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1 Abstrat

In this work, we address two di�erent topis, whih are disussed in the following main

hapters.

The �rst part of the master thesis deals with the limits of validity of ertain mathemati-

al models from the area of spae�based aquisition, pointing, and traking (APT) laser

systems, written as systems of ordinary di�erential equations (ODEs). The interest in

the analysis and numerial solution of these models was strongly motivated from the in-

ternational ooperation with Professor Jose Maria Gambi from the Charles III University

of Madrid, Spain.

Our main goal was to demonstrate the onsiderable improvement that an be ahieved by

appropriately orreting the standard equations. This investigation was arried out for

three di�erent types of satellites and a number of di�erent ombinations of parameters.

For the numerial solution of the respetive model equations, the standardMatlab ode

ode45 was used.

In the seond part of the work, we onsidered a disretisation of the stationary ε�
dependent Wigner-Equation, whih for ε = 0 turns out to be an Index-2 di�erential

algebrai equation (DAE). This ativity was developed within the ooperation with Pro-

fessor Anton Arnold from the Vienna University of Tehnology, Vienna, Austria. Main

aim here was to �nd information about the solutions behaviour, in the limit ε → 0, to
support the analysis of the original, ontinuous problem.

To numerially simulate this lass of problems, we used a speial version of the olloation

method implemented in the Matlab ode bvpsuite and embedded into the least�

squares minimization algorithm [26℄.
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2 Spae-Based Aquisition, Pointing, and Traking Laser

Systems

2.1 Introdution

The need of inreasing the auray, partiularly in spae ommuniations and surveil-

lane, reognized in the last deade, made the implementation of inreasingly aurate

spae inertial-guided APT laser systems a very relevant sienti� issue [1℄-[2℄. Nowadays,

systems with laser tehnology gain a lot of attention in other senarios, suh as in spae

debris removal, due to the fat that this tehnology has matured substantially in reent

years [3℄-[5℄.

In fat, some laser systems an already be designed to have sub-miroradian divergenes

[6℄, whih means that a laser system with an output beam diameter of one meter an

readily have a 0.1 miroradian beam divergene, expanding to only about 10 entimeters

after traveling 1000 kilometres [7℄.

The post�Newtonian framework of the Earth surrounding spae is the framework that

meets the present needs in aurate spae geodesy, positioning, and navigation. Thus,

this is the framework presently used to synhronize the atomi loks on board the GPS

satellites, so as to determine the round�trip time taken by a laser beam in satellite�to�

satellite laser ranging [8℄-[12℄.

Likewise, it is within this framework where some latest geoloation models have been

proposed to loate passive, i.e. non�ooperative, radio transmitters plaed on the Earth

surfae or in the viinity of the Earth [13℄-[18℄.

However, this framework is not used yet in satellite�to�satellite laser ommuniations,

where inreasing the auray of the present traking proedures for systems endowed

with very narrow laser beams is needed [19℄, nor in ative spae debris removal, where

inreasing the auray is even more neessary, taking into aount that the average size

of the near 17000 debris objets ranges between 1 m to 10 m, aording to the atalogue

of the US Spae Surveillane Network (SSN) [20℄.

Now, sine this fat is not due to the lak of auray of the modern APT hardware, we

may onlude that this is due to the di�ulty for the present proedures to aount in

real time for the variations of the tidal e�ets of the Earth between the orbital position

of the destination objet and that of the APT system. Or, in post�Newtonian terms, it

may be due to the di�ulty to aount in real time for the variations of the urvature

of the Earth surrounding spae between the positions of the destination objet and the

positions of the system.

In summary, the sub�miroradian divergenes of aurate laser beams make us to fae

the hallenge of pointing an APT system at a designated target, whether this is a om-

muniation satellite, a radio transmitter, or a piee of debris. Hene, the issue to trak
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the target is to aurately predit its position in order to know where to point the beam

to reah the target at the desired instants.

The purpose of this work is twofold: (i) to numerially simulate the solutions of systems

of post�Newtonian equations, linear and nonlinear, for the orbital relative motion, and

(ii) to analyze the validity of these solutions by omparing them to the solutions of

the respetive Newtonian equations (diretly and by means of the solutions of post�

Newtonian equations for the Earth Centered Inertial (ECI) orbital motions of the APT

system and the target). The equations have been derived by the group of the Gregorio

Millan Institute of the Charles III University of Madrid, Spain, led by Professor Jose

Maria Gambi, and are the resent development in a wide ativity in this area [21℄-[22℄.

In the analysis, we deal with the equations for ECI orbital and for relative motions di-

vided in two groups. The �rst group ontains the equations for the ECI orbital motion

of the APT system, whih will be denoted by S1, and those of the destination objet,

whih will be denoted by S2. The essential assumptions are spei�ed in the following way:

(i) The geometrial struture of the spae�time around the Earth orresponds to the weak

approximation to the exterior Shwarzshild �eld generated by the Earth, whih in ECI

oordinates (xα
, t), α=1,2,3, is given by

ΦS = gijdx
idxj =

[(

δαβ +
2mxαxβ

r3

)

dxαdxβ +

(

−1 +
2m

r

)

dt2
]

, (1)

where m is the mass of the Earth and r2 = xαxα
, both measured in seonds.

(ii) The world�lines of S1 and S2 are time�like geodesis in the Shwarzshild �eld. As

in (1), from now on, Latin indies range from 1 to 4.

The seond group ontains the equations of pratial interest aording to our aim, that

is, the equations of the relative motion of S2 with respet to S1, whih in the omplete

version are nonlinear. The equations in this group have been derived from Synge's equa-

tions for the geodesis orresponding to a Fermi frame that is o�moving with S1 [23℄.

They are written in loal Cartesian oordinates Xα
, α=1,2,3.

The post�Newtonian equations for the ECI absolute motions derived aording to (i) and

(ii), appear to be natural generalizations of the Newtonian orbital equations, sine the

post�Newtonian terms an be onsidered as perturbations that produe small osillations

about the Newtonian motions, due to the geometrial struture about the Earth, see e.g.

Figures in Setion 2.3. The reason is that this struture orresponds to (1), so that,

negleting the seond order terms in (1), we have

ΦC =
[

dxαdxα − dt2
]

,

whose spae part, as an be seen, is Eulidean.

Note that the Newtonian equations for the relative motion of S2 with respet to S1 are

simply the di�erene of the ECI Newtonian orbital equations of S2 and S1. Therefore, one
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should investigate whether the seond post�Newtonian equations for the relative motion

of S2 with respet to S1 produe preditions signi�antly di�erent from those produed

by the �rst group of equations, i.e., by taking the di�erene of the post�Newtonian ECI

orbital motions of S1 and S2, as it is made within the Newtonian framework.

The justi�ation for this analysis is that the struture of the spae�time around S1 is

given by [23℄,

ΦF = g(ij)dX
(i)dX(j) =

(

δαβ + 2h(α1β1)

)

dX(α)dX(β)

+
(

−1 + 2h(4141) + 2h(4142)

)

dX(4)dX(4), (2)

so that its prinipal part is

ΦC = dX(α)dX(α) − dX(4)dX(4),

whih ontains the struture of the Eulidean spae in loal Cartesian oordinates as

viewed by S1. The terms h(α1β2), h(4141), and h(4142) in (2) are given by

h(α1β2) =
3

2
σ−3X(µ)X(ν)

∫ σ

0

(σ − u)uS(αβµν)du,

h(4141) =
3

2
σ−3X(µ)X(ν)

∫ σ

0

(σ − u)2S(44µν)du,

h(4142) =
3

2
σ−3X(µ)X(ν)

∫ σ

0

(σ − u)uS(44µν)du,

where S(abcd) = −1
3

(

R(acbd) +R(adbc)

)

and R(abcd) are the omponents of the Riemann

tensor, Rijkm, of the metri (1) with respet to the tetrads λi
(a) Eulidean�parallel along

the segment S1�S2 to the tetrad λi1
(a) that materializes the Fermi frame o�moving with

S1. Hene, if s1 is the proper time of S1, we have R(abcd) = Rijkmλ
i
(a)λ

j
(b)λ

k
(c)λ

m
(d), where

λµ1

(α) = δµα, λ
41
(α) = vα1 = dxα1/ds1, λ

µ1

(4) = vµ1 = dxµ1/ds1,
dt

ds1
= λ41

(4) = 1+
m

r
+
1

2
(vα1vα1),

whih in our ase redue to

λµ1

(α) = δµα, λ41
(α) = 0, λµ1

(4) = 0,
dt

ds1
= λ41

(4) = 1,

so that the spae omponents of λi1
(a) beome the lassial omponents of the inertial�

guided referene frame o�moving with S1 that is parallel to the ECI referene frame.

