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Abstract

Large-scale object recognition challenges such as the ImageNet Large Scale Visual
Object Recognition Challenge or the Microsoft Common Objects in Context challenge
have shown that convolutional neural networks achieve state-of-the-art performance on
computer vision problems like object detection and image classification. Convolutional
neural networks benefit from datasets of hundreds of thousands of images, which cover
more intraclass variabilities and aid in learning robust and invariant features. However,
these datasets are designed for general object recognition and no dataset of similar
dimensions exist for person recognition. Therefore, data is collected from over 30 datasets
for person detection, classification, segmentation and tracking to form a pool of data
sources for person recognition. A method of extracting application-specific data from
this pool and training a convolutional neural network for binary person classification is
proposed. Additionally, performance improvements of subclass labeling are analyzed for
the nonperson class and an error rate of 2.82% is achieved. Results demonstrate that
using our person recognition dataset as a pre-training set for person classification tasks
with training sets of only up to a few thousand images leads to an increase in accuracy of
over 8% to a total accuracy of over 99%. The quality of our dataset is demonstrated by
additional evaluation. Furthermore, results emphasize the complexity of convolutional
neural network architecture choice and indicate increased robustness in training with
subclass labeling with regards to initialization and solver algorithms.
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Kurzfassung

Großangelegte Objekterkennungswettbewerbe wie zum Beispiel das ImageNet Large Scale
Visual Object Recognition Challenge oder Microsoft Common Objects in Context haben
gezeigt, dass faltende neuronale Netzwerke den Stand der Technik der Leistung in Com-
puter Vision Aufgaben wie Objektdetektion und Bildklassifikation erreichen. Faltende
neuronale Netzwerke profitieren von Datensätzen aus hunderttausenden Bildern, die
mehr Intra-Klassen-Variabilitäten abdecken und helfen, robuste und invariante Merk-
male zu lernen. Allerdings sind dies Datensätze für allgemeine Objekterkennung und
es existiert kein Datensatz für Personenerkennung, der ähnliche Ausmaße hat. Daher
werden Daten von über 30 Datensätzen für Personendetektion, Personenklassifikation,
Personensegmentation und Personenverfolgung gesammelt, um einen Topf von Daten-
quellen für Personenerkennung zu formen. Es wird eine Methode für das Extrahieren
von anwendungsspezifischen Daten aus diesem Topf und das Trainieren von einem fal-
tenden neuronalen Netzwerk für binäre Personenklassifikation vorgeschlagen. Weiters
werden die Leistungsverbesserungen durch Subklassenannotation der Nicht-Personen-
Klasse analysiert und eine Fehlerquote von 2.82% wird erreicht. Resultate zeigen, dass die
Verwendung von unserem Personenerkennungsdatensatz als Vor-Trainings-Datensatz für
Personenklassifikationsaufgaben, welche Trainings-Datensätze von nur wenigen tausenden
Bildern haben, zu einer Genauigkeitssteigerung von über 8% führt, was in Folge zu einer
Gesamtpräzision von über 99% führt. Die Qualität unseres Datensatzes wird weiters
durch zusätzliche Evaluierung nachgewiesen. Darüber hinaus betonen die Ergebnisse
die Komplexität der Auswahl einer geeigneten Architektur eines faltenden neuronalen
Netzwerks und bezeugen die erhöhte Robustheit beim Training durch die Verwendung
von Subklassenannotationen bezüglich Initialisierung und Lösungsalgorithmen.
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CHAPTER 1
Introduction

It has been shown that Convolutional Neural Networks (CNN) are robust classi-
fiers [LBD+89, KSH12]. With efficient, parallelizable GPU implementations CNNs
have been applied to large datasets with up to one million images and have achieved
state-of-the-art performance [KSH12, RDS+15]. The ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) was introduced in 2010 [DDS+09], and since 2012, CNNs
have won the annual classification, localization and detection challenges [RDS+15]. The
results of classification and localization challenges are shown in Figure 1.1. Error rates
were reduced by 10% with the introduction of CNNs from 2011 to 2012 and by another
10% until 2014 to a 6.7% top-5 error by GoogLeNet [SLJ+15]. Furthermore, Zhou et al.
show the significance of large, problem-specific datasets [ZLX+14].

Pedestrian or more general person classification is an inherent part of person detection,
which is one of the challenges of surveillance and autonomous driving [AKV15, SA15,
RHGS15]. Several person detection or classification datasets exist, such as the Caltech
or Daimler datasets. However none achieve the proportions of the ILSVRC dataset
as demonstrated in Table 5.1. The task of classification differs from detection in that
an image is mapped completely to an image class, i.e. the existence of one object
is assessed but no object extents or Regions of Interest (RoI) are computed, whereas
detection aims to find bounds of multiple objects in one image. CNNs also achieve
state-of-the-art performance in object detection, where their strong visual features aid
in RoI classification [GDDM14, Gir15]. Additionally, high-level CNN features can be
used for RoI proposal generation and in combination with classification thus perform
state-of-the-art detection [RHGS15].

The aim of this work is to create PersonData, a dataset for binary person classification, i.e.
classification of images as those of a person or not, of similar proportions to the ImageNet
dataset. Additionally, a high-accuracy binary classifier is trained on this data. CNNs
are chosen as the type of classifier because they achieve state-of-the-art performance
as discussed above. We demonstrate that our data is advantageous and yields better

1



1. Introduction

Figure 1.1: Winning error rates of the ILSVRC classification and localization challenges
from 2010 to 2014. Data was taken from [RDS+15].

results for applications with small training data by first pre-training the model with
our data. Moreover, we analyze and verify the benefit of additional labels to define the
non-person class. We provide information about the data sources and propose a method
of interpreting multiple datasets as a pool on which application-specific views and output
datasets can be computed, allowing, for example, the combination and utilization of
detection, segmentation and classification datasets for classification purposes.

Time and resources have limited this work to classification; it does not extend to detection.
Furthermore, training is strictly supervised, and a single CNN architecture is used, which
is only modified for different numbers of output classes and by adding Mean-Variance-
Normalization (MVN) layers. Other deep methods, such as deep forests or deep belief
networks, are left for future research.

Our work differs from state of the art in classification in that it is focused on person
classification, whereas the state of the art was benchmarked on a 1,000-class challenge.
GoogLeNet achieved a winning 6.7% top-5 error on the ILSVRC2014 [SLJ+15, RDS+15].
In comparison, we achieve an error rate of 2.82%. Note that this is an indirect comparison,
since different training and test data for different classification tasks was used and ours is
a binary error rate, i.e. comparable only to top-1 error for which no results are publicly
available. So far no dataset of comparable size has been published for person classification.
PersonData, therefore, constitutes a viable asset for training models for person recognition
with over 300,000 person images. These images are gathered from more than 30 different
datasets and thus cover a larger range of the person class’s intraclass variability than any
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of the data sources alone.

First, individual source datasets for person recognition were sought out and collected in
one pool. This includes data for pedestrian detection, image classification and tracking.
Datasets vary in their annotation format and structure and require separate handling
for data extraction. Therefore, a two-step approach is used to first extract data from
different sources and merge it into a collective, application-specific output. Datasets may
be compressed or readable only with proprietary tools such as Matlab and have to be
converted to readable formats beforehand. A CNN classifier is then trained using the
extracted data for binary person classification. The CaffeNet [JSD+14] architecture is
trained with stochastic gradient descent on the 300,000 person images and two types of
images as the negative class. First, random negative crops from explicitly labeled negative
images of the source datasets are explored. Afterwards, the 79 labeled nonperson object
classes or their respective 11 categorical labels from the MicroSoft Common Objects in
COntext (MSCOCO) dataset are utilized as a collective negative superclass.

We show that our classification network trained on PersonData achieves 97.18% accuracy
and demonstrate its generalizability to new data by achieving over 94% accuracy on four
extra datasets. Additionally, our results show that using additional labels for subclasses
of the negative class yields 1.5% or 2% higher accuracy for 79 or 11 labels, respectively,
indicating the benefits of subclass labeling. Furthermore, using PersonData as a pre-
training set for pedestrian classification on the PETS dataset improves accuracy by over
8.37%.

Thus, the main contributions of our work are, first, the creation of a large-scale dataset
for person recognition of over 600,000 images, second, the training of a binary person
classifier with 97.18% accuracy and, third, the evaluation of subclass labeling of the
catch-all negative class, showing that subclass labeling leads to increased robustness in
initialization methods and solver choice and therefore higher accuracy.

The rest of this thesis is organized as follows. First, we explain the basic functionality
of CNNs starting from a single perceptron and extending it to neural networks and
finally CNNs. Next, a brief overview on person recognition with a focus on pedestrian
detection is given. Afterwards, related work and the state of the art in the areas of person
recognition, object detection and CNNs are discussed. Then, methodological details on
the creation of PersonData and the training of our CNN classifier are explained. After
this, implementation is discussed with regard to hardware, software and frameworks,
smaller algorithms and training details. Next, the data and classifier are evaluated
with regard to the number of labels, performance, overfitting and generalizability, and
respective results are shown. Finally, the thesis is summarized, conclusions are drawn
and strengths and weaknesses of the proposed methods and potential future work are
discussed.
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CHAPTER 2
Convolutional Neural Networks

CNNs have a long history starting with the perceptron algorithm in 1958 [Ros58].
Although CNNs can be explained intuitively as models that learn visual filters to
recognize high-level image features, understanding the functionality of neural networks in
a first step will facilitate understanding how CNNs work. In the following, the perceptron,
its extension to the multi-layer perceptron, feed-forward neural networks and the basics
of CNNs are explained.

2.1 The Perceptron

Rosenblatt designed the first learning neural computer, the perceptron, in 1958 in an
effort to mimic human learning [Ros58]. A neuron’s dendrites are modeled by weights,
which are multiplied with input values. Additionally, a bias value is added to model a
neuron’s required activation potential. Afterwards, the multiplied values and bias are
summed up in the cell body and passed through an activation function to produce an
output representing the firing rate in the neuron. The architecture as described is shown
in Figure 2.1.

The perceptron is a linear classifier defined by weights wi, a bias b and an activation
function f according to Equation 2.1. It is possible to merge the bias with the weights
by using homogeneous coordinates, i.e. putting the bias at the bottom of the weight
vector and adding a constant 1 to the input vector x. Different activation functions,
which are discussed in the next section, can be used, but the original perceptron uses the
heavy-side step function, resulting in a binary output. Therefore, the perceptron is a
linear classifier and its weights define a hyperplane as a linear decision boundary between
classes. Thus, its representational power is limited; it is not possible to model, e.g., an
XOR function using a perceptron since no line can be drawn to separate the classes as
shown in Figure 2.2.
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2. Convolutional Neural Networks

Figure 2.1: The perceptron model with weights wi, inputs xi and bias b. Image
from [Kar16].

f

(∑
i

wixi + b

)
(2.1)

Figure 2.2: The XOR function creates a not linearly separable set. The two classes red
and blue cannot be separated by a single straight line.

2.2 Neural Networks
To overcome the limited representational capabilities of a single perceptron, neural
networks were developed. In a neural network, or artificial neural network, multiple
perceptrons, also commonly referred to as units or neurons, are connected in acyclic graphs,
although one of the most common architectures is that of the multi-layer perceptron
in which the neurons are organized in layers. There are input and output layers and
additional hidden layers that increase network size and complexity. Figure 2.3 shows an
example of this layered architecture.

Multi-layer perceptrons are universal approximators, i.e. they can approximate any
continuous function, and thus do not suffer the same limitations as a single percep-
tron [Cyb89].

Typically, the layers are fully connected, meaning that every neuron is connected to
each neuron of the previous and next layer. However, neurons of the same layer are not
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2.3. Convolutional Neural Networks

Figure 2.3: A multi-layer perceptron with two hidden layers. Image from [Kar16].

connected to each other. The number of units in each layer and the number of layers have
to be chosen and result in networks that approximate functions of varying complexity.
It can be difficult to find a good architecture, as using too many units and layers may
result in a complex function that overfits training data, and choosing too few units can
produce a biased function that is too simple to represent the data distribution well.

Historically, the sigmoid function has been used as activation function for the neurons,
as it can be easily interpreted as firing rate of a neuron. The hyperbolic tangent function
has a similar form but is zero-centered. Since 2010, the Rectified Linear Unit (ReLU)
has become the de-facto standard, as it improves training speed and does not suffer from
gradient vanishing [NH10, DSH13]. Output units do not have any activation function, so
that they can produce arbitrarily valued output.

Neural networks can be trained, i.e. the network can learn weights, by defining a loss
function (also called cost or objective function) and using the backpropagation algorithm
to adapt weights [RHW88]. An example of a loss function is the sum-of-squared-distances.
The backpropagation algorithm works by calculating the loss from the current network
output and a ground truth and computing a weight update from it by passing the error
backwards through the network [RHW88]. This is straightforward for the output layer,
as the error can be used directly. For hidden layers, however, a sensitivity for the unit
has to be calculated using the activation function’s gradients. The sensitivity is then
used to distribute the error backwards through the network.

