
DISSERTATION

Predicting the Trajectory of the Flying Object with
the Use of k-Nearest Neighbors

Determination of Thrown Object Impact Position in Manufacturing Transportation
Systems

Submitted at the Faculty of Electrical Engineering and Information Technology,
Technische Universitaet Wien in partial fulfillment of the requirements for the degree of

Doktor der technischen Wissenschaften (equals Ph.D.)

under the supervision of

Prof. Dr. Dietmar Dietrich
Institute of Computer Technology

Technische Universitaet Wien

and

Prof. Dr. Liliya Chernyakhovskaya
Institute of Technical Cybernetics

Ufa State Aviation Technical University

by

Konstantin Mironov
Matr.Nr. 1227747

Ehrensteingasse 3/I/4, 1220 Wien

Vienna, April 2016

Die approbierte Originalversion dieser
Dissertation ist in der Hauptbibliothek der
Technischen Universität Wien aufgestellt und
zugänglich.
http://www.ub.tuwien.ac.at

The approved original version of this thesis is
available at the main library of the Vienna
University of Technology.

http://www.ub.tuwien.ac.at/eng

Kurzfassung

Automatisiertes Werfen und Fangen stellt einen vielversprechenden Weg dar, um den Transport
von Objekten und Teilen in einer industriellen Umgebung zu gewährleisten. Um ein geworfenes
Objekt mit dem Greifer zu fangen, wird das Wissen über die Flugbahn des Objektes innerhalb des
Arbeitsbereiches des Greifers gebraucht, weshalb die Flugbahn vorhergesagt werden muss. Die
meisten existierenden Algorithmen für diese Aufgabe basieren auf der Modellierung der ballistis-
chen Eigenschaften des geworfenen Körpers. Der in dieser Forschung vorgeschlagene Algorithmus
erfordert keine genaueren physischen Daten zum Flug; er basiert auf dem Lernen von Beispielen
des Werfens. Als Basistechnik zur Prognose von Objektkoordinaten wird das Nächste-Nachbar-
Prinzip angewendet. Zwei Modifikationen wurden vorgenommen, um die Leistungsfähigkeit und
die Genauigkeit der Vorhersage zu erhöhen. Zuerst wird eine Suche nach dem nächsten Nach-
barn innerhalb einer relativ kleinen Teilmenge von ähnlichen Beispielen anstatt innerhalb der
gesamten Datenbank gestartet, was eine rasche, skalierbare Verarbeitung großer Datenbanken
ermöglicht. Zweitens werden die Vorhersagen in einem zweidimensionalen, Trajektorie-bezogenen
Koordinatensystem anstelle eines dreidimensionalen Weltkoordinatensystems gemacht. Dadurch
wird der Algorithmus Unabhängigkeit von der Startposition, der Wurfrichtung und der Tracking-
Umgebung. In der Simulation wurde gezeigt, dass diese Methode die Vorhersagegenauigkeit
für die Trajektorie der geworfenen Objekte im Vergleich zu den anderen existierenden Ansätzen
erhöhen konnte. Die vorgeschlagenen Änderungen verbessern neben der Genauigkeit der Vorher-
sage auch die Berechnungszeit für die Prognose. Die Fangversuche mit einem Roboterarm zeigten,
dass dieser Vorhersagealgorithmus es erlaubt, Kugeln in der Echtzeitanwendung zu fangen.

II

Abstract

Automated throwing and catching is a promising way to provide the transport of objects and
parts in an industrial environment. For the gripper to catch the thrown object, prior knowledge
about the trajectory of the object within the gripper workspace is needed. Therefore, the tra-
jectory must be predicted. Most of the existing algorithms for this task are based on modeling
the ballistic properties of the thrown body. The algorithm proposed in this research does not
require the physics of flight to be exactly known; it is based on learning from example throws. As
a basic technique to forecast object coordinates, the nearest neighbors principle is applied. Two
modifications are made in order to increase the performance and accuracy of prediction. First,
a search for the nearest neighbors is done within a relatively small subset of similar examples
instead of the entire database. This allows the fast, scalable processing of large databases. Sec-
ond, forecasts are made within a two-dimensional trajectory-related coordinate system instead of
a three-dimensional world coordinate system. This provides algorithm invariance to the launch-
ing position, direction of throw and tracking environment. Once this algorithm was applied to
the trajectories of thrown objects, it demonstrated that it could increase prediction accuracy in
comparison with other existing approaches. The proposed modifications not only improve the
accuracy but also the speed of prediction. Catching experiments with a robotic arm showed that
the predictor allowed balls to be caught in real time.

III

Acknowledgements

Doing my doctoral research at two universities at the same time was a challenging task for me, and
I could not have accomplished it without the help I received from so many people on both ends.
First of all, I would like to thank my supervisors: Professor Dietmar Dietrich from the Technische
Universitaet Wien and Professor Liliya Chernyakhovskaya from the Ufa State Aviation Technical
University. It was a great honour to work under their supervision. They have not only supervised
me but have continually motivated me to work for nearly four years. I would also like to thank
my colleague Martin Pongratz, who is the leader of the research project ”transport-by-throwing”.
He has helped me solve a number of issues during my research - scientific, administrative, and
social. Without his help, finalizing my work would have been impossible. A special thanks goes
to the Professors Vladimir Vasilyev, Murat Guzairov, Rustem Munasypov and Doctor Gouzel
Shakhmametova. I discussed some specific topics of my thesis with them, and they were very
helpful. I also received significant help from these students and junior scientists working on the
research project: Manuel Huber, Maximillian Goetzinger, Balint Toth, and Gilbert Markum in
Vienna, and Irina Vladimirova in Ufa. My work was provided by the Erasmus Mundus Action
2 MULTIC Scholarship, and I would like to thank all the people that helped me in obtaining it
and managing administrative issues. Last but not least, I want to say thank you to my family
and my friends. They have believed in me and been supportive since I began this work, and it
has been really helpful and encouraging.

IV

Table of Contents

1 Introduction 1

1.1 Material transportation . 1

1.2 Transportation by throwing and catching . 2

1.2.1 Overview . 2

1.2.2 Throwing . 4

1.2.3 Catching . 5

1.2.4 Trajectory observation and prediction . 5

1.3 Challenge of trajectory prediction . 9

1.4 Learning-based prediction . 12

2 State of the art 15

2.1 Aerodynamics of ballistic motion . 15

2.1.1 Common view . 16

2.1.2 Arm ballistics and aerodynamics of gliders 19

2.1.3 Research on the aerodynamics of sport balls and similar objects 20

2.2 Statistical estimation of ballistic curves . 24

2.3 Visual tracking of moving objects . 28

2.3.1 Motion capture with object-integrated sensors 30

2.3.2 Structured light and time-of-flight range measurement 30

2.3.3 Monocular vision . 33

2.3.4 Stereo vision . 34

2.4 Robotic catching and transportation by throwing 38

2.4.1 Throwing and catching . 38

2.4.2 Transport by throwing . 44

2.4.3 Discussion . 46

2.5 Trajectory prediction in robotic catching and transport-by-throwing 50

2.5.1 Catching without prediction . 51

2.5.2 Prediction using physical models . 52

2.5.3 Neural network prediction . 54

2.5.4 Premises for use of nearest neighbors algorithm 56

3 Observing object trajectory 59

3.1 Throwing experiments . 59

3.1.1 Throwing . 60

3.1.2 Tracking . 62

V

3.1.3 Triangulation . 68
3.1.4 Acquired datasets . 70

3.2 Accuracy of positioning static object . 72
3.3 Accuracy of positioning the flying object . 76

3.3.1 Influence of background subtraction . 77
3.3.2 Errors in range measurement over long distances 80
3.3.3 Measuring object’s velocity . 84
3.3.4 Summary . 85

4 Algorithm for trajectory prediction 87
4.1 Means of initial validation . 87
4.2 Coordinate transformations . 89

4.2.1 Overview . 89
4.2.2 Gravity-related coordinate system . 92
4.2.3 2D representation for 3D coordinates . 94
4.2.4 Invariance to release point . 101
4.2.5 Reverse transform and robot coordinate system 102

4.3 Predictor . 103
4.3.1 Forecasting operation . 103
4.3.2 Search for nearest neighbors . 106

4.4 Allocating the subset of neighbors . 107
4.5 Predictor summary . 114

5 Implementation and experiments 117
5.1 Numerical experiments with the dataset . 117

5.1.1 Simple and weighted nearest neighbours . 118
5.1.2 Size of the cluster . 119
5.1.3 Value of k . 121

5.2 Implementation . 122
5.2.1 Integration into the transportation system 123
5.2.2 Real-time predictor . 124

5.3 Catching experiments . 126

6 Conclusion and Future Work 129
6.1 Results of research . 129
6.2 Future work and outlook . 132

VI

Abbreviations

2D Two-Dimensional
3D Three-Dimensional
AOI Area of Interest
A-AOI Algorithmic AOI
C-AOI Camera AOI
CA Calibration errors
CCTV Closed-Circuit Television
CPU Central Processing Unit
CSV Comma-Separated Values
CWC Catching With Consideration of shock contact
CWOC Catching WithOut Consideration of shock contact
DSP Digital Signal Processor
EKF Extended Kalman Filter
FOV Field of View
FPGA Field-Programmable Gate Array
GA Grasping Area
GAG Gaining Angle of Gaze
GAT Grasping Area Trajectory
GPU Graphic Processing Unit
HPA High Precision Angle
HPT High Precision Throw
HSV Hue-Saturation-Value color space
IPE Image Processin Errors
KF Kalman Filter
KFO k Nearest Neighbors Forecasting Operation
k-NN k Nearest Neighbors
KSO k Nearest Neighbors Search Operation
LfE Learning from Examples
LOO Leave-One-Out rule
LPT Low Precision Throw
LS Least Squares
MA Measurement Area
MAT Measurement Area Trajectory
MLE Maximum Likelihood Estimation
NNTP Neural Network Trajectory Predictor
PC Personal Computer
QE Quantization errors
RANSAC RANdom SAmple Consensus algorithm
RBF Radial Basis Function
RGB Red-Green-Blue color space

VII

RLS Robust Least Squares
SCC Stereo Camera Coordinates
SLS Structured Light Scanner
SVR Support Vector Regression
PoF Plane of Flight
TbT Transportation by Throwing
ToF Time-of-Flight
TCR Throw-Catch Route
UFL Used Frames List
UKF Unscented Kalman Filter
USB Universal Serial Bus
WKNN Weighted k Nearest Neighbours

VIII

1 Introduction

The contribution described in the current thesis is part of a bigger research project that aims
to develop a new approach in the transportation of material objects from one place to another
by throwing and catching. The task of object transportation (material handling) often arises in
industry, for example when there is the need to relocate an object from one machine tool and
process it to another or when the product is moved from machine tool to warehouse. Approaches
to this task may differ in various production systems in various situations, and different means
can be used for transportation. The development of this field is motivated by the increasing
requirements of the performance, quality and flexibility of production systems.

This introductory chapter of the thesis is organized in the following way. Section 1.1 is a brief
introduction to modern transportation systems. Then in 1.2, an overview of the research into
transportation by throwing and catching (Transport-by-Throwing, TbT) is given. The research
described in this thesis concentrates on one aspect of the TbT system: predicting the trajectory
of a flying body. This challenging aspect is discussed in 1.3The challenges and open issues that
motivated the research are listed in that section, and the proposed solutions to those challenges
are laid out in section 1.4.

1.1 Material transportation

Material transportation is a natural part of the common industrial manufacturing process. The
means of manufacturing include the machine tools that process the products, the workers that
perform the work that cannot be performed by the machine tools and the environment (trans-
portation network) that provides the flow of products or its parts between the workers and the
machine tools. History shows that the allotment of the tasks that are performed by human
workers decreases with the progress of industrial technologies. Mass production, the standard
in industrial processes since the beginning of the 20th century (the introduction of mass pro-
duction is usually associated with the opening of Highland Park Ford Plant in 1910), requires
the automated sequential transportation of products and parts between the machine tools and
the workers who process these products and parts. In a fully-automated industrial process, all
transportation and the processing of objects is done by machine tools.

The traditional networks for object transportation are based on various conveyor systems (belt
conveyors, screw conveyors, small rail-guided vehicles, etc.) that transport multiple small objects
over short distances and special vehicles that transport larger objects over longer distances. In

1

Introduction

some specific conditions, other techniques exist, e.g. pneumatic tubes. The TbT concept could
replace conveyor belts in some specific cases and conditions.

Commonly, the conveyor belt is a mean that takes up a significant volume of factory workspace
and determines the disposition of the machine tools. The machine tools are arranged sequentially
along the production line associated with the conveyor belt. The following properties of conveyor
systems should be mentioned [Sul09]:

• Ability to move a large number of parts: multiple objects may be transported by the con-
veyor belt at the same time

• Speed of transportation: may be adjusted according to the requirements of machine tools.

• Possibility to allocate a temporary storage for the parts between the machine tools.

• Highly automated transfer of the objects.

• Common environment for object transfer between multiple machine tools: there are multiple
machine tools processing the object between source and destination.

The increasing demand for individual products and number of product variants has increased the
requirements of the flexibility and speed of material transportation systems [Pon11]. The flexibil-
ity of production in this paper (synonyms for the same or similar phenomenon are adaptability,
agility, and changeability) means that a fast and simple reconfiguration of the manufacturing
environment is possible if there is a change in the manufacturing process. These conditions spur
the development of alternative technologies for object transportation.

1.2 Transportation by throwing and catching

Transport-by-throwing (TbT) is a novel approach to object transportation proposed by Frank
[Fra06]. Possibilities for this use of this approach in material handling in industry are now being
investigated. TbT systems could replace conveyor-based systems in the high-speed transportation
of small, rigid objects over short distances.The main principle of TbT is that an object is thrown
by a specific throwing device from the source point towards the destination point and is then
caught by a special catching device (gripper) at the destination point. The motion between these
points is influenced by gravity and the impulse of throw. It follows the ballistic trajectory.

1.2.1 Overview

An example structure of a transportation network based on throwing is shown in figure 1.1 (a
modified version of the figure from [Fra06, p.92]). Various workstations that treat the objects
during the manufacturing process are connected via throw-catch routes. The throwing devices
are located at the starting point of each route. A gripper is located at each destination point. It
catches the flying object and gives it to a processing machine tool.

This type of transportation network when compared to traditional networks based on conveyor
belts is different in several ways:

2

Introduction

Figure 1.1: A transportation Network based on throwing- a modification of the picture from [Fra06,
p.92].

• There is no need to set up a special conveyor infrastructure on the floor between two work-
stations. Therefore, applying TbT factory workspace to be saved. Another aspect of this
network is that there is no need to mechanically connect various machine tools.

• In conveyor-based systems, it is typical for one conveyor to provide sequential object trans-
portation through many workstations. Workstations in this situation are usually located
along the conveyor. In the throw-catch approach, each pair of sequential workstations have
their own route. If there is a need to transport an object between two distant workstations,
it must be done via several throw-catch routes. However, it is also possible for one throwing
device to throw objects towards several grippers or one gripper may catch objects thrown
from several throwing devices.

• It is unnecessary to position machine tools in a straight line like in those transportation
networks based on conveyor belts.

• The ratio between the object velocity and route capacity as well as power consumption
could be much better. The expense of energy in the throw-catch approach is due to the
throwing movement and the mechanical actions of the gripper. In conveyor-based systems,
large energy expenses are connected with the moving conveyor belt.

• The distance is limited by the power of the throwing device.

The development and exploration of the approach created in [Fra06, Fra08a, Fra08b, Bar08,
Pon10, Pon11, Fra11, Fra12] showed that this could become a viable method of object trans-
portation under the following conditions:

• Size of the object is around 10 cm or less. In most of the experiments tennis balls were
used [Fra08, Bar08, Pon10] while some other compact object were also considered [Fra11,
Fra12].

• The throwing distance would have to be that of several meters. An increase in distance
leads to an increase in deviation from the interception point. Hence, the area of catching
expands with an increase in distance. Long distances also require higher throwing velocities
and more equipment-free space for object trajectories.

3

Introduction

• The velocity of throw must be up to 10 meters per second. A higher velocity would lead to
higher energy consumption. Throwing velocity has a significant influence on the maximum
distance of flight. For example, throwing the ball at a velocity of 10 m/s and at a =4 angle
to the horizon leads to a distance of 9 m with a maximum height of 2 meters [2]. High
velocities over small distances can lead to an increase in the relative velocity of both the
object and the gripper at the point of interception, which could damage fragile objects.

One throw-catch route will now be discussed, which would provide object transportation from
source point A, where throwing-device is located, to destination point B, where the gripper
is located. One throwing device throws identically-shaped objects towards one gripper. The
following four main tasks of the system are considered in [Pon11, p. 138]:

1. The throwing device must throw the object from the source point towards the destination
point.

2. The catching device must capture the object within its workspace around the destination
point.

3. The trajectory of the object within the gripper’s workspace must be predetermined in order
to define the catching movement of the gripper. In other words, the trajectory of the object
must be predicted.

4. Its prediction requires information about the initial stage of flight; therefore, the trajectory
of the object must be observed in real time.

A simple throw-catch route includes two electromechanical devices (the thrower and the gripper)
and a computer system for tracking the objects and gripper control. This system may be dis-
tributed on the controllers of the gripper, the thrower and additional devices (e.g. sensors for
object tracking).

1.2.2 Throwing

The thrower’s task is to throw objects in such a way that its impact position is within the gripper
catching area. In principle, the thrower should be adjusted each time it throws in order to provide
the identical initial parameters required for each object (velocity, angles, object orientation).

The first step in the development of a working Transport-by-Throwing system is the creation of a
throwing device, which would allow objects to be thrown more or less precisely. This means that
such a device would throw objects without strong deviations in velocity and direction of throw. If
all thrown objects intercept the gripper workspace, the throwing device meets the requirements.
Several works exist that are connected with the development and control of these types of devices,
e.g. [Fra08a, Fra12]. At this time the question of how to improve upon these devices is still open,
but devices that meet these requirements do already exist. A throwing device cannot be perfect;
deviations in throws will always exist (i.e. the velocity and the direction of the thrown object
will not be exactly the same every time). The object?s trajectory will always be different due to
these deviations and how the object interacts with the air flow. An exploration of the deviations
of a throwing device used in the experimental evaluation of this research is given in subsection
3.1.1.

4

Introduction

The quality of throwing is sufficient if the device can make the object land within a certain area.
Accurate throwing lead to relatively small size of this landing area. The throwing of objects
was considered to be a self-contained robotic task in research [Miy10, Kob11, Nem11, Zha12,
Kan12]. For example, in [Nem11] balls thrown from a distance of 2.5 meters were able to reach
the precisely the 5 cm diameter landing area.

1.2.3 Catching

The gripper’s task is to catch the flying object and give it to the machine tool. Two main types of
mechanical catching are considered by [Fra06]: hard and soft catching. ”Hard” catching is where
the gripper is positioned at the point of expected intersection and waits there for the flying object.
At the moment of intersection, it grasps the object. The velocity of the gripper at this moment
is equal to zero; therefore, the relative velocity between the object and the gripper is equal to
the velocity of the object’s flight. Hard catching was implemented in [Fra08b] with a gantry
Cartesian robot that has two degrees of freedom; it can move both vertically and horizontally,
which is perpendicular to the distance from the throwing device. Hence, the gripper can move
within a vertical gripping plane defined by these directions. The predictor gives the data to the
gripper about the point where the object intersected this plane, and then the gripper moves to
this point and waits there for the object.

In the ”soft” catching, the gripper has even more freedom. The end-effector of the catching device
has its own trajectory that matches the trajectory of the object at the catching point (and at
the same moment in time) [Pon13]. The trajectory of the end-effector is determined in such a
way that the relative velocity of the object is minimal at the moment of catching. Therefore, the
interception overloads are minimized, and soft catching may be used with more fragile grippers
and for more fragile objects.

A similar dichotomy of catching movements for human object-grasping has already been discussed
in [Kaj99]. There CWOC (catching without consideration of shock contact) and CWC (catching
with Consideration of shock contact) are specified and correspond to hard and soft robotic-
catching respectively. It was shown that in order to catch a moving object a human must either
move its arm in a way that enables it to reach the object as quickly as possible (CWOC) or move
in a way that minimizes the overload (CWC). In this way the concept of soft catching can be
considered to be bio-inspired.

The gripper’s actions depend on the received information about the object’s flight. Specific sensors
and software are used to extract this information. The requirements for extraction algorithms
and the trajectory prediction task are discussed in subsection 1.2.4. After the interception point
is determined, the instructions for the catching device must be generated. The catching device
must perform the capturing movement right before the moment of expected interception, and this
movement must not damage the object, the gripper or the environment. After a successful catch,
the gripper must transfer the object to the next tool, processing it with the required orientation.
This task also has various challenges, depending on the construction of the capturing device and
the type of object.

1.2.4 Trajectory observation and prediction

A successful catch can only be achieved by defining the point in gripper workspace where the
grasp should take place with a particular throw. To do this accurate and immediate data about

5

Introduction

the thrown object’s trajectory is required. Therefore, a sensor system for measuring object
coordinates in 3D space is needed. The use of a digital camera setup for this type of system is
researched in most of the work connected with TbT (e.g. [Bar08, Bar09, Pon09, Pon12]). A single
camera is able to track the ball with the use of additional information provided by other sensors
or by specific theoretical assumptions. For example, in [Bar08] visual tracking of the flying ball
with a single camera is supported by measuring the launch coordinates with light barriers and a
specific model of the object’s motion. Another factor in determining object spatial coordinates
from a single camera is that information on the flying object’s size must be accurate..

A stereo camera setup (two synchronized cameras observing the same scene) allows data about
object coordinates to be directly extracted from a pair of simultaneous images. The accuracy of
extraction depends on the parameters of cameras and on the quality of the extraction algorithms.

The two main stages of trajectory processing can be summarized as the collection of data about
the current trajectory (tracking) and the forecast of parameters values into the catching area
(prediction). These stages were described as separate tasks in subsection 1.2.1. In this subsection,
the first stage will be discussed. Trajectory prediction is one of the main topics of this dissertation
and will thus be discussed in more detail in a separate section (1.3). Flight information processing
may be divided into the following steps:

1. Scene observation before the flying object?s appearance: This stage begins when the throwing
device signals that it is about to throw.

2. Object detection and positioning when the object flies into the observer’s field-of-view : The
tracking system must first detect that the object is flying through the scene and then
determine its coordinates in 3D space..

3. Object tracking : This stage includes the collection of data about object position changes
during a period of time. To increase the accuracy and performance of the algorithm, data
on previous object positions may be used.

4. Future trajectory prediction.

5. Determination of the interception point where the capture must take place.

6. Determination of instructions for the gripper.

7. Gripper actuation.

Consider the throw-catch route where the coordinate system is positioned with regard to the
throwing device. The gripper and the gravity vector are located as shown in figure 1.2. The
y-dimension here is perpendicular to the plane of the figure. The gripper is located near the
destination point. It has some workspace where it can move more or less freely according to
its degrees of freedom. For the 2-DoF gripper used in [Fra08b], the workspace will be within a
planar rectangle and is restricted to the size of the gantry. The workspace for the robotic arm
is restricted by the lengths and maximum angles of the joints. The capturing point must lie
inside the gripper workspace. The area of space where the capturing point may lie is called the
Gripping Area (GA). The part of the trajectory that lies within the GA is called the Gripping
Area Trajectory (GAT).

Information about the initial velocity of the object can be provided by the specific sensors on
the throwing device (e.g. light barriers in [Bar08]) or estimated based on camera measurements.

6

Introduction

Figure 1.2: Position of throwing device and gripping plane in a transportation system based on hard
catching.

Essentially, the throwing device is adjusted to throw the object towards the destination point at a
constant velocity and at an angle to the horizon. The differences between various trajectories are
caused by deviations in initial velocity, the direction of throwing and unpredictable interactions
with the air. For example, in [Coo00] it was shown that the trajectory of a tennis ball is unstable
in the initial stage of the flight. After reaching a distance equal to that of approximately ten times
that of its diameter from the launching point, the ball came to a dynamically stable state, and
its trajectory from that point on could be determined more or less accurately. Thus, information
about the object’s trajectory after the throw is needed for prediction.

The set of sensors (e.g. synchronized stereo pair) is used to measure the object’s position. Cameras
should be positioned in such a way that maximal accuracy of measurements can be provided (if
such a position is allowed by the construction of the guild and enables communication with the
controller).

Similar to GA and GAT, the measurement area (MA) and measurement area trajectory (MAT)
are defined. In this area, starting from the launching point (figure 1.3), the coordinates of the
flying object are measured by sensor system. After the object flies out of this area, a prediction of
its trajectory in the catching area is made. The space between the measurement and the catching
area can be called the processing area (PA). While the object is flying through the processing
area, the following system must complete the following:

1. Process the data, received from sensors;

2. Predict GAT of the object;

3. Determine instructions for the catching device;

4. Move the catching device to the starting point for grasping.

7

Introduction

Figure 1.3: Division of motion space into three areas

If the initial velocity of the object is around 5-10 m/s, and the distance is 1.5-3 meters, the
duration of flight would be around 0.7-1.5 seconds [3]. This period must be divided into a
measurement and processing interval- except the time of catching.

A large MA has some advantages. A large number of measurements makes the data more reliable.
The smaller the size of the ”blind” processing area means the deviation of the trajectory will
be less unpredictable. Even for various different trajectories, the values of the coordinates are
not much different at the beginning of the flight. Hence, in a small measurement area large
deviations at the end of flight should be able to be precisely predicted because of low deviations
at the beginning of the flight. In that situation, it is not likely that small measurement errors
will strongly influence prediction accuracy. The time performance of the system greatly limits
the size of the measurement area. The time needed for the object to fly through the processing
area must not be less than the time the gripper needs to prepare to catch the object.

The division of the trajectory into three parts is conditional. In reality the measurements could
even be made within the gripper’s workspace. If the predictor is fast enough, it can update the
prediction after each new frame is received. The time shift between the moment the prediction
is made and the expected moment of catching is first determined by the time the gripper’s servo
needs to perform the catching movement. Therefore, the processing area trajectory (PAT) is
considered to be the part of the trajectory that corresponds to the specific time period that is
sufficient for performing the catching movement before the object reaches the gripper’s workspace.
Once the first prediction operation has been completed, the dynamics of the object in the MA
is an input for predictor, and dynamics of the object in the GA is the required output. Later
on, the new prediction may be obtained, and the new results may be used to correct the path of
the gripper. However, the gripper may not deviate strongly from its trajectory if it has already
started to move. Hence, the decision on the gripper’s trajectory to make the catch must be made
based on the data received from the measurement area.

The goal of tracking is to obtain information about the motion of the object through the mea-
surement area. To do this the system must be able to perform the following tasks:

1. Detection: to establish that the object is present in the image, i.e. it is in the measurement
area.

8

Introduction

2. Recognition: to define the position of the object in the image. This and the previous step
are implemented based on the object recognition algorithm. This algorithm must be able
to distinguish the object’s contour from the industrial scene (which can contain moving
equipment) or to detect the specific characteristics of the object. The goal at this stage is
to define the pixel position of the object’s center of mass in the images. This must be done
very quickly- advisably within the timeout between two frames.

3. Positioning : to define the object’s position in space. The object’s center coordinates in
the world coordinate system must be defined and the object’s orientation for non-point-
symmetrical bodies must be determined.

In tracking mode, image processing could determine the position of the object in the current image
more quickly if data collected from the previous images is used. A real TbT system may include
a number of additional tasks (e.g. throwing objects towards several destinations, catching objects
from several sources, transporting various objects through one route). At this time there is no
common methodology for constructing such complicated TbT systems. Only once a functioning
model for a simple TbT route has been created would it be useful to develop the methodology
for more complicated TbT systems.

1.3 Challenge of trajectory prediction

The task of trajectory prediction for hard catching in the situation considered in [Bar08] would
have the following state: to determine the values in y- and z-direction when x = xgrasp (notations
fromfigure 1.2 are used). At the moment of gripping, the catching device must be fixed at the
point xgrasp, ygrasp, zgrasp and wait for the object. It does not adjust its motion to the object
velocity and orientation, so prediction of these parameters is not necessary for successful hard
catching. In related research from the TbT project, the challenge of object orientation prediction
is poorly considered because most of thrown objects are point-symmetrical. Predicting the time
of an object’s interception with xgrasp-plane should be as accurate as needed to correctly position
the catching device before this interception.

Soft catching requires more complex trajectory prediction as the velocity and the direction of
the gripper’s movement must be close to the velocity and direction of the object’s movement
at the moment of catching. Due to the construction of the catching device, the catch must be
within the grasping area (GA) where the gripper can move. To determine the instructions for the
gripper, the system must know the values of the following parameters of object motion through
the trajectory in the gripping area (GAT):

• Time ranks of object motion through the gripping area: the moment it arrives in the gripping
area tin and the moment when it leaves gripping area if there is no catch tout;

• The dynamics of object center coordinates x1(t), x2(t), x3(t) for tin < t < tout;

• The dynamics of object velocity v(t) for tin < t < tout;

• The dynamics of object orientation for complex-shaped bodies.

9

Introduction

The task is to estimate the most probable values of these parameters. Note that more or less
accurate information about the velocity can be derived from the coordinate/time dependence.
The calculation is based on the previous trajectory of the object. Three approaches on the use
of trajectory prediction for robotic catching exist in related works:

1. Accurate adjustment of throwing device [Fra12]: No prediction is used at all.

2. Catching in real-time [Ish96, Nam99, Ima04, Fur06]:The gripper moves closer and closer to
the actual position of the flying object. No prediction is used at all or very simple models
are used.

3. Long-term prediction [Hov91, Fre01, Pon09, Bir10, Bae11].

Essentially, the throwing device is adjusted to throw the object towards the destination point with
a constant velocity and at an angle to the horizon. The differences between various trajectories
are caused by deviations in initial velocity and the direction of throwing and by unpredictable
interactions with the air. For example, a tennis ball thrown by a sportsman’s rocket is dynamically
unstable at the beginning of flight, and its trajectory can vary from the nominal shape. However,
after flying through approximately ten times its own diameter, it becomes dynamically stable,
and its flight may be more or less accurately estimated by the aerodynamic model [Coo00].

Real-time catching is used when the robot is able to operate with a velocity comparable to the
velocity of the object. For these catching strategies, the use of a high speed sensing system is
required. For example, in [Ish96] a specific vision system that can react with a feedback time of 1
ms is proposed and is later applied for robotic catching in [Nam03a]. This strategy demonstrated
its validity in the experiments, but if the throw’s distance is long and the robot cannot react in
time, then it is useless.

Algorithms for predicting the trajectory of a flying object were developed in a number of works,
e.g. [Hov91, Fre01, Bar08, Bir11, Kim12]. Successful catches were up to 80 percent in [Bir11].
Mostly analytical models were used. A more detailed discussion of these approaches is in section
2.5.

The basic idea of forecasting the trajectory of a flying body is to use the physics of ballistic
flight. To determine the physical model of the projectile’s motion, the forces influence on the
object should be determined. There are a number of such forces [Kar54, pp. 68-108]. The most
influential of which are shortly described below:

1. Gravity : It is directed downwards and can be calculated using the well-known formula:

Fgrav = m ∗ g, (1.1)

where m is the mass of the object (obviously, it is a constant for the objects of a same type),
g is free-fall acceleration (it is constant for geographical region and has no large deviations
on the Earth). All of the following forces are caused by the interaction between the object
and the air.

2. Pressure drag or skin friction: If the flight is subsonic and takes place in the Earth’s
troposphere, the value of drag can be considered as proportional to the second power of the
object velocity v

Fdrag = k ∗ v2 (1.2)

10

Introduction

The coefficient k The coefficient k here depends on a number of parameters: object size,
shape and orientation, the Reynolds number, temperature and humidity of air, etc. The
structure of this coefficient is discussed in more detail in the subsection 2.1.1. The coefficient
k k can only be calculated analytically for very simple objects (smooth sphere, smooth
parallelepiped, etc.) while it is usually measured in aerodynamic tubes for bodies with a
more complicated shape.

3. Lift, side force and inductive drag : These forces are connected with the nonsymmetrical
streamlining of a nonsymmetrical body. Due to this effect, pressure on the different points
of the flying body varies. This difference causes the specific force that produces deviation of
the trajectory. An airplane’s flight is based on these deviations. In aeronautics the different
components are differentiated as a lift component (directed upwards), a side component
(side force, which is directed to the side) and a drag component or inductive drag (directed
backwards), but the parent of these forces is the same. An ”upwards-backwards” represen-
tation is sufficient for an airplane wing, but it can be in different directions for arbitrary
shapes.

4. Trail drag : This force is connected with the influence of the vortex street after the flying
blunt body. The air after the object curves into a number of vortices which increase the
resistive influence of air on a flying object.

5. The Magnus effect : This effect takes place if the flying object is rotating. It may have
upwards, downwards, backwards and sideways components.

6. Other streamlining effects: For compact objects the influence of the force connected with
air flow near the moving object surface (specific cases of these force are lift, inductive drag,
trail drag and the Magnus effect) can be ignored. For simple bodies in special conditions,
it can be calculated using special equations or measurement results. Otherwise it is not
possible to accurately determine the influence of these effects.

7. Influence of wind and external air flow : If there is a constant air stream, its influence
could be considered. The influence of local air fluctuations is unpredictable and could be
considered as stochastic deviations.

The creation of a precise deterministic model of object flight seems to be difficult or computa-
tionally impossible for objects of a variety of shapes. In most related works, only the influence
of gravity [Hov91, Her09] and air drag [Fre01, Bar09] is considered. Other factors are considered
to be part of the process noise. However, it can be said that physical rules of projectile motion
exist, and under the same entry conditions, two trajectories would not vary strongly. The phrase
?same entry conditions” means that the type of object, its starting point, its initial velocity and
the direction of throw would be exactly the same and there would be no significant difference
in air flow. This influence of air on projectile motion is difficult but necessary to calculate and
motivates the search for a new method to predict the trajectory. This method should take the
complexity of these aerodynamic forces into account but not require the exact calculation of their
values.

Most of the existing predictive robotic catchers use motion models that take gravity and drag
into account (e.g. [Fre01, Bar09]). The rate of successful catches in these systems varies from
66% [Fre01] to 80 % [Hov91, Bae09] of success in catching.

11

Introduction

1.4 Learning-based prediction

Most humans are good at intuitively predicting ballistic trajectory. The ability of human brain
to solve this task has been examined in a number of related sports, such as tennis, badminton,
baseball, ping pong, volleyball, squash, etc. The players in these sports must quickly estimate
the destination point of the flying ball. The only input for the player is the flight of the ball that
they watch with their eyes. This is not stereo vision: the distance from the ball is much longer
than the eyes? baseline; hence, there is no visible difference in object position from the left and
right eye. In fact, the decision is made based on the elevation angle of the flying object [Gil99].
This task is similar to the task of vision-based robotic ball-catching.

Children are usually able to play sports at a relatively early age. Beginning in primary school,
most children are able to play badminton and volleyball. This is much earlier than when they
begin to study physics. Even when they do begin lessons in physics, the aerodynamic properties
of the projectiles are not usually a part of the physics curriculum. This knowledge is not necessary
to catch the ball successfully. Humans learn to predict ball trajectories by memorizing previous
examples. This intuitive process that helps humans to catch a ball is known as the ”ball-catching
theorem”. This prediction principle was used for bio-inspired prediction in other fields of research,
predicting electrical power consumptions for example [Mao10].

In the previous sections, the following directions for Transport-by-Throwing (TbT) system devel-
opment were specified: the throwing techniques, the measurement of trajectory, the determination
of an interception point, the defining of the gripper actions, and the further construction of trans-
portation networks. The determination of an interception point (based on the prediction of object
GAT) is necessary for a functioning TbT route. Deviations of the throwing device and in the
environment make it impossible to for every object to fly with an identical trajectory; therefore,
the gripper must act to catch the object successfully. The gripper?s actions are based on pre-
diction results. In turn, prediction is based on visual tracking. The visual tracking of movement
(including flying) objects has been researched in many scientific papers. The application of a
tracker and the processing of coordinate extraction for TbT was considered in Akhter’s disserta-
tion [Akh11]. Hardware and software for tracking are chosen in such a way that they could give
accurate coordinate information to the input of a predictor.

This work when compared to current research primarily concentrates on trajectory prediction
and can be divided into the following three parts:

1. Analyzing the structure and accuracy of the tracking information: The input of the predic-
tion system includes the measured coordinates of the object; hence, an accurate observation
system is needed for accurate prediction. The determination of the 3D object?s coordinates
is made based on images from the cameras. This determination has known errors due to
the inaccuracy of the recognition algorithm. It is for this reason that the mechanism of tra-
jectory estimation is to be implemented. The challenge here is that the exact dependence
between time and coordinates stays unknown and it cannot be approximated with exact
and simple function.

2. Development of the trajectory prediction algorithm: The motivation for this task is necessity
of making an accurate prediction for the TbT route to function correctly. Up until now,
predictors based on a physical model were used. However, as demonstrated above, physical
models at their current stage prediction accuracy are restricted. Hence, an alternative
forecasting technique is needed.

12

Introduction

3. The construction of a system that would allow these techniques to be implemented : i.e.
integrating the algorithm into a working system for robotic catching. To correctly evaluate
the quality of the prediction, the whole route needs to be implemented because the predictor
must interact with other parts of the system.

The main idea of the proposed method for trajectory prediction is the use of sample-based fore-
casting models. In these models, the measured parameters of previous trajectories (the dynamics
of the object’s coordinates in the measuring and catching areas) are stored in the database. As
the process of flight obeys physical rules, the information collected from previous flights can be
used to construct the predictor. The construction process is known as ”learning by example”.
This is similar to how the humans learn to perform various action (e.g. how to catch a ball).
Learning by example is the most widespread method of machine learning.

The learning task can be more clearly defined in the following way. Let X be a set of possible
input data for the task, Y be a set of possible outputs for the solver. y∗ : X → Y is unknown
target correspondence of Y from X. The values of this correspondence are known only for finite
learning sampling consisting of m samples L = XM = {(X1,Y1), (X2,Y2), . . . , (Xm,Ym)}. It
is needed to create the algorithm a : X → Y based on LS, which allows yto be approximated
not only for {X1,X2, . . . ,Xm} but for any possible samples from the set X. This means that
the learning algorithm must have the ability to construct common knowledge (dependence) from
individual knowledge (examples). In the trajectory prediction task, the part of the trajectory in
the measurement area is X and the part of trajectory in the catching area is Y.

Due to the nature of Y two widespread types of learning tasks are specified:

• Classification: the set of possible Y is finite;

• Regression: Y is numerical function (set of possible Y is infinite).

This special type of regression task is time series forecasting for when we need to predict the
future values of a certain function based on the previously observed values of its function. It is
obvious that projectile trajectory prediction refers to the time series forecasting tasks. For the
case of trajectory prediction task X is the initial part of trajectory, measured by the observer,
Y is the part of trajectory in catching area, which must be predicted. Commonly this means X
is a sequence of measurements of object coordinates with timing marks (and also velocity and
orientation if this is possible and useful), and Y is an expected dependence of object coordinates
on time in catching area.

The prediction environment can be divided into two parts: predictor and learning algorithm.
The predictor?s task is to determine Y from X using known prediction model a.the task is the
development of a learning algorithm, i.e. the algorithm for the construction of a prediction model.
This means the creation of an algorithm a based on a set XM .

The methodological steps of the research are as specified in the following:

1. An analysis of observer performance and accuracy : This is based on the throwing and
measurement experiments and aims to determine what data are used as the predictor’s
input and what the likelihood of this data is.

13

Introduction

2. The development of an algorithm for trajectory prediction based on machine learning and
the learning algorithm: These algorithms are developed in parallel as they are strongly
related on each other.

3. The evaluation of the accuracy of the constructed model : This evaluation consists of two
stages. In the first stage, the simulation of projectile flight is used. The simulation setup
is defined based on the physics of the flying body, the accuracy of observation system used,
and the deviations of the throwing devices used. In the second stage, a large database of
the real trajectories of the object is constructed. Examples from this database are used for
training and validating the predictor.

4. The integration of the proposed prediction module into the existing transport-by-throwing
system: This includes the evaluation of the speed of the constructed model and the creation
of its real-time version.

5. The final evaluation of the whole transport-by-throwing route with the integrated learning-
based prediction algorithm: This step includes the catching experiments and the establish-
ment of a successful catching percentage. For these experiments, the workable model of
predictor is created. Within these experiments, the developed algorithm be compared to
other possible solutions. The proposed approach for trajectory clustering and processing
will also be evaluated.

The development and validation of the proposed ideas are implemented with a tennis ball as the
object to be thrown. This is because a tennis ball is a well-known object. As shown in subsection
2.1.3 the aerodynamic properties of the tennis ball are explored in a number of scientific works
[Ach72, Ste88, Cha00, Coo00, Meh08]. Most existing robotic catchers are also intended for
catching small-sized sport balls, e.g. [Slo91, Fre01, Nam03a, Bar08, Bir11]. Tennis balls are well
studied aerodynamic objects with not very complicated shape. Physical models of such bodies
flight allow to predict trajectory accurately (used in e.g. [Pon09]) and can be used for proving
the accuracy of other algorithms. Therefore use of the tennis ball is likely in terms of comparison
of the proposed ideas with the existing solutions.

14

2 State of the art

As previously mentioned, Transport-by-Throwing (TbT) is a concept for the material transporta-
tion networks in industry. Since the introduction of this approach in 2006 [Fra06], a number of
works published about the project have brought it to its current level and many of the main
challenges have been are solved. However, the task of catching the flying object with a robot
manipulator was researched in a number of works prior to the introduction of TbT. In these
related works, the task of catching was mostly just a subfield of theoretical robotics focused on
understanding and improving the possibilities of robotic systems. The task of trajectory predic-
tion belongs to time series forecasting tasks. Time series forecasting is a wide field of research in
applied mathematics. Various models have been created in this field. Some are based on known
dependences, some on the statistical properties of data, while others are based on analogies and
learning.

The aim of this chapter is to analyze the existing methods. Section 2.1 analyzes and summarizes
the aerodynamic properties of thrown objects. The next two sections discuss certain aspects
of estimating the trajectory from measurements. Section 2.2 considers the situation when we
already know the measured coordinates of the flying body depending on time. The ways of
how to fit this data into the process model (i.e. how to filter out erroneous measurements and
improve measurement accuracy) are mainly discussed here. In section 2.3 , the technical and
algorithmic issues of observing ballistic trajectories and extracting 3D coordinates from sensor
data are considered. Various technologies that allow the observation and tracking of a moving
target are discussed. The aim of section 2.4 is to give an overview of recent developments in
the systems for robotic throwing and catching and related tasks (i.e. tracking airborne objects
and forecasting the trajectories). This overview includes research from, but not limited to, TbT.
Some Prediction aspects are briefly discussed in this section as issues of catching movements and
grasping principles. A more detailed review of solving the challenges involved in prediction in
these works is given in section 2.5 as prediction is the main topic of this thesis.

2.1 Aerodynamics of ballistic motion

Determining the influence of aerodynamic forces has been mentioned in works that research the
motion of specific objects when it is motivated by applications. The most well-investigated types
of ballistic flight are bullets and projectiles in motion and the flight of gliders. Other objects are
less investigated. Among the objects with properties similar to TbT, the behavior of small sports
balls (used for tennis, table tennis, golf, etc.) is more or less well-defined. Here, TbT objects

15

State of the art

mean rigid, compact bodies of up to ten centimeters in size that do not have high wintage (e.g.
a sheet of paper is not an acceptable TbT object).