To test the onjeture formulated above, we assume that S1 and S2 are in equatorial

irular orbits around the Earth at typial distanes from the Earth. This allows us to

simplify the equations, as well as the notation, sine we may onsider systems of only two

equations, so that the spae ECI oordinates of S1 and S2 an be denoted by (x1, y1) and
(x2, y2) respetively, and the oordinates of the relative position of S2 with respet to S1

for the seond equations by (X, Y ). In addition, the number of senarios an be redued

to six, and the number of parameters needed to study the solutions for eah senario an

be redued to two.
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The equations for the ECI post�Newtonian motions are

d2x

dt2
=

−m

((x)2 + (y)2)3/2

[

1− 2m

(x)2 + (y)2
+

( −3(x)2

(x)2 + (y)2
+ 1

)(

dx

dt

)2

− 6xy

(x)2 + (y)2
dx

dt

dy

dt
+

( −3(y)2

(x)2 + (y)2
+ 1

)(

dx

dt

)2
]

x,

d2y

dt2
=

−m

((x)2 + (y)2)3/2

[

1− 2m

(x)2 + (y)2
+

( −3(x)2

(x)2 + (y)2
+ 1

)(

dx

dt

)2

− 6xy

(x)2 + (y)2
dx

dt

dy

dt
+

( −3(y)2

(x)2 + (y)2
+ 1

)(

dy

dt

)2
]

y.

The equations for the linear approximation to the post�Newtonian relative motion are

d2X

dt2
=

mX

∫ 1

0

(

3(x1)
2(1− u)2 + 6x1x2(1− u)u+ 3(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]3/2

)

·

(1− 2u+ 3u2)du

+mY

∫ 1

0

(

3x1y1(1− u)2 + 3(1− u)u (x1y2 + y1x2) + 3x2y2u
2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2) u2]5/2

)

·

(1− 2u+ 3u2)du,
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d2Y

dt2
=

mX

∫ 1

0

(

3x1y1(1− u)2 + 3(1− u)u (x1y2 + y1x2) + 3x2y2u
2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)

·

(1− 2u+ 3u2)du

+mY

∫ 1

0

(

3(y1)
2(1− u)2 + 6y1y2(1− u)u+ 3(y2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2) u2]5/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]3/2

)

·

(1− 2u+ 3u2)du,

and the nonlinear equations are

6



d2X

dt2
=

mX

∫ 1

0

(

3(x1)
2(1− u)2 + 6x1x2(1− u)u+ 3(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]3/2

)

·

(1− 2u+ 3u2)du

+mY

∫ 1

0

(

3x1y1(1− u)2 + 3(1− u)u (x1y2 + y1x2) + 3x2y2u
2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2) u2]5/2

)

·

(1− 2u+ 3u2)du

+3mX2

∫ 1

0

[

(

x1(1− u) + x2u
)

·

(

5(x1)
2(1− u)2 + 10(1− u)ux1x2 + 5(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 3

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du

+6mXY

∫ 1

0

[

(

y1(1− u) + y2u
)

·

(

5(x1)
2(1− u)2 + 10(1− u)ux1x2 + 5(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du

+3mY 2

∫ 1

0

[

(

x1(1− u) + x2u
)

·

(

5(y1)
2(1− u)2 + 10(1− u)uy1y2 + 5y22u

2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du,
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d2Y

dt2
=

mX

∫ 1

0

(

3x1y1(1− u)2 + 3(1− u)u (x1y2 + y1x2) + 3x2y2u
2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)

·

(1− 2u+ 3u2)du

+mY

∫ 1

0

(

3(y1)
2(1− u)2 + 6y1y2(1− u)u+ 3(y2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2) u2]5/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]3/2

)

·

(1− 2u+ 3u2)du

+3mX2

∫ 1

0

[

(

y1(1− u) + y2u
)

·

(

5(x1)
2(1− u)2 + 10(1− u)ux1x2 + 5(x2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du

+6mXY

∫ 1

0

[

(

x1(1− u) + x2u
)

·

(

5(y1)
2(1− u)2 + 10(1− u)uy1y2 + 5(y2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 1

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du

+3mY 2

∫ 1

0

[

(

y1(1− u) + y2u
)

·

(

5(y1)
2(1− u)2 + 10(1− u)uy1y2 + 5(y2)

2u2

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]7/2

− 3

[((x1)2 + (y1)2) (1− u)2 + 2(1− u)u (x1x2 + y1y2) + ((x2)2 + (y2)2)u2]5/2

)]

(1− u)u2du.
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2.2 Methodology

Before showing the results of the numerial simulations, let us �rst desribe the method-

ology and all the di�erent test ases we onsidered.

First of all, there were three di�erent kind of satellites we simulated, they di�er in the

distane of their orbits to the Earth. First, we disussed the geostationary satellites, or

in short, GEO satellites, whih orbit the Earth at around 42.200 kilometres from the ECI

enter. The seond type are the medium earth orbit (MEO) satellites, with distanes to

the ECI enter ranging between 8.000 and 42.000 kilometres, and �nally, we onsidered

representatives of low earth orbit (LEO) satellites, whih are typially of military use and

for observation e.g. of other satellites and spae debris, whih orbit the earth at distanes

smaller than 8.000 kilometres.

For eah of the above satellite types, we studied two situations. These are: S2 loser to

the Earth than S1, and vie versa. The de�ning parameters for eah of the test ases are

the initial distane between S1 and S2, whih is denoted by d, and the time interval for

the integration, denoted by t.

The di�erent parameter hoies were motivated by trying to push the values for d and

t as far as possible, while still staying in a realisti ontext, allowing to show how the

Newtonian equations an be improved. Additionally, preliminary results are obtained for

small values for d and t, just to show how the solutions behave.

The experiments orrespond to three di�erent parameter ombinations for eah of the

satellites types. In order to draw valid onlusions, a variety of plots has been provided.

Speial fous is on �gures where the distane between the Newtonian and post�Newtonian

relative positions of S2 with respet to S1 are ompared to the diameter of the spots of

a laser beam with submiroradian divergene.

2.3 Results

2.3.1 GEO satellites with S2 being loser to the Earth than S1

2.3.1.1 Case 1

In this test, we display the solution for small parameter values, d = 5 kilometers and

t = 5 days.
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Figure 1: Case 1 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Relative motion of S2 with respet to S1.
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Figure 2: Case 1 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

the di�erene between solutions from di�erent formulations.
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Figure 3: Case 1 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Absolute distane between S1 and S2.
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Figure 4: Case 1 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

di�erenes between solutions from di�erent formulations.
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Figure 5: Case 1 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Corretion provided from the nonlinear post�Newtonian equations

ompared to the laser beam.
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Figure 6: Case 1 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: The distane between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 7: Case 1 for GEO satellites with S2 being loser to the earth than S1, d =
5 kilometres, t = 5 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 8: Case 1 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distane between

ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 9: Case 1 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�erene in distanes to the ECI enter.
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2.3.1.2 Case 2

In this experiment, the goal was to inrease the value of d as muh as possible. The

parameters used for this test are d = 25 kilometres and t = 5 days.
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Figure 10: Case 2 for GEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 5 days: Relative motion of S2 with respet to S1.
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Figure 11: Case 2 for GEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

the di�erene between solutions from di�erent formulations.
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Figure 12: Case 2 for GEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 5 days: Absolute distane between S1 and S2.
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Figure 13: Case 2 for GEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

di�erenes between solutions from di�erent formulations.
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Figure 14: Case 2 for GEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 5 days: Corretion provided from the nonlinear post�Newtonian equations

ompared to the laser beam.
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Figure 15: Case 2 for GEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 5 days: The distane between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 16: Case 2 for GEO satellites with S2 being loser to the earth than S1, d =
25 kilometres, t = 5 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 17: Case 2 for GEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distane between

ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 18: Case 2 for GEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�erene in distanes to the ECI enter.
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2.3.1.3 Case 3

For this test, the goal was to inrease the value of t as muh as possible.