2.3 Convolutional Neural Networks
Standard neural networks do not handle shifts and distortions in images, which occur
frequently in image datasets, since objects are usually not perfectly aligned or appear mul-
tiple times in the same image. However, despite these drawbacks neural networks should
still be able to learn robust features. Therefore, LeCun et al. developed CNNs [LBD+89],
which are designed specifically for computer vision applications introducing shift and
distortion invariance. A sample network is shown in Figure 2.4.

Using convolutional layers, the networks are able to learn to recognize local features, such
as edges or corners, by restricting the receptive fields of hidden units to local connectivity
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2. Convolutional Neural Networks

Figure 2.4: The Lenet CNN architecture with convolutional and pooling layers. Image
from [LBD+89].

and to add shift invariance by enforcing spatially shared weights. Furthermore, spatial
or temporal subsampling in the form of pooling layers reduces sensitivity to shifts and
distortion.

The architecture of CNNs is made up of distinct layers that are usually arranged in
multiple stages [LKF10]. The basic layers include convolutional layers, nonlinearities,
pooling layers and fully connected layers. One stage may comprise a convolutional layer
to learn filter banks a non-linearity identical to the activation function in standard neural
networks and a feature-pooling layer. In the first level, such a stage typically learns
simple visual features like edges or colour blobs. The second stage then combines the
previous level’s features, e.g. learning corners as combinations of edges. Adding more
stages results in more complex high-level features, such as faces, depending on data and
application.

Convolutional layers consist of multiple filters that are defined by their weights. The layer
defines the number of filters and their kernel size, the stride in which they are applied
and the amount of padding to handle image borders. Example filters learned in the first
convolutional layer are shown in Figure 2.5. The convolved output of a filter is called a
feature map and a convolutional layer with n filters creates n feature maps, which are
the input for the next layer. For backpropagation, the gradient of the convolution is
required, which is the forward-pass convolution with weights flipped along each axis.

Figure 2.5: Filter weights learned by the first convolutional layer in AlexNet. Image
from [KSH12].

Pooling layers reduce feature map resolutions and thereby the sensitivity to shift and
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2.4. Chapter Summary

distortions, as exact feature location is discarded and only relative and approximate
location information remains. Max-pooling selects the maximum output from a local
receptive field and is applied in a sliding-window fashion similar to convolutions [GMB13].
Figure 2.6 shows the result of max-pooling. To obtain the gradient it is necessary to
store the original location of the selected maximum value since maximum operations act
like a routing mechanism in neural networks. An additional benefit of pooling layers is
reduced memory cost. For example, 2 × 2 max-pooling results in output feature maps
with half the input’s width and height.

Figure 2.6: Max-pooling of 25 feature maps.

Fully convolutional layers work identically to hidden layers of a standard neural network.
They can be used at the end of a CNN after several stages to compute arbitrary features
and output scores (cf. universal approximators) [KSH12].

One method that is applicable to CNNs is transfer learning, where a network is pre-trained
with a dataset and fine-tuned to another dataset afterwards [YCBL14]. In this case, a
network is pre-trained ideally on a large dataset to learn robust filters and features that
are generalizable to new data and then trained with application-specific data benefiting
from features identical or similar to the pre-trained ones.

Since 2010 CNNs have been applied to various computer vision tasks and have been
developed further [RDS+15]. Various architectures have been published and open-
source frameworks have been developed, creating large user bases [RHGS15, JSD+14].
Furthermore, several important robustness-increasing techniques have been developed,
such as dropout and batch normalization, which allow higher learning rates for faster
training while minimizing the degree of overfitting [SHK+14, IS15]. These and other
improvements are discussed in the related work.

2.4 Chapter Summary

In this chapter the history of CNNs is discussed. The perceptron is introduced as a
model of human neurons with its activation function output resembling the rate of fire.
Next, multi-layer perceptron neural networks are explained as an extension and the
backpropagation algorithm to train them is discussed. Afterwards, CNNs are explained,
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2. Convolutional Neural Networks

covering the types of layers used and features that are learned. Lastly, pre-training of
CNNs and techniques such as dropout are discussed.
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CHAPTER 3
Person Recognition

Person recognition is a challenging task in computer vision with applications such as
surveillance, autonomous driving, robotics and virtual reality [ZC12, MG06]. The task
of person recognition comprises classification, detection and segmentation problems and
is a special case of the more general object recognition. The person class is specifically
difficult to model, since pedestrians or faces exhibit high intraclass variability, because of
variations in, for example, pose, clothing and background [OPS+97, MG06]. The main
difference between person detection and person classification is that in detection only
the person class is looked for and people have to be differentiated from the rest of the
world, whereas in classification the class is one of a select pool of fixed classes [OPS+97].
Person detection has a long history; In 1985, for example, Tsukiyama et al. detect people
in image sequences [TS85]. In the following, an overview on types of pedestrian detection
methods will be given, including the state of the art.

3.1 Pedestrian Detection

The methods of pedestrian detection can be split roughly into static and dynamic methods.
Static methods are applied on still images or single frames, whereas dynamic methods
require video sequences for motion information [ZC12]. Another type of method is the
use of combinations of models and features to produce a more robust detector. Finally,
there are part-based methods, which aim to handle partial occlusions. These method
types are explained in the following.

3.1.1 Static Pedestrian Detection

Static methods detect people on a single image by either searching the entire image
with a model or by calculating features, which are then classified. Model-based methods,
therefore, require a robust pedestrian model able to deal with problems, such as pose
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3. Person Recognition

variation and occlusion. Examples of model-based methods include histogram of human
appearance [CRM03], where localization is formulated using the basin of attraction of a
smoothed similarity function, template-trees [Gav07], where a variety of shape exemplars
is matched using trees that are clustered with stochastic optimization, and statistical
field models [WY06], which capture local nonrigidity.

Most pedestrian detection methods use feature extraction and classifiers on regions of
interest [ZC12]. A detection window is selected from the entire image, often by the use of
sliding window. Features are computed for this window, which are then fed into classifiers.
The classifiers are trained on sample windows labeled as person and nonperson. An
example of a classifier is support vector machines.

Histogram of Oriented Gradients (HOG) [DT05] is one such feature commonly used for
feature-based detection [ZC12]. The detection window is tiled into overlapping blocks.
In these blocks, computed gradients are aggregated into spatial and orientation cells and
are additionally contrast-normalized. Another common feature is the Scale Invariant
Feature Transform (SIFT), since it is robust and scale invariant [Low04]. SIFT computes
high-dimensional vectors representing image gradients similar to HOG. It can be combined
with principle component analysis to reduce computational costs [ZC12]. Furthermore,
other important features include Local Binary Patterns (LBP) [MYL+08], where binary
codes are computed by thresholding local information, and shape context [YLL10], where
points inside the shape and on its boundary are used to measure shape similarity.

3.1.2 Dynamic Pedestrian Detection

Assuming that the camera has a fixed position and orientation, i.e. there is no relative
motion between the camera and the background, motion features are a strong indicator
for pedestrian movement [ZC12]. Thus, multiple dynamic methods have been developed
based on video data. For example, Histogram of Oriented Flow (HOF) combines motion-
based descriptors with HOG appearance descriptors to detect moving and standing
people [DTS06].

3.1.3 Combined Methods

The combination of complementary features can improve detection performance [ZC12].
Walk et al. combine HOG with a self-similarity feature and motion features derived from
optical flow to construct a robust detector, showing that feature combinations handle
detection challenges better than single features [WMSS10].

3.1.4 Part-Based Pedestrian Detection

A main challenge in pedestrian detection are occlusions, since pedestrians in, for example,
street scenes occlude each other or are occluded by cars, street signs, animals, or other
objects [WNL08]. The idea of part-based detection is to separate the object in question
into parts, which are detected separately. The separate parts can then be combined using
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3.2. State of the Art

known geometrical constraints, such as that one part has to be connected to another
specific part in a certain angle. In the case of pedestrians, arms, legs, torsos and heads
can be detected separately to robustly handle partial occlusions. Wu et al. use 11
hierarchically clustered body parts in a joint likelihood framework to detect occluded
pedestrians [WNL08].

3.2 State of the Art
Before CNN-based region proposals, the state of the art in pedestrian detection was
based on manually designed features, such as the filtered channel features introduced by
Zhang et al. [ZBS15]. The method of Zhang et al. involves computing feature channels
from an input image, calculating feature vectors by sum-pooling over rectangular regions
and feeding them into a decision forest. The sum-pooling can be seen as a convolution
with a rectangular filter bank, thus defining visual features. The decision forest consists
of short trees, i.e. weak classifiers, and is trained using Adaboost. However, CNNs
have improved object detection since 2015 [RHGS15]. CNN-based detection is static,
feature-based detection, which benefits from high-level and robust visual features [KSH12].
A breakthrough is the work of Ren et al. [RHGS15], in which the robustness of CNNs is
additionally exploited for region proposal generation. The method is discussed in the
next chapter along with other related work.

3.3 Chapter Summary
This chapter gives an overview on person detection. The challenges of person recognition
are explained. Then, four types of methods for pedestrian detection are discussed,
including static, dynamic, combined and part-based methods. Lastly, the state of the art
in person detection is explained.
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CHAPTER 4
Related Work

CNNs are models capable of being trained on large amounts of data and benefit from
strong robustness in computer vision tasks [KSH12, RDS+15]. The power of CNNs in
image classification was shown already in 1989 when LeCun et al. classified handwritten
digits for zip code recognition with 5% test error [LBD+89]. In the following, techniques
for increasing robustness, examples of CNN architectures, detection capabilities and other
related work on CNNs are presented.

Dahl et al. show that using ReLUs and dropout improve performance of deep neural
networks [DSH13]. Dropout is a method that reduces overfitting by randomly drop-
ping units and their connections during training, thus preventing correlation between
units [SHK+14]. Units are dropped with a probability p, where p can be different for
every layer. Krizhevsky et al. suggest dropout rates of less than 20% for input layers and
of about 50% in higher layers. At test time, no units are dropped, but their outputs are
multiplied with their respective dropout probabilities, since not dropping any units else
results in a proportionately higher expected value. This leads to a heuristic exponential
model averaging, resulting in less overfitting. Also, when fine-tuning a network using
pre-trained weights from a network trained with dropout, Krizhevsky et al. suggest
pre-multiplying the weights with their dropout probabilities for the same reason.

In 2015, Ioffe et al. introduce batch normalization, which is another technique of making
neural networks more robust [IS15]. During training with stochastic gradient descent,
minibatches are normalized regarding their mean and variance, avoiding the problem
that neurons receive input of varying distributions at every pass and have to adapt their
weights accordingly. A moving average and variance are calculated and final values are
used at test time. Training is, therefore, less sensitive to initialization and learning rates,
which can thus be set to higher values than without batch normalization, leading to five
times faster training speed while still increasing accuracy by 2% [IS15].
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Data augmentation is a model-agnostic method for learning invariances. Paulin et
al. state the importance of learning class invariances and proposed an explorative
algorithm to find the best combination of data transformations [PRH+14]. Training
data is transformed with the transformations expected to happen at test time. These
transformations reflect extrinsic variation, such as lighting conditions and point of view.
Flipping and random cropping were shown to be data augmentation methods that increase
robustness [PRH+14]. The augmentation can also be applied at test time. Paulin et al.
show that there are, however, also transformations that do not increase or can possibly
even decrease accuracy while increasing computational load [PRH+14].

Another method of enhancing performance in CNNs is to use recurrent convolutional
layers as proposed by Liang et al. [LH15]. Recurrent convolutional layers are based on
recurrent connections in the human visual system and not only use the output from the
previous layer but also cycle their own output into themselves. In practice this is done
by unfolding the recurrent layers for a fixed amount of time-steps. Unfolding does not
introduce new parameters to the network, as the same connections are used multiple
times for recycling output. Thus, the network can be made deeper by unfolding, but
the number of parameters remains constant. Additionally, multiple paths are created,
since the input is passed to each unfolded iteration. This results in larger receptive fields,
where the longest path results in the largest receptive field. Hence, multiple levels of
local context are included in one recurrent layer, i.e. one for each path depth, leading to
higher accuracies compared to a similarly deep cascade of normal convolutional layers
with the same amount of parameters.