2.1.1 Common view

The main forces that influence a flying body are listed in section 1.3Newton began the exploration
of the behavior of flying bodies; he discovered the law of gravity, proposed the first models for
air drag (these models were then rejected [Kar54, p. 61]) and observed that the trajectory of
a rotating object is curved. Nowadays, these three effects are still considered to be the most
influential on a flying decimeter-sized body: gravity, air drag and the Magnus force. Most of the
papers on the aerodynamics of sport balls (see subsection 2.1.3) described below take these three
forces into account. In some papers (e.g. [Ala98]), three aerodynamic forces are considered: drag,
lift and side force. In these papers ”drag” is air resistance directed downwards, while ”lift” is the
component directed upwards, and ”side force” is the component perpendicular to the horizontal
projection of the velocity. ”Lift” here is connected with the Magnus effect and is of another
nature than that of the lift on plane wings. The main source of side force is also primarily the
Magnus effect.

To acquire a fundamental understanding of drag requires that details of fluids mechanics and
how flying objects interact with the air around them be discussed. The fluid area near the flying
body where air flow is influenced by the body is called the boundary layer. The fluid motion
around an object may be laminar or turbulent (figure 2.1). In the laminar mode, the space around
the object may be divided into a set of virtual ”tubes” which correspond to a certain sublayer.
”Sublayer” means the specific velocity of fluid motion and its movement only inside itself. These
sublayers curve around the object without intersecting one another. When the flow is turbulent
the object destroys the structure of the sublayers, which then intersect, and the fluid motion
becomes chaotic.

Figure 2.1: Laminar (left) and turbulent (right) air flow around the spherical object moving in the air.

In turbulent mode, the air behind the object curves into a set of vortices, the so-called Karman
vortex street [Kar54, p. 101]. As previously mentioned, the vortex trail is an additional source
of the drag. However, the viscosity of the air plays a limited role after the transition; hence, the
value of drag decreases with the transition from laminar to turbulent flow [Gof13, Kar54].

The motion of fluid in the boundary layer may be characterized by the dimensionless Reynolds
number, Re, which is defined as follows:

Re =
v ∗D
ν

=
v ∗D ∗ ρ

µ
, (2.1)

16

State of the art

where v is the speed of the object, D is a characteristic length (diameter for a spherical objects),
and ν is the kinematic viscosity which is calculated from viscosity µ and air densityρ. For spherical
objects of a known shape and size in the air with a known temperature and humidity, Re depends
only on the velocity of the object. When the Reynolds number is low, the flow is laminar. At
higher numbers, it becomes turbulent. The transition from laminar to turbulent flow (and the
corresponding drop in the value of air resistance) at a certain value range of Re is called ”drag
crisis” [Gof13, p. 141]. The transition is not an instantaneous process. The range of turbulence
is connected with the growth of a turbulent area after the flying body).

If the flow near the object is laminar, its influence is defined by air viscosity. For flying objects
bigger than several micrometers, the flow would be turbulent, and viscosity can be ignored [Kar54,
p.100]. The turbulence of air flow near standard flying balls was proven in experiments, e.g. by
[Ala10]. To calculate drag in this case, the following formula, called the drag equation, should be
used:

Fdrag =
1

2
SCdρv

n. (2.2)

Here v is object velocity, ρ is air density, Cd is drag coefficient depending on the shape (e.g. for
sphere Cd = 0, 47), S is a parameter, characterizing frontal square of the body; for oblong bodies
it may be expressed as:

S = V
2
3 , (2.3)

where V is object volume. For the sphere characteristic square is equal to the square of its cross
section:

S = π ∗R2, (2.4)

where R is the radius of the sphere. The value of n depends of flight conditions (e.g. for flight
in the air at a supersonic speed n = 1, for ships in water n = 3/4). For an object flying through
the air at subsonic and lower velocities, the pressure drag is proportional to the velocity square,
i.e. n = 2 [1].

As it is more easily understandable, the equation 2.2 is replaced by this:

Fdrag = k ∗ v2, (2.5)

where the coefficient k is defined as a product of coefficients from 2.2:

k =
1

2
∗ S ∗ Cd ∗ ρ. (2.6)

In addition to k and Cd the so called ballistic coefficient Cb may be used to characterize the
drag properties of rigid bodies. For oblong projectiles it may be calculated using the following
equation [Wei80, p.722]:

Cb =
m

Cd ∗ S
=
ρ ∗ l
Cd

, (2.7)

where m is the mass of the body, Cd is the drag coefficient, S is the effective square of the body,
ρ is density of the body and l is its length. The ballistic coefficient corresponds to the ability of

17

State of the art

the object to keep its velocity during flight. It is used to characterize the aerodynamic properties
of the object e.g. in [Wei80, Far02].

The motion of the body only under the influence of gravity may be expressed by the following
differential equation: x1(t)

x2(t)
x3(t)

′′ =
g0

0

 , (2.8)

where x1, x2, x3 are object coordinates in a coordinate system where x1 is collinear to gravity

direction. If the launching velocity v(0) =

v1(0)
v2(0)
v3(0)

 equation 2.8 will have the following solution:

x1(t)
x2(t)
x3(t)

 =

v1(0)
v2(0)
v3(0)

 ∗ t+

g0
0

 ∗ t2
2
, (2.9)

where t is the time period after the launch. This model of motion represents the object?s motion
in a vacuum. For flight in the air it is not exact; however, it was successfully applied for predicting
projectile trajectories e.g. [Hov91, Her09]. Inserting the influence of drag into 2.8 will lead to the
following differential equation:x1(t)

x2(t)
x3(t)

′′ =
g0

0

− 1

2
∗ S ∗ Cd ∗ ρ ∗

x1(t)
x2(t)
x3(t)

′ ∗√(x′1(t))2 + (x′2(t))2 + +(x′3(t))2. (2.10)

The motion model based on this equation is one of the most popular existing solutions in robotic
catching, e.g [Fre01, Bar08, Bir11]. Unlike 2.8 it has no analytical solution, which means it is
usually solved by numerical methods in practice, e.g. the Runge-Kutta method in [Bar08].

The Magnus effect appears when the object is rotating. For spherical objects it may be expressed
as a similar form of drag [Gof13, p. 138]::

Fm =
1

2
∗ SC∗l ∗ ρ ∗ v2. (2.11)

Here C∗l is a dynamic coefficient dependent on the spin of the object, and all other notations
are equal to the drag equation. The dependence of C∗l on spin is not very useful. Thus, it is
sometimes better to use another version of the equation [Gof13, p. 139]:

Fm =
1

2
∗ SCl ∗ ρ ∗ r ∗ ω ∗ v. (2.12)

where ω is the spin value, r is the radius of the sphere, Cl is the static Magnus force coefficient.
Cl and C∗l are connected by the following equation [Gof13, p. 138]:

C∗l =
Cl ∗ v
r ∗ ω

. (2.13)

The direction of the Magnus force is collinear with the vector ω × v [Gof13, p. 139]. It is
sometimes considered to be a component of Magnus drag (directed backwards), Magnus lift
(directed upwards) and Magnus side force (directed sideways). The existing throwing devices
allow objects to be thrown linearly. The Magnus effect may be ignored with these devices. Plane
fitting to object positions as described in the subsection 4.2.3 showed that although the flying
ball is rotating, no curving effect of the Magnus side force was detected.

18

State of the art

2.1.2 Arm ballistics and aerodynamics of gliders

The flight of bullets and projectiles is studied by the projectile ballistic. The trajectories of shot
projectiles were studied earlier than the trajectories of other thrown bodies; the first studies
were done in the 16th century by Niccolo Tartaglia. It was in his work that projectile flight
lead curve was investigated and did not consist of two straight lines. Since then our knowledge
of the properties of flying projectiles has greatly increased. A large part of common ballistics
has come from studying arm projectiles and their trajectories. The development of indirect fire
and then the use of ballistic rockets in the 20th century has increased our knowledge of ballistic
curves. However, modern arm ballistics are only slightly useful for modeling the flight of objects
in throw-catch routes for several reasons:

1. The projectile is thrown from the gun at supersonic velocities of more than 500m/s. The
physics of supersonic motion are completely different from those of subsonic motion (e.g.
the air drag is proportional to the first power of velocity instead of the second) [Kar54, pp.
108-147].

2. The shape of the projectile is constructed in such a way that it has a stable trajectory. In
the TbT application, the shape of the object can vary.

3. The high accuracy of projectile impact is derived from the high accuracy of the gun provided
by its specific design.

4. Applied gun ballistics does not take the observation of flying projectile into account when
defining trajectory. It is common to allow the development of a probabilistic model of the
impact point based on the accuracy of the gun. Nonetheless, forecasts in robotic catching
need to be exact.

At any rate ballistic rockets and their tracking are a well-investigated area of research, and some
aspects that may be particularly useful for TbT are discussed in section 2.2.

One specific field of research is connected with the ballistics of arrows and javelins. Today arrows
and javelins are used in sports rather than as weaponry. Unlike bullets and rockets, arrows and
javelins fly at subsonic velocities. The classic sport of archery is direct in that the goal is to hit
the target with an arrow. The trajectory is not considered to be a curve but rather a straight
line. Research in archery concentrates on defining the drag coefficients at various velocities and
the critical Re for arrows. The standard velocity of an arrow is about 60 m/s [Gof13, p. 143].
Hence, the flight of an arrow is not very similar to the flight of a TbT object.

In comparison, sport javelins are thrown indirectly at an elevation of about 30 degrees. Only
if the javelin touches the gound with the tip first, are the resulted counted [3]. The javelin is
thrown at a velocity of around 30 m/s. The best sportsmen are able to throw it up to 100 meters
[3]. A sports javelin is 2.2-2.7 meters long and has a mass of around 0.6-0.8 kg [Gof13, p. 143],
which means it is bigger than TbT objects. With a maximum shaft diameter of 2.5-3 cm, it is an
oblong object. The javelin’s flight is tied to the pitching moment as the center of mass is not the
same as the center of pressure [Hub87]. Also, the javelin vibrates during flight which influences
the drag [Hub89]. These factors show the dissimilarities between a javelin and a compact object
for use in transportation by throwing.

The ballistic flight of planes and gliders is also a well-investigated area of aerodynamics. The
development of such machines began with the gliders proposed and constructed by George Cayley

19

State of the art

in 1809-1853. from 1809-1853. Modern gliders vary from very small objects that weigh several
kilograms to orbital reusable launchers (Space Shuttles and Buran Spacecrafts), which use the
glider principle for landing. Gliders and planes are different from everyday objects that can be
transported by throwing and catching in the following ways:

1. The planes are constructed in such a way that they have high lift. The main influence (of
what) is connected to specifically-shaped wings to achieve a high value of lift. Normally
TbT objects have no wings and fly through the air without strong lift.

2. A plane is large, meaning the air flow near the flying plane is completely different from that
of small objects.

3. Gliders use thermals to prolong their flights. In industrial environments thermals play no
role.

4. Planes have engines on board while a thrown object has no impulse income during flight.

5. The velocities of planes are usually much higher and often supersonic.

2.1.3 Research on the aerodynamics of sport balls and similar objects

An exploration of smaller and more commonplace objects is also taking place as the need arises in
application. A large part of this research revolves around sports. Aerodynamic conditions similar
to transport-by-throwing can be found in sports that involve throwing. This is because thrown
objects have similar characteristics, e.g. balls used in tennis, table tennis, golf, baseball, squash,
etc. These studies are done to define the significant parameters of the ball that allow an increase
in the quality of produced balls and to examine the claims made by the companies selling the
balls [Ala10]. An exploration of the aerodynamic forces influencing the behavior of the balls can
be done by observing them as they are freely thrown into a wind tunnel [Dav49] or by accurately
measuring the forces with the help of mounting equipment (if the object in the wind tunnel is
mounted) [Ala10].

Research on the flight of sports balls is usually done in conditions similar to those that would occur
during a game. These conditions may differ dramatically from TbT conditions. For example,
during a game a tennis ball flies at a velocity of several tens of meters per second and for a
distance of more than twenty meters. Golf balls fly even further and at higher velocities. Also
sports balls are often thrown with spin; thus, the Magnus effect must be taken into account.

The exploration of tennis ball aerodynamics began with Newton in 1672 and continued in a
number of scientific works. A summary of these works is given in [Meh08]. The study of the
aerodynamics of tennis balls has led to a number of results:

• The values of the drag and lift coefficients were estimated empirically with respect to spin
and for zero spin [Ste88, Meh08]. It was found that the drag coefficient of a rotating ball
increases due to the centrifugal extension of the fuzzy covering. The air drag coefficient
usually varies from 0.55 to 0.65 [Meh08].

• It was shown that the Reynolds number does not have a significant influence on the drag
coefficient of the flying ball [Ste88, Meh08].

20

State of the art

• A tennis ball quickly reaches a semi-steady aerodynamic state after leaving the rocket: at
the distance of approximately 10 of its diameters [Coo00].

• The fuzz on the ball increases the drag coefficient in comparison to that of a smooth sphere
[Cha00].

• The seam on the ball does not significantly affect its trajectory [Meh08].

• Increasing the size of the ball does not increase the drag coefficient very much. The incre-
ment of drag force is proportional to the increment of effective square as it is defined by
the equation 2.2 [Meh08].

• If the ball is worn its drag coefficient is lower [Goo00].

• The influence of viscosity is approximately 50 times less than the influence of pressure drag
and can be ignored [Ach72, Meh08].

• Lift force connected with the Magnus effect appears when the ball is rotating as it is assumed
by the theory in [Meh08].

Table tennis balls have not been studied to this extent. An experimental exploration of table
tennis balls as aerodynamic objects is considered in [Non10]. The ball was thrown from the
catapult at a velocity from 6.2 to 6.5 m/s. The distance of flight in such a setup is about 1.6-
1.8 meters which corresponds to the size of the table tennis field. The motion of the ball was
observed by a complex set of visual sensors in two areas: the throwing area and the landing area.
To examine the properties of the object’s flight in the throwing area, high-speed cameras (900 fps
achieved) were used. The landing process was recorded by cameras at a lower speed (150 fps).
Experiments have shown that the mathematical model, which does not take aerodynamic forces
into account, is inapplicable for predicting trajectory. The distances between the calculated and
measured positions were up to several tens of centimeters.

For modeling the trajectory with respect to air drag and the Magnus effect, the following equation
was used:

m ∗ p = m ∗ g − 1

2
∗ Cd ∗ ρ ∗A ∗ ||ṗ|| ∗ ṗ +

4

3
∗ Cm ∗ π ∗ ρ ∗ r3 ∗ (ω × ṗ), (2.14)

where m is mass, g is acceleration of gravity, ρ is air density, A is projected area, r is radius, CD:
drag coefficient, CM is lift coefficient, p is position of the ball, ω is rotational velocity.

The first part of this formula corresponds to the influence of gravity, the second corresponds to
air drag and the third model demonstrates the influence of rotational lift caused by the Magnus
effect. It was shown that the rotational velocity of the flying ball is more or less stable during
flight. The model used showed an average error of 4 cm and 9 cm, both when back spin occurred.
In [Non10] this level of accuracy was considered to be sufficient for robotic table tennis, and more
precise models were not developed.

A golf ball is dimpled and made of metal. When compared to a tennis ball, it is heavier and has
no fuzzy outer layer. The study of golf ball aerodynamics has a long history. It was carefully
considered in [Dav49], where the results obtained in an aerodynamic tube are presented. Newer
results for golf ball aerodynamics are presented in [Ala10]. These papers primarily study the
influence of spin on the object?s trajectory. The results prove similar to the trends showed in

21

State of the art

the tennis ball exploration. The golf ball has aerodynamic properties similar to the properties of
a smooth sphere, but they are not exactly the same. While a tennis ball differs from a smooth
sphere due to the fuzz on its surface [Cha00, Coo00] and its elasticity [Coo08], the golf ball differs
from a smooth sphere because of its dimples [Ala10].

Studies on the aerodynamics of baseballs also exist. For instance, the dissertation [Ala98] studies
the aerodynamic properties of a rotating baseball. An analysis of the experimental data shows that
various experiments ([Wat87], [Bri59]) done to define the correspondence between the rotational
velocity of the ball and the value of ”lift” (i.e. the force related to the Magnus effect) give different
results, arguing with each other [Ala98, p. 32]. In experiments conducted in [Ala98], a set of
cameras was used to observe the trajectory. Afterwards in offline processing of the video data,
the aerodynamic properties of the ball were investigated.

Larger sports balls have also been studied with respect to their aerodynamics: soccer [Asa07,
Bar09a, Gof09], basketball [Qin13], volleyball [Asa10], and rugby [Ala08], for example. They are
less comparable to potential TbT objects, especially at its current stage of development, due to
their size and lower full density, so they will not be spoken about in great detail. These works
consider:

• defining the critical Reynolds number [Asa07],

• measuring and calculating the values of the drag coefficient [Asa07, Bar09a, Gof09, Ala10],

• measuring and calculating the values of the Magnus force [Asa07, Gof09, Ala08]

• determining the influence of different seam orientations on velocity direction [Bar09a],

• visualizing the air flow near the flying sphere (a titanium tetrachloride suspension was used
and the flight was observed with 4500 fps cameras in [Asa07]),

• comparing the results with smooth spheres [Asa07, Bar09a],

• determining the dependence of aerodynamic parameters on the yaw angle (for rugby balls)
[Ala08].

The visualization of air flow in [Asa07] allows the behavior of the Karman vortex street to be
defined. These results seem relevant but are highly dependent on the linear size of the object.
This method could potentially be used for defining its influence in the future.

An exploration of rugby balls holds additional interest as they are not spherical. However,
experiments in [Ala08] are simulated with some shaky assumptions, e.g. a rugby ball was defined
as a paraboloid, which is not entirely correct. Also, a rugby ball is too large to be considered
at the current stage of TbT development. In [Ala08] it is shown that drag coefficient increases
with an increasing yaw angle. The plot of the drag coefficient with respect to drag looks like a
sinusoid with the minimum at 0 angle and the maxima at yaw angles of π

2 and −π
2 .

With the exception of balls used in sports, research on the aerodynamics of non-sports-related
objects is done as the need for it appears. For instance, [Luc87] examined the subsonic velocities of
parallelepiped-shaped bodies. The influence of the Reynolds number, the angle of attack and the
roll-angle was considered. The motivating factor for the use of parallelepiped-shaped containers
was because of their potential use in the transportation of radioactive materials in space missions.
The static stability tests (the object was mounted in the wind tunnel) and dynamic stability tests
(object is mounted but can oscillate) were done. The results are as follows:

22

State of the art

• The Reynolds number had little effect, and critical values were not achieved during the
experiments with subsonic velocities in static tests.

• An incrementation of the Reynolds number decreases the dynamic stability of the object;
it starts to oscillate chaotically.

• A decrease of drag coefficients with an increase of chamfer (edge roundness) was proven.

• An increase in edge roundness increases the drag and the Magnus force for an angle of
attack of up to 60 degrees. At higher angles, the effect on drag is the opposite.

• An increase in edge roundness allows drag crisis to move to higher values of Re.

There are, of course, other projectiles besides balls in sports. In wind-tunnel experiments, the
”drag”, ”lift” and ”side force” coefficients were measured for a discus, a hockey puck and a frisbee
[Gof13]. The shuttlecocks used in badminton have also been investigated in sport aerodynamics
[Pos09]. Traditional shuttlecocks were made of goose feathers; modern shuttlecocks are plastic.
Badminton shuttlecocks are lightweight and have higher windage than tennis balls. In professional
competitions, it is thrown at a velocity of up to 70-115 m/s [Pos09,4]- higher than that of any
other sports projectile. The final fall velocity of a shuttlecock is around 6,8 m/s [Pos09, Che09].
After being hit by a racket, a shuttlecock will usually completely change its direction of flight
after traveling a distance of 20 to 80 cm [Pos09]. With this change, it loses about half of its
velocity. The drag coefficients for synthetic shuttlecocks are usually lower than that of feathered
[Coo96]. In [Coo99] the significant change of drag coefficient on Re values from 13000 to 200000
was not recognized (for spherical balls such values are over critical threshold).

An analysis of the aerodynamics of small-sized, rigid objects proves the statement made in chapter
1: rules of motion exist, but they are difficult to estimate. Flight under the influence of gravity and
aerodynamic forces is more or less a deterministic process that takes place with respect to physical
rules. The careful and complex study of the flight properties of a simple-shaped body allow these
rules to be defined and the equation coefficients to be calculated. However, this presents unknown
issues and effects that can only be detected through experiments. Several experiments in similar
conditions (e.g. [Wat87] and [Ala98, p. 104]) have led to various and sometimes mutually exclusive
results. Hence, the creation of physical models on which the experiments are to be based does not
guarantee that the accuracy of prediction will suffice for transportation-by-throwing applications.

The most significant aerodynamic forces for sport balls are air drag and the Magnus effect.
Finding out the influence of spin is more complicated than determining the influence of drag. In
most papers on the aerodynamics of sports balls, the balls typically fly with spin. In industrial
throwing, it is possible to throw an object with zero spin and consider the flight free from the
Magnus effect. In the subsection 4.2.3, it is shown that throwing experiments with a linear
throwing device conducted at Vienna University of Technology did not demonstrate significant
side force connected with the Magnus effect.

An analysis of the ball aerodynamic models in terms of their applicability in TbT was made in
[Pon09]. Three models were analyzed:

1. Polynomial model : The motion of the object in each dimension is expressed by a second
order polynom:

x1t = A1 +B1 ∗ t+ C1 ∗ t2,
x2t = A2 +B2 ∗ t+ C2 ∗ t2,
x3t = A3 +B3 ∗ t+ C3 ∗ t2,

(2.15)

23

State of the art

where A1, A2, A3, B1, B2, B3, C1, C2, C3 are weighting coefficients, which are estimated based
on available trajectory measurements. This is the only model of the three that takes the
Magnus effect into account [Pon09, p.41].

2. Gravity-drag model : Solves the equation 2.10 by iterative calculation. The dependence of
the object coordinate on time has no functional description; therefore, fitting the model to
data is made by the Monte Carlo generation of flight parameters (initial position and initial
velocity vectors, drag factor k = 1

2SCdρ, gravity vector) [Pon09, p.42].

3. Spatial-separated model : Model with an assumption about the independence of drag compo-
nents in various spatial dimensions. Under this assumption, the vector differential equation
2.10 is replaced by a set of three scalar differential equations:

x′′1(t) =− k ∗ x′1(t)2 + g,

x′′2(t) =− k ∗ x′2(t)2,

x′′3(t) =− k ∗ x′3(t)2,

(2.16)

which has the following solution:

x3(t) =x1(0) +
1

k
∗ ln

cosh (
√
g ∗ k(t− t0))

cosh(
√
g ∗ k(t0))

,

x2(t) =x2(0) +
1

k
∗ ln (1 + k ∗ x′2(0)t),

x3(t) =x3(0) +
1

k
∗ ln (1 + k ∗ x′3(0)t),

(2.17)

where t0 = 1√
gk

arctan(
√

k
g ∗ x

′
1(0))

A comparison of these methods in [Pon09] demonstrated that the highest accuracy was achieved
by the spatial-separated drag model (the upper bands limits for prediction error in 99% of the
cases were 44 mm for the physical model, 44 mm for the polynomial model and 29 mm for the
spatial-separated physical model [Pon09, p. 61]). [Pon09] showed that the models based on the
influence of gravity and air drag are accurate enough to represent and predict the ballistic motion
of spherical objects even if the objects are rotating.

EDITED PART STOPPED HERE

2.2 Statistical estimation of ballistic curves

The results discussed in section 2.1 were primarily obtained in wind tunnels using highly precise
measuring equipment and well-known calculation mechanisms. When the measurements and
calculations are needed for the purposes of tracking and prediction, several additional questions
pop up. How can these measurements be taken? How accurate will they be? Is it possible
to increase the accuracy by computational means? In section 2.3 the technical and algorithmic
issues of observing ballistic trajectories with visual sensors are discussed. This section focuses on
the situation where the measured coordinates of the flying object depending on time are already
known.

24

State of the art

Measurements made by cameras or other sensors are usually erroneous. To decrease the influence
of measurement inaccuracy on further calculations, the statistical procedure of estimation is made.
The task of estimating the trajectories of projectiles is taken from air defense. The radars used
to locate a target moving in the air (including ballistic rockets and missiles) have a certain error
of positioning which is minimized by the statistical processing of the data. Mostly estimation is
used for tracking in order to define the most probable position of object at the current moment.
This is based on a set of current and past measurements. There is no task for the reconstruction
of the trajectory curve. The definition of the current physical parameters of the trajectory at
the moment may also be included, and these would be velocity, acceleration, spin, etc. These
parameters may also be used to predict a future impact point. In [Cha80, Wei80] the estimation
done with the (LS) filter was used for angle-only measurements [Cha80], i.e. measuring the angles
of incidence with the use of sensors on the earth and Doppler sensors measurements [Wei80]. These
works considered the exo-atmospheric flight of projectiles. Hence, drag was ignored, and gravity
was a function of height. It showed the applicability of LS, and how the model may be adapted
for other models.

In [Cha80, Wei80] the estimation using (LS) filter was used for angle-only measurements [Cha80],
i.e. measuring angles of incidence by the sensors on the earth, and Doppler sensors measurements
[Wei80]. These works were considering the exo-athmospheric flight of projectiles, hence the drag
was neglected and the gravitation was considered as function of height. It has shown applicability
of LS and that the model may be adapted for another models.

Use of the Kalman filter was first considered for ballistic tracking in [Jaz70]- nine years after
Kalman introduced it [Kal61]. In [Far02] a comparison of the nonlinear filters, e.g. the Extended
Kalman filter (EKF), the unscented Kalman filter (UKF), the Particle Filter, and the statistical
linearization (CADET), was made. There the task of estimating the radar-observed, reentry tra-
jectory is considered. Although the problem was considered for intercontinental missile defense
and aging satellite tracking, the motion model was quite universal. Gravity and drag were con-
sidered to be significant forces while other factors were ignored. It was assumed that the ballistic
coefficient Cb of the projectile from equation (2.7) is known beforehand. The results of the EKF
were better than those of other estimation mechanisms. To validate the statistical accuracy, the
Cramer-Rao Lower Bound (CRLB) was derived for ballistic tracking. Estimators were compared
within the Monte-Carlo simulation. All four filters showed statistical efficiency. Later in [Ris03],
the work was extended to objects with an unknown Cb. In this case the best results came from
the UKF.

There are a number of other works that deal with the tracking of ballistic objects with statistical
estimation. The following examples are given:

• In [She09] KF estimation based on GPS-positioning is examined. An evaluation of the
approach was made using program simulation.

• In [Rav10] impact point prediction is made based on radar measurements. The flight of the
object in the atmosphere (i.e. with valid drag force) is studied. The multiple model filter is
introduced. The influence of gravity, drag and spin is included in the motion model. The
simulation is used to validate results.

• In [Yua12, Yua14] a multiple model approach is also introduced. The thrusting and ballis-
tic parts of trajectory are considered. Hence, the main forces considered are gravity, drag,
thrusting acceleration [Yua12], and wind [Yua14]. Each model examines a certain value of

25

State of the art

the drag coefficient. The likelihood of each filter is calculated, and the result with the max-
imum likelihood is taken as an output. The evaluation was done using real measurements
data.

• In [Yao08] the KF algorithm is used, and the attenuating memory algorithm is proposed
that allows the divergence to be decreased. The results were validated by the simulation.

• In [Kra05] the concept of neural EKF was used (i.e. the neural network trained by EKF
algorithm). This model was also validated by simulation.

• In [Zar00] an examination of a spiraling ballistic missile is examined. The linear and ex-
tended KF were applied.

The aforementioned works targeted the prediction of ballistic trajectory based on erroneous mea-
surements. The following sections show that in robotic catching with predictions based on physics
similar mechanisms are often used to decrease errors (e.g. EKF in [Fre01, Bar08], LS in [Pon09]).
However, these approaches applied for long-term prediction are lacking due to the inaccuracy of
the linear and polynomial physical models. More complicated models are hard to embed into the
KF framework and need a large amount of memory and time resources.

Model inaccuracy is often considered by the estimator as process noise. Here process noise is a
real coordinate change that is not expected by the model. For instance, if the object flies through
the area with intense air flow, it changes its trajectory, which the gravity-drag model did not
expect. Once the object has left the area, the model become useful again (figure 2.2). Here the
case of a very powerful wind is considered for visualization. In an actual robotic environment, the
influence of process noise is little, and a failure to catch is mostly connected with measurement
noise and the imperfections of the robotic system [Kim14]. Process noise must be distinguished
from measurement noise, which means there was an error in measuring the coordinate and does
not mean there was a real deviation from the model.

If the model used for prediction is not accurate enough, deviations in the trajectory due to in-
accuracy may be considered to be a result of the influence of process noise. This is not entirely
correct from an analytical point-of-view but may be computationally useful. For long-term pre-
diction, such an approach would lead error of estimation to increase as distance increases. On
the other hand, for short-term prediction even very simple physical models are accurate enough
(e.g. [Ima04]). This leads to the idea that estimation mechanisms for physical models may be
useful for decreasing the influence of measurement error for short distances. A simplified model
may be used at the measurement processing stage to decrease the influence of errors but may not
be used at the long-term prediction stage.

Due to such potential, use of the works in the approximation of the trajectory based on erroneous
measurements becomes interesting for the approach. This task becomes necessary when the source
of the projectile must be defined based on measurements. In this case the process noise is usually
very little (significant process noise makes it impossible to define the source point accurately),
and more precise models of motion are used.

The need to determine the source of the projectile appears in a number of fields, including in
sniper positioning during counterterrorism operations [Win12]. This positioning is based on radar
measurements estimated by the least squares method. In this case even a simple linear model
(without taking in mind any physical forces influencing the bullet) was useful to achieve suitable
accuracy.

26

State of the art

Figure 2.2: Example of process noise: deviation of object trajectory in the area of intensive air flow.

More complicated models are needed to define the source points of projectiles with a curved
trajectory, e.g. howitzer missiles. [Zho07] examines the rising part of the trajectory, which
allows drag term to be ignored as drag is directed downwards as gravity. The Kalman filter is
used to estimate the parameters of the trajectory model. To estimate the source, the trajectory
is extrapolated based on these parameters using the Runge-Kutta algorithm. The simulation
showed that the errors of estimating parameters by the KF are more significant than the errors
of extrapolation. Earlier in [Nel05], nonlinear regression with an LS estimator was discussed for
the same task. The influence of drag is also not considered here. In [Cha14], the trajectory model
is simplified and inserted into the EKF estimator. Attitude angles are considered as a trajectory
domain. In [Ben08] the maximum likelihood estimation (MLE) is used to create a model of the
trajectory that allows both the launch and destination point to be defined.

Research on the statistical estimation of ballistic curves primarily examine several different types
of statistical filters: the Kalman filter with its extensions (extended and unscented Kalman filters),
the maximum likelihood estimation, and the least square estimation. The applicability of these
estimators depends on the character of the process (?). Kalman filters need more accurate noise

27

State of the art

models, while curve fitting based on least squares needs an accurate process model [Ril02, p.
124]. These state-of-the-art implementations must be carefully considered. Many of them have
been proven based on the simulation, and in the simulation simplified and often corresponding to
the estimator models of the process are used. In reality there is no confidence that these models
are accurate. The aerodynamics of a projectile thrown by an arm are different from those of
mechanically thrown objects.

2.3 Visual tracking of moving objects

In section 2.2 the term ”object tracking” was used several times to describe the process of sensors
observing the motion of an object in time. However, section 2.2 concentrated primarily on
the mathematical aspects of processing erroneous coordinates and decreasing the influence of
mathematically-modeled errors of observation. In this section, the technical and algorithmic
issues of object tracking are considered.

Object tracking in general include the process of observing and positioning of the mowing object
by a set of sensors. Tracking include the observation of certain area in space by one or more
sensors. Usually the video tracking is considered if the video sensors (cameras) are used to
observe the area. However sensors used for tracking could be various: infra-red, radio-location,
etc. The visual sensor may be extended by additional sensors e.g. light barriers [Bar09]. Also
exist a number of devices that are produced with such extension already done.

The aim of the camera setup is to provide the best placement for the sensors. This would allow
the mechanical structure of the three-dimensional environment to be reconstructed. The visual
measurement that allows the reconstruction of the 3D scene is called the range image. Various
equipment compositions may be used. The three most widespread tools for capturing stereo
images are as follows:

1. Stereo pair : This setup consists of two digital cameras with a synchronized frame-rate.
If it is known how a certain point in space is projected onto both images (i.e. what the
pixel coordinates of this point {ul, vl} and {ur, vrl}in these images are) the position of
this point in space can be defined (Figure 2.3; object spatial coordinates are expressed in
the system connected with the optical center of the left camera). Each pixel in the image
corresponds to a certain ray in space proceeding from the optical center of the camera. The
point in space where the corresponding rays from two cameras cross is the target point.
The mathematical procedure of reconstructing spatial coordinates from pixel coordinates is
discussed more precisely in further chapter of the thesis in section 3.1.3.

2. Structured light scanner (Bor08, p. 222): The geometrical principle of structured light
range measurement is similar to stereo pair. Camera is extended by light source (projector)
which is projecting light patterns on the scene. As the light form the light source include
patterns it is called structured light. A certain point from the light pattern correspond to a
ray in space proceeding from the projector. If we know the pixel position of a certain point
on the image from the camera and what point of the pattern it is reflected, its 3D position
may be calculated as a cross of the camera ray (corresponding to the pixel position) and
projector ray (corresponding to certain point from the pattern).

28

State of the art

Figure 2.3: Defining the position of the point in the scene based on its known pixel position in two
images.

Figure 2.4: Defining 3D position of the point based on structured light.

3. Time-of-Flight (ToF) camera. One digital camera is extended by time of flight sensor. The
basic principle of ToF sensing is similar to radio-location. The laser sends rays out around
itself and then defines the distance from the object based on the time the rays are received
once sent back.

In all three methods, digital video cameras are an important part of the sensing equipment.
Cameras usually need a calibration, which is the procedure of estimating various parameters of
the camera needed for stereo reconstruction. Various calibration methods exist. One of the most
popular is based on the use of a chessboard with cells of a very precise size [6, Zha00]. The size of
the cells must be known prior to calibration. The chessboard is photographed in various positions
in the camera’s field of view. Posterior processing of the image set from a single camera allow the
intrinsic parameters of the camera to be determined. These represent its optical properties: focal
length, principal point, and the distortion coefficient. In the stereo vision system, synchronized
images of the chessboard from both cameras are made. After each camera has been calibrated

29

State of the art

on time, the stereo calibration is made, which integrates the data from calibrating both cameras
and allows the extrinsic parameters of the system to be defined- the position and direction of
one camera with respect to another. With the extrinsic and intrinsic parameters of the system,
stereo triangulation becomes possible.

2.3.1 Motion capture with object-integrated sensors

Before discussing range imaging, it is necessary to mention that other means for determining
the position of an object exist. For instance, sensors may be put on the flying object that
transmit signals about the object?s location. This positioning technique was used in [Kim14]
where Optitrack Markers by Natural Point [12] were used for motion capture. In that paper
complex-shaped, rigid bodies were tracked in flight: bottles, tennis rackets, hammers, etc. As
the coordinates of three points are sufficient to define an object?s position and orientation in
3D space, three markers were mounted on each object before the experiments. The accuracy
of the positioning is not discussed in [Kim14], however it was sufficient for the robotic catching
application developed within this work and will be discussed in more detail in subsections 2.4.1
and 2.5.2. In [Bir11] marker-based tracking was used to validate the tracker based on stereo
vision.

The main advantage of marker-based tracking consists of the easily achievable higher frame-rate
(e.g. 240 fps in [Kim14]). When one considers its use in industrial transportation applications,
it has a disadvantage in that it requires additional equipment, energy and time to place sensors
on each object and then take them off. This can dramatically increase the complexity of the
production process. Hence, observing the object with the use of an external vision system is
likely preferable in industrial transportation.

2.3.2 Structured light and time-of-flight range measurement

Structured light range scanners may be based on projecting colored dots [Dav96], black-and-
white or colored stripes [Boy87], a white grid [Pro96], or dynamical light patterns [Bit76, Cas98,
Hor99] in the scene. The projected patterns may be regular or pseudo-random. Commonly, it is
not possible to know which point of the pattern corresponds to the known point of projection if
the pattern is regular. However, the shape of the projection allows the shape of the scene to be
determined. The use of regular patterns (stripes) allows the shape of the object to be defined with
great accuracy; however, it is not intended to define the absolute coordinates. For example, the
DLP projector in [Hal01] could measure the range with an accuracy of 0,1 mm on the distance up
to 10 cm. This does not mean that the object has to be, at most, 10 cm away from the front of the
projector. The variety of object points from each other must exceed this value (as SLS measures
the respective proportions between various parts of the object). These systems are not useful
for positioning airborne objects (except in the estimation of rotation vectors) as the airborne
object is far away from any other objects in the scene. In [Wan08] the mechanism of defining the
absolute range is discussed. Light patterns are projected onto the scene via the reflection from
a rotating mirror for this purpose. Mirror rotation provides the dynamics of lightning patterns
hence this method is also useful but only for static scenes.

The pseudo-random light pattern allows absolute range to be measured; however, the accuracy of
this measurement is usually lower than for techniques based on regular patterns. Today, the most
widespread SL camera is the Microsoft Kinect [5]. The high use of this device has increased the

30

State of the art

interest in SLS sensors, especially in object tracking. However, the positioning accuracy of the
Kinect is not very high. The errors in the positioning of the object are increasing from around
2 mm at a distance of one meter to 7 cm at a distance of five meters. At three meters, it was
about 2,5 cm. All three values are taken from [Kho12, p. 1451]. The resolution of the Kinect
depth images is 640 by 480; however, how this is achieved is not public information, and the real
resolution of the Kinect sensors is unknown [Noo11]. The low positioning accuracy of the Kinect
sensor could mean that the resolution is achieved by interpolating data from a smaller number
of pixels.

The first research that used structured light scanning to observe moving objects was [Hal01].
In it the special boundary codes were applied that allowed the recognition of frame-to-frame
correspondence. The system was able to create a 3D model of a miniature elephant at a working
volume of 6-by-12-by-16 cm. However, the positioning of isolated objects in 3D space was not
considered in [Hal01]. Due to hardware limitations, the system was only able to reconstruct
slowly moving objects (1 cm/s in the example). In [Ada04, Ada05], a structured light technique
was applied to control the robotic manipulator. [Ada04] concentrated mostly on the use of
structured light patterns while [Ada05] described the tracking procedure and searched for inter-
frame correspondence. The set of points is projected into the scene, and each point may have
one of seven colors. The color codes of the points are coded for a pseudo-random sequence to
avoid repetition in the point patterns. In [Suk12, Kim13] the depth estimation of moving objects
using a structured light technique is investigated. The CAD models of objects are also used as
a prior input; known detail size with the pattern projections allows the distance to the objects
in 3D space to be determined. The object positioning error reached several millimeters (4.72
maximum).

With the exception of these works, there is little literature on the use of common structured light
technique for positioning the object within a 3D environment. In general, the use of structured
light for tracking fast moving objects is not well investigated. At the current stage of range
imaging technology, stereo vision is preferable for transport-by-throwing applications.

Accurate ToF systems are usually much more expensive than Kinect or stereo setups due to the
high cost of high-resolution laser range finders. The accuracy of ToF positioning is limited by the
low resolution of available depth sensors. In [Pia10], a sensor with a depth resolution of 320x200
pixels was considered worldwide to be the one with the highest resolution. Up until now, it has
not been clear if other ToF cameras with a higher resolution exist. The new version of Kinect,
released at the end of 2013, is based on the ToF principle. The resolution of the depth images
from this device is 512 x 424 pixels; however, this may also be achieved by interpolation. Non-ToF
cameras with much higher resolution are easily available. For example, IDS UI-3370CP, used for
tracking in experiments described in section 3.1 has a resolution of 2048 by 2048 pixels [10].

Additional calibration of a ToF camera can increase its accuracy or at least enable it to be
estimated. In [Fuc08] a method of additional calibration for ToF sensors to accurately position
the camera in space. The nominal precision of the robot position control was 1 mm for translation
and 0.1 degree for rotation. A precision of 1 mm with standard deviation of 5 mm was achieved
during the calibration. In [Noo11] the calibration procedure for Kinect-based tracker is also
applied. The errors of positioning were from 1 to 6 mms depending on the frame. An analysis of
ToF positioning accuracy and calibration is given in the Piatti dissertation [Pia10]. The results
were applied to two ToF cameras: the SR4000 (10 m range, 176 x 144 pixel resolution for depth
image [Pia10], available at [8] for $4772) and the PMDCamCube3.0 (7.5 m range, 200 x 200 pixels

31

State of the art

depth image [9]). The discrepancy of positioning was up to 15 mm. After calibration it decreased
to 3 mm in the range area of 1.5-4 m.

Research on ToF and SLS object tracking is widespread in areas where accurate positioning is
noncompulsory, such as people-tracking within human-robot interaction [Swa08, Gan10, Jia14],
the indoor self-localization of mobile robots [Ita12] or tracking mini-aircraft [Jur12]. In [Swa08]
the SR300 ToF camera was used for the detection and tracking of humans. Positioning errors of
several cm were achieved, satisfying the requirements of the research project. [Gan10] studied the
same problem. Later in [Jia14], the tracking multiple people was done with the use of multiple
ceiling-mounted ToF sensors. Both works scope on estimating human pose instead of motion
models and positioning accuracy. In [Par11] the system based on Kinect sensors was trained to
estimate the location of texture-less objects (small armillary sphere, miniature building, toy ship,
etc.). Projection errors are given; however, the measurement units are unclear (mm, cm, rad,
respective size of object, etc.). Also the time expenses are given. The process of initial estimation
took less than 30 ms and the process of estimation based on previous frames took less than 15
ms (the Kinect nominal frame-rate is 25 fps which leads to a 40 ms delay between frames).

Robot positioning is another application where vision is used and where ToF sensors have been
applied [Nak11]. In this task the accuracy of positioning may be easily determined by comparing
the data with the robot control logs. In [Nak11] (tracking record available at [11]) detection of the
object and the association between depth and color pixels is done for objects that have a higher
color contrast than that of the scene. A particle filter was used for estimation. Unfortunately,
the numerical error results are not given, but the figures [Nak11, pp. 787-788] and record [11]
suggest that they achieved at least several mm.

The tracking of spherical objects was investigated in [Sir12, Jur12]. In [Jur12] the tracking
of a flying quadrotor with a spherical shape for the propeller base was developed. [Sir12] is
particularly interesting as ToF-tracking in it is used to grasp a ball with a 7 DoF industrial
robotic manipulator (a 7DoF robotic arm is also used in the TU Wien TbT project). Linear KF
was adapted for trajectory estimation (constant velocity model, change of velocity is considered
to be process noise). The robot manipulator picks from either a static ball or a ball from a mobile
robot moving along a straight line. The robot was able to perform the task at a maximum of 20
seconds.

ToF cameras were first applied to detect thrown objects in [Opr13]. Two setups were examined:
a throw where the object?s energy and direction come from a human hand and a drop where
a person releases the object and lets it fall. The solution was tested on 50 Kinect records (25
throws and 25 drops). The task was not to locate flying objects but to detect when an object
was thrown or dropped.

Electro-magnetic waves as well as ultrasonic acoustic waves can be used for ToF sensing. [Ita12]
can be used as an example of acoustic ToF tracking. In it ultra-sonic waves (160 kGz frequency)
for echo-location were used to navigate a mobile robot. The order of accuracy was 1 cm [Ita12].
The long length of acoustic waves (2 mm for 160kGz) restricts the accuracy of echo-location
positioning [Ita12]. Also, the low speed of sound restricts the frame rate and accuracy of locating
fast-moving objects.

ToF tracking could be a promising technology for the future, but for the time being it does not
have high resolution necessary for systems based on stereo vision.

