatenanalyse
der Bauingenieurwissenschaften, Musik Klassifizierung in Retrieval-Systemen, und die
medizinisch-klinische Forschung. Die ausgewählten Workflows haben viele lokale Ab-
hängigkeiten, von zusätzlichen Bibliotheken, Skripten und spezifischen Packages, bis zu
externen Services. Die Evaluierung zieht die Ausführungen in unterschiedlichen Betriebs-
systemen in Betracht. Wir haben die notwendigen Schritten beschrieben, den benötigten
Aufwand abgeschätzt, und dargestellt, wie das VFramework automatisiert werden kann.



Abstract

Modern scientific breakthroughs would not be possible without special tooling, software
and processes that allow researchers to link, transform, visualise and interpret the data.
Workflow engines were proposed in order to hide the complexity of the underlying
infrastructure and foster reuse and verification of scientific processes. However, recent
studies report that many publically shared workflows break and are not executable.
Furthermore, the impact of low level dependencies, like operating system or software
libraries, were reported to have an impact on the final result of the computation.

The existing practices for sharing workflows do not guarantee that data enabling ver-
ification and validation of their re-executions is available. Provenance traces do not
contain complete data describing workflow executions and there is no information on the
environment in which a workflow was executed. Hence, we need to identify how these
data can be collected in a repetitive way and organised in a systematic manner to enable
automatic comparison of workflow re-executions without having access to both systems
at the same time.

Verification and validation is nowadays an important part of the software development
lifecycle. Corresponding practices are needed in the scientific workflow domain. For
this reason we propose the VFramework that can verify and validate the correctness
of a workflow re-execution. The VFramework checks whether the re-executed workflow
produces the same result as the original workflow. Thus it creates a starting point for a
later verification of scientific experiment correctness.

Workflows share common infrastructure with other software running in the operating
system and can delegate tasks specified in the workflow to be executed by tools installed
in the environment. Such tools may require a specific configuration and presence of
further tools that depend on specific software libraries or dedicated hardware. All these
dependencies constitute a workflow execution context that needs to be captured and
verified to state whether the workflow re-execution produced results in the right way.
The VFramework uses the context model that contains comprehensive description of
the workflow integrating information from different sources describing among others
the workflow model, as well as its dependencies detected during dynamic analysis of
its execution. It contains also information on external services that were accessed.
By comparing context models of workflow executions we verify whether the workflow
re-execution was obtained in a compliant way.
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Workflows can use distributed systems to either source data provided by a third party,
or to delegate computational tasks to an infrastructure offering specialized computing
capabilities. These services can change and in consequence alter the workflow execution
or even break it. For web service dependent workflows we developed the Web Service
Monitoring Framework that detects whether a web service is deterministic. It uses the
evidence collected to create mock-ups of stateless web services that are used to replace
the original service and thus ensures repeatable conditions for verification of workflow
re-executions.

Workflows process data in a series of steps. In some cases only the final result of a
computation is important for researchers, while in other cases the intermediate data
can be important as well, especially when parts of the workflow are reused in other
experiments. In all cases, researchers must be able to validate whether the partial or full
re-execution was valid. For this reason we analysed sample workflows and formulated
requirements that check the correctness of data produced at multiple stages of workflow
execution. We created the VPlan that extends the context model with the validation
requirements, metrics used to quantify them, as well as the measurement points that
precisely link the requirements to the workflow model depicting where the data used for
their computation is captured. The VPlan also contains a comprehensive and extensible
vocabulary of metrics that are used for breaking down validation requirements.

We extensively evaluated the VFramework on Taverna workflows using five scientific
workflows from three domains: sensor data analysis in civil engineering, music classification
in information retrieval, and medical clinical research. The selected workflows require
multiple local dependencies ranging from additional libraries, scripts, and specific packages
to external services for completing workflow steps. The evaluation takes into account
re-executions in different operating systems. We describe necessary steps, estimate the
effort to complete each step and demonstrate in what way this can be automated. To
complete the evaluation we simulate changes that may happen to a workflow and show
how we detect them using the VFramework.
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CHAPTER 1
Introduction

In many natural science disciplines, complex and data driven experiments form the basis
of research [HTT09]. Scientific breakthroughs would not be possible without special
tooling, software and processes that allow researchers to link, transform, visualise and
interpret the data [VdGW11]. Scientific areas established their own methodologies for
performing and documenting experiments. As a consequence researchers not only use a
wide range of software tools, but also have to implement their own. This often forces
them to acquire software engineering skills and thus they are often distracted from their
core research area.

The low maturity of tools and the possible lack of scientific scrupulousness [Cur11] led to
a low reproducibility and replicability of experiments [CP14], [BE12]. Many problems can
be attributed to the fact that the software is not available any more [CP14]. This may
appear to be a pure management issue that can be overcome by imposing better policies,
but recent findings show that also the context in which the software is run, that is the
infrastructure and the third party dependencies, can have a crucial impact on the final
results delivered by a computational experiment. In [GHJ+12] the authors demonstrate
that a different version of the operating system used for neuroimaging analysis in clinical
research produces different visualisations. This implies that in order to replicate the same
result, not only the same data must be used, but also it must be run on an equivalent
software stack.

Workflow engines were proposed in order to bring some standardisation, as well as to
hide complexity of the underlying infrastructure. Workflow engines like VisTrails[SFC07],
Kepler [LAB+06] or Taverna [MSRO+10] have become popular in research areas like
Astronomy, Bioinformatics or Clinical Research. They enable researchers to graphically
represent their experiments in the form of workflows that can be built using pre-defined
elements. These elements range from dedicated data parsers to interfaces for calling
external web services. Workflow engines also allow including executable code in various
programming languages and specifying system commands to be run. For example,

1



1. Introduction

Taverna allows Java code in form of Beanshells and uses "local tool invocation" for system
commands execution. Workflows can be run on a single machine or use distributed
infrastructure to complete particular steps [LYJC11]. Workflows can also be shared
with other researchers, so that they can replicate the original experiment or reuse it.
Independent peers can verify the research by re-executing the workflow and establish trust
that the experiment results are correct. This in turn accelerates research, because peers
have higher confidence to reuse other workflows. Platforms like myExperiment1 facilitate
such exchange. Furthermore, in order to enhance the reproducibility, workflow engines
are equipped with provenance collection mechanisms that gather detailed information
about the workflow execution. The traces contain information specifying who ran the
experiment at what point in time, what data was provided as input and what intermediate
data was exchanged between the workflow steps.

In spite of such a standardisation, a recent study [MR15a] reports that only 30% of
almost 1500 Taverna workflows published on myExperiment can be re-executed. This
does not imply that the execution produces correct results, but simply that the workflow
executes. So far there is no practice at all to provide data that would enable verification
and validation of workflows re-executions. Research Objects [BZG+15] are aggregations
of resources used in scientific investigations that enhance the description of experiments,
but do not provide sufficient data, because they are focused on the scientific aspect of
the experiment and not on the technical details of its implementation. The problem thus
remains on how to identify and store such data.

Verification and validation is nowadays an inextricable part of the software development
lifecycle. For instance test driven development assumes that each software component has
a corresponding unit test that allows automatically testing the performance of software
component at any time when a change to the system is introduced or when it is deployed
on a new platform. Furthermore, a common practice is to provide logging and tracing
mechanisms.

However, in the scientific workflow domain the practice that corresponds to well-
established approaches from software engineering is still in its infancy. Solutions like
testing and code reviews are suggested to researchers as means for improving experiments
reproducibility, but no concrete solutions are in place [SLP14]. Therefore, in order to
narrow this gap we describe an automated framework for verification and validation
of workflow re-executions. By verification we mean checking whether the result was
produced in a correct way, for example, whether the correct software libraries were
used. While by validation of workflows we mean assessing whether the result produced is
correct, for example, whether the output of the workflow re-execution is the same as the
original one. We consider these terms in the context of workflows re-execution, when the
original workflow is run to reproduce or replicate the original result, or when parts of
workflow are reused in a new experiment. Our framework does not verify and validate
the original scientific workflow in a sense of scientific correctness.

1http://www.myexperiment.org
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1.1. Problems and Research Questions

1.1 Problems and Research Questions

In this section we describe specific problems addressed in this dissertation and on that
basis formulate research questions.

Verification of workflows and their execution context

Scientific workflows may require workflow management systems for their execution. These
in turn share common infrastructure with other software running on the operating system
and can delegate tasks specified in the workflow to be executed by tools installed in the
environment. Such tools may require a specific configuration and presence of further
tools that depend on specific software libraries or dedicated hardware. Thus a long chain
of system processes is spawned when a workflow is executed. On top of that, workflows
can use distributed systems to either source data provided by third party providers,
or to delegate computational tasks to the infrastructure offering specialized computing
capabilities.

All these dependencies constitute a workflow execution context that needs to be captured
and verified to state whether the workflow re-execution produced results in the right way.

Validation requirements and their quantification

Scientists use dedicated platforms for sharing experiments to which they upload their
workflows with the intention of enabling other researchers to re-run the workflows in
order to replicate the original experiment or to re-use their workflows in new experiments
built by others [DRGS09]. The workflow definition files are sometimes accompanied by
additional resources like input data, software libraries that are used to run the workflow, or
the provenance traces that contain data produced at each step of the workflow execution.
Thus the researchers re-executing the workflows have in theory a possibility to state
whether their re-execution matches the original one.

However, currently there are no means in use that enable automatic comparison of
provenance traces produced by the re-executed workflow with its original traces. A simple
comparison of file hashes is not possible, because the traces can differ in multiple ways.
For example, they can contain execution timestamps, the same data can be organised in
a different order, or can contain data formats which require special comparison methods
to confirm their identity. Furthermore, the environment in which the workflow is re-
executed is very likely different, because the scientists use their own infrastructure and
systems in which they run other workflows. The requirements of workflow management
systems do not enforce specific configuration of environments in which they run and
hence, for example, Taverna can be run on different distributions of Linux, as well as
on Windows using different version of Java, and so on [MSRO+10]. This can lead to
simple discrepancies in workflow execution like different paths for input values, because
the user name was different, but can also be caused by more serious changes in the
environment like a different version of a library and hence different implementation of
the same algorithm, potentially delivering different results.
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For this reason we need a comprehensive method that allows validating workflow re-
executions using data captured in the original environment that can be shared with
others and later automatically processed to provide reliable information to the researcher
re-executing the workflow whether the re-execution produced the correct results. We
also need to identify which data sources can be used to automatically capture data that
enables comprehensive validation of workflow re-executions.

Systematic approach for scalable verification and validation of scientific work-
flow re-executions

There are well-established approaches for verification and validation in domains related to
scientific workflows, but they cannot be applied directly in the scientific workflow domain.
They are either too generic or too specific. For example, in software engineering there
is the IEEE 1012 standard [IEE05] that describes procedures for system and software
verification and validation, while in digital preservation there is a framework for validation
of emulation results [GR12] that compares renderings produced with the same software
in two different environments. The common part of all such approaches is the systematic
way of evaluating the analysed system and a repeatable way of collecting evidence that
supports the decision making process and enables it traceability.

Recent progress in the domain of knowledge representation has increased popularity of
ontologies that enable representing knowledge about complex phenomena in a compre-
hensive way, including systems and processes. Thus the automatic analysis of systems
requirements and reasoning about their requirements became possible and was successfully
applied in the enterprise modelling domain [Ant15], as well as in the digital preservation
domain for preservation of business processes [SMA+13].

For this reason we investigate how the well established principles of verification and
validation can be combined into a systematic approach that can be used in the scientific
workflow domain. We put special attention to models enabling comprehensive description
of workflow execution context. The comparison of their instances should enable verification
of workflow executions without the necessity of accessing both environments at the same
time. We aim from the beginning for the automation of the solution to increase the
acceptance among users.

In this dissertation we address a number of research questions that are based on the
above challenges, in particular:

RQ1 How can we verify whether the workflow re-executed in a way that complies with
the original execution?

a) How can we identify software, data, and services used by the workflow in its
execution?

b) How can we ensure determinism of workflows that use external services to
complete tasks?
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c) What data must be captured and how?
d) How can we compare the environments and interpret possible differences?
e) How can we verify re-executions in non-identical environments?

RQ2 How can we validate whether the workflow re-execution produced the correct
results?

a) What are universally applicable validation requirements?
b) How can we measure these requirements?
c) What data must be captured and how?
d) How can we compare this data?
e) How can we validate re-executions in compliant but non-identical environ-

ments?

RQ3 How can we perform systematic and repeatable verification and validation of
workflow re-executions?

a) How can we support model-based verification and validation?
b) What evidence must be collected and shipped with the original workflow that

enables verification and validation of its re-execution?
c) How can we automate this verification and validation process?

In this dissertation we devise the VFramework [MPM+13] for the verification and val-
idation of scientific workflow re-executions. The original design goals include digital
preservation settings in which workflows potentially need to be re-executed at much
later points in time in different computational environments, when the original workflow
may not be executable any more. These long-term considerations, however, turn out
to be essential even in short-term re-execution settings due to the rapid change of the
underlying hardware and software.

We instantiated the VFramework using tools that automatically capture [BSR14] a
context model [MAC+15] to describe resources used during workflow execution and to
identify information about dependencies of the workflow that need to be present to
rerun the workflow and verify its correctness. For web service dependent workflows we
developed and integrated with the VFramework the Web Service Monitoring Framework
that detects whether the web service is deterministic. Based on the evidence collected, it
allows for creating mock-ups of stateless web services that are used to replace the original
service and thus ensure repeatable conditions for verification of workflow re-executions.

We also devised the VPlan ontology [MVBR14] that extends the context model with
description of validation requirements. It links requirements to the workflow model, thus
providing explicit information which data must be captured for evaluation of a given
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requirement. The requirements are quantified using metrics from a controlled vocabulary
that is also a part of the VPlan. The actual metrics values which are used for validation
are calculated by comparing the captured data using appropriate comparators depending
on the data format detected.

We evaluated the VFramework on Taverna workflows. We used five scientific workflows
from three domains: sensor data analysis in civil engineering, music classification in
information retrieval, and medical clinical research. The selected workflows had multiple
local dependencies ranging from additional Java libraries, Ruby scripts, and specific
Debian packages to external services for running R scripts and web services for completing
workflow steps. The evaluation took into account re-executions in different operating
systems. We described necessary steps, estimated the required effort to complete each
step and demonstrated in what way this can be automated. To complete the evaluation
we simulated changes that may happen to a workflow and showed how we detect them
using the VFramework.

Despite the fact that the discussion presented is focused on Taverna, the challenges and
ways of addressing them remain valid for other workflow systems, differing only in the
actual technical implementation.

1.2 Contributions
Work presented in this dissertation involved a network of collaborators and project
partners, with my specific contributions listed in the following.

1. I conducted a thorough review and analysis of existing approaches for verification
and validation in the related domains and led the definition and specification of
the VFramework [MPM+13].

2. I conducted an analysis of web service monitoring literature and led the specification
of the Web Service Monitoring Framework. I also implemented the tools for creating
mock-ups of web services [MMR15a] [MMUR14] [MMR15b].

3. I led the analysis of use cases and implementation of the VPlan as an ontology
for expressing validation requirements that extends the workflow context model.
I was the leading author of a paper that received the best paper award on the
peer-reviewed conference iPres 2014 [MVBR14].

4. I performed a study of tools for automated comparison of data based on its format. I
also conducted a literature review of distance measures used for measuring similarity
of data. Based on this analysis I defined a controlled vocabulary of metrics that is
part of the VPlan.

5. I implemented tools that automate the VFramework application, namely: a tool
for dependency report generation, a tool for validation requirements generation,
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and a tool for comparison of captured data and validation reports generation. I
also devised a set of queries used for model analysis [RMMP15].

6. I led the design of evaluation scenarios and the actual evaluation of use cases.

7. Based on the initial evaluation results I proposed an extension of existing Data
Management Plans with additional information enabling verification and validation
of workflows [MSR14] [MR15b].

8. Based on the evaluation results I formulated guidelines for scientists sharing their
workflow that enhance workflows’ replicability by enabling verification and validation
of their re-executions (under review).

1.3 Organization
This section outlines how this thesis is organised. It lists the different chapters and
references to publications in which the main contributions of this thesis have been
published in peer reviewed journals or conferences.

• Chapter 2 describes the related work. We clarify terms related to replicability and
discuss definition of verification and validation [RMMP15]. We also provide an
overview of reproducibility and replicability challenges and discuss which elements
belong to the context of a scientific experiment. We describe in what way the
context of a workflow execution can be described and which tools can be used for
its automated capturing [MMR14]. Furthermore, we present digital preservation
concepts that influenced the design of the proposed VFramework [MPM+13], es-
pecially the framework for verification of emulation effects, and the process for
preservation of business processes [MMS+14]. Last but not least, we discuss ways
of detecting changes in web services and provide motivation for the Web Service
Monitoring Framework [MMR15a].

• Chapter 3 introduces the VFramework – a framework for verification and validation
of scientific workflow re-executions [MPM+13]. We discuss its general structure
and explain in which settings the VFramework can be applied. We also present
a running example on which we demonstrate the application of the VFramework
and creation of the VPlan in Chapters 4, 5, and 6. We provide the motivation for
choosing the given workflow and describe in detail each of its elements.

• Chapter 4 describes in detail the Run static analysis and the Run dynamic analysis
steps of the VFramework. These steps capture the original execution of the workflow
and document the environment in which it took place. Furthermore, we show how
the automated context model analysis enables identification of workflow boundaries
and in what way the external services being outside these boundaries can be
monitored to create evidence needed for re-executing and validating workflows
[MMR15b].
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• Chapter 5 describes in detail the Define validation metrics step of the VFrame-
work and presents the VPlan ontology that we created for describing validation
requirements [MVBR14]. We introduce the VPlan model by specifying classes and
relations used to connect them. We present how to model information needed for
validation using the VPlan and in what way the validation of workflow re-executions
is automated by generation of requirements and metrics using a controlled vocab-
ulary. The extensible controlled vocabulary is a part of the VPlan model and it
groups metrics into categories taking into account the data format, as well as its
type. The metrics were derived based on a literature review and analysis of existing
tools supporting comparison of specific file formats. We also describe in what way
the VPlan instance is automatically generated to validate identity of workflow
re-executions.

• Chapter 6 describes the Verify environment and Validate workflow steps of the
VFramework that are performed when the workflow is re-executed in a new envi-
ronment. To complete them we collect information about the re-execution from
the new environment and compare it to the information collected in the original
environment (see Chapters 4 and 5), which was stored in the context model.

• Chapter 7 presents the evaluation of the VFramework on five Taverna workflows
from three different domains, namely: music information retrieval, sensor data
analysis in civil engineering, and clinical medical research. We are in direct contact
with the workflow owners and have access to the original environment in which
the workflows execute, hence we can perform complete analysis of their execution
context. Furthermore, the selected workflows use typical workflow components
that are used by the majority of Taverna workflows published on myExperiment
community portal for exchange of scientific workflows. We evaluate to what extent
the cross-platform verification and validation using the VFramework is possible by
re-executing the use cases in Linux- and Windows- based environments [MPM+13]
[MVBR14]. We also consider to what extent the VFramework can be automated,
which framework steps must be performed manually and what is the effort required
to complete them. Furthermore, using the music classification use case we simulate
potential changes that can occur during workflow re-execution and evaluate to
what extent the VFramework and the proposed approach for selection of validation
metrics detect such changes. We also use mock-ups of web services to ensure
repeatable conditions for workflow executions and analyse changes in the execution
context caused by them.

• Chapter 8 presents the conclusions of the work conducted over the course of this
dissertation. We summarize our achievements, discuss limitations of the proposed
approach and give an outlook on future work.
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CHAPTER 2
Related work

This chapter presents the related work that influenced and motivated this dissertation,
and provides an overview of the concepts and tools used to create the solutions presented.
It is organised as follows.

• In Section 2.1 we provide definitions of terms related to reproducibility to establish
a common language.

• In Section 2.2 we discuss different definitions of verification and validation and
explain in which settings the proposed VFramework is applied.

• In Section 2.3 we explain the concept of workflows and workflow management
systems. The similarity of their capabilities and popularity of the Taverna workflow
engine is the reason for choosing it as an example on which we demonstrate the
concepts described in this dissertation.

• In Section 2.4 we give examples of studies in which replicability fails and thus we
motivate our work.

• In Section 2.5 we present digital preservation concepts that influenced the design
of the proposed VFramework, which we present in Chapter 4.

• In Section 2.6 we describe how the context of a workflow execution can be described
and in what way it affects verification and validation. We specifically focus on the
context model that we use for describing a workflow execution context during the
VFramework application.

• In Section 2.7 we discuss which tools can be used for automated capturing of the
workflow execution context. We pay special attention to the tools that detect
software and hardware dependencies.
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• In Section 2.8 we discuss ways of detecting changes in web services and provide
motivation for the Web Service Monitoring Framework developed by us and de-
scribed in Section 4.2.3. The changes or unavailability of web services affects the
workflow performance and for this reason workflow depending on external services
need special treatment.

2.1 Reproducbility and related terms definitions

The terms re-execute, rerun, replicate, repeat, reuse, and reproduce are often used as
synonyms. Based on results of a literature review described below, we summarized the
differences between them in Table 2.1. We used the following distinction criteria:

• In column Environment we indicate whether the same or different environment is
used in the experiment.

• In column Researcher we specify whether the experiment is performed by the same
researcher.

• In column Complete workflow we specify whether the complete workflow (including
all its steps) is used in the experiment.

• In column V&V of workflow re-execution we indicate whether the verification and
validation of a workflow re-execution is performed. We mean a situation in which
the researcher checks whether the same result was obtained using the same tools.
We do not mean checking the scientific experiment correctness, that is, checking
whether the whole experiment makes sense from the scientific point of view. For
more details see Section 2.2.

In cases when a term does not provide distinction in a given category and both options
are possible, we indicate this using same/different or yes/no. When a given category
does not apply, then we use NA.

According to [Dru09] replicability assumes that the experiment is repeated using exactly
the same tools and conditions, while reproducibility denotes a situation in which the same
result is obtained in a different setup.

Replicability is sometimes contrasted with repeatability. In [VK11] authors define repeata-
bility as a situation when the experiment is run (repeated) by the original researcher
using exactly the same tools. Replicability can be understood that someone else repeats
the same experiment in the same way.

When a workflow is re-run or re-executed, it means that a given workflow is run again
[JCS+15]. These two terms do not imply who and in which environment runs the
workflow. Re-running or re-executing a workflow is a subset of replicating or repeating a
workflow, because re-running or re-executing do not include verification and validation.
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Table 2.1: Comparison of a meaning scope of terms related to reproducibility.

Term Environment Researcher Complete
workflow

V&V
of workflow
re-execution

replicate same different yes yes
repeat same same yes yes
reproduce different same/different yes NA
re-execute same/different same/different yes no
rerun same/different same/different yes no
reuse same/different same/different no (yes)

Reuse means a situation in which the workflow is used in a new experiment. Either new
datasets are fed into it, or some of its parts are modified or some of its dependences are
changed [DRGS09]. Usually before the workflow is reused the non-modified parts should
be replicated and verified, and validated.

The VFramework can be applied in the same way to cases when the workflows is replicated
or repeated. Furthermore, it can also be applied to verify and validate scenarios in which
workflow parts are reused.

2.2 Verification and Validation

There are different perspectives on verification and validation. In this section we provide
definitions of these terms with respect to project management, and systems and software
engineering. We also explain in what way we apply them with respect to workflow
re-executions.

The Guide To The Project Management Body Of Knowledge [PMB04] presents terminol-
ogy and a set of guidelines for project management. It also defines project management
related concepts and describes project life cycle. It defines verification and validation as
follows:

• Verification - The evaluation of whether or not a product, service, or system complies
with a regulation, requirement, specification, or imposed condition. It is often an
internal process. Contrast with validation.

• Validation -The assurance that a product, service, or system meets the needs of
the customer and other identified stakeholders. It often involves acceptance and
suitability with external customers. Contrast with verification.
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The process of creating, sharing and replicating scientific workflows can be viewed from
the software project management perspective. The needs of the researcher (stakeholder)
replicating the experiment state that the re-execution (product) must provide the same
results as the original execution. Furthermore the result must be obtained in a similar or
identical way (requirement).

From the systems engineering point of view the workflow executing within a workflow
engine is just a software executing in a computer system. Authors of [KSea11] provide
definitions of verification and validation with respect to systems engineering:

• Verification is the process of determining whether the software implements the
functionality and features correctly and accurately. In other words, verification
determines whether we implemented the product right.

• Validation, in contrast, is the process of determining whether the software satisfies
the users’ or customers’ needs. In other words, validation determines whether we
implemented the right product.

The definition provided by the IEEE Standard for System and Software Verification and
Validation [IEE05] states that verification and validation (V&V) is a continuous process
of ensuring quality and satisfaction of user requirements performed in parallel to the
software development process.

Similarly, for the scientific workflows V&V can be performed at multiple stages of
the experiment lifecycle, ranging from experiment design and implementation to its
preservation and finally reuse. To structure the discussion we distinguish the following
cases:

• V&V of the implementation of a scientific workflow,

• V&V of the workflow re-execution,

• V&V of the workflow for reuse.

The verification and validation of the implementation of a scientific workflow aims to
check whether the way in which the experiment is built reflects the intentions of the
researchers. Such a validation is performed by the scientists themselves, when they work
on the experiment. Also, they verify themselves whether the software and hardware used
in the experiment performs correctly [TP04].

It is beyond the scope of our investigations to check the correctness of the scientific
workflows published by researchers. It is the responsibility of scientists reviewing the
experiment to perform the validation and identify flaws in the experiment design or
implementation. There are frameworks that facilitate this process. In [WMF+05]
authors describe a framework for verification of workflow executions using provenance of
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experiment results and semantic descriptions of services. However, in our setting we must
be able to prove whether the replicated workflow execution has the same characteristics
and performs in the same way as the original workflow did. Due to this, our role is limited
to the verification and validation of the transition process [IEE05], which corresponds
to a situation in which the original workflow is extracted from its original environment
and placed in a new environment. The transition process can alternatively be called a
porting process or redeployment, especially in the digital preservation domain.

The IEEE 1012 standard [IEE05] defines also the verification and validation of reuse
software that aims to check the correctness, completeness, accuracy and usability of reused
software. This approach can also be applied to scientific workflows and is performed
by scientists willing to reuse an already published process in their own experiments. In
settings when the process was not designed to be reused, there is a lack of proper process
documentation, source code and other artefacts fostering the reuse. Thus, techniques
like black box testing or historical data analysis are performed to identify the behaviour
and requirements of the process that is considered to be reused.

When applying the VFramework (see Chapter 4), data enabling verification and validation
of workflows for reuse is collected. Our solution is based on the automatically created
context model that is a source of information about process requirements and dependencies.
Hence, the verification and validation of the reuse process [IEE05] is enabled by creating
a comprehensive description of the workflow and its environment.

2.3 Workflow systems

So-called in silico experiments have emerged across many domains due to the increase in
computing capabilities of research infrastructures. In silico experiments use models that
reflect real world phenomena and on their basis the scientists construct new theories and
make new scientific discoveries [HTT09].

For scientists like biologists or chemists, the set-up of complex technical infrastructure is
a challenge that requires specific background knowledge, like for example programming
skills [HWS+06]. Scientific workflows were designed to solve this problem by providing
the scientists with an easy way of specifying the tasks that have to be performed in
an experiment, without the necessity of knowing the technical details of its execution.
Workflows allow a precise definition of the involved steps and the data flow between
components [WFRG09]. Workflow management systems are software that provides an
environment in which these workflows are executed, thus becoming an environment in
which in silico experiments are designed and performed [GWG+07].

Different scientific workflow management systems exist that allow scientists to combine
services and infrastructure for their research. Examples of well-established systems are
Taverna [MSRO+10], Kepler [LAB+06] or Vistrails [SFC07]. The authors of [Tal13]
describe these workflow systems and also present other workflow environments used in
science and engineering on high-performance computers and distributed systems. They
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Table 2.2: Features of workflow systems [MPR12].

Engine Implement. Script Lan-
guage Sup-
port

Designer
Support

Execution En-
gine

Provenance

Taverna Java Beanshell Standalone Integrated
with designer

Database
(Apache
Derby)

Kepler Java Python Standalone Integrated
with designer

Database
(HSQLDB)

Activti Java JavaScript,
Python,
Ruby, etc.

Eclipse IDE Web applica-
tion or Java
program

Database
(H2 DB)

describe additionally following workflow systems: Pegasus [DShS+05], Triana [TSWR03],
Askalon [FPD+05], and GWES [Hoh06].

A comparison of workflow management systems is presented in [MPR12]. The authors
compared Taverna, Kepler and Activiti [Rad12]. The first two are typically used in
scientific settings, while Activiti is used in business settings, because it allows modelling
of workflows using the Business Process Modelling Notation (BPMN). The results of the
comparison are summarized in Table 2.2. The compared systems were implemented in
Java and each of them supports scripting languages. Taverna allows Beanshells that are
based on Java, Kepler allows for Python scripts, while Activiti supports a wide range
of different scripting languages. Each of the workflow systems records the workflow
provenance in a database.

Due to the similarities among workflow engines, we chose one workflow system on which
we applied the VFramework for verification and validation of workflow re-executions. For
this reason the discussion presented in this dissertation is focused on Taverna workflows,
but the challenges and ways of addressing them remain valid for other workflow systems
as well, differing only in the actual technical implementation.

In Chapter 3 we demonstrate a running example used in the thesis that is a Taverna
workflow and explain the terms that we use to describe workflows.

