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Introduction

The aim of the first part of this work is to establish a relationship between quadrangu-
lations and certain classes of trees in order to gain deeper insights into the nature of the
very same structures when chosen uniformly and at random at a large scale. The rela-
tionship in question is the so-called Cori-Vauquelin-Schaeffer Bijection (CVS bijection)
which lays the foundation for most of the other results. In the second part of this thesis
we study two probabilistic objects that can in a way be viewed as continuous analogues
of discrete trees and quadrangulations. These objects are known as the Brownian Con-
tinuum Random Tree and the Brownian Map.

In the first chapter we define and discuss briefly the fundamental, discrete structures
that are used throughout the entire work. We introduce the notion of graphtheoretical
maps and the important subclass of quadrangulations. Afterwards, we look at two special
classes of trees - well-labelled and embedded trees - and their associated contour process
which will turn out to be crucial later on.

Chapter 2 is dedicated to the construction of the CVS bijection between well-labelled
trees and quadrangulations as well as between embedded trees and pointed quadrangu-
lations. By looking at its workings in more detail, we will see that the CVS bijection not
only establishes a one-to-one relation between the objects in question, but also preserves
certain metric characteristics. This will allow us to transfer properties of trees to quad-
rangulations and vice versa.

Chapter 3 gives an elementary introduction into the theory of stochastic processes and
convergence in distribution in order to be able to work with random walks and their
continuous analogue in form of the Brownian motion. Brownian motion - being a special
real-valued process - plays an important role in Donsker’s theorem which postulates the
existence of a limit of a sequence of certain random walks. This statement lays the foun-
dation for the main theorem of this chapter which allows - roughly speaking - to describe
a sequence of contour processes (as discussed in Chapter 2) in terms of a stochastic pro-
cesses that is based on the Brownian motion.

The following chapter (Chapter 4) is concerned with certain metric spaces that try to
reflect properties of discrete trees in a “continuous” way. These so-called real trees lead us
to the study of the Brownian Continuum Random Tree - a probabilistic object that was
first introduced by Aldous [2, 3, 4] around 1991 and which appears as limit of a sequence
of properly rescaled, discrete random trees. The theorems concerned with this result will
allow us to obtain scaling limit results for embedded trees and pointed quadrangulations
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in the last two chapters of this thesis.

Chapter 5 is entirely dedicated to the discussion of metric properties of large, random
pointed quadrangulations. Our investigation makes us come across a rather unintuitive
object called the Brownian snake that acts like a path-valued stochastic process and that
plays an important role in the limiting description of the radius and profile of a sequence
of uniformly distributed pointed quadrangulations. We will also touch briefly the topic
of Integrated Super-Brownian Excursion which can be linked with the label distribution
of a sequence of uniformly distributed embedded trees.

The final chapter (Chapter 6) raises the question whether there exists an object, sim-
ilar in nature to the Brownian Continuum Random Tree, which appears as the limit
of a sequence of uniformly chosen pointed quadrangulations. This limit is identified as
the Brownian Map. At the end, we establish an equivalent description of this struc-
ture with the help of the Brownian Continuum Random Tree. This also closes the
circle in terms of connecting the apparently different worlds of “continuous” trees and
maps/quadrangulations as previously initiated by the CVS bijection for discrete trees
and quadrangulations.
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1 Preliminaries

In this first chapter we start by collecting the building blocks on which the rest of this
thesis is based upon. This includes elementary concepts and notions from graph theory
like planar maps, quadrangulations and certain classes of trees. These structures and
their mutual interrelation will attract our attention during this entire work.

After having familiarized ourselves with these preliminaries we will introduce contour
processes and associate them with trees.

1.1 Graphs, Maps and Quadrangulations

We start by recalling basic facts of graph theory.

Definition 1. An undirected graph is a triple (V,E, ι) where V is the set of vertices,
E the set of edges and the mapping

ι :

{
E → {{u, v} : u, v ∈ V }
e 7→ {u, v}

is the incidence relation between edges and unordered pairs of vertices.

The set of vertices V of a graph G = (V,E, ι) can also be written as V (G) and the set of
edges as E(G) to avoid ambiguity. Likewise the incidence relation can be denoted with
ιG to emphasize the dependency on the graph G.