The first CNN applied to the ILSVRC-2010 challenge is AlexNet, with a top-1 error
rate of 37.5% on the 1,000-class classification challenge [KSH12]. An efficient GPU
implementation and the large ImageNet dataset are used to train a neural network
consisting of five convolutional layers interleaved with max-pooling layers and three
fully connected layers on top. Furthermore, Krizhevsky et al. note the importance of
dropout, data augmentation and network size. Eigen et al. introduce the OverFeat
architecture for classification, localization and detection challenges of the ILSVRC-2013
challenge, winning the localization challenge [SEZ+13]. The model uses the same layers
as AlexNet but discards local contrast normalization and varies several hyperparameters
such as filter sizes and strides. Eigen et al. also show that using more layers and creating
deeper networks results in better performance. Szegedy et al. achieve state of the art
on ILSVRC-2014 with a 6.7% training error by developing a 22-layer deep model built
from multiple so-called inception modules that comprise several parallel paths through
combinations of convolutional and pooling layers [SLJ+15]. Szegedy et al. explicitly
use 1 × 1 convolutions to increase depth with little computational costs and model
the architecture to approximate optimal local sparse structures of CNNs with dense
components. Simonyan et al. extend on the idea that deeper architectures improve
accuracy and proposed the VGG architecture [SZ14]. Their model contains up to 19
weight layers, 6 max-pooling layers and three fully connected layers using only 3 × 3
convolutions in the convolutional layers. Simonyan et al. show that simply increasing
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the network depth results also increases accuracy and achieved first place in localization
and second place in classification in the ILSVRC-2014 challenge. Other improvements to
CNN architecture have been proposed for various tasks such as the deformation pooling
layer [OWZ+15], which learns deformation penalties for object detection, or sibling
convolutional layers with shared weights, which learn person features passed together
into a layer that learns a similarity measure for person re-identification [AJM15].

Fully convolutional networks are introduced by Long et al. [LSD15] for image segmentation
and by Springenberg et al. [SDBR14] for image classification. Fully convolutional networks
do not contain fully connected layers, since fully connected layers require fixed size input
but convolutional layers allow arbitrary input dimensions due to their sliding window
application. Additionally, Long et al. propose a method for converting fully connected
layers to convolutional layers by interpreting them as convolutions with kernels that
span the entire input region [LSD15]. Thus, models trained for classification with fully
connected layers can be refactored to models that output classification heat maps on
arbitrary images.

CNNs trained for classification are shown to implicitly learn localization information
even for image-level labeling [OBLS15]. However, only approximate object location
is learned but not the extents, as our own experiments also demonstrate. Therefore,
using CNNs built specifically for object detection leads to better detection performance
than using their classification counterparts. OverFeat is originally applied to object
detection by using classification and regression loss in a sliding-window detector [SEZ+13]
and is further extended with a recurrent LSTM layer for more robustness in crowded
scenes [SA15]. Sermanet et al. train a CNN for pedestrian detection using multistage
features, i.e. the network contains connections or paths from low-level and mid-level
layers to layers of the classification stage, improving accuracy, with unsupervised training
by sparse coding [SKCL13]. As CNNs display low speed even with GPUs, Angelova et al.
propose large-field-of-view deep networks for pedestrian detection [AKV15]. The network
is trained to find multiple detections at the same time to save time. More precisely, in a
first stage, the image is classified in a 4 by 4 grid by a four-layer, then each grid element
is classified with a deeper network and, finally, a third, even deeper network is used as a
last and accurate check. Liu et al. introduce spatially weighted max-pooling to model
spatial relation of semantic features in pedestrian detection [LHYS15]. CNNs using their
method are, for example, able to learn optimal positions for heads.

Exploiting the speed and robustness of low-level feature region proposals such as Selective
Search, Girshick et al. propose the Region Convolutional Neural Network (RCNN)
detection pipeline, achieving 53.3% mean Average Precision (mAP) on the VOC 2012
challenge [GDDM14]. The system first extracts about 2,000 region proposals from the
input image calculated with Selective Search. Next, features are extracted from a deep
CNN such as AlexNet. Lastly, the image patches are classified by class-specific Support
Vector Machines (SVM) using the CNN features. In 2015, He et al. propose Spatial
Pyramid Pooling (SPP) for CNNs, where fixed size representations are computed from
arbitrarily sized feature maps, thus creating the necessary fixed-length input for fully
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connected layers [HZRS14]. SPP is robust to deformations and has the advantage for
object detection that convolutional features only have to be computed once per image as
compared to RCNN. The convolutional features can then be pooled into fixed length and
used in detectors, resulting in speeds over 20 times faster than with RCNN. Lenc et al.
combine RCNN and SPP into a detection network by integrating SPP as a layer and
adding bounding box regression [LV15a]. Additionally, they speed up training by using
a constant region proposal scheme, only training images on one scale as compared to
multiple scales in the original SPP method, and by replacing SVM classification with a
softmax output. The constant region proposals are pre-calculated by statistical analysis
of the underlying PASCAL VOC 2007 dataset. They show that replacing the SVM and
only evaluating one scale results in mAP drops of only 1.3% and 1.1%, respectively, but
speeds up training significantly.

Coincidentally, Girshick propose a different improvement on RCNN, resulting in a method
ten times faster than SPP [Gir15]. Using RoI pooling, fixed size vectors can be computed
from arbitrary regions similarly to SPP. In fact, RoI pooling is the special case of SPP
pooling with a one-level pyramid. A region is divided into a fixed number of grid elements,
and inside each element, values are max-pooled to an output. RoI pooling is applied
on top of convolutional features using image-level region proposals as computed by
Selective Search or EdgeBoxes. The pooled regions are passed through fully connected
layers to create a feature vector. This vector is then passed into sibling fully connected
layers, leading to a softmax layer for classification scores and a bounding box regressor,
respectively.

Ren et al. further improve on this design by introducing Region Proposal Networks
(RPN) [RHGS15]. Exposing region proposals as the bottleneck of the RCNN pipeline,
RPNs are designed to compute robust region proposals fast. The RPN is used for region
proposals that are then used in the detection network. To reduce costs, both networks
share their convolutional layers for features. On top of these features, the RPN now uses
a sliding window, which is natively implementable as a convolutional layer, to create an
intermediate output, which is then fed into two convolutional sibling layers such that
the whole network is fully convolutional for arbitrary image sizes. These sibling layers
calculate objectness scores and bounding box coordinates, respectively. Additionally,
both are calculated for nine anchors in the input image simultaneously, since receptive
fields can span almost the whole input image. The anchors are defined by three aspect
ratios and sizes to cover nine possible region proposal shapes. The objectness score is
then used to find relevant region proposals used in the detection network. This procedure
only requires evaluating the shared convolutional layers once and then the different top
parts of the RPN and detection network, resulting in speeds of, for example, 5 fps for
the deep VGG network. Additionally, fewer region proposals are needed than before, i.e.
300 instead of 2,000, to still achieve a higher 70.4% mAP on the PASCAL VOC 2012
challenge. However, a drawback of the method is training, as it requires four steps. First,
the RPN is trained by fine-tuning a model that is pre-trained with ImageNet. Then the
region proposals from the first phase are used to train the detection network, which is
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initialized equally. Next, the convolutional layers are initialized with the weights from
the detection network and only the unshared RPN layers are trained. This fixes the
shared weights between both networks. Lastly, the top layers of the detection network
are fine-tuned using the region proposals from the third step.

CNNs benefit from training datasets of multiple hundred thousands of images to achieve
high performance and are commonly evaluated on benchmark challenges providing such
large datasets [RDS+15, LMB+14]. Caltech101 is a classification dataset from 2005 for
101 object classes [FFFP07]. The Caltech Pedestrian Detection Benchmark contains a
dataset with 350,000 person annotations in 250,000 frames and has been used for the
evaluation of over 15 detection approaches [DWSP12]. The PASCAL Visual Object
Classes (VOC) Challenge, which has been held annually from 2005 to 2012, comprises
classification, detection and segmentation challenges on 20-class data with over 31,000
annotations in over 11,000 images and additional challenges such as action segmentation
or person layout.

In 2010, the ILSVRC for image classification and object detection has been introduced
and is being held annually [DDS+09, RDS+15]. With the use of Amazon Mechanical
Turk to achieve large-scale annotation, approximately 1.2 million images are organized
according to the WordNet hierarchy. The individual challenges are 1,000-class image
classification, 1,000-class single-object localization, where the bounding box of one object
per instance per image has to be calculated, and 200-class object detection. Only not
occluded object parts are used for bounding box annotation. Classification accuracies are
measured as top-1 and top-5 error rate, i.e. the percentage of images where the ground
truth was not among the top 1 or 5 output classes, respectively, sorted by classification
confidence. The winning score of the 2014 classification challenge is GoogLeNet with a
6.7 % top-5 error.

The MSCOCO dataset is published in 2015 [LMB+14]. It contains 2.5 million annotations
in 328,000 images. The images are annotated with instance-level polygonal segmentation
masks. In total, there are 91 object classes; however only 82 of them have more than
5,000 labeled instances. The 2014 release contains only 80 classes due to incomplete or
ambiguous labeling. The labels are grouped into 12 supercategories, where the person
class is its own category. Contrary to Imagenet, fewer classes are provided; however,
there are more images per class. Additionally, the amount of images per class is equally
distributed.

To address the lack of understanding of how CNNs work or why they perform so well,
Zeiler et al. introduce deconvolution networks. These networks are able to visualize
image parts and features that lead to activations for each neuron [ZF14]. Deconvolution
networks invert the operations of the network by deconvolving, using the transposed
filters and unpooling with switch variables for input locations. These visualizations
help to understand which neuron learns which features. Nguyen et al. [NYC15] use
evolutionary algorithms to deliberately fabricate incorrect images that still achieve a
classification score of 100%. They find that deep networks do not learn global structure,
since feature repetitions are allowed and the best way to handle this problem is to use
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larger datasets with more classes such as in the ILSVRC, thus covering more variability.
Mahendran et al. invert image representations including CNN features and found that
deeper features become more invariant and abstract [MV15]. Lenc et al. analyze the
equivariance, invariance and equivalence of CNN features by using stitching layers, which
are able to swap network parts [LV15b]. Low-level features are found to transform
along with the input image and are equivalent among different network architectures,
while deeper layers lose these properties. In 2015, Yosinski et al. develop a tool for
visualizing intermediate activations of CNNs using a video feed, which allows activations
to be analyzed using dynamic, moving data [YCN+15]. Additionally, they propose a
regularized optimization technique to create recognizable and interpretable images that
lead to high activations for each neuron.

Since ground truth data may contain labeling noise, Vo et al. propose a training method
that is able to deal with this problem by using weakly supervised re-ranking and network
fine-tuning [VGLBP15]. They use this algorithm to train a CNN on noisy web data, and
their results suggest that given more research, large quantities of data that have not been
controlled manually can be used.

CNNs have also been applied to other tasks such as artistic style transfer [GEB15]. Gatys
et al. use feature map activations for content reconstruction and feature map correlation,
defined as a matrix of feature map products, for style reconstruction. Higher layers
contain less information about content but more about style. They propose style transfer
by creating an output image via backpropagation using a combined content and style
similarity loss function.

4.1 Chapter Summary
In this chapter related work on CNNs is introduced. The techniques of dropout, batch-
normalization, data augmentation and recurrent convolutional layers for increased ro-
bustness are explained. Then, common architectures such as AlexNet are discussed
and fully convolutional networks are explained. Afterwards, CNNs for detection from
weak localization to specialized RPNs for high-level RoI proposals are discussed. Lastly,
several benchmarks, methods for visualizing and understanding CNNs and for dealing
with labeling noise are introduced.
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CHAPTER 5
Methodology

Deep learning typically benefits from large amounts of data, e.g. datasets from hundred
thousands to millions of images, as can be seen from the results of the annual ILSVRC
challenge, where CNN detectors and classifiers achieve state-of-the-art performance on a
200-class detection and a 1,000-class classification task with a dataset of approximately
1.2 million training images [RDS+15]. Therefore, we create a dataset pool designed
specifically for the task of person classification. In the following, details on the data
sources and merging are discussed. Then, the training of a CNN on this data is explained
and, lastly, localization based on feature maps is examined.

5.1 Dataset

When working with the person image class, its high intraclass variability has to be taken
into account. Additionally to lighting conditions, occlusions and other extrinsic variability,
people vary further due to strong differences in pose, clothing and accessories, skin color
and more. Therefore, for the task of binary person classification, i.e. classifying an input
image as person or not person, a large dataset of hundred thousands annotations for
persons and a catch-all negative class is required. Many datasets with images of persons
are available; however, they were designed specifically for certain tasks and publications,
such as tracking, detection, pose estimation, action recognition and others. Furthermore,
these datasets, although varying in size, are comparably small, containing only a few
hundred to a few thousand images. Datasets such as the ILSVRC and MSCOCO datasets,
which are commonly used for deep learning, consist of multiple hundred thousand images.

We therefore collect annotated person images from 31 different datasets, creating a
large-scale dataset specifically for person classification, which is crucial to training a deep
CNN with high accuracy [RDS+15]. The dataset, PersonData, comprises about 600,000
images and is explained in more detail in the following.
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5.1.1 Dataset Pool

In order to create the PersonData, over 50 other datasets were examined. The foremost
problem is the definition of what a person image is. In the case of PersonData, the person
class is defined implicitly from all collected data. Since there is too much data to analyze
manually or to prune source images not fitting a manually selected definition, we decide
to heuristically describe this implicit definition. For the sake of simplicity, a person
image is defined as an image that contains at least part of the human body. Note that
although this means that a picture of a finger counts as a person image, the tendency in
all datasets is full-body pedestrian images. Examples of different types of person images
are shown in Figure 5.1. Some images may be labelled as a person although the focus
seems to be on another object as, for example, in Figure 5.1b. Apart from perspective
and pose, different datasets also exhibit differences in the choice of margin around the
person, color space and image sizes as exemplified in Figure 5.2.