2.4 Replicability challenges

In [CP14] 613 papers from eight different ACM Computer Science conferences were
analysed. The authors were able to build only about 15% of programs described in the
conference papers. The code was either not available, or was not complete. Even the
original creators of the software, contacted by the authos of [CP14], were not always able
to build their own software. Figure 2.1 presents the detailed results of this analysis. Out
of 613 analysed papers, there were 515 papers that claimed to develop software. For 231
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Figure 2.1: Overview of re-executability of software that was described in papers submitted
to eight ACM conferences [CP14].

papers there was software available, but only in 123 cases the authors managed to build
the software.

A similar study was performed in economics where the authors of [Mcc07] showed that the
data and the source code submitted together with journal papers were in most cases not
runnable and therefore the results were not replicable. An approach similar to validation
presented in [SMS15] executes the programs uploaded to a research portal and states
whether the execution finished without producing error messages.

The study presented in [GHJ+12] revealed the impact of a system software version on the
final results. Analysis performed using the FreeSurfer software package did not break,
but lead to different results depending on the operating system and libraries, and making
previous analyses performed in different environments not comparable. The authors
encourage to "provide not only the version of FreeSurfer that was used but also details on
the OS version and workstation" as it affected the results obtained. While the example
above uses a customised software, rather than workflows, similar analyses are performed
via workflows, for example the analysis of kidney biopsy microscopy images using Taverna
in [GDCM13].

The study presented in [YCK+10] describes the impact of Grid computing environment
on the results of scientific experiments. The authors found that the experiment results
can differ by 2% when the same simulation is run in different clusters within a Grid.
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They used a molecular docking simulation program DOCK that is used for virtual
screening of chemical compounds to test with in-vitro experiments. They conclude that
the detected differences have little effect on the validity of using virtual screening before
subsequent steps in the drug discovery process, but they also state that it is difficult
to predict whether the accumulation of these discrepancies over sequentially repeated
virtual screening experiments can significantly alter the results if virtual screening is
used as the primary means for identifying potential drugs. Moreover, such discrepancies
may be unacceptable for other applications requiring more stringent thresholds. The
authors suggest using virtual machines as a layer of abstraction to mitigate the effects of
platform heterogeneity. They examined the differences and variations of DOCK virtual
screening variables across a Grid environment composed of different clusters, with and
without virtualization. The uniform computer environment provided by virtual machines
eliminated inconsistent results caused originally by heterogeneous clusters, however, the
execution time increased.

In [GDE+07] authors describe results of a workshop on examining challenges of scientific
workflows. In one of the recommendations they state:

"We need workflow representations at different levels of abstraction, so that
we can represent workflows at different levels of refinement, from abstract
application-level definition down to operational, system-specific description."

We identified that this recommendation is not fully implemented, especially the system
specific information is still missing in workflows description. We address this recommen-
dation using the context model (see Section 2.6) to provide a comprehensive description
of workflows taking into account different perspectives and requirements. Among the
challenges of scientific workflows, the authors also state that reproducibility is one of
them. They stress that "reproducibility requires rich provenance information", so that
researchers can verify and validate their research.

Reasons for Taverna workflows to break were described in [ZGB+]. The authors show
examples in which a workflow that was re-executable was in fact delivering altered results
due to the changes in the third party resource. The authors claim that publishing
requirements for software libraries used by the workflow and sample output data could
decrease the decay of workflows.

In [MR15a] authors quantified how many workflows published in the myExperiment
platform can be re-executed. They focused on Taverna 2 workflows which constitute 55%
of workflows available in this portal. They analysed 1443 workflows and identified that
only 731 workflows were potentially executable, because they did not miss input data
values and were compatible with the test environment. They managed to execute 341
workflows only. The remaining 364 failed because:

• The external web service was not reachable or authentication details were missing
(38).
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• The local software tools or other resources were unavailable (28).

• “The input data was not pure”, that is, it contained more values listed which can
be potentially guessed by a human (298).

2.5 Digital preservation

The mission of digital preservation is "to overcome the obsolescence threats that digital
material is facing on the bit stream, the logical and the semantic level, and to provide
continued, authentic long-term storage and access to digital objects in a usable form for
a specific user community" [Bec10].

Several strategies are possible for digital preservation and application of any of them
strongly depends on the set of information which has to be preserved. Two of them were
recognized as most promising and are used most frequently, these are migration and
emulation [Rot99] [Gra00].

Migration converts the original object and makes it operable in a different technical
environment than originally intended [Mar96]. The SCAPE project investigated several
migration tools, ranging from image converters to database migration suites [The11].

Emulation is a widely used concept in the information technology. It is used in software
engineering when the development and the target systems differ, for example software
developed for mobile phones is tested in an emulated environment. Emulation enables
also running legacy software in production environments [Gra00] [JvdHV07] [Rot99].

2.5.1 Evaluation of emulation effects

When any of these methods is applied, effects have to be validated. A framework which
was created for multi-level comparison of emulation effects was presented in [GR12]. The
framework allows assessment of the degree to which the system emulation preserves
original characteristics of digital objects. The framework enables preservation planners
(for preservation planning see [BKG+09] [BR11]) to evaluate how emulation affects the
behaviour of digital objects compared to their behaviour in the original environment.
The authors of [GR12] emphasise that the external dependencies of digital objects must
be kept unchanged to repeat the rendering deterministically. They define levels of
comparison of digital objects that impact which data and from where has to be extracted
to compare two renderings (see Figure 5.2). The framework is formulated as follows:

1. Describe the original environment

The original system’s hardware and software components have to be documented
along with all their settings to allow the recreation in an emulated environment.

2. Determine external events that influence object’s behaviour
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Only for objects with deterministic behaviour it is possible to ensure that differences
in rendering compared to the original environment are results of the emulated
environment.

3. Decide on what level to compare the digital object
As the digital object is available in various rendered forms, it is necessary to select
the one that is most suitable for the digital objects that have to be preserved and
their desired form of representation.

4. Recreate the environment in emulation
An emulator on a host system has to be configured to match the hardware and
software configuration of the original environment.

5. Apply standardized input to both environments
Depending on the digital object the most suitable way to apply automated input
has to be selected. Then, the input to the original object has to be recorded and
applied to the emulated environment.

6. Extract significant properties
The significant properties of the rendered object have to be extracted from the
emulation environment.

7. Compare the significant properties
The significant properties that have been extracted automatically as well as those
that were not measured automatically but manually have to be compared, evaluated,
and documented.

The VFramework presented in Chapter 4 is a refinement of this framework for potentially
distributed scientific workflows. The crucial difference is that the VFramework assumes
that access to both environments is not possible at the same time and thus the context
model (see Section 2.6) is used to describe the ground truth data used for verification
and validation when the workflow is re-executed in a new environment. Furthermore, the
VFramework focuses not only on validation of the final result of processing, but also on
verifying in what way the result was produced. The VFramework is also orchestrated by
several tools that automate its application, while the framework described in [GR12] is a
conceptual framework that requires manual application.

2.5.2 Workflow and process preservation

Digital preservation has emerged mainly from memory institutions and the cultural
heritage sector [NU03]. However, it was recognized that it affects all organizations that
manage information over time, and as such it affects contemporary organizations in
which information systems provide important support to the business [SMA+13]. The
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obsolescence of not only hardware and software, but also proper context in which the data
can be interpreted was identified as a threat to reproducibility of scientific investigations,
as well as traceability of business decisions. For this reason projects like TIMBUS, or
wf4ever were funded to devise a way of documenting workflows and processes, so that
they can be re-executed in the future.

The wf4Ever project [BCG+12] addressed challenges associated to the preservation of
scientific experiments in data-intensive science. The aim of the project was to make the
workflows preservable and reusable. The key contribution of the project is the definition
of Research Objects (RO) [BZG+15] that are aggregations of resources used in scientific
investigations. They contain scientific workflows, the provenance of their executions,
interconnections between workflows and related resources, for example datasets, publica-
tions, and so on. Their goal is to encapsulate knowledge and provide a mechanism for
sharing and discovering assets of reusable research.

In [MMR14] a mapping between the ROs and the context model (see Section 2.6) is
presented. The authors conclude that the ROs are more focused on different types of
artifacts and how they are aggregated to form new units of information, while the focus
of the context model is shifted to technical aspects, such as precise information on the
software setup and dependencies, data formats interlinked with format registries and
aspects such as licenses and other legal issues. For this reason the context model is more
suitable for settings when the original environment of the workflow must be described,
preserved and later re-executed in a new environment.

In such settings the preservation framework [SMA+13] [TIM13] developed in the TIMBUS
project can be used. It not only enables understanding of the process and evaluation of
risks, but also supports its redeployment. Figure 2.2 depicts the process preservation
framework. It consist of three phases:

1. Plan

The preservation of business processes is based on a risk management approach.
The risk analysis is performed on different levels within the organisation, including
the detailed analysis of technical risks of current implementations. For a detailed
analysis, the relevant components and dependencies are captured in the context
model, which defines technical, organizational and legal aspects of a process.

2. Preserve

In the preservation phase, the business process is captured from the original
environment. The dependencies and relationships between the components of
the business process need to remain intact over time. In order to verify the
characteristics, behaviour and performance of the captured process in the future,
validation data is captured.

3. Redeploy
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Figure 2.2: Overview of the TIMBUS preservation framework [TIM13].

The redeployment phase defines the reactivation of the preserved business process
in a new environment at some time in the future. The required services need to be
redeployed on a new (hardware and software) infrastructure and the process needs
to be deployed. The redeployed business process is validated using measures that
have been captured from the original process.

The VFramework was designed to fit into the preservation framework. Creation of
the context model that is required for the preservation framework is also a part of the
VFramework. Furthermore, the tools developed for analysis of workflow and context
capturing enable automation of VFramework application.

Despite the fact that the preservation framework was designed to be used with business
processes it can be also applied for preservation of scientific workflows [SMA+13]. As
discussed in Chapter 4 the long term considerations related to preservation of workflows
apply to short term settings when the workflows are shared between researchers. When
the workflows are shared, they are extracted from their original environment, placed
in a location that can be accessed by other researchers, and then redeployed in a new
environment of a scientist re-using the workflow. This overlaps with the three phases of
the preservation framework.
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Figure 2.3: Overview of the context model: core ontology and extensions [MAC+15].

Figure 2.4: Overview of the ArchiMate concepts [Gro12].

2.6 Execution Context

The workflow context describes the environment in which the workflow executes. The
context ranges from software and hardware implementing the workflow, to laws and
regulations affecting its usage [MAC+15].

Enterprise architecture deals with context modelling. Enterprise architecture can be
defined as "a coherent whole of principles, methods, and models that are used in the
design and realisation of an enterprise’s organisational structure, business processes,
information systems, and infrastructure" [Lan05]. The most popular enterprise modelling
languages are: ArchiMate [Gro12], The Open Group Architecture Framework (TOGAF)
[The09], and the US Department of Defense Architecture Framework (DODAF) [Dep07].
Each of them models processes, their application and infrastructure components, as well
as elements of the organisation affecting the process design.

The authors of [MAC+15] state that in the process preservation domain a single model
cannot be used to describe the complex context of a workflow execution. For this reason
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Table 2.3: Mapping of Archimate Elements to OWL Elements [MAC+15].

Archimate Element OWL Element
Concept Class
Relation Object Property
Concept Instances Individuals

Figure 2.5: OWL representation of the ArchiMate concepts and relations, specifically the
Business Function Class and respective Object Properties [MAC+15].

they developed the context model, which was originally described in [SMA+13] and later
refined in [MAC+15], to store descriptive meta-data and documentation of the workflow
and its environment. It is a meta-model designed according to the principle of modularity.
The architecture is centred on a core model that is extended by models, depending on
the requirements of the application domain. The meta-model is implemented as an OWL
ontology. Ontology mapping allows for a realisation of the model integration. This
architecture is depicted in Figure 2.3. The above described structure is referred to as
context meta model, while instances of it are referred to as context model.

The core model (cf. Figure 2.3) is based on the ArchiMate [Gro12] enterprise modelling
language. It includes concepts on business and technical layers ranging from services,
process steps, and data exchanged between the steps, down to the technical infrastructure,
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Figure 2.6: An excerpt of the CUDF extension ontology created for a Debian-based
system.

including hardware, software, and files. An overview of ArchiMate concepts is depicted in
Figure 2.4. Sometimes such an ontology is referred to as an upper level ontology [Ant15].
The ArchiMate elements were converted into OWL Elements using a mapping presented
in Table 2.3. Furthermore, restrictions were added into the object properties to facilitate
reasoning and verification of model correctness. Figure 2.5 depicts an excerpt of the
OWL representation of ArchiMate in the Protégé ontology editor. The Business Function
class is highlighted in the left pane and respective properties, including restrictions are
presented in the right pane.

Use cases may require specific information to be added to the context model, for this
reason any ontology can be linked to the core model. The extension ontologies use a more
specific language to describe particular aspects of the workflow. In Figure 2.3 we depicted
eight extension ontologies that can be used to extend the model. We describe below
only two extension ontologies that we later use during the VFramework application. The
other ontologies, for example the VPlan ontology, we introduce later, when we actually
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Figure 2.7: An excerpt of the PREMIS ontology [MAC+15].

need them.

The ontology on software dependencies is one of the extension ontologies. It provides
detailed modelling support for various relations such as dependencies or conflicts between
packages. It is based on the Common Upgradeability Description Format (CUDF) [TZ08].
Figure 2.6 depicts an instance of this ontology created for a Debian-based system viewed
in Protégé. There are 883 packages installed in the analysed system. The one selected
in the figure is libapache2-mod-jk. This package requires two others to be present in
the system, namely: libc6 in version greater than 2.4 and apache2.2-common package.
One can also see that this package replaces libapache2-mod-jk2 and that these two
packages cannot be installed at the same time, because there is a conflict between them.
Furthermore, for each package there is a source location stating from where it can be
downloaded.

For the purpose of file format description, the authors of [MAC+15] use the PREMIS Data
Dictionary [PRE08] that is also available in the form of an ontology. When workflows
are executed, data is read, modified, and written. Information on the file format of this
data helps in analysis of workflow executions, because specialised tools can be applied
that take the data format into account. Thus we can better identify differences between
two workflow executions that used or created different data. An excerpt of the PREMIS
ontology is depicted in Figure 2.7. The PREMIS data dictionary defines five types
of entities: Intellectual, Object, Event, Agent, and Rights. It then defines 45 concepts
belonging to these types, as well as relations and data properties. In Section 4 we describe
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how we instantiate this ontology.

The information stored in the context model can be accessed using publically available
tools for ontology manipulation like for example Protege1. The context model can be
created using PMF that is described in Section 2.7. Furthermore it can be created using
a range of extractors and converters implemented by the TIMBUS project that are
described in [TIM14].

In this dissertation we use the context model to describe the workflow execution context,
because it allows us to identify the software that was involved during workflow execu-
tion, as well as analyse the workflow structure and on that basis generate validation
requirements (see Chapter 5).

2.7 Workflow execution monitoring
In this section we present tools for monitoring of workflow executions. These tools identify
dependencies of a workflow that must be verified when the workflows are re-executed.

Davison [Dav12] motivates the necessity of recording which files were accessed during
execution of scripts, and which source code version was used to perform the experiment
with the fact that the researchers are very often not aware of the system configuration
and software versions when performing their computations. For that purpose they
implemented Sumatra, a python library capable of capturing the execution context of
python scripts. According to the authors the context consists of:

• SVN version number of the analysed python script

• Python libraries loaded by the script

• Input files used by the script

• Output files produced by running the script

• Platform information

– processor architecture
– operating system type and its kernel version
– IP address of the local system

The implementation of Sumatra is limited to the analysis of python scripts and thus is not
universally applicable. The significant part of the context is in fact the provenance data
that is describing data products used and created during script execution. The platform
information is based on static system description and does not identify the resources

1http://protege.stanford.edu
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Figure 2.8: Process Migration Framework [Bin14].

actually used during script execution (apart from the Python libraries). Furthermore, in
package based systems like Linux it is not sufficient to provide just a kernel version to
specify a system configuration. A list of packages installed in the system that are used
during workflow execution is needed to complement this information.

For verification and validation of workflow re-executions we need a tool that creates
a complete list of dependencies used during workflow execution regardless of their
implementation. For Linux-based systems there is the strace [Rob08] tool that attaches
to a monitored system process and intercepts all system calls. The system calls are used
to load resources, access files, create further processes, open connections to databases or
external hosts, and so on. For every workflow execution a system process is created that
can split into further sub processes creating a tree of processes. By monitoring this tree
and its system calls we obtain a complete list of workflow dependencies. Furthermore,
this method is independent of the implementation of the workflow. The downside of this
approach is the amount of data produced that must be filtered and processed before it
can be used for verification of workflow re-executions. There are two tools that are based
on process monitoring using strace, namely CDE and PMF.

The CDE [Guo11] output aggregates information detected using strace and therefore is
less detailed. Furthermore, system calls that are used for tracking resources or details of
network connections are omitted. Therefore, CDE is not capable of detecting external
calls, for example to web services used in the workflow. Also local service applications
that run in the background and are started before the workflow execution are not detected.
CDE gathers only files and binaries that were used in the execution. CDE also modifies
analysed processes, because it requires users to prepend CDE commands to scripts or
binaries.

The process migration framework (PMF) [Bin14] [BSR14] does not have these limitations
and is capable of extracting a process from a Debian GNU/Linux based operating systems
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in which the process shares resources with other processes. The PMF saves the results
into the context model [MAC+15]. PMF records which operating system processes were
called, what files were accessed or created, and which connections to other services were
opened. This data contains exact commands and their parameters, as well concrete
addresses of services.

Furthermore, PMF identifies which of the identified files are parts of the default operating
system software sources, Debian packages, and groups these together. This leads to a
concise and semantically richer description of the actual dependencies of the workflow -
instead of a flat list of potentially thousands of files, one obtains a much shorter list of
packages.

When the PMF is run in the original environment to create the context model it downloads
packages that were identified in the system, as well as extracts files from the original
system that were used for processing. Using this data and Vagrant2 it can create a new
virtual machine that is configured in the same way as the original one was.

PMF is depicted in Figure 2.8 and consists of four steps:

• Capture – Workflow environment is analysed and described using the context model.

• Adapt - The model created in the previous step is adapted by, for example, re-
placing software. This step is optional, but adds the flexibility to handle changing
requirements, like in tool versions.

• Build - A virtual machine that corresponds to the refined model and in which the
process can be executed is created.

• Verification – The redeployed workflow on the target system is verified whether it
shows the same behavior as on the source system.

In the VFramework we use the Capture step of the PMF twice: first, to create the context
model of the original workflow execution, second, to create the context model of the
workflow re-execution. We compare these models to verify the workflow re-execution (see
Section 6.1).

The porting process is beyond the scope of our investigations and therefore the workflows
can be redeployed either using PMF or manually. The VFramework takes into account
both possibilities and hence the Adapt and Build steps of the PMF are optional. The
Verification step of the PMF corresponds to the Verify environment and Validate workflow
steps of the VFramework.

2https://docs.vagrantup.com/v2/boxes.html
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2.8 Changes in Web Services

Scientific workflows may use external web services to complete tasks. For that purpose
the workflows exchange data with web services that are often provided by a third party.
The workflow owners have no control over such services and hence the replicability of
workflow executions is at danger when the web services change their functionality or
become unavailable.

In Section 4.2.3 we present an approach to verify workflows that use external web services
and discuss in what way changes in web services can affect the workflow performance. We
present there the Web Service Monitoring Framework that we devised for monitoring of
web services. We use the data collected during framework application to create mock-ups
of web services, which are used when the process is re-executed and the original web
service cannot be used any more.

In this section we provide an overview of different monitoring approaches, as well as
summarize possible extensions to web services that aim at enabling repeatable executions
of web service dependent workflows.

2.8.1 Web service monitoring

The framework presented in [CFCB10] generates and executes automatically tests for
conformance testing of a composite of web services described in BPEL. This approach
was combined with passive testing, which verifies time traces with respect to a set of
constraints [CCFM11]. Both solutions are limited to web services that are implemented
according to the BPEL specification. Verification of behavioural conformance of services
during run-time is presented in [DRK09]. Stream X-machines are applied to check the
control flow of a web service and the generated responses. The traffic is intercepted from a
live system and continuous monitoring for changes is performed. The Stream X-machine
needs to be developed manually, and requires access to the web service implementation,
which limits the application of this method. The authors also provide a classification of
web services. Three major criteria are distinguished: conversational / non-conversational,
private-state / shared-state, transient-state / persistent-state. In our work, we consider
these criteria as sub-criteria of the stateful / stateless criterion.

The WS-TAXI framework[BBMP09] combines the coverage of web service operations
with data-driven test generation. It is able to deliver a suite of test messages ready for
execution, generated using a WSDL specification. WS-TAXI generates and uses purely
synthetic data which may be quite different from the data exchanged in a process. It
is thus more suited for web service development and testing, rather than monitoring of
already deployed SOA (Service Oriented Architecture) solutions.

Monitoring whether Service Level Agreement (SLA) conditions are fulfilled by web
services is a problem related to monitoring web services for changes. In [GS10] a run-time
monitoring framework which allows accessing exchanged messages and comparison against
designed scenarios is presented. The focus is on Quality of Service aspects, for example
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of a time-out mechanism detecting unavailability of the service. In [GKS11] emphasis
is put on detection of violations at the functional level. SLAs are described formally
using temporal logic and are used to verify the behaviour of web services at runtime, for
example maximum response time.

The shortcoming of the above mentioned solutions lies in the fact that they demand
specific knowledge on the kind and the nature of the web service. Also, the kind of change
which will be monitored, is required to deploy the proper solution. In many scenarios,
however, only the URL and interface of the service are known, but no information on
whether the web service is conversational, stateful, deterministic, etc.

The Web Service Monitoring Framework (WSMF), presented in [MMR15a] and in
Section 4.2.3, is thus designed to allow investigation of any kind of web service, and to
facilitate reasoning about the nature of a service. If the web service is deterministic, the
monitoring process can be launched and all four types of changes (see Table 4.1) can
be detected. Otherwise, the monitoring framework is not able to detect any functional
changes, but the other three types of changes can still be monitored.

2.8.2 Web service extensions

Apart from monitoring the technical level of services, several improvements to the
specification of web services, which should lead to a higher sustainability of workflows,
as well as reduction of the need for continuous monitoring, have been proposed.

The Universal Description Discovery and Integration (UDDI) is a registry which holds
information on registered web services. However, the registry does not contain sufficient
additional information on the service that would allow users to obtain information on the
nature, behaviour, or quality of the service. Several proposals aim at enriching the purely
functional description of web services (bindings, ports, etc.) with Quality of Service (QoS)
aspects, for example timing aspects, availability, reputation [CP09] and pricing [LNZ04].
[W3C03] specifies requirements for QoS for web services. It lists 13 points which should
be fulfilled, but none of them concerns guaranteeing continuity or non-modifiability.

Another approach is to facilitate versioning of web services. Yet in this case, approaches
do not aim at specifying a way to interweave versioning into web service specification,
but present workarounds to deal with the currently underspecified web service stan-
dards [KML06]. One of the exceptions is [KAC03], which provides functional requirements
for a registry which notifies clients when a version of an interface changes. [KML06] is a
good example of the current common view on versioning: versioning is understood as a
change of interface. Changes in functionality while the interface stays the same are not
considered. In [MMUR14] we thus introduced a concept of Resilient Web Services which
aims at extending specification of web services, addressing the challenge of functional
changes.
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CHAPTER 3
VFramework

In this chapter we introduce the VFramework – a framework for verification and validation
of scientific workflow re-executions. We provide an overview of the framework structure
and explain in which settings the framework can be used. We also describe a workflow
that we use as a running example on which we define the VFramework and the VPlan in
Chapters 4, 5, and 6.

3.1 VFramework overview
The design goals for the VFramework go beyond the mere re-execution within relatively
short time frames, but include digital preservation settings in which workflows potentially
need to be re-executed at much later points in time in different computational environ-
ments, when the original workflow may not be executable any more. These long-term
considerations, however, turn out to be essential even in short-term re-execution settings
due to the rapid change of the underlying technology at the hardware and software level.

Figure 3.1 provides a high level overview of settings in which the VFramework is applied
and shows how this influenced its design. The workflow running in the original environ-
ment is extracted and moved either to a new environment or preserved in a repository.
Such a new environment is often referred to as the redeployment environment.

A workflow can be moved to a new environment, because a scientific experiment is
replicated by other scientists who found the workflow on a workflow portal. In many
cases a direct contact between the workflow owner and the workflow replicator may not
always be possible. The authors of [CP14] show that reasons can be as trivial as a change
of e-mail address of the workflow owner who changed his affiliation.

A workflow can be also moved to a repository, because the project in which the workflow
was engineered came to an end, and due to research funder regulations all data including
workflows must be preserved. The preserved workflows can be potentially run at a later
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Figure 3.1: Overview of workflow verification and validation.

point in time, for example, in a litigation case when the correctness of the original process
has to be proven. In such cases the original system may not exist anymore.

Therefore, we have to ensure that contemporary access to both the original and a new
execution environment is not necessary, as this may not be feasible. The preferred way
to compare these two executions is to collect data from the original environment and to
use it as a reference in the environment in which the workflow is re-executed.

These requirements are reflected by the VFramework which is depicted in Figure 3.2.
It consists of two sequences of actions. The first one collects information about the
original execution of the workflow in the original environment. The second one uses this
information to verify and validate the re-execution of the workflow in the redeployment
environment. The context model, which is described in detail in Section 2.6, stores
information collected in the first and provides this information in the second phase. The
first three steps of the framework, which are performed in the original environment, are
gradually adding information to the context model. Later this information is processed
using tools to verify and validate the workflow re-execution.

Figure 3.3 depicts five parts of the context model that are created during the VFramework
application. The workflow model core is the central element that describes the workflow
model and is a basis for extensions providing information on validation requirements,
workflow instance data, workflow dependencies, and identified file formats. We use the
colour coding throughout the dissertation to distinguish between the parts of the context
model, for example, we use the light green colour to depict elements that are workflow
dependencies.
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Figure 3.2: Framework for verification and validation of re-executed workflows.

In Chapters 4, 5, and 6 we describe in detail the VFramework steps and show how
we apply the VFramework to Taverna workflows using the context model and tools
automating its creation, and processing. The description is structured as follows:

• In Chapter 4 we describe the Run static analysis and the Run dynamic analysis
steps of the VFramework. These steps capture the original execution of the workflow
and document the environment in which it took place.

• In Chapter 5 we describe the Define validation metrics step of the VFramework.
We describe a way to automatically generate validation requirements and present
the VPlan ontology that we created for description of validation requirements.

• In Chapter 6 we describe the Verify environment and the Validate workflow steps
of the VFramework that are completed when the workflow is re-executed in a new
environment to verify and validate its re-execution.

3.2 Running example

In this section we present a workflow that we use as a running example on which we
define the VFramework and the VPlan in Chapters 4, 5, and 6. In the remainder of
the dissertation we refer to it as "the weather workflow". We begin with explaining our
motivation for choosing the given workflow and then we describe in detail each of its
elements.
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Figure 3.3: Overview of the context model parts instantiated during the VFramework
application.

Figure 3.4: Weather workflow used as the running example.

3.2.1 Motivation

We created a Taverna workflow presented in Figure 3.4. It tells whether the weather
conditions for a given location are appropriate for outdoor sports and visualises the
temperature in a chart.

According to Jim Gray [HTT09] the scientific computational research includes tasks
ranging from "data capture and data curation to data analysis and data visualization".
The weather workflow also performs such tasks in a following way:

• Data capturing - a weather forecast is obtained from a weather web service.
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Figure 3.5: Weather workflow steps and their outputs.

• Data transformation - weather data is filtered and processed to make a decision
whether the conditions are appropriate for outdoor sports.

• Data visualisation - the temperature for a given location is presented in a chart.

A detailed study of workflows published in a public research portal myExperiment is
presented in [MR15a]. The authors identified that almost 75% of scientific workflows
are Taverna workflows. The latest revision of Taverna specification, that is Taverna 2,
constitutes 55% of all workflows. Among the Taverna 2 workflows almost 43% use web
services. Furthermore, almost 50% of Taverna 2 workflows use Beanshells that allow users
to write their own code in a lightweight Java-like scripting language. For this reason:

• The weather workflow is a Taverna 2 workflow.

• It uses a REST web service to obtain weather data from a third party.

• It has two Beanshell scripts that implement data transformation and visualisation
tasks.
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3.2.2 Workflow implementation

Figure 3.4 depicts inputs, steps and outputs of the weather workflow. Figure 3.5 provides
more details on the same workflow and additionally depicts inputs and outputs of each
workflow step. For example, the workflow step MakeDecision has two workflow step
inputs: temperature and weatherType; and one workflow step output that is called decision.
Both figures were generated by Taverna and depict the same workflow varying in the
level of detail. In Chapter 7 we present workflows in details whenever there is a need
to discuss particular workflow step outputs, otherwise we depict workflows using only
workflow steps.

The workflow uses weather forecasts provided by the Met Office1, which is the United
Kingdom’s national weather service. There are over 5000 available locations in the UK.
A weather forecast is issued for each location in 3-hourly intervals out to five days2. The
past data is not available. Hence, we cannot check, for example, yesterday’s forecast
today.

In order to run the workflow we need to set values to the workflow inputs, which are:

• Time – date and time of a weather forecast we want to use, for example 2015-10-
12T18Z. Which weather forecasts are available at the moment can be checked using
one of the other web services (not in scope of this workflow).

• Location – unique identifier of a location in the UK. A list of locations and their
identifiers can be found on the Met Office web sites. Examples of identifiers are:
322690 for Ramsgate, or 3772 for Heathrow.

The workflow inputs are connected to the inputs of the GetWeatherData workflow step.
This workflow step is a REST Service that is a built-in Taverna service which can be
customised for accessing REST web services. The service configuration requires providing
a URL3 of the Met Office web service and annotating which parameters of the URL
have to be substituted with values read from the inputs of the workflow step. The
GetWeatherData workflow step has two outputs: responseBody and status. Both of them
are fixed for this kind of services. The first one contains the response from the web
service, while the other informs whether the operation was successful.