The parameters used for this test are d = 5 kilometres and t = 20 days.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
8

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

8

x1

x2

 

 

Newtonian
linear post−Newtonian
nonlinear post−Newtonian

Figure 19: Case 3 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 20 days: Relative motion of S2 with respet to S1.
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Figure 20: Case 3 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 20 days: Zoomed in version of the previous plot. It is now possible to see

the di�erene between solutions from di�erent formulations.
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Figure 21: Case 3 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 20 days: Absolute distane between S1 and S2.
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Figure 22: Case 3 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 20 days: Zoomed in version of the previous plot. It is now possible to see

di�erenes between solutions from di�erent formulations.
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Figure 23: Case 3 for GEO satellites with S2 being loser to the earth than S1, d = 5 kilo-
metres, t = 20 days: Corretion provided from the nonlinear post�Newtonian equations

ompared to the laser beam.
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Figure 24: Case 3 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 20 days: The distane between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 25: Case 3 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 20 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 26: Case 3 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 20 days, and nonlinear post�Newtonian formulation: Distane between

ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 27: Case 3 for GEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 20 days, and nonlinear post�Newtonian formulation: This plot, similar

to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.2 GEO satellites with S2 being farther away from the Earth than S1

2.3.2.1 Case 1

In this test we showase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 days.
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Figure 28: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Relative motion of S2 with respet to S1.
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Figure 29: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see the di�erene between solutions from di�erent formulations.
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Figure 30: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Absolute distane between S1 and S2.
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Figure 31: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see di�erenes between solutions from di�erent formulations.
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Figure 32: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 33: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: The distane between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 34: Case 1 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 35: Case 1 for GEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distane

between ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 36: Case 1 for GEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.2.2 Case 2

For this test, the goal was to inrease the value of d as muh as possible.

The parameters used for this test are d = 20 kilometres and t = 5 days.
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Figure 37: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Relative motion of S2 with respet to S1.
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Figure 38: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see the di�erene between solutions from di�erent formulations.
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Figure 39: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Absolute distane between S1 and S2.
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Figure 40: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see di�erenes between solutions from di�erent formulations.
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Figure 41: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 42: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: The distane between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 43: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 44: Case 2 for GEO satellites with S2 being farther away from the earth than

S1, d = 20 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distane

between ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 45: Case 2 for GEO satellites with S2 being farther away from the earth than S1,

d = 20 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.2.3 Case 3

For this test, the goal was to inrease the value of t as muh as possible.

The parameters used for this test are d = 5 kilometres and t = 25 days.
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Figure 46: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Relative motion of S2 with respet to S1.
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Figure 47: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Zoomed in version of the previous plot. It is now possible

to see the di�erene between solutions from di�erent formulations.
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Figure 48: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Absolute distane between S1 and S2.
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Figure 49: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Zoomed in version of the previous plot. It is now possible

to see di�erenes between solutions from di�erent formulations.
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Figure 50: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 51: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: The distane between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 52: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 53: Case 3 for GEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 25 days, and nonlinear post�Newtonian formulation: Distane

between ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 54: Case 3 for GEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 25 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.3 MEO satellites with S2 being loser to the Earth than S1

2.3.3.1 Case 1

In this test we showase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 days.

−8 −6 −4 −2 0 2 4 6 8

x 10
7

−8

−6

−4

−2

0

2

4

6

8
x 10

7

x1

x2

 

 

Newtonian
linear post−Newtonian
nonlinear post−Newtonian

Figure 55: Case 1 for MEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Relative motion of S2 with respet to S1.

40



−6.2729 −6.2728 −6.2728 −6.2728 −6.2728 −6.2728 −6.2728

x 10
7

−3.5844

−3.5843

−3.5842

−3.5842

−3.5842

−3.5841

−3.5841

x 10
7

x1

x2

 

 

Newtonian
linear post−Newtonian
nonlinear post−Newtonian

Figure 56: Case 1 for MEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

the di�erene between solutions from di�erent formulations.
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Figure 57: Case 1 for MEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Absolute distane between S1 and S2.
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Figure 58: Case 1 for MEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible to see

di�erenes between solutions from di�erent formulations.
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Figure 59: Case 1 for MEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: Corretion provided from the nonlinear post�Newtonian equations

ompared to the laser beam.
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Figure 60: Case 1 for MEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days: The distane between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 61: Case 1 for MEO satellites with S2 being loser to the earth than S1, d =
5 kilometres, t = 5 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 62: Case 1 for MEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distane between

ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 63: Case 1 for MEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�erene in distanes to the ECI enter.
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2.3.3.2 Case 2

For this test, the goal was to inrease the value of d as muh as possible.

The parameters used for this test are d = 40 kilometres and t = 2 days.
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Figure 64: Case 2 for MEO satellites with S2 being loser to the earth than S1, d = 40
kilometres, t = 2 days: Relative motion of S2 with respet to S1.
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Figure 65: Case 2 for MEO satellites with S2 being loser to the earth than S1, d = 40
kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible to see

the di�erene between solutions from di�erent formulations.
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Figure 66: Case 2 for MEO satellites with S2 being loser to the earth than S1, d = 40
kilometres, t = 2 days: Absolute distane between S1 and S2.
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Figure 67: Case 2 for MEO satellites with S2 being loser to the earth than S1, d = 40
kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible to see

di�erenes between solutions from di�erent formulations.
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Figure 68: Case 2 for MEO satellites with S2 being loser to the earth than S1, d = 40
kilometres, t = 2 days: Corretion provided from the nonlinear post�Newtonian equations

ompared to the laser beam.
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Figure 69: Case 2 for MEO satellites with S2 being loser to the earth than S1, d = 40
kilometres, t = 2 days: The distane between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 70: Case 2 for MEO satellites with S2 being loser to the earth than S1, d =
40 kilometres, t = 2 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 71: Case 2 for MEO satellites with S2 being loser to the earth than S1, d = 40
kilometres, t = 2 days, and nonlinear post�Newtonian formulation: Distane between

ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 72: Case 2 for MEO satellites with S2 being loser to the earth than S1, d = 40
kilometres, t = 2 days, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�erene in distanes to the ECI enter.
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2.3.3.3 Case 3

For this test, the goal was to inrease the value of t as muh as possible.

The parameters used for this test are d = 2 kilometres and t = 15 days.
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Figure 73: Case 3 for MEO satellites with S2 being loser to the earth than S1, d = 2
kilometres, t = 15 days: Relative motion of S2 with respet to S1.
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Figure 74: Case 3 for MEO satellites with S2 being loser to the earth than S1, d = 2
kilometres, t = 15 days: Zoomed in version of the previous plot. It is now possible to see

the di�erene between solutions from di�erent formulations.
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Figure 75: Case 3 for MEO satellites with S2 being loser to the earth than S1, d = 2
kilometres, t = 15 days: Absolute distane between S1 and S2.
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Figure 76: Case 3 for MEO satellites with S2 being loser to the earth than S1, d = 2
kilometres, t = 15 days: Zoomed in version of the previous plot. It is now possible to see

di�erenes between solutions from di�erent formulations.
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Figure 77: Case 3 for MEO satellites with S2 being loser to the earth than S1, d = 2 kilo-
metres, t = 15 days: Corretion provided from the nonlinear post�Newtonian equations

ompared to the laser beam.
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Figure 78: Case 3 for MEO satellites with S2 being loser to the earth than S1, d = 2
kilometres, t = 15 days: The distane between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 79: Case 3 for MEO satellites with S2 being loser to the earth than S1, d = 2
kilometres, t = 15 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 80: Case 3 for MEO satellites with S2 being loser to the earth than S1, d = 2
kilometres, t = 15 days, and nonlinear post�Newtonian formulation: Distane between

ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 81: Case 3 for MEO satellites with S2 being loser to the earth than S1, d = 2
kilometres, t = 15 days, and nonlinear post�Newtonian formulation: This plot, similar

to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.4 MEO satellites with S2 being farther away from the Earth than S1

2.3.4.1 Case 1

In this test we showase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 days.
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Figure 82: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Relative motion of S2 with respet to S1.
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Figure 83: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see the di�erene between solutions from di�erent formulations.
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Figure 84: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Absolute distane between S1 and S2.
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Figure 85: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Zoomed in version of the previous plot. It is now possible

to see di�erenes between solutions from di�erent formulations.
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Figure 86: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 87: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: The distane between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 88: Case 1 for MEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 89: Case 1 for MEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: Distane

between ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 90: Case 1 for MEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.4.2 Case 2

For this test, the goal was to inrease the value of d as muh as possible.