(a) Pedestrian images

(b) General person images

Figure 5.1: Images labeled as person. Most datasets provide pedestrian images such as
(a) while other datasets contain general person images such as (b).

Due to their variety in applications and sources, the collected datasets are inherently
different. Their folder structures, image and annotation formats can be vastly different,
resulting in difficult combined usage. To address this issue, we propose a method
of extracting data in a standardized manner from different sources by implementing
individual dataset parsers that return standardized information. This requires almost no
modification of source datasets and allows for easy integration of new sources as well as
simple addition of new queries. The only alterations to source datasets are to decompress
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(a) (b)

(c)

Figure 5.2: Examples of image differences among datasets. (a) shows a monochrome and
an RGB, (b) different margins and (c) different scales and crops.

them, split videos into separate image frames and convert binary Matlab files to plain text.
The individual parsers handle different folder structures, file naming conventions, and
annotation formats, such as XML-based or text file annotations and annotation-to-image-
file correspondence, since one annotation file can include information for only one image
or even an entire dataset. Another script uses the returned standardized information
for a specific task, which in our case is image classification. Image classification requires
image-level labeling, which means that images containing multiple annotated persons have
to be cropped to each annotated bounding box. Therefore, bounding box coordinates and
class labels are returned from the parsers and are used to crop and store labeled images
in another folder holding the complete, parsed output dataset. Note that bounding boxes
can be calculated on the fly from segmentation maps or polygonal annotations, which
facilitates the use of segmentation datasets for classification. The results of this procedure
can be interpreted as a view of the base dataset pool.

In the use of tracking datasets for classification, image redundancy has to be considered.
Video data may show a person walking on a street. Frame by frame annotation results
in a sequence of images of the same person in a walking cycle. Since the person’s pose
repeats itself and the background stays relatively similar, e.g. a sidewalk, this means
that individual images are similar. The fact that these multiple, similar images can
outnumber single, nonrepetitive still image of from a different dataset indicates a potential
of overfitting to video data. For PersonData information is, therefore, only extracted
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from every 100th frame. This constant is selected in an attempt to not include individuals
more than four times and thereby including only four distinct poses in walking cycles,
which were empirically found to be different enough to hold new information. Figure 5.3
depicts the small changes in pose variation of a person walking.

Figure 5.3: Images extracted from a video of a person walking exhibit little pose variation
and, therefore, lead to redundancies.

To further improve the general quality of the dataset, person annotations smaller than
40 × 60 pixels are discarded, as these were empirically found to not be recognizable. As
a comparison, evaluation on a subset of the Caltech dataset shows that its bounding
boxes range from 32 × 32 pixels to 243 × 480 pixels with an average of 54 × 130 pixels.
Furthermore, data augmentations such as flipped images are discarded, since this is done
on the fly in the training phase. Complete datasets are discarded, if they lack annotations,
are partially or completely included in other datasets or if the amount of data contained
(cf. video redundancy) is not worth the effort of implementing a possibly complicated
parsing algorithm. For example, this is the case with the Grand Central Station or Mall
datasets, which only include trajectory annotations without bounding boxes.

The result is a pool of 31 selected datasets yielding over 300,000 labeled person images.
The list of source datasets is shown in Table 5.1. The datasets can be more or less
suitable depending on their size. For example, MSCOCO provides roughly 130,000
person images, and the Daimler datasets sum up to approximately 100,000 person images.
This means that these two datasets provide one third of the total data each, and the
remaining 29 make up the final third. Note that this is only the positive class of the
binary problem. In the first experiments, the negative, i.e. nonperson, data available from
these datasets is also used. Negative data is also diverse, ranging from explicit negative
cropped images to empty scene images such as streets, and some datasets do not provide
any nonperson data at all. Random image crops are computed from this negative data
pool by calculating random bounding box sizes and positions, given a few constraints such
as the minimum bounding box dimensions and an aspect ratio between 0.7 and 1.3. The
amount of negative images thus created is set to the amount of positive images extracted
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to create a 50:50 distribution. It is suggested to mimic the application’s distribution
in the training data to minimize bias toward any class. Since our application is simply
classification itself, we settle on an equal distribution. As we have little control over the
random negative crops’ contents and only a subset of datasets contains labeled negative
images, we additionally choose to augment the MSCOCO dataset without extracted
person images as a different base of comparison. MSCOCO provides equally distributed
segmentation and bounding box labels for 80 classes divided into 12 categories within
over 300,000 images. The image distribution over the MSCOCO dataset is shown in
Figure 5.4. Augmenting the person class with our collected data yields 343,814 images,
while the remaining 79 classes total to 268,770 images, resulting in a 56:44 distribution.
The 79 classes are used in combination as the negative nonperson class. This has the
benefit of deeper labeling than random negative crops, since class and category labels
are provided. Additionally, this allows for evaluation of which objects in the non-person
class can be classified well and which not.

Figure 5.4: Distribution of images over the MSCOCO dataset in comparison to the
PASCAL VOC dataset. Image from [LMB+14].

A problem inherent in large datasets is labeling noise, since the sheer amount of images
makes such datasets difficult to examine manually. E.g., when calculating only 2 seconds
per image and a work schedule of 38 hours, it would take over a month to look at 300,000
images. Labeling noise refers to incorrect or imperfect annotations, for example, a picture
of a dog with the label person. During training, however, ground truth annotations are
assumed to be correct and labeling noise, therefore, negatively affects the model. Reasons
for labeling noise are automatic methods, where results are only sparsely checked, but
also differences in perception and labeling type and effort. In the LabelMe dataset, for
example, people can be tagged with synonymous tags and may occur under labels such
as person, pedestrian, boy, child, father, etc. Furthermore, segmentation to bounding box
conversion is problematic because the image contains multiple objects, as the following
example demonstrates. An image of a person’s lap with a pet on it, where the person’s
legs are labeled results in a converted bounding box labeled as person containing the
whole pet but only a part of the human. Examples of inclusion and perception problems
are depicted in Figure 5.5.
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Dataset # ext.img.

MSCOCO 130,654
Daimler Mono Ped. Detection Benchmark Dataset 16,071
Daimler Multi-Cue Occluded Ped. Classification 88,880
Daimler Ped. Segmentation Benchmark (PedCut) 505
2D MOT 2015 548
Caltech Pedestrian Dataset 232
CAVIAR Data Set 2 270
CBCL Pedestrian Database #1 (Pedestrian128x64) 924
CBCL StreetScenes 1,373
Crowdsourced Annotation Dataset 100
CVC-02 Pedestrian Dataset (Classification) 1,083
CVC-03 Virtual-Pedestrian Dataset 839
CVC-04 Virtual-World Pedestrian Dataset 2 1,208
CVC-05 Partially Occluded Pedestrian Dataset 1,357
CVC-06 Partially Occluded Virtual-World Pedestrian Dataset 1,339
CVC-07 DPM Virtual-World Pedestrian Dataset 2,534
ImageNet n02472293 & n00007846 (Man & Person Synsets) 526
INRIA Person Dataset 1,696
KITTI Object Detection Eval 2012 2,057
KITTI Object Tracking Eval 2012 110
LabelMe 11,642
mpi-inf (Training & Test) 10
mpi-inf2 (TUD Multiview Pedestrians, TUD Stadtmitte) 673
Multi-view Multi-class Detection dataset 129
NICTA Pedestrian Dataset 44,223
PASCAL VOC 2012 13,540
Pedestrian Attribute Recognition At Far Distanec (PETA) 16,587
PNNL Parking Lot 1 & 2 100
PNNL Pizza 184
PRID 2011 Dataset 459
Pedestrian Parsing in Surveillance Scenes Dataset (PPSS) 3,961

Table 5.1: List of source datasets used for the PersonData dataset additionally showing
the number of extracted person images per dataset.

5.2 Person Classification

PersonData is created as explained in the previous section for the main task of person
classification with as much data as possible. A deep CNN is trained to classify an image
as containing a person or not. The count of persons in the image is ignored and only
the existence of a person is of importance under the assumption that input images only
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(a) (b)

Figure 5.5: Examples of labeling noise issues. (a) shows problems due to inclusions, where
people appear in object images or vice-versa. (e) shows a drawing labeled as person.

contain one person. This means that a picture containing multiple people, e.g. due to
overlaps, is also simply classified as person. Contrary to object detection, localization
is not part of the problem. Therefore, no RoI proposal generation or bounding box
calculation or refinement has to be done. It is assumed that the images used in training
already are potential RoI and further only have to be classified. The trained deep
network can be extended naively to a detector with a sliding-window routine. However,
we focus solely on creating classifier and analyzing its potential in relation to the data
provided. The network was trained with a few variations on architecture or input data to
demonstrate robustness and analyze the benefit of our dataset and the choice of catch-all
negative class labeling. First, the choice of the neural model is explained. Afterwards,
the training of the network is described.

5.2.1 Network Architecture

Deep CNNs are made up of different types of layers. These layers include convolutional
layers, pooling layers, fully connected layers and others. All of these layers may have
additional hyperparameters such as filter size, padding, stride for the convolutional layers
and the number of neurons for the fully connected layers. Note that parameters of the
network architecture and training procedure are called hyperparameters to distinguish
them from the weights and biases learned by the network during training, which are
collectively called parameters. The amount of layer types along with their additional
hyperparameters and their effect on training speed and quality make it difficult to choose
an architecture. State of the art therefore usually relies on or modifies existing published
architectures such as AlexNet [KSH12], GoogLeNet [SLJ+15] or VGG [SZ14], since they
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perform well on benchmarks such as the ILSVRC.

We use CaffeNet [JSD+14], because the hardware has limitations: It is not capable of
fitting very deep networks such as VGG into memory. CaffeNet is a modification of
AlexNet citeAlexNet without relighting data augmentation and where the order of pooling
and normalization layers is switched. An outline of the CaffeNet architecture is shown in
Figure 5.6. CaffeNet is made up of five convolutional layers, three fully connected layers
and a softmax output layer. It uses ReLUs as activation functions and employs dropout
in the first two fully connected layers. Additionally, pooling layers are used after the first,
second and fifth convolutional layers; furthermore, Local Response Normalization (LRN)
layers are used after the first two pooling layers. CaffeNet has the common architecture
of convolutional layers followed by fully connected layers without SPP or RoI pooling and
therefore accepts only fixed size input. The output softmax function interprets the data
as a probability distribution and output is, therefore, in the range of 0 to 1, summing
up to a total of 1. In the binary case, this leads to results such as (1, 0), (0.2, 0.8) or
(0.5, 0.5). The numbers represent a confidence of classifying the image as a certain class,
and the highest number is chosen as the output class. The higher the confidence, the
safer the classification is presumed to be. In the worst case, multiple classes share the
same or a similar confidence value and are thus ambiguous. It is possible to only consider
classifications with a confidence over a certain threshold, e.g. 0.6. However, we do not
use any threshold.

Figure 5.6: The CaffeNet architecture. Layers 1 to 5 are the convolutional layers
combined with pooling and LRN and layers 6 and 7 are the fully connected layers. Image
from [BSCL14].

5.2.2 Training

Various solvers can be used to train neural networks. Stochastic gradient descent,
Nesterov’s accelerated gradient descent and Adagrad are, for example, three available
solvers, all of which are used in combination with backpropagation to modify and learn
network parameters by minimizing an objective function. In stochastic gradient descent,
training data is passed through the network in small partitions, called minibatches. This
has the advantage that parameters are updated multiple times in one epoch, i.e. one
iteration of the entire dataset, and that fewer data has to be held in memory for a training
step, which is especially useful for GPU implementations. A minibatch is passed through
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the network, computing intermediate outputs along the way as well as a final output,
which in our case is the softmax function. This output is compared to the ground truth by
means of a loss function such as the Euclidian loss or multinomial logistic loss, resulting in
an error measure. Since the error is computed from the last layer, it is directly usable for
this layer. For earlier layers, however, the error has to be propagated backwards through
the entire network by means of backpropagation using gradient sensitivities. Thus the
parameters of every neuron can be modified using individual propagated errors. This is
done by multiplying the error with a learning rate and subtracting it from the current
value. To achieve convergence, the learning rate is adapted during training to become
smaller, leading to less modification of the parameters and thus converging values. An
extension of standard stochastic gradient descent is standard stochastic gradient descent
with momentum. Momentum calculates a new update as a convex combination of the
previous update and the current gradient. This is interpretable as a momentum of the
current model state moving on top of the loss function and helps in breaking out of
shallow ravines, i.e. local optima.

It is important to note that this procedure converges to a local optimum of the high-
dimensional loss function depending on the entirety of learnable parameters; therefore,
an adequate initialization is necessary. The standard that is used per default in the
Caffe framework is initializing neuron weights with random values from a Gaussian
distribution and setting the biases to zero. Sample random weights are shown for the first
convolutional layer in Figure 5.7. Random values are used for what is called symmetry
breaking, as they lead to random initial activations at each neuron, while using the same
values would lead to equal activations and errors and thus redundancies [KSH12].