32

State of the art

2.3.3 Monocular vision

A stereo pair is a specific setup that guarantees that point pixel positions can define the 3D
position of an object. However, this does not mean that it is impossible to determine an object’s
location with a single camera. Use of additional information in specific cases could allow an
object’s position to be defined based in the images from one camera. An object tracker for a
TbT application based on single camera systems is studied in [Bar08]. The camera was extended
by additional sensors, but the object coordinates were extracted from the images only. This
setup does not allow the full model of 3D scene to be extracted. However, information on the
3D structure of the scene is not really necessary to track an airborne object especially when the
tracker has prior information about the object and environment.

In [Bar08, Bar11], one camera extended by light barriers was used. The barriers measured the
launching velocity of the ball. Two light barriers were positioned with d = 100 mm (distance)
between them. The first barrier stayed in 100-200 mm forward the object acceleration endpoint.
The launching velocity is calculated using the equation:

v0z =
d

t2 − t1
= 0, 1 ∗ (t2 − t1)−1, (2.18)

where t1 and t2 are the time of interception with the first and second light barriers respectively.
These time marks are made with an accuracy of 0.5 ms, which is the time needed for the barrier’s
reaction. The object position in the image allows the ray to be defined in the world coordinate
system starting with the camera sensor on which the object lies (same as in figure 2.3). The actual
position of the object in z-direction (i.e. perpendicular direction to light barriers) is calculated
by numerically solving the following differential equation:

d2z

dt2
= −

Cd ∗ ρ ∗A ∗ (dzdt)
2

2 ∗m
, (2.19)

where Cd is drag coefficient, rho is air density A is frontal surface of the ball, m is mass of the ball.
The Runge-Kutta method can help approximate the value of z(t) with the use of this formula.
The estimated ball position for the moment of time of t1 is determined as interception of ray b
extracted from the image and plane z1 = z(t1) (figure 2.5). In other words, the assumption about
the shape of the trajectory allows it to be reconstructed based on the monocular image sequence.

This method for ballistic forecasting was useful in the conditions of the experiment and allowed
a prediction error of less than 12,5 mm in 66% of throws to be achieved. Later on in [Rib09], an
estimation of 3D ballistic trajectory was investigated as a local optimization task. In this work
the gravity-only model was applied. The lack of trajectory triangulation is because estimating
ball position is based on information about ball aerodynamics. As discussed in section 2.1, the
gravity-drag aerodynamic model expressed by equation 2.10 is not very accurate even for simply
shaped, spherical objects like a tennis ball, and it is better to avoid its use in order to achieve
higher accuracy. The motion model expressed by 2.19 is a simplification of the model expressed
by 2.10: The drag is assumed to be independent for each spatial dimension, which is not correct.
On the contrary, the financial advantage of using one camera instead of two is not a dramatic
one; the price of a few digital camera is much less than that of the 6DoF robot manipulators used
for catching. As this work aims to develop a prediction model without hard relation (?) to exact
physical knowledge, the trajectory triangulation would be an invalid tracking method. However,
the method for velocity measurement described in [Bar08, p. 894] could be useful for extracting
information about launching parameters.

33

State of the art

Figure 2.5: Defining ball position using the method from [Bar08]. Light barriers measure the time when
the ball reaches them. The difference between these times allows the object?s horizontal
velocity to be defined. This velocity is forecast in order to define the distance reached by
the object at any moment in time, fitting this distance to the ray defined by the object pixel
position allow the 3D position of the object to be determined.

2.3.4 Stereo vision

Vision systems may consist of one camera, two cameras or possibly more. A vision system with one
camera must be extended by additional devices (light barriers, ToF sensors, etc.) for achieving the
range of necessary images (see subsection 2.3.2). Two cameras are enough to extract coordinate
information by stereo triangulation without the use of additional sensors. Most of state-of-the-
art applications of TbT and robotic catching use stereo triangulation for object tracking [Hov91,
All91, Ril02, Nam03, Sca05, Bae10, Pon11].

The stereo triangulation algorithm does not need aerodynamic models to reconstruct object
position. It needs information about the relative location of the cameras (extrinsic parameters)
and about the intrinsic optical parameters of each camera: focal length, principal point, distortion
coefficients, etc. This information is obtained during stereo calibration. The stereo calibration is
done based on the calibration of single cameras as previously mentioned. If the relative location
of the cameras has not changed, the stereo triangulation become possible after the calibration [6].

The accuracy of object positioning via stereo triangulation depends on the resolution and other
parameters of the cameras. The definition of accuracy for concrete setup is not well-formulated
in the state-of-the-art works on stereo vision. As few rare examples of such works, e.g. by [Lee02,
Liu06], should be mentioned. [Lee02] deals with the question of how to localize cameras in such a
way that the observed surface is maximized and reconstruction errors are minimized. A multiple
stereo pair system for scene observation is discussed, but the accuracy of a single stereo pair is

34

State of the art

also considered. Lee et. al specifies the following sources of positioning inaccuracy [Lee02, pp.
222-223] in stereo triangulation systems:

• Quantization errors: One pixel in the image represents a certain area of the scene. With
an increase in the distance from the camera to the background, the size of this area also
increases. Within the one-pixel area, it is not possible to position the point accurately. A
visualization of the quantization errors is given in the figure 2.6. It is possible to define
intervals ∆1 and ∆2 on which the boundaries between neighbor pixels are lying, but the
error of one pixel will correspond to the error of interval size ∆1 + ∆2 in 3D space.

Left image

Right image

Left camera

Right camera

Δ1

Δ2

Rays corresponding
to pixel centers

Figure 2.6: Quantization accuracy in stereo vision; ∆1 and ∆2 show the range where the border between
pixels may be positioned.

• Image processing errors: They are connected with the incorrect positioning of feature points
in the image. In [Lee02] these errors are primarily considered to be errors in stereo match-
ing. Stereo matching is the process of defining points on the left and right images that
correspond to one another. This is one of the main tasks in processing stereo images, and
it often leads to errors, especially with occlusions, when dealing with texture-less objects
and asymmetric lightning. In object tracking, stereo matching is dissimilar to the task of
scene reconstruction. The position of the object’s center in each image may be determined
separately, but this determination may be erroneous.

• Calibration errors: These come from quantization errors during the calibration process.
This leads to inaccuracy in the defined extrinsic and intrinsic parameters of the camera
system.

The quantization errors were estimated to be highly reliable in the corresponding camera ar-
rangement (check my correction), while image processing and calibration errors have a negligible

35

State of the art

relation in it. The arrangement was examined and optimized within the camera simulation. The
task of optimization was to find the optimal maximization stereo vision area of the two cameras
while minimizing the quantization errors. During the simulation, a 20% decrease in quantization
errors was achieved.

Later in [Liu06], the question of the corresponding camera location in the stereo pair is discussed.
This work explores the following setup. The distance between the camera and the observed object
is fixed, and the angle between the cameras’ optical axes α and height of the baseline above the
object h vary (the geometrical mean of these parameters is shown in figure 2.7). The relation
of positioning accuracy to the values of h and α is estimated. The definition of this task could
be disputable as it is not exactly clear what parameter h really represents. Changing h without
changing the distance to the object means the stereo pair would be rotated around the object in
the vertical plane. From the physical point of view, this means that different angles between the
stereo system and gravitation vector, but the optical sense of this rotation is unclear.

Figure 2.7: The model of the camera setup geometry used in [Liu06]. The observed object is positioned
at point O. C1O and C2O are the optical axes of the right and left camera respectively. AO
and BO are their projections on the horizontal plane and α is the angle between AO and
BO

A description of the procedures of accuracy definition that were applied in the current research is
given in sections 3.2 and 3.3. Further increase of cameras quantity does not change the principle
of triangulation, however it can:

• Improve the accuracy of positioning as the object position may be better estimated com-
paring the results from different stereo-pairs. The case of such method is use of trinocular
vision system.

• Enlarge the size of observed scene as various subareas of the scene might be observed by
different stereo pairs.

36

State of the art

Trinocular stereo systems mean that the images from three cameras can be compared. They use
special triangulation techniques that allow an increase in accuracy. In the binocular system, the
3D position is ideally a cross of two rays in space or realistically the center of the shortest possible
distance between the points on these rays. Trinocular vision means that the 3D point is obtained
where three rays cross. This means that the third camera gives extra information which allows
the binocular stereo reconstruction to be validated. For example, the final estimated position of
the point in 3D space may be determined to be a centroid of reconstruction results from three
possible camera pairs in the trinocular setup. The accuracy of these systems was studied in
[Chi95]. The work concentrates on the inherent issues in stereo matching and some particular
features of a trinocular system are discussed, e.g. projection location constraints. No comparison
with binocular systems was made in the paper [Chi95].

If multiple stereo pairs are used for observing the scene, the question of the optimal positioning of
the sensors becomes relevant. It is studied, for example, to determine security camera placement
[Mor10], road traffic management [Cho11] and also for industrial environments. The task is to
cover the requested area with a minimum number of cameras as efficiently as possible. Also, the
positioning of light sources can be added to the list of existing problems [Gar11].

In TbT the application of the area of an object’s trajectory can be divided into subareas to be
observed by various stereo pairs. One pair observes the initial part of the trajectory to provide
input for prediction, while another pair observes the gripper’s workspace for possible adjustments
and to identify whether a catch was successful or not. The common tracking tasks in such
environments mean the ”transition” of the object from one observing unit to another. [Liu09,
Liu10] studied the situation where the object is detected by one camera and the second camera
must be chosen to collaborate in order to construct a stereo pair.

[Lee02] has been previously mentioned concerning the accuracy of stereo pairs. In general, this
work studies the aspects of a multi-camera system constructed to be a set of stereo pairs. The
arrangement was examined and optimized within the camera simulation. The task of optimization
was to find the optimal maximization of the stereo vision area of two cameras while minimizing
errors. This task was solved for the given shape of a scene.

Section 3.2 demonstrates that at short distances (up to 1.5 meters) a single stereo pair is sufficient
for tracking the flying body. An investigation into the accuracy of this positioning did not show
a significant correlation from the object location within the whole area of the object trajectory
[Pon15]. The accuracy results were found to be sufficient for the application. In theory it would
be interesting to apply the trinocular setup or other setups that would afford a more accurate
estimation of 3D position than binocular stereo. The reason why they were not considered in the
current research is due to the large amount of time to increase the camera number. In chapter 5
it is shown that finding the ball’s center in the image is the step of the tracking and prediction
algorithm that needs the most time, even if it is implemented on a specific fast hardware platform
(GPU or FPGA implementation). Moreover, when it comes to the enlargement of transportation
distances, the use of multi-camera systems seems promising.

The stereo sensors can be mounted not only in static way or onto the object, but they can also
move through the observed scene. This technique is often used for static scenes when the need
arises to fully reconstruct the shape of a 3D object. The use of moving cameras to track a moving
object was introduced in [Fed90] for one-DoF movement tasks. A two-DoF tracker was developed
by Mukai and Ishikawa [Muk94]. 1 The sensors are positioned on the robotic arm which performs

1Masatoshi Ishikawa later on took part in the research on robotic catching, described in subsections 2.4.1 and
2.5.1, however in [Muk94] airborne objects are not considered.

37

State of the art

the movement close to the object. For an airborne object, this solution?s challenge is to address
the speed of flight; incredibly fast manipulators are needed. Another disadvantage is that error
of reconstruction is increased by the inaccuracy of camera self-positioning. Because of this, the
static camera setup is preferable.

2.4 Robotic catching and transportation by throwing

The ability to throw and catch rigid objects is something almost all humans share. The same
concept as applied to the actions of robotic manipulators was first introduced as a way of making
robots more similar to humans in their abilities. Though humans do not use physical or mathe-
matical models to forecast the trajectory of the ball, most works in the area of robotic catching
use analytical techniques that are based on these models. The aim of this section is to give an
overview of the recent developments to the systems that enable robotic throwing and catching
as well as related tasks (i.e. track airborne objects and forecast the trajectories). This overview
includes research from the Transport-by-Throwing project in addition to unrelated research. Pre-
diction aspects are briefly discussed in this section as issues of catching movements and grasping
principles. A more precise review of how to solve the challenge of prediction in these works is
given in section 2.5.

2.4.1 Throwing and catching

The goal of robotic throwing is to provide launching parameters that allow the object to reach
a certain area (gripper workspace in the case of the throw-catch application). The issue of
minimizing damages might also be considered [Miy10]. A number of works exist where throwing
without catching is considered and analyzed [Kob11, Nem11, Zha12, Kan12]. There are some
examples where potential industrial applications put objects into storage pallets [Miy10], but
most of the works investigate throwing as an issue in common robotics development. In various
concepts, throwing techniques were developed for 1-DoF manipulators [Miy10, Kob11], 6-DoF
robots [Nem11, Zha12], and an arm for a humanoid robot [Kan12]. When the task of throwing
the object towards the static target (e.g. the workspace of the robotic catcher) is examined, the
1D catching device sufficiently provides a specific range of possible trajectories. The regulated
parameter of a 1D throw is its launching impulse, while the direction of throw is determined by
the throwing device?s setup. Robotic throwers with a higher number of DoFs are interesting
because in this case the manipulator may perform some additional actions with the object prior
to the throw, e.g. it may pick up objects from storage. A 1DoF catapult can throw and nothing
more; the object must be put into its cup by another manipulator or by a human.

The simple grasping and picking up of static objects was one of the first abilities robots were able
to achieve. Some time later, the task of matching the manipulator with the moving object was
investigated. In these early works, the two-dimensional (e.g. a ball rolling on a planar surface in
[And85]) and then three-dimensional trajectories of objects were considered. The main difference
between early 2D catching and catching airborne objects consisted in their low velocities. The
robot used in [All93] grasped miniature trains moving along a round train track at velocities
between 10-30 cm/s. The robot in [Lin89] was able to catch the object moving around the
sinusoida, but it took about 2.25 seconds to perform the catch. The robot in [And85] was able
to catch most of the balls with a velocity of 0.75 m/s and some balls with a velocity of 1.3 m/s.

38

State of the art

The flight of the thrown object is high-speed 3D process in comparison with relatively slow 2D
motion discussed above. The catcher must be fast enough to perform the appropriate catching
movement (especially in soft catching). This includes both mechanical performance (ability of
joints to provide fast movements) and algorithmic performance (real-time tracking on high frame-
rates, fast prediction and fast path-planning for the gripper). The catch may be passive (minimizes
the force of impact with the gripper) or active (an intensive grasping movement to the object).

The robotic catching of airborne objects was introduced more than twenty years ago in [Hov91].
The concept of ”vision-motion” coordination (i.e. to adjust the robot?s motion based on the data
from a stereo vision system) was developed, and parabolic models were applied for trajectory
prediction. This concept was demonstrated using a 4-DoF manipulator with 4.2 m3 workspace
and a maximum velocity of the end effector equal to 2 m/s. In the experiments, the rate of
successful catches was 75-80%. Data on the throwing setup is not provided.

Robotic catching was also considered in [Nis97]. In this work, the task was first delegated to
humanoid robot with the aim of implementing ?human skills on a humanoid”. Visual feedback is
not taken into consideration and the robot’s motion is defined using only predicted ball trajectory
In other words, there is no adjustment to the gripper?s motion to correspond to the new vision
data once the catching movement has begun. Predictions are based on information about the
initial part of the trajectory, but after the initial sequence the ball is not tracked anymore. A
basket with a diameter of 120 mm was attached to the humanoid arm to procure the ball. Only
the arm is active during the catching movement and the robot itself is motionless. Two CCD
cameras mounted on the head of the humanoid are integrated into the stereo pair. Balls that were
vertically dropped were investigated as well as balls that were thrown. Prediction was not needed
to catch the object dropped vertically by a basket as the trajectory of the ball is determined by the
first measurement and the interception velocity is not critical for hard catching. For the thrown
ball, the prediction is implemented via parabola fitting. The rate of success is not mentioned,
but inserting visual feedback into a control scheme was suggested to increase the rate of success.

In another research project by the Tokyo university, a number of articles were published that
investigate the robotic grasping process [Ish96, Nam99, Nam03a, Nam03b, Ima04, Sen04, Shi05,
Fur06]. Within this project the catching with the use of a grasping movement (i.e. the process
of closing a robot’s fingers around the object) was considered. The philosophy is the opposite of
that of [Nis97] where movement was determined based simply on prediction with no consideration
of actual visual feedback. In this work the grasping is determined solely based on visual feedback
with no consideration for prediction.

In [Ish96] a framework for fast target tracking was introduced. The hardware setup and algorithms
in this system are based on the direct connection of sensor photovoltaics to processor units and
the high parallelized processing of photo-sensor information instead of the traditional capture of
an entire image from the camera. This allows system feedback to be provided in 1 ms (with a time
delay of 20 ms between observer and actuator). Video processing algorithms are based on the
property of high speed video in that sequential frames have very little differences between them.
The target object (considered to be monochrome) is extracted from the image by comparing
the current frame with a dilated target pattern from a previous frame (the dilation procedure
is shown in figure 2.8). Also the situations of target visual collisions with the scene objects and
their separations are recognized and computed.

The grasping technique (applied to slowly moving objects) based on the tracking mechanism
from [Ish96] was introduced and expanded upon within the work in [Nam99]. The catching was
provided by a 7-DoF robotic arm with a multi-fingered robotic hand as an end effector (there

39

State of the art

Object pattern from
previous frame

Object pattern for
current frame

Dilated object
pattern

Image (current frame)

Figure 2.8: Object tracking in [Ish96].

were 4 fingers and 14 joints, one finger is the ”thumb”, i.e. opposite of the others). The sensor
platform can also move. It had two DoFs- the pan and the tilt, which enable movement according
to the changing position of the object. The tracking concept from [Ish96] was implemented on a
specific vision chip, SPE-256. The control subsystem consists of 7 DSP working in sync. They
control the arm, the hand and the camera base. The tracking algorithm is extended by the 3D-
reconstruction and pose estimation for the object. The prediction stage is ignored due to high
speed of system reaction. At each moment the new command to the arm is defined in such a way
that the distance is minimized between the hand and the object. The aim of the hand control is
to cover the object with the fingers whenever possible. In the experiments described, the grasped
object was moved by a human hand.

The grasping of free-flying objects based on the same principles was introduced in [Nam03a] where
the robot motion parameters (i.e. the desired trajectory of the end effector) are defined directly
from the observed 3D coordinates of the object without taking the velocity and intermediate
step of trajectory prediction into consideration. The relation between the input and output
parameters was defined after optimizing the coefficients of the 4-order polynomials. The concept
was applied to a 4-axis robotic arm (only 3 axes were used in the catching movement) which
was able to achieve a velocity of 5 m/s and acceleration of 30 m/s2. The catching motion was
declared successful (and the recorded frame sequence of the successful catch is given on [Nam03a,
p. 2405]), but no data on the rate of success is given.

In [Nam03b] a new multi-fingered hand that is useful for catching was developed. It achieves
a pressure force of up to 47 newtons and a finger velocity m/s which allows the hand to close
in 70-120 ms.Experiments in active catching using this hand and the recently developed high-
speed vision system are discussed more precisely in [Ima04] (the previous work examined passive

40

State of the art

catching). Active catching allows the object in movement to be grasped with a higher velocity
than the maximum velocity of the robot fingers. In this work, how to catch a falling object (i.e.
velocity of the object is directed downwards) is considered. Successful catches were achieved for
balls and cylinders.

In [Sen04, Shi05, Fur06], the concept was extended to more complex manipulation tasks than
catching, for instance batting [Sen04] and dribbling the ball [Shi05] and then grasping the cylin-
drical object again [Fur06]. The whole active catching project [Ish96, Nam99, Nam03a, Nam03b,
Ima04, Sen04, Shi05, Fur06] includes a high number of novel robotic and machine vision concepts
like the direct interaction of a processor with elements of the sensor matrix, the direct interaction
of tracker and robotic controller, active grasping, etc. However, with TbT in mind, it has some
disadvantages. First the situation where any movement of the gripper towards the object is good
for catching is considered. This seems useful at a short distance with a very fast robot manip-
ulator, but at longer distances of several meters, the curve character of a projectile trajectory
must be taken into account. The trajectory path in the gripper workspace must be predefined
otherwise the gripper may not manage to catch the object if it flies to far from its initial position.
This means that the concept may be useful at a terminal stage when the object is near to the
gripper.

The active catching principle when the grasping device is moving towards the flying object at
maximum velocity does not minimize the impact force, so the fragile object may be damaged
during catching. Active catching may be applied for strong objects and strong grippers that
cannot be damaged after interception at velocities of several tens of m/s.

The next significant research project concerning in-flight catching was done by a group from
the Institute of Robotics and Mechatronics at German Aerospace Center [Fre01, Bae10, Bir11,
Bae11]. In the work, the scale of catching was larger than in the previous project; throws of
several meters were initially investigated. Due to long distance from the gripper workspace and
the very fast processing, the catching was not interactive but pre-defined. The prediction was
applied for the predefinition.

In [Fre01] an extended Kalman filter (EKF) was used to estimate ball position and forecast.
Objects were thrown with a nominal velocity of 7 m/s and at an angle of 45 degrees to the
horizon. The object was airborne for 0,8-1,0 s and covered a distance of about 5 m in that time.
A stereo system with a 1 m vertical baseline was used to observe the ball trajectory (shown in
figure 2.9). The rotation angle of the camera system was equal to 90 degrees. The precision of the
ball’s positioning with the described setup was about 3 cm. Object recognition was done based
on a comparison of the current frame with a reference image. The difference (i.e. differences
between current image and reference images) image is divided into shapes. The region with the
best fit with the object pattern is considered to be the location of the object in the image. The
frame-rate of the camera system was standard (25 fps), which allowed 50 images per second to
be processed.

The prediction algorithm was based on the gravity-drag model expressed by the equation 2.10,
which is solved numerically by the Euler integration. This motion model was inserted into EKF.
The catching point is generated when the EKF reports on the sufficiency of the achieved covari-
ance. The catching point should not be close to the workspace boundary or to the robot base.
It is then given to the robot control in order to define the catching trajectory of the gripper
(motion planning is based on the inverse kinematics interpolation). The whole data processing
cycle (image extraction, stereo reconstruction, prediction and robot control operation) took 75
ms.

41

State of the art

Camera 1

Camera 2

Gripper
workspace

Object
trajectory

1 meter

5 meters

Figure 2.9: Observation setup in [Fre01].

The small basket was mounted on the end effector of the robot to procure the balls. In catching
experiments no throwing device was used. The ball was thrown by humans. This means that the
throwing point is not fixed in space, and there are no nominal values for the angle and velocity
of the throw. About 67% of the throws were successful in the catching experiments.

Further development of the catcher was presented in [Bae10]. In the paper, a 4-fingered robotic
hand with a total of 12 DoF was used for grasping. The task of defining the catching movement is
examined as a complex task for non-linear optimization. It is solved directly from the prediction
results without specifying the intermediate steps of choosing a catching point and defining the
catching configuration.

The geometrical setup and prediction algorithm are the same as those in [Fre01]. The precision
of prediction of 2 cm, which is enough for a robotic hand to successful grasp, according to [Bae10,
p. 2595]), was typically achieved 100 ms prior to the moment of catching. Due to this small time
interval, the catching movement must begin prior to the final prediction result and must then be
recalculated based on the new prediction data. Since the optimization process is computationally
expensive, it was implemented on 32 CPU cores. Optimization stops after 60 ms of a search for
the best solution. The rate of success was increased to more than 80%.

In [Bir11] the concept was extended for the parallel tracking and catching of multiple flying balls,
and the same research was already briefly introduced in [Bae11]. The balls are caught by the
humanoid robot Rollin’ Justin introduced in [Bor09]. The cameras are mounted on to the head
of the humanoid. Two flying balls were caught at the same time by the humanoid. In [Bir11]
a tracking concept based on circle detection was applied for ball catching. It was introduced
in [Bir09] in an application for the surveillance of sport matches. After image analysis, all of
the circles are inserted into a multi-hypothesis tracker based on the Kalman filter. The rate

42

State of the art

of success was again about 80%. Later in [Bir11a], a new tracking algorithm based on the
Byesian probabilistic models was introduced which allowed tracking to be performed with similar
accuracy and 55% quicker. In [Bae11a] several improvements to the whole system are presented.
The tracking concept from [Bir11a] is put to practice. Other improvements mainly address the
challenges of a situation where ”everything is moving”, including the camera system mounted on
the head of moving humanoid.

Within the humanoid catching project [Fre01, Bir09, Bae10, Bae11, Bir11, Bir11a, Bae11a],
important results are obtained. The accuracy and performance of tracking and prediction seems
to come close to the constraints of gravity-drag physical models. This project also deals with
many specific aspects not considered at the current stage of the TbT project like the ability of
one system to catch multiple balls instantaneously, the application of humanoid robotic systems
for this task, and the situation where the gripper base and vision system are moving. These
accomplishments could possibly be useful in the future development of transportation principles.

Another ball-catching application for humanoid robots was described in [Ril02]. The aim was
to investigate human-like behavior of the robot while catching the ball. The catching motion
converges with the catching motion of the human hand introduced in [Kaj99]. A baseball glove
was used to collect the ball. The stereo vision system provided 60 fps of position measurements.
The hand of the thrower, in this case a human, as well as the ball is tracked. Prediction was
done via parabola fitting. The peak velocities of the end effector during the catching were usually
between 1.0 and 2.5 m/s. The catching motion was usually completed at 350-850 milliseconds.

In [Mor04] a catching strategy using a monocular vision system is introduced. The proposed
approach for ball tracking is called Gaining Angle of Gaze (GAG). This strategy is similar to the
baseball player catching strategy described in [Cha68]. The fisheye camera is mounted directly
on the manipulator hand. While tracking every second, the instructions for the manipulator are
defined in such a way the angle of gaze is kept within a prior specified constant range. This means
that there are two main stages of the catching movement, e.g. reaching the target angle and then
keeping it constant. Thus, the question of defining ball position in 3D space is not taken into
consideration. The catching motion is stopped when the ball leaves the camera’s field of view.
At that moment the gripper is ready to catch the ball. Hence, GAG-based catching is one of
the methods that does not deal with prediction in [Ima04]. These methods require the robot’s
response to the visual information to be incredibly fast. However, the robot in [Mor04] was able
to catch the ball with the end effector moving at a relatively low velocity of 0.6 m/s.

In [Her09] the monocular vision system (70-fps-camera) was used to track the ballistic object
(a flipped coin) in order to catch it. This work claimed to be the first to apply monocular
positioning for flying objects, but [Bar08] had already been published. A less complicated model
for estimation than the one in [Bar08] was applied, e.g. parabola fitting with recursive least
squares estimation. The catching movement was performed by a 6-DoF robotic arm with a speed
of up to 1.0 m/s. This is much less than the object’s velocity, so hard catching was used. The
parabola is fitted to the projection model, i.e. it is used to define the 3D coordinates of the flying
body. The accuracy of prediction is increases over time, so arm movement is adjusted according
to the new data from the predictor.

The research work in [Smi07] concentrates on developing software and the hardware platform
that allows the fast catching movement to be performed. The catching was considered to be tele-
operated, but an autonomous ball-catching was also implemented as a benchmark. A parabolic
model was applied for prediction, which is based on the trajectory measurements done by the
50 fps cameras. The time range of 300 ms is reserved for data processing. A total of 200 ms of

43

State of the art

those are needed to capture 10 frames, and the other 100 ms are needed for coordinate acquisition,
forecasting and generating the motion of the gripper. A total of 500 ms are reserved for performing
the catching movement. A 0.6 by 0.6 m square was used for the gripper workspace. The aim
was to make the catching device that could perform ”a movement of worth case”, moving from
the lower-left to the upper-right corner of the workspace (i.e. a movement against gravity) in
500 ms (i.e. reaching the distance of about 90 cm in this time). The color information was used
to detect the ball, and to do this the image was translated from RGB to HSV color space. The
entire frame was not processed by the recognition algorithm, just a small subwindow where the
ball can appear. The position of the subwindow in the image is determined by the position of
the ball on the previous frame of the sequence. In the catching experiments, 25 of 32 thrown
balls were caught successfully. Color-based recognition with a parabolic model was also applied
later in [Kao13], but the linear Kalman filter was used for statistical estimation instead of least
squares.

Parabolic fitting using recursive LS was also used for prediction in [Bat10]. The setup allow
catching objects (in the experiments basketball thrown by the human was used) in non-prehensile
way by balancing the object on the planar surface. A circular plate with a radius of 17 cm is
used as an end effector mounted on the 6-DoF robot. The success rate was approximately 35%,
but this result is incomparable with other success rate data, e.g. in [Hov91] or [Bae10], as the
catching task for non-prehensile catching based on balancing is much more difficult than that for
grasping.

In [Kim12, Kim14] a 7-DoF KUKA LWR 4+ arm was used to catch free-flying objects of various
shapes: a hammer, bottle, tennis racket, and an oblong box. Of the captures, 52 of 71 (73.2%)
were successful. This work is interesting because of the specific prediction concept used, so it is
discussed more precisely in subsection 2.5.2.

2.4.2 Transport by throwing

As previously mentioned, the method of transportation by throwing was introduced by Frank in
2006. Since then work on TbT has been developed by two scientific groups in Reinhold-Wuerth
University in Kunzelsau ([Fra06, Fra08, Fra11]) and at the Institute of Computer Technology,
Vienna University of Technology ([Pon11, Pon13, Mir13]).

𝑥1

𝑥2Static rail Static rail

Dynamic rail

Gripper

Movement of the dynamic
rail along the static rails
provide DoF in 𝑥1 direction

Movement of the gripper
along the dynamic rail
provide DoF in 𝑥2 direction

Figure 2.10: The 2-DoF gantry manipulator used in [Fra07].

44

State of the art

At the initial stage of the research project, the catching setup based on a 2-DoF gantry robot
was applied [Fra06, Fra07, Bar08, Fra08, Fra08a, Bar09]. These robots are able to move within
the Cartesian square and are often used as loading and unloading machines in the industrial
environment [Fra07, Fra08a]. The scheme of the 2DoF Cartesian gantry robot is shown in the
figure. The size of the workspace is (horizontal) 100 cm by (vertical) 80 cm. The maximum
acceleration and speed of the end effector are 25 m/s2 and 4 m/s respectively at a payload of
5 kg. The gripper has three grasping jaws that close when the object touches the center of the
gripper. The closure may be performed with the use of the object’s kinetic energy (the upper part
of the figure 2.11) or the kinetic energy of a previously tightened spring (the lower part of the
figure 2.11). These grippers are able to close within 4.5-14 ms and 5 ms respectively. The closing
time for the first gripper relies on the mass and velocity of the object. If its kinetic energy is
high, it will close quickly. The respective relation for the spring-based gripper was not detected.
Therefore, the spring-based gripper could be preferable for lightweight objects, while heavier
objects could be effectively caught using their own kinetic energy. The monocular physics-related
technique described in [Bar08] and discussed in subsection 2.3.3 was applied to track the ball and
forecast its trajectory.

The setup was as follows; the objects with a weight up to 60 g were thrown with a velocity of
up to 10 m/s at a distance up to 3 meters. Therefore, the time needed for object transportation
was about 300 ms. Two control strategies were proposed: ”simplified” (an assumption about
the linear increase of prediction accuracy is made) and ”realistic” (exponential increase). Both
strategies provide the smooth movement of the end effector towards the adjusted catching point.
In the results of the Barteit dissertation [Bar11, p.125], 60% of the balls thrown by a human were
caught.

c. Open spring gripper d. Closed spring gripper

a. Open kinetic gripper d. Closed kinetic gripper

Figure 2.11: Grasping principle from [Fra07]

At both the Vienna University of Technologies and Heilbronn University, further development of
the research project took place. The work of the Heilbronn group is summarized in [Fra09, Fra11,
Fra11a Fra12]. In these works, the concept was extended to cylinder-shaped objects. In [Fra09]
the specific throwing setup for these objects is introduced, and the aerodynamic properties of
airborne cylinders are studied. The throwing experiments have shown that the angle of attack
for a linearly thrown cylinder is close to zero during the flight, i.e. the orientation of the object
matches the current direction of flight (figure 2.12, a). The motion model for the cylinder was
created with respect to gravity and air drag. As the angle of attack is equal to zero, the lift
influence of the air was ignored in the motion model. However, a comparison of the motion

45

State of the art

model with the measurements showed that after 3 m the trajectory of the object varies from the
theoretical values for 22-36 mm. The authors propose that these deviations could be due to the
influence of lift. When the open pipe was thrown instead of the cylinder, it began to tumble after
a time (figure 2.12,b). When the cylinder was thrown with a spin of 35 revolutions per second
(this idea was inspired by the use of rifling to stabilize missiles), it does not keep the angle of
attack along the trajectory but keeps its orientation in the world coordinate system (figure 2.12,
c). This behavior corresponds to the property of the flywheel to keep the constant orientation of
the rotational axis in space (also used in gyroscopes).

𝑥1

𝑥3

𝑥1

𝑥3

𝑥1

𝑥3

a. Cylinder thrown without spin

b. Pipe thrown without spin

c. Cylinder thrown with spin

Figure 2.12: The dynamic of the orientation for a flying cylinder and pipe depending on the conditions
of flight.

In [Fra12] a setup with a 1-DoF linear throwing device and a 1-DoF rotary catching device was
used for cylinder transportation. No sensor system was used at all; the thrower provided the
sufficient level of accuracy for successful catching. Both robots are controlled via the common
control system, and in the time after the throw, the catching movement is actuated. In exper-
iments this system was able to catch all 50 of the 50 thrown objects. The authors admit that
this accuracy is only possible for cylindrical objects because of their high aerodynamic stability.
Catching less stable objects would require the use of visual feedback [Fra12, p. 5269].

2.4.3 Discussion

An overview of the existing concepts in robotic catching is given in the table 2.1. The rate of
success is written in % and, where given, in absolute numbers of thrown and caught balls. These
numbers are not entirely correct in the way they compare algorithms because they depend on the
setup (e.g. it is harder to catch the ball via grasping than via collecting into basket), but they
do help rate the abilities of the existing catchers. The only catcher that overcame the limit of an
80% success rate was in [Fra12] where all thrown objects were caught. The drawback was that

46

State of the art

the cylindrical objects thrown without spin had very high aerodynamic stability in comparison
with the other objects. The authors of [Kim12] assume that the application of the concept to less
stable objects will require the use of object tracking in order to adjust the catching movement.

Table 2.1: Comparison of existing approaches to robotic throwing and catching

Institution Sources Rate of
success

Focus and contribution Objects

1 MIT [Hov91] 75-80% First robotic catcher,
parabolic fitting

small
balls

2 Tokyo University [Nis97] Not
stated

First humanoid catcher small
balls

3 Tokyo University [Nam03a] Not
stated

Visual feedback in 1 ms;
grasping the flying objects

small
balls

4 German Aerospace
Center

[Fre01]
[Bae10]
[Bir11]

67-80% KF estimation, modeling air
drag, catching multiple balls
simultaneously

small
balls

5 Advanced Telecom-
munication Re-
search Institute,
Kyoto

[Ril02] Not
stated

Tracking the thrower’s hand,
convergence with human
catching strategy

small
balls

6 Tokyo University [Mor04] Not
stated

Catching based on angle of
gaze information only

small
balls

7 Tohoku University [Her09] Not
stated

Parabola fitting to the
monocular measurements

flipping
coins

8 Royal Institute of
Technology, Stock-
holm

[Smi07] 78%
(25/32)

Tele-operated ball catching,
development of a specific fast
catching arm, ball recogni-
tion based on HSV color in-
formation,

small
balls

9 Munich University
of Technology

[Bat10] 35% Non-prehensile catching basket
balls

10 Swiss Federal Insti-
tute of Technology,
Lausanne

[Kim14] 73%
(52/71)

Catching objects with
complicated shape, learning-
based definition of object
acceleration, marker-based
tracking

hammers,
bottles,
tennis
rackets

11 Heilbronn Univer-
sity, Vienna Uni-
versity of Technol-
ogy

[Fra06]
[Fra07]
[Bar08]
[Fra08a]

60% Industrial transportation by
throwing, monocular track-
ing with relation on physi-
cal model, catching by 2DoF
gantry cartesian robot

small
balls

12 Heilbronn Univer-
sity

[Fra12] 100 %
(50/50)

Cylinder-shaped objects,
precision throwing

cylinders

It can be seen that the majority of solutions use small balls as an object. The term ”small balls”

47

State of the art

here describes a ball similar to the size of the tennis ball or baseball (in comparison to bigger balls
used in soccer and basketball). This term is used because the articles are unclear as to whether
a tennis ball was used; however, it can be seen from the images and characteristics of the balls
that they were approximately the same size as a tennis ball.

A comparison of the various approaches to object tracking is given in table 2.2. All of the
aspects connected with 3D reconstruction are mentioned in the column ”sensing solution” as 3D
reconstruction relies on a sensor setup. The column ”processing solution” corresponds to how the
task of recognizing the object in the image is solved. It is not clear how the coordinates of the
objects are extracted from the images in some of the solutions [Hov91, Nis97, Mor04]. It may be
assumed that similar methods, like motion detection or the Hough transformation, are applied
for this task. The division of the camera field of view (FoV) into subfields (Area of Interest, AoI)
with smaller pixel sizes is applied in a number of works, e.g. [Bar08, Bat10], in order to reduce
calculations. The subfield may be static if it is known that the object cannot appear at some part
of the FOV. In [Bar08] this approach allowed the available frame rate to be increased from 87
to 215 fps. The subfield may also be dynamic. In this case the position of the AoI in the image
plane is adjusted according to the new position of the object. For example, the vision system
from [Bat10] operates with 180 x 180 pixel windows instead of an entire 1280 x 1024 image.

Table 2.2: Comparison of existing approaches to object tracking for robotic catching

Sources Sensing solution Processing solution framerate

1 [Hov91] Stereo vision Not clarified 30 fps

2 [Nis97] Stereo vision (unsynchro-
nized), monocular range
estimation based on object
size

Not clarified 30 fps

3 [Ish96]
[Nam99]
[Nam03a]

Single camera with direct
connection of photodetectors
with processing unit

Motion detection on high-
speed image sequence

1000 fps

4 [Fre01]
[Bir11]

Stereo vision Comparison with reference
image, Hough transform

50 fps

5 [Ril02] Color stereo vision Calculating 3D color centroid 60 fps

6 [Mor04] Monocular vision (No 3D re-
construction at all)

Extracting angle of gaze in-
formation

30 fps

7 [Her09] Monocular vision with
parabolic motion model

Not clarified 70 fps

8 [Smi07]
[Bat10]

Color stereo vision Ball recognition based on
HSV color information

150 fps

9 [Bar08] Monocular vision with ballis-
tic motion model

Hough transform 215 fps

The radical approach to increasing the frame rate is proposed in [Ish96], where the bottleneck
of transmitting the image from the sensor to controller is eliminated. Each sensor element is
directly connected to the specific processing unit. This increased the actual frame rate to 1000
fps. This approach needs a specific hardware solution for the vision system, which would enable

48

State of the art

parallel processing on a mass scale. Commercially available digital cameras do not allow a direct
connection to photo detectors but transmit the sensor data as images. In any event, even relatively
slow cameras with 50-70 fps provide useful information about object trajectory [Fre01, Ril02,
Her09].

Obviously, there is no reason for the real time application to increase the frame rate if the
interframe timeout is less than the period needed to extract the object spatial coordinate from
the frame. The Hough transform circle-detection is a well-known technique, which is intended
for recognizing spherical objects on images and determining their center positions. Color-based
and motion-based techniques only allow specific regions in the image to be recognized. The
advantage of motion-based and color-based is the lower computational expense. On the other
hand, the results from [Bar08] show that Hough transform could work correct even at the frame
rate of 215 fps.

Table 2.3: Comparison of existing approaches to object catching

Sources Catching
device

End-effector Type of
catching

Details of catching
strategy

1 [Hov91] 4-DoF arm Not clarified passive, soft

2 [Nis97] 5-DoF arm basket passive,
hard

3 [Nam03a] 4-DoF arm Robotic hand with 3 fin-
gers (each with 3 joints)

active, hard Direct motion defini-
tion from vision data

4 [Fre01] 7-DoF arm basket passive,
hard

5 [Bae10]
[Bae11]

7-DoF arm Hand with 4 3-DoF fin-
gers

active, hard

6 [Ril02] Humanoid Baseball glove passive, soft Learning human-like
movements

7 [Mor04] 6-DoF arm basket passive,
hard

Keeping constant angle
of gaze to the object
from the point of view
on the end-effector

8 [Smi07] high-speed
6-DoF arm

basket passive,
hard

motion of the end-
effector within the pla-
nar window

9 [Bat10] 6-DoF arm planar surface nonprehensile,
soft

10 [Kim14] 7-DoF arm hand with 4 4-DoF fin-
gers

active, soft

11 [Fra07]
[Fra08a]

Gantry
2-DoF
Cartesian
robot

Mechanical gripper active, hard

13 [Fra12] 1-DoF
rotary arm

Pneumatic gripper active, soft

49

State of the art

A comparison of various solutions for performing the catching movement is given in table 2.3.
The humanoid from [Ril02] has a 4DoF on each arm and a 2DoF on its torso. The catching
strategies are classified according to two aspects. First, catching may be hard or soft as specified
in subsection 1.2.3. Second, catching may be passive. The end effector has no moving parts. It is
designed in such a way that after interception, the object is stored in it, e.g. the end effector is a
mounted basket in [Nis97]. Catching may also be active. The end effector has moving parts which
grasp the object at the moment of interception. This grasping may be actuated by the robot
controller as in [Nam03a], performed mechanically according to the design of the end effector as
in [Fra07]), or non-prehensile as solely implemented in [Bat10], where the object was collected on
the planar surface of the end effector which was achieved by balancing. The control of multi-joint
arms is implemented by means of inverse kinematics in most cases. For soft catching this meant
the calculation of the joint positions and rotational velocities, which provided the target position
and the velocity of the end effector. If hard catching is applied, the task is simplified. Then there
is no need to adjust the velocity of the end effector.

In most of the works, multi-DoF robotic arms are applied for catching. These arms have a
3D workspace and are able to provide soft catching. The use of actively grasping or passively
collecting the object into a cup is depends on the robot?s abilities. If there is a task where a
robot needs to catch a ball like a human would, the catching robotic hand is applied. The ability
to grasp with a hand is a very specific and complicated robotic task, which requires a high degree
of precise predictions (2-3 cm according to [Bae10]). Passive catching also allows the object to be
collected and the object trajectory to be estimated. In general, controlled active catching requires
an additional compositional unit of the system, e.g. the hand in addition to the throwing device,
the robot and the cameras. It also requires an additional algorithmic unit, e.g. a controller for
the grasping movement in addition to an object tracker, a predictor, and a robotic path planner.
Passive catching is sufficient to provide successful catching and an initial validation for other
units.

2.5 Trajectory prediction in robotic catching and transport-by-
throwing

This section discusses the prediction task and how is it solved within the research work described
in section 2.4. Information on the location point of catching within the state-of-the-art approaches
is obtained in the following three ways:

1. Accurate adjustment of the throwing device: Differences between the various trajectories lie
within the allowed error of catching. Thus, neither prediction nor observation of the tra-
jectory by the tracking system is needed [Fra12]. These systems are discussed in subsection
2.5.1.

2. Direct mapping from the vision system to motion control without the intermediate step of
prediction and the definition of the catching point [Nam03a, Mor04].

3. Long-term prediction: when the part of the trajectory within the gripper workspace is
estimated based on the initial part of the trajectory: Most of these predictors use the
predefined physical model of object flight, e.g. [Hov91, Nis97, Fre01, Ril02, Bar08, Her09]
(summarized in subsection 2.5.2),). However, in some solutions the learning operation is

50

State of the art

inserted [Kim12]. In subsection 2.5.4, an introduction to the nearest neighbor prediction is
given. The development of the nearest neighbors approach for trajectory prediction is one
of the main contributions of this thesis; therefore, arguments for its use are also given in
this section.