The responseBody output of the workflow step GetWeatherData is connected to the inputs
of two steps, namely: xml text of ExtractTemperature and xml text of ExtractWeatherType.
Both of these steps are XPath Services, which are built-in and customisable Taverna
services. Each of them defines an XPath expression that is used to extract information
from an XML document. The responses from the Met Office web service are XML

1 http://www.metoffice.gov.uk
2http://www.metoffice.gov.uk/datapoint/product/uk-3hourly-site-specific-forecast/detailed-

documentation
3http://datapoint.metoffice.gov.uk/public/data/val/wxfcs/all/xml/{location}?res=3hourly&time={time}&key={key}
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Figure 3.6: Response from the Met Office web service.

documents. An example of a response is presented in Figure 3.6. The ExtractTemperature
workflow step uses the following XPath expression to read the temperature from a response:
/SiteRep/DV/Location/Period/Rep/@T. In the given example, the temperature’s value
is 12. The outputs of the XPath services are fixed and provide results of executing the
XPath expression in different forms: either only the first matching node is returned or
all matching nodes. The results can be formatted as plain text or as XML. Users decide
which form to use by linking the corresponding output with further steps of the workflow.
In the weather workflow we use the list of all matching nodes formatted as plain text.

The nodelist output of the ExtractTemperature workflow step is connected to the tempera-
ture inputs of two workflow steps: VisualiseTemperature and MakeDecision. Both of these
workflow steps are Beanshells. Additionally, the workflow input Location is connected
to the location input of the VisualiseTemperature workflow step, and the MakeDecision
workflow step has the nodelist output of the ExtractWeatherType workflow step connected
to its weatherType input.

The VisualiseTemperature workflow step contains a script that uses an external Java
library chart-1.0-jar-with-dependencies.jar to create a PNG chart depicting a temperature
in a given location. The temperature’s value and the location are read from the workflow
step inputs. The result of visualization is returned through the plot workflow step
output. To use the external Java library we had to add the appropriate JAR file to a lib
subdirectory of Taverna.

The MakeDecision workflow step contains a script that implements a very simple decision
tree that uses two parameters: temperature and weather type. Both of these values are
read from the inputs of the workflow step. There are two possible decisions: "Stay at
home", or "Go cycling". If the temperature is above zero and the weather type is between
zero and seven, the decision is to go cycling, otherwise staying at home is recommended.

The workflow has three outputs:
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Figure 3.7: Workflow output TemperatureChart depicting temperature in Celsius degrees
in Ramsgate.

• TemperatureChart - visualisation of the temperature for a specified location at a
given date and time. Figure 3.7 presents an example of a temperature chart.

• Decision - recommendation whether to "Go cycling" or "Stay at home" made by
the decision tree using temperature and weather type for a specified location at a
given date and time.

• WeatherType - integer from 0 to 30 encoding a type of weather using the Met Office
code definitions4 for a specified location at a given date and time. For example
value 1 denotes a sunny day, while 27 denotes heavy snow.

4http://www.metoffice.gov.uk/datapoint/support/documentation/code-definitions
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CHAPTER 4
Capturing original workflow

execution

In Section 2.3 we presented an overview of scientific workflows that require workflow
management systems for execution. Besides these, workflows can also be implemented as
scripts using various programming languages, or can be verbally defined in text documents
and later executed manually. To verify and validate each workflow type, one can develop
methods and tools specific to a particular workflow implementation. This requires good
understanding of the workflow specifications and detailed information on the workflow
execution environment. Development of methods and tools for each workflow type would
result in duplication of efforts and multiplicity of similar but not compatible tools. This is
due to the similarities between the workflow systems and the fact that all of the workflows
are finally executed by an operating system that transforms them into system processes.

Hence, a better approach is to provide a common way for verification and validation of
workflows. This can be achieved by transforming workflow specifications into a common
model which analysis can be performed in the same way regardless of the original workflow
specification. The process of transforming workflow specifications requires identification
of mappings between the concepts used and development of tools that convert workflow
specifications into the common model. In our analysis we show how Taverna workflows
are transformed into the context model that is a common model that can be used to
model various types of workflows.

Depending on the original workflow specification, we can obtain different levels of details.
For Taverna workflows we can easily identify the workflow steps and their outputs,
because they are defined in the Taverna workflow model, but in case of scripts these are
not always obvious, but still can be identified. Furthermore, some workflow specifications
provide explicit information on dependencies (e.g. import modules in Python, or explicit
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4. Capturing original workflow execution

Figure 4.1: VFramework steps performed in the original environment.

documentation of Beanshell dependencies in Taverna), while for others these dependencies
can only be identified during workflow execution.

It is also a complex task to identify which information on workflow dependencies must be
captured. For some workflows it may be sufficient to capture only the workflow description
and information on the operating system version being used, while other more complex
workflows that use specific tools may require documenting specific versions of the tools
together with their configurations, or even particular system libraries being loaded. These
tools in turn may depend on further tools and services that must be accessible during
workflow execution. Some of the services may be hosted on different machines and may
belong to different owners, especially when the workflows use distributed infrastructure
to complete their steps. In such cases the availability of information can be limited, but
we still need to be able to verify and validate the workflow.

For this reason we need to perform the static workflow model analysis to identify the
workflow structure including its steps and dependencies, as well as the dynamic analysis
of workflow instance execution to identify further dependencies. When we identify what
is needed for a workflow to execute and which data is created during its execution, then
we know what to verify and validate.

In this chapter we describe in detail the Run static analysis and the Run dynamic analysis
steps of the VFramework. These steps capture the original execution of the workflow
and document the environment in which it took place. They are depicted in Figure 4.1,
which depicts all the VFramework steps performed in the original environment. We use
the workflow described in Chapter 3 to demonstrate how each of the framework steps is
completed.

4.1 Run static analysis

The aim of the Run static analysis is to describe the workflow and its context and thus
define boundaries of the analysis. This step is depicted in Figure 4.2 and consists of two
sub-steps discussed in the consecutive section.

40



4.1. Run static analysis

Figure 4.2: The Run static analysis step of the VFramework in detail.

4.1.1 Describing the workflow and its context

Workflows can be executed within a dedicated workflow engine, but even this does not
imply that workflows are separated from the environment in which the workflow engine
runs. In fact workflows can have interactions with other software that is running on the
same system, for example, by connecting to a database server. Therefore, often before
the workflow is started, the other services (e.g. a database engine) must be enabled, or
they are started during workflow execution. All these additional services, on which the
workflow depends, belong to the workflow’s context and must be captured in the original
environment.

Knowing this context we can define workflow boundaries that specify which of the
identified dependencies are integral part of the workflow, that is, which of them are
within the workflow boundary. Such dependencies must be verified and validated to
confirm workflows replicability. The dependencies that lay outside of the workflow
boundary, so called external dependencies, are also needed for the workflow to execute,
however, they are not an integral part of the workflow. Furthermore, they are often
provided by third parties. For this reason the analysis can be limited due to a lack of
access and we can only check whether they are accessible and interact in the same way
with the workflow. For example, the weather workflow uses a web service provided by a
third party to obtain weather forecasts. To reproduce the result of a workflow execution,
it is essential that the web service is available in an unchanged form. If we switch to
any other compatible web service, the workflow performance is not affected, because the
service provides only data and does not implement any processing logic. For this reason,
it is an external dependency which availability and conformance must be checked, but
there is no need (and no means) to verify and validate it. Hence the analysis of workflow
context allows us to identify which dependencies must be present during the workflow
execution and for which of them we must collect data that enables their verification and
validation.

We use the context model to describe the workflow and its environment. We perform
a static analysis using the workflow definition file. We use the Taverna2Archi1 and the

1http://www.ifs.tuwien.ac.at/dp/process/projects/tavernaExtractor.html
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Archi2OWL2 converters to automatically convert the specification of a workflow into the
core ontology of the context model. The first tool reads a Taverna workflow definition file
and generates the core of the context model using pre-defined modelling patterns, while
the second one transforms the model into an OWL ontology. For other than Taverna
workflows this can be done manually using Archi3 modelling tool, or directly in an
ontology editor, for example, Protege4.

Figure 4.3 depicts an excerpt of the ArchiMate model created for the weather workflow
(for full model see Figure A.1 and for its OWL representation see Figure A.2). It
models the GetWeatherData step. We use this example to explain how to interpret
correctly the information contained in the context model. For this reason we present the
intermediate stage of creating the context model, so that those who are not familiar with
the Archi modelling language and its design patterns could get a better understanding of
it. Normally, this process if fully automatic and does not require working with the Archi
models.

Figure 4.3 consists of three layers, starting from the top: business layer (yellow), applica-
tion layer (light blue) and infrastructure layer (green). Each of them provides a different
perspective on the workflow.

The business layer describes the workflow from a high level perspective. It specifies
workflow inputs, steps and outputs, as well as describes relations between them. In the
given example we can see that the GetWeatherData workflow step is modelled as a Business
Process. It has two inputs which are modelled as Business Objects and are linked with
the Business Process using hasAccessTypeRead relation. The outputs are also modelled
as Business Objects and linked with the Business Process using hasAccessTypeWrite
relation.

The application layer describes functionalities and interfaces of software and hardware
components that are used to run the processes described in the business layer. In the given
example we can see that the GetWeatherData workflow step uses GetWeatherDataService,
which is an Application Service that has an HTTP Application Interface. Furthermore,
we can see that the Workflow Execution Environment has an Application Function which
is Calling Web Service, which is used by the GetWeatherData workflow step. We can
read from this that the GetWeatherData workflow step is performed by communicating
with a REST web service. If it was a WSDL service, the model would look like slightly
different, for example, the SOAP Data Object would be depicted.

The infrastructure layer makes it concrete which software and hardware is used to provide
the functionality and services specified in the application layer. In the given example
we can see that there are two Nodes used to perform the GetWeatherData business step:
Machine and External Service. The first is the local machine on which the workflow is
executed, while the second represents the machine on which the REST web service is

2http://www.ifs.tuwien.ac.at/dp/process/projects/archi2OWL.html
3http://www.archimatetool.com
4http://protege.stanford.edu
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Figure 4.3: Excerpt of an ArchiMate model created for the weather workflow.

deployed. The web service is beyond process boundaries, because it is hosted on a machine
that is beyond our control. Furthermore, we can see that the System Software, which is
Taverna is used to realize the Workflow Execution Environment and also to provide the
functionality allowing for Calling Web Service. Taverna realizes two Constraints that
depict licenses applying to it. We can also notice in the figure that the Artifact Location
realizes Data Object Location which realizes Business Object Location. Redundant as it
may seem, it is the correct way to represent data read or written by a workflow. In case
of other Business Objects depicted in the figure, for better readability we did not depict
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PREFIX dio: <http://timbus.teco.edu/ontologies/DIO.owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

ASK WHERE {
?bp a dio:BusinessProcess.
?appFun dio:usedBy ?bp.

?appFun rdfs:label ?appFunLab.
FILTER (regex(str(?appFunLab), "Calling_Web_Service"))

?appSer dio:usedBy ?bp.
?appSer dio:assignment ?appInt.
?appInt a dio:ApplicationInterface.

?appInt rdfs:label ?appIntLab.
FILTER (regex(str(?appIntLab), "HTTP"))

}

Listing 4.1: SPARQL query checking whether the workflow model specifies any REST
web services.

all their connections to the lower layers. The infrastructure layer is further extended
in the next step of the framework by linking identified software dependencies accessed
during workflow execution.

4.1.2 Workflow context analysis

The benefit of using the ontology representation of the presented model is the possibility
of querying the model. Thus without manually working with the model we can:

• Identify whether the workflow has external dependencies, like for example web
services.

• Check if any Beanshell scripts declare usage of external Java libraries.

• List licenses applying to the workflow.

• List workflow steps, as well as their inputs and outputs.

To query the model we use a set of twelve pre-defined SPARQL queries. Listing 4.1
presents one of them. The query provides an answer whether the workflow model specifies
any REST web services. It looks for Application Functions which are called Calling
Web Service and checks whether they are used by any Business Process (workflow step).
Furthermore, it checks whether there is an Application Service that has assignment to an
Application Interface that is HTTP, and if this Application Service is used by the same
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Business Process. The result of running this query is either true, when the workflow uses
a REST web service or false, when it does not. This query was built taking into account
the way the converter tool converts the ArchiMate models into the core ontology of the
context model. The other queries enable us to:

• check if workflow uses external services,

• check if workflow uses WSDL web services,

• check if workflow uses REST web services,

• list workflow steps,

• list inputs of a workflow step,

• list outputs of a workflow step,

• list inputs of the workflow,

• list outputs of the workflow,

• list licenses applying to the workflow,

• list steps requiring additional Java libraries,

• get address and port of the external R service,

• get contents of R scripts executed by external services.

For the weather workflow model we identified that:

• One step uses a REST web service.

• One step requires a specific JAR to be placed in the workflow engine directory.

We use this information in the Run dynamic analysis step of the VFramework to configure
the environment in which the workflow executes by placing the specific JAR file in an
appropriate location. Furthermore, we know that the workflow uses a web service that
is an external dependency laying beyond the workflow boundaries. For this reason,
not only monitoring of the platform in which the workflow executes is necessary, but
also monitoring of the network traffic to intercept the messages exchanged between the
workflow and the web service (see Section 4.2.3).
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Figure 4.4: The workflow model core created for the weather workflow.

4.1.3 Step summary

We described the workflow using the context model that provides high level view on the
workflow by depicting its steps, inputs and outputs, but also low level view by describing
which workflow steps access external services or require additional software libraries. We
also showed in what way this information is accessed using SPARQL queries and how it
facilitates workflow analysis.

Based on this information we identified workflow boundaries and hence we know which
of the locally completed steps will undergo dynamic analysis performed in the next
framework step, and which of them are beyond our control. For these we will monitor
and record the communication during workflow dynamic analysis.

Figure 4.4 depicts an excerpt of the context model created in this step for the weather
workflow. It shows one workflow step Visualise Temperature that has one input tempera-
ture and one output plot. The model created in this step corresponds to the workflow
model core (cf. Figure 3.3). We will use this example in the consecutive steps to depict
how further information are integrated with the workflow model core.

4.2 Run dynamic analysis
The information collected in the first step gives overall information on the workflow
execution context and is based on a static analysis of the workflow model. In this step, we
complement this information by dynamic analysis of both local and external dependencies
that are identifiable only during workflow execution.

We first select the test data to be used during the dynamic analysis of workflow execution
and show how this kind of analysis identifies local dependencies of the workflow that lie
within the workflow boundaries. Then we show how to deal with external dependencies
that are services running in parallel, which only exchange data with the workflow, and
are outside of the workflow boundaries. For these we describe a monitoring framework
and a mock-up strategy that enables replicating the workflow and its validation. Last but
not least, we present in what way automatic analysis of provenance information enriches
the workflow context model. We illustrate all actions on the weather workflow that was
described in Chapter 3.

Figure 4.5 depicts the Run dynamic analysis step of the VFramework in detail. Particular
steps are described in the following sections:
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Figure 4.5: The Run dynamic analysis step of the VFramework in detail.
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• Select test data is described in Section 4.2.1.

• Monitor calibration workflow, Monitor analysed workflow, Reduce noise and Gener-
ate dependency report steps are described in Section 4.2.2.

• Run WSMF step is described in the Web Service Monitoring Framework sub-section
of Section 4.2.3.

• Mock web service step is described in the Create WS mock-up sub-section of Section
4.2.3.

• Extract instance data is described in Section 4.2.4.

• Detect file formats is described in the Extension of workflow model with file format
information sub-section of Section 4.2.4.

4.2.1 Test instance selection

The workflow owner must provide test instances to be used during workflow execution.
Test instances are values provided to the workflow inputs. A good practice is to provide
such a number of test instances so that all branches and workflow steps are executed
at least once. The workflow owner must ensure that the data samples provided are in
accordance with privacy and other regulation.

The weather workflow has two inputs and for the demonstration purpose we use only one
set of values, thus we have one test instance. The input values are 322690 for Location
input and 2015-10-16T18Z for Time input. The values of inputs will be automatically
saved in a provenance trace when the workflow is executed.

4.2.2 Local dependencies

Local dependencies of the workflow are all system components used during workflow
execution that are within the workflow boundary, which was defined in the previous
step. Examples range from software libraries imported by scripts, shell tools invoked
from the workflow, to research area specific software tools. Also the specific version of
the workflow engine, as well as the version of the operating system is important. In
case of package based systems like Linux the exact version of packages installed must
be documented. Furthermore, the hardware configuration of the platform also needs to
be captured, especially when the workflow uses highly specific hardware to perform the
computations. A good example of impact of hardware on the computational process is
Graphics Processing Unit (GPU). Many different types and makes of GPUs exist, and
even if the same software interface is used to perform the computation, results cannot be
expected to be the same for each GPU, due to, for example, differences in precision in
floating point operations. Earlier models often only supported single precision, and the
accuracy of single precision models can still differ vastly in current models.
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Figure 4.6: Calibration workflow for detecting workflow engine dependencies that does
no processing.

Figure 4.7: Overview of dependency reports generation.

Due to the amount and the granularity of information needed, the manual description
of local dependencies is limited. Modelling high level concepts like workflow engine,
operating system or machine is possible, but their decomposition into fine grained
information consisting of files, packages and their versions results in a rapid increase of
artefacts that need to be modelled.

An alternative approach is the virtualisation of the complete environment in which the
workflow executes. There are tools that enable migration of existing systems into virtual
machines, but this approach has also drawbacks: all files, tools and services are copied
including those which are not a part of the workflow. The amount of data that is captured
is significantly higher than the size of the workflow, that is, the size of a virtual machine
is measured in gigabytes, while the workflow and its model is measured in megabytes.
Furthermore, this approach does not provide any documentation of workflow dependencies
and simply hides the complexity of dependencies inside the virtual machine. This limits
the analysability of workflow requirements and does not remove the dependency on
external services needed to run the workflow (that were not virtualised).

Therefore, the preferred approach is to document the workflow using an automatically
created workflow model that is created by monitoring workflow execution. Such a
model can be used to re-create the workflow environment in a new system, because it
contains technical dependencies required directly or indirectly by the workflow [Bin14].
Furthermore such a model contains explicit documentation of workflow dependencies and
without re-executing the workflow we can analyse the dependencies and identify workflow
requirements to configure the new environment appropriately.
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We use the PMF (see Section 2.7) to monitor an execution of a workflow in the Taverna
workflow engine. We monitor an invocation of command line version of Taverna that
takes a workflow as one of its parameters. As a result we obtain not only a list of workflow
dependencies, but also the workflow engine dependencies, for example Java libraries that
are needed for Taverna to run. This is because the PMF logs every file that was accessed
by the monitored process and its child processes. Figure A.3 in Appendix A presents the
complete OWL ontology created by the PMF.

Due to the amount of files loaded by default by the workflow engine, it is hard to
distinguish which of them are specific to a workflow and which of them are always loaded
by the workflow engine. Taverna is implemented in Java and consists of multiple Java
libraries that are always loaded when Taverna is started. Knowing the exact version
of Taverna we can exclude all these files from the model and therefore improve its
analysability. These files are still needed for the workflow to execute, but are aggregated
under a higher level concept, which is Taverna and its version. Thus we can focus on the
files which are necessary for running the particular workflow. If Taverna was shipped as
a Debian package, then all these dependnecies would be automatically grouped under a
single package by the PMF. Since Taverna is an archive that is copied into a file system
we had to devise our own way of aggregating the files.

In order to filter out workflow engine specific files (so-called noise) we use a calibration
workflow that allows us to discover the dependencies belonging to the workflow engine.
Figure 4.6 depicts the calibration workflow. It connects only the input to the output
of the workflow and makes no processing. Therefore, all dependencies identified for the
calibration workflow are in fact workflow engine dependencies. We run the calibration
workflow before the analysed workflow is loaded into Taverna.

The overview of noise reduction and dependency report generation is presented in Figure
4.7. Having monitored both workflow executions, we compare their context models. Thus
we reduce the workflow engine noise and focus on the workflow-specific dependencies.
The reduction is effective and decreases the number of identified files from one thousand
to around fifty files for the weather workflow. We compare the context models using the
Ontology Diff Tool5. We use the comparison result to generate a dependency report that
provides a concise overview of workflow specific dependencies. The tool for dependency
report generation uses five predefined SPARQL queries to process the data from the
context model (after noise reduction).

An excerpt of a dependency report for the weather workflow is presented in Figure 4.8.
The report summarizes five main aspects of the workflow execution that must be verified:

• Shell calls When a workflow uses any tool that is installed in a system, it makes a
shell call. The report lists all commands that were executed and provides a list of
Debian packages and files that are used during the call. All such calls are beyond

5 http://www.ifs.tuwien.ac.at/dp/process/projects/diff.html
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the control of the workflow engine and therefore pose a threat to the repeatability
of workflow executions.

• Remote services If a workflow uses an external service, then the exact address
of the service is provided. Sometimes more than one IP address is provided in the
list for a single service. This is because its domain name is bound to more than
one address. The IP address of the service is used to configure tools that intercept
the traffic - for details see Section 4.2.3.

• Specific file dependencies These are all files that are used by a workflow but
cannot be attributed to any of the installed packages. Usually, these are all sorts of
configuration files and additional libraries that might have been installed manually
in the system.

• Data files processed by the workflow These are all data files that were either
input files of the workflow or were created during workflow execution, for example,
temporary files, logs, or workflow outputs. Identified data files which are not part
of the provenance traces are later used for validation. For details see Section 6.2.

• Specific Debian packages The list contains all Debian packages that must be
installed in the system, when executing the workflow. The packages are a superset
of packages identified for each shell call and are presented for a better overview of
requirements.

The dependency report is easy to read by a human, but presents only a limited view
on the workflow context. The report is useful when installing the workflow in a new
environment to get an overview of interactions the workflow has. However, for the
verification we use the complete context model which also includes the workflow engine
dependencies.

We integrate the context model created in a result of dynamic analysis with the context
model created by the static analysis by source level linking of persistent unique identifiers
[TIM14]. Each of the models contains a Node individual that represents a machine for
which the analysis was performed. The tools generate always the same unique identifier
for a given machine. Figure 4.9 depicts an excerpt of integrated context models for the
weather workflow (see Figure A.4 for the full model). The elements depicted in yellow
were created during the static analysis of the workflow model. We can see that the
Visualise Temperature workflow step has an input temperature, and an output Temperature
Chart. The elements discovered during dynamic analysis are depicted in green. The
workflow was run on a machine that has Ubuntu 15.04 operating system, the user was
tomek, and a file chart1.0-jar-with-dependnecies.jar was used in the experiment that
was run using taverna-commandline-core-2.5.0. The Node element is common for both
context models and thus integrates them.
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Figure 4.8: Excerpt of dependency report for the weather workflow.
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Figure 4.9: Excerpt of the integrated context models created by static and dynamic
analysis.

4.2.3 External dependencies

The external dependencies of a workflow are all kinds of services that are used to perform
workflow steps but are not under direct control of the workflow engine. These can be
services that were started in parallel on a local machine or services that are hosted on a
different platform than the one executing the workflow. The workflow only exchanges
data with them. Web services are an example of external dependencies and according
to [MR15a] they are the most common external dependency of Taverna workflows. For
this reason we demonstrate how we ensure repeatable conditions during validation of
workflows that use web services.

When a workflow is re-executed in a new environment, it may happen that a third party
web service is not available any more, or it was upgraded to a newer version that delivers
altered results due to a different computational algorithm. In such cases, the workflow
may either break or can produce altered results. A summary of possible changes to a web
service is presented in Table 4.1. The possible solutions to circumvent this problem are:

• To use a different service that is compliant with the original one.

• To create a mock-up of the service that can provide correct responses for the
requests recorded in the original environment.

Independent of the chosen solution, we need to collect the evidence to which we can refer
when either assessing compliance of a substitute service, or when creating a mock-up. In
[MMR15a] we described the Web Service Monitoring Framework that describes how to
collect such evidence. In [MMUR14] we described ways of creating mock-ups.

Web Service Monitoring Framework

We developed the Web Service Monitoring Framework (WSMF) for monitoring of web
services which are external dependencies of workflows that undergo digital preservation
actions, for example were moved to a repository. The WSMF monitors whether the
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Table 4.1: Summary of changes in Web Services [MMUR14].

Change type Description
Unavailability Likely stops the execution of the workflow. The reasons can

range from temporary technical problems, to bankruptcy of
the service provider. It can be easily detected, for example
by using time-outs which would alert to unavailability of the
Web Service.

Interface change Such situation may also be easily detected. It may require
short pauses in the workflow execution until the changes will
be adopted into the workflow. Of course, in case of significant
changes in the communication interface (e.g. switch from
REST to WSDL), time needed for reconnecting the Web
Service into the workflow may require more effort.

Functionality change Outputs of the Web Service change, while the interface stays
the same. This threat is hard to detect, as the workflow
may not break, but instead deliver outputs which are not
correct. These could be, for example, changes at the semantic
level, e.g. switching the unit of measurement from inches
to centimetre due to a server configuration change. Other
possibilities are bug fixes in the underlying algorithm (which
may introduce other bugs as well), or intentional changes in
the functionality, e.g. faster but less accurate computational
algorithms.

Behavioural change It does not necessarily stop the workflow from correct execu-
tion, but can change its quality of service. The behavioural
changes can occur temporally and therefore are hard to no-
tice. The examples of such cases could be different timing
characteristics or delays, effects of buffering, and so on.

web services that are required for the preserved workflow to run are still available
in an unchanged way. If the WSMF detects any alteration, then the preservation
expert, who is responsible for the workflow preservation, is notified. The expert decides
whether the detected change affects the workflow performance and acts appropriately, for
example redeploys the preserved web service or finds a substitute. Thus the possibility of
redeploying the workflow at any point in time is ensured.

The WSMF consists of four steps:

1. Capture
The communication to and from the service is intercepted and stored. This is done
either by capturing the network traffic between two hosts or by redirecting the
communication with the web service through a special proxy server that intercepts
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the data and passes on the communication to the final destination. The first
solution is transparent to the workflow and does not require introducing changes to
the workflow. The second solution is useful when the communication cannot be
intercepted, for example when the session is encrypted. Then a proxy service can
decrypt the communication, capture the requests and responses, and encrypt them
back and forward to their destinations (man-in-the-middle attack on SSL).

2. Transform
When the data capturing is finished, the data is transformed to a form in which
requests and corresponding responses are grouped. Additional metadata and
measures are added and calculated at this step, for example, a pair of request and
response is enriched by number of occurrences, timestamps and calculated interval
between sending the request and receiving the response.

3. Reason
At this step the collected data is analysed, and the type of web service is determined
from the data. If for the same request different responses exist, then a web service is
deemed to be non-deterministic, otherwise it is deterministic, from the point of view
of the observer. When it is deterministic, monitoring for changes in functionality is
possible, otherwise not. Reasons for perceived non-determinism can be manifold.
In many cases, it will be due to the dependence on a specific state that could, for
example, be the current date and time.

4. Monitor
Requests collected in the first step are used to query the web service. Responses
collected at this step are compared to those collected in the Capture step. This
step is replayed according to the planned schedule, for example every day or every
week, etc.

A crucial requirement for using the approach described above is that the web service does
not cause any changes on the world outside the system observed. In situations in which
this is not the case, for example in credit card payment transaction systems, such replaying
of messages for monitoring purposes cannot be employed. Thus, while not universally
applicable, the approach is still useful for a majority of situations, specifically in scientific
settings in which web services are deployed primarily for accessing or transforming data
using computational services.

For the short term setting we use the first three steps that allow us to intercept commu-
nication with the web service and identify its type. We do not monitor the web service
to detect changes, because:

• We perform verification and validation of workflow re-execution from a point of
view of scientists who have no influence on changes in external web services. It is
not their role to monitor the web services and they have no resources to do that.
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Figure 4.10: The first three steps of the WSMF applied to the weather workflow.

Hence, our task is to collect evidence from the original environment that proves
how the workflow performed using the web service and to provide a possibility to
replicate given workflow executions using the past data.

• Functionality changes in web services are detected in step Validate workflow of the
VFramework using provenance traces.

Figure 4.10 illustrates the three steps of the WSMF applied to the weather workflow.
Below we describe in detail how we complete each of them.

The dependency report (see Figure 4.8) specifies three IP addresses, but all of them point
to the same service. We confirmed that by doing a reverse DNS lookup with a use of
nslookup. To capture the network traffic during workflow execution we used Wireshark6

which is a tool for network traffic analysis. We captured data for 24 consecutive workflow
executions in the space of 1 hour each and saved them as PCAP dumps. Each workflow
execution used the same input parameters. We filtered communication to the IP of the
web service and recreated TCP Streams for each dump. Figure 4.11 depicts a TCP
Stream recreated for the workflow execution that was also observed with PMF. It shows
the requests and responses that were intercepted. We analysed the collected data, by
comparing the bodies of responses (the request parameters were always the same).

We detected that the responses are different. This implies that the web service is non-
deterministic and hence the results produced by the workflow depend on the date and
time of running the workflow. To make the workflow executions comparable, always the
same data must be provided. This can only be achieved when a web service mock-up is

6https://www.wireshark.org
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Figure 4.11: Intercepted TCP Stream containing a request to and a response from the
web service used in the weather workflow.

used during the redeployment instead of the original web service, even if the web service
is available. To confirm our verdict on non-determinism of the analysed web service, we
checked the documentation available on the Met Office web sites. It states that a new
weather forecast is issued every 3 hours and that the past data is not available. This
explains different responses.

If the service was deterministic, that is, if it provided always the same responses, we
would also store the intercepted network traffic, but would use the original web service
in the redeployment environment. Only if the validation performed in the step Validate
workflow of the VFramework would detect changes in the workflow (not necessarily due
to lack of determinism, but for example due to change in the implementation), we would
have to create a mock-up using the captured data.