Figure 5.7: Random initial values for weights of the first convolutional layer are sampled
from a Gaussian distribution.

A second method of initializing parameters is to use a pre-trained model. A network is
trained with a large dataset with the goal of learning versatile and generalizable filters
in the case of CNNs and use them in the second network. It is possible to use only a
subset of pre-trained parameters and use random initialization for the rest as before.
This technique is called fine-tuning, which is used in literature for object recognition
with the 1.2 million image training dataset for the ILSVRC 1,000-class classification
challenge [DDS+09, JSD+14, RHGS15]. The network can then be modified by changing
layers and even switching out the top layer to train and use it for a different task, e.g.
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pre-training for classification and fine-tuning for style recognition. This works well, as
low-level convolutional features such as colors and edges are shared among different tasks.
Examples of low-level features are shown in Figure 2.5. PersonData is one such dataset
usable for pre-training for tasks requiring person images. Its benefit is evaluated in the
results chapter. Fine-tuning can be controlled by setting different learning rates for
different neurons or layers. One approach is to fix low- and mid-level layers by setting
their learning rates to 0 and to retrain only high-level or switched-out layers. It is also
possible to give selected layers a higher learning rate to retrain the network with a focus
on newly initialized parameters.

Another important aspect of training is to shuffle the training data to have approximately
the same distribution in minibatches as in the entire dataset. In case one has binary
labeled data, with the first half having only one label and the second the other, the
network can overfit to the first class. Thus, training with thousands of images with the
same class can train the network so that any input image is of that class, since zero-valued
weights can be learned to always achieve the respective label and since these weights
cannot be updated to adapt to another class because they always produce zero-valued
output due to multiplication.

Learning rates, their decay and solver algorithms are hyperparameters which have to
be chosen, resulting in a problem similar to that of choosing a network architecture.
One way is to use the default settings also used in the training of benchmark winners
and to adapt them when necessary. Our choice of hyperparameters is explained in the
implementation chapter.

There are various methods of data augmentation that aim at increasing the size of the
training dataset using knowledge about its contents [PRH+14]. The most commonly
used data augmentation for object recognition is horizontally flipping images [PRH+14].
A horizontally flipped image of a person, car or many other classes is still a completely
valid image, which is, however, a different image for the model to train. Using horizontal
flips allows for doubling the size of the training data in these cases. Data augmentation
methods differ in computation time, generalizability of their underlying assumptions and
effectiveness. For example, applying a translational jitter to input images is relatively
irrelevant for CNNs compared to flipping because CNNs display translation invariance
due to convolutions [PRH+14]. Other methods include rotation, scale jittering, color
information jittering and random cropping. Figure 5.8 depicts some examples. Further-
more, some augmentations are applicable on the fly during training. This has the benefit
of not having to precompute and store such augmentations, potentially saving a lot of
disc space. In our training we use random horizontal flipping and random cropping on
the fly. Our network expects images with a width and height of 227 pixels. However,
we store PersonData images as 256 × 256 pixels and therefore use the random cropping
mechanism to directly crop images to the network’s required input dimensions, so they
do not have to be rescaled.
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Figure 5.8: Examples of data augmentations. Images can be rotated, cropped, flipped
and scaled while retaining their original labels. Image from [PRH+14].

Binary Classification with Random Negatives

The PersonData dataset yields over 300,000 person image crops, which are used for
training purposes. Only about one third of the datasets provide explicitly labeled
nonperson images, often in the form of empty scenes, i.e. camera photos of street and
other outdoor scenes not containing any people. Negative data is collected from these
images by randomly selecting images and then randomly cropping out image parts. This
is not ideal, as there is little control over the results of the random choices. There are too
many to check manually, lacking additional annotation. Sampling some negative crops
resulting from this procedure shows that they are not representative enough. Figure 5.9
shows sample negative crops, which include mostly parts of cars, sidewalks and houses,
given that the images represent empty street scenes, which make up the majority of the
provided negative data. Training our CNN as described in the previous sections yields a
testing accuracy of 99%. In addition, sampled false positives as shown in Figure 5.10
suggest that the network overfits, e.g. to pets. Evaluation is made difficult by the fact
that the random cropping procedure can lead to the same or very similar images in
training and in the test set as the same image is often used to create crops multiple times
in the process. We conclude from our results that a classifier trained like this learns a
form of objectness score rather than a separate person versus nonperson classification.

5.2.3 Binary Classification with Additional Labels

As random negative iamges create problems, a second type of negative class is used to
allow the evaluation of the PersonData dataset and the trained network. More precisely,
the negative class is defined by multiple subclasses. The MSCOCO dataset contains
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Figure 5.9: Random crops from explicitly labeled negative images usually include cars,
walls and homogeneous areas such as skies and asphalt.

Figure 5.10: False positives of the classifier trained with random negative crops suggest
overfitting to pets most likely due to inclusion labeling noise.

segmentation and bounding box annotations for 80 classes divided into 12 categories. The
main benefit is that the negative class now is not made up of mostly car parts and crops
of unlabeled empty street scenes but instead has more detailed labels such as backpack,
chair, etc. An additional benefit is that the person class is its own category, allowing
three views of the data to be evaluated while keeping the person class constant. Thus,
the negative class consists of either either the remaining 79 nonperson classes or the
remaining 11 nonperson categories, or the entirety of nonperson data is used. Note that
PersonData also contains the person images of MSCOCO. Thus, the combination can also
be seen as augmenting the MSCOCO person class. Furthermore, the amount of negative
images in the 79 classes is roughly similar to the amount of positive images. To be precise,
there are 343,814 positive and 268,770 negative images resulting in a distribution of
56 : 44. Moreover, the number of images per class in MSCOCO is uniformly distributed,
thus not favoring any one class over another. Since the softmax function is defined for a
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set amount of classes, the networks for the binary, categorical or multiclass view naturally
have different numbers of output neurons, i.e. 2, 12 or 80.

5.3 Feature-Map-based Region Proposals

CNN feature map visualizations give insights into the type of features learned. Analyzing
feature maps of dynamic video feeds reveals information about how such video feeds
change with movement. In higher layers, high-level features such as faces as shown in
Figure 5.11 can be detected by spotting the feature maps that show strong activations
correlating with the expected movement, e.g. head movements. This suggests that
the features learned in higher convolutional layers are already able to represent objects
well. Additionally, the results of Yosinski et al. [YCN+15] show that features of the fifth
convolutional layer understand complex shapes like animal bodies or object classes, as
is demonstrated by regularized optimal input stimuli in Figure 5.12. Motivated by this
fact, we try to develop a region proposal algorithm based on feature maps usable in a
Fast R-CNN detection pipeline. However, as empirically discovered and additionally
confirmed by Oquab et al., feature maps generally contain only approximate information
about object localization [OBLS15]. That is to say, for example, that when training a
network for person classification the network can hypothetically learn that the existence
of a head suffices for accurate classification. In this case, no other features such as torsos,
legs or feet have to be learned and have no activation in feature maps. For an accurate
bounding box, features that encompass the entire body have to be learned. Therefore, as
information is missing, no bounding box can be computed of the entire person but only
of their head. However, as a head feature is learned, it can be used as an approximate
location. What is more, there is no general prior information about what feature is
learned in a specific feature map and also about in which feature map a feature is learned.
Therefore, it is not possible to find, for example, the feature map containing the head
with only prior knowledge, as it may not exist or vary in position or can be combined
with another feature, e.g. as an upper-body feature. For the same reason manually
constructing a detector around selected features using statistical analysis of feature maps
is not guaranteed to work well, e.g. features containing the head and feet of a person are
needed for an accurate bounding box, however, they are not guaranteed to exist in the
first place.

Therefore, several methods to heuristically generate region proposals from feature maps
are examined. First, the receptive fields of the strongest activations in arbitrary feature
maps are calculated. Receptive fields of higher layers are, however, relatively large
because the extents are increased by reversing convolutions and pooling (cf. Figure 5.13)
and may span almost the entire image, making them impractical for region proposals, as
they can span multiple objects.

Another idea is to aggregate multiple features maps together as a pixel-wise sum, maxi-
mum or average, allowing for random combination of features in separate feature maps
that are important in combination to find object extents, e.g. heads and feet. On these
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Figure 5.11: Left: Input image. Middle: Feature map of the fifth convolutional layer
with high activations in the are of the head. Right: Deconvolution of the feature map.

Figure 5.12: Each row shows an object class and regularized optimal input-stimulus
images, which lead to strong activations in neurons, showing class-specific features.
Images from [YCN+15].

aggregated feature maps, region growing is used, and growth is based on the activation
value, resulting in structures encompassing high activations of multiple features depend-
ing on the amount of feature maps combined. Difficulties with this method are the
choice of thresholds as the stopping condition or the number of feature maps to combine.
Figure 5.14 shows sample RoI computations for one image based on multiple random
feature map aggregates of the fifth convolutional layer. These results demonstrate that
arbitrary feature maps do not suffice for this task, since relevant information is lost, e.g.
there are no strong activations around the left person.

The advantages of feature maps for region proposal generation are that feature maps in
higher layers contain robust high-level features and that they are smaller than the original
image due to convolutions and pooling without border padding. The disadvantages are
as discussed above, i.e. missing information and no prior knowledge. The region proposal
algorithms Selective Search and EdgeBoxes work on low-level features of the input image
and thus do not have the problem of missing object parts. Furthermore, RPNs are able
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Figure 5.13: Receptive field of a high-level neuron that covers a large part of the input
image. Image from [HZRS14].

Figure 5.14: Top: Multiple aggregates of 32 random feature maps of the fifth convolutional
layer and region growing performed on them, respectively. Bottom: RoI bounding boxes
for the computed regions.

to use high-level features to calculate objectness scores and multiple region proposals at
every feature map pixel. The combined training of object extents, objectness, object class
and region proposals ensures that features able to predict accurate object bounds are
learned and achieves state of the art in object detection with CNNs [RHGS15]. However,
RPNs were published after our experiments and because they are not straightforward to
implement or use, there was not enough time to use them for additional evaluation.
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5.4 Chapter Summary
This chapter introduces the methodology of our work. First, our dataset pool PersonData
is introduced, which consists of 31 datasets for person recognition or object recognition
with person annotations. The method of extracting images and handling issues such
as video data overfitting are explained and the distribution of extracted images are
demonstrated. For classification, the selected CNN architecture is introduced and
the stochastic gradient descent solver as well as initialization methods are discussed.
Afterwards, negative class composition by either random cropping or subclass labeling
are discussed. Finally, the idea of RoI proposal generation based on high-level feature
maps using receptive fields or strong activations is explained.
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CHAPTER 6
Implementation

Deep CNNs contain millions of parameters that are learned by training. All parameters as
well as gradients and error updates have to be held in memory during training. Forward
passes through the network and training with backpropagation require computations
on all of these parameters and neuron gradients. Exploiting mathematical properties of
convolutions, parallel and efficient GPU implementations have been developed, such as
the Nvidia Cuda library, which can be augmented even further for deep learning with
the cuDNN library. This allows for training times two orders of magnitude smaller than
on the CPU. However, specific hardware designed to work with these libraries and with
enough capacity to hold the data is required.

6.1 Hardware

We use an Nvidia GTX 960 in our setup to benefit from faster training times in deep
learning frameworks with the support of Cuda and cuDNN. We also choose this par-
ticular model due to budget restrictions and Cuda compatibility. It has the minimum
requirements for basic CNNs. For example, we find that its 4 GB memory is almost used
completely during training the CaffeNet model with a batch size of 64, which is another
important reasons for the model choice, since - although there are better-performing
models such as GoogLeNet and VGG - adding more layers would require even smaller
batch sizes and would reach hardware limitations more quickly. A 256 GB SSD is used
for quick access to applications and disk space for small data such as documents. A 1
TB HDD is used for larger data such as stored, trained network parameters, which for
CaffeNet are around a few hundred MB each, and datasets, which quickly sum up due to
copies and modifications. The CPU used is an Intel Xeon E5-1607 v3 with four cores
and 3.1 GHz.
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6.2 Software and Frameworks
The operating system chosen is an Ubuntu Linux distribution, as it is freely available
and as it is the primary supported operating system of the Caffe framework. To utilize
the GPU’s capabilities, we install the libraries Cuda 7.5 and cuDNN v3. Scripts for
dataset creation, merging and modification as well as scripts for file conversion and more
are written in Python 2.7 as it is free, works well for rapid prototyping and the Caffe
framework also provides python wrappers and scripts.

There are various deep learning frameworks capable of creating, training and using CNNs.
These frameworks vary in speed, abstraction level, modifiability and creation of new
layers. Table 6.1 lists various frameworks along with their programming language. While
preferences may vary, web research concludes that there is no single best network. We
opt for Caffe because of its high abstraction level, which makes network architecture
definition, solver and application relatively easy. Theano allows for easier modification, as
networks are completely defined in Python code and symbolic gradients make it possible
to do rapid prototyping of new layers without having to worry about manually calculating
gradients for backpropagation as is the case in Caffe, where Cuda or c++ implementations
of forward and backward passes have to be written. However, creation of new layers is
not our goal; therefore, Caffe’s simpler usage is more beneficial. Tensorflow is a promising
new framework maintained by Google and open to the public since November 2015. At
its time of publishing, however, it was still slower than Caffe and did not support the
newest Cuda version. Its benefits are Python and interactive-graph-based control of
optimized c++ code.