Definition 2. Let G = (V,E, ι) be an undirected graph. We say

• an edge e is a multi-edge, if there exists an edge e′ 6= e with ι(e) = ι(e′)

• an edge e is incident to vertices u and v, if ι(e) = {u, v}

• vertices u and v are adjacent, if u 6= v and there exists and edge e with ι(e) =
{u, v}

• an edge e is a loop, if |ι(e)| = 1.
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Figure 1.1: Undirected graph with a multi-edge and a loop

Definition 3. Let G be an undirected graph and v ∈ V (G). Denote with lG(v) the
number of loops incident to v and with eG(v) the number of edges (that are no loops)
incident to v. The degree of v is then defined as

degG(v) := 2 · lG(v) + eG(v).

Lemma 1. For every undirected graph G = (V,E, ι) the following formula holds∑
v∈V (G)

degG(v) = 2 · |E(G)|.

Proof. Each edge contributes exactly 1 to the degree of the vertices it is incident to. If
the edge is a loop then it is incident to only one vertex but the argument still remains
the same.

Definition 4. A directed graph G is a triple G = (V,E, ι) where again V = V (G) is
the set of vertices, E = E(G) the set of edges and the mapping ι = ιG defined as

ι :

{
E → V × V
e 7→ (u, v)

is the incidence relation between edges and ordered pairs of vertices. For e ∈ E and
ι(e) = (u, v) we call u the tail and v the head of the edge e. In this context we will also
use the notation e = (u, v) to indicate the relation between a directed edge, its tail u
and head v. Furthermore if e = (u, v) we set e− := u and e+ := v. Also, the notation of
Definition 2 can be adopted for directed graphs almost without changes.
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Figure 1.2: Naming conventions for a directed graph with a multi-edge and a loop

Definition 5. Let G = (V,E, ι) be a directed graph. For every v ∈ V (G) set

deg+
G(v) := |{e ∈ E(G)|∃w : ι(e) = (v, w)}|,

deg−G(v) := |{e ∈ E(G)|∃w : ι(e) = (w, v)}|,

degG(v) := deg+
G + deg−G.

deg+
G is the outer degree of G, deg−G is the inner degree of G and degG is the degree

of G.

As with undirected graphs there is a simple relation between the number of edges and
the outer/inner degree.

Lemma 2. For every directed graph G = (V,E, ι) the following formula holds

|E(G)| =
∑

v∈V (G)

deg+
G(v) =

∑
v∈V (G)

deg−G(v).

Proof. Every edge contributes exactly the value 1 to the terms on the right side.

Definition 6. Let G = (V,E, ι) be a graph and v0, ..., vn ∈ V (G), e1, ..., en ∈ E(G). If
G is undirected we say that a sequence

p := (v0, e1,v1, e2, v2, e3, v3, ..., en, vn)

is a path from v0 to vn of length n if all vertices (except possibly the first and last) are
distinct and

ι(ei) = {vi−1, vi} (1.1.1)

for all i ∈ {1, ..., n}. Likewise if G is directed then p is a directed path if all vertices
(except possibly the first and last) are distinct and
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ι(ei) = (vi−1, vi)

for every i ∈ {1, ..., n}. If G is undirected and v0 = vn, we call p a cycle. Likewise if
G is directed and v0 = vn, we call p a directed cycle. Two vertices u, v ∈ V (G) are
connected if there exists a (directed) path in G starting with u and ending at v. If every
pair of vertices is connected, then we say that G is connected.

It is often useful to regard graphs as topological spaces, in which vertices are points
and edges are disjoint paths between their endpoints, rather than combinatorial objects.
However, to avoid excessive formality we will not distinguish between a graph and the
corresponding topological graph.

We now recall the famous Jordan curve theorem.

Definition 7. A Jordan curve is the image of a continuous map φ from [0, 1] into the
plane such that φ(0) = φ(1) and the restriction of φ to [0, 1) is injective. A Jordan arc
is the image of an injective continuous map of a closed interval into the plane.

Theorem 1 (Jordan’s curve theorem). Let C be a Jordan curve in the plane. Then
its complement consists of exactly two connected components. One of these components
is bounded (the interior) and the other unbounded (the exterior). The curve C is the
boundary of each component.

Definition 8. An embedding of a graph G is an injective function φ from G into the
2−sphere S2 := {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}. More explicitly, an embedding maps
the vertices of G to distinct points on S2 and edges of G to simple paths (between the
image of their head and tail) on S2. If G is connected then φ is continuous.

Definition 9. A map is an embedding of a connected graph on S2. A planar map
is a map such that no two edges cross each other. A rooted map is a map with a
distinguished oriented edge e∗, which is called the root edge. The tail of e∗ is called the
root vertex. The class of all rooted planar maps is denoted byM and the subclass
Mn contains all rooted planar maps with n ≥ 1 edges.