The parameters used for this test are d = 18 kilometres and t = 2 days.
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Figure 91: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Relative motion of S2 with respet to S1.
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Figure 92: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible

to see the di�erene between solutions from di�erent formulations.

0 2 4 6 8 10 12 14 16 18

x 10
4

0

2

4

6

8

10

12
x 10

7

t (sec)

D
 (

cm
)

 

 

Newtonian
nonlinear post−Newtonian

Figure 93: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Absolute distane between S1 and S2.
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Figure 94: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Zoomed in version of the previous plot. It is now possible

to see di�erenes between solutions from di�erent formulations.
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Figure 95: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 96: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: The distane between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 97: Case 2 for MEO satellites with S2 being farther away from the earth than S1,

d = 18 kilometres, t = 2 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 98: Case 2 for MEO satellites with S2 being farther away from the earth than

S1, d = 18 kilometres, t = 2 days, and nonlinear post�Newtonian formulation: Distane

between ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 99: Case 2 for MEO satellites with S2 being farther away from the earth than

S1, d = 18 kilometres, t = 2 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.4.3 Case 3

For this test, the goal was to inrease the value of t as muh as possible.

The parameters used for this test are d = 2 kilometres and t = 20 days.
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Figure 100: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days: Relative motion of S2 with respet to S1.
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Figure 101: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days: Zoomed in version of the previous plot. It is now

possible to see the di�erene between solutions from di�erent formulations.
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Figure 102: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days: Absolute distane between S1 and S2.
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Figure 103: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days: Zoomed in version of the previous plot. It is now

possible to see di�erenes between solutions from di�erent formulations.
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Figure 104: Case 3 for MEO satellites with S2 being farther away from the earth than S1,

d = 2 kilometres, t = 20 days: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 105: Case 3 for MEO satellites with S2 being farther away from the earth than S1,

d = 2 kilometres, t = 20 days: The distane between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 106: Case 3 for MEO satellites with S2 being farther away from the earth than S1,

d = 2 kilometres, t = 20 days: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 107: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days, and nonlinear post�Newtonian formulation: Distane

between ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 108: Case 3 for MEO satellites with S2 being farther away from the earth than

S1, d = 2 kilometres, t = 20 days, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.5 LEO satellites with S2 being loser to the Earth than S1

2.3.5.1 Case 1

In this test we showase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 hours.
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Figure 109: Case 1 for LEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 hours: Relative motion of S2 with respet to S1.
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Figure 110: Case 1 for LEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible to see

the di�erene between solutions from di�erent formulations.
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Figure 111: Case 1 for LEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 hours: Absolute distane between S1 and S2.
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Figure 112: Case 1 for LEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible to see

di�erenes between solutions from di�erent formulations.
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Figure 113: Case 1 for LEO satellites with S2 being loser to the earth than S1, d = 5 kilo-
metres, t = 5 hours: Corretion provided from the nonlinear post�Newtonian equations

ompared to the laser beam.
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Figure 114: Case 1 for LEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 hours: The distane between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 115: Case 1 for LEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 hours: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 116: Case 1 for LEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 hours, and nonlinear post�Newtonian formulation: Distane between

ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 117: Case 1 for LEO satellites with S2 being loser to the earth than S1, d = 5
kilometres, t = 5 hours, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�erene in distanes to the ECI enter.

74



2.3.5.2 Case 2

For this test, the goal was to inrease the value of d as muh as possible.

The parameters used for this test are d = 25 kilometres and t = 3 hours.
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Figure 118: Case 2 for LEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 3 hours: Relative motion of S2 with respet to S1.
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Figure 119: Case 2 for LEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 3 hours: Zoomed in version of the previous plot. It is now possible to see

the di�erene between solutions from di�erent formulations.
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Figure 120: Case 2 for LEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 3 hours: Absolute distane between S1 and S2.
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Figure 121: Case 2 for LEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 3 hours: Zoomed in version of the previous plot. It is now possible to see

di�erenes between solutions from di�erent formulations.
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Figure 122: Case 2 for LEO satellites with S2 being loser to the earth than S1, d =
25 kilometres, t = 3 hours: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 123: Case 2 for LEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 3 hours: The distane between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 124: Case 2 for LEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 3 hours: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 125: Case 2 for LEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 3 hours, and nonlinear post�Newtonian formulation: Distane between

ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 126: Case 2 for LEO satellites with S2 being loser to the earth than S1, d = 25
kilometres, t = 3 hours, and nonlinear post�Newtonian formulation: This plot, similar to

the above one, shows the di�erene in distanes to the ECI enter.
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2.3.5.3 Case 3

For this test, the goal was to inrease the value of t as muh as possible.

The parameters used for this test are d = 3 kilometres and t = 72 hours.
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Figure 127: Case 3 for LEO satellites with S2 being loser to the earth than S1, d = 3
kilometres, t = 72 hours: Relative motion of S2 with respet to S1.
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Figure 128: Case 3 for LEO satellites with S2 being loser to the earth than S1, d = 3
kilometres, t = 72 hours: Zoomed in version of the previous plot. It is now possible to

see the di�erene between solutions from di�erent formulations.
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Figure 129: Case 3 for LEO satellites with S2 being loser to the earth than S1, d = 3
kilometres, t = 72 hours: Absolute distane between S1 and S2.

81



2.582 2.583 2.584 2.585 2.586 2.587 2.588 2.589 2.59 2.591

x 10
5

1.024

1.025

1.026

1.027

1.028

1.029

1.03

x 10
8

t (sec)

D
 (

cm
)

 

 

Newtonian
nonlinear post−Newtonian

Figure 130: Case 3 for LEO satellites with S2 being loser to the earth than S1, d = 3
kilometres, t = 72 hours: Zoomed in version of the previous plot. It is now possible to

see di�erenes between solutions from di�erent formulations.
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Figure 131: Case 3 for LEO satellites with S2 being loser to the earth than S1, d =
3 kilometres, t = 72 hours: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 132: Case 3 for LEO satellites with S2 being loser to the earth than S1, d = 3
kilometres, t = 72 hours: The distane between the ECI positions of the Newtonian and

the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 133: Case 3 for LEO satellites with S2 being loser to the earth than S1, d = 3
kilometres, t = 72 hours: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 134: Case 3 for LEO satellites with S2 being loser to the earth than S1, d = 3
kilometres, t = 72 hours, and nonlinear post�Newtonian formulation: Distane between

ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 135: Case 3 for LEO satellites with S2 being loser to the earth than S1, d = 3
kilometres, t = 72 hours, and nonlinear post�Newtonian formulation: This plot, similar

to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.6 LEO satellites with S2 being farther away from the Earth than S1

2.3.6.1 Case 1

In this test we showase the solution for small values in both parameters.