Framework Programming Language

Caffe c++, Cuda, Python
Theano Python
Torch Lua
matconvnet Matlab
cuda-convnet c++, Cuda
Deeplearning4j Java, Scala
tiny-cnn c++
Tensorflow python

Table 6.1: List of deep learning frameworks with programming languages used and
additional information.

When working with Caffe directly, most programming is done using the Python wrapper,
abstracting c++ functionality for quick prototyping possibilities. However, Nvidia
DIGITS is used as a second framework that works on top of Caffe, or more precisely a
separate Caffe fork by Nvidia of the official repository. DIGITS is a job-based library
for simplified and multi-threaded preparation of datasets for use with Caffe in database
formats such as LMDB and for training with visualizations of current training loss and
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validation accuracies. Since CNNs such as CaffeNet that have fully connected layers
require fixed size input, DIGITS provides options during database creation to either use
cropping, resizing or filling with Gaussian noise to refactor images to identical dimensions.
For training, DIGITS provides functionality for on the fly data augmentation using
random crops with a fixed size, e.g. randomly taking 227 × 227 regions from a 256 × 256
image in our case, and random horizontal flipping. Caffe solver definition requires the
amount of total training iterations, where one image forward and backward pass counts
as one iteration. DIGITS facilitates solver definition by an abstraction to epochs, where
one epoch defines iterating over the entire dataset once. Furthermore, DIGITS visualizes
learning rate decay as shown in Figure 6.1a. Visualizations of training loss, validation
loss and validation accuracy in an interactive, constantly updating graph make it easy
to see whether or not training is going well. One example of such a graph is depicted
in Figure 6.1b. During or after training, it is possible to select a stored snapshot of the
network state and use it to classify one image and visualize layer weights, activation
distributions and feature maps of the forward pass as shown in Figure 6.2. Additionally,
classifications for multiple images can be calculated along with presentation of the top
results per class. A disadvantage is that, because DIGITS works on a fork of Caffe, new
developments of the main Caffe repository are merged into it only when the developers
of DIGITS decide to do so.

The DeepVis toolbox [YCN+15] is used to help gain intuitive knowledge about the inner
workings of convolutional neural networks. The toolbox visualizes feature maps of all
layers of the CaffeNet model. This includes convolutional, pooling and fully connected
layers. Furthermore, a specific feature map in a layer, i.e. output of one learned filter,
can be selected and a deconvolution [ZF14] can be calculated to visualize how this
filter sees the input image. An example of such a visualization is shown in Figure 5.11.
Also, pre-calculated regularized optimizations of the network’s neurons for the ImageNet
dataset can be shown, as demonstrated in the paper of Yosinski et al. [YCN+15]. These
optimizations visualize what types of images lead to the highest activation of a particular
feature map or neuron (cf. 5.12). Another feature is the possibility of dynamic video
input using a webcam. This method allows us to explore activations with dynamically
changing input and enables empirical recognition of feature map features such as, for
example, a feature map that learns human heads, as the activation moves similarly to
the human head in the input feed.

6.3 Scripts

Iterating datasets in our collected dataset pool, analyzing folder structures and file
information, doing hard negative and positive mining, converting annotation formats
and other smaller algorithms are implemented using Python scripts. Evaluating test sets
and analyzing the potential of feature maps for region proposals is done utilizing Caffe’s
Python wrapper.
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(a)

(b)

Figure 6.1: Top: Learning rate decay is visualized over training epochs. Here, a step
function decay is used and the learning rate is divided by 10 after one-third and two-thirds
of training. Bottom: Training loss and validation loss and accuracy are plotted over
training epochs, allowing immediate understanding of how well training is currently
proceeding.

6.3.1 Data Preparation

Since datasets have different formats of underlying data and annotations, it can be
necessary to convert files for easier usage. Our dataset iterator scripts use Python and
rely on the Python OpenCV library for image processing. Therefore, understandable input
consists of images and text-based formats such as plain text or XML annotations. Because
the Caltech and Daimler Multi-Cue Occluded Pedestrian Classification Benchmark
datasets do not have such formats, their data has to be converted. Caltech contains street
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Figure 6.2: From left to right: Input value distribution, input image, feature maps and
activations of a fully connected layer.

scenes as image sequences in a SEQ format, which are split into separate image files, and
annotations in a VBB file with a Matlab library to read them; these are converted to
plain text using the provided Matlab library in Octave. The Daimler dataset contains
image collections stored as MAT files, which are also split into separate images using
Octave.

The PETS 2009 dataset is used for evaluation of generalization and the benefit of pre-
training with PersonData. As no ground truth annotation is provided with the original
dataset, annotation is used from Andriyenko et al. [ARS11] Specifically, the scenes
S2L1V1 and S2L2V1 are used. However, as no negative, i.e. person-less, images are
available, a negative image is constructed manually for both scenes by stitching together
image parts that do not contain persons, which is possible since the camera has a fixed
position. Sample images and a stitched image are shown in Figure 6.3. From the stitched
images, crops of the size 50 × 100 pixels are cut out on a regular grid. This crop size
was chosen because this is the approximate size of people in the images. The grid is
constructed with horizontal and vertical steps of one-quarter the width and height of the
crops, respectively. This results in 1,239 overlapping crops of a 768 × 576 image. The
number of person annotations are 4,650 and 10,292 for S2L1V1 and S2L2V1, respectively.
Samples of cropped person and background images are shown in Figure 6.4.

6.3.2 Dataset Merging

We propose a method of using a collected pool of datasets to extract application-specific
data. This is done by using a main script that utilizes individual scripts for iterating
the datasets and returning the information necessary to create an application-dependent
view of the entire data. We implement this with Python scripts exploiting the yield
functionality to iteratively return results from one method usable in another while
maintaining the first method’s state, which is beneficial for parsing complicated folder
structures and returning only bits of information. First, datasets to be parsed are declared
in the main script with their names, the path to the dataset’s folder, the specific iterator
script, a variable to define how many images of a video sequence should be used, a
constraint for minimum bounding box dimensions and potential extra parameters. The
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Figure 6.3: In the top row, three sample images of a scene in the PETS dataset are
shown. On the bottom, the stitched empty background image can be seen, which is
manually stitched together from multiple sample images.

datasets are then iterated one after the other, returning the class label, the path to
the image file, bounding box coordinates and the video frame number of that image
if available. Next, video data is filtered by taking only every nth frame according to
the variable set for the current dataset to avoid redundant information, like images of
the same person, e.g. in a walking cycle, that are too similar. Since it is possible that
annotations exist for missing images, the images’ existence has to be checked. Afterwards,
the bounding box coordinates are reordered and cut to image bounds, because annotations
can have bounding boxes exceeding outside image bounds and because coordinates are
not always necessarily in the correct order. In the next step, the adapted bounding box is
compared to the minimum bounding box requirement, which in our case is 40 × 60 pixels.
Lastly, the image is cropped to the bounding box and written to the output directory.

The individual dataset iteration scripts accept the dataset root path and, if required,
additional arguments as parameters. They then iterate over the specific folder structures
and read the specifically formatted annotation. To allow variable ordering and easy
addition or modification of information that is returned, it is returned as a dictionary.
Additionally, an information type variable is returned, such as crop for image crops in
our case, which allows passing various types of information that can be used differently
in the main script for other applications than just image classification. Together, these
scripts are able to create a modifiable application-specific view of the dataset pool. The
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Figure 6.4: Samples of image crops from the PETS dataset for positive images (top) and
negative images (bottom).

view allows for simple extensions through generalization and reuse of code.

6.3.3 Training, Validation and Test Set Creation

The labeled image crops for classification extracted from the dataset pool have to be
split into training, validation and test sets to train and evaluate the neural networks.
DIGITS accepts text files for each split, where each line is a ground truth annotation
containing the image file path and its label. Therefore, the following procedure is used
to create these files. First, parameters are given for the percentages of each split. In
the evaluation of the difference between binary, categorical and full 80-class labeling we
use the rule of thumb according to the Pareto Principle and select 20% as the test set,
and split the remainder again into a 80% training set and a 20% validation set. Image
paths are stored in a list per class label and shuffled to randomize the dataset source per
class. Next the specified percentages for training, validation and test splits are selected
per class and combined into one list for each split. These lists are then shuffled again to
randomize class order. The final lists are then written into text files with absolute image
paths, and the class label separated by a white space. The class labels are numbers; a
separate label text file is used to map these numbers to class names.

6.3.4 Classification Evaluation

For the evaluation of different, trained networks on various test sets, an evaluation
algorithm is implemented using Caffe’s Python wrapper. It is able to load a model, load
ground truth data, classify the test set and compare the results with binary accuracy,
recall and precision. It is also able to calculate confusion matrices and select the best
and worst classifications.
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To fully initialize the model in the framework, trained weights, which are stored as a
caffemodel file, a mean image, the test-time definition of the network architecture in
the protobuf format and a file containing the ordered labels to map ground truth label
numbers to names are needed. Figure 6.5 shows an example of a mean image, in which
a weak silhouette can be seen. This silhouette demonstrates that the majority of data
are pedestrian images. Additionally, the silhouette is symmetrical, which confirms the
assumption that person images are invariant to horizontal flipping. For the ground truth
input, a text file containing a list of ground truth items as explained in the previous
section is expected.

Figure 6.5: Mean images of the PersonData dataset on the left and the PETS crops on
the right.

Using the caffe net class, the network is initialized with the required data and a transformer
is initialized for pre-processing input images as the network requires. Pre-processing
includes resizing the image to the required fix size, switching the color channel order to
BGR, reordering the image dimensions to channel × y × x and subtracting a per-pixel
mean value calculated from the training set’s mean image. This is identical to the
pre-processing done in training.

Next, the test images are loaded, pre-processed and classified in batches. Interestingly,
although the batch size is limited to 64 images during training due to GPU memory
limits, at test time a batch size of 256 images only produced about a half the memory
load, i.e. 2 GB. This may be due to the additional data required during training such as
gradients and errors per neuron. Even higher batch sizes were tested; however, we did
not notice any speedup, the reason for which may be the bottleneck of CPU-to-GPU
memory transfer limited by bandwidth.

The classification results have different dimensions depending on the model, i.e. 80, 12 or
2 values for the 80-class, 12-class or 2-class model respectively. The output is binarized,
i.e the 79 or 11 negative classes are merged into one negative label and true positives,
true negatives, false positives and false negatives are computed for correct and incorrect
person and nonperson classifications, respectively. Accuracy, recall and precision are
calculated using these values according to the formulas of Equation 6.1, Equation 6.2
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and Equation 6.3 where TP , TN , FP and FN are true and false positives and negatives,
respectively.

Accuracy := TP + TN

TP + FP + TN + FN
(6.1)

Precision := TP

TP + FP
(6.2)

Recall := TP

TP + FN
(6.3)

Afterwards, a confusion matrix is constructed to encode classification results. We use the
highest winning class of the softmax output as the classification, because softmax scores
are interpreted as probabilities and thus the highest score is the highest class probability.
The confusion matrix encodes the results using the input class as the y-axis, the output
class as the x-axis and the percentage of the respective classifications as the cell value.
Note that our ground truth test set is always labeled with the full 80-class labeling unless
otherwise specified. This permits comparing even binary classification results to the
more strongly annotated ground truth, i.e. visualizing the percentage of, e.g., backpacks
that are classified as person or background. Figure 6.6 depicts three such confusion
matrices for different input models. Additionally, another matrix is calculated, where
softmax probabilities are summed up directly rather than summing up classifications.
These probabilities can show classification tendencies not visible in the confusion matrix.
For example, for a softmax output of [0.5, 0.4, 0.1], the confusion matrix would lose the
similarity of the first and second output, as it would instead use [1, 0, 0]. However, given
enough data, both matrices converge to a similar result and the confusion matrix suffices
for evaluation.

Figure 6.6: Confusion matrices for ground truth with full 80-class labeling and 80-class,
12-class and 2-class output.
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Lastly, to extract the best and worst classifications, prediction errors are calculated by
subtracting the classification scores from the ground truth. The data is sorted accordingly
and the images resulting in the 100 highest and lowest scores are stored in an output
folder.

6.4 Training Details

The CNNs are trained using the DIGITS framework for a manageable and supervisable
training pipeline, which provides a better overview than the pure console log of Caffe.
The data is required to be in a database format, for which we choose the default LMDB,
and is converted using DIGITS as well. For a created database, the framework also shows
class distribution and computes an image mean as shown in Figure 6.5.

The model used is the CaffeNet model with modifications such as the number of output
neurons. The detailed layer parameters and layer oder is shown in Table 6.2.