2.5.1 Catching without prediction

In a throw the challenge primarily lies in transporting the object to a certain predefined area. In
the case of non-predictive transport-by-throwing, the object reaching this area must guarantee a
successful catch. Throwing objects is a specific robotic task developed in a number of solutions,
e.g. [Miy10, Kob11, Nem11, Zha12, Kan12]. Most of these works did not concentrate on providing
stable object transportation by throwing. In [Zha12] the main scope lies in specific path-planning
for the robot, and throwing is considered to be one of possible applications. A similar task
was considered in [Kan12] for a humanoid robot with a high number of DoFs. Therefore, in
most of these, it is only stated that ”the object was thrown towards the target by the throwing
system”, and there was no mention of how accurate the throw was although the applicability of
the throwing strategy in industrial applications is given.

The accuracy aspect was considered in [Miy10] and [Nem11]. In the first work, a rotational 1-
DoF lever is used as a throwing device. The trajectory is changed by changing the position of
the object on a lever. The error norm was 3 mm after 21 throws. The distance of the throw is
not given; however, from the illustration it can be seen that it is no more than several tens of
centimeters. In [Nem11] 5 cm precision in throwing balls into a basket was achieved. The errors
were blamed on vision inaccuracy. The purpose of this work was to develop the new technique
for learning motions, and throwing balls into a basket was one of the examples.

Within the TbT project, precision throwing is developed by Thorsten Frank, et al [Fra09, Fra11,
Fra11a, Fra12]. This is the only research project founded in the literature, which includes the deep
exploration of transportation by high-precision throwing. In [Fra11a] a 1-DoF linear throwing
device from [Fra09] is replaced by a specific 2DoF robot. The cup with the object lies on the end
of a lever that is 50 cm length. The throw is implemented by the rotary movement of this lever.
The lever can achieve a specific angular velocity, and if it decelerates from this value, the launch
takes place. The launching velocity of the object is set by the angular velocity of the lever at
the moment of deceleration, and the angle of the throw depends on the orientation of the lever
at the moment of deceleration. The maximum available launching velocity is 25 m/s, though
in the experiments the velocity was usually between 8 and 12 m/s. The minimum velocity of 8
m/s provides the centrifugal force, which is more powerful than gravity, so the ball does not fall
out of the cup before the launch. The definition of the launching position in order to reach a
specific destination area is based on the gravity-drag motion model specified in [Chu03]. In the
experiments, the robot is able to throw the balls to holes of a specific size. The size was not
clarified in the paper, but from the illustration it seems as thought they were several tens of cm
in diameter.

In [Fra12] a 1DoF device was used to throw cylindrical objects. The model of object flight
used for the adjustment of the throwing device was developed in [Fra10]. The orientation of the
cylinder follows its velocity vector due to the effect of shoulder stabilization (see figure 2.12,a)
so a cylinder is a stable aerodynamic object that can be considered as a point-mass. The flight
of small and heavy cylinders may be accurately represented using even parabolic models [Fra10].
The prediction of lightweight cylinders of a bigger volume requires air drag to be taken into

51

State of the art

account. In fact, the task of adjusting the launching parameters in [Fra10, Fra12] is inverse to
trajectory prediction. There the planned future trajectory is used as an input to calculate the
required launching parameters but not vice versa. The advantage is that if the model is a little bit
inaccurate the launching parameters can be tweaked to remove systematic error. Also, complex
calculations (e.g. the use of Levenberg-Marquardt optimization in [Fra10]) are allowed because
they are not performed in real time during catching. The gravity-drag model with an iterative
calculation was used for trajectory modeling in [Fra12]. The high stability allowed 100% success
to be provided in catching after 50 throws.

The applicability of precision throwing is limited by several factors. First of all, the shape of
thrown object must provide its aerodynamic stability. The design of the throwing device must
minimize deviations. The method is very sensitive to the respective location of the throwing
device and the destination point. For each of these positions, a new hard adjustment for the
thrower and catcher must be made. If soft catching is used (the only known implementation of
precision throwing with soft catching is [Fra12]), then precise knowledge about the time of the
object’s flight is required. Due to these factors, the use of visual feedback would be preferable for
objects of a normal shape and size.

In vision-based catchers, the prediction of object trajectory may be skipped if the robot’s reaction
to the visual information is considered to be instantaneous. In [Mor04] catching is realized even
without a 3D reconstruction of object position. The camera is mounted on the gripper, and the
movement strategy consists of keeping the constant angle of gaze of the object in the image. This
strategy does not take the absolute velocity of flying object into account, so it is not applicable
for soft catching.

If the 3D reconstruction is applied, the strategy may consist of moving the robotic hand towards
the measured position of the object. In [Nam99] this strategy was applied to an object moved
by a human hand and for a flying object in [Nam03a]. This approach is useful when the process
noise is high, so there is no point in a long-term forecast. However, the process noise for a free-
flying object is relatively little. It is not possible for the robot to react quickly if the velocity
of the object and the distance towards it exceeds the velocity limits. The maximum velocity
of the KUKA LWR+ end effector is about half that of the object’s velocity, so it cannot react
instantaneously in its movement.

2.5.2 Prediction using physical models

A comparison of existing prediction techniques is presented in the table 2.4. There the abbrevi-
ation LS refers to the Least Squares estimation, and the abbreviation EKF refers to Extended
Kalman Filter. In the third column, the rows with the term ”gravity” or ”gravity and drag”
mean that the respective motion models take respective forces into account. The term ”SVR
with RBF kernel” (Support Vector Regression and Radial Basis Function respectively) describes
the learning based method of estimating accelerations in [Kim14]. Acceleration forecasting mean
that the acceleration vector is considered to be constant:

52

State of the art

a =



a1

a2

a3

ε1
ε2
ε3

 = const, (2.20)

where

a1

a2

a3

 is a vector of tangential acceleration and

ε1ε2
ε3

 is a vector of angular acceleration

of a rotating body.

Table 2.4: A comparison of existing approaches to object trajectory prediction based on mathematical
or physical models

Sources Estimator Motion model

1 [Hov91] LS parabolic

2 [Nis97] LS parabolic

3 [Fre01] EKF gravity and drag

4 [Ril02] LS parabolic

5 [Her09] LS gravity

7 [Bat10] LS gravity

9 [Bar08] EKF gravity and drag

10 [Pon09] LS gravity and drag
(axial separated)

11 [Kim12] SVR with
RBF kernel

Acceleration fore-
casting

The parabolic model is in fact constant acceleration forecasting. Acceleration in this case is con-
sidered to be equal to g [Bat10] or found by fitting the parabola to the measurements [Hov91].
Angular accelerations are ignored in [Hov91, Nis97, Bat10] as point-symmetric bodies are consid-
ered, so orientation forecasting is not required. In [Her09] it is also ignored as the object, a coin,
is very small and may be considered to be a point-mass.

The parabolic model allows the object’s trajectory to be defined based on three measured points
even without knowing the value of g. With the assumption that g is known, it may be done based
on 2 points. Usually, the higher number of measurements is used in order to improve accuracy
by the statistical estimation. The value of g is obtained by parabola fitting in [Hov91, Ril02]. In
fact, the task is to approximate the data with a second-order polynom.

Making g unknown allows the influence of the air drag to be included in the model. In the
phase of ascent, the influence of drag is co-directional with gravity. In the phase of descent, its
influence is in opposition to gravity. The polynomial model makes the assumption that the overall
acceleration of the object is constant. This assumption may be valid if the object generally has
no significant change in vertical velocity in the part of the trajectory considered. Either that or
it at least does not change its direction; the object must either ascend or descend throughout the
flight. The most energy effective and flexible way to provide object transportation by throwing is

53

State of the art

to throw the object upwards and to catch it during descent. If the object is thrown downwards,
it limits the maximum distance of the throw and can restrict the environment’s organization.
This is because the thrower must be located above the catcher. If the object is caught during
its ascent, this means that there is excessive energy consumption because the actual launching
velocity is much higher than what is needed to reach the destination. The gripper in this case
must be located above the thrower. In the case of an ascending throw and a descending catch, the
thrower may be higher, lower, or the same height as the catcher. For these flights the polynomial
models lead to high systematic errors [1].

As it was discussed in section 2.5.1, inserting drag into a model of object motion leads to the
differential equation 2.10that has no analytical solution. The prediction of a trajectory based
on this model may be done by an iterative calculation of the coordinates as in [Fre01, Bar09] or
by using the simple assumption about the independence of the motion in various coordinates as
in [Pon09]. The value of the drag coefficient is required when using these models and must be
known. As discussed in section 2.1, determining this coefficient could be a significant challenge
even for a simple-shaped body. For objects of a general and not-so-aerodynamically-stable shape
this determination becomes a real problem, especially because the coefficient depends on object
orientation to air stream. At the current stage of research, primarily simple-shaped bodies are
used, but further development implies objects with various shapes must be thrown. Due to this,
it is better not to rely on drag coefficients.

The polynomial motion models, as opposed to those discussed above, do not require the physical
coefficients to be known (k as well as g). The motion of the object is expressed by 2.15 where all
the coefficients are obtained by fitting to data. This model allows the influence of gravity to be
included as well as all the aerodynamic factors on the object. The final impact of these factors is
assumed to be quadratic, which is also a simplification of the assumptions. In [Pon09] this model
demonstrated its accuracy, but the accurate estimation of weighting coefficients for 2.15 requires
computationally expensive multi-dimensional optimization.

Statistical filters, especially the extended Kalman filter ? EKF, are used to decrease error influence
in [Fre01, Bar09] and least square (LS) fitting in [Hov91, Pon09]. For filtering, a working model
of the process is required. It might not be very accurate, and in this case the systematic error
component of prediction grows with an increase in distance. In the LS estimator, the best fit
for all the measured points is found. In comparison, EKF is a Markovian estimator, i.e. the
forecast is done based on the last estimate of the object’s position and velocities and the last
measurement of its position. The previous measurement’s effect on the result is only a source of
the last estimate. Therefore, errors connected to model inaccuracy may be a result of the process
noise.

2.5.3 Neural network prediction

Neural networks allow learning by example without an accurate model of the process and consider
unknown nonlinear dependencies in the training set. For forecasting the time-series data, various
time-delays neural networks (TDNN) may be used. TDNN was proposed in [Sej87]. Neural
networks have several properties, which make them useful and promising for TbT application:

• No exact prior models of the process are needed. The network creates the predicting model
itself during the learning process.

54

State of the art

• Neural networks can easily deal with nonlinear processes.

• Although a learning process may take a while, the trained predictors can work very quickly,
especially if they are implemented in the hardware.

The typical architecture of the TDNN is shown in the figure 2.13. The network input consists of
the reference of measurements from various times provided by the digital delay line. The time
delay line consists of delay elements Z−1. Each element provides the delay by a certain time unit
τ hence a reference of objects coordinates {X(t0), X(t0 − τ), X(t0 − 2τ), ..., X(t0 − nτ)} is given
to the network input. The network should predict the value of these coordinates X(t0 + t1) in a
fixed period of time t1 after the current moment.

Neural

Network

X(t0)

𝑧−1

X(t0 - τ)

𝑧−1

X(t0 - 2τ)

𝑧−1

X(t0 - nτ)

X(t0+t1)

Figure 2.13: The typical architecture of a Neural Network Predictor.

If the object’s trajectory is observed, the input will be a sequence of measurements extracted
from the observer’s frames [Mir13]. τ equal to the observer inter-frame period or to the observer’s
frame rate at the power of 1. t1 is equal to the time it takes for the object to reach the gripper’s
workspace.

The neural network trajectory predictor was developed and simulated by the author of the thesis
in 2013 [Mir13]. As the initializing parameters were unknown, forward networks were used in the
simulation feed. The simulation software and the prediction model were made using MATLAB.
Two types of predictors were proposed. The first predictor consists of three separate networks,
each with one dynamical input and one output. Each of the networks predict one of the three
spatial coordinates. The second predictor includes one network with three references of inputs
and three outputs, predicting the values of all three coordinates [Mir13].

Increasing the number of layers to more than two, causes processing time to be increased and
does not really increase accuracy. Hence, for a time-critical trajectory prediction application, a
neural network with one hidden layer was proposed. The number of neurons that provide the best
accuracy for each network was defined in preliminary experiments: 6 neurons for predicting the
value in x1, 2 neurons for predicting the value in x2, 6 neurons for predicting the value in x3, and

55

State of the art

4 neurons for complex prediction. The standard deviation for the spatial separated prediction
was from 26 mm for a highly precise simulated throw up to 74 mm. For a throw of low precision,
the mean error for complex prediction was from 24 to 89 mm respectively [Mir13].

The results have also demonstrated some additional aspects of NNTP [Mir13]:

• When HPT is used, the Neural Network comes up with results that can be used in the work
of a real catching system.

• More precise throwing causes more precise catching.

• Spatial-separated predictor showed better accuracy than complex predictor.

• The use of more dispersed learning samples provides better training.

• The more careful the measurement of the target parts of the learning trajectories is, the
better the training can be.

Processing 100 frames took about 0.7 ms for a complex neural network and about 1.2 ms for a
spatial-separated model even within the relatively slow MATLAB application. Such parameters
allow the prediction to be recalculated after each new frame. The error size could be rejected by
the accurate adjustment of the throwing device, but the disadvantage of the NN is that it is, in
fact, a black box. It is hard to interpret the results as NN creates the output function itself based
on the training datasets. In this case it will be hard to adapt the prediction mechanism to the
changing parameters, e.g. frame rate of the measuring system, shape of the object, etc. A simple
and interpretable solution is desirable for the initial construction of the flexible sample-based
predictor. One of the simplest and most interpretable methods for sample-based decision-making
is k Nearest Neighbors (kNN).

2.5.4 Premises for use of nearest neighbors algorithm

The algorithm k Nearest Neighbors (kNN) was initially invented as a technique for pattern clas-
sification [Cov67]. Since the 1960s, it has developed into a large family of various algorithms used
for various tasks [Bha10]. One of these tasks is to forecast time series (TS). Formerly, use of kNN
algorithm for forecasting was studied in [Yak87]. Since then, it has been applied for various tasks
that have to do with time series, e.g. weather forecasting [Acc03], predicting road traffic [Guo12]
and electricity demand [Alq13, Fuj14], and electrocardiogram analysis [Fae08], etc.

For the nearest neighbors algorithm, the dataset of samples is collected prior to solving the task.
The classification task means that the need to associate the input data vector with a specific
category exists (the set of categories is finite). For the kNN classification, the dataset has the
view {X1, Y(1)}, {X2, Y(2)}, ..., {Xn, Y(n)} where Xi is the input data vector and Y (i) is a category
taken from C = {Y1, Y2, ..., Yk}. When the classification of the current sample Xc is done the
task is to define Y (c). If one nearest neighbor (1-NN) rule is used, vector Xi from the dataset
is taken, which is the most similar to Xc (it is called ”nearest neighbor”), and its category Y (i)
is associated with the current input. ”Nearness” or ”Similarity” here means that the distance
(Euclidean, Manhattan, Mahalanobis, etc.) from Xc to Xi is smaller than that to any other
vector from the dataset. If the number of taken nearest neighbors is more than one, each of them
votes for its category, and the category with the maximum number of votes is associated with Xc.

56

State of the art

The Weighted k Nearest Neighbors (WKNN) classifier was proposed in [Bai78]. In this algorithm
the vote of each neighbor’s weight depends on the distance to Xc.

The kNN regression algorithm differs from the kNN classifier in the following way: Y here is
taken not from the finite set of categories but from the infinite set of real numbers. It could be
a scalar or a vector Y. The value of Yc in kNN regression is calculated as a mean of neighbors’
target values:

Yc =
1

k

k∑
j=1

Yj . (2.21)

In WKNN regression weighting coefficients are added into the model:

Yc =
k∑
j=1

wjYj . (2.22)

Typically WKNN considers all neighbors instead of just the closest, but the weighting coefficients
may be applied for a finite subset of examples also. In [Bai78] all the samples from the dataset
vote for their categories. In other implementations of the algorithm, only a finite number of
nearest neighbors is taken in mind. This allows computational expenses to be decreased.

Time series forecasting is partially a case of regression. Here Y and X represent the same
parameters but X corresponds to its values measured in the past, and Y corresponds to its
unknown future values.

In comparison with other techniques, kNN is very promising. The main adbvantages of the kNN
are listed below:

1. Independence from physical model : The kNN is purely experience-based approach. It does
not require any knowledge about the rules of objects’ motion. This is its advantage in com-
parison with analythical methods (polynomial fitting, physical modelling, Kalman filters)

2. Similarity to human learning : The training principle is similar to how humans learn to catch
balls. They collect the knowledge by remembering their previous trials and decide how to
catch the ball by remembering the similar examples from the previous experience [Gil99].
Humans are better ball-catchers than any existing robotic system, therefore converging their
strategies is a promising way for improving the system.

3. Simplicity of the learning process: In common version of the algorithm previous samples
are just stored in the database. In the version described in the next chapters some transfor-
mations are added into the learning algorithm, however the main principle stay the same:
learning is collecting previous examples in the memory. This is opposite to other intelligent
algorithms (e.g. neural networks) where learning means adjusting parameters of a complex
model to the sample data. This is a reason for the next advantage.

4. Good interpretability : It is easy to determine the reason for the decision made by the
predictor. ”we do this forecast because our trajectory C is similar to trajectories of A and
B from the database”. This reasoning is attractive for the task of trajectory forecasting.
The process of an object’s flight is deterministic, and in similar conditions the trajectories
look similar.

57

State of the art

5. Freedom from overfitting : The problem of overfitting occurs in statistical (e.g. polynomial
models or Kalman filters) or learning-based methods (neural networks) where any motion
models are created. These models have certain parameters, which are adjusted to the
sample data. If sample data are erroneous the random deviations of the parameters may
be detected as deterministic. In this case prediction model works good with the samples
from the learning sampling, but gives high errors while predicting the new trajectories. As
no specific process model is used in kNN, it is free from such a problem.

6. Simplicity of the forecasting operation: In case of one nearest neighbor the value of the
forecast is simply equal to the corresponding value of the neighboring trajectory. In case
of higher k forecasting include the operation of addition. No complicated mathematical
operation like curve fitting is required. Humans also do not make complicated calculations
in order to catch the ball, so it is possible to avoid complicated models and forecast the
trajectories well.

The main issue in implementing an NN-based predictor is due to the requirement that the current
trajectory must be compared with all the trajectories from the dataset. This means that if the
dataset is large, the volume of computations will be incredibly large. This means the memory
requirement for processing the datasets would also be quite large. To overcome these issues,
various improvements to the basic algorithm are made in [Bha09]. In [Bha09] the approaches
primarily deal with classification instead of regression. All of the versions of the algorithm are
divided into structured and structureless techniques. In the structureless techniques, the database
is considered to be an integral set, and the same procedure of distance calculation is applied to all
samples. The size of the dataset is decreased by eliminating the samples that are overly similar
to other samples, and this means the potential information that they store is already contained
in other samples [Chi79, Alp97, Ang05]. In structured techniques the dataset is transformed so
that the algorithm can be executed more quickly. Usually the set is partitioned using of some
tree-based partitioning techniques [Spr91]. The leaves of the tree contain information about
neighboring samples and internal nodes are used to guide a quick search for the nearest neighbors.
Most of the tree-based partitioning techniques deal with leaves formed by the member of specific
class, and are therefore inapplicable for regression and time series forecasting. The tree structure
is discrete, so it may lead to discretization errors.

In general, the kNN algorithm is a promising technique for trajectory forecast. What it lacks due
to the increase in the volume of calculations is eclipsed by the specific advances it demonstrated
during the research. A more detailed description of the development of these changes is given in
chapter 4.

58

3 Observing object trajectory

The final evaluation of the prediction algorithm is done based on catching experiments. The
percentage of successful catches shows the usability of the whole approach, but this does not
tell us anything about the quality of the separate parts of the system: observer, predictor, path-
planner, etc. This information may be obtained in a numerical simulation of the process if it
represents the process more-or-less accurately, or by comparing the results with available ground
truth data, i.e. the data that is measured with high precision and is independent of the prediction
results. Therefore, information on the process of the flight and its observation is required.

This chapter concentrates on an exploration of observer accuracy. The experiments that are
described aim to determine what will be the measurement error’s influence on the predictor and
how this influence can be decreased. The prediction itself is examined in chapter 4. Another
significant aspect of this chapter is the description of the trajectory datasets. Learning-based
prediction requires a set of example trajectory measurements. This set is acquired during the
throwing experiments described in this chapter.

The throwing experiments are described in section 3.1. This section mainly contains the technical
information about the throwing device, the cameras and the algorithms that allow the three-
dimensional (3D) model of the trajectory to be obtained from the camera measurements. This
information is the base with which an exploration of the accuracy in further sections will be done.
In section 3.2 , the positioning accuracy for a static ball on a single image pair is discussed. In
section 3.3, the accuracy model is extended for the tracking of airborne balls.

3.1 Throwing experiments

Throwing experiments have two main goals. They provide a dataset of sample trajectories for
predictor learning and allow the properties of the observed trajectories to be explored, most
importantly the observer accuracy. Experiments were conducted based on the available setup at
the Institute of Computer Technologies at Technische Universitaet Wien. This setup consists of
the throwing device and two digital cameras (IDS uEye UI-3370CP with 2048 x 2048 resolution)
integrated into a stereo pair. Both cameras and the throwing device are controlled from a desktop
personal computer (PC). The control of the cameras and the throwing device is performed via
a universal serial bus (USB) and an RS-232 interface respectively. The cameras are triggered
by the single generator and are synchronized. The throws were done by the device described in
subsection 3.1.1. Subsections 3.1.2 and 3.1.3 describe how the flight is observed by the vision

59

Observing object trajectory

system and how the reference of the object 3D positions is extracted from the camera images.
Subsection 3.1.4 contains an overview of the acquired sample trajectories.

3.1.1 Throwing

The throwing device was constructed by Martin Pongratz and Gilbert Markum [17, 18]. A photo
of it is shown in figure 3.1. The energy of throw is provided by the tension of two springs, which
pull the catapult cup with the ball. The tension is provided by the electromechanical drive which
is connected to the cup by the solenoid magnet. The throw takes place if the controller switches
to the solenoid. It releases the catapult cup. The motor may adjust the launching position to
reach the needed values of tension.

Velocity
direction

Light barriers

Catapult cup

Springs

Tensioning
motor

Solenoid
trigger

Figure 3.1: Throwing device used in the experiments.

To explore the trajectory, it is valuable to know what the velocity of the thrown ball was. If the
vector of the throwing velocity of the object is the same every time, the trajectory of the object
will not vary from time to time according to the motion models 2.10 and 2.8. TA real thrower
deviates in the throwing velocity, therefore, the actual trajectory may vary from time to time.
The variation in the measured launching velocity can give a perception about the variation of
the trajectory. Also this variation can be used as a base for modeling the trajectory deviations
within the process simulation.

60

Observing object trajectory

The velocity is obviously dependent on the spring?s tension. At the moment of release, the
potential energy of the tightened spring Ep transforms to the kinetic energy of the flying object
Ek. The relationship between the energy, spring tension and object velocity is summarized in the
equations 3.1 and 3.2 that are simple school physics.

Ep =
kd2

2
. (3.1)

Ek =
mv2

2
. (3.2)

Here k is the restitution coefficient, d is the linear extension of the spring, F is tension force, m is
object mass, v is the value of object velocity. The tension force is equal to the product of linear
extension and restitution coefficient according to Hooke’s law:

F = kd. (3.3)

As a combination of equations 3.1 and 3.3, the relationship of the spring’s energy and tension
force is:

Ep =
F 2

2k
. (3.4)

As the values of Ep and Ek are ideally equal, according to the energy conservation law, the known
value of the force allow the launching velocity to be estimated:

v =
F√
km

. (3.5)

In reality, the value of v will be a little bit lower due to energy losses. In the calibration exper-
iments, the object was thrown with a specific force, and light barriers were used to measure the
launching velocity that corresponds to this force [Mar16]. The following empirical dependence
between tension force (in newtons) and launching velocity (in meters per second) was determined
in these experiments [Mar16]:

v = 0, 1179F − 3, 759. (3.6)

The opposite equation may be used to define tension force from the nominal velocity [Mar16]:

F = 8, 48v + 31, 92. (3.7)

The maximum nominal throwing velocity of the machine (achieved with maximum tension of the
springs) is about 10 m/s and corresponds to 115 N according to equation 3.7.

Two light barriers are positioned in front of the cup in 10 cm one after another. They signalize
when the object y through them. Time difference between interceptions of the ball with light
barriers allow estimating the actual launching velocity of the object (see equation 2.18). A
comparison of the velocity values measured by the light barriers system with the nominal tension
values shows that deviations in launching velocity achieve 0.5 m/s, e.g. when the nominal velocity
was set to 4.5 m/s, the actual values measured by the light barriers were distributed in a range
from 4.2 to 5.1 m/s. A comparison of the measured and nominal throwing velocities based on the
throwing experiments is given in table 3.1 and figure 3.2. In figure 3.2, the histograms showing
the deviation of the measured velocity from the nominal value are plotted, and in table 3.1, the
numerical values for the systematic error component and the standard deviation are given.

61

Observing object trajectory

Figure 3.2: The histogram of throwing deviations for three series of experiments.

Table 3.1: The deviations of the throwing velocities for the three series of experiments.

Dataset November 2014 May 2015 August 2015

Number of samples 169 95 111

Systematic error -0.25 m/s -0.19 m/s -0.06 m/s

Standard deviation 0.16 m/s 0.33 m/s 0.33 m/s

These results show that both the systematic and random component of the errors achieve several
tens of cm/s. A systematic error may be connected with the change of spring elastic properties
with time and calibration errors. It may be seen that the systematic error component becomes
smaller with time, but it in fact seems to be an accidental correspondence. The standard devi-
ation in second and third series become worse. The reason could be that the adjustment of the
mechanical components of the device become worse with time (e.g. the springs are deformed with
time). Last set of the experiments made after creating all the datasets showed that finally the
catapult precision became extremely bad: the actual velocity was achieving more than 6.5 m/s
while the nominal one was set to 5 m/s. Before collecting each new dataset, the throwing device
was greased and adjusted. Note that this data shows the deviation of the velocity component
in the direction perpendicular to the planes of light barriers. Improvements to the quality of
the catapult is not the goal of this thesis. This is particularly due to the fact that in further
development of the system it could be replaced by a robotic thrower. This information is of
note to understand the deviations in available throwing devices. The frontal light barrier on the
throwing device is used to detect the moment the throw has begun. Interception of the ball with
it is triggering the camera system.

3.1.2 Tracking

The task of the observer is to acquire reference images that include the flying ball and to extract
a reference of object positions in space from these images. At the learning stage, this reference
is required as a sample of the trajectory. When the transportation system is functioning, the
reference of the 3D coordinates at the beginning of the trajectory are used as an input for
predicting further values. The process of image acquisition is the scope of this subsection, and
the extraction of the 3D coordinates is examined in the next. The main issues of tracking are

62

Observing object trajectory

the need to detect the object in the image and the hard time constraints, e.g. the current frame
must be processed before the next one arrives.

Two monochrome cameras with a resolution of 2048 x 2048 pixels (IDS uEye UI-3370CP) are
used to observe the flight. They are connected to a common desktop personal computer (PC) via
the USB port. The image processing application from [Goe15] was used in the system. Processing
2048 x 2048 images takes some time. This limits the available frame rate to 80 fps [Goe15, p.36].
Time expenses are due to data transmission via the USB cable and the complexity of the image
processing algorithms. The influence of both of these factors is strongly related to the size of the
image. To increase the frame rate limitations, just a small area of interest (AOI) is processed by
the algorithm not the entire image.

There are basically two AOI: the camera AOI (C-AOI) and the algorithm AOI (A-AOI). The
C-AOI is a part of a camera sensor that is used to capture the image, and the A-AOI is the part
of the acquired image where the search for the image of the ball is done. Due to the limitations of
the camera hardware, the C-AOI could not be changed during tracking; it can only be set prior
to the procedure. Another hardware limitation is that the borders of the C-AOI may only be set
in one dimension of the image. In another it should cover all 2048 pixels. The size of the C-AOI
is 800 x 2048 pixels [Goe15, p.36]. The 800 x 2048 pixel images are sent from the camera to PC
at the available frame rate of 110 fps.

The A-AOI is a part of the C-AOI. It is a sub field in the camera image, which is processed by
the circle detection algorithm. The size of A-AOI is 300 x 300 pixels [Goe15, p. 37]. The initial
position of the A-AOI in the image is set in such way that it covers the area of the second light
barrier, i.e. the ball will reach it right when the throw has begun. After processing each new
frame, the position of the A-AOI in the image is recalculated according to the new position of
the ball. This hierarchical use of the AOI concept allows the frame rate to be kept at 110 fps.
The illustration of the C-AOI and moving A-AOI is given in figure 3.3.

The new position of the A-AOI in the image is defined from the previous one. For this purpose,
the fast algorithm of ball positioning in the image is applied. A sample image of the scene is
made prior to the throw. After receiving the new frame, the fast tracking algorithm calculates the
difference between the last image and the part of sample image that corresponds to the current
A-AOI. The centroid of a difference image is assumed to be the pixel position of the ball center.
It is inserted into a linear Kalman filter which determines the most probable ball position in the
next image. This position is set as the center for the new A-AOI. Ideally the difference image
is equal to the ball’s appearance, but in reality this is not the case due to the flickering of the
lightning system and the influence of the background objects. Various objects in the scene have
different brightness values compared to the ball. When the ball is flying behind objects that have
a similar level of brightness, work of the algorithm is distorted. The fast tracking algorithm is
accurate enough to avoid dropping the ball out of the AOI, but it cannot provide accurate data
about the ball’s position in the image.

Despite that, background subtraction is a helpful stage in image processing. It decreases the
influence of the background objects on the accuracy of the ball positioning. How an image looks
after background subtraction is shown in figure 3.4.

Accurate ball positioning in the image is implemented in two steps. First of all, the Canny edge
detection algorithm [Can86] is used to get a so-called ?edge image?. Edges are points in the
images, where the intensity (lightness of the pixel) changes drastically. In a simple edge image,
each pixel contains a zero if there is no edge at a point or a one if there is an edge at the point.

63

Observing object trajectory

Figure 3.3: Illustration of the AOI usage; the black areas in the figure correspond to the parts of the
camera sensor matrix, which are not used for image acquisition; the rectangle drawn with
bold lines shows the initial position of the A-AOI in the image; it lies strait above the frontal
light-barrier; rectangles drawn with thin lines show the reference positions of the AOI re-
calculated during the flight, the position of the AOI in the image first ascends with the
ascending motion of the ball and then descends with the descending motion of the ball.

In advanced edge images, the value in the edge pixel shows the direction of edge to be normal
at this point. Edges may correspond to the contour of the objects. In the case of ball tracking,
they show the circle corresponding to the contour of the ball. Example edge images are shown in
figure 3.5. In the first row of results, the Canny edge detection is applied to the input image. In
the second row, it is applied to the difference image. It can be seen that background subtraction
decreases the number of noise edges (i.e. edges, which do not correspond to the ball contour),
however it adds noise inside the ball.

The second step consists of positioning the ball center inn the edge image. Each edge point shows
the possible line that could include the circle radius. Therefore, the three points of ideally accurate
edge image (i.e. an edge image, which precisely represents the circle contour and nothing more)
are enough to define the circle center position in the image. A real edge image is distorted by the

64

Observing object trajectory

Figure 3.4: Results of the background subtraction: the original image is on the left, and the image after
subtraction is on the right. It can be seen that background objects are still visible in the
image to the right. This is an effect of the blinking illumination (outside the ball’s image)
and is the result of subtracting it from the monochrome ball surface (inside the ball’s image).
The circular image is in fact the difference between the ball’s intensity and the background
covered by the ball.

Figure 3.5: Example results of the edge detection for the same image with (higher row) and without
(lower row) background subtraction.

edges of background objects, ball texture and the shadows of the object. Specific algorithms are
intended to extract circle centers from such noisy images.

A Hough transform (proposed in [Hou62]) is a common approach for extracting features from a
large array of noisy data (particularly for extracting shapes from the images). In this approach
the required feature (a circle) is defined by the minimum set of parameters (for the circle these

are pixel coordinates of the center and radius {
(
w1(0)
w2(0)

)
, r}). These three parameters are forming

the 3D space, which is called the accumulator [Hou62]. The accumulator is discretized i.e. it

is divided into cells of a {
(
w1(1)
w2(1)

)
,

(
w1(2)
w2(2)

)
,

(
w1(3)
w2(3)

)
} to the circle with the specific values of

{
(
w1(0)
w2(0)

)
, r}.

65

Observing object trajectory

{
(
w1(1)
w2(1)

)
,

(
w1(2)
w2(2)

)
,

(
w1(3)
w2(3)

)
} 7→ {

(
w1(0)
w2(0)

)
, r}. (3.8)

Each possible combination of three points votes for the specific cell of the grid. This means
that each cell has a specific rating, which is set to zero at the beginning. When certain set

{
(
w1(i)
w2(i)

)
,

(
w1(j)
w2(j)

)
,

(
w1(k)
w2(k)

)
} 7→ {

(
w1(m)
w2(m)

)
, r} the rating of the accumulator cell including

the point {
(
w1(m)
w2(m)

)
, r} is incremented. After searching through all possible triplets of the

points at the center of the cell with the highest rating is associated with the parameters of the
circle. If there are multiple circles in the image, the cells with a rating higher than the specified
threshold value are chosen.

The application of Hough transform to ball tracking, proposed in [Kim75, Sca05] and applied in
[Bar09, Pon09], is a little bit different from the algorithm described above. It uses three specific
features: the assumption that the ball’s contour is the only circle in the image or at least the
strongest one, the fact that the value of r is not required for further processing and information
about edge normal that is included in the edge image. Each edge normal corresponds to one
possible line on which the center of the ball is lying. The accumulator is 2D instead of 3D, and
the size of the cell grid is equal to the size of the edge image. In fact, the accumulator itself is
a grayscale image. The values of the accumulator pixels are set to zero in the beginning. Then
all edge pixels are processed iteratively. For each edge pixel, the corresponding edge normal is
mapped onto the accumulator image. The pixels of the accumulator image that are covered by
the normal, increment their intensity. After processing all edge pixels, the accumulator image is
smoothed by the Gaussian filter. This allows the influence of errors to be decreased. Then the
point with the highest intensity on the accumulator image is assumed to be the center of the ball
in the camera image. An example of the sequence of the corresponding input image, edge image
accumulator image and ball center projection for 2D Hough transform is shown in figure 3.6.

Figure 3.6: An example of 2D Hough circle recognition. From left to the right the following images are
shown: a basic image, an edge image, an accumulator image and a basic image with a center
of the ball projection.

The advantage of 2D Hough ball detection when compared with the classical Hough circle is the
lower amount of calculations. The accumulator space is also 2D instead of 3D, and the loop
includes the processing of each edge pixel instead of each possible triplet of edge pixels. However,
it is unfortunately less robust and does not allow the radius to be estimated although that may
be done afterwards. Because of the complicated scene, the 3D Hough was applied instead of the
2D.

66

Observing object trajectory

Figure 3.7: RANSAC ball recognition for three sample images shown in the first row. The second row
shows the results of background subtraction. The third row consists of the edge images.
The fourth row shows the projections of randomly generated circles onto the image plane.
Finally, in the fifth row the chosen circles are projected onto the initial images.

RANSAC is a common technique for fast random-based fitting in the large dataset. It was
proposed in [Fis81]. Its application to ball recognition is also based on mapping as in equation 3.8.
Here the triplets of edge points are chosen at random, and the hypothetical circle is constructed
according to this mapping. All other edge points are fit to this circle. If the fit is bad, the
described operation is repeated until a sufficient fit is obtained. This method does not guarantee
the best fit, but in practice it usually requires less computations than Hough. The visualization of
full reference of RANSAC ball recognition is given in figure 3.7. Each of three columns represent
a process of center extraction from the single image: image taken just after the throw (left
column), image taken in the middle of the trajectory (central column) and image taken in the
catching area (right column) In the first row images themselves are presented, then goes the
results of background subtraction (second row), the results of edge detection (third row), the set

67

Observing object trajectory

of RANSAC-generated hypothetical circles (fourth row). In the last row the chosen circles are
projected onto the initial images.

Both the edge detection and ball center positioning (either Hough-based or RANSAC-based)
steps are computationally expensive but are easy to parallelize; therefore, they are implemented
in the graphic processing unit (GPU) using C++ CUDA library by Goetzinger [Goe15]. In the
experiments that test the performance, the maximum execution time for the sequence of image
processing operations (including background subtraction, canny edge detection and either Hough
or RANSAC circle detection) does not, in most cases, exclude 10 ms [Goe15, pp. 77-78]. An
analysis of the accuracy characteristics for the image processing algorithm is done in section 3.3.

3.1.3 Triangulation

When the ball’s center coordinates are extracted from both images, stereo vision is then applied
to determine its 3D position. The operation of determining the object?s spatial position from its
pixel positions in both images is called stereo triangulation.1 This operation uses the camera?s
intrinsic parameters (focal length, distortion coefficients, etc.) and information about the relative
location of the cameras (distance and rotation angles) as necessary inputs for stereo reconstruc-
tion. The values of these parameters are obtained prior to the observation during the calibration
procedure. Stereo triangulation is a reversal of the operation of point projection in the image.
According to the pinhole camera model from the geometrical optic, the position of the 3D point
in the image plane is expressed by the following system of equations [Sze09, p.59]:

u1 =
f

x3
∗ x1,

u2 =
f

x3
∗ x2,

(3.9)

where f is camera focal length,

x1

x2

x3

 is a vector of 3D point coordinates in the camera coordinate

system and

(
u1

u2

)
is a vector of plane coordinates of point projection on the image plane (note

that this is not equal the pixel coordinates of the point). In homogeneous coordinate system it is
expressed by the following matrix equation [Sze09, p.50]:

u1

u2

1

 =

f 0 0 0
0 f 0 0
0 0 1 0

 ∗

x1

x2

x3

1

 ∗ 1

x3
. (3.10)

This means that if f and

x1

x2

x3

 of the point is known, the coordinates of its projection in the

image plane may be found. The calculation of the pixel coordinates of the points projection is
made using the following equation below [6, 19].

1In common stereo vision, the challenge lies in determining the correspondence between pixels to the left and
right in the image. In the current application, this step is unnecessary because the ball’s center positions are
already determined separately in each image.

68

Observing object trajectory

u1

u2

1

 = P ∗ F ∗W ∗


y1

y2

y3

1

 . (3.11)

Here

y1

y2

y3

 is a vector of point coordinates in a world 3D coordinate system, P is 3 by 3 matrix

for transformation from pixel coordinates to geometric coordinates of the image plane. The value
of P is determined by the linear size of the pixel element on the sensor and the coefficients that
express the radial distortion of the camera lens system. F is a 3 by 4 projection matrix similar
to the matrix from equation 3.10 and W is a 4 by 4 matrix for transforming the 3D coordinates
from the system in which they are initially defined to the system connected with the camera’s
optical center. These matrices are determined by the following parameters [6]:

• The focal length of the camera f ,

• The position of the pixel coordinates origin in the image plane C =

(
c1

c2

)

• The linear size of the pixel element in the image sensor D =

(
d1

d2

)
,

• The coefficient vector expressing the distortion of the camera lens system K =


k1

k2

k3

k4

k5

,

• The angle α expressing the skew of the pixel element if this element is a parallelogram but
not a rectangle.

All of these parameters are determined via the camera calibration procedure. Their effect on
the transformation matrices is not discussed here due to its complexity. It is only necessary to
mention that when these parameters are known the calculation of the point projection in the
image can be made [6].

{

x1

x2

x3

 , f,C,D,K, α} 7→
(
w1

w2

)
. (3.12)

Here

(
w1

w2

)
= W is a pixel coordinate vector of the point projection on the image. Reverse

mapping from known {W, f,C,D,K, α} to

x1

x2

x3

 is not possible as the specific point on the

projection plane corresponds to an infinite number of points in 3D space lying on a single ray
that start from the projection point and include the optical center of the camera as discussed in

69

Observing object trajectory

subsection 2.3.4. If the coordinates of the point projection onto the images from two different
cameras are available, then the following mapping is possible [6]:

{W(1), f(1),C(1),D(1),K(1), α(1),W(2), f(2),C(1),D(1),K(1), α(2),T, O} 7→

x1

x2

x3

 .

(3.13)

Here T =

t1t2
t3

 is a translation vector that expresses the location of the second camera optical

center in the coordinate system connected with the first camera optical center. O is a 3 x 3
matrix that expresses the rotation of the second camera’s optical axis compared to the first
camera’s optical axis. The other items on the left side correspond to the respective calibration
parameters of the first and the second cameras. The values of T and O are obtained during the
stereo calibration.

The range is mainly obtained based on the range-disparity equation [Liu06]:

x3 =
f ∗ b
d

. (3.14)

Here b is a baseline of the camera system equal to the norm of T), f is the focal length of the
first camera, d is the disparity between the point positions in the two images. The disparity in
this equation is expressed in image plane coordinates, i.e. it is equal to the difference between
the point vectors in the planes of two images:

d =
√

(u1(1)− u1(2))2 + (u2(1)− u2(2))2. (3.15)

Note that

(
u1(1)
u2(1)

)
in this equation is expressed in the coordinate system connected with the first

camera and

(
u1(2)
u2(2)

)
is expressed in the coordinate system connected with the second camera.

The calibration of the camera system (i.e. obtaining the values of W(1), f(1), C(1), D(1), K(1),
α(1), W(2), f(2), C(1), D(1), K(1), α(2), T, O) may be done in MATLAB using the Bouguet
camera calibration toolbox [6] or the Mathworks camera calibrator [14]. The Mathworks appli-
cation is faster and easier to use. The calibrator’s disadvantage is that the code of computations
is hidden. The Bouguet code is free, so it was a base for the C++ function that implements the
stereo triangulation. The calibration for the experiments was done with the Mathworks calibrator,
and the results were used as the setting parameters for the C++ triangulation function.

3.1.4 Acquired datasets

Several separate series of throwing experiments were done in order to collect trajectories to
explore their properties and to learn about the predictor. Based on the experiments, three main
datasets were collected. These three series were already mentioned in table 3.1 as they allowed
the thrower’s accuracy to be estimated. The first dataset with 169 trajectories was obtained
in December 2014 with cameras positioned opposite of the throwing device (figure 3.8, a). The

70

Observing object trajectory

nominal throwing velocity was set to 4.5 m/s, and the measured values varied from 4.3 to 5.1
m/s. Further exploration of the accuracy showed that the positioning errors are critical if the
cameras are far from the object (subsection 3.3.2). Therefore, several more throwing experiments
were performed in another setup. The cameras were positioned in such a way that the throwing
device was between them (figure 3.8.b). The cameras’ optical axes are nearly horizontal and
nearly parallel to one other.

Figure 3.8: The relative locations of the cameras and the throwing device.

The second dataset based on the second setup was acquired in May, 2015, and consisted of 95
trajectories. The trajectories were recorded with several different launching velocities (4, 4.25, 4.5,
4.75 and 5 m/s). It was assumed that the velocity of 4.5 m/s was used in catching experiments,
and the other values were only for learning2. The range of trajectories in the learning set should
be wider than in real conditions in order to avoid the fringe effect. The overall range of the
measured launching velocities is 3.7 to 5.3 m=s. The third dataset was acquired in August,
2015, with the same setup. A more advanced algorithm was applied for image processing. In the
second setup, the images were processed based on the algorithm 2D Hough transformation, and
the second setup image was processed with a fast and more accurate GPU implementation from
[Goe15]. An exploration of the observer’s accuracy was done using the second dataset, but the
results of this exploration were then replaced by the same results from the third dataset. The
third dataset is primarily investigated in further sections. The number of trajectories acquired
for this set with various nominal velocities is listed in table 3.2. Another dataset was obtained
in September, 2015, in order to define how the robot’s motion inside the field of view influence
the trajectory’s capture. The results of this experiment are briefly discussed at the beginning of
section 3.3.