The parameters used for this test are d = 5 kilometres and t = 5 hours.
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Figure 136: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Relative motion of S2 with respet to S1.
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Figure 137: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible

to see the di�erene between solutions from di�erent formulations.
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Figure 138: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Absolute distane between S1 and S2.
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Figure 139: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Zoomed in version of the previous plot. It is now possible

to see di�erenes between solutions from di�erent formulations.
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Figure 140: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 141: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: The distane between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 142: Case 1 for LEO satellites with S2 being farther away from the earth than S1,

d = 5 kilometres, t = 5 hours: Di�erene in distanes to the enter of the Earth between

Newtonian and nonlinear post�Newtonian.
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Figure 143: Case 1 for LEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 hours, and nonlinear post�Newtonian formulation: Distane

between ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 144: Case 1 for LEO satellites with S2 being farther away from the earth than

S1, d = 5 kilometres, t = 5 hours, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.6.2 Case 2

For this test, the goal was to inrease the value of d as muh as possible.

The parameters used for this test are d = 22 kilometres and t = 3 hours.
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Figure 145: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours: Relative motion of S2 with respet to S1.
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Figure 146: Case 2 for LEO satellites with S2 being farther away from the earth than

S1, d = 22 kilometres, t = 3 hours: Zoomed in version of the previous plot. It is now

possible to see the di�erene between solutions from di�erent formulations.

0 2000 4000 6000 8000 10000 12000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

7

t (sec)

D
 (

cm
)

 

 

Newtonian
nonlinear post−Newtonian

Figure 147: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours: Absolute distane between S1 and S2.
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Figure 148: Case 2 for LEO satellites with S2 being farther away from the earth than

S1, d = 22 kilometres, t = 3 hours: Zoomed in version of the previous plot. It is now

possible to see di�erenes between solutions from di�erent formulations.
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Figure 149: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 150: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours: The distane between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.

0 2000 4000 6000 8000 10000 12000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t (sec)

d 
(c

m
)

 

 

S1
S2

Figure 151: Case 2 for LEO satellites with S2 being farther away from the earth than

S1, d = 22 kilometres, t = 3 hours: Di�erene in distanes to the enter of the Earth

between Newtonian and nonlinear post�Newtonian.
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Figure 152: Case 2 for LEO satellites with S2 being farther away from the earth than

S1, d = 22 kilometres, t = 3 hours, and nonlinear post�Newtonian formulation: Distane

between ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 153: Case 2 for LEO satellites with S2 being farther away from the earth than S1,

d = 22 kilometres, t = 3 hours, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�erene in distanes to the ECI enter.
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2.3.6.3 Case 3

For this test, the goal was to inrease the value of t as muh as possible.

The parameters used for this test are d = 3 kilometres and t = 36 hours.
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Figure 154: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours: Relative motion of S2 with respet to S1.
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Figure 155: Case 3 for LEO satellites with S2 being farther away from the earth than

S1, d = 3 kilometres, t = 36 hours: Zoomed in version of the previous plot. It is now

possible to see the di�erene between solutions from di�erent formulations.
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Figure 156: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours: Absolute distane between S1 and S2.
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Figure 157: Case 3 for LEO satellites with S2 being farther away from the earth than

S1, d = 3 kilometres, t = 36 hours: Zoomed in version of the previous plot. It is now

possible to see di�erenes between solutions from di�erent formulations.
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Figure 158: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours: Corretion provided from the nonlinear post�Newtonian

equations ompared to the laser beam.
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Figure 159: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours: The distane between the ECI positions of the Newtonian

and the nonlinear post�Newtonian solutions, both for S1 and S2, whih almost ompletely

overlap.
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Figure 160: Case 3 for LEO satellites with S2 being farther away from the earth than

S1, d = 3 kilometres, t = 36 hours: Di�erene in distanes to the enter of the Earth

between Newtonian and nonlinear post�Newtonian.
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Figure 161: Case 3 for LEO satellites with S2 being farther away from the earth than

S1, d = 3 kilometres, t = 36 hours, and nonlinear post�Newtonian formulation: Distane

between ECI positions of S2 and S1 and the relative position of S2 with respet to S1.
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Figure 162: Case 3 for LEO satellites with S2 being farther away from the earth than S1,

d = 3 kilometres, t = 36 hours, and nonlinear post�Newtonian formulation: This plot,

similar to the above one, shows the di�erene in distanes to the ECI enter.
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2.4 Conlusions

The simulations arried out in the present work, suggest to onlude that in all onsidered

senarios, where GEO, MEO and LEO satellites are involved, the post�Newtonian linear

equations for the relative motion are not appropriate to model the two�way laser links

from the APT systems to the destination objets at pratially any instant. The reason

is that the absene of the nonlinear terms modi�es the behaviour of the solutions signi�-

antly, even at the early stages of the integrations, f. Figures 1�2, 10�11, 19�20, 28�29,

37�38, 46�47, 55�56, 64�65, 73�74, 82�83, 91�92, 100�101, 109�110, 118�119, 127�128,

136�137, 145�146, and 154�155.

In fat, the solutions of the nonlinear equations appear to be more reliable than those of

the linear equations when omputing the post�Newtonian orretions to the Newtonian

solutions, beause their size �ts rather well with the size of the gravitational orretions

inluded in the post�Newtonian approximation of the Shwarzshild �eld for the neigh-

borhood of the Earth (1). On the other hand, the ontributions of the nonlinear terms

amount to quantities that inrease, along with the distane from the APT systems to

the targets, as the integration time inreases. In fat, these quantities are measurable at

pratially any instant pre�xed to perform the link proedure, so that they are susep-

tible of being taken into aount, at least within the intervals onsidered for d in eah

ase. The reason is that the diameter of the spot of the laser beam supposedly used by

the systems stays smaller than the size of the orretions from instants very lose to the

initial integration instant, see Figures 5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113,

122, 131, 140, 149, and 158.

Finally, it is lear that the urved struture of spae around the Earth desribed by the

post�Newtonian model in (1) manifests itself in the post�Newtonian nonlinear equations

for the relative motion. In fat, unlike for the Newtonian equations, there are signi�ant

di�erenes in all the senarios onsidered here between the preditions obtained with these

equations and those predited by taking the di�erenes between the post�Newtonian ECI

orbital equations for the destination objets and the APT systems, see Figures 8�9, 17�

18, 26�27, 35�36, 44�45, 53�54, 62�63, 71�72, 80�81, 89�90, 98�99, 107�108, 116�117,

125�126, 134�135, 143�144, 152�153, and 161�162.
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3 Stationary Wigner Equation

3.1 Introdution

This part of the thesis is dediated to the numerial simulation of the stationary Wigner

equation, in a kineti formulation from quantum mehanis.

The problem in its standard form is an Index-2 di�erential algebrai equation (DAE).

Here, standard form means that v = 0 is one of the disrete veloities and the aim is to

�nd the assoiated solution. If v 6= 0, the problem beomes an easily solvable ordinary

di�erential equation (ODE).

For the numerial tests, we therefore, introdue the parameter v := ε, whih will deviate

the problem away from the standard form. By letting ε → 0, we shall observe how the

solution of the ODE onverges to the limit solution of a DAE.

After the �rst series of tests, we will introdue an additional parameter, µ, and simulate

the problem again. The purpose of the seond simulation is to understand the preliminary

results and validate the onlusions drawn from the �rst series of tests. Although, we

ould gain some inside in the problem struture, further investigations are still required.

3.2 Analytial problem and its disretization

The ontinuous equation has the following form [24℄:

vwx(x, v)−Θ[V ]w(x, v) = 0, 0 < x < L, v ∈ R,

where

Θ[V ]w(x, v) =
1√
2π

∫

R

δV (x, η)ŵ(x, η) exp(ivη)dη,

δV (x, η) = i
[

V
(

x+
η

2

)

− V
(

x− η

2

)]

,

ŵ(x, η) =
1√
2π

∫

R

w(x, v) exp(−ivη)dv.

In the �rst step, we disretize the operator Θ and obtain

(A(x)w)j =
∑

k∈Z

wkaj−k(x), j ∈ Z,

where

aj(x) =
1

2η0

∫ η0

−η0

δV (x, η) exp

(

iπjη

η0

)

dη.