Layer Parameters

Convolutional 1 n 96, k 11, s 4, p 0, ReLU output
Max-pooling 1 k 3, s 2, p 0
Local response normalization local size 5, α 0.0001, β 0.75
Convolutional 2 n 256, k 5, s 1, p 2, ReLU output
Max-pooling 2 k 3, s 2, p 0
Local response normalization local size 5, α 0.0001, β 0.75
Convolutional 3 n 384, k 3, s 1, p 1, ReLU output
Convolutional 4 n 384, k 3, s 1, p 1, ReLU output
Convolutional 5 n 256, k 3, s 1, p 1, ReLU output
Max-pooling 5 k 3, s 2, p 0
Fully connected 6 n 4,096, dropout 0.5, ReLU output
Fully connected 7 n 4,096, dropout 0.5, ReLU output
Fully connected 8 n 80 or 12 or 2, softmax output

Table 6.2: The CaffeNet network architecture. The order of layers is the order in which
data is passed through. n is the amount of output feature maps or neurons, k is kernel
size, s is stride and p is padding.

The layer weights are initialized with random values from a Gaussian distribution and
biases are initialized as zero per default. Additionally, biases have a learning rate
multiplier of 2; therefore, propagated errors have more effect on biases than on weights.

The solver used for training is stochastic gradient descent with momentum. The learning
rate is chosen as the default 0.01 and is stepped down after 33% of training to 0.001 and
after 66% to 0.0001 (cf. Figure 6.1a).
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6.5 Feature-Map-Based Region Proposals
The network is loaded and data is pre-processed in the same way as in the evaluation
algorithm. A single forward pass is executed for an input image and the activations in
the feature maps of the convolutional, pooling and LRN layers are stored as matrices.
The Python library numpy is useful for efficient handling of such large matrices since
it is built around N-dimensional array objects and linear algebra. To allow arbitrarily
sized input images, the fully connected layers were cut out of the model definition. The
remaining layers can natively process input of arbitrary dimensions.

6.6 Chapter Summary
In this chapter the implementation details of the applied methods are discussed. The
utilized hardware is explained with respect to storage space, GPU and GPU libraries and
the CPU. Next, the software components such as the operating system, scripting language
and the CNN frameworks Caffe and DIGITS are introduced. Then, the algorithmic
details for dataset preparation and merging, the creation of training and test splits and
for evaluation and computation of confusion matrices are explained. Afterwards, details
on the hyperparameters of the chosen CNN are discussed and further information on the
implementation of the region proposal generation is given.
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CHAPTER 7
Evaluation and Results

Data from more than 30 sources is collected and merged to create PersonData, yielding
over 300,000 labeled person images for image classification training. We evaluate the
performance and properties of CaffeNet trained with PersonData to prove the following
hypotheses. First, we show that binary classification is more accurate when defining the
catch-all negative class by multiple subclasses. Second, we analyze the generalization
capabilities of the classifier network and changes to the amount of data provided. Lastly,
we show that classification on a small dataset of a few thousand images can be improved
by initializing the weights of the network with pre-trained weights using the PersonData
dataset.

7.1 Binary Classification with Multiple Labels
Taking the MSCOCO dataset, nonperson classes as the negative class for the binary
person classification task has the significant advantage of stronger labeling. The negative
class is provided as 79 separate, labeled classes such as chair or car and is additionally
annotated with category labels such as indoor, since MSCOCO has 80 classes, one of
which is the person class. Therefore, it is possible to train the network with three views
of the data, i.e. as an 80-class, 12-class or 2-class classifier, while having the full 80-class
ground truth labeling for evaluation purposes.

The network is trained as described in the previous chapter, i.e. with stochastic gradient
descent similar to literature [KSH12] and the specified training, validation and test data
splits for 30 epochs. 30 epochs were chosen to limit training time, which was about 15
hours for each network, and still achieve a high converging accuracy as demonstrated
below. Table 7.1 shows the results for the differently trained networks. A problem
occurres when training the binary network, as it does not learn, producing 56% accuracy,
which is the same as random guessing, as the distribution of positive and negative images
is 56:44. Visualizing the weights of the first convolutional layer shows that the weights
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almost do not change during training, as seen in Figure 7.1. Base learning rates of 0.1, 10
and 100 times the initial value as well as polynomial decay instead of step function decay
do not change the fact that the initial random weights remain the same. When using
category or full labeling this problem does not occur. A possible explanation is that the
79 classes are too diverse to be trained with one label. Minibatches of 64 images can never
include all classes at once, which shifts learned weights toward the classes contained in the
batch. At the same time, it is difficult to learn weights for one label containing multiple
dissimilar classes, since a backpack has different features than a car but both share the
same negative label. Therefore, additional options are considered. First, initializing the
binary network with the weights from the fully labeled one results in equally good results.
However, this needs the fully labeled data for pre-training. Nevertheless, as the network
trains correctly when initialized not randomly, this suggests that the problem is indeed
the network’s initialization and a possible workaround is to initialize it with a different
large dataset such as ImageNet. Second, initializing the binary network randomly like
the others but using the Adagrad solver instead of stochastic gradient descent yields
at least better results of 86.15%. Adagrad is an extension of gradient descent where
per-parameter learning rates are used and adapted so that rarely updated parameters get
higher learning rates. However, Adagrad is designed for convex problems, which neural
network training is not, and therefore results in less optimal solutions. Lastly, including
MVN layers in the network, i.e. adding an MVN layer after the third convolutional,
the last pooling and the second fully connected layer, and using Adagrad results in a
more comparable accuracy of 94.24%. MVN aids in training by normalizing distribution
of input or activations by doing away with the need to re-adapt the following neurons
to differently distributed data at each update. This is especially beneficial in this case,
where multiple classes are merged into one, because the problem is using the same label
for different classes.

Figure 7.1: Weights before (left) and after (right) training a 2-class model with standard
stochastic gradient descent. There is almost no change, showing that the network does
not learn features.

The validation accuracy provided in the table is calculated for the number of classes of
the respective models. Therefore, the validation accuracy of binary models is almost the
same as the test set accuracy, whereas there is a greater gap when looking at multiclass
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model val. acc. % acc. % recall % precision %

80-class 82.60 95.51 98.01 94.21
80-class (MVN) 67.41 91.56 87.17 97.53
12-class 87.27 96.05 97.38 95.66
12-class (MVN) 75.11 90.24 83.31 99.16
2-class 56.11
2-class (80 pre-trained) 96.49
2-class (Adagrad) 86.15 85.63 82.50 91.06
2-class (Adagrad and MVN) 94.24 94.07 93.94 95.42

Table 7.1: Results of models tested for 80-class, 12-class and 2-class labeling. Validation
accuracy is the accuracy measured at the last epoch of training and is calculated using
all classes of the model while test set accuracy, precision and recall are calculated for the
binary problem.

models. In the multiclass validation accuracy classifying one negative class as another, e.g.
classifying a car as a backpack, counts as a misclassification, whereas these intranegative
misclassifications are ignored in the binary measurements, as it is not important for the
task of person nonperson classification.

The 12-class model without MVN layers achieves the highest binary test set accuracy.
Interestingly, MVN layers only achieve higher accuracy for the 2-class model trained
with Adagrad and only improves precision for the other models, which shows that one
cannot simply claim that MVN improves performance in general. In the first case, MVN
can help, as described above, i.e. neurons do not have to adapt strongly for different
classes. However, for the 12- and 80-class models, it leads to drops in recall of over 10%
and increases in precision of less than 4%. Figure 7.2 shows for the 80-class model that
after adding MVN layers, the first convolutional layer weights are much more sparse and
have less contrast than without MVN layers. This extends further into the network, and
higher layers also have strong activations and weights only in half of the available space.

Comparing the accuracies of the individually best-performing models for each amount of
classes shows that the 12-class model performs best with 96.05%, which is 0.54% higher
than the 80-class model and 1.98% higher than the 2-class model. Considering that after
adding MVN, the 80-class model achieves the highest accuracy than the results of the
previous section, it is difficult to say which amount of labeling is the best since several
components have to be taken into account. such as hyperparameters, solver, frameworks
and implementations. However, we hypothesize that there is a best level of labeling that
depends on architecture and data, which in our case is categorical labeling. In the general
case, using more labels has the main benefit of avoiding the initialization and training
problems experienced with the 2-class model.
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Figure 7.2: Left: Weights of the first convolutional layer and feature map activations for
a 80-class model with the standard CaffeNet architecture. Right: Weights and feature
map activations are much more sparse after extending the architecture with three MVN
layers.

7.2 Performance Evaluation

The following tests are performed using an 80-class model trained for 50 epochs including
the MVN layers as explained in the previous section and using a different percentage of
training data, i.e. using 90% of PersonData as the training set and the remaining 10% as
the validation set in an effort to maximize the use of the data to achieve higher accuracy.
As the validation set was not used for any hyperparameter tuning, which would overfit
the model to the validation set, it is usable directly as the test set as well.

The model is used to evaluate which classes lead to misclassifications, overfitting on video
data, generalization and pre-training benefits, as discussed in the following.
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7.2.1 Classification Analysis

It is important to analyze correct and incorrect results of the classification network to
gain insights into the data, the network and their respective strengths and weaknesses.
Therefore, we evaluate the classifications on the CaffeNet model extended by MVN layers
on PersonData, the results of which are shown in Table 7.2, by computing the confusion
matrix and showing the the top classification scores for person images and the percentage
of input images per class that are classified as person in Table 7.3. The confusion matrix
is shown in Figure 7.3.

Figure 7.3: Confusion matrix of the 80-class MVN model with 90% training data.

model val. acc. % acc. % recall % precision %

80-class 85.89 97.18 97.87 97.13

Table 7.2: Results on the test set after training 50 epochs with 90% of PersonData as
the training set.

Person images are classified correctly 97.87% of the time. However, due to the training
data distribution, there is a bias toward the person class, as can be seen in the confusion
matrix as a vertical line through class 22, which is the number of the person class. Over
10% of toothbrushes, handbags and backpacks and over 20% of hair dryers are classified
as person. As seen in Figure 7.4a, the images of these classes can have people in them
because they are items that are worn, held or used by people. This also occurs between
two negative classes, although it is not important for the task of binary classification,
since both are interpreted as negative. Another source of errors is labeling noise as seen
in Figure 7.4b. Naturally, there are images that are simply classified incorrectly such
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Classifications of person images (%))

person 97.87 chair 0.31 couch 0.16 dining table 0.16 motorcycle 0.10

Images classified as person (% of input class)

person 97.87 hair dryer 22.22 backpack 14.77 handbag 14.04 toothbrush 13.56

Table 7.3: Top classifications for images with the input or output class person. E.g.
0.31% of person images are classified as chairs and 14.77% of backpacks are classified as
person.

as the images in Figure 7.4c, which shows that the trained classifier is not perfect. A
possible explanation for this is the training with data containing labeling noise and the
high intraclass variability of persons.

Comparing these results to the results from the previous section emphasizes the impor-
tance of data and length of training. Using an additional 26% of data and training for 20
epochs longer results in an accuracy increase of about 1.5%. The binary error is 2.82%
compared to the 6.7% of the winner of the classification challenge in ILSVRC2014, i.e.
GoogLeNet with 1.2 million images. These errors are only partially comparable, since
the ILSVRC error is provided only as a top-5 error, i.e. the ground truth class only has
to be among the 5 top classifications, and since there is a difference between 2-class and
1,000-class classification, since random guessing for 2 classes yields 50% but for 1,000
classes only 0.1% accuracy. Nevertheless, our results achieve similarly high accuracies,
showing comparable quality of the PersonData dataset, though for a different task with
different data.

7.2.2 Generalization to New Data

Evaluating generalization capabilities of the model and dataset is important to show
their worth for new applications. However, as any significant dataset is used to create
PersonData, it is difficult to find additional test sets. As a result, the datasets Penn-Fudan
Database for Pedestrian Detection and Segmentation, CUHK Person Re-Identification
Dataset, CUHK campus, CUHK-03 Dataset and two tracking scenes from PETS2009 are
chosen for evaluation. However, only positive annotation is provided for these datasets.
Therefore, for the first datasets, only positive classifications are evaluated and for the
PETS scenes, negative samples are cropped out, as described in the previous chapter.
Table 7.4 lists the results of these tests. Note that since the PETS data only has a
nonobject negative class, an arbitrary nonperson label is assigned for evaluation purposes
using the 80-class model.

Results of over 94% are achieved, which is comparable to the results on the validation
and test data and, therefore, underlines the generalization capabilities of the classifier.
On Penn-Fudann and CUHK, over 99% accuracy are achieved, which again indicates a
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(a) The bicycle and motorcycle are classified as
person since the images also contain people.

(b) The image is labeled as banana but is classi-
fied as a bowl due to ambiguity.

(c) A cow is incorrectly classified as couch and a
pizza as book.

Figure 7.4: Images may be misclassified for different reasons, such as labeling noise and
ambiguity, but also because of an imperfect classifier.

bias toward the person class. This is also demonstrated by the recall scores, which are
higher than the precision scores, as they contain more false positives than false negatives.