2These value of throwing velocity was chosen as it provide the most suitable trajectory for catching in the
experimental setup [Pon16]

71

Observing object trajectory

Table 3.2: The parameters of the acquired datasets.

Nominal throwing
velocity, m/s

of samples

4.00 22
4.25 22
4.50 22
4.75 23
5.00 22

Overall 111

The trajectory representation in the database consists of several data units. The main unit is a
reference of the object coordinates measured in the camera coordinate system. It is a matrix with
100 rows (each row corresponds to one acquired frame) and 3 columns (each column corresponds
to one spatial dimension in a camera-related coordinate system). If there were no coordinate
measurements in a frame (e.g. because the ball was out of the field of view at that moment), the
values in this row were set to zero. Further tracking of the ball after the 100th frame was not kept
because in those cases the ball was already out of the robot’s workspace at that moment. In some
trajectories with low throwing velocities, it has already rebounded from the floor. Besides the
coordinate references, some additional parameters of each trajectory are stored in the database.
These are mainly associated with trajectory pre-processing, e.g. the positions of the C-AOI
and A-AOI in an image plane, timestamps, the pixel coordinates of the ball center, etc. These
parameters also include the nominal and measured values of the launching velocity.

3.2 Accuracy of positioning static object

This section and the following one investigate the accuracy of the 3D ball?s coordinate extrac-
tion from the images. This information is crucial for the further development of the prediction
algorithm. This accuracy will now be examined in the situation where a ball is static in space.
Section 3.3 extends the accuracy model to the flying ball. The reason for investigating static
accuracy is because the static ball may be very precisely positioned in space. The measured
position of the ball may be compared with its actual position set by the mounting equipment.
This comparison allows the accuracy to be explored, but it does not take specific factors into
account that influence the position of the moving objects, e.g. motion blur, errors in background
subtraction, etc. An analysis of these factors is given in the next section.

[Lee02] defines the following three sources of errors in stereo positioning:

• Calibration errors (CE): They are connected with the incorrect estimation of the intrinsic
and extrinsic parameters during calibration. For example, if the linear size of the support
object used in calibration (e.g. the grid size of a chessboard used in the Zhang calibration
[6, 14]) is measured inaccurately, it may distort the linear distances in a reconstructed scene.

• Quantization errors (QE). One pixel corresponds to a certain area of an image. It is
not possible to determine precisely where the point actually is in that area. When the

72

Observing object trajectory

triangulation is done it is assumed that the point position corresponds to the pixel center.
The difference between pixel centers shows the variation of point coordinates.

• Image processing errors (IPE). In [Lee09] the errors in stereo matching, i.e. the procedure
of determining the pairs of pixels on left and right side of the images, are in this group.
As previously mentioned, there is no specific step for stereo matching in the algorithm.
The pixel positions of the ball?s center in both images are determined by the Hough or
RANSAC circle extractor. The algorithms for edge detection and circle extraction do not
provide 100% accurate pixel positions of the centers. Therefore, IPE are considered to be
errors in these algorithms.

A set of experiments was performed in order to define the accuracy of the vision system [Pon15].
The aim of experimental setup was to create an environment that allowed object coordinates
measured by the camera system to be compared with the information about their real values.
This is provided by the mounting equipment that allowed the object to be accurately positioned
in space.

The base for the mounting is a horizontal planar plate made from glass and pasted on millimeter
paper. The spherical objects are mounted on the pedestals at a specific height (Figure 3.9,
a). These pedestals allow the ground-truth position of the sphere to be defined in a vertical
dimension. The ground-truth accuracy in two horizontal dimensions is provided by positioning
the pedestals on millimeter paper (Figure 3.9, b). Small cracks at the base of the pedestals allow
it to be adjusted with the millimeter grid. The millimeter plate was positioned under the area of
the object’s flight. Therefore, the setup allows the accuracy of the object’s positioning in the area
of flight to be defined (Figure 3.10). The camera positions were similar to the positions shown in
figure 3.8, b.

The origin point of the stereo camera coordinate (SCC) system was put at the center of the
baseline. Prior to estimating the accuracy of the ball’s positioning, the relative location of the
mounting equipment in the camera coordinate system was defined. In order to get the position
of the ground plane with the millimeter paper in the SCC system, a number of points on the
grid are taken. Their pixel positions in the images are taken manually. Then their SCC are
calculated by stereo triangulation. The plane fitted to these positions represents the position
of the millimeter plate in SCC. The quality of fit primarily allows the influence of QE to be
estimated. A total of 18 points were picked from the distance of 0.57 to 1.72 meters from the
baseline. At the furthest distances, the nodes of the millimeter grid are not visible in the images,
and at the closest distance, there are no points visible to both cameras. The distance from the
points to the fitted plane does not exceed two millimeters, and the standard deviation achieves
0.7 mm.

Other errors extracted from this data are errors in the estimation of the distances between the
points of interest by stereo triangulation. The points were taken at a distance of 200 mm from
each other and were taken for the plane estimation. In the first computational experiment, it was
revealed that the distance d̂ estimated by stereo triangulation has a systematic error component
compared to the real distance d:

d̂ = 0.997 ∗ d. (3.16)

In other words, when the actual distance is 200 mm, the triangulation is 199.3 mm, for 600 mm it
is 597.9, etc. An analysis of the calibration data showed that the reason for such errors lies in the

73

Observing object trajectory

Figure 3.9: The setup for the accurate positioning of the spheres in space. The spherical objects are
mounted on the pedestals with precise height (subfigure a). The pedestal in the right bottom
corner of figure a. is intended for the self-lighting sphere. Accurate positioning in the
vertical dimension is provided by the pedestals while accurate positioning in two horizontal
dimensions is provided by the millimeter plate. Subfigure b show an example of accurate
object positioning in space: the pedestal is put into specific position on the plate. In other
cases the objects on various pedestals were put into various positions.

incorrect measurement of the grid size on the calibration checkerboard. An error of approximately
50 microns led to this distortion. After the second measurement of the checkerboard with a
high-precision caliper, there was no significant systematic error component that was found in the
distance estimation. The random error component achieves 0.5 mm, which is seemingly connected
with QE.

After this preliminary stage, the sphere-positioning experiments were conducted. At the first
stage, the spheres were illuminated by four 500 W halogen flood lights. These were the same
flood lights that were used for illumination in the throwing experiments. An example image made
at this stage is shown in figure 3.9. The standard deviations of the ball positioning with Hough
transformation achieved 3.6 mm. Mostly, the errors were about 1.2 mm. Only in two points,
which lie in front of the baseline, the error achieved values of more than 5 mm. (Clarify and split
up the sentence into smaller sentences). It is possible that the reason for such a large value could
the asymmetrical lighting that distorts the results of the edge detection and circle extraction.

To determine the influence of the lighting conditions, the second stage of experiments was con-

74

Observing object trajectory

Camera
system

Throwing
device

Possible
trajectory

Millimeter plate

Figure 3.10: Positioning of spheres in the area of observing trajectory.

ducted. The glowing sphere without external illumination was used here. An example pair of
images captured in such conditions is shown in figure 3.11. The value of standard deviation for
the glowing spheres achieved 2.3 mm. Except for the external-lighting set, no drastic increase
in error was detected near the baseline. As the tennis ball is not self-lit, an external lighting
setup has to be used. To avoid lighting asymmetry, it is recommended that the throwing position
not be put closer than 0.6 meters to the baseline, which is the distance, where the asymmetric
lighting appears, and to use dispersed light sources.

Image from left camera Image from right camera

Figure 3.11: Image pair for acquired position of self-lightning sphere.

Therefore, the positioning of the computationally extracted ball centers is more erroneous than the
positioning of the manually extracted grid points. This increase in errors is obviously connected
to the image processing errors at the stage of the pixel coordinate extraction of the ball’s center.
These experiments ignore several factors, e.g. the motion blur when the object is flying, errors
of background subtraction while tracking the moving object and the increase of quantization
errors at distances of more than 1.72 m. It was not possible to define the pixel positions of the
point of origin at such distances. An exploration of these factors and the overall accuracy of the

75

Observing object trajectory

positioning of the flying balls is given in section 3.3.

3.3 Accuracy of positioning the flying object

The experiments described in the previous section mainly deal with the theoretical perception of
the accuracy of the vision system. Now the errors detected in a real situation will be analyzed.
This analysis is challenging as there is no ground truth data about the real object’s position at
each moment in time. Many errors may be detected as they distort the smoothness of trajectory
curve, as discussed in section 2.1. This curve cannot be accurately defined analytically, but it is
smooth. Another way to estimate the errors is by fitting the datapoints to the simplified motion
models. This may not be incredibly accurate as these models do not exactly represent object
motion. However, if these models are generally more precise than the vision system, the quality
of fit may deliver information on the observer’s accuracy.

The errors of the separate processing steps may be detected by a visual analysis of the intermediate
images. The quality of edge detection may be evaluated by comparing the edge image with the
edges of the ball in the original images. The quality of the RANSAC or Hough circle extraction
may be evaluated by projecting the circles that were found on the initial images. For example,
the visual analysis of the images from figure 3.7 show that the edge detection algorithm has some
noise, but the RANSAC estimation delivers reasonable results. The disadvantage of this visual
analysis is that it is done by a human and cannot deliver unbiased information. However, it does
allow some obvious tracking errors to be detected.

One other way of providing more accurate data for comparison and validation is specific to
RANSAC. As RANSAC does not provide the same results for various runs, multiple runs give
multiple hypotheses about the ball?s center position. A correct statistical estimate based on these
hypotheses is more accurate than the result of a single RANSAC run. The results of multiple
measurements are noisy and are not supported by the ground-truth motion model and prior
statistical knowledge, e.g. probability density function. According to [Kay93, Hla12 p.11-12], the
least squares (LS) estimation should be used in such conditions. The least squares estimate for
the static parameter with unknown random noise is equal to the mean of measurement results
[Hla12 p.7]. In the current estimator, the mean is replaced by median. The median and mean
estimation give similar results, but the median is more robust to outliers. The median of 1000
RANSAC runs was used while forming the database, and any further increase of runs number does
not change the results of the median estimation. The use of such an estimate at the prediction
stage is not possible due to the high volume of calculations. The GPU, which is able to perform
a single RANSAC circle extraction in real time (i.e. less than 9 ms for two images and less than
1 second for the whole trajectory), took about 10 minutes to run RANSAC 1000 times.

For moving objects, the full error of positioning may be divided into two components. Full error
e specified in mm or other length indices is the distance between the estimated object coordinates
X̂(t) at time t, and real object location at this time X(t). The space error component es is the
distance between X̂(t), and X(t+ τ), which is the nearest point to X̂(t) on the real trajectory of
the object. The time error component is equal to τ . This is time shift between t and the time
moment, when the real position of the object is closest to X̂(t). τ is specified in ms or other
time indices. Time error also can be defined as length of trajectory part between X(t + τ) and
X(t). The relationship between es, e and τ is illustrated on figure 3.12. The division of errors

76

Observing object trajectory

Figure 3.12: Time and space components of the positioning error.

to time and spatial components is mainly important for prediction. As shown in chapter 5, the
time error component is less crucial for the gripper than for the spatial error component.

No motion blur is visible to the human eye in the image. However, this does not guarantee that
blur has no influence on accuracy. This effect takes place when the object moves significantly
during the time of exposure. The exposure time of the cameras in the throwing setup was set
to 1 ms. The maximum velocity of the ball is 5 m/s. This means that at the time of exposure,
it reaches about 5 mm. The blur is mainly due to the motion of the object in a perpendicular
direction to the image plane. The ascending and descending motion of the ball after the throw
is the primary component. As the ball is thrown with an angle of π

3 radians to the horizon, the

velocity of the ascending motion is equal to va = v ∗ sin π
3 = 5∗

√
3

2 = 4.33(m/s) which means that
the ball is moving at 4mm during exposure time in a vertical direction during exposure time.
This is much less than the size of the ball, which has a diameter of more than 65 mm [15]. As blur
is connected with object motion along the trajectory, the influence of motion blue is only part
of the time component of the error. This influence is constrained by the exposure time, which is
10 times less than the frame rate of the system. Hence, the specific influence of motion blur was
ignored in when it comes to further error explorations.

One more specific factor that has an influence on the quality of tracking is robot motion within
the catching area. In the fourth set of the experiments, a number of trajectories were acquired
while the robot was moving along the catching area. In this situation, the robot’s appearance is
not eliminated by the background subtraction algorithm and the robot’s contour exists on the
edge image. The tracking trials with the moving robot demonstrated that the end effector is
recognized as an object in most of the images. Therefore, in the current setup, tracking of the
object at the final stage of the trajectory (after the 70th frame) is useless if the robot if moving.
Therefore, the catching motion inspired by the predictor data may not be supported by the visual
feedback once the ball reaches the catching area. The trajectory of the caught ball is not used for
additional learning. The learning samplings are provided by the throwing experiments without
catching.

3.3.1 Influence of background subtraction

An analysis of the tracking results showed that background subtraction is necessary for the tra-
jectory to be reconstructed correctly. If the background subtraction is not applied, the deviations
of the measured values when the distance is more than 1.5 meters increase enormously. The effect
is illustrated in figure 3.13. The plots for the same trajectory extracted by the RANSAC algo-
rithm with and without background subtraction are given. It can be seen that up to a distance of

77

Observing object trajectory

approximately 1.5 meters, the measurements nearly coincide and appear as a second-order curve.
The measurements with background subtraction (blue circles) keep this appearance afterwards,
but the appearance of another reference (red dots) become chaotic. This behavior is typical for
most of the trajectories in the dataset. The numerical estimate for the errors are given in table
3.3.

Figure 3.13: The plot of the same trajectory measured with (blue circles) and without (red dots) back-
ground subtraction.

Here the coordinates extracted by the single RANSAC run are compared to the results of median
estimation for 1000 runs. The differences are considered to be ”errors?. In fact, these numbers are
not equal to errors of positioning, but they can be used to perceive the dispersion of measurements.
Based on these differences, an estimate of the standard deviation is calculated for each frame since
the ball was thrown. In the table the frames are united in blocks of 5 frames in order to save
space. The standard deviations are summarized based on all 111 trajectories acquired in the
third series of experiments. It can be seen that the parameter starts to grow enormously after
the 65th frame, and this growth is much more dramatic for the version of the algorithm without
background subtraction. The reason for this increased stability at the beginning is that for initial
frames, the size of the ball is bigger and almost covers the image entirely (compare the first
and third column in figure 3.7). Therefore the background edges make smaller distortion on the
results of edge detection.

t can be seen that even for the version with background subtraction, the standard deviation after
the 70th frame achieves very high values. The standard deviation may be not the best parameter
as it has low robustness to outliers. It is for this reason that statisticians prefer to reject outliers
from the set before calculating the standard deviation. Thus, in the columns on the right side
of the table, the median differences for the same blocks are given instead. The results of the
median look similar to the ones for standard deviations, but they are more detailed. For the
algorithm without background subtraction, the median error lies within the 3σ interval for static
spheres, estimated to be 6.75 mm (see subsection 3.2), until the 60th frame. For the algorithm
with background subtraction, this property is kept till the 80th frame. In the version without
background subtraction, a median difference of more than 20 cm is achieved after the 75th frame.

78

Observing object trajectory

This means that most of the frames are outliers in this area. Thus, the measurements made
without background subtraction are practically useless.

Table 3.3: A comparison of the differences between the measured 3D positions based on a single RANSAC
run and the median of 1000 RANSAC runs for the versions of the algorithm taken with and
without background subtraction.

Frame
number

Standard devi-
ation without
background sub-
traction, mm

Standard deviation
with background
subtraction, mm

Median error with-
out background
subtraction, mm

Median error
with background
subtraction, mm

1...5 7.9 6.4 1.6 0.8
6...10 4.0 1.9 1.8 0.9
11...15 3.7 2.1 2.0 1.1
16...20 2.8 1.9 1.6 0.5
21...25 2.1 1.4 1.8 0.3
26...30 4.0 2.2 2.2 0.5
31...35 22.1 17.2 2.9 2.2
36...40 10.9 4.0 3.4 0.4
41...45 24.8 3.2 3.7 0.4
46...50 29.8 3.9 4.5 0.7
61...65 63.9 14.8 5.5 1.0
66...70 187.4 41.3 10.5 4.2
71...75 305.6 138.5 20.4 5.4
76...80 520.4 242.2 208.2 7.3
81...85 897.0 229.3 171.9 8.0
86...90 1361.6 197.5 163.9 8.4
91...95 1450.0 212.1 176.1 9.3
96...100 1272.6 106.63 146.8 10.1

Figure 3.14: The bad influence of the background subtraction at the initial stage of flight. The ball prac-
tically covers the entire input image, so background objects are printed on the subtraction
image, and their edges may be seen on the edge image.

In addition, the bad influence of the background subtraction procedure takes place in the initial
part of the trajectory. Right after the throw, the image of the ball practically covers the entire
A-AOI. Because of this, nearly all background objects are printed on the subtraction image (figure

79

Observing object trajectory

3.14). Their edges may be stronger than the edges of the ball itself, and in this case, they distort
the coordinate extraction. However, this distortion is much weaker than in the previous case.
This effect stops after the 4th or 5th frame for measured trajectories. This issue can be overcome
by only applying background subtraction after the 5th frame.

3.3.2 Errors in range measurement over long distances

The values of the standard deviations and median difference in the final part of the trajectory after
approximately the 65th frame are higher than at the previous stage. An analysis of these errors’
sources and how to reduce their influence is made in this subsection. The position measurements
may be divided into inliers and outliers. The outliers are defined as measurements that are
completely useless, even harmful, to trajectory reconstruction. Inliers could be erroneous, but
they help an estimate to be improved. Obviously, it is not possible to decide with 100% confidence
whether a measurement is an inlier or outlier. The huge difference between the standard deviation
and median error at the end of the trajectory shows that the outliers have a significant influence.
The task of outlier detection is mainly discussed in chapter 4 as this task is solved within a
reference of coordinate transformations. In this subsection, the inliers measured with errors are
investigated.

Plotting the trajectory shows the specific property of these errors. In figure 3.15 three plots are
shown for an example trajectory, e.g. the relationship between the height of the object and the
distance from the camera (top plot), the relationship between the frame number and the height
(bottom-left), and the relationship between the frame number and the distance (bottom-right).
It is easily seen that the first and the third plot seem distorted to the right, and the height
reference kept the appearance of a smooth second-order curve. In other words, the errors are
mainly localized in the range dimension.

The reason for error localization in one dimension is that when the distance to the object is greater
than the baseline, the difference in one pixel is much more significant in the range dimension. An
illustration of this property is given in figure 3.16.If the value of the full error is equal to the length
of P1P2, the values of range and side components of the error ((δd) and (δh) respectively) will be
defined by the angle β between the baseline and the ray that is defined by the pixel position of
the point in the image from the second camera.

∆h =P1P2 ∗ cosβ,

∆d =P1P2 ∗ sinβ.
(3.17)

As the distance from the baseline increases, the value of β grows, meaning the sine increases and
the cosine of this angle decreases. Therefore, over long distances, errors in the range dimension
achieve the most significant values.

80

Observing object trajectory

Table 3.4: A comparison of the difference between measured 3D positions based on single RANSAC run
and the median of 1000 RANSAC for three spatial dimensions in camera coordinate system.

Standard deviation, mm Median error, mm

Frame
number

height side range height side range

1...5 1.9 6.0 1.6 0.3 0.1 0.7
6...10 0.4 0.3 1.9 0.2 0.1 0.9
11...15 0.3 0.3 2.1 0.21 0.1 1.0
16...20 0.5 0.4 1.8 0.1 0.1 0.1
21...25 0.3 0.3 2.4 0.2 0.0 0.0
26...30 0.7 0.3 2.1 0.3 0.0 0.1
31...35 7.3 2.9 15.3 0.3 0.1 2.0
36...40 1.0 0.4 3.9 0.3 0.0 0.1
41...45 1.1 0.5 3.1 0.3 0.0 0.1
46...50 1.6 0.5 3.6 0.4 0.0 0.1
61...65 1.2 0.5 14.8 0.4 0.0 0.2
66...70 6.0 2.5 40.8 0.5 0.0 4.1
71...75 29.7 22.8 133.5 0.6 0.2 5.3
76...80 49.5 40.0 234.1 0.9 1.0 7.0
81...85 42.3 38.1 222.3 1.0 1.0 7.7
86...90 33.0 30.0 192.6 1.0 0.9 8.2
96...100 13.7 11.7 207.5 1.2 1.0 9.1

Due to this, experiments show that the value of error over longer distances is significant for
tracking in terms of range dimension. The only way this issue can be overcome is by increasing
the number of cameras used for tracking, but this could be expensive. The experimental setup at
the Institute of Computer Technology includes a single pair of cameras. In this work, the tracking
of the object by the single stereo pair is assumed, and the challenge of erroneous measurement is
overcome by the algorithmic means and specific camera alignment.

The cameras should be aligned in such a way that the influence of long-distance errors on the
quality of system function be minimized. The following question should be answered. In which
part of the trajectory is accurate positioning most important? In the first setup, the cameras were
positioned opposite the throwing device. In this situation the first frames are erroneous. It was
only possible to position the ball accurately at the 10th or 12th frames. In further experiments,
the cameras were positioned to the side of throwing device. With this alignment, the positioning
at the beginning part of the trajectory is rather good, but the final part of the trajectory is
measured with higher errors. The high accuracy at the initial part of trajectory at the initial
stage and the lower accuracy at the final stage seem preferable than vice versa according to the
following factor. The initial part of the trajectory is used for a prediction made in real time. The
final part of the trajectory is not processed in real time. In real transportation conditions, the ball
would already be in the gripper workspace. This is used only for learning; therefore, its accuracy
may be improved using an offline statistical technique, e.g. the voting of 1000 RANSACs or model
fitting to the data. Accurate initial positioning is required to measure the launching parameters:
velocity, angle of throw, position at the first frame, etc. One more factor is in the catching of the
ball, the measurement of the ball position in the final area will not be accurate anyway. The robot

81

Observing object trajectory

Figure 3.15: The smoothness of the measured trajectory could make an impression on the accuracy
of positioning. For the most part, the trajectory is smooth, but in the final part, the
positions are oscillating. The correspondence between the position of the ball in a specific
dimension and the frame number shows that the oscillations are mainly localized in the
range dimension.

moving in the FOV makes an extreme distortion from the algorithm functioning (see subsection
3.3.2). Due to these factors, the camera location on the side of the thrower is more likely than
the opposite.

It is also possible to position the cameras in another way, i.e. with a bigger baseline or not parallel
to trajectory direction. As a consequence of these changes, the high error is not localized in the
dimension that coincides with the direction of object motion. In fact, this localization is very
useful for error correction. The object moves at a nearly constant velocity, and the motion could
be approximated by the second order polynom (see the final paragraph of this section). Motion in
this direction provides a longer distance than in other dimensions, so the distance measurements
have high values in comparison with the size of the errors. Because of this, the camera alignment
that is nearly parallel to the motion direction optical axis and short baseline is kept.

The increase in errors further from the cameras is associated with the quantization aspects, but
the outliers in this area are mostly associated with the errors in image processing. It is mainly
these errors that are connected with the influence of background objects on the edge detection
algorithm. Some examples are shown in figure 3.17.

82

Observing object trajectory

Figure 3.16: Influence of pixel error δu on the errors of 3D positioning in range dimension (δd) and
perpendicular dimension (δh).

Figure 3.17: Incorrect edge detection may influence the circle extraction. In the left column, the ex-
tracted circles are mapped onto the input images. In the right column, the corresponding
edge images are shown.

This aspect motivates the use of a specific covering for background objects to decrease their
brightness in the images. The robot details in particular were covered by the black material.
However, in a real factory environment, the background could have more contrast and that should
be taken into account. Also, the robot cannot be covered to the point that it cannot move. These
actions decrease the influence of the errors, but bad positioning and outlier detection still remain.
An example of the erroneous trajectories extracted by 1000 RANSAC runs are illustrated in figure
3.18. These erroneous cases are atypical. Most of the trajectories have a smoother, basic look,
but erroneous cases still exist. Multiple runs of RANSAC cannot eliminate such errors because
the RANSAC is based on the Canny edge detector, which is a deterministic algorithm. If the
edge detector works erroneously, these errors cannot be eliminated by RANSAC in many cases.

This influence may be decreased by fitting a curve to the trajectory data. The fitting requires an
accurate model of the object’s flight. The use of such models is not likely due to the mission of this
dissertation, which is to provide a prediction method that does not require accurate modeling.
Therefore, the careful use of curve fitting is proposed. The only aim of fitting is to improve the

83

Observing object trajectory

Figure 3.18: Example plots of trajectories measured by 1000 RANSAC run erroneously. The red dots
represent the trajectory with outliers, and blue dots represent the trajectory with poor
smoothness.

accuracy of the data in the final part of the trajectory, which is used for forming the learning
dataset. Therefore, the fitting result only replaces the measured one in this final part beginning
from the 60th frame. The fitting is made only for the range dimension; the separate processing
of each dimension was already considered in [Pon09]). The curve of the second order is fitted to
the data in the range dimension:

x3 = p1 ∗ n2 + p2 ∗ n+ p3, (3.18)

where n is frame number p1, p2 and p3 are the coefficients obtained by the fitting operation.
The plot of the measured and fitted references of the object range is shown in figure 3.19. From
the visual point of view this correspondence seems likely. An evaluation of its suitability for
trajectory prediction is given in chapter 4.

3.3.3 Measuring object’s velocity

Previous subsections were considering the accuracy of measuring object position in space. Mea-
sured positions may be used to estimate the velocity and the acceleration of the flying body. The
velocity vector V of the object at frame number n is estimated using the following formula:

V(n) =
X(n)−X(n− 1)

τ
= (X(n)−X(n− 1)) ∗ f, (3.19)

where τ is interframe period and f is framerate. Both interframe period and framerate are
constant parameters used to express the velocity in the international system of units, so it may
be said that the velocity is equal to the difference of object coordinates on the neighboring frames.

84

Observing object trajectory

Figure 3.19: Reference of the measured (red circles) and fitted (blue dots) values of object range.

The absolute error of measuring these errors have the same scale, but the relative errors are much
bigger. Let estimate the errors of velocity estimation based on errors of position estimation
defined in previous subsections. The standard deviations object’s positioning may be seen in
table 3.3. For the most frames from 1 to 60 the standard deviation varies from 1.4 to 6.4 mm.
Let us take 5 mm error for better interpretability (the aim of this section is to prove that velocity
measurements are not accurate enough, so it is correct to take accuracy values a little bit better
than in reality). If velocity of the object is 5 m/s and the framerate is 100 fps, the object move
on 5 cm between two frames. The absolute error of 5 mm on the distance of 5 cm correspond
to the relative error of 10%, or to the absolute error of 0.5 m/s in estimating object’s velocity.
According to well-known 3σ-rule [Hla12] the deviation does not exceed three times the standard
deviation with 99% confidence. In the considered case it means that the ground-truth value of
the velocity lies somewhere between 3.5 and 6.5 m/s.

This interval cover completely the interval of throwing velocities from 4.2 to 5.1 m/s measured
in section 3.1. So the accuracy of measuring speed is bad due to higher sensitive to measure-
ment errors. The same absolute errors on low scale have stronger influence than on high scale.
This correlate with well-known rule: the derivatives are more sensitive to measurement errors,
than their parent functions. Acceleration, which is the derivative of velocity, is even more sen-
sitive. Therefore in the algorithm development made in next chapters, short-term velocities and
accelerations are out of consideration.

3.3.4 Summary

The previous subsections have the following output:

1. The camera position to the the side of the throwing device with optical axis co-directional
with nominal trajectory is preferable.

85

Observing object trajectory

2. The background subtraction is necessary for accurate tracking.

3. The final part of the trajectory in this setup is measured with errors that are higher than
the errors of static positioning. These errors are localized in the range of spatial dimension.

4. In forming the database, the influence of the errors is decreased by calculating the median
of 1000 RANSAC runs and fitting the polynomial model to the positions in the range
dimension.

The RANSAC circle extractor is chosen instead of Hough. The comparison in [Goe15, pp. 70 to
82] showed that RANSAC is faster in most cases, and its accuracy is no worse than for Hough.
An analysis of the trajectory data showed that Hough transform has the same trouble with noisy
edge images as RANSAC. Here RANSAC is chosen because it may provide multiple outputs for
the same input that can be compared in order to get a more accurate value.

86

4 Algorithm for trajectory prediction

In the current chapter, the task of constructing a useful model for predicting the trajectory
of the thrown object is discussed. The Two Nearest Neighbors (2NN) method is applied and
developed for the prediction. The kNN trajectory forecasting operation is investigated in section
4.3. Two additions are proposed in order to improve the efficiency and speed of the algorithm: the
reference of coordinate transformations (section 4.2) and a comparison of the current trajectory
just with a small subset of the entire dataset (section 4.4). The development and initial validation
of the proposed ideas are made with the use of a simplified motion simulation and the results
of the throwing experiments. Therefore, section 4.1 gives a short introduction to the simulation
environment. The results of the experiments based on this simulation are also presented in [Mir14,
Mir15].

According to the task’s definition given in section 1.4 the predictor has the following input:
a reference of estimated measurements of the current trajectory of the thrown object XC =xc1(0)
xc2(0)
xc3(0)

 ,

xc1(1)
xc2(1)
xc3(1)

 ,

xc1(2)
xc2(2)
xc3(2)

 , ...,

xc1(t)
xc2(t)
xc3(t)

, and a large but finite set of previous trajectories

both measured in the measurement area and the gripping area L = {(X1,Y1), (X2,Y2), . . . , (Xm,Ym)}.
Each position measurement X(t) consist of a timing index t = 1, 2, . . . , nand the measured values
of the coordinates xc1(t), xc2(t), xc3(t) in the Cartesian coordinate system connected with the
optical center of the left camera. This position of the coordinate system is set with the stereo
triangulation operation [6,14]. For each trajectory k from the dataset corresponding to each mo-
ment in time t after release when the measurement was made, we had the corresponding point
Xk(t). It is assumed that the measurements with the same time index t were made at the same
period of time after release for all the trajectories. The task of the predictor is to estimate the
value of YC using this input. As pointed out in subsection 2.5.4 the basic method for solving
this task is the k Nearest Neighbors (kNN) algorithm.

4.1 Means of initial validation

This small section aims to describe the means used in the following sections for initial validation
of the prediction algorithm. This validation is made in order to completely eliminate useless
methods and theoretically compare the basic ideas. The ideas not rejected by this validation are
then implemented and evaluated according to chapter 5. The initial validation is based on two
options: the simulation of the object flight based on simplified motion models and the application

87

Algorithm for trajectory prediction

of the algorithms to the acquired datasets from subsection 3.1.4. In general, a simplified flight
simulation is used to check the algorithm’s usability in principle, i.e. in ideal conditions, and the
application to real flight data is to show the practical applicability of the concepts.

The physical models of projectile flight are either complicated or inaccurate (see section 2.1).
Simulation based on the simplified models helps determine whether or not the concepts are
completely useless, but to be sure of their use in experiments, there is a need for real data. The
simulation of the flight is based on the gravity-drag model expressed by the differential equation
2.10. As this equation cannot be solved analytically, the object’s motion is calculated iteratively,
applying the following procedure.

The first iteration is set by the release point. The simulated throwing device deviates in its release
velocity v in various dimensions. It was assumed that these deviations have random errors with
a normal distribution around the nominal values with standard deviations of 0.1 m/s for the
velocity values in each direction. This is slightly more optimistic than the 0.16 and 0.33 m/s
measured for the throwing device in table 3.1. Such an assumption is allowed as the simulation
is ideally intended for algorithm validation.

Once the object is thrown, the new values of the object?s position X =

x1(i)
x2(i)
x3(i)

 and velocity

v =

v1(i)
v2(i)
v3(i)

 are calculated using the following operation:

a1(i)
a2(i)
a3(i)

 =

g0
0

− k ∗
v1(i− 1)
v2(i− 1)
v3(i− 1)

 ∗√v2
1(i− 1) + v2

2(i− 1) + v2
3(i− 1), (4.1)

v1(i)
v2(i)
v3(i)

 =

v1(i− 1)
v2(i− 1)
v3(i− 1)

+

a1(i)
a2(i)
a3(i)

 ∗∆t, (4.2)

x1(i)
x2(i)
x3(i)

 =

x1(i− 1)
x2(i− 1)
x3(i− 1)

+
1

2
∗ (

v1(i− 1)
v2(i− 1)
v3(i− 1)

+

v1(i)
v2(i)
v3(i)

) ∗∆t. (4.3)

This operation is an iterative solution for the differential equation 2.10. Here a =

a1

a2

a3

 is the

vector of object acceleration, i is the number of iterations, k is drag coefficient from equation
2.5, ∆t is the difference in time between two iterations. X is expressed in the coordinate system
where the first dimension is collinear with gravity direction and the third dimension is collinear
with a nominal direction of throw. The value of k was calculated according to equation 2.6 using
the values of drag coefficients for the tennis ball in the standard conditions [Ala10]. The value of
∆t is 1 ms (chosen for better interpretability). The application of the model with these values of
∆t and k is not significantly different (more than one millimeter) than the results from [2]. The
simulated frame rate of the observer was set to 100 fps. This value is close to 110 fps of the real
observation system. Thus, for simplicity and interpretability, it is best to use the integer number

88

Algorithm for trajectory prediction

of milliseconds as an inter frame period. As the step of position recalculation is 1 ms, each 10th
calculated position is measured.

This model allows the algorithm to be evaluated by an absolutely accurate observer. If there is
a need to simulate the erroneous observer, the errors might be set to be randomly distributed
around the simulator-generated values with a set value of the standard deviation. The process
simulation was mainly applied for the validation of the kNN forecasting operation (section 4.3)
and the subset allocation (section 4.4). The sequence of coordinate transformations (section 4.2)
was validated based on datasets acquired during the throwing experiments (subsection 3.1.4).

4.2 Coordinate transformations

Predictions are based on comparing the current trajectory with trajectories from the database.
The aim of such a comparison is to find the trajectory that is as similarly shaped as the current
one as possible. However, the spatial coordinates Xc of the object in the camera coordinate
system (these positions are returned by the stereo triangulation operation) are dependent not
only on the shape of trajectory but also on relative position of the camera, the object and the
horizontal direction of throw. As shown in section 4.3 the difference metric for the trajectories
is a mean Euclidean distance between the corresponding points. If the launching points for two
different throws have a certain Euclidean distance d between each other, the difference between
them will be nearly equal to d0 + d where d0 is the difference in a hypothetical case when these
trajectories might have the same launching points. If two trajectories of a similar shape have
the same launching point and various horizontal directions of throw, the distance between the
coordinates of the corresponding points will increase in time. Even if the similarity of the shape
of these trajectories is detected, the kNN forecast based on camera coordinates will be erroneous.
An effects are illustrated in figure 4.1.

It is possible to adjust the throwing conditions in such a way that the relationship between the
thrower and the cameras will be constant. It is also possible to minimize the variance of horizontal
direction of throw, which cannot be fully eliminated due to the deviation of the throwing device
(see subsection 4.2.3). This approach requires the collection of large databases in order to take
various possible horizontal directions of throw into account and for the same setup to be kept up
in a learning stage and functioning stage. In fact, for each new system configuration, the it is
required that the trajectories be learned anew. This decreases an ease of system reconfiguration,
which is one of the main advantages of TbT (section 1.2).

The aim of the coordinate transformation reference is to provide a coordinate system for storing
and forecasting the trajectory that allows them to be compared based only on the properties of
shape (independent of the azimuth of throw and the spatial position of the launching point) and
the correct forecast of the trajectory based on kNN method.

4.2.1 Overview

The reference consists of three transformations. First of all, the gravity-related coordinates

Xg =

xg1xg2
xg3

 are defined. The coordinate axis xg1 is collinear with gravity direction. The

aim of this transformation is to localize gravity in one spatial dimension and simplify further

89

Algorithm for trajectory prediction

Figure 4.1: The Euclidean distance between points from various trajectories with the same timestamp
in camera coordinates depends on the position of the launching point. All three plotted
trajectories have exactly the same shape, but the red one has a different launching point and
the yellow one has different azimuth of throw compared to the two others. Therefore, the
Euclidean distance is high.

calculations (subsection 4.2.2). Secondly, the gravity-related coordinates are projected onto 2D

Plane-of-Flight (PoF) Xp =

(
xp1
xp2

)
(subsection 4.2.3).This transformation provides invariance

of coordinates to the horizontal direction of the throw. Finally, one of the measured points

of the trajectory is picked as a zero point for the coordinates Xz =

(
xz1
xz2

)
(subsection 4.2.4).

When the coordinates of the zero-point are subtracted, the trajectory invariance to the relative
positions of the throwing device and the camera system is provided. The relationship between
these coordinate systems is shown in figure 4.5. The object coordinates prediction is made within
the zero-point coordinate system. The results of the prediction may then be transformed back
to a camera-related coordinate system or to the robot-related coordinate system, which is useful
for defining the catching movement. These back-transformations are discussed in subsection
4.2.5. All coordinate transformations are based on projective geometry. The main principles of
projective geometry are briefly described below.

The coordinate transformation from a 3D coordinate system a to 3D coordinate system b is
performed by multiplying the transformation matrix on the point coordinates in a homogeneous

90

Algorithm for trajectory prediction

coordinate system: 
xb1
xb2
xb3
1

 =


p11 p12 p13 x01

p21 p22 p23 x02

p31 p32 p33 x03

0 0 0 1

 ∗

xa1

xa2

xa3

1

 , (4.4)

or in a more compact version:

Xb = PAB ∗Xa. (4.5)

Here X0 =

x01

x02

x03

 is the position of the origin for coordinate system a in the coordinate system

b; Prot =

p11 p12 p13

p21 p22 p23

p31 p32 p33

 is a rotation matrix. The vectors P1 =

p11

p21

p31

, P2 =

p12

p22

p32

 and

P3 =

p13

p23

p33

 are equal to normal vectors collinear with the direction of coordinate axes from the

a coordinate system in the b coordinate system. If the values of two vectors from {P1,P2,P3}
are known, then this is enough to define the third one because it is equal to their cross product:

P3 = P1 ×P2. (4.6)

This statement is proved by the following factors. If the vector triplet {P1,P2,P3} is right, then
the direction of P3 is collinear with the product of P1 and P2. The length of the product vector
is equal to:

|P1 ×P2| = |P1| ∗ |P2| ∗ sin
π

2
= 1 ∗ 1 ∗ 1 = 1 = |P3|. (4.7)

A reverse transformation of coordinates from A to B is achieved by solving 4.4 as a system of
linear equations with {xa1, xa2, xa3}being unknown. Another way of calculating Xa from Xb and
PAB is multiplying the inverse of PAB on Xb:

Xa = P−1
AB ∗Xb. (4.8)

In other words, the transition matrix for a reverse transformation is calculated as the inverse of
the basic transition matrix:

PBA = P−1
AB. (4.9)

Coordinate transformation based on an inverse transition matrix in further subsections is more
common than it being based on a direct transition matrix. The reason for this is that the new
coordinate system is more often defined by the position of its origin and coordinate axes in the
old coordinate system rather than vice versa.

91

Algorithm for trajectory prediction

When defining the new coordinate system, the task of plane fitting or plane definition often arises.
In subsection 4.2.2 it arises as a definition of a horizontal plane based on a normal vector. In
subsection 4.2.3 it arises as a plane fitting to the measured coordinates. The standard equation
that expresses the plane in 3D space looks like this:

A ∗ x1 +B ∗ x2 + C ∗ x3 +D = 0. (4.10)

Here A,B,C,D are the parameter coefficients of the plane. Obviously the values of A,B,C,D
may vary in expressing the same plane while the proportion A : B : C : D = const. Here and

below the case is considered when A2 +B2 + C2 = 1. The vector P =

AB
C

 is perpendicular to

the target plane. If it is a normal vector to the plane (i.e. A2 +B2 + C2 = 1) the equation may
be transformed to the following:

Ax1 +Bx2 + Cx3 −Ax01 −Bx02 − Cx01 = 0. (4.11)

Here X0 = (x1(0);x2(0);x3(0)) is a certain point of the target plane for which D from the
equation 4.10 is equal to −Ax1(X0)−Bx2(X0)−Cx3(X0). This expression is the most useful for
transformations of the coordinate systems. It enables plane definition based on the known values
of the normal vector P and the origin point X0 that lies on the plane.

Another way to express the value of one coordinate as dependent on two other coordinates is:

x2 = a ∗ x1 + b ∗ x3 + c. (4.12)

Where a = A/B, b = C/B, c = −Ax01−Bx02−Cx03
B . This expression of planes is used in the

MATLAB curve fitting toolbox. The transition to the standard form of plane equation may be
done by defining the values of {A,B,C,D} using the following formulas:

B =
−1√

a2 + b2 + 1
,

A =
a√

a2 + b2 + 1
,

C =
b√

a2 + b2 + 1
,

D =
c√

a2 + b2 + 1
.

(4.13)

The expression 4.11 can be defined with these values.

4.2.2 Gravity-related coordinate system

Many of previously mentioned equations (e.g. 3.18, 4.1, 4.2, 4.3) assume the first dimension
of the coordinate system is collinear with gravity, and the third is collinear with the horizontal
direction of the object motion. The calculation of physical-based motion models in such a system
is easier because there is no need to take gravity into account as a significant force in all of
the dimensions besides the first one. For the current algorithm, the main reason for defining

92

Algorithm for trajectory prediction

the gravity coordinate system is that it is simpler to distinguish the plane-of-flight (see section
4.2.3)from it rather than from the camera coordinate system.

In the experimental setup, gravity’s direction is determined based on the heavy load suspended
on the long nail. If two distant points, G1 and G2 , on the nail are marked, the direction of gravity
may be determined as a vector from the upper point to the lower point. To define the origin of the
gravity coordinate system, two points, L1 and L2 are picked on the light barrier that is mounted
on the throwing device. The origin of the coordinate system is put in the middle between them,
so it is near the launching point for the ball. x3 and x2 lie within the plane perpendicular to x1.
The direction of x2 is set by the projection of L1L2 on this plane. In this case x3 is near the
nominal direction of throw. The illustration of this determination is given in figure 4.2.

Figure 4.2: Determining the gravity coordinate systems based on camera images. The pendulum with a
heavy load is hanged within the camera’s FOV. When the pendulum is static, the direction
of the nail is collinear with gravity. The gravity vector is determined based on the two red
points, G1 and G2, on the nail. The origin of the coordinate system is defined based on the
two yellow points, L1 and L2, on the light barrier. On the left side, the part of the calibration
image with the highlighted support points G1, G2, L1, and L2 is shown. On the right part of
the figure, these points are projected into the 3D camera coordinate system, and the position
of the gravity coordinate system is shown.

The gravity coordinate system is determined based on knowing the 4 points {G1, G2, L1, L2} in
the following way.

93

Algorithm for trajectory prediction

• The origin point X0 is defined as the middle point on the segment L1L2

X0 =
1

2
∗ (L1 + L2). (4.14)

• The coordinate axis x1 is defined as a normalized vector G2G1.

P1 =

AB
C

 =
G1 −G2

|G1 −G2|
. (4.15)

The horizontal plane may be defined using the equation 4.11 based on parameters obtained
in 4.14 and 4.15.