The parameter η0 spei�es the �nite support of the potential V , whih we fous on

next. In Figure 163, one an see the potential V (x) = v0χ[−l, l] whih was hosen for the

numerial simulation. Sine η0 is the bandwidth of the potential, it follows that η0 = 2l.
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Figure 163: Image of the potential V used for the numerial tests.

This potential results in δV of the form

δV = iv0

[

χ[−l, l]

(

x+
η

2

)

− χ[−l, l]

(

x− η

2

)]

.

From the above de�nitions, after few simplifying steps, we obtain the following represen-

tation for aj ,

aj(x) =
v0
j







cos
[

jπ
(

1 + 2x
η0

)]

− (−1)j , 0 < x < η0,

− cos
[

jπ
(

1 + 2x
η0

)]

+ (−1)j, −η0 < x ≤ 0.
(3)

This result allows us to reformulate the original problem, with L = η0 = 2l. The new

equation is

Twx(x, v)− A(x)w(x, v) = 0, −L < x < L, (4)

with w(x) being now a vetor valued funtion. The length of this vetor is de�ned by

the set J , whih in our simulations is either J = {−1, 0, 1, 2} or J = {−2,−1, 0, 1, 2, 3}.
In Figure 164, the disretization of w is shown, The arrows indiate where the boundary

onditions are formulated.
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Figure 164: Disretization of w for J = {−1, 0, 1, 2}.

Clearly, after �xing J , we obtain either

w(x) =















w−1(x),
w0(x),
w1(x),
w2(x),

or w(x) =































w−2(x),
w−1(x),
w0(x),
w1(x),
w2(x),
w3(x),

where the matrix T is de�ned as

T = diag(vj)j∈J ∈ R
|J |×|J |, vj =

(j − ε)π

L
.

Here, one an see how the parameter ε, mentioned in the introdution, enters the system.

As already said, for ε = 0 the problem is a system of DAEs, while for ε > 0 it is a system
of ODEs, linear in eah ase.

The matrix A, a disretization of Θ, is a skew-symmetri, Toeplitz matrix, whih means

ajk(x) = aj−k(x). The values for aj(x) are given in (3).

To summarize all this, we will show how the omplete system looks for the two ases of J .
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First, J = {−1, 0, 1, 2}















(−1−ε)π
η0

0 0 0

0 −επ
η0

0 0

0 0 (1−ε)π
η0

0

0 0 0 (2−ε)π
η0



























dw
−1

dx

dw0

dx

dw1

dx

dw2

dx













−













a0(x) a−1(x) a−2(x) a−3(x)

a1(x) a0(x) a−1(x) a−2(x)

a2(x) a1(x) a0(x) a−1(x)

a3(x) a2(x) a1(x) a0(x)

























w−1

w0

w1

w2













= 0,

and for J = {−2,−1, 0, 1, 2, 3}



























(−2−ε)π
η0

0 0 0 0 0

0 (−1−ε)π
η0

0 0 0 0

0 0 −επ
η0

0 0 0

0 0 0 (1−ε)π
η0

0 0

0 0 0 0 (2−ε)π
η0

0

0 0 0 0 0 (3−ε)π
η0



















































dw
−2

dx

dw
−1

dx

dw0

dx

dw1

dx

dw2

dx

dw3

dx

























−























a0(x) a−1(x) a−2(x) a−3(x) a−4(x) a−5(x)

a1(x) a0(x) a−1(x) a−2(x) a−3(x) a−4(x)

a2(x) a1(x) a0(x) a−1(x) a−2(x) a−3(x)

a3(x) a2(x) a1(x) a0(x) a−1(x) a−2(x)

a4(x) a3(x) a2(x) a1(x) a0(x) a−1(x)

a5(x) a4(x) a3(x) a2(x) a1(x) a0(x)













































w−2

w−1

w0

w1

w2

w3























= 0.

Finally, we speify the boundary onditions,

wj(−L) = 0, j ≥ 0, wj(L) = 1, j < 0.

3.3 Numerial algorithm

In this setion, we speify the solution algorithm, whih is a standard polynomial ollo-

ation methods known from the ODE ontext, and its modi�ation suitable to deal with

higher index DAEs.
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3.3.1 Colloation method for systems of ODEs

In order to speify the olloation method [25℄, we �rst introdue a mesh

π := {a = t0 < t1 < . . . < ti < ti+1 < . . . < tN = b},

with the step sizes hi := ti+1− ti, i = 0, . . . , N −1. In eah subinterval [ti, ti+1], we insert
m olloation points τik := ti+hiρk, k = 1, . . . , m, using m values 0 ≤ ρ1 < . . . < ρm ≤ 1,
see Figure 165.

Figure 165: Computational grid, inluding all mesh and olloation points.

As a solution ansatz, we hoose a globally ontinuous pieewise polynomial funtion whih

redues to a polynomial of the degree ≤ m in eah subinterval of the mesh. In order to

alulate the oe�ients in the ansatz, we require that the ODE system is exatly (up to

the round-o� errors) satis�ed in eah olloation point and satis�es the initial/boundary

onditions.

3.3.2 Least Square Colloation method for DAEs

Sine, we intend to solve an Index-2 DAE system whih is ill-posed, the above standard

olloation is not a method of hoie, sine it shows a divergent behaviour in general.

Therefore, we designed a variant of the olloation [26℄, whih shows a onvergent be-

haviour for higher index DAEs. The idea of this modi�ation is as follows: In addition

to the olloation points spei�ed by the set {ρi}si=1, we introdue new olloation points

de�ned by {σi}qi=1 ∈ [0, 1] and we require the DAE system to be satis�ed exatly at those

additional points as well. Clearly, the resulting disrete system is overdetermined and

will be solved in the least squares sense.
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Figure 166: Standard olloation points and additional points for the least squares variant

of the olloation.

The hoie of the parameters {σi}qi=1 ∈ [0, 1] is somewhat free and so, we deided for the

the following: q = m+ 1,

σi :=











ρ1
2
, i = 1,

ρi+ρi+1

2
, 1 < i ≤ m,

ρm+1
2

, i = m+ 1.

3.4 First results

The results doumented in this hapter were alulated with N = 200 equidistant grid

points and m = 5 Gaussian olloation points. Our aim here is to observe how the

solution hanges when ε → 0.
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3.4.1 J = {−2,−1, 0, 1, 2, 3}
3.4.1.1 Solution omponent w−2
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Figure 167: Solution omponent w−2 for ε varying between 1e− 1 and 1e− 3.
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Figure 168: Solution omponent w−2 for ε varying between 1e− 3 and 1e− 5.
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Figure 169: Solution omponent w−2 for ε varying between 1e− 5 and 1e− 7.
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Figure 170: Solution omponent w−2 for ε varying between 1e− 7 and 1e− 9.
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Figure 171: Solution omponent w−2 for ε varying between 1e− 9 and 1e− 11.
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Figure 172: Solution omponent w−2 for ε varying between 1e− 11 and 1e− 13.
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Figure 173: Solution omponent w−2 for ε varying between 1e− 13 and 0.
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3.4.1.2 Solution omponent w−1
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Figure 174: Solution omponent w−1 for ε varying between 1e− 1 and 1e− 3.
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Figure 175: Solution omponent w−1 for ε varying between 1e− 3 and 1e− 5.
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Figure 176: Solution omponent w−1 for ε varying between 1e− 5 and 1e− 7.
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Figure 177: Solution omponent w−1 for ε varying between 1e− 7 and 1e− 9.
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Figure 178: Solution omponent w−1 for ε varying between 1e− 9 and 1e− 11.
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Figure 179: Solution omponent w−1 for ε varying between 1e− 11 and 1e− 13.
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Figure 180: Solution omponent w−1 for ε varying between 1e− 13 and 0.
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3.4.1.3 Solution omponent w0
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Figure 181: Solution omponent w0 for ε varying between 1e− 1 and 1e− 3.
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Figure 182: Solution omponent w0 for ε varying between 1e− 3 and 1e− 5.
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Figure 183: Solution omponent w0 for ε varying between 1e− 5 and 1e− 7.
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Figure 184: Solution omponent w0 for ε varying between 1e− 7 and 1e− 9.
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Figure 185: Solution omponent w0 for ε varying between 1e− 9 and 1e− 11.
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Figure 186: Solution omponent w0 for ε varying between 1e− 11 and 1e− 13.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−3000