The faces of a planar map m are the connected components of the complement of the
union of the edges of m. This description can be made more accurately with the help of
Jordans curve theorem:
Suppose again m is a planar map and consider its image π(m) under the stereographic
projection π : S2\{(0, 0, 1)} → R2, where π(x, y, z) := ( x

1−z ,
y

1−z ). Notice that we can al-
ways rotate S2 appropriately so that the embeddingm avoids the point (0, 0, 1). Choosing
a cycle C in π(m), the union of the edges (as Jordan arcs) of C form a closed Jordan
curve. Denote with P the points of the plane without the edges of π(m). Jordan’s curve
theorem now allows the definition of an equivalence relation on P :

Definition 10. For points u, v ∈ P define a relation ∼P on P by u ∼P v if, and only if,
there exists a Jordan arc from u to v in P. Clearly, this is an equivalence relation. The
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image of the equivalence classes of ∼P under π−1 are called the faces of m, denoted by
F (m). For f ∈ F (m) the number of edge-sides bordering f is called the degree of f and
denoted with degm(f). It can happen that both sides of an edge are incident to the same
face in which case the edge is counted twice in the degree of the face.

Notice that we use the same function name for the degree of vertices, edges and faces in
order to simplify the notation.

Lemma 3. For every planar map m ∈M the following formula holds∑
f∈F (m)

degm(f) = 2 · |E(m)|.

Proof. Each edge contributes the value 1 to the degree of exactly two different faces.

One of the most fundamental results concerning planar maps is Euler’s Polyhedron for-
mula. A proof can be found in almost any book about graph theory, for instance in [33,
Theorem 6.1].

Theorem 2 (Euler’s Polyhedron formula). Let m ∈M be a planar map. Then

|V (m)|+ |F (m)| − |E(m)| = 2.

In this thesis we will always work with maps seen up to “deformation”, or more precisely:

Definition 11. If m and m′ are maps, we say that they are isomorphic if there exists
an orientation-preserving homeomorphism h on S2 such that V (m′) = h(V (m)) and
E(m′) = h(E(m)). The mapping h is called a (map-)isomorphism.

Note that a map isomorphism not only preserves the incidence relation between vertices
and edges but also the incidence relation between edges and faces.

Definition 12. Rooted maps m and m′ with root edges e∗ and e′∗ are isomorphic
if there exists a map isomorphism h (as in Definition 11) which additionally satisfies
h(e∗) = e′∗.

Figure 1.3: Isometric planar maps m1 and m2 which are both not isometric to m3.

From now on we will always identify isomorphic maps. We also want to mention that the
identification of maps up to isomorphisms allows the enumeration of these combinatorical
structures. Therefore, we actually view the elements of M =

⋃
n≥1Mn as isometry

classes of rooted planar maps.
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Definition 13. Let m be a planar map. We denote with dm(u, v) the number of edges
of the shortest path connecting u and v for all u, v ∈ V (m) and call this the (natural)
distance on m.

Note that dm : V (m)× V (m)→ N is a metric because m is connected.

Definition 14. Let m ∈ M. Then the maximal graph distance from a vertex v ∈
V (m) is defined as

Rm(v) := max
w∈V (m)

dm(v, w).

The maximal graph distance from a vertex v ∈ V (m) can also be interpreted as the
radius of m centered at v. We will study this important quantity in Chapter 5 when we
discuss metric properties of large random trees and quadrangulations.

Definition 15. Let Q be the class of all rooted quadrangulations, i.e. rooted planar
maps, where each face has degree four. The subclass Qn contains all rooted quadrangu-
lations with n faces. A rooted and pointed quadrangulations is a rooted quadran-
gulation where a vertex v∗ is additionally marked. We call v∗ the pointed vertex of the
quadrangulation and denote by Q• the class of all rooted and pointed quadrangulations.
Again the subclass Q•n contains the rooted and pointed quadrangulations with n faces.

We will sometimes omit the prefixes “rooted” and “rooted and pointed” if it is clear
from the context which kind of quadrangulation is considered or if it is of no particular
relevance at the point of study.

Figure 1.4: Rooted and rooted and pointed quadrangulation

Lemma 4. Let m ∈Mn. Then m ∈ Qn if and only if |E(m)| = 2n and |V (m)| = n+ 2.

Proof. Since every face of m ∈ Qn is bounded by exactly four edges and every edge
seperates exactly two faces, it follows with Theorem 2 that m has 2n edges and n + 2
vertices. Controversely if we have a planar map m with 2n edges and n+ 2 vertices then
again m must have n faces due to Theorem 2.