• The coordinate axis x2 is defined as a normalized projection of the vector L1L2 on the
horizontal plane, which is expressed by 4.11. As the origin of the coordinate system is

lying on L1L2 it is enough to determine the projection Λ =

xΛ1

xΛ2

xΛ3

 of the point L1. This

determination is made in two steps. In the first step, the line that is normal to the plane
(i.e. collinear with plane normal) and include the point L1 is determined. The canonical
line equation in space has the following appearance; in fact, this is a system of two equations
expressed by one formula with two equals signs:

x1 − x01

A
=
x2 − x02

B
=
x3 − x03

C
. (4.16)

In the second step, the system of the double line equation 4.16 and plane equation 4.11 is
solved in order to define the point where the line intersects the plane:

1

A
∗ xΛ1 −

1

B
∗ xΛ2 + 0 ∗ xΛ3 =

x01

A
− x02

B
,

0 ∗ xΛ1 +
1

B
∗ xΛ2 −

1

C
∗ xΛ3 =

x02

B
− x03

C
,

A ∗ xΛ1 +B ∗ xΛ2 + C ∗ xΛ2 = Ax01 +Bx02 + Cx01.

(4.17)

• Coordinate axis x3 is defined as a cross product of x1 and x2.

4.2.3 2D representation for 3D coordinates

When the object is airborne, gravity is directed downwards, and air drag is directed backwards.
Hence, if the Magnus effect and the asymmetry of a body does not have much influence (for non-
rotating bodies like parallelepipeds), it can be assumed that the common force influencing the
thrown object lies within a vertical plane. This is the so-called Plane-of-Flight (PoF), which is
defined by two vectors: gravity g and the horizontal projection of the object velocity vhor. If
all forces influencing the body are lying within such a plane and the velocity vector is also lying
on this plane, the future motion of the object under the influence of these forces will also take
place within this plane. In other words, the trajectory of the body is in this case planar. This
circumstance lead to the idea of calculating the trajectory in a 2D coordinate system connected
with PoF. This transformation has the following potential advantages:

94

Algorithm for trajectory prediction

• It provides the invariance to the horizontal direction of throw. The nearest neighbors
prediction is based on searching the database for the trajectories that are similar to the
current one. When a comparison of two throws with a different horizontal direction is done
in a camera-related or gravity-related 3D coordinate system, the similarity of their shapes
cannot be detected due to the large distances between points of the same timestamp. In
planar coordinates, the trajectories of a similar shape are recognized as similar.

• Decreasing the dimensionality of the space mean decreasing the order of the computations.
The solving task in such a system is potentially more simple and more robust to errors.

• Fitting the plane to measurement data allows the detection of outliers in the trajectory
measurement. If the points are measured accurately, they would fit well to the PoF. The
points with a bad fit are considered to be outliers and not included in further calculations.

The most useful representation of the plane for the fitting task is 4.12 because only three param-
eters are used (instead of six parameters in 4.11 and four parameters in 4.10)), and the values of
these parameters are unique and independent of one another (instead of 4.10 where the values of
the parameters may vary if the proportion between them is constant). Therefore, plane fitting
here is a search in 3D parameter space. The task of fitting the PoF could become even simpler
if we assume that the PoF is vertical in the original coordinate system. For instance, if the point

Q =

xq1xq2
xq3

 lies on the PoF, then the point Q′ =

 q
xq2
xq3

 would lie on the PoF for any real q)

the value of a in equation 4.12 is equal to zero and the plane is represented by:

x2 = b ∗ x3 + c. (4.18)

In this case the fitting task is a search in 2D parameter space. In fact, this is a line fitting within
the plane expressed by x3 and x2. Here parameter b is equal to the tangent of the angle α between
PoF and x3 axis, while parameter c represent the point on the axis x2 where it intersect the PoF
(figure 4.3).

This simplification is the main motivation in determining the gravity-related coordinates in sub-
section 4.2.2 As in gravity-related coordinates, the PoF is vertical. If we operate with object
coordinates in the camera coordinate system, the direction of the gravitational force that corre-
sponds to x1 direction in prior described calculations is not clear, and neither is the launching
point that corresponds to the base of coordinate system. Defining the parameters of the Plane-
of-Flight is in this case a task of plane fitting in 3D space. Figure 4.3 shows how this plane is
positioned in the gravity coordinate system. It can be easily seen that if position of the PoF is
determined by the angle α that is between the horizontal projection of the object velocity and
x1-axis, then it is an azimuth of throw. The PoF coordinate system is defined by the axis x1 and
axis x4 which is collinear with the direction of throw.

Each point on the PoF corresponds to a point in 3D-space, and its 3D coordinates Xg =

xg1xg2
xg3


may be calculated from plane coordinates Xp =

(
xp1
xp3

)
using simple transformations:

xg1(t) =xp1(t),

xg2(t) =(xp3(t)− c) ∗ cosα,

xg3(t) =(xp3(t)− c) ∗ sinα.

(4.19)

95

Algorithm for trajectory prediction

Figure 4.3: The plane of flight in a gravity-related coordinate system.

If the point lies in the PoF and its 3D-coordinates are known, it is not a problem to transform it
into PoF coordinates.

xp3(t) =
xg3

cosα
+ c. (4.20)

The challenge in this approach is that for transformation α needs to be known. In fact, the value
of the angle itself is not used in transformation equations. The needed parameters are sinα and
cosα. The tangent of α may be taken as a parameter b from equation 4.18. The sinα and cosα
may be calculated from the tangent using these standard trigonometric equations:

cosα = (tan2 α+ 1)−
1
2 =

1√
b2 + 1

, (4.21)

sinα = tanα ∗ cosα =
b√

b2 + 1
. (4.22)

Let q1 = 1
cosα and q2 = sinα be the intermediate constants used in the transformation process of

transforming coordinates from 3D to PoF with respect to these rules then it will look like::

q1 =
√
b2 + 1,

xp3 =q1 ∗ (xg3 − c),
xp1 =xg1.

(4.23)

The process of transforming coordinates back from PoF to 3D looks like this:

q2 =
b̂

q1
,

xg3(t) =
xp3(t)

q1
,

xg2(t) =c ∗ x4(t),

xg1 =xp1.

(4.24)

96

Algorithm for trajectory prediction

To make the transformation reference uniform, the PoF-coordinates of the object are considered
to be a 3D vector. The coordinate values are stored in xp1 (height) and xp3 (distance). The xp2
coordinate is dummy (?). In the trajectory forecasting operation, it is assumed that its value
is equal to zero every time. If the transformation process is done in the matrix form (i.e. it
corresponds to equation 4.4), the parameters of the transformation matrix are defined in the
following way.

• The origin point X0 is defined as an intersection point between the PoF and xg2 axis.

X0 =

0
c
0

 . (4.25)

• The coordinate axis xp1 is equal to xg1.

P1 =

1
0
0

 . (4.26)

• The coordinate axis x2 is defined as being collinear with the PoF projection on the horizontal
plane:

P2 =

 0
sinα
cosα

 . (4.27)

• The coordinate axis x3 is defined as a cross product of x1 and x2.

The value of xp2 is equal to zero for all the points that lie on the PoF. For other points the
value of this coordinate is equal to the distance from the PoF. Due to the observation errors, the
measured values of the coordinates are commonly not lying in one plane, and an analysis of the
xp2 allows the quality of the fit to be determined.

Previously in this subsection, it was assumed that the values of α and c are already known.
However, in reality these values are defined by the deviation of the throwing device. As there are
no means to measure this deviation directly, the values of α and c should be estimated by fitting
the plane to the measurement data. This estimation may be implemented via various statistical
methods. The method for estimating the PoF parameters should have the following properties
[Mir15]:

• Accuracy of fit : Accuracy determination is a challenging task as no ground-truth data about
object coordinates is available. If the points are translated to the estimated PoF and then
back to 3D, their coordinates will be different from their original values. It is difficult to tell
if this variation is a result of algorithm inaccuracy or the correction of measurement errors.
According to [Pon15], there is no significant systematic error component in positioning
spheres, and the deviations are random in appearance. The normal appearance of the
difference (e.g. growing difference with time) means that the values of a and c are estimated
with errors.

• Robustness: The algorithm must work correctly even if there are a few points with coordi-
nates that are totally incorrect.

97

Algorithm for trajectory prediction

• Stability : During the object’s flight, the values of α and c are recalculated after each new
received frame. If the PoF estimation mechanism is likely, they must not vary strongly after
each recalculation but should be adjusted to a certain value. The estimated values of the pa-
rameters should especially be the same when the whole trajectory {Xg(1), Xg(2), ..., Xg(n)}
is used for estimation and when only the part of the input {Xg(1), Xg(2), ..., Xg(m)} is
known. This requirement is connected to the circumstances of prediction. The predictor
has only to compare the current trajectory measured in the initial part and the trajectories
from the database that are fully tracked.

• Performance: As the application is in real time, all calculations must be done within the
fixed period of time.

Several estimation methods were applied for determining α and b: least squares (LS), robust least
squares (RLS), random sample consensus (RANSAC), mean calculation, and median calculation.
Commonly, the implementation of the LS estimation is the following [Hla12]. The measurement
vector X relies on the state vector Θ as seen in the following equation:

X = H ∗Θ + U, (4.28)

where H is a matrix that defines the relation between X and Θ and U is measurement noise (i.e.
the error of measurement). H has m × n size where m is the number of measured values in X
and n is the number of parameters, describing system state in Θ. If the value of X is known,
the least squares estimation of the system state Θ may be obtained using the following equation
[Hla12]:

Θ = H# ∗X, (4.29)

where H# expresses the pseudo-inversion of matrix H.

To express the polynomial dependencies, the matrix equation is transformed to another view.

P ∗Θ = 1, (4.30)

where P is m×n coordinate measurement matrix (m is the number of measurements, and n is the
dimensionality of the space in case of linear dependency) Θ is a vector of polynomial coefficients
and 1 is an m-size vector of ones. In the case of line fitting in the xg2Oxg3 coordinate plane, this
equation has the following appearance:


xg2(1) xg3(1)
xg2(2) xg3(2)

...
...

xg2(m) xg3(m)

 ∗
(
a1

a2

)
=

(
1
1

)
. (4.31)

The equation of the target line looks like this:

A ∗ x1 +B ∗ x2 = 1. (4.32)

98

Algorithm for trajectory prediction

It can be easily transformed to the dependence of x2 from x3

x1 = b ∗ x2 + c. (4.33)

where b = A−1 and c = −B ∗ b.

The least squares estimation of A and B is obtained using the pseudo-inversion operation:

(
A
B

)
=


xg2(1) xg3(1)
xg2(2) xg3(2)

...
...

xg2(m) xg3(m)


#

∗
(

1
1

)
. (4.34)

LS showed high speed (execution in 1-2 ms even in the MATLAB environment, which is relatively
slow) and sufficient stability. It works accurately enough on the trajectories that do not contain
outliers. Errors seem to be randomly distributed around zero and do not exclude several mil-
limeters in most cases. The application of LS to the acquired data showed that LS is not robust.
Outliers may lead to errors of up to several tens of cm.

The application of RLS [13] improves tolerance towards outliers. A robust least squares estimation
from the curve fitting toolbox in MATLAB was applied. The likelihood that it was able to fit the
points to the line in a 2D coordinate system was high. The value of x2 for the points on trajectory
does not usually exceed 1 mm. The work of the MATLAB fitting function is rather slow. It takes
about 20 ms to calculate the value of α and b. This performance is insufficient because the camera
frame-rate is 110 fps, meaning that obtaining the prediction information after every new frame
all data processing cycle (object positioning on both images, stereo triangulation, transformation
into PoF coordinates, prediction and transformation back to 3D) must not exceed 9 ms. Of course
more low level implementation increases the speed.

The RANSAC PoF estimation is an application of the generalized RANSAC method to the line
fitting task [Mir15]. Two points are picked randomly from the trajectory. Information from two
points is enough to get a correct solution to 4.34. This solution gives a hypothetical PoF. After
that it is checked to see how well the points fit to this plane. If the fit is good, the hypothesis has
been proven. Otherwise, another pair of points is used. The RANSAC implementation was more
robust than LS, and the accuracy was rather good. RANSAC implementation showed better
robustness than LS and rather good accuracy.

RANSAC picks the points randomly, allowing even large amounts of data to be quickly processed.
In trajectory forecasting this amount is relatively small (less than 100 frames). Therefore, a
deterministic way of picking the pairs of points is proposed as it is not so calculation-expensive
in this case [Mir15]. Let {X(1), X(2), ..., X(m)} be a part of the trajectory available at the
current moment (after m or m + 1 frames, here m is even). m/2 pairs of points are taken:
{X(1), X(m/2 + 1)}, {X(2), X(m/2 + 2)}, ..., {X(m/2), X(m)}. This allows m/2 hypotheses to
be made about the position of the PoF (i.e. values of a and b). The simplest method to determine
the PoF in such a situation is to compute the means of α and b. Somewhat unexpectedly, the
accuracy and stability of such an estimation is no worse than for LS. Double estimation is made
to improve robustness. After the first run, points with a bad fit to the plane are removed from
the set. Then the estimation is repeated. The robustness of this algorithm is no worse than for
RLS; however, it also cannot deal with the trajectories where the rate of outliers is high (the
systematic error reaches several centimeters).

99

Algorithm for trajectory prediction

If the median values of α and b are used instead of the mean values, the robustness of the
estimation increases. The median is more robust with outliers because in a sorted list of values,
they will either be in the first or in the last position, and the middle part of the list consists of
inliers. Therefore, the median calculation is chosen as a method for estimating PoF. It is accurate
in that errors seem to be randomly distributed around the value zero and they are usually less
then 1 mm. Only in a few the cases, did the difference exclude 2 mm. It is also robust in that
the accuracy stays the same even when the number of outliers is about 20% of the whole dataset
and stable because the values of a and c do not vary more than in second digit depending on is
X(1 : n) or only X(1 : m)). It is also faster than any other method. The execution in MATLAB
takes about 1 ms to process a trajectory consisting of 80 points [Mir15].

A comparison of the accuracy for the six proposed methods is shown in table 4.1. The standard
deviation for the fitted points from the plane was measured based on the fourth dataset from
table 3.2. It includes 111 trajectories with 100 points each, meaning there are 11100 points in
total. The standard deviations for the six proposed estimation methods are listed in the table.
In the left column, the standard deviation of x2 (i.e. the distance from the points to the fitted
plane) is listed. This parameter allows the accuracy of PoF transformation to be estimated for
the fixed amount of data. The parameters in the two columns on the right allow the stability
of the fit to be estimated. They show the standard deviations for the parameters of the PoF (α
and c) estimated with varying amounts of available frames. The amount of frames was changed
in the following way. In the first iteration, the first 40 frames were used for estimation. In the
second one, 41 were used. In the last iteration, information from all 100 frames was taken. From
the data in the table, it appears that the median estimation is the most accurate method.

Table 4.1: Standard deviation for plane fitting using various proposed methods.

Method σ(xp2),
mm

σ(α),
10−3rad

σ(c),
mm

LS 6.50 218.8 365.1
RLS 0.95 3.3 1.3
RANSAC 0.93 3.7 2.0
mean 3.67 4.1 2.0
median 0.85 3.2 1.1

The accuracy and stability of the median PoF estimation also proves that the PoF model is valid,
and there is no significant side-directed force influencing the thrown object. If the horizontal
projection of the trajectory is not a straight line, errors would be dependent on the time, and
the parameters of the PoF would vary depending on m. As median fit does not include such
an effect, the influence of side force is considered to be negligible. These results show that PoF
transformation is valid for spherical objects thrown by linear launching device [Mir15].

The value of α demonstrates the deviations of the throwing device in terms of horizontal direction
of throw. The histogram of α variations from the mean value is shown in figure 4.4. As the value
of angle is low, it is nearly equal to the value of the tangent. Note that the angle 30 ∗ 10−3rad is
significant. It corresponds to the shift of 6 cm at the distance of 2 meters.

100

Algorithm for trajectory prediction

Figure 4.4: The histogram of α values for the trajectories from the dataset.

4.2.4 Invariance to release point

The PoF representation provide independence of trajectories comparison to the direction of throw.
One more aspect is the dependence of the comparison to the position of the launching point in
the coordinate system. If the trajectories have the same shape but the position of the release
points for them is different, the euclidean distance between them will be large and they will not be
recognized as similar. For the correct comparison of the trajectories they must have the common
point(point with a certain timestamp z such that the coordinates of the ball for all the trajectories
are equal in this point). For the purpose of interpretability it is good that the coordinate of this

common zero-point are equal to

0
0
0

, i.e. that the zero-point is equal to the origin point of the

coordinate system.

The origin point of gravity-related and PoF-related coordinate systems are defined in such way
that they are near to the point in space where the ball intersect the light-barrier. When it happens
the camera system is triggered and the tracking process is started. I.e. in ideal case the position

of the ball at t = 0 is equal to

0
0
0

 and z = 1. In reality that does not happen: the position

of the object on the first frame differ up to several millimeters from zero. Wrong estimation of
the launching point may lead to the wrong results in trajectory comparison. The idea is that it
is possible to translate the trajectory to the new coordinate system where the zero-point is more
likely than in Xg or Xp. For this purpose certain point of the trajectory is chosen as a zero-point
and its coordinates are subtracted from next points on the trajectory. In other words coordinate
transformation consist in subtracting the coordinates of the zero-point.

xz1(i) =xp1(i+ z)− xp1(z),

xz2(i) =0,

xz3(i) =xp3(i+ z)− xp3(z).

(4.35)

where xz1, xz2 and xz3 are object coordinates in zero-point coordinate system. The subtraction
operation is removed from the second row as we deal with 2D PoF coordinates and the second

101

Algorithm for trajectory prediction

coordinate is not used in further calculations (however it is kept in order to provide compatibility
with 3D transformation matrices).

The matrix coordinate transformation formula in this case will have the following view:
xz1(i)
xz2(i)
xz3(i)

1

 =


1 0 0 −xp1(z)
0 0 0 0
0 0 1 −xp3(z)
0 0 0 1


−1

∗


xp1(i+ z)
xp2(i+ z)
xp3(i+ z)

1

 (4.36)

The question is how to choose the zero-point in the right way. It is important to find such a value
of z for which the coordinates of ball center are measured with sufficient accuracy. On the other
hand the zero-point should lie in the beginning of trajectory. The comparison of trajectories is
less erroneous when the difference between them is big (it should be higher than the possible
estimation errors). The difference between measured points is high if they lie far from the zero-
point. Therefore it is better if the zero-point is near to the launching point. On the other hand
visual analysis from subsection 3.3.1 showed that the measurement of object position is not very
accurate on first five frames. Therefore the 7th frame of the video sequence is proposed to be the
zero-point.

The geometrical relations between gravity-related, PoF-related and zero-point-related coordinate
systems illustrated on figure 4.5.

Figure 4.5: Relative location of camera-related, gravity-related, PoF-related and zeropoint-related coor-
dinate systems.

4.2.5 Reverse transform and robot coordinate system

Coordinate transformations described in previous subsections have an aim to improve the effi-
ciency of the forecasting algorithm. The forecasting operation is made in the zero-point coor-
dinate system and the result of this operation is also expressed in this system. However the
robot controller deal with world coordinates therefore the reverse coordinate transformation of
the prediction results is required.

102

Algorithm for trajectory prediction

In previous subsections the following transformation matrices were determined: Pcg from camera-
related to gravity-related system (equations 4.14, 4.15, 4.16, 4.17), Pgp from gravity-related to
PoF-related system (equations 4.25, 4.26, 4.27), Ppz from PoF-related to zero-point-related system
(equation 4.36). The coordinate transformations are made by multiplication of inverses of these
matrices on the coordinates. It mean that reverse transformation is made by multiplying these
matrices on the object coordinates:xc1(i)

xc2(i)
xc3(i)

 = Pcg ∗ Pgp ∗ Ppz ∗

xz1(i− z)
xz2(i− z)
xz3(i− z)

 . (4.37)

Robot controller use a specific coordinate system connected with a base of the robot arm. The
matrix Prc, which connect this system with camera coordinate system may be obtained during
the additional calibration (considered in chapter 5). The equation for transforming the final
coordinates to the robot system will have the following view:xr1(i)

xr2(i)
xr3(i)

 = Prc ∗ Pcg ∗ Pgp ∗ Ppz ∗

xc1(i− z)
xc2(i− z)
xc3(i− z)

 , (4.38)

where

xr1(i)
xr2(i)
xr3(i)

 is a vector of object coordinates in robot-related coordinate system. Both Pcg

and Prc are defined prior to the throw. It allow determining the matrix for transition from gravity
to robot coordinate system:

Prg = Prc ∗ Pcg. (4.39)

Coordinate transformation from zero-point-related to robot-related system in this case will have
the following view: xr1(i)

xr2(i)
xr3(i)

 = Prg ∗ Pgp ∗ Ppz ∗

xc1(i− z)
xc2(i− z)
xc3(i− z)

 , (4.40)

4.3 Predictor

The kNN principle is proposed as a basic method for trajectory prediction in subsection 2.5.4.
This section tell how this method is adapted for this task. Subsection 4.3.1 describes the cal-
culating the reference of object future positions based on corresponding positions of two nearest
neighbors (which are already known). Subsection 4.3.2 consider the question of how to define,
which trajectories from the database are the nearest neighbors.

4.3.1 Forecasting operation

Consider simple application of kNN for time series forecasting. Let XC be a measured part of the
current trajectory and a set of input-output pairs L = {(X1,Y1), (X2,Y2), . . . , (Xm,Ym)} be a
dataset of previous sample trajectories (Yc is a part of the trajectory which must be predicted).
The predictor compares XC with inputs from dataset and search for an example Xs, which is

103

Algorithm for trajectory prediction

the most similar to XC (”nearest”). The final part of this nearest trajectory Ys is taken as a
predicted part of the current trajectory. This is 1-nearest neighbor prediction.

s =arg
m

min
i=1
|Xc −Xi|,

Yc =Ys.
(4.41)

The question of how to determine the similarity of trajectories is considered in the next subsection.
For this subsection let us assume that there is a mechanism allowing such a determination.
Consider now forecasting based on two nearest neighbors. Two trajectories from the dataset are
taken, which are the most similar to the current one, and the forecast is calculated as a mean of
their Y:

Yc =
Y1 + Y2

2
. (4.42)

This operation can be easily adapted to the arbitrary number k of taken nearest trajectories:

Yc =
1

k
∗

k∑
j=1

Yj . (4.43)

Thus simple k-NN predictor calculate the output value as a mean of outputs of k examples taken
from the dataset, which inputs are the nearest to the current input.

Weighted k-NN is a modified version of such approach. The goal of this modification is to
consider not only the fact, that ”the neighbor is near”, but also numerical distance between
current example and its neighbors. The output value of the predictor in such case is calculated,
using the following formula:

Yc =

k∑
j=1

wj ∗Yj . (4.44)

Here
n∑
j=1

wj = 1. The values of {w1, w2, . . . , wk} are defined with respect to the distance from

the corresponding neighbor to the current example. The way of weighting the trajectories for the
case of two neighbors is shown below.

On the figure 4.6 the plot for three trajectories in the zero-point coordinate system is shown.
C is the current trajectory, A and B are its nearest neighbors, taken from the dataset. We
know measurement area trajectory XA, XB and gripping area trajectory YA, YB for A and B,
and measurement area trajectory XC for C. It is assumed that at any time moment the object
from trajectory A is higher and farther than the object from trajectory C, while the object from
trajectory C is higher and farther than the object from trajectory B. Other cases are discussed in
subsection 4.3.2 and section 4.4. 2-nearest neighbors forecasting1 is applied. For each measured
coordinate of the object C in MAT we know the corresponding (i.e. measured at the same period
after the throw) coordinates of A and B. We can calculate distances between these three points
for each t in both dimensions:

1Usually it is not recommended to use even number of neighbors for classification tasks. Reason is that it can
cause uncertainty. Consider simple situation. We have k taken nearest neighbors. If k

2
of them belong to class A

and k
2

of them belongs to class B, the simple kNN classifier can not classify current example to A or B. In the case
of trajectory prediction considered above it is not a classification task. The output value is not taken as a result of
neighbor voting, but calculated numerically on its base. Hence taking even number of nearest neighbors is correct
for trajectory prediction and does not cause any failures. Use of alternative values of k for trajectory prediction is
briefly discussed in section 5.1. Experiments there showed that k = 2 provide the best prediction accuracy

104

Algorithm for trajectory prediction

Figure 4.6: Distances between the corresponding points on the current trajectory C and trajectories A
and B from the dataset

∆1AC(t) = x1A(t)− x1C(t),

∆1AB(t) = x1A(t)− x1B(t),

∆3AC(t) = x3A(t)− x3C(t),

∆3AB(t) = x3A(t)− x3B(t),

(4.45)

and then proportions

d1(t) =
∆1AC(t)

∆1AB(t)
,

d1(t) =
∆1AC(t)

∆1AB(t)
.

(4.46)

The proportion vector D(t) =

[
d1(t)
d2(t)

]
is calculated for each available measurement, and then its

mean value D = {d̂x; d̂z} is estimated.

D =

[
d1

d2

]
=

1

n
∗

n∑
t=1

[
d1(t)
d2(t)

]
. (4.47)

Now if we know measurement results for Y1 and Y2 and need to define value of coordinates for
Yc, the following formula may be used for any t in catching area:

ˆx1C(t) = x1B(t) + d̂1 ∗ (x1A(t)− x1B(t)),

ˆx3A(t) = x3B(t) + d̂2 ∗ (x3A(t)− x3B(t)).
(4.48)

105

Algorithm for trajectory prediction

This equation can be converted to the template equation of WKNN prediction 2.22 in the following
way:

ˆx1C(t) = d̂1 ∗ x1A(t) + (1− d̂1) ∗ (x1B(t)),

ˆx3C(t) = (1− d̂2) ∗ x3A(t) + d̂2 ∗ (x3B(t)).
(4.49)

If the simple kNN is used instead of WKNN both weights in this formula are replaced by 1
2 :

ˆx1C(t) =
1

2
∗ x1A(t) +

1

2
∗ (x1B(t)),

ˆx3C(t) =
1

2
∗ x3A(t) +

1

2
∗ (x3B(t)).

(4.50)

If the C lies between B and A the values of d1 and d2 lie between 0 and 1. Therefore the weights
of the neighbors also lie between 0 and 1.

The process of calculation of future position based on two known neighbors using equations 4.45,
4.46, 4.49 or equation 4.50 is defined here as ”k-NN forecasting operation” (KFO). The input for
KFO include XC , XA, YA, XB, YB. Estimate of Yc is an output of the operation.

4.3.2 Search for nearest neighbors

KFO does not include definition of what trajectories in L are (XA; YA) and (XB; YB). Complete
prediction operation consist of defining the nearest neighbors (XA; YA) and (XB; YB) among a
number of trajectories in the dataset L (k-NN search operation, KSO) and then applying KFO
to them. The similarity of trajectories here is defined as a similarity of object coordinates in the
points with the same timestamp. Therefore the euclidean distance between the corresponding
points shows, how far the trajectories lie from each other. The euclidean distance is calculated
by the equation, well-known from the school geometry:

dij = di(t) =
√

(x1i(t)− x1c(t))2 + (x3i(t)− x3c(t))2. (4.51)

Here i is an index of the trajectory in the dataset,

x1c

x2c

x3c

 is a vector of coordinates from the

current trajectory and

x1i

x2i

x3i

 is a corresponding vector from the trajectory, which is considered

as a possible neighbor. The meaning of j is described in the next paragraph. ∆i is defined as a
mean Euclidean difference between the corresponding points:

∆i =
1

n

n∑
j=1

|dij |. (4.52)

Here n is a number of points used for distance calculation and j is an index of the such points in
the list. The trajectory with the minimum mean distance is chosen as a nearest neighbor.

s = arg
m

min
i=1
| 1
n

n∑
t=1

|di(t)||. (4.53)

106

Algorithm for trajectory prediction

Here s is an index of the nearest neighbor in the trajectory database. The task of distance
calculation here is easier, than in many other classification, regression and forecasting task, where
the k-NN is used, because all used dimensions have the same scale.

Note that j in equation 4.52 is not equal to the timestamp t of the measurement. Timestamps
show the number of frames left after the launch by the moment of the current measurement. j has
no such meaning: the points for estimating the distance may be taken from the whole available
part of the trajectory but there is no requirement that all available frames must be used. E.g.
if some frames are lost by the observer, they are not used for distance calculation. Let the used
frames list (UFL) be a set of timestamps for the frames, which are used in distance calculation.
E.g. if the UFL U = {24, 26, 27}, it means that the distance between the trajectories will be
calculated in the following way:

∆i =
1

3
(di(24) + di(26) + di(27)).

The mapping from t to j in this case is the following:

(t = 24) 7→(j = 1),

(t = 26) 7→(j = 2),

(t = 27) 7→(j = 3).

Note that correct comparison of the distances between two pairs of trajectories is possible only if
the UFL for calculating these distances were the same. The distance between the corresponding
points Xc(t) and Xi(t) grow with the growth of t and for the same pair of trajectories in the
common case the distance calculated with U = {31, 32, 33} would be higher than the distance
calculated with U = {1, 2, 3}. This property is proved by the throwing experiments. On figure
4.7 the histogram of such distances is given. It represent the mean distances between the points
with respective frame number. These values were obtained based on 111 trajectories from the
dataset of ”August-2015” (see subsection 3.1.4). It may be seen that the mean distance grow
nearly linear with the growth of the frame number.

What part of available frames should be inserted into the UFL? On one hand more items used for
search is better for the quality of the estimation. On the other hand the accuracy of proportion
estimation is growing with the grow of timestamps: the distances are higher. Therefore the UFL
in various version of the algorithm has the following view.

U = l, l + 1, l + 2, ..., n. (4.54)

Here n is a timestamp of the last available frame by the current moment. l is a certain number
(obviously l ∈ [k, n]). To define the most appropriate UFL specific computational experiments
was conducted (described in chapter 5). These experiments showed that the change of l has
a moderate influence on the prediction accuracy. In the conditions of the experiments l = 15
showed the best results, therefore it was taken as a nominal value for the implementation.

4.4 Allocating the subset of neighbors

Previous subsections consider the evaluation of the algorithm under some specific assumptions.
The main such assumptions are the following:

107

Algorithm for trajectory prediction

Figure 4.7: Mean distance between the points from the database according to their frame number.

1. Possibility to define nearest neighbors such that the current trajectory lie between them in
both dimensions at the whole duration of flight;

2. Stability of the proportions d1 and d2 from equation 4.46 in time.

The rule that the current trajectory must lie between two nearest neighbors in both dimensions
may be simply inserted into the KSO. For this purpose the search for higher and lower nearest
neighbor is made separately. The simple heuristic for search is the following. For each trajectory
Xi for each timestamp t it is checked if the object lies above the object from the current trajectory
Xc. If x1c(t) > x1i(t) for most of the timestamps trajectory Xi is added to the list of lower
trajectories.

Stability of the proportions d1 and d2 in time is not an obvious truth. Process simulation showed
that in common case (i.e. when three random trajectories are taken from the set) these propor-
tions are not stable and the object, which was between two others at the beginning of flight, could
be above or below each other at the end (i.e. the trajectories are crossing, figure 4.8).

Different results may be seen when the specific adjustment of the throwing parameters is made
in the simulation. Throwing velocity may be set in two ways: in Cartesian coordinates or in
polar coordinates. In both domains launching velocity consists of two parameters: value v and
elevation φ in polar domain or horizontal projection v3 and vertical projection v1 in Cartesian

108

Algorithm for trajectory prediction

Figure 4.8: Plane-of-Flight projections of trajectories randomly generated in the simulation environment.
It may be seen that the trajectories are crossing.

domain. The shape of the trajectory may be defined by both of the parameters of any domain.
In common case (figure 4.8) of the simulation the values of launching parameters were set to be
random normally distributed around the nominal values. Standard deviations of these parameters
were set to the same value (0.1 m/s for both horizontal and vertical velocity components). This
lead to crossing trajectories, which may be seen on figure 4.8.

Another situation may be seen when the standard deviation for one launching parameter is set
to be much smaller than for another one. Example plots for ten trajectories generated such
asymmetric setting of the launching parameters are presented on figure 4.9 (parameters are set
in polar domain; standard deviation for launching velocity set to 0.01m/s, standard deviation
for elevation of throw is set to 0.1rad), figure 4.10 (parameters are set in polar domain; standard
deviation for launching velocity set to 0.1m/s, standard deviation for elevation of throw is set to
0.01rad), figure 4.11 (parameters are set in Cartesian domain; standard deviation for the vertical
velocity set to 0.01m/s, standard deviation for the horizontal velocity is set to 0.1m/s), and figure
4.12 (parameters are set in Cartesian domain; standard deviation for the vertical velocity set to
0.1m/s, standard deviation for the horizontal velocity is set to 0.01m/s). It may be seen that
these plots have more regular appearance than random plots from figure 4.8. The trajectories
from each of these four plots have similar appearance to each other (e.g. the last points of the
trajectories on figure 4.12 have nearly the same value of the horizontal coordinate).

This is just an intuitive perception got from the plots. For the predictor accuracy it is important
to know the following: are the proportions d1 and d2 for the trajectories generated with this
setup stable in time or not? If one trajectory lie between two others in the beginning, will it lie
in between in the end? Numerical experiments with the simulation showed the following answers
on these questions:

1. Throwing velocity is set in polar domain with high deviation of the angle and low deviation

109

Algorithm for trajectory prediction

Figure 4.9: Plane-of-Flight projections of trajectories belonging to one cluster with respect to v.

of the value: The proportion is kept stable (it changes in the second order only). If one
trajectory is between two others in both dimensions in the beginning, it will lie in between
in both dimension in the end.

2. Throwing velocity is set in polar domain with low deviation of the angle and high deviation
of the value: The deviations of the proportions (and crosses of the trajectories) take place
in very beginning of the flight. After first 60 milliseconds proportions become stable and
no more crosses are detected.

3. Throwing velocity is set in Cartesian domain with low deviation of the vertical projection
and high deviation of the horizontal projection: proportion is not stable and trajectories are
often crossing in both dimensions.

4. Throwing velocity is set in Cartesian domain with high deviation of the vertical projection
and low deviation of the horizontal projection: for the vertical dimension proportion is kept
stable and trajectories do not cross. In horizontal dimension this requirement is not satisfied
however it is more important that the corresponding coordinates in horizontal dimension
are nearly the same for all trajectories.

v, φ and v1 are changing in time, hence, it can not be said that ”for this trajectory it v = 5, 6
and for this trajectory v = 5, 4”. We can talk only about the value of these parameters at the
certain time moment. Due to this fact it is hard to estimate the value of these parameters based
on erroneous measurements. On the other hand the horizontal velocity does not change much
with time. The mean value of this parameter may be estimated as a result of dividing x3(t) by t.

Main advantages of k-NN in comparison with other sampling-based techniques (e.g. Neural Net-
works and Support Vector Machines) are simplicity of implementation and good interpretability:
predictor made decision based on concrete examples. Main disadvantages are connected with the

110

Algorithm for trajectory prediction

Figure 4.10: Plane-of-Flight projections of trajectories belonging to one cluster with respect to φ.

fact, that we does not modify our learning sampling to more simplified model but store them all in
the database. When we apply k-NN forecasting we should compare our current trajectory with all
trajectories from the dataset. This circumstance produces high memory and time costs of k-NN
with huge databases. Speed of processing is very important for time-critical projectile prediction
task. Hence comparison of the current trajectory with high number of samples is unlikely.

Here the approach is proposed based on comparing the current trajectory not with all trajectories
from the dataset but only with a relatively small subset. It allow decreasing the volume of
computations: even large databases may be processed relatively fast. More important aspect of
this proposal is that proportion stability assumption is true for the trajectories inside the subset.
This is achieved by making one of the velocity parameters nearly the same for all trajectories
from the subset. In other words the basic principle of the subset allocation is the following: the
current trajectory is compared only with trajectories from the dataset such that the value of
certain velocity parameter p for these trajectories is nearly equal to the corresponding parameter
of the current trajectory. What parameter should be taken as a base for such allocation? Let
consider parameters listed above as a potential p:

1. Velocity value and elevation in polar domain: Both these parameters are not likely as
they are hard to be estimated. The light barriers provide the measurement of the velocity
projection on the direction perpendicular to them but this is not a value of the velocity.
Accurate measurement of the velocity value and elevation on the short term is not possible
as the accuracy of stereo positioning is not enough for this task (see section 3.3.3).

2. Vertical projection of the velocity : this velocity is not likely as it does not provide proportion
stability.

3. Horizontal projection of the velocity : This parameter provide high stability of the proportion
in vertical coordinates and it is relatively easy to estimate. Horizontal velocity does not

111

Algorithm for trajectory prediction

Figure 4.11: Plane-of-Flight projections of trajectories belonging to one cluster with respect to v1.

change significantly in time therefore calculation of the mean horizontal velocity after a
relatively long period of time may be used to estimate the horizontal velocity at the moment
of throw. Another advantage of taking the horizontal velocity as a sorting parameter is
that all trajectories have nearly the same value of x3 at the corresponding time moments.
Therefore by estimating the value of the horizontal velocity we can roughly estimate the
time, when the ball reach gripper workspace. The process of estimating the horizontal
velocity is described below.

According to the definition of mean horizontal velocity it is estimated as a result of dividing object
horizontal path by the time left after the throw. In zero-point coordinate system it corresponds
to the division of the coordinate x3 by the time t left after the zero-point:

v̂3(t) =
x3(t)

t
=
x3(t)

n ∗ τ
. (4.55)

Here τ is length of the inter-frame period and n is number of frames left.

Absolute errors of stereo positioning achieve several millimeters (section 3.3), however for the
velocity estimation relative errors are critical. If the value of x3 is 10 mm and absolute error is 1
mm, the relative error is obviously around 10%. If absolute error is the same and x3 is equal to
100 mm the relative error would be around 1%. This example shows that the accuracy of velocity
estimation improves with grow of the value of x3. On the other hand this operation must not be
done too late: the system need some time to perform the prediction and to execute the catching
movement. In the basic experimental setup frames with numbers from 35 to 39 were used for
calculating mean horizontal velocity [Mir15]. Taking these frames allow robust estimation of the
horizontal velocity which may be seen on figure 4.13 taken from [Mir15].

This figure represent the result of sorting trajectory database with respect to v3. Trajectories
with low values of v3 were put to the beginning of the list while trajectories with high values were

112

Algorithm for trajectory prediction

Figure 4.12: Plane-of-Flight projections of trajectories belonging to one cluster with respect to v3.

Figure 4.13: Horizontal coordinate of the ball in 0.5 second after the throw for all trajectories depending
on the sequential number in the sorted dataset. Picture taken from [Mir15]

put to the end. On the figure the value of the horizontal coordinate for the frame number 55 is
plotted with respect to the sequential number of the trajectory in the sorted dataset. It may be
seen that for neighboring trajectories the value of x3 does not differ more than for 2 cm (at least
for for trajectories with numbers from 20 to 160; trajectories in the beginning and in the end of
the list differ more due to fringe effect, these are trajectories captured with exceptional values of
throwing force, they are used only for learning).

The operation of sorting the dataset with respect to v3 described in the previous paragraph is
applied to the trajectory database on the learning stage. When the algorithm predict the current
trajectory it works with the database, which is already sorted. It estimate the value of v3 and
compare it only with trajectories from the dataset which have similar value of v3. The structure

113

Algorithm for trajectory prediction

of learning and prediction algorithms is described in section 4.5.

As it was mentioned above the proportion d3 is not kept stable in time for the datasets with similar
horizontal velocity. However due to similar values of x3(t) for all dataset members the weighted
nearest neighbors principle here could be replaced by the simple nearest neighbor principle:

ˆxC3(t) =
xA3(t) + xB3(t)

2
. (4.56)

If we assume that the values of xC3(t),xA3(t) and xB3(t) are nearly the same at any moment and
the distance between corresponding points on the trajectories is minimal then this operation allow
accurate forecast of future coordinates in x3 dimensions. Experiments described in section 5.1
showed that simple nearest neighbors prediction is more accurate than weighted nearest neighbors
in general.

Comparing the current trajectory with a small subset of the entire dataset reduce the time of
calculations T . If KSO process the entire dataset T in simplified way may be defined as

T = M ∗ τd + τKFO, (4.57)

where M is overall number of trajectories in the dataset, τd is a time of calculating the distance
between two trajectories and its comparison with the current smallest distance (i.e. n ∗ τd is time
of applying KSO), τKFO is a time of applying KFO.

With use of subset allocation it become equal to

T = τall +m ∗ τd + τKFO, (4.58)

where τall is the time of subset allocation and m is number of examples in the subset. Obviously
subset allocation is useful if it significantly decrease the time expenses:

τall +m ∗ τd << M ∗ τd, (4.59)

τall << (M −m) ∗ τd. (4.60)

The number of trajectories in the cluster affect on the accuracy and speed of prediction. In
section 5.2 it is shown that the best results were achieved when the cluster size was equal to
approximately 1/8 of the whole dataset.

4.5 Predictor summary

This section summarize the algorithm development made in sections 4.2, 4.3 and 4.4. In fact
predictor consist of two algorithms: learning algorithm and prediction algorithm. Prediction
algorithm consist of operations, which are performed in order to forecast the current trajectory.
It is called after receiving each new frame. Learning algorithm consist of operations, which are
done with the trajectory dataset prior to starting the work of the system. It has an aim to
reduce the computations which are done during the prediction. As the prediction is real-time all
computations, which may be done prior starting the system are done prior starting the system.
This section does not describe the process of extracting 3D coordinates of the object from the
video stream. It is already considered in chapter 3. Here it is assumed that the predictor get the

114

Algorithm for trajectory prediction

sequence of measured object coordinates in camera coordinate system from the beginning till the
last available frame as an input, while the learning algorithm get a set of trajectories observed in
the camera coordinate system.

Two main tasks are solved on the learning stage: transform all the sample trajectories to the
universal zero-point coordinate system and sort them with respect to the estimated horizontal
velocity. Sorting trajectories has an aim to speed-up the cluster allocation procedure on the
prediction stage. The structure of the learning algorithm is shown on figure 4.14.

Figure 4.14: The structure of the learning algorithm.

First of all for each trajectory in the set the reference of coordinate transformations is executed:
each trajectory is sequentially translated to gravity coordinate system (section 4.2.2), plane-of-
flight coordinate system (section 4.2.3) and zero-point coordinate system (section 4.2.4). When
the trajectory is already presented in zero-point system the value of the mean horizontal velocity
is estimated (section 4.4). After that all trajectories in the dataset are sorted with respect to
mean horizontal velocity. In the final database one trajectory is indicated by i, vi, Xi where i is
a sequential number of the trajectory in the set, vi is the value of the estimated mean horizontal
velocity, and Xi is the matrix showing the dynamics of object coordinates in time.

The structure of the predictor is shown in the figure 4.15. For better visualization the functional
blocks are put into fields corresponding to the coordinate system where they are executed. First
of all the reference of coordinate transformations is performed for the measured part of the
trajectory. Then the mean horizontal velocity is estimated. It may be seen that the same
operations are done with each sample trajectory on the learning stage. After that the cluster
of similar trajectories is allocated from the dataset. For this purpose the sample trajectory Xj

is found, which have the value of the estimated mean horizontal velocity, which is the most
similar with the corresponding parameter of the current trajectory. Then the range of sample
trajectories around Xj with sequential numbers from j − q to j + q are put into the cluster of
similar trajectories. q is a natural number, choice of the value of q is discussed in section 5.2.
After cluster allocation the operations of search for nearest neighbors within the cluster (section
4.3.2) and forecasting (section 4.3.1) are performed. The second operation return the predicted

115

Algorithm for trajectory prediction

Figure 4.15: The structure of the prediction algorithm.

reference of object positions in zero-point coordinate system. This reference is transformed back
to gravity coordinate system and then to robot coordinate system (section 4.2.5). Predicted
object coordinates in the robot coordinate system are given to the output of the predictor. This
data is then used for determining the catching movement.

116

5 Implementation and experiments

In the chapter 4 the concept of the prediction algorithm was proposed and developed. This chapter
tell how this algorithm is applied to the real system for objects’ transportation by throwing and
catching. Two questions are mainly under the scope: how the algorithm is implemented and how
good does it work?