Service Mock-up

When a web service is provided by a third party, and no access to the system hosting the
service is provided, a mock-up can be created. It simulates the original web service. The
most basic form of a mock-up implements a lookup table. Such a mock-up is able to send
back responses to requests which were previously recorded in the original environment.
As a consequence only messages which were intercepted can be replayed. The solution
does not have any computing capabilities as the original system may have. However,
in many cases the information collected may be sufficient to meet legal requirements
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or compliance regulations for documenting and proofing the correctness of workflow
execution.

A mock-up can also be used as a model to validate the identity of a proposed substitute
web service. The requests stored by the mock-up can be used to query the substitute, and
responses received can be compared against responses of the mock-up. This approach
increases the likelihood of matching a correct substitute in comparison to relying on
the web service description only. A similar concept which uses provenance data to find
substitutes for missing tasks in scientific workflows is described in [BGSRDR11].

We implemented the web service mock-up as an HTTP server. The server receives
requests and checks whether there is a matching request in the database. If so, it sends
back the matching response. The database was filled with data collected during WSMF
application by splitting the recreated TCP streams of captured network traffic into
requests and responses. We describe how to configure the workflow to use a mock-up in
Section 6.1, in which we redeploy the workflow in a new environment.

4.2.4 Provenance data

Workflows differ in the way they produce data. This depends on their implementation.
Some of the workflows process data inside the system memory and in the final step write
data to the hard disk. Others save also intermediate results to the disk and thus enable
tracing workflow execution and validation of intermediate data. There are also workflows
that write the result to the standard output and create no files. Various tools can be used
to collect the data either from the disk, system memory or from specific system interfaces,
like for example network interfaces. The problem of capturing workflow instance data
was recognized by the workflow community and addressed by integration of provenance
collection mechanisms that are built-in mechanisms of workflow management systems.
They enable automatic capturing of data produced during execution.

The provenance traces which are saved as the result of provenance capturing contain
data used during workflow execution. They became part of Research Objects [BZG+15]
and are shared together with workflows to document the obtained results. We use
the Janus [MSZ+10] provenance ontology to model workflow instance data. The data
captured for any kind of workflow can be expressed using this ontology. Taverna supports
exporting provenance using Janus as well.

Once the data for a workflow execution is captured we need to couple it with the workflow
model to depict which data was collected for which workflow steps. This is needed
because we perform validation using this data and want to know which steps are validated
by comparing this data.

Last, but not least, the analysis of workflow instance data (provenance data) can be used
to extend the workflow context model with further useful information. In Section 5.1 we
describe in what way data must be compared during validation. The data file formats
can be detected analysing the provenance traces. The data file formats have impact on
the selection of an appropriate data comparison method during validation.
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In the reminder of this section we describe how a workflow instance is modelled using
Janus ontology. Furthermore, we show how we integrate workflow instances with the
rest of the workflow model. Finally, we demonstrate in what way the workflow context
model is extended with information on file formats that are automatically detected during
provenance analysis.

Workflow instance data

We capture provenance by running Taverna in a mode that saves provenance data of a
workflow execution. Taverna stores the input and output data of each workflow step in
a local database. We use the Provenance Extractor7 to extract this data and export it
in the Janus ontology format. We further extend it by adding more information on the
input and output ports of a workflow step, for example, on enactment timing.

Figure 4.12 depicts excerpt of provenance traces for the weather workflow (Figure A.5
presents complete traces). The elements depicted in green are data properties, the other
elements are Janus individuals. Each individual has a class and a label, for example the
workflow_spec is the class and the WeatherExample is the label. For better readability we
did not depict in the figure labels which are automatically generated unique identifiers.

We can read in the figure that the Make Decision workflow step was modelled using
the processor_spec class. The model depicts that this step is a BeanshellActivity and
provides exact timestamps when its execution was started and ended. This is done by
linking individuals of class processor_spec to the individuals of class processor_exec using
has_execution object property. The workflow step Make Decision has also input called
temperate(MakeDecision). This is represented by an individual of a port class. The data
which was captured for this workflow input is referenced by the individual of a class
port_value which is linked to the individual of a port class using has_value_bindining
object property. The actual name of the file in which the data is stored is provided in a
data property of an individual of port_value type.

Integration of workflow instance and model

We need to establish a link between the workflow model and the workflow instance
(provenance traces), so that we know which data was collected for which workflow steps.
Ontologies can be integrated through a mapping that specifies relations between the
components of two ontologies. Hence, the mapping specifies only how the information
stored in two separate ontologies relates to each other, but do not merge them. In our
case, the mapping describes how the workflow model relates to the workflow instance.

Ontology mapping can also be used in ontology merging, when two ontologies are copied
into a single ontology and the concepts are unified using the defined mapping. This
can be useful in settings when different ontologies describing the same phenomenon are
merged to create a new common vocabulary. In our setting we do not design a new

7http://www.ifs.tuwien.ac.at/dp/process/projects/provenanceExtractor.html
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Figure 4.12: Janus ontology depicting provenance of the weather workflow for the Make
Decision step.

ontology but reuse existing well-established ontologies for the purpose of documenting
workflow execution.

The ontology integration through ontology mapping results in a low coupling of ontology
instances. This enables us to link dynamically multiple workflow instances to a single
workflow model without the need of defining additional context model extensions for the
management of workflow instances. Furthermore, it follows the principle of modularity
that is the main design principle of the context model.

We identified a mapping of concepts between the workflow instance (Janus ontology) and
the core ontology of the context model:

• port is equivalent to Business Object

• workflow_spec is equivalent to Business Process

• processor_spec is equivalent to Business Process

The provenance traces of the workflow execution need to be integrated with the workflow
model taking into account this mapping and observing the naming convention used
to label the individuals of the Janus ontology. The fact that both the workflow_spec
and the processor_spec classes map to the Business Process does not result in loosing
any information that is need during the VFramework application. This is because the
Archimate specification assumes that the business process can contain sub-processes
that are particular process steps. Both the process and its steps are modelled using the
Business Process class.
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Figure 4.13: Integration of the provenance traces and workflow model using SPARQL
queries on the example of the weather workflow.

Figure 4.13 depicts the workflow model integration with the provenance traces. It
links the complete Janus ontology with the rest of the workflow context model. For
presentation purposes we did not depict all of the Janus elements that were visible in
Figure 4.12. In Figure 4.13 we can see that the workflow step Make Decision has the input
temperature. The data collected for this input is stored in [MakeDecision][temperature]-
7030832074416806461.txt file, which is also part of the provenance. For the workflow
step we can read the date and time when the execution of the workflow step was
started. Besides this, we can also observe in what way the names of elements describing
the workflow model (business step and its input) correspond to the labels used in the
provenance traces. The following pattern is used:

• The label of the processor_spec is identical with the name of the Business Process.

• The label of the port is a concatenation of names of the Business Object and the
Business Process that are connected using either hasAccessTypeRead or hasAc-
cessTypeWrite relation.

We use this observation to automatically generate SPARQL queries. First, we query the
workflow model to get a list of Business Processes and Business Objects. Second, we
construct SPARQL queries using a template that is filled with results of the previous query.
Finally, we execute the constructed queries on the Janus ontology. Figure 4.14 depicts one
of the generated queries for the weather workflow. We incorporated this mechanism into
the VPlanComparator (see Section 6.2) which is a tool used for comparison of provenance
traces during validation.
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Figure 4.14: Example of a SPARQL query that integrates the workflow model with the
provenance information for the weather workflow.

Extension of workflow model with file format information

We also use the provenance traces to enrich the context model with information on the
data format of each of the outputs of the workflow steps. As explained in the next section,
this information facilitates the validation process by allowing to choose a correct data
comparison tool. We obtain this information by running the DROID8 characterisation
tool that performs automated identification of file formats. It uses information from the
PRONOM [Bro08] file format registry and it can identify over 250 file formats, with more
formats being added continously. We use the PREMIS ontology [PRE08], which is an
international metadata standard widely used in the digital curation domain, to store the
format information and to extend the context model.

The integration of the PREMIS ontology and the workflow context model is depicted in
Figure 4.15. We use the weather workflow to demonstrate in what way the information
on file format is added to the output of a workflow step. The workflow step Visualise
Temperature has the plot output that is modelled as a Business Object. The PREMIS
information is linked to the Business Object using realizes relation that is always used to
link objects that provide more concrete information [Gro12]. The provenance data is a
physical file for which the format analysis was performed, hence the PREMIS ontology
models it as a File that has Object Characteristics for which a Format is one of possible
characteristics. The information on file formats is stored in a central registry, therefore
the address of a registry, as well as a specific key value for an identified format is
provided. In the provided example, the Portable Network Graphics (PNG) Format has a
pronom/fmt/11 key in the PRONOM registry. For other outputs (not depicted in the
Figure, for complete integration see Figure A.6) we identified following file formats:

8http://sourceforge.net/projects/droid/
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Figure 4.15: Extension of the context model with information on file formats using
PREMIS ontology for the weather workflow.

• XML (pronom/fmt/101 ) for xml_text outputs of steps ExtractTemperature and
ExtractWeatherType

• PNG (pronom/fmt/11 ) for the plot output of the Visualise Temperature step

• Plain Text (pronom/x-fmt/111 ) for all other outputs

4.2.5 Step summary

We performed dynamic analysis of dependencies that are identifiable only during workflow
execution. We used the Process Migration Framework (see Section 2.7) to monitor work-
flow execution and identify files, Debian packages and services used during computation.
These local dependencies were used to extend the workflow model created in the previous
step.

Furthermore, we analysed possible changes in web services that are external dependencies
of workflows. We described how to monitor workflow interactions with such services and
proposed creating a mock-up service that is based on an intercepted traffic, to ensure
repeatable conditions during workflow re-execution. For that purpose we used Web
Service Monitoring Framework.

Finally, we described how we capture and model the actual data processed by the
workflow. We showed how using SPARQL queries the provenance traces are integrated
with the workflow model. We also demonstrated in what way the workflow context model
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Figure 4.16: Overview of the context model parts instantiated in the result of completing
the Run dynamic analysis step of the VFramework.

is extended with information on file formats that are automatically detected during
provenance analysis.

Figure 4.16 depicts the state of the workflow context model after completing the Run
dynamic analysis step of the VFramework. Three parts were added to the workflow model
core, which was created in the previous step, these parts are: workflow dependencies,
workflow instance data, and file format specification (see Figure A.7 for details). Compared
to the Figure 3.3, which depicts all parts of the context model instantiated during the
VFramework application, only the validation requirements part is missing. We add this
part in the Define validation metrics step of the Framework that is described in Chapter
5.

The outcomes of this step are:

• Workflow context model extended with information on infrastructure components
needed to execute the workflow and also with file formats of each workflow output

• Dependency report summarizing workflow dependencies in a human readable form

• Dump of intercepted communication between the workflow and external services

• Provenance traces holding the actual values of executed workflow instances

• Copy of data files accessed by the workflow during execution

4.3 Summary
In this chapter we described in detail the Run static analysis and the Run dynamic
analysis steps of the VFramework which is a framework for verification and validation of
workflow re-executions.

Besides a detailed description of the VFramework steps we also presented tools that can
be used to foster comprehensive workflow context description, automatic data collection
and comparison. We based our solution on a context model which is an extensible
ontology allowing for description of workflow and its dependencies.
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Furthermore we showed how the automated context model analysis enables identification
of workflow boundaries and in what way the external services being outside these
boundaries can be monitored to create evidence needed for re-executing and validating
workflows.

In the next chapter we present the VPlan which is an ontology for description of validation
requirements.
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CHAPTER 5
Validation requirements

In this chapter we discuss what influences specification of validation requirements, how
they can be quantified and which data can be used for this purpose.

In Section 5.1 we present the Define validation metrics step of the VFramework and
discuss what influences the specification of validation requirements and in what way
we can express them. In Section 5.2 we provide a detailed specification of the VPlan
ontology that we developed for extending the workflow context model with validation
requirements and metrics.

5.1 Define validation metrics
The aim of this step is to define requirements and link them to quantifiable metrics
used for validation of workflow re-executions. Thus we need to identify what has to be
measured and in what way compared to check the correctness of a workflow re-execution.

5.1.1 Requirements

To define a universal set of requirements that can be used for validation of workflow
re-executions we performed two kinds of analysis:

• Top-down analysis taking into account the scientific method.

• Bottom-up analysis of selected workflow examples.

In the top-down analysis we took the scientific method as the starting point of our analysis.
One of its main principles is that the scientific experiment must be repeatable [Gau12].
Hence, the goal of each scientist is to build such experiments that can be re-executed and
validated for providing the same results as the original experiment. We depicted this in

67



5. Validation requirements

Figure 5.1: Top down analysis of validation requirements taking into account the scientific
method.

Figure 5.1 using ArchiMate extension for modelling motivational concepts. The scientist
is a stakeholder for whom the scientific method is a driver. The stakeholder has a goal
that is to re-execute and validate the experiment. The driver influences the goal. Hence,
the goal is realised by a requirement which states that "The results must be the same".
The requirement is phrased according to the RFC 2119 [Bra97] standard for expressing
the requirements.

To find out how to apply the above requirement to workflows we analysed the documenta-
tion of Taverna, in which we read that: “Each component is only responsible for a small
fragment of functionality, therefore many components need to be chained in a pipeline in
order to obtain a workflow that can perform a useful task.”1

Hence we know that the finest granularity of available data that can be captured in the
workflow system is its single “component”, that is, a workflow step. In terms of effort it
is possible to check all of them. For this reason we modify the requirement and phrase it:
“The results of each workflow step must be the same”.

We performed a bottom-up analysis by investigating 7 workflows from 4 different domains,
namely:

• Three workflows from the digital preservation domain

• One workflow from the music information retrieval domain

• One workflow from the sensor data analysis domain

• Two workflows from the medical research domain

For each of the workflows we brainstormed to define requirements that validate whether
the workflow re-execution was identical (or similar within an acceptable range) with the
original one. To measure the similarity of workflow executions we defined metrics that
we derived from measurements taken during both executions. We took into account the
available provenance data to identify which data is available and can be used to calculate
these metrics.

1 https://taverna.incubator.apache.org/introduction/why-use-workflows
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The analysis of defined requirements revealed that all functional requirements deal with
the correctness of a single workflow step execution and the best way to validate it was to
check each of its output ports. There were also requirements dealing with the correctness
of workflow outputs, but these are a subset of requirements expressing that each output
of a workflow step must be the same. There was only one non-functional requirement
that the computation time shall be similar.

Furthermore, we noticed that the comparison of data must take into account the format
of the data and therefore must be made using appropriate tools. For example if two PNG
images depicting the same phenomenon are compared by computing a hash value, they
can be detected as being different due to different metadata descriptions. A correct way to
perform this comparison is to compare the features of the images using software for image
analysis. In case of textual data formats using the right comparator also has an influence
on the validation result. For example, two XML documents having different ordering of
elements, but otherwise containing the same data, using a simple text comparison would
detect discrepancies, while a dedicated XML comparator ignores the ordering and thus
confirms the equivalence. There are also documents that contain headers or comments in
which a generation time-stamp is provided. For these the comparison should focus on
the actual data and ignore the time-stamps.

We also noticed that in some workflows not all of the step outputs are connected to
other steps. This is because some of the default components provide the same data in
different formats and the workflow owner decides which one to use. For example, the
XPathService that is used in the weather workflow has four outputs, but only from two
of them the data is used for further processing (cf. Section 3.2). Due to the fact that
the data for these unused outputs is also stored in the provenance traces and taking into
account that a workflow or its parts can be reused and then such outputs can be used,
we believe it is safer to validate all outputs during workflow re-execution.

Based on the top-down and the bottom-up analyses of workflows, we conclude that:

• For each workflow step we can generate a functional requirement which states that
the results produced by the workflow step must be the same.

• For each workflow step we can generate a non-functional requirement which states
that the step execution duration shall be similar.

• Each functional requirement can be evaluated by calculating metrics for each of
the outputs of the corresponding workflow step.

• The data must be compared taking into account the format of the data.

5.1.2 Metrics

The requirements cover both functional and non-functional aspects and each of them is
broken down into quantifiable metrics. The requirement is only fulfilled when all metrics
associated with it are fulfilled. In the context of this work a metric can be defined as:
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• A quantitative measure of the degree to which a system, component, or process
possesses a given attribute [IEE90].

• A calculated or composite indicator based upon two or more measures. A quantified
measure of the degree to which a system, component, or process possesses a given
attribute [Pro11].

• In mathematics, a metric or distance function is a function that defines a distance
between each pair of elements of a set [DD06].

Based on these definitions we use the metrics to quantify the distance between two
workflow executions using measures derived from captured data for each execution. For
example, in the weather workflow for the requirement “The output plot of a workflow
step Visualise Temperature must be identical”, we use the absolute error count of the
number of different pixels for each channel to measure in how far two PNG images differ.

However, providing just a metric is not sufficient, because we do not know which value of
metric corresponds to fulfilling the requirement. In the above example, we can suspect
that when the absolute error count is zero, the requirement is fulfilled. Furthermore, if we
allow alterations in the workflow execution, for example rounding errors when comparing
two floating point numbers, then we need to specify a metric target value that fulfils
the requirement. For example, we can use the Euclidean distance metric to compare
two floating point numbers and specify the acceptable tolerance to 0.1. Thus we accept
the Euclidean distance to be within this range. For example, for numbers 1.069 and 1.1
the Euclidean distance is 0.031 and is lower than 0.1. The metric value is within the
accepted tolerance and the requirement is fulfilled.

Each metric also must be assigned to a measurement point which is a place in a workflow
in which the data used for metric calculation is captured. In [GR12] authors introduced
a notion of levels of comparison. In Figure 5.2 we can see different forms of a digital
object in a system. For example, the data of a PNG plot looks differently in a file on a
hard disk, than in the system memory when it is decoded or at the analogue output of
a graphics card. For this reason, we must specify where the data used for validation is
captured. The data must always be captured in the same way. For Taverna workflows
we use the files that are part of the provenance traces or were identified as data files
accessed by the workflow.

We document the validation requirements using the VPlan ontology. Section 5.2 provides
details on the VPlan structure, metrics vocabulary, as well as the integration with the
workflow model. We also describe there how we generate requirements and metrics used
for validation of workflow re-executions.

5.1.3 Step summary

We analysed goals and drivers of scientits for validating workflow re-executions, as well
as investigated a sample of Taverna workflows. We came to the following conclusions:
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Figure 5.2: Different forms of a digital object in a system’s memory. On the left the
layers in an original system are shown, on the right the layers in a system hosting a
virtualized view-path are shown [GR12].

• Each workflow step must be validated and this should be done by validating outputs
of each workflow step.

• For each requirement a quantifiable metric must be defined.

• Each metric must also specify its target value and allowable tolerance.

• The metrics must be computed using data captured always in the same way.

• The data comparison and metric computation process must take into account the
format of data.

Based on these conclusions we automatically generate requirements, metrics and their
target values. The generated requirements validate whether the workflow re-execution
is identical. The workflow owner may adapt these requirements, either by removing or
adding some, or by relaxing conditions on target values, as well as by choosing different
metrics. Thus also similar workflow executions can be validated.

5.2 VPlan
In this section we present the VPlan ontology that we created for describing validation
requirements. In Section 5.1 we analysed how to describe validation requirements and
measure them for Taverna workflows. In this section we present how to express this
information using the VPlan and in what way the validation of workflow re-executions is
automated by generation of requirements and metrics using a controlled vocabulary that
is a part of the VPlan model. Parts of this work were published in [MVBR14].
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Figure 5.3: Relations between the models and instances of the context model and the
VPlan.

Figure 5.4: Overview of VPlan classes. Subclasses of the Metric are depicted in Figure
5.11.

5.2.1 Overview

According to the IEEE 1012 standard [IEE05] and good practices, it is essential to
document the verification and validation process, so that the criteria used to perform the
assessment are clear and well understood and that the decisions made can be traced at
any time. For this reason, we document the requirements and data collection process
using the VPlan ontology that is an ontology extending the core of the context model.
Such integration facilitates the validation process, because additional information on the
data captured for a specific workflow step can be obtained from the context model, for
example, a file format of the workflow output can be read from the context model and
used to choose a suitable way of comparing the captured data.

Figure 5.3 depicts the VPlan and the workflow context model in a layered view. It shows
their relations at the model and instance level. We distinguish between the VPlan model
and the VPlan instance:

• The VPlan model describes available classes and relations between them. It imports
the context model to reuse some of its relations to link the VPlan classes, for example,
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the association relation. Thus we reduce the complexity of the model by reusing
concepts with well-defined semantic meaning. This structure is reflected by the
class hierarchy of the VPlan model that is depicted in Figure 5.4. It contains
classes from the imported core ontology of the context model: Archimate Concept,
Aspect, Layer and also classes of the VPlan model: Metric, Metric Target Value,
Requirement, and VPlan. The Requirement class has two subclasses: Functional
Requirment and Non Functional Requirement. TheMetric class also has subclasses
that constitute a controlled vocabulary. They are not depicted in this figure. We
present them in Figure 5.11, described in Section 5.2.3.

• The VPlan instance describes particular validation requirements for a given workflow
and links a selected subset of metrics to the requirements. The VPlan instance
uses the workflow model, which we created during the VFramework application, to
define measurement points and to locate data needed for computation of metrics.
We describe this integration in Section 5.2.4. In the remainder of this section
whenever we refer to the VPlan we mean the instance, if not stated otherwise.

5.2.2 Classes and their properties

In this section we describe the VPlan classes and their properties. We first present their
overview by describing the purpose of each class and listing applicable properties, then we
explain on the weather workflow how to use them to formulate validation requirements.

The VPlan classes and properties are:

• VPlan - root of the ontology (class)

– hasRequirement - links the root to the requirement (property)

• Requirement (Functional Requirement / Non Functional Requirement)
- specifies the validation requirement

– association - links the requirement to the part of the workflow model for which
the requirement was specified

– description - stores the description of the requirement

• Metric - a distance measure to quantify the associated requirement

– isCalculatedFor - specifies the measurement point by linking to the part of
the workflow in which the data for calculating the metric is captured

– hasMetricTargetValue - links to the metric target value

• Metric Target Value - an indicator for the associated metric stating whether its
value fulfils the requirement

– value - specifies the value of the metric for which the requirement is fulfilled
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– tolerance - specifies the acceptable range within which the metric can differ
from the value

Figure 5.5 presents an excerpt of the VPlan for the weather workflow. We can see
that the VPlan root element has two requirements: Functional Requirement R2 and a
Non Functional Requirement R3. Each of them has a data property description that
express the requirement, for example, the R2 requirement states that The output plot of
a workflow step Visualise Temperature must be identical. The central part of the figure
depicted in yellow represents the workflow model. Both requirements are linked to a
workflow step Visualise Temperature. Hence, we know that both of them were formulated
for this workflow step and if the validation requirement fails, then this means that the
changes were detected in this step.

Figure 5.6 extends the previous figure with information on Metrics. Any number of
Metrics can be defined for a Requirement. In the given example we can see that for each
Requirement one Metric was defined. The Requirement R2 has metric Absolute Error
Count, and the Requirement R3 has metric Execution Duration Ratio. Each Metric has an
annotation comment defined in the VPlan model that provides verbal explanation of the
metric. For each metric we specified a measurement point using isCalculatedFor relation.
For Taverna workflows we capture data at the outputs of workflow steps to compute
metrics related to functional requirements. Therefore, we connected the Absolute Error
Count metric to the Business Object plot that is the workflow step output of the Visualise
Temperature step. The Execution Duration Ratio metric quantifies a non-functional
requirement that deals with a computation time of a single step. Hence we need to
monitor a single step, not an output. For this reason we connected the metric to the
Business Process Visualise Temperature.

For each Metric we specify its target value, that is, a value for which the associated
requirement is fulfilled. Figure 5.7 extends the Figure 5.6 with information on Metric
Target Value. The MTV1 value is zero and its tolerance is also zero, hence, the metric
Absolute Error Count must be zero, so that the requirement R2 is fulfilled. In other
words, the images produced in two executions of the workflow must be identical. In
case of MTV2, its value is one and the tolerance is 30%. Thus the value of Execution
Duration Ratio metric should be within the 0.7 and 1.3 range. This means that the actual
computation time for a workflow step can differ up to 30% and the workflow execution
is still valid. As a result, the VPlan models not only strict requirements for identity of
workflow executions, but also relaxed requirements that allow for validation of similar
executions.

5.2.3 Controlled vocabulary of metrics

This section presents a controlled vocabulary of metrics that we use for breaking down
validation requirements. The metrics are grouped into categories that are depicted in
Figure 5.8. In the remainder of this section we explain in what way we formulate the
metrics and how we derived them for each category.
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Figure 5.5: VPlan instance depicting Requirements and their relation to the workflow
model for the Visualise Temperature step.

Figure 5.6: VPlan instance depicting Requirements and Metrics for the Visualise Tem-
perature step. Measurement points are depicted using isCalculatedFor relation.

Figure 5.7: VPlan instance depicting Requirements, Metrics and corresponding Metric
Target Values for the Visualise Temperature step.
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Figure 5.8: Categories of metrics defined in the VPlan.

Figure 5.9: Taxonomy of criteria in digital preservation [Bec10].

In the metric specification process we aim from the very beginning on automation of the
validation process and hence we focus on existing tools supporting comparison of specific
file formats. We also analyse related domains to identify in what way the problem of
expressing validation metrics is addressed.

A comprehensive study that presents the preservation planning process and discusses in
what way the effects of applying digital preservation actions can be evaluated is presented
in [Bec10]. The author created a taxonomy of criteria that are used when evaluating a
preservation action. Figure 5.9 depicts this taxonomy.

Although in our setting we do not perform preservation actions, the Outcome Object
category applies to validation of workflow re-executions, because it deals with validation
of properties of digital objects. For requirements belonging to this category and stating
that the results of both computations must be the same the authors suggest the following
way of computing metrics:

"For significant properties that have to be kept intact, the base measures
taken on the outcome of the preservation action have to be compared to the
base measures obtained from the original object. For example, the criterion
Textual content unchanged is measured by analysing the original object and
the outcome of the preservation action and comparing these for textual quality
to get a derived measure on a Boolean scale. We thus obtain this measure by
comparing the text content of the original object to the text content of the
action result." [Bec10]

This aligns with our approach of breaking down requirements into quantifiable metrics
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that are computed using the captured data for both workflow executions. Furthermore,
the author uses discrete metrics to quantify requirements expressing identity of objects. In
the majority of the VFramework applications the validation metrics will be automatically
generated and therefore the identity of workflow executions will be tested. For this reason
we defined for each metric category a subset of metrics that are discrete metrics, for
example, Page Number Equality for PDF Format Metrics.

The discrete metrics abstract the actual computation algorithm. Thus, they do not
specify in what way the metric is computed, but allow all algorithms of a given class to be
used, as long as they detect in a correct way the identity of objects. Let us explain it using
an example. For comparison of strings we can use, for example, Jaro Winkler distance or
Hamming distance. When we compare two different strings using these algorithms, both
of them detect changes but quantify them differently. Each result can be transformed to
provide a valid value for a discrete metric that is either zero when the strings match or
one when they are different. Hence, the actual values produced by these algorithms are
not important, as long as they can be made discrete. This results in a broader choice of
software tools that can be used for automation of workflow re-executions validation.

We also devised non-discrete metrics that are used for validating executions similarity.
They provide fine grained information on detected discrepancies. Furthermore, a tolerance
that specify allowable deviations from the metric target value can be defined for them.

File format based metrics

The analysis of sample workflows in Section 5.1 revealed that the metric computation
process must take into account the format of captured data. We identified eight different
file formats in the analysed workflows. Table 5.1 provides an overview of file formats,
analysed software tools and metrics. Further file formats can be added to the VPlan.
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Table 5.1: Overview of file format based metrics that are modelled in the VPlan.

File
Format Tool support Metrics
HTML Daisy Diff 2 is a Java library that

compares HTML files. It highlights
added and removed words and anno-
tates changes to the styling.

Web Page Appearance Equality: The
appearance of the page is the same.
Web Page Content Equality: The
content of the web page is the same.

XML XMLUnit3 provides helpers to vali-
date the document against an XML
Schema, and compare XML docu-
ments against expected outcomes4.

Number Of Different XML Nodes Ig-
nore Order : The files contain the
same elements in any order.
Number Of Different XML Nodes
Keep Order : The files contain the
same elements in the same order.
XML Header Equality: The xml
headers are the same.

MP3 Feature extraction tools identify au-
dio fingerprints. RPextract Music
Feature Extractor5 can be used for
this purpose.
Mp3agic6 can be used to extract
MP3 file metadata, but equality of
metadata is not a sufficient condition
for files to be the same.

Audio Fingerprint Equality: Audio
fingerprints match.
Audio Length Equality: Files have
identical length.
Audio Bitrate Equality: Files have
identical bitrate.

TEX Latexdiff 7 is a Perl script for visual
mark up and revision of significant
differences between two LATEX files.
Changes not directly affecting visi-
ble text, for example in formatting
commands, are still marked.

Number Of Visible Differences: Files
have no visible differences (content
and outlook are identical).
String Type Metrics: Files are iden-
tical (commands and contents are
identical)

2https://code.google.com/p/daisydiff/
3http://www.xmlunit.org
4http://xmlunit.sourceforge.net/userguide/html/ar01s03.html
5http://www.ifs.tuwien.ac.at/mir/muscle/del/audio_extraction_tools.html#RPextract
6 https://github.com/mpatric/mp3agic
7http://ctan.mirrorcatalogs.com/support/latexdiff/doc/latexdiff-man.pdf
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PDF DiffPdf 8 produces a PDF with
marked changes.
PDFs can be converted to PNGs us-
ing ImageMagick and their visual
equality can be compared.
The text content of PDFs can be ex-
tracted using Apache Tika9 and com-
pared using Diff-Patch-Match 10.