−2000

−1000

0

1000

2000

3000

4000

w
0
− ε = 1e−13

ε

ε/2

ε/4

ε/8

ε/15

ε/30

ε/60

0

Figure 187: Solution omponent w0 for ε varying between 1e− 13 and 0.
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3.4.1.4 Solution omponent w1
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Figure 188: Solution omponent w1 for ε varying between 1e− 1 and 1e− 3.
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Figure 189: Solution omponent w1 for ε varying between 1e− 3 and 1e− 5.
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Figure 190: Solution omponent w1 for ε varying between 1e− 5 and 1e− 7.
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Figure 191: Solution omponent w1 for ε varying between 1e− 7 and 1e− 9.
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Figure 192: Solution omponent w1 for ε varying between 1e− 9 and 1e− 11.
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Figure 193: Solution omponent w1 for ε varying between 1e− 11 and 1e− 13.
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Figure 194: Solution omponent w1 for ε varying between 1e− 13 and 0.
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3.4.1.5 Solution omponent w2
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Figure 195: Solution omponent w2 for ε varying between 1e− 1 and 1e− 3.
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Figure 196: Solution omponent w2 for ε varying between 1e− 3 and 1e− 5.
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Figure 197: Solution omponent w2 for ε varying between 1e− 5 and 1e− 7.
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Figure 198: Solution omponent w2 for ε varying between 1e− 7 and 1e− 9.
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Figure 199: Solution omponent w2 for ε varying between 1e− 9 and 1e− 11.
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Figure 200: Solution omponent w2 for ε varying between 1e− 11 and 1e− 13.
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Figure 201: Solution omponent w2 for ε varying between 1e− 13 and 0.
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3.4.1.6 Solution omponent w3
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Figure 202: Solution omponent w3 for ε varying between 1e− 1 and 1e− 3.
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Figure 203: Solution omponent w3 for ε varying between 1e− 3 and 1e− 5.
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Figure 204: Solution omponent w3 for ε varying between 1e− 5 and 1e− 7.
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Figure 205: Solution omponent w3 for ε varying between 1e− 7 and 1e− 9.
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Figure 206: Solution omponent w3 for ε varying between 1e− 9 and 1e− 11.
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Figure 207: Solution omponent w3 for ε varying between 1e− 11 and 1e− 13.
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Figure 208: Solution omponent w3 for ε varying between 1e− 13 and 0.
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3.4.2 J = {−1, 0, 1, 2}
3.4.2.1 Solution omponent w−1
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Figure 209: Solution omponent w−1 for ε varying between 1e− 1 and 1e− 3.
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Figure 210: Solution omponent w−1 for ε varying between 1e− 3 and 1e− 5.
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Figure 211: Solution omponent w−1 for ε varying between 1e− 5 and 1e− 7.
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Figure 212: Solution omponent w−1 for ε varying between 1e− 7 and 1e− 9.
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Figure 213: Solution omponent w−1 for ε varying between 1e− 9 and 1e− 11.
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Figure 214: Solution omponent w−1 for ε varying between 1e− 11 and 0.
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3.4.2.2 Solution omponent w0
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Figure 215: Solution omponent w0 for ε varying between 1e− 1 and 1e− 3.
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Figure 216: Solution omponent w0 for ε varying between 1e− 3 and 1e− 5.
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Figure 217: Solution omponent w0 for ε varying between 1e− 5 and 1e− 7.
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Figure 218: Solution omponent w0 for ε varying between 1e− 7 and 1e− 9.
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Figure 219: Solution omponent w0 for ε varying between 1e− 9 and 1e− 11.
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Figure 220: Solution omponent w0 for ε varying between 1e− 11 and 0.
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3.4.2.3 Solution omponent w1
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Figure 221: Solution omponent w1 for ε varying between 1e− 1 and 1e− 3.
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Figure 222: Solution omponent w1 for ε varying between 1e− 3 and 1e− 5.
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Figure 223: Solution omponent w1 for ε varying between 1e− 5 and 1e− 7.
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Figure 224: Solution omponent w1 for ε varying between 1e− 7 and 1e− 9.
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Figure 225: Solution omponent w1 for ε varying between 1e− 9 and 1e− 11.
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Figure 226: Solution omponent w1 for ε varying between 1e− 11 and 0.
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3.4.2.4 Solution omponent w2
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Figure 227: Solution omponent w2 for ε varying between 1e− 1 and 1e− 3.
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Figure 228: Solution omponent w2 for ε varying between 1e− 3 and 1e− 5.
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Figure 229: Solution omponent w2 for ε varying between 1e− 5 and 1e− 7.
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Figure 230: Solution omponent w2 for ε varying between 1e− 7 and 1e− 9.
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Figure 231: Solution omponent w2 for ε varying between 1e− 9 and 1e− 11.
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Figure 232: Solution omponent w2 for ε varying between 1e− 11 and 0.

3.5 First observations

Generally, we see that the solution behavior as a funtion of ε is kind of haoti. First,

when ε beomes very small, we observe ontinuous hanges in the solution behavior, f.

the respetive �gures.

For these tiny values of ε, we are also able to observe that w−j = wj whih is supported

by the theory. However, the more relevant solution property are the peaks whih are

learly visible in all plots for ε very lose to zero. Interestingly, these peaks our at

somewhat �xed x-values.

• For J = {−2,−1, 0, 1, 2, 3}, they our at x = −2
3
, −1

3
, 1

3
, and

2
3
;

• For J = {−1, 0, 1, 2}, they our at x = −1
2
and

1
2
.

To more preisely investigate and possibly explain this solution behavior, we design

another series of tests, see following hapter.
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3.6 Analytial results

Let us again onsider the system (4),

Twx(x, v)− A(x)w(x, v) = 0, 0 < x < L,

where w(x, v) = (wj(x, v), j ∈ J)⊤. For the analytial bakground see Chapter 4 [24℄.

The DAE system (4) is alled tratable or solvable if the determinant

det(λT − A)

does not vanish identially in λ ∈ C. Whether this ondition holds, ruially depends on

J and on the potential V . Conerning solvability, two situations an our:

(a) If the DAE is not tratable/solvable, its solutions are not unique.

(b) If the DAE is tratable/solvable, we still have a di�ult situation. This is due to

too many boundary onditions, whih makes the BVP not solvable, in general.

Let us assume that the DAE is tratable. The problem with too many boundary ondi-

tions does formally not onstitute any di�ulty, sine the algorithm whih we apply is

solving the resulting disrete system in the least square sense.

We now alulate det(λT −A) for J = {−1, 0, 1, 2} to �nd out when it is not vanishing,

det(λT − A) =

∣

∣

∣

∣

∣

∣

∣

∣

λv−1 a1(x) a2(x) a3(x)
−a1(x) 0 a1(x) a2(x)
−a2(x) −a1(x) λv1 a1(x)
−a3(x) −a2(x) −a1(x) λv2

∣

∣

∣

∣

∣

∣

∣

∣

.

After some simpli�ations, we obtain

det(λT − A) =− λ2a2(x)
2v21 + a1(x)

4 + a2(x)
4 − 2a1(x)

2a2(x)
2

+ a1(x)
2a3(x)

2 + 2a1(x)
3a3(x)− 2a1(x)a2(x)

2a3(x).

For a2(x) 6= 0, the above expression does not vanish identially in λ ∈ C.

Let us also try a di�erent approah � �nd out index of the problem. This is done by

di�erentiating the algebrai onstraint as long as neessary to obtain an expliit expression

for w0. The algebrai onstraint reads:

0 =a2(x)w2(x) + a1(x)w1(x)− a1(x)w−1(x)

and after one di�erentiation, we have

0 =a′2(x)w2(x) + a2(x)w
′
2(x) + a′1(x)w1(x) + a1(x)w

′
1(x)− a′1(x)w−1(x)− a1(x)w

′
−1(x).