Section 5.1 explain the numerical experiments with sample trajectories stored in the dataset.
These trajectories was observed by the vision system in throwing experiments as it is explained
in section 3.1. The aim of the numerical experiment is to validate the accuracy of the algorithm
and to find the best settings. Section 5.2 describe technical aspects of integrating the algorithm
into the transportation system. The version with the parameters determined in section 5.1 is
implemented on C++ and integrated into software complex for ball tracking. Final examination
of the algorithm is described in section 5.3. Experiments showed that the system with integrated
predictor is able to catch thrown balls successfully.

5.1 Numerical experiments with the dataset

The experiments described in these section mainly consist in predicting the object’s positions for
the trajectories, which were observed in catching experiments (section 3.1). Comparison of the
prediction results with the actual positions of the ball observed by the vision system is used to
estimate accuracy of prediction. This an advantage of the numerical experiments in comparison
with catching experiments. In case of catching experiments accurate tracking is not possible
anymore, when the ball is inside the robot’s workspace: the robot is moving, which distort the
accuracy of stereo positioning. So the only possible output from the catching experiments is that
the robot has caught the ball or did not. Numerical experiments allow prediction accuracy to be
estimated instead.

k Nearest Neighbors algorithm use the set of previously observed trajectories as a base for pre-
diction. Two type of trajectory datasets were used in the experiments:

• Artificial dataset : The trajectories in such a set are created via simulating ballistic motion
of the tennis ball. As the tennis ball is a well-studied aerodynamic object, such a simulation
is relatively accurate (see section 4.1). Artificial generation of the set allow minimizing time
expenses, which are needed to perform catching experiments for creating large-size dataset
of real throws. Although the dataset is artificially generated in the experiments it was used
to predict the real trajectories observed in throwing experiments.

117

Implementation and experiments

• Acquired dataset : A set of real trajectories acquired by the stereo camera system. The
trajectories to predict are also taken from this set. Leave-one-out method is applied: each
trajectory from the set is predicted using all other trajectories except itself. In other words
the trajectory, which is predicted currently, is removed from the dataset before the predic-
tion and returned there afterwards. I.e. an incorrect situation when one trajectory is used
to predict itself is avoided.

The question to discuss is what number of available frames is used for prediction. According to
the algorithm settings discussed in sections 4.2.3 and 4.3.1 prediction is done the first time after
receiving the frame number 40. In theory accuracy of prediction should improve with increasing
number of available frames. Actual influence of the frame number on the prediction accuracy
is discussed in the end of this section. The algorithm described in chapter 4 has a number of
parameters. Choice of their value effect on the quality of prediction. The main varying settings
of the algorithm are listed below:

1. The method of estimating the plane-of-flight : Four main methods were proposed in section
4.2.3 (least squares, robust least squares, random sample consensus, sample mean, sample
median). Sample median was finally chosen as the most robust, accurate and fast method.
Although the choice of the method is done based on numerical experiments it is described in
section 4.2.3 instead of this section because of strong relation to the algorithm development.

2. The parameter for sorting trajectories in the dataset : Four main parameters were proposed
in section 4.4 (velocity scalar v, elevation of throw φ, vertical velocity v1, horizontal velocity
v3). Horizontal velocity was finally chosen as a clustering. The choice of the clustering para-
meter is described in section 4.4 because of strong relation to the algorithm development.

3. Weighting coefficients: these are the numbers w1 and w2 with possible values from 0 to
1 from equation 2.22. Two ways of defining these coefficients are proposed in section 4.3:
setting them both to 0.5 (simple nearest neighbors, equation 4.50) or defining the values
with respect to distance proportion (weighted nearest neighbors, equation 4.49).

4. Size of the cluster c: On one hand reducing the size of the cluster means decreasing the
volume of computations (less trajectories to compare with the current one). On the other
hand it may decrease the accuracy: if the size of the cluster is small the nearest trajectories
may be thrown out of the cluster. In this case they are not recognized as nearest neighbors.

5. Number of taken nearest neighbors k: In sections 4.3 and 4.4 it was assumed that k = 2,
one of taken nearest neighbors lies above the current trajectory, and another lies below.
Assumption that this choice of k is the most accurate need a proof.

5.1.1 Simple and weighted nearest neighbours

On the first step of numerical experiments the accuracy for the basic proposed setup was ex-
amined. Prediction is made based on first 40 frames after the throw. Cluster size is set to 25
trajectories and k was set to 2 with one neighbor above and one neighbor below the trajectory.
Versions with simple and weighted nearest neighbors forecasting were validated. Prediction is
done based on the same dataset using leave-one-out method. Example of the successful predic-
tion results are plotted in figure 5.1. 150 trajectories were predicted in such a way. The results
are given in table 5.1.

118

Implementation and experiments

Figure 5.1: Reference positions of the ball from the current trajectory, its lower neighbor, and its higher
neighbor; filled circles show the predicted positions of the object.

Table 5.1: Accuracy of the prediction

Parameter simple kNN weighted kNN

% of throws with error < 30mm 92 85

% of throws with error < 20mm 85 73

Median error in mm 10 13

The percentage of trajectories with prediction errors less than the specified thresholds is given
in the table. The thresholds of 30 and 20 mm are chosen according to [Bir11] where they are
stated as allowing successful catch of the ball with robotic hand. Unexpectedly simple nearest
neighbor algorithm showed better accuracy than weighted nearest neighbors. The possible reason
is high sensitivity of the proportions to measurement errors. In further experiments simple nearest
neighbors prediction was used.

5.1.2 Size of the cluster

Evaluation of the cluster size was done both with artificial dataset and acquired dataset. The
experiments was set with the dataset from August 2016 consisting of 100 sample trajectories and
20 test trajectories (see section 3.1). The radius of the cluster r is equal to 0.5 ∗ (s− 1) where s
is number of trajectories in the cluster. If the trajectory with the most similar value of v3 to the
current one has sequential number i in the sorted dataset the cluster include trajectories with
sequential numbers from i− r to i+ r. Other settings were the same as in subsection 5.1.1. The
median error for various cluster sizes is presented in table 5.2. ∞ here means that no sorting and
clustering was applied at all: search for nearest neighbors was made through the entire dataset.

119

Implementation and experiments

Table 5.2: Median errors of prediction for various sizes of the cluster. ∞ means that no sorting and
cluster allocation was made at all. Prediction was done based on acquired dataset of real
trajectories.

r emed, mm

1 25,3

2 14,2

3 13,3

4 12,5

5 11,9

6 10,6

7 10,6

8 7,8

9 7,8

10 7,8

11 6,6

12 6,6

∞ 16,7

Results show that the error decrease with the growth of the cluster size. This improvement stops
after the r = 11 for r = 12, 13, 14, ... the median error keeps the value of 6.6 mm. This means
that even with larger size of the cluster the search return nearest neighbors inside the cluster
with r = 11. When the cluster size become near to the size of the entire dataset size of error
increase. This result show that use of sorting improve not only the speed of computation but also
prediction accuracy.

Median prediction error might be not the best parameter for evaluating the quality of prediction
on relatively tiny datasets. It is more important to know what percentage of trajectories was
predicted accurately than what was the prediction error for ”mean trajectory”. In figure 5.2 it
is shown, what number of trajectories was predicted in the most accurate way for various cluster
sizes. Prediction in the most accurate way means that for this trajectories there is no cluster size
providing better accuracy than the current cluster size. This histogram show the same results as
table 5.2: the most effective work of the algorithm is reached at r = 11. It is nearly the 1/8 of
the whole dataset size (as it includes 100 trajectories).

The results of the similar evaluation with artificially-generated dataset consisting of 2048 trajec-
tories are presented in table 5.3. First column present accuracy information, while the second one
present the time expenses. The results show that minimum median error is achieved already when
the size of the cluster is equal to 256 trajectories. Time analysis is made for the real-time imple-
mentation of the algorithm (this implementation is discussed in the next section). The influence
of the dataset size on the speed of processing was not significant for the size of the database from
64 to 2048 trajectories (it was everytime less than 1 ms for cluster with 25 trajectories). However
the size of the cluster make a significant influence on the speed of calculations (see table 5.3). It
grows with the growth of the cluster size. The framerate of the observer is 100 fps (subsection
3.1.2), so interframe period is equal to 10 ms. If the time of computation is less than 10 ms, it
is possible to recompute the forecast after each new frame received. For 256 trajectories in the

120

Implementation and experiments

Figure 5.2: Correspondence between number of trajectories, which are predicted with the best accuracy
and cluster size. (Draft!)

cluster the upper bound time of computation is equal to 4.3 ms, which is less than 10 ms and
therefore sufficient.

Table 5.3: Influence of the cluster size on the accuracy and speed of prediction for the artificially generated
database consisting of 2048 samples.

cluster
size

median
prediction
error, mm

time of
computa-
tion (upper
bound for
99,97%), ms

25 14.2 1.4

64 12.5 2.1

128 11.9 2.7

256 10.6 4.3

512 10.6 7.6

1024 10.6 15.2

So in both setups good accuracy with satisfying performance are achieved when the cluster is
nearly 8 times smaller than the entire dataset. This is not a universal result. When the trajectories
in the dataset are more dispersed (e.g. launching velocity varies from 2 to 7 m/s, but not from
4 to 5 m/s) relative size of the cluster should be smaller. But for the current setups cluster
sizes were determined in such a way: 25 trajectories in the set for acquired database and 256
trajectories in the set for artificial database.

5.1.3 Value of k

In the basic setup the value of k was set to 2. This subsection aim to check whether this choice
provide the best accuracy or not. Another question is whether picking one higher and one lower

121

Implementation and experiments

nearest trajectory provide better accuracy than just picking two nearest neighbors or not. For
this purpose the accuracy of the prediction was checked for various values of k. When k was set
to 1 the forecast of the trajectory was just set equal to the found nearest neighbor. When it was
set to 2, 3, ... the forecast is calculated as a mean of respective number of nearest neighbors. The
median prediction errors for these versions of the algorithm with various k are listed in table 5.4.
Here k = 2 mean that simple two nearest neighbors were taken, while k = 1 + 1 mean that one
higher nearest neighbor and one lower nearest neighbor were taken. Other algorithm settings
were the same as in section 5.1.1.

Table 5.4: Median errors of prediction for various numbers of taken neighbors; 1+1 mean that one higher
nearest neighbor and one lower nearest neighbor were taken.

k Median
error, mm

1 15,7

2 10,1

1+1 6,6

3 10,6

4 12,9

5 13,0

6 13,8

7 15,6

Results showed that the proposed rule of taking neighbors (2 nearest neighbor, one of which is
higher and another one is lower than the currents trajectory) provide the most accurate prediction.
Particularly it provides more accurate results then than taking two nearest neighbors without
any additional rules. Using one nearest neighbor prediction decrease the accuracy as well as
increasing the number of neighbors more than 2.

A set of numerical experiments showed the following algorithm setting that provide the best results
in terms of accuracy and sufficient results in terms of performance. The trajectory forecast is
calculated as a mean of respective values of higher nearest trajectory from the dataset and lower
nearest trajectory from the dataset. The search for these nearest trajectories is made through
the cluster with 25 (if acquired dataset with 100 trajectories is used) or 256 (if artificial dataset
with 2048 trajectories is used) trajectories. The values for cluster size are not universal: they
are good for these specific experimental setup. The implementation of the algorithm was made
based on these settings described above.

5.2 Implementation

The algorithm of trajectory prediction is implemented to be used in the automated transport-
by-throwing system. This section discuss the details of this implementation. Subsection 5.2.1
discuss how the algorithm is integrated into the experimental hardware and software complex
for automated throwing and catching. Subsection 5.2.2 is concentrated on how the low-level
implementation of the prediction algorithm look like.

122

Implementation and experiments

5.2.1 Integration into the transportation system

The final examination of the algorithm is done via the catching experiments. These experi-
ments are performed on the specific experimental software and hardware complex for automated
throwing and catching at Technische Universitaet Wien [Pon16]. This system includes:

1. Numerically controlled throwing device (see section 3.1.1),

2. Robotic manipulator KUKA LWR4+ with 7 degrees of freedom, which is used to catch
balls [20],

3. Stereo cameras (see subsection 3.1.2),

4. Information processing subsystem.

The structural scheme of the system components is shown in figure 5.3. Communication between
various system components is organized as follows [Pon16]. Data processing in executed on two
personal computers (PC-1 and PC-2). PC-1 is intended for processing the data from cameras and
for prediction, while PC-2 is used for determining the instructions for the gripper. The throwing
device is switched from PC-1. When the ball intersect the light-barrier, the notification about
this event come to the synchronization generator, which synchronize the work of the entire system
based on the robot’s cycle time. When the new pair of frames come to PC-1 from the camera,
the new position of the ball is extracted from the images, the forecast is updated and the new
catching point in space and time is chosen. This information is then sent to PC-2, where the
instructions for the robot are updated.

Figure 5.3: Structure of the transport-by-throwing system.

The structural scheme of the entire data processing algorithm is shown in figure 5.4. It get a pair
of images from the cameras as an input. As an output it must return the coordinates of the point,

123

Implementation and experiments

where the catch will take place and the time of this event. This data is then transmitted to PC-2.
First the pixel coordinates of the ball center are extracted from both images using RANSAC
circle recognition (see subsection 3.1.2). This step is computationally expensive, so it is executed
in parallel on the graphic processor unit [Goe15]. All other steps are executed sequentially on the
central processing unit. 3D coordinates of the ball center are extracted from the pixel coordinates
using the operation of stereo triangulation (see subsection 3.1.3). After that the new prediction
is made. The result of the prediction is a reference of future positions of the ball’s center. One
of this positions is picked as a catching position [Pon16] and then transmitted to PC-2.

Figure 5.4: Structure of the software.

This algorithm is implemented as an executable code on C++. The parallelized ball center
recognition is implemeted using CUDA library. The predictor is implemented as a C++ function.
The details of this implementation are discussed in the next subsection.

5.2.2 Real-time predictor

As it was described in section 4.5 predictor include to different algorithms: prediction algorithm
and learning algorithm. Learning algorithm returns the sorted dataset of sample trajectories,
which is then used by the prediction algorithm. As the learning algorithm is executed prior
to starting the transportation system there is no need to make it real-time. So straightforward
MATLAB implementation of the learning algorithm according to section 4.5 was used for creating
the sorted dataset.

Prediction algorithm instead of learning algorithm must be real-time and interact with other
software components. Therefore it was implemented as a C++ function within the common soft-
ware project for data processing. Mainly this is a straight implementation of the computational
operations described in sections 4.2, 4.3, and 4.4. Three specific issues of the predictor’s C++
implementation should be mentioned:

124

Implementation and experiments

1. Management of the multiple calls: The predictor is called every time, when the new frame
is received from the vision system, however the first prediction could be made only after
receiving the frame number 40 (see subsection 4.2.3). Before it the predictor should only
store the received coordinates into the static variables. After the frame number 40 the
predictor recalculate the forecast after each new frame.

2. Management of the dataset : The dataset of sample trajectories is memory expensive (e.g.
dataset with 2048 trajectories is a 2048-by-100-by-3 array with volume of more than 1
megabyte) and the way of initializing it may affect on the time of computation. The fastest
way of initializing such an array is inserting it directly into the program code. Therefore
the MATLAB array returned by the learning algorithm is automatically transformed into
a line of C++ code, which is then inserted into predictor function.

3. The need of fast performing of two matrix operations: multiplying 4-by-4 matrix on 4-by-1
vector and defining the value of 4-by-1 vector by known result of multiplication of known
4-by-4 matrix on this vector. These operations are used many time on the reference of co-
ordinate transformations (see section 4.2). Implementation of these operations is discussed
below.

In MATLAB environment matrix operations are inserted into the language functionality. In C++
special libraries exist for matrix operations, however the use of these library lead to higher time
expenses. Therefore matrix multiplication and the opposite operation were implemented on low
level. According to the common rules of matrix multiplication if there is a need to multiply 4-by-4

matrix B =


b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b34

b41 b42 b43 b44

 and 4-by-1 matrix Y =


y1

y2

y3

y4

 the resulting matrix Z will be

4-by-1 Z =


z1

z2

z3

z4

 and the values in four rows of this matrix may be found using the following

formula:

z1 = b11 ∗ y1 + b12 ∗ y2 + b13 ∗ y3 + b14 ∗ y4,

z2 = b21 ∗ y1 + b22 ∗ y2 + b23 ∗ y3 + b24 ∗ y4,

z3 = b31 ∗ y1 + b32 ∗ y2 + b33 ∗ y3 + b34 ∗ y4,

z4 = b41 ∗ y1 + b42 ∗ y2 + b43 ∗ y3 + b44 ∗ y4.

(5.1)

Reverse transformation (defining unknown Y based on known Z) is made by solving the system
of linear equations expressed by matrix equation B ∗ Y = Z. There is a number of mathematical
approaches to solving such a system, here Cramer’s rule is chosen due to computational simplicity.
In Cramer’s method the value of Y is found using the following sequence of computations:

125

Implementation and experiments

∆ = det(B)

∆1 = det


z1 b12 b13 b14

z2 b22 b23 b24

z3 b32 b33 b34

z4 b42 b43 b44

 ,

∆2 = det


b11 z1 b13 b14

b21 z2 b23 b24

b31 z3 b33 b34

b41 z4 b43 b44

 ,

∆3 = det


b11 b12 z1 b14

b21 b22 z2 b24

b31 b32 z3 b34

b41 b42 z4 b44

 ,

∆4 = det


b11 b12 b13 z1

b21 b22 b23 z2

b31 b32 b33 z3

b41 b42 b43 z4

 .

(5.2)

y1 =
∆1

∆
,

y2 =
∆2

∆
,

y3 =
∆3

∆
,

y4 =
∆4

∆
.

(5.3)

The performance characteristics for the implemented prediction algorithm are discussed in sub-
section 5.1.2. The upper bound for the time of execution in 99,7% of runs is equal to 4.3 ms, which
is more than 2 times less than the interframe period. It mean that it is possible to recalculate
the forecast after each new received frame. When the catching experiments are performed (see
the next section), the prediction is everytime done within the interframe period.

5.3 Catching experiments

A set of catching experiments was made to examine the ability of the algorithm to give useful
results within the real transport-by-throwing system. The experiments were performed on the
experimental transportation system discussed in the previous section. As it was mentioned KUKA
LWR 4+ robotic arm is used as a catching device. The gripper is mounted on the arm. It use
a butterfly-net principle. The appearance of this end-effector is shown in figure 5.5. The net is
mounted on a metal ring with the diameter of 11 cm. As the diameter of the ball is equal to 7
cm such a ring allow prediction error up to 2 cm.

126

Implementation and experiments

Figure 5.5: Grippers used for ball catching.

A number of throws were made in order to catch the ball. The nominal throwing velocity was
set to 5 m/s and the third dataset from September 2015 (see subsection 3.1.4; it also include
the ball thrown with nominal velocity of 5 m/s) was used as a basis for prediction. Due to high
dispersion of the actual throwing velocities from the nominal values the trajectories often varied
from typical appearance and the balls were not caught succesfully. The list of throws sorted with
respect to throwing velocities is given in table 5.5. The reference of the object’s positions for
example successful catch is shown in figure 5.6.

Table 5.5: Results of catching experiments for 20 trials for various velocities between 4.5 and 5.5 m/s.

number v, m/s result

1 4.54 lost

2 4.58 lost

3 4.67 lost (rebound from the gantry)

4 4.68 lost (rebound from the gantry)

5 4.68 lost (rebound from the gantry)

6 4.69 lost (rebound from the gantry)

7 4.96 caught

8 4.98 caught

9 5.00 caught

11 5.02 caught

12 5.04 caught

13 5.07 caught

14 5.13 caught

15 5.24 lost (rebound from the net)

16 5.25 lost (rebound from the gantry)

17 5.28 lost

18 5.36 lost

19 5.46 lost

20 5.50 lost

According to the table all balls thrown with velocity near to nominal (from 4.8 to 5.2 m/s) were

127

Implementation and experiments

Figure 5.6: A sequence of the camera frames representing the successful catch of the ball.

succesfully caught. Higher variation of the velocity lead to losses of the ball by the mechanism.
Note that the dispersion of the throwing velocities in catching experiments was higher than in
the learning dataset. Therefore losses of the ball on the extreme velocities are expected. Use of
more dispersed datasets should decrease the influence of this effect. The successful catches on
the near-to-nominal velocities prove that the algorithm may be successfully applied in transport-
by-throwing.

128

6 Conclusion and Future Work

The research made in the thesis was initially aiming to develop a novel approach for predicting the
trajectory of the thrown object. In previous chapters 4 and 5 development and implementation
of the new trajectory predictor was described in details. This concluding chapter finalize the
research made in this thesis. Section 6.1 summarize main results from the chapters 3, 4 and 5.
It tells briefly what is done. Section 6.2 tells what is still to do. It discuss the open issues, which
still remain after the research made, and propose the ways of future development.

6.1 Results of research

A sample-based algorithm for predicting the trajectory of a thrown body is proposed, developed
and evaluated within this thesis. It allows predicting the future coordinates of the flying body
in real time based on measured coordinates at the beginning stage of flight. This algorithm is
applied on the robotic system for catching thrown objects. This system includes:

1. Numerically controlled throwing device. Discussion on this device is made in section 3.1.1.
It throws the object with specified velocity, however real velocity of throw has random
deviations from the nominal setting. The throwing device is supplied by two light barriers,
which measure time and actual velocity of throw.

2. Robotic manipulator KUKA LWR4+ with 7 degrees of freedom, which is used to catch
balls.

3. Camera subsystem. Real-time tracking of the flying spherical object is done using the stereo
system consisting of two cameras. Both cameras have image sensors with 2048 by 2048
pixels. Reconstruction of the object’s location in space is done via the stereo triangulation.

4. Information processing subsystem. It includes two personal computers (one is used for
processing the data from the cameras and another one is used for defining the commands
for the robot) and controller devices, which control the robot and the throwing device.

5. Hardware for synchronization and communication between the components of the system.

During the development of the algorithm the following intermediate tasks were solved:

129

Conclusion and Future Work

1. An analysis of observer’s performance and accuracy : This task is discussed in chapter 3. A
set of throwing experiments was made in order to explore the accuracy of tracking and to
collect the datasets for learning trajectory prediction. Determining the ball pixel position
on the images is done via RANSAC circle detection (section 3.1.2). Determining the ball’s
3D position from its pixel positions is done via the stereo triangulation (section 3.1.3).
Accuracy analysis showed that the observer is determining the 3D location of the static
spherical objects with standard deviation of 2.25 mm (see section 3.2). The influence of
the objects on the scene make accurate positioning of the flying ball on the long distances
impossible (see subsection 3.3.1). Therefore background subtraction is applied to overcome
this influence. With use of subtraction accuracy of positioning for flying objects become
similar to the results for static objects. However the errors of the distance from the ball
to the cameras are too big, when this distance is more than two meters (subsection 3.3.2).
When the cameras are located behind the throwing device this errors are localized in one
spatial dimension therefore such camera location is likely. Polynomial fitting in depth
dimension is applied in order to eliminate errors on long distances (subsection 3.3.2).

2. The development of an algorithm for trajectory prediction based on machine learning and
the learning algorithm: k Nearest Neighbours (kNN) are chosen as a basic technique for
trajectory prediction (subsection 2.5.4). The prediction is made based on the sample trajec-
tories stored in the dataset. The kNN forecasting is done in two steps: on the first step the
search through the dataset is made. This search aims tof found the trajectories in the set
that are the most similar (nearest) to the current trajectory. The development of the search
operation is discussed in subsection 4.3.2. The distance between the corresponding points
on the trajectories is used as a metric for determining the similarity of trajectories. As a
results of the search two trajectories from the set are returned: nearest higher trajectory
and nearest lower trajectory. The second step of the algorithm cinsist in forecasting the
current trajectories based on known nearest neighbors (subsection 4.3.1). The future part
of the current trajectory is determied a weighted mean of the corresponding parts of the
nearest neighbors. The weights of the neighboring trajectories may be defined in two ways.
First, in simple nearest neighbors the weights of both neighbors are set to 0.5. Secondly,
in weighted nearest neighbors the weights are defined with respect to the mean distances
between the corresponding points on the current trajectory and on its neighbors. Further
exploration showed that simple nearest neigbours provide higher accuracy than weighted
nearest neighbors.
Two improvements of the nearest neighbor predictor are made. First, the reference of the
coordinate transformations is inserted into the algorithm. The stereo triangulation return
the 3D coordinates of the object in the coordinate system connected with the optical center
of the left cameras. In section 4.2 it is proposed to translate these coordinates into the new
coordinate system (zero-point coordinate system), which is defined in the following way. The
origin of the coordinate system is put to the point on the trajectory, which is measured after
the throw. One coordinate axis is set collinear with the gravity direction, while another one
is set collinear with the horizontal projection of the launching velocity. The sample trajec-
tories are translated into this coordinate system and stored in the database in zero-point
coordinates. When the prediction of the current trajectory is done, it is first translated to
zero-point coordinate system, then predicted, and finally the result is translated back to the
world coordinate system. Use of zero-point coordinate system make the algorithm invariant
to the spatial position of the launching point, to the horizontal direction of throw and to
the location of the cameras. It also simplifies the process of detecting erroneous position

130

Conclusion and Future Work

measurements.
The second improvement consist in comparing trajectory with relatively small subset of the
large entire dataset (see section 4.4). For this purpose mean horizontal velocity of flight is
estimated for each trajectory from the set. After that all trajectories in the set are sorted
with respect to this parameter. When the current trajectory is predicted it is compared
only with those sample trajectories, which have similar value of the horizontal velocity. This
lead to significant decrease of the volume of computations. Also it provide fast search for
the subset of trajectories similar to the current one.
Predictor software include two main modules: prediction algorithm and learning algorithm
(see section 4.5). Learning algorithm consist of several operations made with the dataset
prior to the prediction. These operations are: translation of the sample trajectories into the
zero-point coordinate system, estimating mean horizontal velocity for each sample trajec-
tory, and sorting the trajectories in the set with respect to mean horizontal velocity. Pre-
diction algorithm include a set of operations, which are made while forecasting the current
trajectory. These operations are: translation of the current trajectory into the zero-point
coordinate system, estimating mean horizontal velocity for the current trajectory, allocating
the subset of similar trajectories from the entire dataset, search through this subset for two
nearest neighbors, forecasting the current trajectory based on found nearest neighbors, and
translation of the forecast to robot coordinate system.

3. The evaluation of the accuracy of the constructed model : It is made by applying the al-
gorithm to the trajectories observed by the cameras in the throwing experiments. These
numerical experiments are described in section 5.1. They are used to determine the algo-
rithm settings, which provide the best accuracy and sufficient performance. The following
output is got from this experiments. Simple nearest neighbors show better accuracy than
weighted nearest neighbors (subsection 5.1.1). For the current experimental setup the best
accuracy is provided when the subset of similar trajectories is approximately 1/8 of the
entire dataset (subsection 5.1.2).

4. The integration of the proposed prediction module into the existing transport-by-throwing
system: The predictor is inserted into the software module for processing the data from
the cameras (subsection 5.2.1). The results of prediction are then given to the software
module which determines the catching movement of the gripper. Predictor is implemented
as a C++ function which is called by the data processing software (subsection 5.2.2). The
learning algorithm is implemented as a MATLAB program: it generate the sorted dataset,
which is then used by the predictor. The tests of the implemented predictor showed that
it is able to perform all the prediction within the time-out period between receiving two
frames from the cameras.

5. The final evaluation of the whole transport-by-throwing route with the integrated learning-
based prediction algorithm: On the final step of the experiments the transportation system
was able to catch flying balls based on the prediction results provided by the algorithm (sec-
tion 5.3). This shows that the algorithm is in principle applicable for the robotic catching.

The result of the entire doctoral research is a novel algorithm for predicting the trajectory of a
thrown spherical body. The main differences of this algorithm from the state-of-the-art predictors
are the following:

1. No accurate physical model of the flight is needed. The predictor works only based on
previous examples.

131

Conclusion and Future Work

2. The method does not require massive parallel processing, instantaneous feedback and use
of special hardware. All the calculations are made on the standard processor unit in a
sufficient time.

3. The method allow to compare current trajectory with high number of trajectories stored
in the database and all these trajectories are taken in mind without high computational
expenses.

4. The predictor is independent from the position of the launching point, from the horizontal
direction of throw and from the location of the observer (see section 4.2).

6.2 Future work and outlook

The main outcome from the thesis consist in proved theoretical applicability of the k nearest
neighbors to the trajectory prediction task for the system of material transportation by throwing
and catching. This result is to be extended in future by developing the new versions of the
algorithm, which may be applied in practical systems for material transportation. The catching
experiments from the section 5.3 are made for the relatively specific setup. Future development
of the predictor requires coming out of these constraints. The significant constraints of this setup
are the following:

• Relatively small variation of the throwing parameters: the training set included the throws
with launching velocities from 3.7 to 5.2 m/s, mainly 4 to 5 m/s (see section 3.1). This
means that the algorithm is able to predict the throws accurately within the specific range
of launching velocities. Throwing experiments from section 5.3 showed that the gripper
miss the balls thrown with velocities less than 4.7 m/s and more than 5.2 m/s. Extending
the work of the algorithm on wider ranges of velocities require collecting larger and more
dispersed datasets of trajectories. Exploration of the algorithm accuracy and performance
with use of higher ranges of trajectories is a significant direction of future work.

• Linear throwing of objects: Other ways of throwing (e.g. throws by a fast-rotating lever)
were out of consideration. The linear throwing devices are good as they provide good
dynamic stability of flight and allow minimizing spin (e.g. the lever thrower used in experi-
ments in [Pon09] could not throw objects without a spin). However lever-throwing may be
performed by the robotic arms of the same type, as used for catching. These transportation
systems would be more flexible and universal then systems using the specific throwing de-
vices. The predictability of the trajectories caused by lever-based throws require additional
exploration.

• Unified spherical objects are thrown: As it was stated in the end of chapter 1 tennis ball
was chosen as an experimental object to throw and to catch. This was motivated by
the good knowledge about its aerodynamic properties. However real objects, which may be
transported by throwing and catching in the industrial environment, have more complicated
shape. Predicting trajectories of such bodies creates a number of questions to discuss. First
of all the number of parameters to predict increases. of the object. Position of the spherical
bodies is determined by three parameters: coordinates of the center-of-mass in 3D space.
The plane-of-flight representation of the trajectories reduce the number of dimensions to
two. If the object has more complicated shape three more parameters appears, which

132

Conclusion and Future Work

express object’s orientation in space [Kim12]. These parameters also need and application
of the algorithm for predicting them has to be developed. In state-of-the-art literature this
task has been considered e.g. in [Fra12] and [Kim12] for other prediction algorithms. One
more important aspect of applying the algorithm for prediction of asymmetric bodies is
whether the plane-of-flight representation or not? I.e. does the trajectory of the flying
object with the specific shape curve to the side or not? For some object trajectories do
not curve (e.g. cylinders fron [Fra12]) for some they do. The differentiation of such objects
has to be made in further exploration. Even if the object’s trajectory curves it may be
transformed to the direction-independent representation by aligning one of the coordinate
axis to the horizontal direction of throw. The task of defining this direction for the curved
trajectory is to be solved in this case.

• Specific abilities of the catching device: the gripper based on the butterfly-net principle is
used in catching experiments (section 5.3). This shape is chosen as it set hard correspon-
dence between the prediction error and the rate of success. The allowed error was chosen
relatively small: 20 mm. There are a number of other gripper constructions, which provide
higher tolerance to prediction errors [Nis97, Cig15] however catching with use of active
grasping [Nam03a, Fra07, Bae11, Cig15] require development of more complicated catching
strategies.

• The object is thrown in such a way to make the catch easier : In other words the thrower does
want that the catcher catch the ball successfully. This concept is defined by the concept of
material transportation by throwing. In the industrial environment the thrower is adjusted
in such a way that provide the easiest catching. The strategies when the thrower does not
want the ball to be caught could be useful for other applications of trajectory prediction,
e.g. robotic table-tennis. These strategies would require

• Use of the stereo vision system with two cameras: Increasing the number of cameras may
improve the accuracy of the vision system. For example putting the additional pair of
caneras observing the gripping area may eliminate the effect of increasing errors in depth
direction on long distances discussed in subsection 3.3.2.

• Sorting trajectories with respect to horizontal velocity : As it was stated in section 4.4 the
search for the nearest neighbors is made within the subset of trajectories, which has the
horizontal velocity similar to the current one. Two more parameters were proposed: velocity
scalar and the elevation of throw. They were rejected as they are hard to estimate. But
hard does not mean impossible. The ways of their estimation may be found in future work.
Also some more ways of subset allocation may be found.

• Using euclidean distance as metric of neareness: The neighbors with the smallest euclidean
distance between the corresponding points was chosen as the nearest (see subsection 4.3.2).
Other metrics of defining the nearest neighbors may be found and considered in the future
work.

Further development of the algorithm faces with a number of new issues and possible improve-
ments. Some of them are mentioned in the list above. One more possible direction of the further
research is estimating the quality of the sample trajectory in the dataset. Quality here means
how accurate can we predict other trajectories with use of this trajectory. If the trajectory is
measured with errors its use for prediction will be harmful. Better accuracy of prediction with
use of artificial datasets (which are free of error) partially prove this statement. However the

133

Conclusion and Future Work

exploration of this influence is also a part of future work. The method should be developed,
which allow detecting the bad trajectories and rejecting them from the dataset.

These were mainly the local details of further development of the proposed algorithm in order to
improve its characteristcs. From the global point of view also the ways of further development
exist. The algorithm should become more universal and less dependent from the specific setup.
As it was already mentioned one of the way is use more dispersed datasets and considering the
situation, when the throw is not precised in order to let the catcher grasp the object. In this case
the concept may be applied not only in the specific setups. One more direction of development is
making the agorithm able to predict the objects of various shapes after a single learning. Above a
different situation was considered: in principle the objects may be various, but the single learning
train the predictor to forecast only the objects with one specific shape. However humans are
able to catch objects of various shapes without training its shape. When they see flying object
they are estimating what will be the trajectory. The next steps that increase the universality is
developing such skills in automated systems.

Implementing of the transport-by-throwing system in the real industrial environment face us with
the number of open issues, technical challenges and tasks. The scientific and engineering aspects
of Transport-by-Throwing networks are waiting for development. The process of prediction and
catching should be integrated with the control of the object processing by machine tools into the
common automated system. In this case it become a part of common automated manufactur-
ing process. The way of such integration depends on the specificity of the production process
on ”what” and ”how” the factory produce. Large scale transportation network gives the new
questions and need an additional development of the method. The TbT network may consist of
a number of routes where one catching device must catch objects form different sources and one
throwing device can throw objects towards several destinations. One example of issue, appearing
in such networks is high number of moving objects on the scene. This make tracking the flying
object more difficult to implement. In this thesis the background subtraction is used to differ-
entiate object’s appearance from the scene. When the background is dynamic this method does
not work. This is only example issue, which appears when adapting the system to the complex
industrial environment.

As it was mentioned above robotic catching was not appeared as a part of TbT, but TbT use it as
a part of object transportation. Initially robotic catching is considered as a step of improving the
abilities of robotic systems, of making them able to make human-like actions in physical world.
This motivation for robotic catching is still actual. If the robots are more similar to humans
the number of new possible applications for them appears. The prediction of the trajectory of
the thrown object may be done not only for catching this object in the industrial environment.
Already on this stage it may be applied example in robotic table-tennis. Future of the robotics
may give as more applications.

Prediction of flying body trajectory is not the only task, for which the proposed forecasting
algorithm may be used. There are a lot of existing applications for time-series forecasting. The
characteristics of predicting the ballistic trajectory in comparison with other forecasting task (e.g.
predicting the situation of the stock market) are:

1. The process is not influent it has the beginning and the end.

2. No accurate analytical model of the process is available but the rules of the process exists.
It is not random and under the same conditions take place in the same way.

134

Conclusion and Future Work

3. There are several factors influencing on the process but the influence of each factor cannot
be accurately separated from the influence of other factors (e.g. separate influence of the
throwing velocity and the elevation of throw).

4. The prognosis must be done in a very small period of time.

For the processes that satisfy these conditions, the introduced algorithm could be an effective
method for time series forecasting.

135

Literature

[Acc03] Accadia, C., Mariani, S., Casaioli, M., Lavagnini, A., Speranza, A.: Sensitivity of Precipitation

Forecast Skill Scores to Bilinear Interpolation and a Simple Nearest-Neighbor Average Method

on High-Resolution Verification Grids, Weather andForecasting, Vol. 18, No. 5, pp. 918 to

932, October 2003.

[Ach72] Achenbach, E.: Experiments on the flow past spheres at very high Reynolds number, Journal of

Fluid Mechanics, No. 54, pp. 565 to 575, August 1972.

[Ada04] Adan, A., Molina, F., Morena, L.: Disordered Patterns Projections for 3D Motion Recovering,

International Symposium on 3D Data Processing, Visualization and Transmission,

Thessaloniki, Greece, pp. 262 to 269, September 2004.

[Ada05] Adan, A., Molina, F., Vazquez, A. S., Morena, L.: 3D Feature Tracking Using a Dynamic

Structured Light System, Canadian Conference on Computer and Robot Vision, pp. 168 to 175,

May 2005.

[Akh11] Akhter, N: Visual Tracking of Mechanically Thrown Objects with Planar Surfaces,

Dissertation, Faculty of Electrical Engineering, Vienna University of Technology, September

2011.

[Akh12] Akhter, N.: Tracking the planar-textured objects: on the way to transport objects in packaging

industry by throwing and catching, International Conference on Pattern Recognition

Applications and Methods, Vilamoura, Algarve, Portugal, pp. 316 to 321, February 2012

[Ala98] Alaways, L. W.: Aerodynamics of the Curve-Ball: an Investigation of the Effects of Angular

Velocity on Baseball Trajectory, Dissertation, Office of Graduate Studies, University of

California, Davis, 1998.

[Ala08] Alam, F., Subic, A. J., Watkins, S., Naser, J., Rasul, M.: An experimental and computational

study of aerodynamic properties of rugby balls, WSEAS Transactions on Fluid mechanics:

Special Issue on Sustainable Energy and Environmental Fluid Mechanics, Vol. 3, No. 3, pp.

279 to 286, March 2008.

[Ala10] Alam, F., Chowdhury, H., Moria, H., Brooy, R. L., Subic, A.: A Comparative Study of Golf

Ball Aerodynamics, Australasian Fluid Mechanics Conference, Auckland, New Zealand,

December 2010.

[All93] Allen, P. K., Timcenko, A., Yoshimi, B., Michelman, P.: Automated Tracking and Grasping of

a Moving Object with a Robotic Hand-Eye System, IEEE Transactions on Robotics and

Automation, Vol. 9, No. 2, pp. 152 to 165, April 1993.

[Alp97] Alpaydin, E.: Voting over Multiple Condensed Nearest Neighbors, Springer Artificial

Intelligence Review, Vol. 11, No. 1, pp 115 to 132, February 1997.

[Alq13] Al-Qahtani, F. H., Crone, S. F.: Multivariate k-Nearest Neighbour Regression for Time Series

data - a novel Algorithm for Forecasting UK Electricity Demand, 2013 International Joint

Conference on Neural Networks, Dallas, USA, pp. 1 to 8, August 2013.

136

[And85] Andersson, R. L.: Real Time Intelligent Visual Control of a Robot, IEEE Workshop on

Intelligent Control, New York, USA, pp. 1 to 6, August 1985.

[And88] Andersson, R. L.: Aggressive trajectory generator for a robotic ping-pong player, IEEE

International Conference on Robotics and Automation, Philadelphia, USA, Vol. 3, pp. 188 to

193, April 1988.

[And89a] Andersson, R. L.: Understanding and applying a robot ping-pong player's expert controller,

IEEE International Conference on Robotics and Automation, Scottsdale, USA, Vol. 3, pp.

1284 to 1289, May 1989.

[And89b] Andersson, R. L.: Dynamic sensing in a ping-pong playing robot, IEEE Transactions on

Robotics and Automation, Vol. 5, No. 6, pp. 728 to 739, December 1989.

[Ang05] Angiulli, F.: Fast Condensed Nearest Neighbor Rule, International Conference on Machine

Learning, Bonn, Germany, pp. 25 to 32, August 2005.

[Asa07] Asai, T., Seo, K., Kobayashi, O., Sakashita, R.: Fundamental aerodynamics of the soccer ball,

Sports Engineering, Vol. 2007, No. 10, pp. 101 to 110, October 2007.

[Asa10] Asai, T., Ito, S., Seo, K., Hitotsubashi, A.: Aerodynamics of a new volleyball, Procedia

Engineering, Vol. 8, No. 2, pp. 2493 to 2498, June 2010.

[Avi00] Avidan, S., Shashua, A.: Trajectory triangulation: 3D reconstruction of moving points from a

monocular image sequence, IEEE Transactions on Pattern Analysis and Machine Intelligence,

Vol. 22, No. 4, pp. 348 to 357, April 2000.

[Bae10] Baeuml, B., Wimboeck, T., Hirzinger, G.: Kinematically Optimal Catching a Flying Ball with

a Hand-Arm-System, IEEE/RSJ International Conference on Intelligent Robots and Systems,

Taipei, Taiwan, pp. 2592 to 2599, October 2010.

[Bae11] Baeuml, B., Schmidt, F., Wimboeck, T., Birbach, O., Dietrich, A., Fuchs, M., Friedl, W.,

Frese, U., Borst, C., Grebenstein, M., Eiberger, O., Hirzinger, G.: Catching Flying Balls and

Preparing Coffee: Humanoid Rollin’Justin Performs Dynamic and Sensitive Tasks, IEEE

International Conference on Robotics and Automation, Shanghai, China, pp. 3443 to 3444,

May 2011.

[Bae11a] Baeuml, B., Birbach, O., Wimboeck, T., Frese, U., Dietrich, A., Hirzinger, G.: Catching Flying

Balls with a Mobile Humanoid: System Overview and Design Considerations, IEEE-RAS

International Conference on Humanoid Robots, Bled, Slovenia, pp. 513 to 520, October 2011.

[Bai78] Bailey, T., Jain, A. K.: A note on distance weighted k-nearest neighbor rule, IEEE Transactions

Systems Cybernetics, Vol. 8, pp. 311-313, 1978.

[Bar08] Barteit, D., Frank, H., Kupzog, F.: Accurate prediction of interception positions for catching

thrown objects in production systems, IEEE International Conference on Industrial Informatics.

Daejeon, Korea, pp. 893 to 898, July 2008.

[Bar09] Barteit, D., Frank, H., Pongratz, M., Kupzog, F.: Measuring the Intersection of a Thrown

Object with a Vertical Plane, IEEE International Conference on Industrial Informatics, Cardiff,

UK, pp. 680 to 685, June 2009.

[Bar09a] Barber, S., Chin, S. B., Carre, M. J.: Sports ball aerodynamics: A numerical study of the erratic

motion of soccer balls, Computers & Fluids, Vol. 38, pp. 1091 to 1100, November 2008.

[Bar11] Barteit, D.: Tracking of Thrown Objects, Dissertation, Faculty of Electrical Engineering,

Vienna University of Technology, December 2011.

[Bat10] Batz, G., Yaqub, A., Wu, H., Kuehnlenz, K., Wollherr, D., Buss, M.: Dynamic Manipulation:

Nonprehensile Ball Catching, Mediterranean Conference on Control & Automation,

Marrakech, Morocco, pp. 365 to 370, June 2010.

[Bea10] Beale, D., Iravani, P., Hall, P.: Statistical Visual-Dynamic Model for Hand-Eye Coordination,

IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp.

3931 to 3936, October 2010.