Number Of Pages With Different Ap-
pearance: Number of pages that look
different.
Page Number Equality: The doc-
uments have the same number of
pages.
Text Content Equality: The docu-
ments have the same text content.

ZIP Zip can be compressed using dif-
ferent compression methods. The
header contains last modification
date and time. Therefore we com-
pare contents of the file by compar-
ing its bit streams using Java.

Number Of Different Files: The
number of different files within the
archive.

PNG ImageMagick11 is a free and open-
source software suite for displaying,
converting, comparing, and editing
raster image and vector image files.
It can read and write over 200 image
file formats.

Image Fingerprint Equality: Image
fingerprints match.
Image Resolution Equality: Image
resolutions are the same.
Absolute Error Count: Absolute Er-
ror count of the number of different
pixels .

8https://github.com/vslavik/diff-pdf
9https://tika.apache.org

10https://code.google.com/p/google-diff-match-patch/
11www.imagemagick.org/Usage/compare/
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Figure 5.10: Categorization of data type based metrics in the VPlan.

Data type based metrics

The workflow engine passes values between the steps’ outputs and inputs without
documenting their data type. Hence the provenance traces do not contain information on
the data type and by default all values are saved as strings in the text files. The DROID
characterization tool analyses these files and detects file formats. For the files that were
recognized as Plain Text format we perform additional analysis of their datatypes and
look for integer and floating point numbers. Thus we can use a set of metrics that better
fits the data type.

We performed a literature review to define a set of metrics for strings, integers and floating
point numbers. In [CRF03] authors analysed metrics that can be used for computation
of distance between strings, while authors of [DD06] provide a “dictionary of distances”
that can be used as metrics in mathematics to compare numeric values. Based on this
review we created a categorization of metrics on account of datatype that is presented in
Figure 5.10.

To demonstrate the impact of data type on choosing the right metric we use the weather
workflow. One of the inputs of the Make Decision step is an integer value expressing
the temperature. This input was detected as a Plain Text format, but it is also an
integer data type. If the value of temperature in the original execution was 0 and in
the re-execution was 273, then depending on a metric used we would obtain different
information:

• Hamming Distance is three. This means that the compared strings differ in three
positions. We would use this metric by default, if we did not know the data type of
the value.

• Euclidean Distance is 273. This means that the temperature is by 273 degrees
different (the distance between integers is 273).

Both of these metrics detect discrepancy and both of them can be used to validate
identity of workflow re-execution, however, the second one is more informative. This is
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because the correct data type was used for metric computation. In the given example,
the distance 273 can indicate that the temperature unit was changed from Celsius to
Kelvin and in fact the temperature is the same.

Hash based metrics

Workflows use external software libraries. The results are often formatted in a tool
specific format that is identified by DROID as a Plain Text format. For example, the
Music Classification workflow that we describe in Section 7.1.1 uses the Weka machine
learning software12. The results are formatted using ARFF format that “is an ASCII
text file that describes a list of instances sharing a set of attributes (. . . ) ARFF files
have two distinct sections. The first section is the Header information, which is followed
by the Data information.” 13.

Based on individual format analysis we can provide a set of metrics that, for example,
takes into account only the data section of the file. Thus, we can perform a more detailed
validation. However, identification of new metrics for a specific format can be a time
consuming processes, despite the fact that it is performed once for each format and the
results are added to the VPlan model. For formats that were not analysed, there is an
alternative approach that computes file hashes using algorithms like MD5 or SHA.

By comparing file hashes and testing their equality, we identify whether the files are
identical. The advantage of this approach is that the hash computation is supported by
processor instruction sets14 and therefore is very quick. The downside is that we can
only test whether the files are identical. This may be an issue for formats like XML that
can have the same elements ordered differently. For such files the hashes are different,
while in fact the files contain identic data. Moreover, comparison of hashes can also fail
for other non-text based formats like for example JPEG. The same JPEG image after
reading and writing generates different image data and thus a different hash value. This
is due to the lossy compression scheme of JPEG image format. For this reason, we apply
Hash Based Metrics only to file formats for which no Format Based Metrics are defined
in the VPlan, or to Plain Text files for which no data type was identified.

Image and Audio metrics

Authors of [DD06] provide a classification of metrics that can be used in audio and image
processing. The image and audio metrics are independent of the file format. Therefore
they are always a subset of metrics that can be applied for validation of audio or image file
formats. For example the Absolute Error Count metric that defines number of differing
pixels per channel can be applied to both PNG and JPEG images. For this reason the
Image Metrics are a sub class of the PNG Format Metric class (see Figure 5.11). If a new

12http://www.cs.waikato.ac.nz/ml/weka/
13http://www.cs.waikato.ac.nz/ml/weka/arff.html
14https://software.intel.com/en-us/articles/intel-sha-extensions
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image format is added to the dictionary, then the Image Metrics can become a sub class
of this new format. Thus we evade multiple repetitive definitions of the same concepts.

For the same reason we use sub classing of metrics in other cases. For example, the
String Type Metrics are a subclass of the Data Type Based Metrics, and the TEX Format
Metric. This means that the metrics for string comparison can be used when a string
data type was detected or when we consider the contents of Latex files to be strings.

Performance metrics

We used the ISO25010 standard [ISO10] to analyse possible metrics for non-functional
requirements. We focused on the product quality model that categorizes product qual-
ity properties into eight characteristics: functional suitability, reliability, performance
efficiency, usability, security, compatibility, maintainability and portability.

The performance efficiency category is the only one that fits to validation of non-functional
requirements of workflow re-executions. The other categories could be applied to the
assessment of workflows in general, for example, to evaluate their learnability. The
performance efficiency is split into three sub-characteristics:

1. Time behaviour - degree to which the response and processing times and throughput
rates of a product or system, when performing its functions, meet requirements.

2. Resource utilization - degree to which the amounts and types of resources used by a
product or system when performing its functions meet requirements.

3. Capacity - degree to which the maximum limits of a product or system parameter
meet requirements Parameters can include the number of items that can be stored,
the number of concurrent users, the communication bandwidth, throughput of
transactions, and size of database.

For time behaviour we defined Execution Duration Ratio metric that is a ratio between
two execution times of a component for which the metrics is measured, for example, a
workflow step or a complete workflow.

We defined metrics for resource utilization using examples described in [RR05]: Processor
Usage Ratio, Memory Usage Ratio, and Network Usage Ratio. Each of them specifies a
usage ratio for a given resource between two executions.

We did not define metrics for capacity, because the aim of the framework is to identify
possible discrepancies between executions of a workflow, rather than to test the capacity
of the software and hardware used to implement the workflow.
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Figure 5.11: Detailed overview of metric categories in the VPlan.
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5.2.4 VPlan instance generation and model integration

To automate the validation process we implemented the VPlanAssistant tool that au-
tomatically generates the VPlan instance for workflows for which identity should be
confirmed. In this section we describe this process and explain in what way the VPlan
integrates with the workflow model.

The VPlan is generated in the Define validation metrics step of the VFramework (see
Section 5.1). We use the workflow context model that contains description of workflow
steps and outputs including information on file formats for each output. Furthermore,
we use the captured data of the original execution to identify data type for outputs that
have Plain Text format.

Figure 5.12 depicts an excerpt of the VPlan for the weather workflow. In comparison to
Figure 5.7, Figure 5.12 presents additional information on a file format detected for a
workflow step output. In the remainder of this section we use this figure to illustrate
how we generated the VPlan for the weather workflow. We begin with presenting a list
of steps performed to generate the VPlan and then we discuss each of them.

We repeat the following procedure for each workflow step:

1. List outputs of the workflow step.

2. For each output of the workflow step:

a) Generate one Functional Requirement and link it to the step.
b) Read the file format from the workflow model.
c) Create Metric based on the file format and link it to the Requirement.
d) Create Metric Target Value enforcing values identity.
e) Link the Metric to the workflow model.

3. Generate one Functional Requirement that groups together other Functional Re-
quirements generated for a given step.

4. Generate one Non Functional Requirement and link it to the workflow model.

a) Create Performance Metric and link it to the Non Functional Requirement.
b) Create Metric Target Value and link it to the Performance Metric.

For each workflow step we list its outputs using SPARQL queries that find Business
Processes that are connected using hasAccessTypeWrite relation with Business Objects.
In the analysed example we focus on the workflow step Visualise Temperature that is
depicted in the centre of Figure 5.12.

This step has one output for which we automatically define one Functional Requirement.
For that purpose we use a template that expresses the Functional Requirements in the

84



5.2. VPlan

Figure 5.12: VPlan

following way: "The output <output name> of the workflow step <step name> must be
identical". We substitute the <output name> and <step name> variables with plot and
Visualise Temperature names respectively.

Each requirement has a label that consists of fixed letter ‘R’ and an integer number that
is incremented each time before a new requirement is created. In the given example, the
label of the Functional Requirement is R2. We use the labels for our convenience only
and they have no impact on the ontology integration. For other VPlan classes we create
labels by analogy.

We use the SPARQL queries again to read from the workflow model information on the
file format of the step output. Once we know the format, we use the controlled dictionary
of metrics (see Figure 5.11) defined in the VPlan model to choose the right metrics.

• If the identified file format is Plain Text:

– Analyse provenance data to identify the data type.
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We read data from the provenance traces of the original execution and try
parsing it into Integer, Double or String type in Java. For example, the
temperature input of the Visualise Temperature step contains value 12 that
can be parsed to all of these types. However, for the numeric formats the tool
discards String as a viable option and selects Integer, because it is a subset of
Double.

– Select Data Type Based Metric using the identified data type. If the data type
was not identified, then use the Hash Based Metric.
Continuing the example from the point above we select the Euclidean Distance
for the Integer Type Metric.

• If the identified file format is one of those for which metrics were defined in the
VPlan and is different from Plain Text:

– Find Metric category within the File Format Based Metrics that corresponds
to the identified format.
For the identified PNG format we found the PNG Format Metric category.

– Select discrete metrics that are direct subclasses of the selected category and
which have no further subclasses. All discrete metrics in the VPlan have the
suffix “Equality”.
The PNG Format Metric contains Image Fingerprint Equality and Image
Resolution Equality metrics that are its direct subclasses and have no further
sub classes.

– For subclasses that have further subclasses select all their discrete metrics, or
choose one metric at random if no discrete metrics are present.
The Channel Metric is a subclass of the PNG Format Metric, but contains
six further subclasses. In the design of the VPlan we assumed that metrics
within the same category can be used interchangeably. For this reason we
select at random one of the Channel Metrics, because there are no discrete
metrics. We select the Absolute Error Count.

• Else:

– Select one of the Hash Based Metrics.

To recap we select and instantiate three metrics for the plot output of the Visualise
Temperature step. These metrics are: Image Resolution Equality, Image Fingerprint
Equality and Absolute Error Count. For brevity only the last one is depicted in Figure
5.12 (for full model see Figure A.8).

For each of these metrics we generate their Metric Target Values and set the value and
tolerance to zero, so that only identical executions fulfil the requirement. We also added
missing connections to the model that linked the Metrics to their Metric Target Values,

86



5.2. VPlan

as well as the Metrics to the corresponding workflow step outputs for which they are
defined.

We generate an additional Functional Requirement that groups the Functional Require-
ments of the Visualise Temperature step. This requirement follows the following pattern:
"The workflow step <step name> must have identical outputs". We group the require-
ments under such high level requirements for a better overview of results.

We generate the Non Functional Requirement using the template: “The workflow step
<step name> shall have similar execution duration” and substitute the <step name>
variable with the name of the step, that is, Visualise Temperature. We create the
Execution Duration Ratio metric that is a subclass of Timing Metrics defined in the
VPlan. We set its Metric Target Value by default to one and allow for 30% deviations.
We chose this value arbitrary. We have to allow for some tolerance when quantifying
non-functional requirements, because even when running the same workflow on the same
machine it is almost impossible to have exactly the same execution duration.

We repeat the above described procedure for all workflow steps and thus generate the
VPlan instance.

The requirements are generated in the same way for the data files identified by the PMF,
because all these data files are assigned to a Business Process representing the workflow,
that is a parent node for all the workflow steps, which are also modelled as Business
Processes.

5.2.5 Summary

In this section we presented the VPlan that is an ontology for description of validation
requirements. We described its model by specifying classes and relations used to connect
them. The VPlan model reuses relations from the context model to reduce the semantic
complexity by reusing well-defined concepts. The VPlan contains also a comprehensive
vocabulary of metrics that are used for breaking down validation requirements. These
metrics are later referenced by the VPlan instances to quantify requirements for the
analysed workflows.

The controlled vocabulary of metrics groups the metrics into categories taking into account
the data format identified for the captured data, as well as data type. Furthermore, it
groups metrics into generic categories like Audio or Music, so that these metrics can be
linked to new formats added to the vocabulary. Thus we evade double definitions of the
same concepts and ensure coherence of the vocabulary. The metrics were derived based
on a literature review and an analysis of sample workflows. In the metric specification
process we aimed from the very beginning on the automation of the validation process
and hence we focused on existing tools supporting comparison of specific file formats
that are later used to compute these metrics.

We also demonstrated in what way the VPlan instance is automatically generated
to validate workflows identity. For each workflow step we generated requirements,
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Figure 5.13: The VFramework steps performed in the original environment - a detailed
view.

metrics used to quantify these requirements and metric target values to specify when
the requirement is fulfilled. The generated VPlan instance integrates with the workflow
model not only by linking its requirements to particular workflow elements for which the
requirements were specified, but also by depicting in which parts of the workflow the
data for metrics computation must be captured.

5.3 Summary
In this chapter we analysed goals and drivers of scientits for validating workflow re-
executions, as well as investigated a sample of Taverna workflows. Based on this analysis
we designed the VPlan that is an ontology for description of validation requirements. We
also demonstrated in what way the VPlan instance is automatically generated to validate
workflows identity.

Figure 5.13 depicts a detailed view on the VFramework steps performed in the original
environment. The first two steps which are Run static analysis and Run dynamic analysis
were described in Chapter 4, while the last step which is Define validation metrics was
described in this chapter. The context model which was gradually extended during the
application of the VFramework in the original environment is depicted in Figure 5.14. It
contains all five parts of the workflow context model (cf. Figure 3.3). The information
contained in the workflow context model is later used for reference when the workflow
re-execution is verified and validated. This is described in Chapter 6.
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Figure 5.14: Overview of the context model parts instantiated during the VFramework
application for the Visualise Temperature step of the weather workflow.
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CHAPTER 6
Verification and validation of

workflow re-execution

In this chapter we describe the VFramework steps that are performed when the workflow
is re-executed in a new environment. These steps are depicted in Figure 6.1 and are:
Verify environment and Validate workflow. To complete them we collect information
about the re-execution from the new environment and compare it to the information
collected in the original environment (see Chapters 4 and 5), which was stored in the
context model.

6.1 Verify environment

This is the first step performed in the environment in which the workflow is re-executed.
The verification process is iterative and coupled with the validation process that is
described in Section 6.2.

Figure 6.2 presents an overview of the verification and validation processes. We start
by copying the workflow to a new environment in which the experiment is replicated.
We run the workflow and monitor its execution using the PMF to create the context
model of the re-executed workflow. In case of Taverna workflows when the workflow
model is defined in the workflow file, it is safe to assume that the workflow model has
not changed, that is, has the same steps and outputs. For this reason, we can skip the
static analysis of the workflow and perform only the dynamic analysis. In cases when the
VFramework is applied to verify and validate workflows that were re-engineered, then
the static analysis should be perform as well to identify differences between the workflow
models. Having captured the context of the workflow re-execution, we compare it to the
original workflow model to verify whether the same dependencies were used to compute
the result. If the workflow is executed in an environment configured in the exactly same
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Figure 6.1: Overview of the VFramework steps performed in the redeployment environ-
ment.

Figure 6.2: Verification of workflow re-execution as an iterative process.

way, then there are no differences between the context models. However, researchers can
also replicate the workflow executions in already existing environments in which they
used to run other workflows. Then there can be differences between the models, but
they can have no impact on the result of the computation. To find out whether the
differences between environments have impact on the workflow re-execution, we validate
the re-execution in the Validate workflow step of the VFramework. When the validation
is positive, that is the workflow re-execution matches the original execution, then such
deviations are acceptable. Otherwise, the workflow environment has to be reconfigured
so that the differences are eliminated. This process is iterative and repeated until the
re-execution is valid or no differences between configurations of both environments exist.
If the environment configurations are identical and the validation still fails, then this
implies that the workflow re-execution is not replicable and may indicate that the original
data was fabricated.

In the remainder of this section we describe how we perform each of the steps depicted
in Figure 6.2 using the weather workflow as the example.
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6.1.1 Redeploy workflow

The installation of the workflow in a new environment can be done in two ways: manually
or semi-automatically using PMF. Regardless of the installation approach the rest of the
verification process is performed in the same way.

The semi-automatic installation with PMF uses information stored in the context model
to configure a new environment from scratch. This approach sometimes requires manual
assistance, because not all of the workflow dependencies can be automatically sourced, for
example packages that are not available in public repositories. PMF lists these artefacts.

The manual installation is supported with information provided in the dependency report
created in the Run dynamic analysis step. This way of installation may be preferred
by users who do not want to set up a new virtual machine, but want to install the
workflow in an existing system. Another reason could be that the workflow owner was
only willing to publish the context model, but not the automatically collected binaries
from their system, because they had concerns that too much sensitive information would
be revealed.

To manually set up the workflow environment we first check in the dependency report
created for the original execution whether the workflow has any local tools invocations
and whether the tools that are needed to complete them are installed in the system. On
a system that uses packages we run the package manager to install all of the previously
identified packages. Then we analyse which additional files and libraries were used by
the workflow and copy them into appropriate locations. Some of them are likely Java
libraries used by the Beanshell scripts that need to be copied into an appropriate folder
of the workflow engine. However, there may be also other files which may be parts of
other software running in the background. In such cases we need to perform manual
investigation to identify what is the file used for and how it should be installed. Such
investigation can also be needed during the semi-automatic installation made using the
PMF, because such background processes are beyond workflow monitoring boundaries.

We have to make sure that external dependencies of the workflow are reachable. By
capturing the provenance traces and recording traffic to the external services, we created
the evidence that allows us to validate whether the external services work in the same
way. If the service changed its functionality, then this will be detected during validation
phase. Therefore, here we only need to set up mock-ups if we identified in the original
environment that the original services cannot be used, because of lack of determinism
(see Section 4.2.3).

We redeploy the weather workflow on a machine that is used by our colleague to run
his own workflows. This environment should be in theory compatible with the original
environment, because it is possible to run other Taverna workflows in it. Using the
dependency report (see Figure 4.8), we make sure that the dependencies identified in the
original environment are present. According to the report, we have to:

• Check whether the identified Debian packages are installed in the system. We do it
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using a package manager and install the missing packages if necessary.

• Copy identified files and libraries into corresponding folders. The weather workflow
uses one Java library chart-1.0-jar-with-dependencies.jar that is a dependency for
a Beanshell.

• Configure external dependencies. In the Run dynamic analysis step we identified
that the workflow calls a web service that is non-deterministic and decided to create
a mock-up. We run the mock-up now and spoof the identified IP addresses by
editing the hosts file on the machine in which the workflow is executed. Thus all
requests from the workflow engine are forwarded to the mock-up and not to the
original service that would provide different responses than in the original execution.
We do not introduce any direct changes into the workflow file.

6.1.2 Verify re-execution

We monitor every test instance for which the provenance traces were collected in the
original environment. Hence, we repeat the procedure described below for each of the
test instances. For the weather workflow we use one test instance. We read the values of
the workflow input values from the provenance traces of the original execution using a
SPARQL query.

During the verification step we make sure that all dependencies that are needed to
re-execute the workflow are in the system and that they are in fact used by the workflow.
For that purpose we employ the same approach as in the original environment, that is, we
run the PMF to monitor the workflow execution. Thus we create a context model of the
re-executed workflow that we compare with the context model of the original workflow.
We compare them using Ontology Diff Tool (see Section 4.2).

Figure 6.3 depicts the results of comparison for the weather workflow. Figure 6.3a
presents components that were not present in the original system but are used during
workflow re-execution. We can see that:

• Two data files are accessed. The first one is a font property file used by Java, while
the second is a Java library additionally loaded by the workflow engine.

• The workflow accessed datapoint.metoffice.gov.uk host and three other IP addresses.
These are the default addresses for the localhost on which the mock-up for the
datapoint.metoffice.gov.uk was hosted. Thus we see that the mock up was properly
configured.

• The operating system is Linux Mint 17 Qiana and is different than in the original
execution.

• A different user was running the workflow.
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Figure 6.3b presents components that were used during the original computation, but
are not used during the re-execution. We can see that:

• The workflow does not use two data files that are dependencies of the fonts installed
in the system.

• The workflow does not access the original web service, thus we see that the mock-up
is used.

• The original system was Ubuntu 15.04 and is not used.

• There are 48 Debian packages that are not used.

The workflow context models differ also in Infrastructure Functions that represent the
system processes created in the operating system during workflow execution. Linux-based
systems use the fork1 system call for that purpose and the order of process creation is
non-deterministic. This means that two workflows that produce identical results using
exactly the same resources can process the same data in a different order. The forking is
controlled by the operating system and is beyond the scope of our analysis, because it is
guranteed by the operating system, that it has no effect on the computation result. For
this reason we exclude the Infrastructure Functions from the comparison. Please note
that we still analyse resources accessed by the system processes, but do not assign these
resources to particular processes.

At this stage we conclude that the way in which the workflow result is obtained is different
than in the original execution, however, the differences do not necessarily affect the
workflow results. To check that, we perform validation as will be described in more
details in Section 6.2.

The validation failed for this re-execution. The requirement "The output plot of the
Visualise Temperature step must be identical" failed (see Figure 6.8). This means that
the rendered figures were different. Figure 6.5 depicts these figures. They contain the
same information and values, but look differently.

We analysed the verification results again and looked for possible reasons that lead to
altered results. We went through the lists of added and deleted elements and checked
which role they play in the execution process.

The most visible discrepancy between the systems was the fact that the re-executed
workflow did not use 48 Debian packages. Using a package manager we confirmed that
all of them are installed in the system. Hence, the problem was not that the workflow
engine is missing a dependency, but it simply did not even try loading it.

Then we checked the Data File that contains properties of Java fonts, but it turned out
that the file contains list of fonts installed in the system and that all unused packages
are also in this list.

1http://linux.die.net/man/2/fork
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The last difference was the additional Java library loaded by the workflow engine that
is only used in a different experiment. It was loaded, because it was previously added
to the default folder from which Taverna loads additional libraries. There was no need
to use this library when re-executing the weather workflow. Therefore, we deleted this
library and ran the workflow again, also monitoring its execution with PMF.

Figure 6.4 depicts the results of the context model comparison for the re-execution of the
weather workflow after deleting the library that was a dependency of a different workflow.
The list of differences was significantly shorter. We can see that:

• Taverna does not load any additional Java libraries.

• Seven packages providing fonts are loaded.

• Twelve packages, also related to fonts, are not loaded.

There were still differences between the environments, but we ran the validation again and
all requirements were fulfilled. Hence, the differences between the systems are acceptable
and we conclude that it was possible to replicate the workflow execution.

The differences between these two environments stem from the fact that the operating
systems are different. They are different flavours of Debian-based Linux systems and thus
consist of slightly different set of packages. The systems differ especially in the graphical
user interface and this is very likely the reason for the font packages to be different.
However, as the validation shows, this has no impact on the workflow computation results.
If it had, then we would have to change the redeployment platform to Ubuntu 15.04 to
further reduce differences between the systems.

Out of curiosity we investigated in what way the additional library impacted the workflow
engine, so that different results were produced and also different Debian packages were
used.

Taverna is a Java program that consists of multiple Java libraries that are loaded by the
Java class loader. The lib folder in which the users place additional libraries is one of
the default locations in which the class loader looks for libraries to load. All of these
libraries are loaded when Taverna is started.

It turned out that the somtoolbox_full.jar and the chart-1.0-jar-with-dependencies, which
is a dependency of the weather workflow, use the same JFreeChart library to draw
plots. The classes of this library were included in each jar file. The class loader found
the somtoolbox_full.jar first and loaded all classes found in it. When it was loading
classes from the chart-1.0-jar-with-dependencies, then it skipped the JFreeChart classes
because they were already loaded, even though the versions of the JFreeChart library
were different. The somtoolbox_full.jar used a very old version, while the chart-1.0-jar-
with-dependencies used the newest. The class interfaces remained the same, but their
implementation changed. This led to different dependencies being loaded and different
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visualisations being produced. For this reason we recommend redeploying workflows into
clean Taverna installations.

6.1.3 Step summary

We used the evidence created it the Run dynamic analysis step of the VFramework to
redeploy the workflow in a new environment. We used a mock-up of a web service in
order to ensure determinism of the workflow execution.

We monitored the execution of the workflow and created its context model that we
compared with the context model of the original workflow execution. Thus we verified
whether the same dependencies are used to compute the workflow results.

We used the weather workflow to illustrate actions performed during completion of this
step. We showed that additional dependencies of other workflows that are present in the
redeployment environment can alter the way in which the workflow executes. We also
demonstrated in what way the information provided by the context model used together
with the validation requirements helps in identification of such alterations. Finally, we
showed that it is sufficient for a workflow environment to be similar to the original
environment to produce the same results.

6.2 Validate workflow
Validation checks whether the result of workflow re-execution is correct. In Chapter 5 we
identified how to express validation requirements and in what way to measure them. In
this step we need to check whether they are fulfilled.

We validate workflow re-execution by checking whether all metrics for the requirements
defined in the step Define validation metrics are fulfilled. We compare the data and on
that basis calculate the metrics’ values using the captured data of the re-executed and
the original workflow.

We automated the Validate workflow step by implementing the VPlanComparator. Figure
6.6 presents how we use this tool. The VPlanComparator uses the context model to
source the following information from the context model:

• It reads the requirements and metrics to select the right tools for metric computation.

• It reads the measurement points to identify which data to use for metric computa-
tion.

• It reads the actual data to compute the metrics.

The context model contains links to the actual data files that were captured in the original
environment. The captured data consists of provenance traces and data files identified by
the PMF in the Run dynamic analysis step of the VFramework (see Data files used by the
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(a) Added components in the new environment that were not used in the original execution.

(b) Deleted components that are not used in the new environment but were used in the original
execution.

Figure 6.3: Comparison of software dependencies for the original and the re-executed
workflow.
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(a) Added components in the new environment that were not used in the original execution.

(b) Deleted components that are not used in the new environment but were used in the original
execution.

Figure 6.4: Comparison of software dependencies for the original and the re-executed
workflow after deleting the library that was a dependency of a different workflow.
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(a) Visualisation produced by the
original workflow.

(b) Visualisation produced by the
re-executed workflow.

Figure 6.5: The outputs of the Temperature Chart of the weather workflow for two
re-executions. Figures differ in the Y-axis labels and colour scheme. The values depicted
are the same.

workflow section of the dependency report in Figure 4.8). The context model contains
links to both sources of data. Both of them are processed by the VPlanCompartor taking
into account following differences:

• The provenance traces associate data to a particular workflow step output, while
the workflow data files identified by the PMF are linked to the element representing
the workflow that aggregates all workflow steps. Hence, if any discrepancies are
detected for the data which is part of the provenance traces, we can precisely
identify which workflow step is affected. However, in case of the workflow data files
identified by the PMF, we do not know which particular step is affected by the the
detected discrepancy. This is because of the limitations of monitoring the whole
workflow engine and not the individual workflow steps.

• The provenance traces always contain data describing workflow execution, while
the workflow data files identified by the PMF can be empty when the workflow
does not access or create files. Furthermore, to optimise the process and validate
the same data once only, we can exclude duplicates from the comparison by
specifying appropriate parameters to the VPlanComparator. For example, the
/output/TemperatureChart/1 file depicted in Figure 4.8 is identical with the plot
output of the Visualise Temperature workflow step that is already included in the
provenance traces. For this reason we can exclude the file from the comparison. As
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Figure 6.6: Overview of the validation process.

Figure 6.7: Context model depicting elements from the VPlan, workflow model and
provenance traces for the Visualise Temperature step.

a result, for some workflows this results in only provenance traces being used. Hence,
in the remainder of the dissertation we use the provenance traces to illustrate the
process of data comparison and requirements evaluation. Whenever the workflow
data files captured by the PMF are additionally used in the validation, we inform
the reader about this.

Figure 6.7 depicts integration of the VPlan with the workflow model and the provenance
traces. It combines Figure 4.13, which describes integration of provenance traces (workflow
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instance) with the workflow model, and Figure 5.7, which depicts integration of the VPlan
and the workflow model. We described in Section 5.1 how the requirements and metrics
are defined, while in Section 5.2.4 we described in what way they are automatically
generated.

We can see in Figure 6.7 that the Functional Requirement R2 is quantified using Absolu-
teErrorCount metric that is calculated for the plot output of the Visualise Temperature
workflow step. The data captured for this step is stored in file [VisualiseTemperature][plot]-
527978448906265602.txt. The VPlanComparator loads the VPlan and the workflow model
and switches between the provenance traces to read data for both executions. This is
possible because of the integration between the model and the instance data using the
SPARQL queries as described in Section 4.2.4.

We explained in Section 5.1.1 and Section 5.2.3 the impact of the data formats on the
provenance data comparison process. The VPlanComparator uses a suitable comparator
depending on the type of metric defined in the VPlan. We implemented eight comparators
that allow computation of metrics for the following file formats: HTML, MP3, PDF,
PNG, TEX, XML, and ZIP. If there is no suitable comparator for the identified format,
then MD5 hashes are computed. The architecture of the VPlanComparator allows adding
further comparators via a plugin mechanism.