7.2.3 Overfitting to Video Data

PersonData contains person images extracted from tracking datasets, i.e. video data.
Even after reducing redundancy by not selecting every frame, multiple images of the
same people remain. As a result of the random shuffling of the data in the process of
creating training, validation and test set splits, the same person can appear in multiple
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dataset # pos. # neg. acc. % recall % precision %

Penn-Fudan 423 0 100 100 100
CUHK (combined) 12,614 0 99.97 99.97 100
PETS2009 S2L1V1 4,650 1,239 94.35 99.81 93.47
PETS2009 S2L2V1 10,292 1,239 96.19 99.56 96.30

Table 7.4: Results for generalization to new datasets and the number of positive and
negative images per class.

splits. As the person may be trained multiple times in the training set and then also
appears in the test set it, is naturally classified more easily. To analyze how much the
model overfits to such cases due to video data, the test set is split into two parts, i.e.
into images from video data sources and images from other sources. Note that still image
datasets also contain multiple images of the same person often without annotation about
any source video or image sequence frame number and therefore may overfit similarly.
However, analyzing video and still image data separately still gives insights into the
strength of overfitting. Figure 7.5 shows examples of the difference in data source types.

Figure 7.5: Examples of person images for datasets consisting of still images (left) or
video sequences (right). In video datasets, the same people appear more often and in less
distinct pose variation than in still image datasets.

data # images acc. % recall % precision %

Still images 31926 97.72 97.72 100
Video data 2456 99.83 99.83 100

Table 7.5: Results of the analysis of splitting positive test data by video or still image
source dataset.

Table 7.5 shows the results of both tests. Note that these tests were performed using
only positive data because the negative class only comes from the MSCOCO dataset.
As expected, the accuracy is higher for the video data, with a difference of 2.11%. The
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effect on the entire data should be small considering that video data is only about 1
12

the amount of still image data. The results depend strongly on not using every frame of
a video dataset, as increasing the ratio of video to still image data would increase the
degree of effect of the overfitting. The results of the previous evaluation, however, show
that the model does not generally overfit and that the high accuracy is justified.

7.2.4 Training Set Size

A main hypothesis is that more training data lead to better results, as smaller quantities
are overfitted more easily. Four tests are performed using differently sized portions of
the training data on an identical validation dataset to demonstrate the importance of
the size of PersonData. Table 7.6 shows the results for tests using 25%, 50%, 75% and
100% of the training data with identical training.

% data # images multiclass acc. % acc. % recall % precision %

25 137,792 3.09 43.91 0
50 275,626 73.23 94.02 91.82 97.36
75 413,436 79.76 95.83 94.50 98.00
100 551,286 83.02 96.70 96.14 97.94

Table 7.6: Results for differently sized portions of training data.

The benefit of using more data is clearly visible. The results are plotted in Figure 7.6.
Increasing the training data from 25% to 50% results in 70% higher accuracy, but the
increase from 50% to 75% only raises accuracy by about 6%; the increase from 75% zo
100% improves accuracy by less than 4%. This shows that for a certain network and data,
adding more and more data from the same sources does not improve performance at
the same rate. One possible explanation is that data from the same sources covers only
one part of the range of intraclass variance and that it is necessary to add qualitative
new data, i.e. data containing information about the target class that has not yet been
provided by other sources.

7.3 Benefit of Pre-Training with PersonData

The PersonData dataset is designed to aid in training for person-specific tasks such as
person classification or detection. We show that using PersonData as the pre-training
data set and later fine-tuning it to a specific application achieves better results than
simply using the application-specific data alone. Two scenes of the PETS2009 dataset are
prepared for image classification, as described in the previous chapter. The resulting two
datasets are positive and negative images for person classification from the same camera
viewpoint but at different times with different lighting conditions and different numbers
of people. Therefore, training a classifier using the first scene and testing it on the
second mimics developing a classifier for person classification or detection for surveillance
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Figure 7.6: Accuracy, recall and precision are plotted over the percentage of data used.
More data achieves higher values, which appear to converge for larger amounts.

purposes of a fixed viewpoint with little data. The results listed in Table 7.7 show the
performance benefit of pre-training the model with PersonData and then fine-tuning
it to PETS data. Fine-tuning was done by initializing the network with the weights
learned from PersonData and dividing the learning rate by 10 for all layers below the
fully connected layers and by 2 for the fully connected layers of the CaffeNet architecture.
The model is trained in each case with 90% of the PETS S2L1V1 data as the training
set and 10% as the validation set and tested on the complete PETS S2L2V1 set.

training data initialization acc. % recall % precision %

PETS random 91.16 94.46 95.59
PETS PersonData 99.53 99.61 99.86

Table 7.7: Results on the PETS2009 S2L2V1 dataset after training with PETS2009
S2L1V1 using random weights or weights pre-trained on PersonData.

Pre-training with PersonData results in a performance gain of over 8%, which clearly
demonstrates the benefits of pre-training with our data. The pre-trained filters and
features are generalizable and lead to better results than random initialization. This
result is additionally confirmed by the speed of training. It takes 20 epochs to achieve
100% accuracy on the small validation set of 589 images using random initialization,
whereas the fine-tuned network achieves 100% after only 5 epochs.
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7.4 Chapter Summary
The results and evaluation of our dataset and classifier are demonstrated in this chapter.
First, validation accuracy and test accuracy, recall and precision are shown for different
types of subclass labeling, i.e. the 80-class, 12-class and 2-class models with and without
MVN layers showing that subclass labeling increases training robustness. The problem
of initialization and training the 2-class model is explained. Next, analysis of incorrect
classifications and effects of labeling noise are discussed. Then, results are demonstrated
regarding generalizability and video data overfitting of the network trained on PersonData
showing the quality of the dataset. Afterwards, the amount of data required for training
is analyzed indicating the importance of large-scale datasets. Lastly, the benefits of
pre-training datasets of only a few thousand images with PersonData is demonstrated.
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CHAPTER 8
Conclusion

In conclusion our contributions are threefold. First, we created a large-scale dataset for
person recognition with over 600,000 images for person classification. Data was collected
from over 30 datasets and a method of viewing such heterogeneous data sources was
proposed with respect to their annotation structure, format and type to be able to extract
data as available and required for a specific application. Second, we trained a CNN using
this data for binary person classification, i.e. classifying the existence of a person in an
image as true or negative, with an error rate of less than 3%. Third, we demonstrated
that subclass labeling aids in training the classifier more robustly and avoiding problems
of solver choice and initialization by having stronger labeling of the catch-all negative
class. We additionally evaluated the benefit of the data as a pre-training training set for
fine-tuned applications.

8.1 Summary
To summarize, we first explained what CNNs are, beginning with the perceptron and
extending to neural networks and finally convolutional networks. Next, an overview on
person recognition was given. Afterwards, we discussed the related work. Specifically,
examples were brought for several CNN architectures and techniques such as dropout
or batch normalization, and recurrent CNNs and fully convolutional networks were
explained. Next, CNNs for object and pedestrian detection were introduced along with
the RCNN pipeline, which is further extended with RPNs for fast and accurate object
detection. Then, benchmarks and datasets with large amounts of labeled data for
comparison of state-of-the-art methods like the ILSVRC and MSCOCO were described.
Also, visualization techniques and analysis of CNNs and additional applications were
discussed.

Afterwards, we explained in detail how the PersonData dataset pool was created from 31
source datasets. Since these datasets vary strongly with respect to annotation and content,
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we introduced a two-part method of viewing the dataset by extracting information from
individual, different datasets and then using this data in a second step. In our case, we
extracted over 300,000 labeled person image crops of person classification and used the
MSCOCO nonperson classes to create a classification dataset of over 600,000 images,
where the negative class is defined by 79 labeled subclasses having additional category
labels for 11 supercategories.

From this dataset, we trained a person classifier using the CaffeNet architecture and
experimented with the model, training data and labeling. We tested methods for
generating region proposals on feature maps for object localization and discussed that
only approximate location can be computed. Next, we evaluated the strengths and
weaknesses of the trained classifier and showed that stronger labeling is beneficial for
training, since training works more robustly with regard to the solver choice and parameter
initialization. Moreover, we showed that the classifier trained on PersonData generalizes
well to new data and discussed the problem of overfitting to video data as well as the
benefit of using larger amounts of data. Finally, we demonstrated the benefit of using
PersonData as a pre-training dataset for applications.

8.2 Discussion
Our results show that the choice of CNN architecture is complex. Adding the three MVN
layers, which are essentially intended to aid in training by not making neurons adapt to
varying distributions, helped to achieve higher accuracy in the 2-class model, whereas
the 12-class and 80-class models experienced significant drops when using 80% as the
training data. Therefore, adding additional MVN layers does not generally improve the
model. This can be further analyzed by comparing it with batch normalization layers,
which differ from MVN layers in that they compute moving averages and variances at
training time and use these at test time.

For training, using the additional labels in the 12-class and 80-class models compared to
the binary approach had the advantage of not having to worry about the initialization
and solver, unlike in the case of the 2-class model. Therefore, we hypothesize that
supplementary subclass labels make training more robust. The exact amount or depth of
labeling is a hyperparameter that has to be examined using a validation set. In our case,
12 classes lead to higher accuracy than 80 classes without MVN layers but to a lower
accuracy using MVN layers.

The highest achieved accuracy of 97.18% indicates that PersonData is a dataset where
the person class is well-represented and intra-class variances are covered well and that
the model used is sufficient to train a classifier on this data. This 2.82% error is smaller
than the winning top-5 error of the ILSVRC2014 1,000-class classification challenge. The
generalizability to new datasets also underlines the quality of the PersonData set. We
showed that the accuracy converges for the amount of data in our dataset for the selected
architecture. This leads us to believe that further data needs to add to the total quality
by, for example, covering more intraclass variances rather than only adding to quantity.
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Another possibility to improve the data is to manually prune noisy data caused by the
existence of labeling noise. Our results have shown misclassifications caused by labeling
noise, which emphasizes the importance of data checks. For completely new data, this
can be done by exploiting redundancy, e.g. having two people label the same image and
when there are differences use annotations provided by a third person to resolve issues.

In retrospect, adding the datasets used for evaluation purposes and using gained knowledge
about the data sources already used, it is possible to extract an unknown amount of
additional data from the dataset pool, e.g. instead of searching the ImageNet synsets
directly, images can be used from the detection challenge, where a person class is provided.
Although this additional data mainly adds to the quantity of data, it should also improve
quality, since it is likely that the data covers more intraclass variances, given the large
heterogeneity of the person person class resulting from different poses, clothing, ethnicity,
etc. Also, the bias toward the person class can be analyzed further by choosing a subset
of the entire data and altering the distribution to find if distribution is indeed a cause
for biases or if different negative data is needed. Generally, we suggest that the data
distribution be the same as the expected distribution at test time, i.e. that the same
distribution be used as occurs in applications.

Our classifier is naively extendable to a sliding-window detector. However, we conclude
from our localization experiments and the literature [OBLS15, RHGS15] that specifically
designed detectors exploit advantages of shared computation and that features learned
to understand object extents, whereas CNNs for classification learn to recognize features
important only for the existence of objects. The PersonData dataset can be used for
detection training as well. Data from detection or tracking sources is directly usable but
classification data can also be utilized to create a larger dataset. Classification datasets in
our pool mostly have fixed margins around the objects in their images. This fixed margin
is usable to automatically define a bounding box for each image and even if no margin
is annotated, the image can be used for detection training by defining a whole-image
bounding box.

8.3 Future Work
As ImageNet is commonly referenced as a pre-training dataset [RHGS15], possible future
work includes comparison of pre-training data with ImageNet or with PersonData for
tasks containing people, e.g. detection. Since low-level features are equivalent among
different architectures [LV15a], we suggest that the following multistage fine-tuning could
be beneficial. First, the model is trained with ImageNet and learns highly robust low-level
features simply due to the immense amount of data. Second, the model is then trained
with PersonData to learn mid-level features for person recognition, for example, by
limiting or disabling learning rates for low-level features. Lastly, the model is fine-tuned
for an application, where application-specific high-level features are learned.

As labeling noise is apparent in PersonData, instead of exhaustively, manually pruning
the data, it is also possible to adapt the model or the training to explicitly handle it
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similarly to training with noisy web images [VGLBP15]. Semisupervised methods can be
used to identify noisy labels and adapt them. Additionally, prior information about data
source that have more labeling noise than others can be utilizedto identify and adapt
noisy labels.

Another way of improving classifier performance is, for example, hyperparameter tuning,
i.e. finding the best CNN architecture with layer sizes and properties, and finding the best
amount of video redundancy from tracking sources. The latter can, e.g., be done by using
image similarity measures to select distinct images from a video sequence. Furthermore,
additional data augmentation can be exploited during training but also during testing.

Further evaluation can be performed by taking the negative or background class into
consideration. The necessity and benefit of separate objects, an additional catch-all class,
randomly generated data, and object-less data, i.e. streets, walls, floors, etc., can be
analyzed.

Finally, PersonData can be used outside of the scope of CNNs. For example, deep forests
or deep belief networks can be trained using our data.
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