137

[Ben08] Benavoli, A., Farina, A., Ortenzi, L.: MLE in presence of equality and inequality nonlinear

constraints for the ballistic target problem, Radar Conference, Rome, Italy, pp. 1 to 6, May

2008.

[Bha10] Bhatia, N., Vandana: Survey of Nearest Neighbor Techniques, International Journal of

Computer Science and Information Security, Vol. 8, No. 2, February 2010.

[Bir09] Birbach, O., Frese, U.: A Multiple Hypothesis Approach for a Ball Tracking System, Spinger

Lecture Notes in Computer Science, Vol. 5815, pp. 435 to 444, October 2009.

[Bir11] Birbach, O., Frese, U., Baeuml, B.: Realtime Perception for Catching a Flying Ball with a

Mobile Humanoid, IEEE International Conference on Robotics and Automation, Shanghai,

China, pp. 5955 to 5962, October 2010.

[Bir11a] Birbach, O., Frese, U.: Estimation and Prediction of Multiple Flying Balls Using Probability

Hypothesis Density Filtering, IEEE/RSJ International Conference on Intelligent Robots and

Systems, San Francisco, USA, pp. 3426 to 3433, September 2011.

[Bit76] Bitner, J. R., Erlich, G, Reingold, E. M.: Efficient Generation of the Binary Reflected Gray

Code and its Applications, Communications of the Association for Computer Machinery, Vol.

19, No. 9, pp. 517 to 521, September 1976.

[Bor08] Borko, F.: Encyclopedia of Multimedia, 2nd Edition, Springer Science + Business Media LLC,

1000 pgs, 2008.

[Bor09] Borst, C., Wimboek, T., Schmidt, F., Fuchs, M., Brunner, B., Zacharias, F., Giordano, P. R.,

Konietschke, R., Sepp, W., Fuchs, S., Rink, C., Albu-Schaeffer, A., Hirzinger, G.: Rollin’

Justin - Mobile Platform with Variable Base, IEEE International Conference on Robotics and

Automation, Kobe, Japan, pp. 1597 to 1598, May 2009.

[Boy87] Boyer, K. L., Kak, A. C.: Color-Encoded Structured Light for Rapid Active Ranging, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. I, pp. 14 to 28,

January 1987.

[Bri59] Briggs, L. J.: Effect of Spin and Speed on Lateral Deflection (Curve) of a Baseball and Magnus

Effect for Smooth Spheres, American Journal on Physics, No.27, pp. 589 to 596, March 1959.

[Can86] Canny, J.: A Computational Approach to Edge Detection, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 8, No. 6, November 1986.

[Cas98] Caspi, D., Kiryari, N.: Range Imaging with Adaptive Color Structured Light, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 5, pp. 470 to 480,

May 1998.

[Cha68] Chapman, S.: Catching a Baseball, American Journal of Physics, Vol. 36, No. 10, pp. 868 to

870, October 1968.

[Cha80] Chang, C. B.: Ballistic Trajectory Estimation with Angle-only Measurements, IEEE

Transactions on Automatic Control, Vol. 25, No. 3, pp. 474 to 480, June 1980.

[Cha00] Chadwick, S. G., Haake, S. J.: The drag coefficient of tennis balls, International Conference on

the Engineering of Sport, Sydney, Australia, pp. 169 to 176, June 2000.

[Cha14] Changey, S., Pecheur, E., Brunner, T.: Attitude Estimation of a projectile using Magnetometers

and Accelerometers, IEEE/ION Position, Location and Navigation Symposium, Monterey,

USA, pp. 1168 to 1173, May 2014.

[Che09] Chen, L. M., Chen Y. J.: A study of shuttlecock’s trajectory in badminton, Journal on Sports

Science and Medicine, Vol. 8, pp. 657 to 662, January 2009.

[Chi79] Chitananda G. K., Krishna G.: The Condensed Nearest Neighbor Rule Using the Concept of

Mutual Nearest Neighborhood, IEEE Transactions on Information Technology, Vol. 25, No. 4,

pp. 488 to 490, July 1979.

138

[Chi95] Chiou, R. N., Chen, C. H., Hung, K. C., Lee, J. Y.: The Optimal Camera Geometry and

Performance Analysis of a Trinocular Vision System, IEEE Transactions on Systems, Man and

Cybernetics, Vol. 25, No. 8, August 1995.

[Cho11] Choe, T. E., Rasheed, Z., Taylor, G., Haering, N.: Globally Optimal Target Tracking in Real

Time using Max-Flow Network, IEEE International Conference on Computer Vision,

Barselona, Spain, pp. 1855 to 1862, November 2011.

[Chu03] Chudinov, P. S.: An optimal angle of launching a point mass in a medium with quadratic drag

force, Indian Journal on Physics, Vol. 77B, pp. 465 to 468, December 2003.

[Cig15] Cigliano, P., Lippiello, V., Ruggiero, F., and B. Siciliano, B.: Robotic Ball Catching with an

Eye-in-Hand Single-Camera System, IEEE Transactions on Control System Technology, Vol.

23, No. 5, pp. 1657-1671, May2015.

[Coo96] Cooke, A. J., Shuttlecock design and development, in Haake, S.: the Engineering of Sport,

Sheffield, Tailor & Francis.

[Coo99] Cooke, A. J., Shuttlecock aerodynamic, Sport Engineering, Vol. 2, pp. 85 to 96, January 1999

[Coo00] Cooke, A. J.: An Overview of Tennis Ball Aerodynamics, Sports Engineering, No. 3 2000,

pp.123 to 129, February 2000.

[Cov67] Cover, T. M., Hart, P. E.: Nearest Neighbor Pattern Classification, IEEE Transactions in

Information Theory, Vol. IT-13, pp. 21-27, 1967.

[Dav49] Davies, J. M.: The Aerodynamics of Golf Balls, Journal of Applied Physics, Vol. 20, No. 9, pp.

821 to 829, September 1949.

[Dav96] Davies, C.J., Nixon, M.S.: Sensing Surface Discontinuities via Coloured Spots, International

Workshop on Image and Signal Processing, Manchester, UK, pp. 573 to 576, November 1996.

[Fae08] Faes, L., Erla, S., Nollo, G: Quantifying the complexity of short-term heart period variability

through k nearest neighbor local linear prediction, Conference on Computers in Cardiology,

Bologna, Italia, pp. 549 to 552, September 2008.

[Far02] Farina, M., Ristic, B., Benvenutti, D.: Tracking a Ballistic Target: Comparison of Several

Nonlinear Filters, IEEE Transactions on Aerospace and Electronic Systems, Vol. 38, No. 3, pp.

854 to 867, July 2002.

[Fed90] Feddema, J. T., Lee, C. S. G.: Adaptive Image Feature Prediction and Control for Visual

Tracking with a Hand-Eye Coordinated Camera, IEEE Transactions on Systems, Man and

Cybernetics, Vol. 20, No. 5, pp. 1172 to 1183, September 1990.

[Fis81] Fischler, M. A., Bolles, R. C.: Random Sample Consensus: A Paradigm for Model Fitting with

Applications to Image Analysis and Automated Cartography, Communications of the

Association for Computing Machinery, Vol. 24, No. 6, pp. 381 to 395, June 1981.

[Fra06] Frank, H., Wellerdick-Wojtasik, N., Hagebeuker, B., Novak, G., Mahlknecht, S.: Throwing

Objects: a bio-inspired Approach for the Transportation of Parts, IEEE International

Conference on Robotics and Biomimetics, Kunming, China, pp. 91 to 96, December 2006.

[Fra07] Frank, H., Barteit, D., Wellerdick-Wojtasik, N., Frank, T., Novak, G., Mahlknecht, S.:

Autonomous Mechanical Controlled Grippers for Capturing Flying Objects, IEEE International

Conference on Industrial Informatics, Vienna, Austria, pp. 431 to 436, June 2006.

[Fra08] Frank, H.: Design and Simulation of a Numerical Controlled Throwing Device, Second Asia

International Conference on Modeling and Simulation AICMS 08, Kuala Lumpur, Malaysia,

pp. 777 to 782, May 2008.

[Fra08a] Frank, H., Barteit, D., Meyer, M., Mittnacht, A., Novak, G., Mahlknecht, S.: Optimized

Control Methods for Capturing Flying Objects with a Cartesian Robot, IEEE Conference on

Robotics, Automation and Mechatronics, Chengdu, China, pp. 160 to 165, September 2008.

139

[Fra09] Frank, H., Mittnacht, A., Scheiermann, J.: Throwing of Cylinder Shaped Objects, IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, Singapore, pp. 59 to 64, July

2009.

[Fra10] Frank, T, Schroedter, C., Janoske, U: Holistic Modeling of Trajectories for Cylinder-Shaped

Objects, European Symposium on Computer Modelling and Simulation, Pisa, Italy, pp. 223 to

228, November 2010.

[Fra11] Frank, T., Janoske, U., Schroedter, C.: Detection of Position and Orientation of Flying

Cylinder Shaped Objects by Distance Sensors, IEEE International Conference on

Mechatronics, Istanbul, Turkey, pp. 1623 to 1629, April 2011.

[Fra11a] Frank, H., Frank, T., Mittnacht, A., Sichau, C.: A Bioinspired 2DOF Throwing Robot, IEEE

Africon, Livingstone, Zambia, pp. 1 to 6, September 2011.

[Fra12] Frank, T., Janoske, U., Mittnacht, A., Schroedter, C.: Automated Throwing and Capturing of

Cylinder-Shaped Objects, IEEE International Conference on Robotic and Automation, Saint

Paul, Minnesota, USA, pp. 5264 to 5270, May 2012.

[Fre01] Frese, U., Baeuml, B., Haidacher, S., Schreiber, G., Schaefer, I., Haehnle, M., Hirzinger, G.:

On-the-Shelf Vision for a Robotic Ball Catcher, IEEE/RSJ International Conference on

Intelligent Robots and Systems, Maui, Hawaii, USA, pp. 591 to 596, November 2001.

[Fro84] Frohlich, C.: Aerodynamic drag crisis and its possible effect on the flight of baseballs,

American Journal of Physics, Vol. 52, No. 4, pp. 325 to 364, April 1984.

[Fuc08] Fuchs, S., Hirzinger, G.: Extrinsic and Depth Calibration of ToF-cameras, IEEE Computer

Society Conference on Computer Vision and Pattern Recognition Workshops, Ancorage, USA,

pp. 1 to 6, June 2008.

[Fuj14] Fujimoto, Y., Sugiura, T., Murata, N.: K-Nearest Neighbor Approach for Forecasting Energy

Demands Based on Metric Learning, International Work-Conference on Time Series, Granada,

Spain, pp. 1127 to 1137, June 2014.

[Fur06] Furukawa, N., Namiki, A., Taku, S., Ishikawa, M.: Dynamic Regrasping Using a High-speed

Multifingered Hand and a High-speed Vision System, IEEE International Conference on

Robotics and Automation, Orlando, Florida, USA, pp. 181 to 187, May 2006.

[Gan10] Ganapathi, V., Plagemann, C., Koller, D., Thrun, S.: Real Time Motion Capture Using a Single

Time-Of-Flight Camera, IEEE Conference on Computer Vision and Pattern Recognition, San

Francisco, USA, pp. 755 to 762, June 2010.

[Gar11] Garg, R., Indu, S., Chadhury, S.: Camera and Light Source Placement: A Multi-Objective

Approach, Third National Conference on Computer Vision, Pattern Recognition, Image

Processing and Graphics, Hubli, India, pp. 187 to 191, December 2011.

[Gat72] Gates, G.: The reduced nearest neighbor rule, IEEE Transactions on Information Theory, Vol.

18, No. 3, pp. 431 to 433, May 1972.

[Gil99] Gillies, M. F. P., Dodgson, N. A.: Ball Catching: An Example of Psychologically-based

Behavioural Animation, Eurographics UK 17th Annual Conference, Cambridge, UK, pp. 229

to 236, April 1999.

[Goe15] Goetzinger, M.: Object Detection and Flightpath Prediction, Diploma Thesis, Faculty of

Electrical Engineering, Vienna University of Technology, June 2015.

[Gof09] Goff, J. E., Carre, M. J.: Trajectory analysis of a soccer ball, American Journal of Physics, Vol.

77, pp. 1020 to 1027, November 2009.

[Gof13] Goff, J. E.: A review of recent research into aerodynamics of sport projectiles, Sports

Engineering, Vol. 2013, No. 4, pp. 137 to 154, April 2013.

[Gro07] Groover, M. P.: Automation, Production Systems, and Computer-Integrated Manufacturing,

Upper Saddle River, NJ, USA : Prentice Hall PTR, 840 pp., 2007.

140

[Guo12] Guo, F., Short-term traffic prediction under normal and incident conditions using singular

spectrum analysis and the k-nearest neighbour method, IET and ITS Conference on Road

Transport Information and Control, London, UK, pp. 1-6, September 2012.

[Hal01] Hall-Holt, O., Rusinkiewics, S.: Stripe Boundary Codes for Real-Time Structured-Light Range

Scanning of Moving Objects, IEEE International Conference on Computer Vision, Vancouver,

Canada, Vol. 2, pp. 359 to 366, July 2001.

[He91] He, X., Benhabib, B., Smith, K. C., Safaee-Rad, R.: Optimal Camera Placement for an Active-

Vision System, IEEE international conference on decision aiding for complex systems,

Charlottesville, USA, pp. 69 to 74, October 1991.

[Her09] Herrejon, R., Kagami, S., Hashimoto, K.: Position Based Visual Servoing for Catching a 3-D

Flying Object Using RLS Trajectory Estimation from a Monocular Image Sequence, IEEE

International Conference on Robotics and Biomimetics, Guilin, China, pp. 665 to 670,

December 2009.

[Hla12] Hlawatsch, F.: Parameter Estimation Methods: Lecture Notes, Grafisches Zentrum HTU

GmbH, Vienna, Austria, March 2012.

[Hor99] Horn, E. and Hiryati, N.: Toward Optimal Structured Light Patterns, Image and Vision

Computing, Vol. 17, No. 2, pp. 87 to 97, February 1999.

[Hou62] Hough, P.: A method and means for recognizing complex patterns, U.S. Patent No. 3,069,654,

December 1962.

[Hov91] Hove, B., Slotine, J.-J.: Experiments in Robotic Catching, American Control Conference,

Boston, USA, pp. 381 to 386, June 1991.

[Hub87] Hubbard, M., Alaways, L. W.: Optimum Release Conditions for the New Rules Javelin,

International Journal on Sport Biomechanics, Vol. 3, pp. 207 to 221, January 1987.

[Hub87] Hubbard, M., Bergman, C. D.: Effect of Vibrations on Javelin Lift and Drag, International

Journal on Sport Biomechanics, Vol. 5, pp. 207 to 221, January 1989.

[Ima04] Imai, Y., Namiki, A., Hashimoto, K., Ishikawa, M.: Dynamic Active Catching Using a High-

speed Multifingered Hand and a High-speed Vision System, IEEE International Conference on

Robotics & Automation, New Orlean, USA, pp. 1849 to 1854, April 2004.

[Ish96] Ishii, I., Nakabo, Y., Ishikawa, M.: Target Tracking Algorithm for lms Visual Feedback

System Using Massively Parallel Processing, IEEE International Conference on Robotics and

Automation, Minneapolis, Minnesota, USA, pp. 2309 to 2314, April 1996.

[Ita12] Itagaki, Y., Suzuki, A., Iyota, T.: Indoor Positioning for Moving Objects Using a Hardware

Device with Spread Spectrum Ultrasonic Waves, International Conference on Indoor

Positioning and Indoor Navigation, Sydney, Australia, pp. 1 to 6, November 2012.

[Jaz70] Jazvinski, A. H.: Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.

[Jia14] Jia, L., Radke, R. J.: Using Time-of-Flight Measurements for Privacy-Preserving Tracking in a

Smart Room, IEEE Transactions on Industrial Informatics, Vol. 10, No. 1, pp. 689 to 696,

February 2014.

[Jur12] Jurado, F., Palacios, G., Flores, F.: Vision–based Trajectory Tracking on the 3D Virtual Space

for a Quadrotor, Electronics, Robotics and Automotive Mechanics Conference, Cuernavaca,

Mexico, pp. 31 to 36, November 2012.

[Kaj99] Kajikawa, S., Saito, M., Ohba, K., Inooka, H.: Analysis of Human Arm Movement for

Catching a Moving Object, IEEE International Conference on Systems, Man and Cybernetics,

Tokyo, Japan, Vol. 2, pp. 698 to 703, October 1999.

[Kal61] Kalman, R. E., Bucy, R. S.: New Results in Linear Filtering and Prediction Theory, Journal on

Fluids Engineering, Vol. 83, pp. 95 to 108, March 1961.

141

[Kan12] Kang, H., Park, F. C.: Humanoid Motion Optimization via Nonlinear Dimension Reduction,

IEEE International Conference on Robotics and Automation RiverCentre, Saint Paul,

Minnesota, USA, pp. 1444 to 1449, May 2012.

[Kao13] Kao, S.-T., Yang, Z.-Y., Hong, M.-T.: Design and Implementation of a Color-Based Visual

Tracking Control System, International Conference on Automatic Control, Sun Moon Lake,

Taiwan, pp. 371 to 376, December 2013.

[Kar54] Karman, T. von: Aerodynamics. Selected Topics in the Light of Their Historical Development,

Cornell University Press, Ithaca, New York, March 1954.

[Kay93] Kay, S. M.: Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall,

Englewood Cliffs, USA, March 1993.

[Kho12] Khoshelham, K., Elberink, S. O.: Accuracy and Resolution of Kinect Depth Data for Indoor

Mapping Applications, Sensors, Vol. 12, No. 2, pp. 1437-1454, February 2012.

[Kim75] Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators,

Communications of the ACM, Vol. 18, No. 2, pp. 120 to 122, February 1975.

[Kim12] Kim, S., Billard, A.: Estimating the non-linear dynamics of free-flying objects, Robotics and

Autonomous Systems, Vol. 60, pp. 1108-1122, June 2012.

[Kim13] Kim, J., Hung, N. H., Lee, Y., Lee, S.: Structured Light Camera Base 3D Visual Perception

and Tracking Application System with Robot Grasping Task, IEEE International Symposium

on Assembly and Manufacturing, Xian, China, pp. 187 to 192, August 2013.

[Kim14] Kim, S., Shukla, A., Billard, A.: Catching Objects in Flight, IEEE Transactions on Robotics,

Vol. 30, No. 5, pp. 1049 to 1065, May 2014.

[Kob11] Kober, J., Peters, J.: Learning Elementary Movements Jointly with a Higher Level Task,

IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, USA,

pp. 338 to 343, September 2011.

[Kra05] Kramer, K. A., Stubberud, S. C.: Impact Time and Point Predicted Using a Neural Extended

Kalman Filter, International Conference on Intelligent Sensors, Sensor Networks and

Information Processing, Melbourne, Australia, pp. 199 to 204, December 2005.

[Lee02] Lee, J.H., Akiyama, T., Hashimoto, H.: Study on Optimal Camera Arrangement for Positioning

People in Intelligent Space, IEEE/RSJ international conference on intelligent robots and

systems, Lausanne, Switzerland, pp. 220 to 225, October 2002.

[Lia10] Liaw, Y. C., Leou, M. L.: Fast Exact k Nearest Neighbor Search using Orthogonal Search

Tree, Pattern Recognition, Vol. 43, No. 6, pp. 2351 to 2358, June 2010.

[Lin89] Lin, Z., Zeman, V., Patel, R. V.: On-line robot trajectory planning for catching a moving

object, IEEE International Conference on Robotics and Automation, Scottsdale, USA, Vol. 3,

pp. 1726 to 1731, May 1989.

[Liu06] Liu, J., Zhang, Y., Li, Z.: Selection of Cameras Setup Geometry Parameters in Binocular

Stereovision, IEEE Conference on Robotics, Automation and Mechatronics, Bangkok,

Thailand, pp. 1 to 6, June 2006.

[Liu09] Liu, L., Zhang, X., Ma, H.: Dynamic Node Collaboration for Mobile Target Tracking in

Wireless Camera Sensor Networks, IEEE Conference on Computer Communications, Rio de

Janeiro, Brazil, pp. 1188 to 1196, April 2009.

[Liu10] Liu, L., Zhang, X., Ma, H.: Optimal Node Selection for Target Localization in Wireless

Camera Sensor Networks, IEEE Transactions on vehicular technology, Vol. 59, No. 7,

pp. 3562 to 3576, September 2010.

[Luc87] Lucero, E. F., Hagan, J. C., Beyers, M. E.: Subsonic Aerodynamics of Rectangular

Parallelepiped Shapes of Fineness Ratio of One-Half, Journal of Spacecrafts and Rockets, Vol.

24, No. 4, pp. 311 to 318, July-August 1987.

142

[Mao10] Mao, A.: Ball Catching: the Inspiration to Power System Stability Control, A Fast Algorithm

for the Generator’s Disturbed Trajectory Prediction, IEEE Power Engineering Society General

Meeting, Tampa, Florida, USA, pp. 1 to 7, June 2007.

[Mar16] Markum, G.: Object Touchdown Position Prediction, Bachelor Thesis, Faculty of Electrical

Engineering, Vienna University of Technology, March 2016.

[Meh08] Mehta, R., Alam, F., Subic, A.: Review of tennis ball aerodynamics, Sports technology review,

John Wiley and Sons Asia Pte Ltd, 2008, No. 1, pp. 7 to 16, January 2008.

[Mir13] Mironov, K. V., Pongratz, M.: Applying neural networks for prediction of flying objects

trajectory, Vestnik UGATU, Vol. 17, No. 6(59), pp. 33 to 37, December 2013.

[Mir14] Mironov, K. V., Pongratz, M., Dietrich, D.: Predicting the Trajectory of a Flying Body Based

on Weighted Nearest Neighbors, International Work-Conference on Time Series, Granada,

Spain, pp. 699 to 710, June 2014.

[Mir15] Mironov, K. V., Vladimirova, I. V., Pongratz, M.: Processing and Forecasting the Trajectory of

a Thrown Object Measured by the Stereo Vision System, IFAC-PapersOnLine, Vol. 48, No.

11, pp. 28 to 25, June 2015.

[Miy10] Miyashita, H., Yamavaki, T., Yashima, M.: Learning Control Method for Throwing an Object

More Accurately with One Degree of Freedom Robot, IEEE/ASME International Conference

on Advanced Intelligent Mechatronics, Montréal, Canada, pp. 397 to 402, July 2010.

[Mor04] Mori, R., Hashimoto, K., Miyazaki, F.: Tracking and Catching of 3D Flying Target based on

GAG Strategy, IEEE International Conference on Robotics 8 Automation, New Orleans, USA,

pp. 5189 to 5194, April 2004.

[Mor10] Morsly, Y., Djouadi, M. S., Aouf, N.: On the Best Interceptor Placement for an Optimally

Deployed Visual Sensor Network, Istanbul, IEEE international conference on systems, man

and cybernetics, Turkey, pp. 43 to 51, October 2010.

[Mue10] Muelling, K., Kober, J., Peters, J.: A Biomimetic Approach to Robot Table Tennis, IEEE/RSJ

International Conference on Intelligent Robots and Systems, Taipei, Taiwan, pp. 1921 to 1926,

October 2010.

[Mue11] Mueller, M., Lupashin, S., D’Andrea, R.: Quadrocopter Ball Juggling, IEEE/RSJ International

Conference on Intelligent Robots and Systems, San Francisco, USA, pp. 5113 to 5120,

September 2011.

[Muk94] Mukai, T., Ishikawa, M.: An Active Sensing Method Using Estimated Errors for Multisensor

Fusion Systems, IEEE International Conference on Multisensor Fusion and Integration for

Intelligent Systems, Las Vegas, USA, pp. 615 to 622, October 1994.

[Mur05] Murphey, T. D., Bernheisel, J., Choi, D., Lynch, K. M.: An Example of Parts Handling and

Self-Assembly Using Stable Limit Sets, IEEE/RSJ International Conference on Intelligent

Robots and Systems, Edmonton, Canada, pp.1624 to 1629, August 2005.

[Nak11] Nakamura, T.: Real-time 3-D Object Tracking Using Kinect Sensor, IEEE International

Conference on Robotics and Biomimetics, Phuket, Thailand, pp. 784 to 788, December 2011

[Nam99] Namiki, A., Nakabo, Y., Ishii, I., Ishikawa, M.: High Speed Grasping Using Visual and Force

Feedback, IEEE International Conference on Robotics & Automation, Detroit, Michigan, USA,

pp. 3195 to 3200, May 1999.

[Nam03a] Namiki, A., Ishikawa, M.: Robotic Catching Using a Direct Mapping from Visual Information

to Motor Command, IEEE International Conference on Robotics &Automation, Taipei,

Taiwan, pp. 2400 to 2405, September 2003.

[Nam03b] Namiki, A., Imai, Y., Ishikawa, M.: Development of a High-speed Multifingered Hand System

and Its Application to Catching, lEEE/RSJ lnternational Conference on Intelligent Robots and

Systems, Las Vegas, Nevada, USA, pp. 2666 to 2671, October 2003.

143

[Nel05] Nelson, E., Pachter, M., Musick, S.: Projectile Launch Point Estimation from Radar

Measurements, American Control Conference, Portland, USA, pp. 1275 to 1282, June 2005.

[Nem11] Nemec, B., Vuga, R., Ude, A.: Exploiting Previous Experience to Constrain Robot

Sensorimotor Learning, IEEE-RAS International Conference on Humanoid Robots, Bled,

Slovenia, pp. 727 to 732, October 2011.

[Nis97] Nishiwaki, K., Konno, A., Nagashima, K., Inaba, M., Inoue, H.: The Humanoid Saika that

Catches a Thrown Ball, IEEE International Workshop on Robot and Human Communication,

Sendai, Japan, pp. 94 to 99, October 1997.

[Non10] Nonomura, J., Nakashima, A., Hayakawa, Y.: Analysis of Effects of Rebounds and

Aerodynamics for Trajectory of Table Tennis Ball, SICE Annual Conference 2010, Taipei,

Taiwan, August 2010.

[Noo11] Noonan, P. J., Cootes, T. F., Hallet, W. A., Hinz, R.: The Design and Initial Calibration of an

Optical Tracking System Using the Microsoft Kinect, IEEE Nuclear Science Symposium and

Medical Imaging Conference, Valencia, Spain, pp. 3614 to 3617, October 2011.

[Opr13] Oprisescu, S., Florea, L., Ovreiu, E.: Detection of thrown objects using ToF cameras, IEEE

International Conference on Intelligent Computer Communication and Processing, Cluj-

Napoca, Romania, pp. 83 to 86, September 2013.

[Par11] Park, Y., Lepetit, V., Woo, W.: Texture-Less Object Tracking with Online Training using An

RGB-D Camera, IEEE International Symposium on Mixed and Augmented Reality, Bazel,

Switzerland, pp. 121 to 126, October 2010.

[Pia10] Piatti, D.: Time-of-Flight cameras: tests, calibration and multi-frame registration for automatic

3D object reconstruction, PhD thesis, Doctoral school of Environment and Territory,

Polytechnic University of Turin, December 2010.

[Pon09] Pongratz, M.: Object Touchdown Position Prediction, Diploma Thesis, Faculty of Electrical

Engineering, Vienna University of Technology, September 2009.

[Pon10] Pongratz, M., Kupzog, F., Frank, H., Barteit, D.: Transport by Throwing - a bio-inspired

Approach, IEEE International Conference on Industrial Informatics, Osaka, Japan, pp. 685 to

689, July 2010.

[Pon11] Pongratz, M., Pollhammer, K., Szep, A.: KOROS Initiative: Automatized Throwing and

Cathcing for Material Transportation, ISoLA 2011 Workshops, pp. 136 to 143, 2012.

[Pon13] Pongratz, M., Mironov, K. V., Bauer F.: A soft-catching strategy for transport by throwing and

catching, Vestnik UGATU, Vol. 17, No. 6(59), pp. 28 to 32, December 2013.

[Pon15] Pongratz, M., Mironov, K. V.: Accuracy of Positioning Spherical Objects with Stereo Camera

System, IEEE International Conference on Industrial Technology, Seville, Spain, pp. 1608 to

1612, March 2015.

[Pon16] Pongratz, M.: Bio-Inspired Transport by Throwing System, Dissertation, Faculty of Electrical

Engineering, Vienna University of Technology, January 2016.

[Pos09] Post, S. L., McLachlan, J., Lonas, T., Dancs, J., Knobloch, D., Darrow, C., Sinn, E., Davis, S.,

Neilly, D., Funk, A., Golz, J., Phelps, A., Goers, B.: Aerodynamics of Badminton Shuttlecock,

ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, USA,

pp. 1 to 6, November 2009.

[Pro96] Proesmans, M., Van Gool, L., Oosterlinck, A.: One-Shot Active 3D Shape Acquisition, Proc.

International Conference on Pattern Recognition, Vienna, Austria, Vol. 3, pp. 336 to 340,

August 1996

[Qin13] Qin, Y. F., Zhong, H.: Research on Basketball Flight Simulation Based on the Video Data

Analysis Technology, Applied Mechanics and Materials, Vol. 380 to 384, pp. 1851 to 1855,

August 2013.

144

[Rao07] Rao, R. V.: Decision Making in the Manufacturing Environment, Springer, London, 373 pp.,

2007.

[Rau65] Rauch, H. E., Striebel, C. T., Tung, F.: Maximum likelihood estimates of linear dynamic

systems, AIAA Journal, Vol. 3, No. 8, pp. 1445-1450, August 1965.

[Rav10] Ravindra, V. C., Bar-Shalom, Y., Willett, P.: Projectile Identification and Impact Point

Prediction, IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 4, pp. 2004

to 2021, October 2010.

[Rib09] Ribnick, E., Atev, S., Papanikolopoulos, N.P.: Estimating 3D Positions and Velocities of

Projectiles from Monocular Views, IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 31, No. 5, pp. 938 to 944, May 2009.

[Ril02] Riley, M., Atkeson, C. G.: Robot Catching: Towards Engaging Human-Humanoid Interaction,

Autonomous robots, Vol. 12, No. 1, pp. 119 to 128, January 2002.

[Ris03] Ristic, B., Farina, A., Benvenutti, D., Arulampalam, M. S.: Performance bounds and

comparison of nonlinear filters for tracking a ballistic object on re-entry, IEE Proceedings on

Radar and Sonar Navigation, Vol. 150, No. 3, pp. 65 to 70, April 2003.

[Sca05] Scaramuzza, D., Pagnotelli, S., Valligi, P.: Ball Detection and Predictive Ball Following Based

on a Stereoscopic Vision System, IEEE International Conference on Robotics and Automation,

Barcelona, Spain, pp. 1573-1578, April 2005.

[Sej87] Sejnovsky T. J., Rosenberg C. R.: Parallel networks that learn to pronounce English text,

Complex systems, Vol. 1987, No. 1, pp.145 to168, January 1987.

[Sen04] Senoo, T., Namiki, A., Ishikawa, M.: High-speed Batting Using a Multi-Jointed Manipulator,

IEEE International Conference on Robotics and Automation, New Orleans, USA, pp. 1191 to

1196, April 2004.

[She09] Shen, Q., He, X.: GPS Positioning-based Trajectory Parameter Estimation and Ejection Point

Self-adapting Control Method, Second International Symposium on Knowledge Acquisition

and Modeling, Wuhan, China, pp. 194 to 197, December 2009.

[Shi05] Shiokata, D., Namiki, A., Ishikawa, M.: Robot Dribbling Using a High-speed Multifingered

Hand and a High-speed Vision System, IEEE/RSJ International Conference on Intelligent

Robots and Systems, Edmonton, Canada, pp. 2097 to 2102, August 2005.

[Sir12] Siradjuddin, I., Behera, L., McGinnity, T. M., Coleman, S.: A position based visual tracking

system for a 7 DOF robot manipulator using a Kinect camera, IEEE World Congress on

Computational Intelligence, Brisbane, Australia, pp. 1 to 7, June 2012.

[Smi07] Smith, C., Christensen, H. I.: Using COTS to Construct a High Performance Robot Arm,

International Conference on Robotics and Automation, Roma, Italy, pp. 4056 to 4063, April

2007.

[Spr91] Sproull, R. F.: Refinements to Nearest Neighbor Searching in k-Dimensional Trees,

Algorithmica, Vol. 6, No. 1-6, pp. 579 to 589, June 1991.

[Ste88] Stepanek, A., The aerodynamics of tennis balls – the topspin lob, American Journal of physics,

No. 56, pp.138 to 142, February 1988.

[Suk12] Sukhan, l., Kyeongdae, Y., Jaewoong, K., Moonju, L.: Surface Patch Primitive Based Object

Modeling from CAD Data, Applied Mechanics and Materials, vol. 162, pp. 179-183, March

2012.

[Sul09] Sule, D. R.: Manufacturing Facilities: location, planning, and design. Third edition. CRC Press,

Boca Raton, 2009

[Swa08] Swadzba, A., Beuter, N., Schmidt, J., Sagerer, G.: Tracking Objects in 6D for Reconstructing

Static Scenes, IEEE Computer Society Conference on Computer Vision and Pattern

Recognition Workshops, Ancorage, USA, pp. 1 to 7, June 2008.

145

[Sze10] Szeliski, R.: Computer Vision: Algorithms and Applications, Springer, September 2010.

[Wan08] Wang, S., Kim, H., Lin, C.-S., Chen, H.: A Robust Depth Measurement Method with Optimal

Trace Tracking of Structured Light Using Dynamic Programming, IEEE International

Conference on Industrial Technology, Chengdu, China, pp. 1 to 5, April 2008.

[Wat87] Watts, R. G., Ferrer, R.: The Lateral Force on a spinning sphere: Aerodynamics of a Curveball,

American Journal of physics, No. 55, pp. 40 to 43, January 1987.

[Wei80] Weinstein, E., Levanon, N.: Passive Array Tracking of a Continuous Wave Transmitting

Projectile, IEEE Transactions on Aerospace and Electronic Systems, Vol. 16, No. 5, pp. 721 to

726, September 1980.

[Win12] Winkler, V., Edrich, M., Ziegler, H. W.: Ka-Band FMCW-Radar for Sniper Detection,

International Radar Symposium, Warsaw, Poland, pp. 201 to 204, May 2012.

[Yak87] Yakowitz, S.: Nearest-Neighbour Methods for time series analysis, Journal of Time Series

Analyses, Vol. 8, No. 2, pp. 235-247, 1987.

[Yao08] Yao, J., Wang, X., Gao, Y., Wang, Y.: A Method of Identifying Rocket Trajectory Parameters

Based on Generalized Kalman Attenuating Memory Algorithm, IEEE Conference on Industrial

Electronics and Applications, Singapore, pp. 1204 to 1206, June 2008.

[Yil06] Yilmaz, A., Javed, O., Shah, M., Object Tracking: A Survey, ACM Journal of Computing

Surveys, Vol. 38, No. 4, Article 13, pp. 1 to 45, December 2006.

[Yua12] Yuan, T., Bar-Shalom, Y., Wilett, P., Mozeson, E., Pollak, S., Hardiman, D.: A Multiple IMM

Estimation Approach with Unbiased Mixing for Thrusting Projectiles, IEEE Transactions on

Aerospace and Electronic Systems, Vol. 48, No. 4, pp. 3250 to 3267, October 2012.

[Yua14] Yuan, T., Bar-Shalom, Y., Wilett, P., Hardiman, D.: Impact Point Prediction for Thrusting

Projectiles in the Presence of Wind, IEEE Transactions on Aerospace and Electronic Systems,

Vol. 50, No. 1, pp. 102 to 119, January 2014.

[Zar00] Zarchan, P.: Tracking and Intercepting Spiraling Ballistic Missiles, Position Location and

Navigation Symposium, San Diego, USA, pp. 277 to 284, March 2000.

[Zha00] Zhang, Z.: A flexible new technique for camera calibration, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. 22, No. 11, pp. 1330 to 1334, November 2000.

[Zha12] Zhang, Y., Luo, J., Hauser, K.: Sampling-based Motion Planning With Dynamic Intermediate

State Objectives: Application to Throwing, IEEE International Conference on Robotics and

Automation, Saint Paul, Minnesota, USA, pp. 2551 to 2556, May 2012.

[Zho04] Zhou, Y., Zhang, C.: Tunable Nearest Neighbor Classifier, Pattern recognition, Springer

Lecture Notes in Computer Science, Vol. 3175, pp. 204 to 211, September 2004.

[Zho07] Zhou, D.-Q.: Study of Key Techniques Applied in Radars of Locating Enemy Artilleres,

International Conference on Microwave and Millimeter Wave Technology, Builin, China, pp. 1

to 4, April 2007.

146

Internet references

[1] The drag equation, National Aeronautic and Space Association,

https://www.grc.nasa.gov/www/k-12/airplane/drageq.html, visited on March 21, 2014

[2] Animation – Der Schraege/schiefe Wurf ohne und mit Luftwiderstand/dynamischem

Auftrieb/Magnus-Effekt, M. Tutz, http://www.tutz.ws/JS/Simulation-Schraeger-Wurf-F_L-

F_A-F_M.html, visited on July 1, 2013.

[3] Athletics discipline – Javelin – Disciplines – IAAF, International Association of Athletics

Federations, http://www.iaaf.org/disciplines/throws/javelin-throw, visited on August 1, 2014.

[4] The record of shuttlecock initial velocity is 414 km/h (in Russian), Badminton Blog,

http://badmintonblog.ru/topics/record/, visited on August 4, 2014.

[5] Kinect for Windows features - Microsoft, http://www.microsoft.com/en-

us/kinectforwindows/meetkinect/features.aspx, visited on September 15, 2014

[6] Camera Calibration Toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/,

visited on September 18, 2014.

[7] Каталог, прайс-лист всех поставляемых изделий Phoenix Contact, Moeller, Rittal, ifm

electronic, Socomec (In Russian: Catalog of all available devices with prices: Phoenix Contact,

Moeller, Rittal, ifm electronic, Socomec) – DENOL LLC,

http://www.denol.ru/sub_cat.php?str_find=+&rests=IFM-electronic&page=6, visited on

September 24, 2014

[8] MESA Imaging 3D ToF Camera SR4000 (USB, 10 m Range) – Robot Shop,

http://www.robotshop.com/ca/en/mesa-imaging-3d-tof-camera-usb-10m-range.html, visited on

September 25, 2014.

[9] CamBoard Apps, PMD [Vision] CamCube 3.0 – PMDtechnologies Gsmbh,

http://www.pmdtec.com/news_media/video/camcube.php, visited on September 25, 2014.

[10] UI-3370CP – USB 3 Cameras – CAMERAFINDER – Products, http://en.ids-

imaging.com/store/ui-3370cp.html, visited on September 25, 2014.

[11] 3D object tracking by the particle filter and the Kinect – Youtube,

https://www.youtube.com/watch?v=2m47m-UNwWc&feature=feedu, visited on September

26, 2014.

[12] Motion Capture Suits & Markers – OptiTrack, Natural Point, Inc.,

http://www.naturalpoint.com/optitrack/products/suits-markers/, visited on October 3, 2014.

[13] Curve fitting toolbox – MATLAB, http://www.mathworks.com/products/curvefitting/, visited

on November 29, 2014.

[14] Camera Calibration – MATLAB & Simulink, http://mathworks.com/help/vision/camera-

calibration.html, visited on September 28, 2015.

[15] ITF Tennis – Technical, http://www.itftennis.com/technical/balls/overview.aspx, visited on

September 30, 2015.

[16] Laminar Air Flow – Welcome to the Tubus Bauer webpage, http://www.tubus-

bauer.de/laminar-air-flow.html, visited on October 6, 2015.

[17] Martin Pongratz | Institute of Computer Technology Wien,

https://www.ict.tuwien.ac.at/en/users/pongratz, visited on November 6, 2015. 147

[18] TISS – Markum Gilbert Harald, https://tiss.tuwien.ac.at/adressbuch/adressbuch/person/231464,

visited on November 6, 2015.

[19] Machine Vision – Institute of Automation and Control, , visited on November 10, 2015.

148

Curriculum Vitae

Konstantin MIRONOV
Date of birth: January 3, 1990

Address in Austria: Ehrensteingasse 3/I/4, 1220 Wien

Address in Russia: ul. Lenina 102-23, 450006 Ufa

mironovconst@gmail.com

EDUCATION

 2012: MSc Information Security from Ufa State Aviation Technical University, Ufa,

Russian Federation.

 2011: BSc Information Technology from Ufa State Aviation Technical University, Ufa,

Russian Federation.

WORK EXPERIENCE

 September 2014 to date: university assistant at Ufa State Aviation Technical University.

 January 2013 to June 2014: junior researcher at Ufa State Aviation Technical University.

 July 2012 to date: doctoral student at Technische Universitaet Wien.

SELECTED PUBLICATIONS

 Pongratz, M., Mironov, K. V., Bauer F.: A soft-catching strategy for transport by throwing

and catching, Vestnik UGATU, Vol. 17, No. 6(59), pp. 28 to 32, December 2013.

 Mironov, K. V., Pongratz, M.: Applying neural networks for prediction of flying objects

trajectory, Vestnik UGATU, Vol. 17, No. 6(59), pp. 33 to 37, December 2013.

 Mironov, K. V., Pongratz, M., Dietrich, D.: Predicting the Trajectory of a Flying Body

Based on Weighted Nearest Neighbors, International Work-Conference on Time Series,

Granada, Spain, pp. 699 to 710, June 2014.

 Pongratz, M., Mironov, K. V.: Accuracy of Positioning Spherical Objects with Stereo

Camera System, IEEE International Conference on Industrial Technology, Seville, Spain,

pp. 1608 to 1612, March 2015.

 Mironov, K. V., Vladimirova, I. V., Pongratz, M.: Processing and Forecasting the

Trajectory of a Thrown Object Measured by the Stereo Vision System, IFAC-

PapersOnLine, Vol. 48, No. 11, pp. 28 to 25, June 2015.

 Mironov, K. V., Pongratz, M.: Fast kNN-based Prediction for the Trajectory of a Thrown

Body, Mediterranean Conference on Control and Automation, Athens, Greece, June 2016

(submitted).

149

	Titlepage
	Introduction
	Material transportation
	Transportation by throwing and catching
	Overview
	Throwing
	Catching
	Trajectory observation and prediction

	Challenge of trajectory prediction
	Learning-based prediction

	State of the art
	Aerodynamics of ballistic motion
	Common view
	Arm ballistics and aerodynamics of gliders
	Research on the aerodynamics of sport balls and similar objects

	Statistical estimation of ballistic curves
	Visual tracking of moving objects
	Motion capture with object-integrated sensors
	Structured light and time-of-flight range measurement
	Monocular vision
	Stereo vision

	Robotic catching and transportation by throwing
	Throwing and catching
	Transport by throwing
	Discussion

	Trajectory prediction in robotic catching and transport-by-throwing
	Catching without prediction
	Prediction using physical models
	Neural network prediction
	Premises for use of nearest neighbors algorithm

	Observing object trajectory
	Throwing experiments
	Throwing
	Tracking
	Triangulation
	Acquired datasets

	Accuracy of positioning static object
	Accuracy of positioning the flying object
	Influence of background subtraction
	Errors in range measurement over long distances
	Measuring object's velocity
	Summary

	Algorithm for trajectory prediction
	Means of initial validation
	Coordinate transformations
	Overview
	Gravity-related coordinate system
	2D representation for 3D coordinates
	Invariance to release point
	Reverse transform and robot coordinate system

	Predictor
	Forecasting operation
	Search for nearest neighbors

	Allocating the subset of neighbors
	Predictor summary

	Implementation and experiments
	Numerical experiments with the dataset
	Simple and weighted nearest neighbours
	Size of the cluster
	Value of k

	Implementation
	Integration into the transportation system
	Real-time predictor

	Catching experiments

	Conclusion and Future Work
	Results of research
	Future work and outlook