The VPlanComparator takes also into account that the sequence in which particular
workflow steps are completed may sometimes differ and this has impact on the structure
of provenance traces. This is because workflow engines are often multi-thread programs.
For example, the Taverna workflow engine has a queue to which threads are submitted
for execution [MSRO+10]. If a list of values is passed to the workflow step for processing,
then for each element a new thread is created and submitted to the queue. The processing
of a next step begins when all of the threads belonging to a given step have finished their
execution. Such a design makes it possible to process several steps at the same time. If
many steps process lists of elements, there is a higher likelihood that the threads are
ordered differently in the queue. This has no impact on the final result of the workflow
run and the validity of results, but it results in different ordering of data captured for
each step. Hence, the comparison process using provenance traces is not only comparison
for equal text contents.

The VPlanComparator creates reports summarizing the validation results. The overall
result of validation is presented and violated requirements and metrics are provided, if
detected. Furthermore, detailed descriptions of metrics, their assignment to requirements,
as well data formats identified are listed.

For the weather workflow we generated eight functional requirements and six non-
functional requirements that we grouped into eight high level requirements. Each high
level requirement consists of requirements describing one workflow step and is expressed
"The workflow step <STEP_NAME> must have identical outputs". Furthermore, we
automatically identified requirements that validate correctness of workflow inputs and
outputs and also grouped non functional requirements related to execution duration of
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each step under one requirement. We performed such a grouping for a better overview of
validation results.

Figure 6.8 presents an excerpt of a validation report for the weather workflow, we can
see that:

• The workflow re-execution is not valid, because two metrics failed.

• Ids and timestamps of provenance traces for which the report was produced are
provided.

• Table 1 depicts the aggregated requirements and information which of them were
fulfilled. Requirements R2 and R7 failed, that is, the workflow output is incorrect
and the deviations were detected in the Visualise Temperature step.

• Table 2 provides details on how the requirements were evaluated. The requirements
R2 and R7 have the same sub-requirement and therefore failed for the same
reason. The requirement R7.1 was measured for the plot output of the Visualise
Temperature step and three metrics were used to validate it. Only the Image
Resolution Equality metric did not fail which implies that the workflow produced
in fact a valid PNG image, but its content differed. This is confirmed by metrics
Image Fingerprint Equality and Absolute Error Count failing.

After tracing the problems of different libraries loaded identified in the verification step,
and fixing this issue as described in Section 6.1.2, the validation confirmed successful
re-execution.

6.2.1 Step summary

The Validate workflow step is the last step of the VFramework, which produces the result
stating whether the re-execution successfully replicated the results stored in an initial set
of executions.

For that purpose we used the integrated context model consisting of the workflow model,
workflow instance, and the validation requirements to automatically validate workflow
re-execution. We implemented a tool that based on a metric type defined in the VPlan
calculates metrics’ values using data captured for the original and the redeployed workflow.
The tool creates a summary of requirements and metrics that were fulfilled and those
which failed. Based on this report we make decision on workflow validity.
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Figure 6.8: Excerpt of a validation report for the weather workflow.
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Figure 6.9: The VFramework steps performed in the redeployment environment - a
detailed view.

6.3 Summary
In this chapter we described in detail the Verify environment and the Validate workflow
steps of the VFramework that are completed in the redeployment environment to verify
and validate workflow re-executions. Figure 6.9 presents a detailed view on these steps.

We used the evidence created it the Run dynamic analysis step of the VFramework to
redeploy the workflow in a new environment. We verified whether the same dependencies
are used to compute the workflow results. We showed that additional dependencies of
other workflows that are present in the redeployment environment can alter the way
in which the workflow executes. We also demonstrated in what way the information
provided by the context model used together with the validation requirements helps in
identification of such alterations. We implemented a tool that based on a metric type
defined in the VPlan calculates metrics’ values using data captured for the original and
the redeployed workflow. The tool creates a summary of requirements and metrics that
were fulfilled and those which failed. Based on this report we make decision on workflow
validity. Finally, we showed that it is sufficient for a workflow environment to be similar
to the original environment to produce the same results.

These were the last steps of the VFramework. In the next chapter we present its evaluation
on use cases.
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CHAPTER 7
Evaluation

In this chapter we evalute the VFramework on a range of use cases. Taverna workflows
constitute the majority of workflows published on myExperiment [MR15a] - a social web
platform for exchange of scientific workflows. The evaluation of all workflows published
on myExperiment is not feasible, because the proposed framework requires collection
of data from the original environment and this can only be made by the workflows
owners. Sufficient data is not available in the portal. Without it we are not able to
detect why a workflow re-execution breaks (verification is not possible), or whether the
run is repeatable (validation is not possible). We therefore selected workflows for which
we have access to the original environment or could establish contact with the original
workflow owners. According to the study presented in [MR15a] almost 30% of all Taverna
workflows published on myExperiment use WSDL web services to perform tasks and 15%
have local tool invocations. Furthermore, almost 50% of all workflows use Beanshells
that allow users to write their own code in a lightweight Java-like scripting language.
Beanshells can import external Java libraries and therefore add further dependencies to
the workflow. The local tool invocations may also be made by the Benshells and may
require particular software tools to be installed in the environment.

For this reason we selected five Taverna workflows that resemble these characteristics.
The first workflow is from the domain of music information retrieval and presents music
classification. The second workflow deals with sensor data analysis in civil engineering.
The other three workflows are used in the clinical medical research for investigating
aspects of Huntington’s disease.

The Taverna workflow engine is available for both Linux- and Windows- based systems
and hence it should be possible to obtain repeatable workflow executions in both systems.
We evaluate to what extent the cross-platform verification, and validation using the
VFramework is possible by re-executing two of the use cases in Linux- and Windows-
based environments. We also consider to what extent the VFramework can be automated,
which framework steps must be performed manually and what is the effort required to
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complete them. Furthermore, using the music classification use case we simulate potential
changes that may occur during workflow re-execution and evaluate to what extent the
VFramework and the proposed approach for selection of validation metrics detect such
changes. The data used in the evaluation is available online1.

7.1 Music classification

In this section we present the music classification use case and describe actions performed
in the original environment, which are common for both re-executions. Then we discuss
how the framework steps are performed in Linux and Windows environments when the
workflow is re-executed. Finally, we present the simulation of changes.

7.1.1 Use case description

The first use case is a typical process in the domain of music information retrieval and
machine learning, specifically the task of musical genre classification. This task deals
with the categorisation of pieces of music, for which the category (genre) is unknown,
into one of a set of predefined categories. Genre classification is employed in music
retrieval systems. It also functions as an important mean to evaluate new techniques in
the research community.

A detailed description of workflow2 steps can be found in [MAC+15]. A schematic
overview of the experiment is presented in Figure 7.1 depicting the Taverna workflow.
The feature extraction analyses the spectrum of the music, and extracts information that
should be representative of a piece of music, such as rhythm, instrumentation, melody,
and more low-level features, into a numeric representation. Besides the music processing
and machine learning aspects, the acquisition of music data and ground truth (gold
standard) are also part of the workflow. Both are fetched from remote sources, e.g. a
content provider such as the Free Music Archive3, and websites such as Musicbrainz.org.

7.1.2 Original environment

In the Run static analysis step we generate the core of the context model using Tav-
erna2Archi and Archi2Owl converters. This is a fully automatic process. The analysis
reveals that the workflow uses one WSDL web service that we need to monitor during
the dynamic analysis.

In the Run dynamic analysis step, we execute the workflow and capture its execution
using the PMF. We use the example workflow input values as the test instance in our
experiment. These values were specified by the workflow owner in the workflow definition
file. We decided to enable automatic redeployment into a clean Linux machine and for

1https://zenodo.org/record/47252
2http://www.myexperiment.org/workflows/3626.html
3http://freemusicarchive.org/
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Figure 7.1: Musical genre classification, including fetching of data, modelled in the
Taverna workflow engine [MAC+15].

this reason we run the PMF in a mode that not only creates the context model, but
also downloads the packages and extracts the files needed to run the workflow from the
original system. The extracted data contains 20 Debian packages (123 MB) and the
Taverna home directory including all Java libraries (229 MB).

We also run and monitor with the PMF the calibration workflow (see Figure 4.6). Then
we compare both context models to reduce the workflow engine noise and generate the
dependency report that lists workflow dependencies. The dependency report is presented
in Figure 7.2, while an overview of the context model elements before the noise reduction
is depicted in Figure 7.3. The dependency report states that:

• The workflow does not have any shell calls.

• The workflow uses one external service.

• Two non-standard Java libraries are need for the workflow to execute.

• The workflow does not access files that are not included in the provenance traces.

• The workflow does not require specific Debian packages to be installed in the
system.

We use the Web Service Monitoring Framework (see Section 4.2.3) to monitor the
identified web service to check whether it is deterministic and whether we need to use a
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Figure 7.2: Dependency report for the music classification use case.

mock-up when re-executing the workflow. We use the intercepted data of the workflow
execution and monitor the service for 24 hours. The responses are always identical, hence
the service is deterministic and can be used during the redeployment.

We also save the provenance traces of workflow execution and identify file formats for
each step. We integrate this information with the context model.

To recap, we collected the following data during the Run dynamic analysis step:

• context model including provenance and file format information

• extracted data (packages and libraries)

• dependency report
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In the Define validation metrics step, we used the VPlanAssistant tool, which implements
the procedure described in Section 5.2.4, to automatically generate following requirements
and sub-requirements.

R1 The workflow step extract MP3 File Names From HTML Document must have
identical outputs.

R1.1 The output mp3Names of the workflow step extract MP3 File Names From
HTML Document must be identical.

R2 The workflow step merge To Single Vector must have identical outputs
R2.1 The output somLibVector of the workflow step merge To Single Vector must

be identical.

R3 The workflow step fetc hMP3 File Listing Document must have identical outputs
R3.1 The output contents of the workflow step fetch MP3 File Listing Document

must be identical.

R4 The workflow step extract RHSOMLib must have identical outputs.
R4.1 The output parameters of the workflow step extract RHSOMLib must be

identical.

R5 The workflow step convert Somlib To ARFF Format must have identical outputs.
R5.1 The output arff of the workflow step convert Somlib To ARFF Format must

be identical.

R6 The workflow step fetch MP3 From URL must have identical outputs.
R6.1 The output mp3ByteArray of the workflow step fetch MP3 From URL must

be identical.

R7 The workflow step encode Base64 must have identical outputs.
R7.1 The output base64 of the workflow step encode Base64 must be identical.

R8 The workflow step extract RHSOMLib _output must have identical outputs.
R8.1 The output fexResult of the workflow step extract RHSOMLib _output must

be identical.

R9 The workflow step do Classify must have identical outputs.
R9.1 The output detailedResults of the workflow step do Classify must be identical.
R9.2 The output accuracy of the workflow step do Classify must be identical.

R10 The workflow step extract RHSOMLib _input must have identical outputs.
R10.1 The output output of the workflow step extract RHSOMLib _input must be

identical.

R11 The workflow step fetch Ground Truth Document must have identical outputs.
R11.1 The output contents of the workflow step fetch Ground Truth Document must

be identical.
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Figure 7.3: Context model elements detected by the PMF for the music classification use
case.

R12 The inputs of the workflow are the same.
R12.1 The input MP3URL is identical.

R12.2 The input Ground Truth URL is identical.

R12.3 The Web Service Authentication Voucher is identical.

R13 The outputs of the workflow are the same.

R9.1 The output detailedResults of the workflow step do Classify must be identical.

R9.2 The output accuracy of the workflow step do Classify must be identical.

R14 Execution duration of each of the workflow steps shall be similar.
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Requirements R1 to R11 deal with the correctness of results produced by each workflow
step. Requirements R12 and R13 focus specifically on the correctness of workflow inputs
and outputs, while the requirement R14 is a non functional requirement that validates
workflow execution duration.

We use these requirements to get a high level overview of validation results. If any
discrepancies are detected, then we focus on the sub-requirements that were defined for
each requirement. The sub-requirements validate each output of a workflow step, for
example, the requirement R1 has a sub-requirement R1.1, and the requirement R9 has
two sub-requirements R9.1 and R9.2.

Table 7.1 shows how each of the sub-requirements is measured, that is, which metrics
are used and for which values of these metrics the requirements are fulfilled. Due to the
fact that the requirements were automatically generated and that we validate workflow
identity, the target values and tolerance for all functional requirements measured by
discrete metrics were set to zero. The non-functional requirement R14 says that the
execution duration is similar as long as the difference is not higher than 30%. The
requirements are fulfilled when all of their sub-requirements are fulfilled. For these reason
the Table 7.1 depicts only sub-requirements.

7.1.3 Re-execution in Linux

We set up the workflow in a new environment by creating a new Linux virtual machine
using PMF and the collected data. We select the same version of Ubuntu as the one that
was run in the original environment. We obtain this information from the context model.
PMF installs all packages and copies all files to the newly created virtual machine. It
also copies the Taverna workflow engine, as well as the workflow file itself. Due to the
lack of any specific dependencies, there are no manual adjustments required.

Then we re-execute the workflow on the newly created virtual machine with the PMF
capturing the execution. We compare the context models of the re-executed workflow
and the original workflow. The comparison detects no differences (apart from the number
of system processes spawned by the workflow engine, but we do not consider them in the
verification - see Section 6.1.2). Thus we verify that the new environment is compatible
with the original one.

Using the VPlanComparator we compared the provenance traces of the re-executed
workflow against the traces from the original environment. All 14 requirements are met.
The workflow outputs, as well as intermediate steps including the communication to an
external web service performed in the same way as the original execution.

The results of applying the VFramework confirm that the workflow re-execution is
replicable. The total effort required to perform the steps of the framework is summarized
in Table 7.3.
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Table 7.1: Mapping of requirements to metrics and their target values for the music
classification use case.

Requirement Metric Format Target
Value

Tolerance

R1.1 String Equality Plain Text 0 0
R2.1 String Equality Plain Text 0 0

R3.1
Web Page Content Equality
Web Page Appearance Equality

HTML 0 0

R4.1 String Equality Plain Text 0 0
R5.1 String Equality Plain Text 0 0

R6.1
Audio Bitrate Equality
Audio Fingerprint Equality
Audio Length Equality

MP3 0 0

R7.1 String Equality Plain Text 0 0
R8.1 String Equality Plain Text 0 0
R9.1 String Equality Plain Text 0 0

R9.2 Euclidean Distance
Plain Text
(Double)

0 0

R10.1 String Equality Plain Text 0 0

R11.1
Web Page Content Equality
Web Page Appearance Equality

HTML 0 0

R12.1 String Equality Plain Text 0 0
R12.2 String Equality Plain Text 0 0
R12.3 String Equality Plain Text 0 0
R14 Execution Duration Ratio N/A 1 30%

7.1.4 Re-execution in Windows

The installation of the workflow on a Windows machine is a manual process. We re-
execute the workflow on a Windows 7 machine on which the same version of Taverna as
in the original system is installed. According to the dependency report, the workflow
has only two Java libraries that need to be copied into the workflow engine directory.
There are no local tools called and therefore no equivalent Windows tools are required.
Having copied the libraries and having checked the availability of the external service,
we execute the workflow to confirm it produces no errors.

The tools that we use for the provenance traces capturing and their comparison are
implemented in Java and run on both platforms. Therefore, the provenance capturing,

114



7.1. Music classification

Table 7.2: Number of individuals, distinct classes and file size for data collected in the
music classification use case.

Indiviudals Distinct
Classes

File size
(kB)

Static CM 90 14 44
Dynamic CM 1056 10 1272
PREMIS 52 4 50
VPlan 65 12 69
CM total 1263 36 1435
Dynamic CM
- without noise

78 5 36

Provenance ontology 237 6 254
Provenance data N/A N/A 53 MB
PMF data N/A N/A 352 MB

Table 7.3: Tools and time needed for completion of framework steps for the music
classification use case.

Linux re-execution Windows re-execution
VFramework
step

Tool
support

Effort Tool
support

Effort

Run static
analysis

Taverna
Converter

5 min
Taverna
Converter

5 min

Run
dynamic
analysis

PMF,
Taverna Converter
Ontology Diff
Dependency Reporter

60 min

PMF,
Taverna Converter
Ontology Diff
Dependency Reporter

60 min

Define
validation
metrics

VPlanAssistant 5 min VPlanAssistant 5 min

Verify
environment

PMF + Vagrant
Ontology Diff

90 min
manually copy
workflow and libraries

10 min

Validate
workflow

VPlanComparator 5 min VPlanComparator 5 min
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as well as the validation process are performed exactly in the same way and require same
effort as it was in the case of re-execution on the Linux platform.

The validation report states that the workflow executions are equivalent and therefore the
workflow re-execution on a Windows machine is possible. Such an analysis was mainly
possible because of two reasons: the workflow had few dependencies, and the approach
proposed by us to use the provenance traces for validation is independent of the platform
in which the Taverna workflow engine is installed. The total effort required to perform
the steps of the framework is summarized in Table 7.3.

7.1.5 Simulation of changes

We simulated changes that may occur during workflow re-execution and evaluated to
what extent the VFramework and the proposed approach for generation of requirements
and validation metrics detects such changes. The test cases are based on our findings
concerning repeatability of workflows and also interviews with the use case owner concern-
ing typical alterations and mistakes in workflows engineered in the music classification
domain. Table 7.4 summarises a list of potential changes to the workflow. For each
of these, we identify the component or workflow step that is affected, provide a short
description and discuss the expected impact of the change.

A great number of changes affect the steps that communicate with external services, as
these are usually not under the direct control of the workflow owner, and may change
their behaviour without any prior notice to the service consumers. In the analysed
workflow, all data is loaded from external services. Some of these changes may lead to
different outcomes of the workflow, e.g. when the music data is offered in a different
quality, or in a different length, such as 30 second preview snippets only. This influences
the values of the extracted features, and can lead to a different end result. Another major
factor could be if the genre ground truth assignment, provided by a community portal,
changed for some of the songs. Other changes might not have such a severe impact –
e.g. the order of elements in the ground truth might change, but this is not of relevance
to the implementation of the workflow, as the resulting file is aligned by the order of
the music data. This, in turn, means that changes in that order can have an impact on
classification algorithms that perform iterative learning and thus depend on that very
same order. Besides the changes in services, we also simulate changes to the environment
in which the workflow executes, by changing the operating system, Java libraries and
Taverna version.

To be able to simulate all these changes, we provide a setup of the workflow in which we
have full control also over the external services, and thus can modify their setup to reflect
the changes in the scenarios identified above. Each of these scenarios is subsequently
compared to the baseline of the original workflow execution. Table 7.5 aggregates the
results of validation for each scenario using the generated requirements that we presented
in Section 7.1.2. In this table ok indicates that the requirement was fulfilled, while fail
indicates the opposite.
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Table 7.4: Overview on possible changes in the workflow execution

ID Component Description Expected Impact

C1 Ground truth Order of elements
is different

Changes in provenance
of the download step,
no impact on the ARFF file
and classification.

C2 Music Data
Different quality
of recording
(e.g. lower bit-rate)

Changes in extracted features,
very likely changes in
classification.

C3 Music Data
Different length
of music files
(e.g. 30 second snippets)

Changes in
extracted features,
likely changes
in classification.

C4 Ground truth
Genres named differently
(e.g. "Hip-Hop"
instead of "Hip Hop")

Syntactical changes
in the ARFF file
& detailed classification
report, no changes on
classification accuracy.

C5 Ground truth Extra content
in the genre assignment

Changes in provenance
of the download step,
no impact on the ARFF file
and classification.

C6 Ground truth Different ground truth
assignment

Changes in provenance
of the download step,
the ARFF file and likely
in the classification.

C7 Ground truth Different provider,
but same content

Change in input port,
but no change afterwards

C8 Music Data Different provider,
but same content

Change in input port,
but no change afterwards

C9 Format conversion Different somtoolbox
library

Newer version imposed
ordering of elements
during format conversion
(arff to weka).
Different split of data.

C10 Classification Different WEKA
library Likely same results

C11 WF engine Different
Taverna version

Different implementation,
but no impact on processing

C12 Operating System Different
operating system

Different environment,
but no impact on processing

C13 Web Service Interface change
from WSDL to REST

Change in WS invocation,
no change in results
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Table 7.5: Results from the workflow validation

ID C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13
R1.1 ok ok ok ok ok ok ok ok ok ok ok ok ok ok
R2.1 ok ok fail fail ok ok ok ok ok ok ok ok ok ok
R3.1 ok fail ok ok fail fail fail ok ok ok ok ok ok ok
R4.1 ok ok fail fail ok ok ok ok ok ok ok ok ok fail
R5.1 ok ok fail fail fail ok ok ok ok fail ok ok ok ok
R6.1 ok ok fail fail ok ok ok ok ok ok ok ok ok ok
R7.1 ok ok fail fail ok ok ok ok ok ok ok ok ok ok
R8.1 ok ok fail fail ok ok ok ok ok ok ok ok ok fail
R9.1 ok ok fail fail fail ok ok ok ok fail ok ok ok ok
R9.2 ok ok fail fail ok ok ok ok ok fail ok ok ok ok
R10.1 ok ok fail fail ok ok ok ok ok ok ok ok ok fail
R11.1 ok ok fail fail ok ok ok ok fail ok ok ok ok ok
R12.1 ok ok fail fail ok ok ok ok fail ok ok ok ok ok
R12.2 ok fail ok fail fail ok fail fail ok ok ok ok ok ok
R12.3 ok ok ok ok ok ok ok ok ok ok ok ok ok ok
R14 ok ok ok ok ok ok ok ok ok ok ok ok ok ok

Runs C1, C5, C6, C7, and C8 were exposed to a change in the ground truth, and to a
change in the location of the data provided at the input. These changes had no impact on
the workflow computation and its final result (R9.1 and R9.2). The violated requirements
indicate that different data or data sources were used.

Changes to the input data, as with a different length of the sample, and a different
quality of the audio compression, as in runs C2 and C3, respectively, are indicated by
all requirements from R4 to R12 failing. The origin of the wrong behaviour is correctly
identified by the requirement R6.1, which is evaluated by metrics that check the length
of the audio samples.

In run C4, the name of one of the ground truth genres has changed, from Hip Hop to
Hip-hop. As a consequence, one of the workflow output ports, the one reporting only the
aggregated performance statistic of how many music pieces were categorised accurately
(R9.2), is unchanged, while the ground truth comparison metrics, feature vectors (R5.1
& R3.1) split training and test data, as well as the detailed classification report (R9.1)
are all different. In this case the results are in fact semantically correct, but not identical.
For the workflow owners, the result would be valid, even though some metrics failed. This
is because in our validation approach we test the identity of the workflow re-execution.
One may also argue that such a deviation in the way the result was obtained is already
reproduction or reuse of the original workflow.

In run C9 we changed the somtoolbox library to one of its older versions that we obtained
from the use case owner. The metrics R5.1, R9.1, and R9.2 indicated a change in the
experiment result. After examination of provenance traces, we discovered that the data
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was differently split into training and test sets. The reason for that was a change in a
format conversion library. The previous version did not sort the returned result. Thus
the different order of elements returned by the older version of library changed the result
of the experiment. To alleviate such a change in the workflow computation, the most
promising strategy would be to ensure a certain order after every step where data is
obtained from sources that are not directly under control by the workflow owner.

In run C10 we ran the workflow using different versions of the weka library, which is a
Beanshell dependency. The original workflow uses version 3.6.6. We tested the workflow
using versions 3.0.6, 3.3.1, 3.4.19 and 3.5.8. In the first three cases, the workflow execution
failed. The examination of libraries revealed that the method called by a Beanshell was
either not available in the expected class due to a different organisation of packages
within the library, or exhibited a different method signature. Only the version 3.5.8
turned out to be compatible with 3.6.6. The result presented in Table 7.5 depicts the
re-execution using the version 3.5.8.

In run C11 we executed the workflow using Taverna 2.4. The workflow specification is not
compatible with Taverna 1 and therefore this version was omitted. We also tried running
the workflow using Taverna 2.3. This required also downgrading Java environment to
version 6. For both Taverna 2.3 and 2.4 the change did not have an effect on the workflow
execution.

In run C12 we tested the impact of the operating system using Windows 7, Debian 7.4
and Ubuntu 15.04. All the requirements were fulfilled in all cases and thus the operating
system had no impact on the workflow computation.

In run C13 we simulated the changes in a web service by changing its interface from
WSDL to REST. This enforced changes to the workflow design in which three steps had
to be adapted. These changes concerned the way in which the data submitted to the
web service is formatted, how the web service is called and how the results are split for
further processing. All other steps of the workflow remained unaltered. Such adaptations
may be necessary when the original web service is not available, or when the workflow is
reused with a different web service. Requirements R4.1, R8.1 and R10.1 failed because of
different formatting of data sent and received from the web service. The result of the
experiment was identical.

The results of these simulations show that when all of the requirements and metrics are
fulfilled, the workflow re-execution is replicable. There are also cases when few metrics
are not fulfilled but there is no impact on the replicability of workflow re-execution, i.e.
those dealing with the location of data or ordering of the ground truth file. Changes to
the key elements of the environment like the operating system or Taverna version did
not have impact on the computation, while different versions of loaded Java libraries
made the workflow not executable, or delivered changed results. The scientists validating
the re-execution have to decide themselves whether a violation of a given requirement is
crucial for workflow replicability.
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Figure 7.4: Multiple linear regression process in dam safety.

7.2 Sensor data analysis
In this section we present results for the sensor data analysis workflow that we re-execute
in Linux and Windows environments. We start by providing a use case description and
then we briefly describe actions performed in the original environment, which are common
for both analysed re-executions. We discuss how the VFramework steps are performed
in Linux, but contrary to the other use case we perform a manual installation of the
workflow in an already existing system, without creating a new virtual machine with the
PMF. We also describe challenges in re-executing the workflow in Windows and finally
describe which assumptions must be taken to verify and validate such re-executions.

7.2.1 Use case description

This use case comes from the domain of civil engineering. The safety control of large
dams is based on the monitoring of important physical quantities that characterize
the structural behaviour, for example, relative and absolute displacements, strains and
stresses in the concrete, discharges through the foundations, and so on. The analysis of
data captured by the monitoring systems (sensor networks strategically located at dams)
and their comparison with statistical, physical and mathematical models is critical for
the safety control assessment [Mat11].

Figure 7.4 details a multiple linear regression process used in dam safety analysis to
estimate the physical quantities based on the effects of hydrostatic pressure, temperature
and time. For demonstration purposes, this process was isolated from the information
system that consists of multiple hardware and software components that enable collection,
processing, transformation, aggregation, and visualisation of data.

The process depicted in Figure 7.4 was modelled as a workflow consiting of four steps.
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Figure 7.5: Multiple linear regression process modelled as a Taverna workflow.

The workflow is depicted in Figure 7.5. Each of the steps was implemented as a Beanshell.
In the first step, the sensor data is fetched as a compressed archive from the database
of the system. This is done by a client software implemented in Java that connects to
a WSDL web service. The software client has a built-in authorisation token which is
required to access the web service. In the second step the files are extracted and converted
to an appropriate encoding. In the third step the scripts that were created previously by
scientists and placed in the workflow directory are executed. They use the downloaded
data and require the statistical package R. A set of PNG plots and the corresponding
TEX descriptions are the outputs of the third step. In the last step the TEX scripts are
compiled into a PDF report. A LaTeX environment is used for that purpose.

For accessing web services Taverna has a special pre-defined step that requires only
the address of the WSDL file. However, the use case owners use their own client
application instead. When analysing other workflows we identified many examples when
such workarounds were introduced by their owners, even though such a functionality is
provided out of the box. This shows that workflow engines are sometimes not used in a
proper way and this makes it an even more challenging use case for our evaluation.

7.2.2 Original environment

We complete the first two steps of the VFramework in the same way as in the previous
use case. The effort required is similar, because these two steps are well automated.
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The first difference between the use cases becomes visible at the end of the Run dynamic
analysis step, when we analyse the dependency report that is presented in Figure 7.6.
The dependency report shows that part of the experiment’s tasks is completed outside of
the workflow engine. The reports states that:

• The workflow makes four shell calls. It uses the system shell bash to call R and
pdflatex.

• Each of the identified shell calls requires specific Debian packages.

• The workflow uses one external service.

• There are six files that are used during processing, but cannot be attributed to any
of the Debian packages.

• The workflow creates TEX and PNG files in a temp directory.

We use the WSMF to monitor the identified web service to check whether it is deterministic
and whether we need to use a mock-up when re-executing the workflow. We use the
intercepted data of the workflow execution and monitor the service for 24 hours. The
responses are always identical, hence the service is deterministic and can be used during
the redeployment.

We do not extract the actual files containing environment configuration data, because
we use the PMF for workflow execution monitoring, but not for automatic workflow
re-deployment. As sometimes scientists are reluctant to share any files that were auto-
matically copied from their machines, we want to check the feasibility of sharing only the
context model that provides the environment description, which contains among others
the names and versions of Debian packages or names and paths of identified files, but
not the packages and files themselves. We only copy manually the files that the workflow
creates in a temp directory, because they are used by the workflow during its execution
and must be validated.

Table 7.7 presents statistics on the size of the context model by specifying a number of
individuals, number of distinct classes and size of files. It also contains information on the
size of provenance traces that consist of two parts: an ontology describing the execution
that has links to specific data files storing actual data captured, and this actual data.

We generate validation requirements and metrics in the same way as in the previous
use case using the VPlanAssistant. Table 7.6 presents the mapping of requirements and
metrics to their target values. We generated the following requirements:

R1 The workflow step Run Regression In R must have identical outputs.
R1.1 The output TexTablesNames of the workflow step Run Regression In R must

be identical.
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R1.2 The output TexTables of the workflow step Run Regression In R must be
identical.

R1.3 The output PlotsNames of the workflow step Run Regression In R must be
identical.

R1.4 The output Plots of the workflow step Run Regression In R must be identical.