(5)

Now, we rewrite the other equations,

2w′
2(x) + a1(x)w1(x) + a2(x)w0(x) + a3(x)w−1(x) = 0,

w′
1(x) − a1(x)w2(x) + a1(x)w0(x) + a2(x)w−1(x) = 0,

−w′
−1(x) − a3(x)w2(x) − a2(x)w1(x) − a1(x)w0(x) = 0,

∣

∣

∣

∣

∣

∣

∣

·(−a2(x)
2

)

·(−a1(x))

·(−a1(x))
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and use them to simplify (5),

a2(x)
2w0(x)

2
= (a′2(x) + a1(x)a3(x) + a1(x)

2)w2(x) +

(

a′1(x) +
a1(x)a2(x)

2

)

w1(x)

−
(

a′1(x) + a1(x)a2(x) +
a2(x)a3(x)

2

)

w−1(x).

Sine this is an expliit form for w0(x), the DAE system is an Index-2 problem (we have

di�erentiated one time). Note, that this only holds for a2(x) 6= 0

These onsiderations motivate to loser investigate the properties of a2(x). Let us begin
by plotting this funtion, f. Figure 233.
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Figure 233: Plot of the fution a2(x).

First, we note that a2(x) is zero at exatly those points where we observed peaks in the

�rst series of results. This observation motivated the design of the seond series of test

runs, see next setion.

3.7 Seond results

Our aim was to eliminate the solution peaks, by manually removing the zeros of a2(x).
This an be easily done by introduing a new parameter, µ, whih we use to modify the
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funtion a2(x):

aµ2 (x) = a2(x) + µx.

As we an see in the following plot, where µ = 1, funtion aµ2 has no zeros, exept the

one at x = 0.
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Figure 234: Plot of the funtion aµ2(x), µ = 1.

Clearly, for µ = 1 we an see a large hange in a2(x), but as before for ε, we will onsider
µ → 0. The values for µ were hosen as µ = 1, 0.1, 0.01, 0.001, 0.0001, and ε were

varying between 1e− 9 and 0.
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3.7.1 Solution for µ = 1
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Figure 235: µ = 1: Solution omponent w−1 for ε varying from 1e− 9 and 1e− 11.
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Figure 236: µ = 1: Solution omponent w−1 for ε varying from 1e− 11 to 0.
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Figure 237: µ = 1: Solution omponent w0 for ε varying from 1e− 9 to 1e− 11.
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Figure 238: µ = 1: Solution omponent w0 for ε varying from 1e− 11 to 0.
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Figure 239: µ = 1: Solution omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 240: µ = 1: Solution omponent w1 for ε varying from 1e− 11 to 0.
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Figure 241: µ = 1: Solution omponent w2 for ε varying from 1e− 9 to 1e− 11.
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Figure 242: µ = 1: Solution omponent w2 for ε varying from 1e− 11 to 0.
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3.7.2 Solution for µ = 0.1
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Figure 243: µ = 0.1: Solution omponent w−1 for ε varying from 1e− 9 to 1e− 11.
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Figure 244: µ = 0.1: Solution omponent w−1 for ε varying from 1e− 11 to 0.
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Figure 245: µ = 0.1: Solution omponent w0 for ε varying from 1e− 9 to 1e− 11.

−1 −0.8 −0.6 −0.5 −0.4 −0.2 0 0.2 0.4 0.5 0.6 0.8 1
−15

−10

−5

0

5

10

15

20

25

30

w
0
− ε = 1e−11 − µ = 0.1

ε

ε/2

ε/4

ε/8

ε/15

ε/30

ε/60

0

Figure 246: µ = 0.1: Solution omponent w0 for ε varying from 1e− 11 to 0.
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Figure 247: µ = 0.1: Solution omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 248: µ = 0.1: Solution omponent w1 for ε varying from 1e− 11 to 0.
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Figure 249: µ = 0.1: Solution omponent w2 for ε varying from 1e− 9 to 1e− 11.
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Figure 250: µ = 0.1: Solution omponent w2 for ε varying from 1e− 11 to 0.
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3.7.3 Solution for µ = 0.01
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Figure 251: µ = 0.01: Solution omponent w−1 for ε varying from 1e− 9 to 1e− 11.
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Figure 252: µ = 0.01: Solution omponent w−1 for ε varying from 1e− 11 to 0.

158



−1 −0.8 −0.6 −0.5 −0.4 −0.2 0 0.2 0.4 0.5 0.6 0.8 1
−5

0

5

10

15

20

25

30

w
0
− ε = 1e−9 − µ = 0.01

ε

ε/2

ε/4

ε/8

ε/15

ε/30

ε/60

ε/100

Figure 253: µ = 0.01: Solution omponent w0 for ε varying from 1e− 9 to 1e− 11.
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Figure 254: µ = 0.01: Solution omponent w0 for ε varying from 1e− 11 to 0.
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Figure 255: µ = 0.01: Solution omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 256: µ = 0.01: Solution omponent w1 for ε varying from 1e− 11 to 0.

160



−1 −0.8 −0.6 −0.5 −0.4 −0.2 0 0.2 0.4 0.5 0.6 0.8 1
−6

−5

−4

−3

−2

−1

0

1

2

3

4
x ��

−4 2
− ε − − µ

ε

ε��

ε��

ε��

ε���

ε���

ε���

ε����

Figure 257: µ = 0.01: Solution omponent w2 for ε varying from 1e− 9 to 1e− 11.
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Figure 258: µ = 0.01: Solution omponent w2 for ε varying from 1e− 11 to 0.
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3.7.4 Solution for µ = 0.001
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Figure 259: µ = 0.001: Solution omponent w−1 for ε varying from 1e− 9 to 1e− 11.
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Figure 260: µ = 0.001: Solution omponent w−1 for ε varying from 1e− 11 to 0.
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Figure 261: µ = 0.001: Solution omponent w0 for ε varying from 1e− 9 to 1e− 11.
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Figure 262: µ = 0.001: Solution omponent w0 for ε varying from 1e− 11 to 0.
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Figure 263: µ = 0.001: Solution omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 264: µ = 0.001: Solution omponent w1 for ε varying from 1e− 11 to 0.
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Figure 265: µ = 0.001: Solution omponent w2 for ε varying from 1e− 9 to 1e− 11.
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Figure 266: µ = 0.001: Solution omponent w2 for ε varying from 1e− 11 to 0.
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3.7.5 Solution for µ = 0.0001
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Figure 267: µ = 0.0001: Solution omponent w−1 for ε varying from 1e− 9 to 1e− 11.
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Figure 268: µ = 0.0001: Solution omponent w−1 for ε varying from 1e− 11 to 0.
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Figure 269: µ = 0.0001: Solution omponent w0 for ε varying from 1e− 9 to 1e− 11.
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Figure 270: µ = 0.0001: Solution omponent w0 for ε varying from 1e− 11 to 0.
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Figure 271: µ = 0.0001: Solution omponent w1 for ε varying from 1e− 9 to 1e− 11.
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Figure 272: µ = 0.0001: Solution omponent w1 for ε varying from 1e− 11 to 0.
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Figure 273: µ = 0.0001: Solution omponent w2 for ε varying from 1e− 9 to 1e− 11.

−1 −0.8 −0.6 −0.5 −0.4 −0.2 0 0.2 0.4 0.5 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x KL

−5 2
− ε − − µ

ε

εMN

εMO

εMP

εMKQ

εMRL

εMSL

0

Figure 274: µ = 0.0001: Solution omponent w2 for ε varying from 1e− 11 to 0.
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3.8 Conlusions

Obviously, although the behaviour of the solutions slightly hanged after introduing the

µ parameter, their fundamental struture, espeially the peaks, did not alter muh. Sine

the analytial insights are still being developed, we have to refer to future studies aiming

at explaining the observations made in the experimental preliminary phase doumented

here.
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