R2 The workflow step Get Gest Barragens Data must have identical outputs.
R2.1 The output iqData of the workflow step Get Gest Barragens Data must be

identical.
R2.2 The output RScript of the workflow step Get Gest Barragens Data must be

identical.
R2.3 The output TexScript of the workflow step Get Gest Barragens Data must be

identical.

R3 The workflow step Unpack must have identical outputs.
R3.1 The output unpackedFileNames of the workflow step Unpack must be identical.
R3.2 The output unpackedFiles of the workflow step Unpack must be identical.

R4 The workflow step Generate Report must have identical outputs.
R4.1 The output ReportLocation of the workflow step Generate Report must be

identical.
R4.2 The output Report of the workflow step Generate Report must be identical.

R5 The inputs of the workflow are the same.
R5.1 The input TipoInstr is identical.
R5.2 The input ID is identical.
R5.3 The input IQ is identical.
R5.4 The input DataIni is identical.
R5.5 The input DataFim is identical.
R5.6 The input SecurityToken is identical.
R5.7 The input OutputDirectory is identical.

R6 The outputs of the workflow are the same.
R4.1 The output ReportLocation of the workflow step Generate Report must be

identical.
R4.2 The output Report of the workflow step Generate Report must be identical.

R7 Execution duration of each of the workflow steps shall be similar.

R8 The data files read and produced by the workflow must be identical.
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Figure 7.6: An excerpt of the dependency report for the sensor data analysis use case.124



7.2. Sensor data analysis

Table 7.6: Mapping of requirements and metrics to their target values for the sensor data
analysis use case.

Requirement Metric Format Target
Value

Tolerance

R1.1 String Equality Plain Text 0 0

R1.2
String Equality
Number Of Visible Differences

TEX 0 0

R1.3 String Equality Plain Text 0 0

R1.4
Image Fingerprint Equality
Image Resolution Equality
Absolute Error Count

PNG 0 0

R2.1 Number Of Different Files ZIP 0 0
R2.2 String Equality Plain Text 0 0

R2.3
String Equality
Number Of Visible Differences

TEX 0 0

R3.1 String Equality Plain Text 0 0
R3.2 String Equality Plain Text 0 0
R4.1 String Equality Plain Text 0 0

R4.2

Page Number Equality
Text Content Equality
Number of Pages With
Different Appearance

PDF 0 0

R5.1
(...)
R5.7

String Equality Plain Text 0 0

R7 Execution Duration Ratio N/A 1 30%
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Table 7.7: Number of individuals, distinct classes and file size for data collected in a
sensor data analysis use case.

Indiviudals Distinct
Classes

File size
(kB)

Static CM 66 12 42
Dynamic CM 1177 10 1404
PREMIS 68 4 41
VPlan 66 14 76
CM total 1377 35 1563
Dynamic CM
- without noise 199 7 138

Provenance ontology 74 6 104
Provenance data N/A N/A 3.17 MB

7.2.3 Re-execution in Linux

We copy the workflow file to an existing Ubuntu 15.04 machine that had Taverna 2.5
installed and was used for running other experiments. We install all the Debian packages
as listed by the dependency report using a package manager. Some of the packages were
already present in the system, for example texlive-base, and their installation was skipped,
while other like for example textlive-lang-portuguese has to be added. The installation
process takes a couple of minutes and depends primarily on the internet connection speed.

Then we focus on the shell calls made by the workflow and investigate whether the
programs called are installed in the system. Both R and pdflatex are present in the system.
In the list of additional files and libraries we find LNEC2_WSDL_Client.jar which has to
be copied into the Taverna library folder. This file is provided together with the workflow.
The list also contains files located in the following directory: $userhome/R/i686-pc-
linux-gnu-library/3.1/xtable/R/xtable. To identify how to install them in the system we
make a simple web search, which reveals that they are part of a special extension of R
tool suite in version 3.1. R was already installed in the system. The xtable extension has
to be installed in a different way using R commands.

Having installed the dependencies we run the PMF to monitor the workflow execution.
We compare the context model of the re-executed workflow with the original one. There
are no discrepancies between them, that is, the re-executed workflow makes the same
shell calls, accesses the same web service, and during its execution the files having the
same names are created in a local folder. We validate the actual contents of these files
later.

We compare the provenance traces of both executions using the VPlanComparator. We
also use the TEX and PNG files detected by the PMF, which were copied from the
original environment, to compare them against the files created in the re-execution. In
total, there are five different file formats identified in the workflow and for each an
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appropriate comparator is used.

The requirements R3, R5, and R7 that deal with the correctness of input data and
workflow duration are fulfilled. This means that the same data is used in the workflow
execution and that the workflow execution duration is similar.

Requirements R1, R2, R4, R6, and R8 failed. We investigate reasons for each of
them failing by looking into their sub-requirements and checking logs created by the
VPlanComparator that computed the metrics for each sub-requirement.

The requirements R1 and R8 failed because of the requirement R1.2 being not fulfilled.
The requirement R1.2 checks whether the TEX tables generated in the Run Regression
In R step are correct. There were two metrics used for evaluation of this requirement:
String Equality that failed because the contents of the files were different, and Number
Of Visible Differences that was fulfilled. This means that the data was correct, but likely
the structure of the TEX file was different. The TEX comparator uses latexdiff that
provides a detailed comparison summary. We checked the summary report and it turned
out that the TEX files contain automatically added comments in their beginning which
contain a creation date that is set for each re-execution. Apart from this discrepancy the
remainder of the files are identical.

The requirements R2 and R8 failed because of the requirement R2.3 that validates another
TEX script used in the workflow. The reason for failing is identical as in the requirement
R1.2, that is, the files had a creation date in their header and the rest of the content was
the same.

The requirements R4 and R6 failed because of the requirement R4.2 that validates the
PDF report produced as the output of running the workflow. All four metrics used to
evaluate the requirement R4.2 failed, that is the report had different contents, different
number of pages and thus different appearance. We checked the log files of the comparator
used for PDF comparison, as well as the report itself, and we recognized that:

• The first page contains a date when the report was generated and this date varies
for each re-execution. For this reason the Text Content Equality metric failed.

• The report varies in a number of pages and has different alignment of plots and
tables, but the data depicted is identical.

The fact that data presented in the report was identical is confirmed by the requirement
R1.4 being fulfilled and R1.2 that failed but only due to header differences and not the
content differences. This implied that the PNG plots were identical and the data used to
produce the PDF report was the same. The PDF report contained the same information
(apart from the timestamp in the first page) and was only differently formatted.

According to the automatic analysis performed using the VFramework, this workflow
re-execution was not replicable. However, one can claim that there are no semantic
differences in the final version of the report and the intermediate data used to produce
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the final report was confirmed to be correct. The evidence provided by the VFramework
allows making both claims.

To fix the problem of the final report, we had to contact the use case owner for help.
It turned out that a default latex style file article.cls was modified in the original
environment. Once we copied the file into our system, the workflow delivered reports
differing only in the timestamp in the first page. The PMF detected the style file but
it also identified it as being part of a default Latex package and therefore it was not
included in the model. The PMF does not check whether the files that belong to a
package were modified. It is also a bad practice to replace default Latex files to create
considerably new versions, but as this example shows, such situations must also be taken
into account. This also shows that the verification should always be accompanied by
validation to state whether a workflow re-execution is replicable. Furthermore, it might
be recommended to verify all files using hash signatures.

7.2.4 Re-execution in Windows

The installation of the workflow on a Windows machine is a manual process. The context
model and the dependency report created for the original environment are used to gain
insight into the original configuration of the workflow environment.

We port the workflow to a Windows 7 machine on which Taverna in the same version is
installed. We also copy the Java library used by the workflow. We analyse the local tool
invocations and look for equivalent software tools for Windows platform. We find R in the
same Windows version and install it in the system. In case of Latex environment we have
to switch from texlive to MiKTeX. We know from the dependency report that the basic
Latex installation needs additional packages, but the Windows version installs them on
the go, whenever the package is needed. We only have to copy the article.cls style sheet
that we identified during the preceding re-execution in Linux as crucial. We already know
from the Linux re-execution that we have to install additional xtable package manually.

We run the workflow and it produces errors, the analysis of the error log reveals that the
syntax of commands used to make shell calls is incompatible with Windows. We have to
rewrite the commands to make the workflow executable. This is another example of how
local dependencies limit workflow portability.

We save the provenance traces which we use for comparison in the last step of the VFrame-
work. The validation report states that the same requirements as for the redeployment on
Linux are violated. This was again due to the timestamp included in the TEX files and
in the first page of PDF report. Apart from this, the workflow executions matches and
therefore the workflow re-execution on a Windows machine can be regarded as replicable.

In contrast to the other use case, which had significantly less local dependencies, the
installation process was more complex and required more effort. It also involved intro-
ducing changes into the workflow file itself. The effort required to perform the steps of
the framework is summarized in Table 7.8.
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Table 7.8: Tools and time needed for completion of framework steps for the sensor data
analysis use case.

Linux re-execution Windows re-execution
VFramework
step

Tool
support

Effort Tool
support

Effort

Run static
analysis

Taverna
Converter

5 min
Taverna
Converter

5 min

Run
dynamic
analysis

PMF,
Taverna Converter
Ontology Diff
Dependency Reporter

60 min

PMF,
Taverna Converter
Ontology Diff
Dependency Reporter

60 min

Define
validation
metrics

VPlanAssistant 5 min VPlanAssistant 5 min

Verify
environment

PMF
Ontology Diff

75 min manual actions 45 min

Validate
workflow

VPlanComparator 10 min VPlanComparator 10 min

7.3 Clinical medical research

The third use case consists of three workflows and comes from the clinical medical research
domain. These workflows are used in experiments investigating aspects of Huntington’s
disease and were implemented by a team of scientists from the Leiden University Medical
Centre (HG-LUMC) and motivated as follows:

"Huntington’s disease (HD) is the most commonly inherited neurodegenerative
disorder in Europe, that affects 1 out of 10 000 people. Although the genetic
mutation that causes HD was identified 20 years ago, the mechanisms leading
to the HD are still poorly understood.

Transcriptional deregulation is a prominent feature of HD with gene expression
changes taking place even before first symptoms arise. Epigenetic alterations
can be responsible for such transcriptional abnormalities. Linking changes
in gene expression to epigenetic information might shed light on the disease
aetiology.

The team from HG-LUMC analysed HD gene expression data from three
different brain regions. They integrated it with publicly available epigenetic
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data to test for overlaps between differentially expressed genes in HD and
these epigenetic datasets."[BZG+15]

The team uses Taverna workflows for their experiments. Many of the workflows are
published in the myExperiment4 platform. Together with the use case owners we apply
the VFramework to the three workflows described below.

In Section 7.3.1 we present redeployment of the workflow in an equivalent Linux envi-
ronment and show how the calibration workflow helps in filtering the specific workflow
dependencies. The annotate workflow uses WSDL web services to perform tasks. We
compare two redeployments of this workflow, first using the original web service, second
using a mock-up of the web service. We evaluate whether the mock-up has impact on
the processing of the workflow and its results.

In Section 7.3.2 we present how to verify and validate a workflow that uses an external
service which is an R server running in parallel to the workflow engine. We show
how the static analysis of the context model helps in identifying service dependencies.
Furthermore, we check to what extent we can verify and validate tasks that are completed
outside of the workflow engine, namely in the R server. We compare the implementation
of the workflow to the sensor data analysis use case (see Section 7.2) that also executes
R scripts but through shell calls.

In Section 7.3.3 we apply the VFramework to a workflow that uses Ruby scripts to
complete tasks. We investigate whether we can detect Ruby dependencies and thus verify
the workflow execution. We also show that the provenance data can be incomplete when
a workflow completes tasks using shell calls. In such cases we use files that were detected
by the PMF to validate workflow re-execution.

7.3.1 Annotate genes workflow

We first present the use case description and then describe how we completed the steps
of the VFramework in the original and the redeployment environment.

Use case description

Figure 7.7 depicts the annotate workflow5 that is used to annotate gene lists. The
workflow uses a local knowledge base to enrich the knowledge about a set of input
genes. Therefore, this workflow takes as an input a list of comma separated entrez gene
identifiers, the database name that will be used to map the gene ids to the local concept
profile identifiers, a cut-off parameter for the number of annotations to be obtained, and
an identifier for the predefined concept set id that is used in the local database. The
workflow uses anni web services. This workflow was used in the [BZG+15] to evaluate
Research Objects.

4http://www.myexperiment.org
5http://www.myexperiment.org/workflows/3921.html
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Figure 7.7: The annotate workflow.

Original environment

In the Run static analysis step of the VFramework we identify that:

• The workflow uses one WSDL web service hosted on a remote server.

• The workflow uses Beanshell scripts that do not require any additional libraries to
be shipped with the workflow.

• The workflow uses XPath services.

Based on these results, in the Run dynamic analysis step of the VFramework we capture
the communication between the workflow and the web service. The workflow owner
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confirmed that the web service is deterministic and hence there is no need for its
continuous monitoring. We transform the captured data by grouping it into request and
response pairs. We use this data to create a mock-up of the service when the workflow is
re-executed.

We also monitor the workflow execution using the PMF. Figure 7.8a depicts the workflow
context model created by the PMF. We can read from it:

• The unique identifier of the platform for which the capturing took place (Node).

• The name of the user who ran the workflow (User).

• The version of Taverna that was used for running the workflow (System Software).

• The IP Address, as well as the domain name of the WSDL web service (Service,
SOAP Service Interface, HTTP Service Interface).

• The version of the operating system (Operating System).

• The workflow does not access files that are not included in the provenance traces
(Data File).

There are also almost a thousand of Data Files that include specific Taverna dependencies
and temporary files. To filter out only the workflow specific dependencies and thus
increase the readability of the dependency report we use the calibration workflow that
does no processing. We also monitor its execution with the PMF and then compare the
context models of both workflows. The results of comparison are depicted in Figure 7.8b
and Figure 7.8c.

Figure 7.8b depicts the elements that were not used by the calibration workflow and thus
are specific to the analysed workflow. We can see that the number of Data Files was
reduced from 964 to 12. The list contains nine files that are workflow data files such as
input and output data. The other three files belong to the java-7-oracle installation and
were not assigned to a corresponding oracle-java-7-instaler package. These files must
be saved and moved with the workflow to the redeployment environment. We can also
see that as a consequence of noise reduction the amount of Packages was reduced from
ten to one Package. This means that the other nine packages were common for both
workflow executions and that Taverna uses them by default. The libnss-mdns package is
the only specific package required by the analysed workflow.

Figure 7.8c depicts elements that were used by the calibration workflow, but are not used
by the analysed workflow. We can see that they are only data files of the calibration
workflow and the workflow itself. This confirms that we did not remove other key
dependencies of the workflow, like Debian packages or services.

In the Define validation metrics step of the VFramework we generate validation require-
ments that are presented below. The workflow steps exchange only Plain Text data hence
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for all of the sub-requirements we use the String Equality metric. Only the data collected
for evaluation of requirements R12.1, R16.1, and R16.2 consists of floating point numbers
and in such case we use the Euclidean Distance metric instead.

R1 The workflow step getSimilarConceptProfilesPredefined_input must have identical
outputs.

R1.1 The output output of the workflow step getSimilarConceptProfilesPrede-
fined_input must be identical.

R2 The workflow step Merge_String_List_to_a_String_3 must have identical outputs
R2.1 The output concatenated of the workflow stepMerge_String_List_to_a_String_3

must be identical

R3 The workflow step getConceptProfile_2 must have identical outputs
R3.1 The output parameters of the workflow step getConceptProfile_2 must be

identical

R4 The workflow step getConceptProfile_input must have identical outputs
R4.1 The output output of the workflow step getConceptProfile_input must be

identical

R5 The workflow step Merge_String_List_to_a_String_2 must have identical outputs
R5.1 The output concatenated of the workflow stepMerge_String_List_to_a_String_2

must be identical

R6 The workflow step getSimilarConceptProfilesPredefined_2 must have identical
outputs

R6.1 The output parameters of the workflow step getSimilarConceptProfilesPrede-
fined_2 must be identical

R7 The workflow step Merge_String_List_to_a_String must have identical outputs
R7.1 The output concatenated of the workflow stepMerge_String_List_to_a_String

must be identical

R8 The workflow step get_bps must have identical outputs
R8.1 The output nodelist of the workflow step get_bps must be identical

R9 The workflow step XPath_Service must have identical outputs
R9.1 The output nodelist of the workflow step XPath_Service must be identical

R10 The workflow step mapDatabaseIDListToConceptIDs_2 must have identical outputs
R10.1 The output parameters of the workflow step mapDatabaseIDListToConcep-

tIDs_2 must be identical

R11 The workflow step get_scores must have identical outputs
R11.1 The output nodelist of the workflow step get_scores must be identical
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R12 The workflow step mapDatabaseIDListToConceptIDs_input must have identical
outputs

R12.1 The output output of the workflow stepmapDatabaseIDListToConceptIDs_input
must be identical

R13 The workflow step Flatten_List must have identical outputs
R13.1 The output outputlist of the workflow step Flatten_List must be identical

R14 The workflow step get_concept_ids must have identical outputs
R14.1 The output nodelist of the workflow step get_concept_ids must be identical

R15 The workflow step Merge_String_List_to_a_String_4 must have identical outputs
R15.1 The output concatenated of the workflow stepMerge_String_List_to_a_String_4

must be identical

R16 The inputs of the workflow are the same.
R16.1 The input cutoff is identical.
R16.2 The input predefined_coneptset_id is identical.
R16.3 The input gene_IDs is identical.
R16.4 The input database_name is identical.

R17 The outputs of the workflow are the same.
R2.1 The output concatenated of the workflow stepMerge_String_List_to_a_String_3

must be identical
R5.1 The output concatenated of the workflow stepMerge_String_List_to_a_String_2

must be identical
R15.1 The output concatenated of the workflow stepMerge_String_List_to_a_String_4

must be identical

R18 Execution duration of each of the workflow steps shall be similar.

Redeployment environment

We redeploy the workflow into an existing Linux environment that is used to run other
workflows. The original platform was Ubuntu 12.04.5 LTS, while the redeployment
platform is Linux Mint 17 Qiana.

We re-execute and monitor with the PMF the workflow that uses the original WSDL
web service. Then we compare its context model with the context model of the original
execution and discover that, apart from the different operating system, also the installed
Java version differs, that is, the original system used oracle java 7, while the redeployment
system uses open jdk 8. Despite these discrepancies, the validation performed in the
Validate workflow step of the VFramework confirms that the workflow re-execution is
valid, that is, it produces the same results as the original workflow.
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(a) Original context model.

(b) The annotate workflow dependencies.

(c) The calibration workflow dependencies, not used in the
annotate workflow.

Figure 7.8: Noise reduction process for the annotate workflow.
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(a) Added elements. (b) Deleted elements.

Figure 7.9: Comparison of context models of the re-executed annotate workflow that
used original WSDL web service and its mock-up.

Knowing that the platform differences do not affect workflow repeatability, we test the
impact of the web service mock-up on the workflow re-execution. For this reason we run a
mock-up application on a machine that is within the same sub-network. The application
uses the intercepted original requests and responses. To make the workflow connect to
the mock-up, we edit the DNS configuration in the redeployment machine. Thus, we
redirect the traffic to and from the ws.biosemantics.org host to the machine on which
the mock-up is deployed. No changes in the workflow file itself are necessary.

Then we re-execute the workflow and monitor it with the PMF. The mock-up log shows
that the workflow made six GET requests asking for the WSDL scheme of the web service.
It also made six POST requests containing SOAP requests for data. There were no
requests from the workflow for which the mock-up did not have a response.

We validate the workflow re-execution that used the mock-up and all requirements are
fulfilled. Thus the mock-up is a valid strategy to be used for workflows that use web
services to ensure repeatable conditions.

Last, but not least, we compare the context models of both re-executions to identify
impact of the mock-up on the changes in the workflow context model. Figure 7.9 presents
results of this comparison. We can see that only the IP address of the host providing
the external service has changed. There were no other differences (We do not take into
account the Infrastructure Functions, because they correspond to the operating system
processes which order is highly non-deterministic - see Section 6.1.2).

7.3.2 Rshell workflow

We first present the use case description and then describe how we completed the steps
of the VFramework in the original and the redeployment environment.

Use case description

Figure 7.10 presents the rshell workflow. It finds the overlap between two datasets that
contain genomic information (e.g. gene id, chromosome name, gene start, gene end), and
computes basic statistics. The workflow returns rows of the first file that overlap with
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Figure 7.10: The rshell workflow.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX dio: <http://timbus.teco.edu/ontologies/DIO.owl#>

SELECT ?node ?host ?port ?script
WHERE {

?node a dio:Node.
?node dio:Port ?port.
?node dio:Host ?host.
?node dio:Script ?script.
FILTER (regex(str(?script), "library\\(.*\\)"))

}

Listing 7.1: SPARQL query checking whether the R scripts load specific libraries.

the second file. A Kolmogorov-Smirnov test is applied between the list of genes that
overlap with the epigenetic file, and the one that does not, to test for differences between
the p-value distributions of genes that overlap with the ones that are not overlapping.

Original environment

Similar to the other use cases, in the Run static analysis step of the VFramework we
convert the workflow definition file into the core of the context model and use SPARQL
queries to analyse the workflow. We identify that the workflow consists of five steps
that are Rshell services. These services communicate with an external host to execute R
scripts.

Figure 7.11 depicts an excerpt of the context model describing the external service
realizing the transform_file_to_gen_range_Service workflow step. We can see that the
service is run on a localhost which means that the R server is started on the same machine
in which the workflow executes. The workflow engine and the service communicate on
port 6311. The context model also contains the R script that is executed at the given
step in the R server.
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Figure 7.11: Analysis of the static part of the context model.

The R scripts can require specific libraries to be installed in the R environment. In the
analysed case, the script requires the Genomic Ranges library. Therefore, to re-execute
the workflow, it is not sufficient to start the R server in parallel to the workflow engine,
but also to load appropriate libraries. Using the SPARQL queries we can identify in the
context model which steps require additional libraries. Listing 7.1 presents an example
of a query that lists external services, their addresses, and ports that have scripts which
require additional libraries.

We use this information to configure the redeployment environment in a proper way
before the workflow is re-executed. We also consider creating a mock-up and for that
purpose we capture and analyse the communication between the workflow engine and the
R server. This is a telnet communication in which the scripts contained in the workflow
are executed on the server. The server responds with standard messages confirming
execution of consecutive scripts, but does not send back any data. Only the final result of
running the sequence of scripts, that is the PNG image, is sent back by the server. Hence,
we conclude that the service is stateful (depends on the sequence of previously executed
commands) and requires more complex implementation than a lookup table used for the
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Figure 7.12: Dependencies of the external R server.

stateless web services (the response does not depend on the history of previous requests),
like used in the other use cases. For this reason, the effort required to configure the R
server that includes already identified libraries is lower than implementation of a mock-up
of a stateful service.

In the Run dynamic analysis step of the VFramework we run the PMF and create a
dependency report that is depicted in Figure 7.14. We can see that the workflow does
neither shell calls nor does it require any specific Debian packages. The report shows that
the workflow communicates with the 127.0.0.1 address which is the localhost. The report
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does not depict any dependencies of the R server, and especially none of the additional
libraries needed by the R server, because the R server and its libraries are beyond the
workflow’s boundary.

However, it is also possible to detect dependencies of the server by monitoring the R
server with the PMF. Figure 7.12 shows the dependencies of the R server that were
detected by the PMF which attached to system process of the R server and monitored it
for the period of time when the workflow was executing and exchanging data with the
server. In the figure we can see that Genomic Ranges library, as identified by the static
analysis of the workflow model, was loaded by the server. We can see that also other
libraries like IRanges or XVector are used during the computation. PMF also detected
53 Debian packages and identified local paths of the files from which the scripts loaded
data that was sent to the server. This shows that in settings when we have access to the
environment of the external service and can monitor service execution, we are able to
provide a modular documentation of both local and external dependencies.

The sensor data analysis workflow, described in Section 7.2, also uses R scripts to perform
tasks. Contrary to the rshell workflow, it uses shell calls to execute R scripts. Thus, the
execution of the script is a local dependency of the workflow that is captured by the PMF
when monitoring a workflow execution. In the sensor data analysis use case we identify
that the R script requires the xtables library to be loaded. We do this by analysing
the workflow context model created during the dynamic analysis. This shows that the
static analysis of the workflow as well as the dynamic analysis of workflow execution
complement each other and allow for detection of R script dependencies regardless of the
way the R scripts are run.

In the Define validation metrics step of the VFramework we generate the following
validation requirements:

R1 The workflow step calculate_overlaps must have identical outputs.
R1.1 The output non_overlapping_genes_pvals_out of the workflow step calcu-

late_overlaps must be identical.
R1.2 The output overlapping_genes_pvals_out of the workflow step calculate_overlaps

must be identical.

R2 The workflow step ks.test must have identical outputs.
R2.1 The output ks_p of the workflow step ks.test must be identical.
R2.2 The output ks_D of the workflow step ks.test must be identical.

R3 (The workflow stepread_files must have identical outputs.)
This workflow step does not have outputs. This step cannot be validated.

R4 (The workflow step transform_files_to_gen_ranges must have identical outputs.)
This workflow step does not have outputs. This step cannot be validated.
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R5 The workflow step ecdf_plot must have identical outputs.
R5.1 The output cn of the workflow step ecdf_plot must be identical.

R6 The inputs of the workflow are the same.
R6.1 The input gene_end is identical.
R6.2 The input gene_start is identical.
R6.3 The input mapped_gene_file is identical.
R6.4 The input workingdir is identical.
R6.5 The input epigenomic_file is identical.
R6.6 The input genespvals is identical.
R6.7 The input epigenominc_file_chr is identical.
R6.8 The input epigenomic_file_end is identical.
R6.9 The input epigenomic_file_start is identical.

R7 The outputs of the workflow are the same.
R2.1 The output ks_p of the workflow step ks.test must be identical.
R2.2 The output ks_D of the workflow step ks.test must be identical.
R5.1 The output cn of the workflow step ecdf_plot must be identical.

R8 Execution duration of each of the workflow steps shall be similar.

We depicted the requirements R3 and R4 in this list, but they did not get generated.
This is because the workflow steps read_files and transform_file_to_gen_ranges do not
have outputs. Hence, we are not able to validate them in the same way as we did it
for the other workflows. If we look again at the script presented in Figure 7.11 we can
observe the reason for that. The R scripts use their own variables to which they load data.
These variables are persisted on the server and are available during the whole workflow
execution. In this way the workflow steps exchange the data outside of the workflow
engine! For this reason we are not able to validate these workflow steps automatically.

Table 7.9 depicts metrics that we generated for the identified requirements. Each sub-
requirement of requirements R1, R2, and R6 is validated using String Equality metric.
For the requirement R5.1 we use the PNG Format Based Metrics. The non-functional
requirement R14 is validated in the same way as in the other use cases.

Redeployment environment

The original and the redeployment platforms are the same for this workflow as for the
annotate workflow described in Section 7.3.1. In the redeployment platform we had to
additionally install the R server and the Genomic Ranges library. We started the R
server on port 6311 as identified in the Run static analysis step of the VFramework and
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(a) Added elements.

(b) Deleted elements.

Figure 7.13: Comparison of context models for the re-executed and the original rshell
workflow.
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Figure 7.14: Dependency report for the rshell workflow.

Table 7.9: Mapping of requirements and metrics to their target values for the rshell
workflow.

Requirement Metric Format Target
Value

Tolerance

R1.* String Equality Plain Text 0 0
R2.* String Equality Plain Text 0 0

R5.1
Image Fingerprint Equality
Image Resolution Equality
Absolute Error Count

PNG 0 0

R6.* String Equality Plain Text 0 0
R14 Execution Duration Ratio N/A 1 30%
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then executed the workflow. We monitored its execution and compared it to the original
context model.

Figure 7.13 depicts the discrepancies between the context models of the original and the
re-executed workflow. Figure 7.13a shows elements that were not present in the original
execution, but are used during the execution. Figure 7.13b presents the opposite, that is
the elements that were used in the original execution, but are not used any more. Based
on this comparison we can see that:

1. Different users ran the workflow.

2. Different operating systems were used.

3. The original execution used java oracle 7 while the re-execution used openjdk 8.

4. The original execution used initscripts package which is not used in the re-execution.

5. The re-execution uses two libatk packages and one zlib1g package.

6. The original execution loaded jcl-overl-slf4j-1.6.4.jar which is not loaded in the
re-execution.

7. The workflow does not access files that are not included in the provenance traces.

The differences 4 and 5 can be attributed to the fact that the operating systems use
different graphical user interfaces and the fact that different versions of Java from different
providers was used. The difference 6 could have an impact on the workflow processing
result like it was the case for the weather workflow (see Section 6.1). This library might
have been placed in the Taverna directory by the researcher to run other workflows.

We validate the workflow and all requirements are fulfilled. Hence the above discrepancies
did not have an impact on the workflow re-execution.

7.3.3 Ruby workflow

We first present the use case description and then describe how we completed the steps
of the VFramework in the original and the redeployment environment.

Use case description

Figure 7.15 presents the ruby workflow. The workflow uses Ruby6 scripts to create
nanopublications7 for a gene list that is associated to Huntington’s Disease. The nanop-
ublications allow disseminating individual data as independent publications and can be
uniquely identified and attributed to its author. They can be serialized to RDF.

6https://www.ruby-lang.org
7http://nanopub.org
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Figure 7.15: The ruby workflow.

Original environment

We run the static analysis of the workflow and identify one step that is a Tool Invocation
Service. This step contains a command executing a Ruby script that is provided at the
input of the workflow.

In the Run dynamic analysis step of the VFramework we monitor the workflow execution
and create a dependency report that is depicted in Figure 7.16. The report shows that:

• The workflow makes one shell call which uses /usr/bin/ruby.

• This shell call requires additional files that are additional Ruby libraries, so-called
gems, which are rdf-1.1.17 and slop-3.4.0.

• The gems were installed for the version 1.9.1 of Ruby.

• The workflow has no external communications.

• The workflow requires one Debian package.

• The workflow creates workdDir_1.nq.gz file that is not part of the provenance
traces.

The workflow owners explained that the workdDir_1.nq.gz file is the actual output of
the workflow execution. It was produced during workflow execution by running the Ruby
script. The file is not included in the Taverna provenance traces, because only the values
exchanged between the workflow steps through their outputs and inputs are captured.
Hence to validate workflows that perform tasks using shell calls we have two options:

1. Run the PMF in a mode that creates the context model only and manually select
additional files that were detected by it.

2. Run the PMF in a mode that creates the context model and sources all identified
files automatically.
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(a) Page 1/2

(b) Page 2/2

Figure 7.16: Dependency report for the ruby workflow.
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(a) Added elements. (b) Deleted elements.

Figure 7.17: Comparison of context models of the original and the redeployed ruby
workflow.

Figure 7.18: Comparison of context models of the re-execution missing dependencies and
the correct re-execution.
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In this experiment we choose the first option, that is, we ask the workflow owners to share
the folder in which the workflow was executed that also includes the detected file. This
coresponds to a practice used for creating Research Objects [BZG+15] that are not only
used for sharing workflows but also input, output, and other data used in experiments.

Redeployment environment

We redeploy the workflow in a Linux environment that again differs in the version of the
system. We move the workflow from the Linux Mint 17 Qiana to Linux Ubuntu 15.04.
We install Ruby in version 1.9.1 and the required gems as described by the dependency
report. Then we re-execute the workflow and monitor its execution with the PMF. We
compare the context models of the re-executed and the original workflow. The results of
the comparison are depicted in Figure 7.17.

We can see that the redeployment environment differs from the original:

• Different operating system is used.

• Eight new Debian packages are used.

• One Debian package is not used.

• Different users ran the workflow.

These changes, similarly to the other use cases, can be attributed to the differences
between the operating systems and exact versions of Java. To confirm these observations
we validate the workflow in the next step.

Figure 7.19 presents the validation report created in the Validate workflow step of the
VFramework. Only the execution duration requirement was fulfilled, while four other
requirements failed:

• Requirements R1 and R3 failed because the output output was not identical. This
was because the output output contains the standard output of the Ruby script
invocation, which in turn contains timestamp and execution duration. Hence, these
values are always different for every re-execution.

• Requirement R2 failed because the inputs specifying paths of the input parameters
were not identical. The paths were different because different users were running
the workflow in their home directories.

• Requirement R4 failed for the same reason as R1 and R3, because the output output
was different. However, this requirement was measured differently than other two
requirements, because not the provenance traces were used, but the actual file
produced by the workflow that was detected by the PMF.
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(a) Page 1/2

(b) Page 2/2

Figure 7.19: Validation report for the ruby workflow.
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None of the requirements is violated due to the discrepancies between the environments.
The requirements R2.3, R2.4, and R2.5 that failed have actually no impact on the validity
of the workflow re-execution, because they require identity of paths of the input files. The
requirements R4.2, R4.3, and R4.4 are more important, because they validate the actual
data used to run the workflow. They are fulfilled, which means that the data provided to
the workflow is identical, but simply located in a different directory. Similarly, the real
output of the workflow is the workdDir_1.nq.gz file, the contents of which are identical.

The data files that were detected by the PMF and grouped under requirement R4 were
validated also using the VPlanComparator. Hence we ran the file format characterization
tool to identify their format and on that basis choose suitable metrics. In the given
example, the workDir_1.nq.gz is a compressed library for which comparison of hashes
shows discrepancies. This is due to a different header of the file. The actual data inside
the library is the same and for this reason we used the ZIP Format Metric that aggregates
results of metrics used to validate files contained within the library.

The requirements validating the data used by the workflow, as well as the data created
by the workflow are fulfilled, hence we state that the workflow re-execution is replicable.

As we already observed in the evaluation, workflows that make shell calls depend on other
software libraries and packages installed in the environment. Any of their dependencies
missing can stop the workflow from executing and that is why the Verify environment
step of the VFramework is dedicated to verification of workflow dependencies. We
make one more experiment in which we evaluate how the VFramework detects workflow
re-executions that fail to re-execute in a new environment and how it helps in identifying
the cause of failure. For this reason, we modify the environment used in the previous
redeployment by removing gem packages required by the ruby workflow to execute. We
monitor the re-execution of the workflow with the PMF and then compare its context
model with the context model of the previous valid re-execution.

The re-executed workflow produces errors which we observe in its error output. The
error message informs that some libraries required by the workflow are missing and this
information already explains the reason for the workflow execution to fail. However,
the implementations of other workflows using shell calls can be different, for example,
the standard error output of the script does not necessarily have to be linked to the
workflow output, or the message may not be informative to the user, because of the wrong
exception handling mechanism implemented by an external library used. For this reason
the analysis of context models is a universal method for detecting missing dependencies.

Figure 7.18 depicts the elements that are missing from the environment and which
were present in the original re-execution. We can see that the slop and rdf gems were
uninstalled. Furthermore, we can see that the workDir_1.nq.gz file was not created and
the converter.rb script was not even loaded. Hence we know that the workflow missed
gems and the error occurred in the other script loaded by the workflow (the workflow
shell call uses two Ruby scripts). The comparison of context models correctly identified
the reason for the workflow execution to break.
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7.4 Summary

In this chapter we evaluated the proposed VFramework on five Taverna workflows from
three different domains, namely: music classification, sensor data analysis, and clinical
medical research.

The selected workflows used six different types of workflow steps in their implementations:
tool service, Beanshell, Rshell service, WSDL web service, REST web service, and XPath
service. The tool services, Beanshell and Rshell scripts required additional dependencies
to be present either in the local environment in which the workflows executed, or a
specific configuration of services which were accessed to complete steps of the workflows.

In the experiments we re-executed the workflows in environments differing in the version
of the operating system (Linux Ubuntu 12 and 15), its distribution (Linux Ubuntu and
Mint), and architecture (Linux and Windows). We thus evaluated in what way the
VFramework can be applied to verify and validate not only re-executions in an exactly
identical environment, but also in a similar or considerably different environment.

The workflows analysed differ in a number of additional dependencies required to execute
them. We showed that workflows that have fewer platform specific (local) dependencies,
like the music workflow or the annotate workflow, can be almost automatically verified
and validated regardless of the execution platform. This is because they do not depend
on specific tools that must be present in the system and require only the workflow engine
and external web services for their execution.

Although the changes, or especially unavailability, of the external web services are a serious
threat to the replicability of experiments, we used a universal method of creating mock-ups
for web services that can be used to replace the original web-services. Thus we reduced
workflow dependability on external services and enabled replication of experiments that
use the original data. Furthermore, we demonstrated that the proposed implementation
does not require re-engineering of workflows and do not alter the workflow execution
environment.

The other three use cases (the sensor data analysis workflow, the rshell workflow, and
the ruby workflow) had more system specific dependencies and therefore more manual
actions were required to re-execute, verify, and validate them.

In the sensor data analysis use case the contact with the workflow owner was necessary,
to resolve one of the problems (modified Latex style file). This is often not possible in a
real-world setting. Furthermore, the syntax of the shell calls made by this workflow was
incompatible with a new environment (Linux to Windows redeployment) and changes in
the workflow file were necessary.

The two other workflows used the R language to execute scripts. The sensor data analysis
workflow used shell calls to call local instance of R, while the rshell workflow used an R
server that was accessed through a service. For both cases we were able to identify R
dependencies correctly. For the sensor data analysis workflow we monitored workflow
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execution to identify additional libraries required by R. On that basis we configured the
new environment and verified its configuration. For the rshell workflow, we used the
static analysis of the workflow model using SPARQL queries. Using this information
we configured the Rshell server running in parallel to the workflow execution. We
were not able to verify the server configuration using the dynamic workflow monitoring,
because the server was not within the workflow boundaries. However, we were able to
monitor in parallel the server to identify its dependencies that are loaded when workflow
communicates with it.

Hence, special attention is needed for workflows with platform specific dependencies,
because their analysis is more complex and requires more effort during verification as
opposed to workflows with no dependencies, for which the framework can be almost fully
automated.

In the evaluation we also investigated which data must be published together with the
workflow to enable verification and validation. For this purpose we investigated two
options: first, in which only the context model describing the environment gets published
together with the provenance traces and data files accessed by the workflow, and second,
in which the identified files and packages are additionally automatically sourced. Both of
these approaches were successful. The context model is a sufficient source of information
for workflow verification. The additional data eases the porting process and enables
automatic configuration of a new machine. For workflows with few or no dependencies,
such automation brings little benefits, but for workflows with many dependencies this can
be crucial for their repeatability, especially when they rely on specific Debian packages,
that are not available in public repositories.

Furthermore, in case of workflows heavily depending on shell calls to complete their steps,
we recommend that the workflow owners make a test redeployment of their workflow
into a clean machine before they publish their workflow. Thus they ensure that the
information contained in the context model is sufficient for the redeployment. The current
implementation of tools allows detecting all dependencies, but cannot identify ways in
which these have to be installed. For this reason, explicit information from the workflow
owner would make the porting process easier.

The strategy applied for generation of validation metrics that generates requirements
for each workflow step and checks each value using a corresponding format comparator
proved to work correctly, but has its limitations. The strategy was capable of detecting
alterations on different stages of workflow processing and based on these we were able
to identify steps in which workflow re-execution was altered. The application of format
specific metrics enabled us to correctly compare the data collected for validation. For
example, in the Ruby use case we compared two archives which contents were identical,
while the hashes, which would be computed in a generic case, were different. This was
because of a timestamp included in the header of the archive that must be ignored for
proper validation.

However, in the sensor data analysis use case, despite the usage of the right format
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comparator, the validation failed because the timestamps generated for each workflow
execution were embedded in the data itself, for example the first page of the generated
PDF report contained its generation date. Although the usage of a timestamp to annotate
data is a good way of identifying data sets, we recommend including it in file properties
that can be removed during comparison of actual data. Otherwise, no generic automatic
solution can be used, because there is no universal set of rules that allows separating
data from the embedded metadata for a generic data type, only custom comparators can
be used in such cases. A similar problem was observed by the reproducible-builds.org8

project that analyses how to build sources on different machines to obtain identical
Debian packages. The proposed solution is to use an environment variable which enables
setting a default timestamp value. Another suggested solution is to completely remove
timestamps.

The evaluation also confirmed that validation of workflow executions using only the
provenance traces is not sufficient. This is because workflows using shell calls can read
and write files without workflow engine mediation. Thus, these files are not included
in the provenance traces. Such files are detected during workflow monitoring using the
PMF. We demonstrated in the ruby workflow, that the actual inputs and outputs of
the workflow contain only paths to the data provided to the workflow and information
whether the workflow execution was correct, but do not contain the data. Validation of
such data will fail for all re-executions, because the paths in which the data is located
can be different, and the standard output also contains execution timestamps. For this
reason, we focused on requirements that validated the files detected by the PMF as those
which were accessed by the workflow during execution. Thus we validated the actual
inputs and outputs of the workflow that have scientific value to the researcher.

Furthermore, not all of the Rshell services have outputs that can be validated. For
such steps we cannot generate requirements. Such steps exchange data through global
variables created in a remote service. These variables are persisted on the server and are
available during the workflow execution. In this way the workflow steps exchange the
data outside of the workflow engine. Thus verification and validation of such workflows
resembles black box testing techniques, in which only the inputs and outputs of the
workflow can be validated, but not the intermediate steps.

Last, but not least, during the simulation of changes for the music workflow, as well as
during the re-execution of the sensor data analysis workflow and the ruby workflow we
noticed that for some re-executions our criteria stating that all requirements must be
identical to recognize the re-execution as repeatable was too strict. In these cases, use
case experts could argue that violation of some of the metrics does not have real impact
on the repeatability. For this reason, we suggest that the workflow owners generating
the requirements in the original environment analyse which of these requirements and
metrics are crucial for workflow replicability. Adjusting metric target values, adding
comments, or removing unnecessary requirements will result in relaxing the conditions.

8https://reproducible-builds.org/docs/timestamps/
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CHAPTER 8
Conclusions and Outlook

Researchers make scientific breakthroughs by processing, linking and exchanging data.
They use special software tools and processing workflows that allow them to link, trans-
form, visualise and interpret the data. This methodology is also referred as the fourth
paradigm of science, namely e-Science.

Workflow engines were proposed to hide the complexity of the underlying infrastructure
and to improve verification and reuse of scientific experiments by sharing workflows. They
enable researchers to graphically represent their experiments in form of workflows that
can be built using pre-defined elements and do not require special software engineering
skills.

In spite of such a standardisation there are still workflows that cannot be re-executed.
The reasons for workflows to break range from lack of input data and additional software
tools, to the unavailability of external web services. Even if the workflows can be re-
executed there is no well-established approach that enables trustworthy and evidence
based verification and validation of their re-executions which would in turn enable
researchers re-running the workflows to state that the experiment is replicable.

For this reason in Chapters 4, 5, and 6 we presented the VFramework that checks
whether the re-executed workflow produces the same result in the same way as the
original workflow did. It consists of five steps that are performed in both the original
and the redeployment environment. In a systematic way it collects evidence that creates
confidence that the workflow re-execution is replicable.

The VFramework uses the context model that contains a comprehensive description
of a workflow which integrates information from different sources describing among
others the workflow model, as well as its dependencies detected during dynamic analysis
of its execution. It contains also information on external services that were accessed.
By comparing context models of workflow executions we verify whether the workflow
re-execution was obtained in a compliant way. We also showed how the automated
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context model analysis enables identification of workflow boundaries and in what way
the external services being outside these boundaries can be monitored to create evidence
needed for re-executing and validating workflows.

In Chapter 5 we analysed sample workflows, their architecture, available data, and moti-
vations of scientists re-executing the workflows. Thus we devised a solution for generation
of validation metrics and their evaluation using captured data of workflow executions,
which is compared using dedicated comparators. We also formulated requirements that
deal with the correctness of data produced at multiple stages of workflow execution.
Furthermore, we described the VPlan that extends the context model with the validation
requirements, metrics used to quantify them, as well as the measurement points that
precisely link the requirements to the workflow model depicting where the data used for
their computation is captured. The VPlan contains also a comprehensive and extensible
vocabulary of metrics that are used for breaking down validation requirements. It groups
metrics into categories taking into account the data format identified for the captured
data, as well as its data type. Furthermore, it groups metrics into generic categories, so
that these metrics can be linked to new formats added to the vocabulary. Thus we evade
double definitions of the same concepts and ensure coherence of the vocabulary.

In Chapter 6 we described the Verify environment and Validate workflow steps of the
VFramework that are performed when the workflow is re-executed in a new environment.
To complete them we monitored the re-execution in the new environment and compared
it to the information collected in the original environment.

In Chapter 7 we evaluated the proposed VFramework on five Taverna workflows from
three different domains, namely: music classification, sensor data analysis, and clinical
medical research. Based on this evaluation we identified limitations of the proposed
solution.

8.1 Research questions revisited
In Chapter 1 we defined a number of research questions to be answered in this dissertation.
We revisit these questions and show how they were answered.

RQ1 How can we verify whether the workflow re-executed in a way that
complies with the original execution?
The workflow executions are operating system processes that use system functions
to access resources or to execute code. The traces of operating system processes
provide a complete description of workflow dependencies. For this reason, the
models of workflow executions that are build upon these traces enable verification
of workflow re-executions. In the related work, described in Chapter 2, we described
a tool that we use for capturing of workflow dependencies that are used by the
VFramework, described in Chapters 3, 4, and 6, to redeploy the workflows in the
new environment and to verify their re-executions.
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To ensure repeatable conditions any changes in the services on which the workflows
depend must be avoided. These changes can stem from the fact that the services can
be non-deterministic by their nature, or simply because their provider changed their
implementation or functionality. For web service dependent workflows we presented
the Web Service Monitoring Framework in Chapter 4 that detects whether the web
service is deterministic and based on the evidence collected, it allows for creating
mock-ups of stateless web services that are used to replace the original service and
thus ensure repeatable conditions for verification of workflow re-executions.

We also analysed in the evaluation, presented in Chapter 7, how to verify re-
executions in environments that by assumption differ in their configuration and
architecture. We showed that the verification is strongly coupled with the validation,
and these two processes must be performed together. Thus we can verify whether
the differences between systems detected by the verification have real impact on
the outcome of workflows computation by validating them. The evaluation showed
that the full identity of environments is not required for workflows to produce the
right results in the right way.

RQ2 How can we validate whether the workflow re-execution produced the
correct results?

In Chapter 5 we analysed sample workflows, their architecture, available data
and also considered motivations of scientists re-executing the workflows. On that
basis we devised a way of generating validation requirements for workflows. The
requirements deal with the correctness of data produced at multiple stages of
workflow execution. They are quantified using metrics from a controlled vocabulary,
which is a part of an ontology for documenting validation requirements, and are
automatically selected based on the identified format of data that was captured.
Thus we ensure that data is compared in a right way and the whole process scales
up.

Furthermore, in Chapter 7 we confirmed by applying our solution to the evaluated
set of workflows that it is not sufficient to validate workflows using only provenance
traces, because these may be incomplete, especially when the workflows complete
tasks outside of the workflow engine, for example by calling local tools installed in
a system that process data. We also observed that there are workflows in which
deviations between executions are acceptable from the scientific point of view,
especially when environments in which the workflows are executed differ in their
configuration and these differences do not affect the core idea of the experiment.
In such cases the scientists must take individual decisions based on an indicative
reports depicting a comprehensive set of requirements and metrics used in the
validation.
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RQ3 How can we perform systematic and repeatable verification and valida-
tion of workflow re-executions?
We described the VFramework in Chapters 3, 4, and 6 that consists of five steps
that are performed in both the original and the redeployment environment. In a
systematic way it creates evidence describing workflow execution and its environment
that is used for verification and validation in the redeployment platform without
the necessity of accessing simultaneously the original environment. For this reason
the VFramework not only can be applied in a short term settings but also in typical
digital preservation settings.

The VFramework uses the context model that contains comprehensive description
of the workflow which integrates information from different sources describing
among others the static workflow model, as well as its dependencies detected during
dynamic analysis of its execution. It contains also information on external services
that were accessed. For this reason it is used to describe environments in which
the workflow executes. By comparing context models of workflow executions we
verify whether the workflow re-execution was obtained in a compliant way.

The automatically collected data that was collected during workflow execution in
both environments is used for validation of automatically generated requirements
that were quantified using metrics from a controlled vocabulary that we described
in Chapter 5. Thus by using ontology models, tools for workflow context capturing,
data collection, and validation criteria generation, we devised a systematic and
repeatable framework for verification and validation of workflow re-executions.

8.2 Limitations

The workflows used in the evaluation required multiple local dependencies ranging from
additional Java libraries, Ruby scripts, and specific Debian packages to external services
for running R scripts and web services for completing workflow steps. We re-executed the
workflows in environments differing in the version of the operating system, its distribution,
and architecture. Thus we showed that the VFramework can be applied to verify and
validate not only re-executions in an exactly identical environment, but also in a similar
or considerably different environments. Based on this analysis we detected the following
limitations of the devised approach.

• Limited analysability of environments differing in architecture
We showed that workflows which had no specific (local) dependencies can be almost
automatically verified and validated regardless of the execution platform. For such
workflows it would be possible to implement the VFramework as two Taverna
workflows, each run in a different environment. However, workflows that make
shell calls to complete tasks using software installed in the environment without
mediation of the workflow engine cannot be verified and validated automatically
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when moved across different environments, for example, from Linux to Windows.
The verification is not possible because there are no tools that capture workflow
execution on windows and produce compatible output. Moreover, the architectural
differences between the operating systems make the identification of corresponding
software a challenging task. The re-execution may also involve re-engineering of
workflows due to the incompatibility of syntax of the shell calls.

The validation of such workflows is also limited, because the provenance traces
do not contain data that was accessed and created by the workflow steps making
shell calls. The reason again is the fact that such calls bypass the workflow engine.
Similar limitations apply to Beanshell scripts that load additional Java libraries.

However these limitations do not apply to redeployments between different distri-
butions of the same operating system family, e.g. Linux, because the tools can
monitor the workflow execution and collect all sources of information needed to
establish a complete view of the workflow execution.

• Limited verification of processes executing in parallel

The verification is also limited to dependencies that are within the workflow bound-
ary. This is because we monitor workflow execution and detect its dependencies
using the tools for tracing operating system processes. Thus only the monitored
process and its child processes are analysed and other processes which were started
in parallel to the monitored execution are not included in these traces. For this
reason we are not able to verify services that run in parallel in the same machine
and are accessed by the workflow during its execution. We only validate whether
the data exchanged between the workflow and the service running in parallel is
correct. However, we shown that parallel monitoring of such services to identify
their dependencies is also possible.

• Monitoring and mocking-up limited to stateless web services

For web services to which the workflow connects we used the Web Service Monitoring
Framework that captures data exchanged between the workflow and the web service
during the original execution and later using this data enables creating mock-ups for
web services that can be used to replace the original web-services. We demonstrated
that the proposed implementation does not require re-engineering of workflows and
does not alter the workflow execution environment and is a valid way of ensuring
replicable execution conditions when stateless web services are used.

However, a crucial requirement is that the web service does not cause any changes
on the world outside the system observed. Hence it can be only applied to stateless
web services in which actions performed by the service do not depend on the
previous series of requests and which do not change the state of the system behind
the web service.
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• Limited automation of validation for data with embedded metadata

The strategy applied for generation of validation metrics that generates require-
ments for each workflow step and checks each value using a corresponding format
comparator proved to work correctly, but has its limitations. We were capable of
detecting alterations on different stages of workflow processing and based on these
we identified steps in which the workflow re-execution was altered. The application
of format specific metrics enabled us to correctly compare the data collected for
validation.

However, in cases when the metadata of the execution is embedded in the data
itself this approach failed, for example when the generated PDF report contained
its generation date in the first page. In such cases no generic automatic solution
can be used, because there is no universal set of rules that allows separating data
from the embedded metadata for a generic data type, only custom comparators
can be used in such cases.

• Limited validation of externally exchanged data

For workflows using R scripts that execute them on a server running in parallel,
we used the static analysis of the workflow model using SPARQL queries. Thus
we detected which libraries must be loaded by the server additionally. Using this
information we were able to configure the Rshell server running in parallel to the
workflow execution.

However, not all of the Rshell services have outputs that can be validated, because
some steps exchange data through global variables created in an external service.
These variables are persisted on the server and are available during the workflow
execution. In this way the workflow steps exchange the data outside of the workflow
engine. Thus verification and validation of such workflows resemble black box
testing technique, in which only the inputs and outputs of the workflow can be
validated, but not the intermediate steps.

• Strict automatically generated validation requirements

We also observed that criteria stating that all requirements must be identical to
recognize the re-execution as repeatable was too strict. Such strict requirements
result in false negatives, but not in false positives, that is, in some case use case
owners argued that violation of some of the requirements does not have real im-
pact on the replicability of the scientific experiment. For this reason, we suggest
that the workflow owners generating the requirements in the original environment
analyse which of these requirements and metrics are crucial for workflow replica-
bility. Adjusting metric target values, adding comments, or removing unnecessary
requirements will result in relaxing the conditions.
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8.3 Recommendations
The general conclusion from the evaluation is that special attention must be paid to
workflows with platform specific dependencies, because their analysis is more complex
and requires more effort during verification as opposed to workflows with no dependencies,
for which the framework can be almost fully automated. We are aware that removing
the dependencies is not possible, due to the distributed nature of modern science, as well
as the fact that well-established practices and tools already exist. However, workflow
owners wanting to improve repeatability of their workflow executions should consider the
guidelines listed below. The VFramework and tools described in this dissertation can be
used to implement them.

• Analyse dependencies and evade shell calls
Some of the tasks performed by shell calls can be completed using Beanshells that
are better portable and explicitly listed in the workflow definition file.

• Write code that runs on all platforms
If a shell call cannot be evaded, then provide its alternative invocation to be picked
automatically depending on the execution environment.

• Publish experiment setup and context
Provide a list of tools which need to be present to make the workflow runnable. If
you use Linux-based systems you can automatically collect them and store them in
the context model. If your workflow uses additional tools that must be installed
in the system, or services that are configured in a specific way describe how to
configure the tools and provide specific settings you have used.

• Publish validation data
Provide evidence about the original execution, to which the re-execution can be
compared to. Publish not only the provenance traces of the execution, but also
other data files that were used and created by the workflow.

• Specify validation requirements
Describe which workflow requirements must be met to validate the workflow re-
execution. You can choose from the list of automatically generated requirements.

• Test the replicability on your own
If your workflow has many complex dependencies, check whether the accompanying
data you provide with the workflow is sufficient for its re-execution by doing one
on a clean machine.

8.4 Future work
Based on the conclusions and recommendations we describe future work that is needed
in order to increase replicability of scientific experiments that use workflows.
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• Improvement of workflow provenance traces
Currently the monitoring with the PMF is made outside of the workflow engine
and only detection of workflow specific dependencies is possible. If the monitoring
was integrated into the workflow engine, then more fine grained information on
particular dependencies of a single step could be provided and therefore more
detailed analysis could be performed. This, in turn, would facilitate verification of
reused workflow steps.

Furthermore, this would solve the problem of provenance traces missing the data
for steps that were completed using shell calls. If the monitoring was performed
per each thread executing workflow step, then the data would be detected and the
provenance traces would be complete.

The information should include name, path and a hash value of an identified file.
Such an extension should have no significant impact on the size of the provenance
traces as the size of the context model is much smaller compared to the size of
provenance data (cf. Table 7.2 and Table 7.7).

• Extension of Research Objects with the context model
Research Objects are containers for information facilitating understanding of sci-
entific experiments. They contain items like workflow files, data used to run the
workflow and provenance traces, as well as scientific publications and slides.

They miss formally defined descriptions of the environment in which the workflow
was executed. We showed in the course of this dissertation that this information is
crucial for verification of workflow re-execution. For this reason, we believe that
the Research Objects should be extended with the context model that is created
applying the first three steps of the VFramework on the original execution. Thus
the environment in which the workflow was executed is explicitly documented
and similar conditions can be recreated. Furthermore, the validation requirements
that were selected by the workflow owner from a set of automatically generated
requirements enable validation of workflows re-execution and thus build the trust
between the parties.

• Integration of mock-up capabilities for web services
The capturing of data exchanged between a workflow and a web service can be
integrated into the workflow engine, because the workflow engines are already a
proxy that has access to this data. In the re-execution another built-in mechanism
could automatically create a mock-up of external web services using data of the
original. The user should be able to choose in the workflow engine whether to run
the workflow using the service specified in the workflow file or to use the captured
data to mock-up the service. Such automatically collected data could be part of
the provenance traces, or an independent entity added to the Research Objects.

• Resilient web services
Web services perform computations outside of a workflow engine and thus limit the
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information on how the result was obtained. The implementation of a web service
can change and deliver different results than in the original workflow execution.
Mechanism similar to web service versioning, but including not only changes to the
web service interface, but also to its implementation [MMUR14], is needed. Thus
we can verify the web service and check whether it conforms to the version specified
in the workflow.

• Embedded metadata detection
When comparing collected data we found that some of it contains embedded
metadata within the data, for example, the PDF report contained its generation
timestamp in the first page. We could not simply extract the text contents from
the document, remove all timestamps, and compare the contents, because some of
them can be the actual data. For this reason, research on ways of excluding such
embedded metadata from comparisons is needed. In some cases changes to the
tools and libraries processing data may suffice, while in other cases development
of heuristic algorithms may be needed. Such algorithms could check whether the
timestamp appears only in a footer of a PDF document, or is within a commented
section of an R script, and so on.

• Further reduction of workflow dependencies
Although the workflow management systems provide an abstraction layer for
workflows that minimise their dependencies, there are still many interactions with
the underlying infrastructure that must be captured. Further research should
identify how to limit the amount of dependencies that needs to be checked for
workflow replicability without limiting the workflow processing capabilities. The
research could include investigation of using virtual containers for encapsulating
environment configurations that are needed for running workflow steps which
have these dependencies. In case of Debian-based systems we showed that an
aggregation of multiple files constituting a package improves the analysability of
workflow dependencies. Similarly, the dependencies needed for completion of a
single workflow step can be aggregated within a container. Containers in contrast
with virtualisation do not contain the complete operating system and contain only
workflow specific dependencies. Thus the workflow would depend on a specific
container version that could be downloaded from a central repository. Currently
Taverna allows using beanshells that depend on specific Java libraries that are
explicitly listed in the workflow definition file. Similarly, there could be a new kind
of workflow step that would specify the container version needed to run the given
workflow step. When comparing two workflow executions it would be sufficient to
check whether both of them use the same container version in a given workflow step.
However, the containers should only be considered as aggregation of dependencies
that ease the porting and verification process. They still should be accompanied by
a context model describing the dependencies which they aggregate so that the full
analysis of workflow dependencies is possible.
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Context model of the weather

workflow
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A. Context model of the weather workflow

Figure A.1: Complete automatically generated ArchiMate model of the weather workflow.
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Figure A.2: Workflow Model Core of the weather workflow.
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A. Context model of the weather workflow

Figure A.3: Workflow Dependencies of the weather workflow.
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Figure A.4: Workflow Model Core and Workflow Dependencies of the weather workflow.
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A. Context model of the weather workflow

Figure A.5: Workflow Instance Data of the weather workflow.
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Figure A.6: Workflow Model Core and File Format Specification of the weather workflow.
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A. Context model of the weather workflow

Figure A.7: Workflow Model Core, Workflow Dependencies, and File Format Specification
of the weather workflow.
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Figure A.8: Workflow Model Core, File Format Specification, and Validation Requirements
of the weather workflow.
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