Lemma 5. Let q ∈ Q, v0 its root vertex and let u1, u2 and w1, w2 be the opposite vertices
of an arbitrary face of q. Then we have dq(u1, v0) = dq(u2, v0) or dq(w1, v0) = dq(w2, v0).

11



Proof. This is clear since the labels of adjacent vertices can only differ by one.

Definition 16. With the notation of Lemma 5 we call f simple if only one equality is
satisfied and confluent otherwise.

Figure 1.5: A simple and a confluent face

Definition 17. Let q ∈ Q and q′ ∈ Q•. Suppose v0 is the root vertex of q and v∗ the
pointed vertex of q′. The profile of q is the sequence (Hq

k)k≥1, where H
q
k denotes the

number of vertices with distance k to v0. Likewise, the profile of q′ is the sequence
(Hq′

k )k≥1, where H
q′

k denotes the number of vertices with distance k to v∗ in q′.

Figure 1.6: A rooted quadrangulation q with profile (Hq
k)k≥1 = (4, 5, 1, 0, 0, ...) and a

rooted and pointed quadrangulation q′ with profile (Hq′

k )k≥1 = (3, 3, 1, 0, 0, ...)

Notice that the profile (Hq
k)k≥1 measures the “volumes of the spheres” induced by the

natural distance on q, see Figure 1.6. It can therefore be seen as a measure on N with
total volume ∑

k≥1

Hq
k = n+ 2 (1.1.2)

due to Lemma 4.
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1.2 Plane, Well-labelled and Embedded Trees

In this section we introduce two classes of labelled trees, namely well-labelled and em-
bedded trees where the choice of the labels are based on a simple rule. Both of these
classes of trees are build upon so called plane trees. Well-labelled and embedded trees
are of particular interest to us because of their close relation to quadrangulations.

Definition 18. A tree is a connected, undirected graph without cycles. A forest is a
disjoint union of trees. The vertices of a tree, also called nodes, with degree 1 are called
leaves and the remaining ones internal vertices or internal nodes. A rooted tree
is a tree where a particular node is explicitly marked. This node is then called the root
vertex or root node.

Definition 19. In a rooted tree, the level of a vertex v is the length of the unique path
from the root vertex to v. If v immediately precedes a vertex w on the path from the
root to w, then v is the parent (or ancestor) of w and w the child (or descendent)
of v.

Figure 1.7: A tree and a rooted tree with root vertex v0

Notice that a rooted tree τ with root vertex v0 induces a (natural) partial order 4 on its
vertex set V (τ) with least element v0. This partial order is defined for every v, w ∈ V (τ)
by

v 4 w if the unique path from v0 to w contains v. (1.2.1)

Definition 20. A plane tree is a planar map whose underlying graph structure is a
rooted tree. We denote the class of plane trees by P and the subclass of plane trees with
n edges by Pn.

Proposition 1. A plane tree has exactly one face.

Proof. The absence of cycles in a plane tree τ is due to Jordan’s curve theorem equivalent
to the fact that τ has only one face.
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Plane trees can also be described recursively by interpreting them as combinatorial struc-
tures: a plane tree is a root vertex attached to a sequence of plane trees. This can be
written formally as

Pn = {•} × SEQ(Pn) (1.2.2)

where • represents the root node and the sequence construction SEQ(C) of a class C is
defined as

SEQ(C) := {ε}+ C + (C × C) + (C × C × C) + · · ·

with ε being a neutral structure of size 0. For further studies on the topic of symbolic
enumeration methods, we refer the reader to [31, I.1.].

Lemma 6. The number of plane trees with n edges is given by the n-th Catalan number

Cn =
1

n+ 1

(
2n

n

)
.

Proof. Suppose pn is the number of plane trees with n vertices and denote with P (z) :=∑
n≥0 pnz

n its generating function. Equation (1.2.2) implies

P (z) =
z

1− P (z)

which is of the form

z =
P

Φ(P )

with Φ(P ) = 1
1−P . This allows us to apply Lagrange’s inversion formula (see [31, Theorem

A.2]) to compute the n-th coefficient of P (z)

pn = [zn]P (z) =
1

n
[ωn−1]Φ(ω)n =

1

n
[ωn−1](1− ω)−n. (1.2.3)

Using the generalized binomial theorem(
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
∀α ∈ C

we get

(1− ω)−n =

∞∑
k=0

(
−n
k

)
(−1)kωk.

This immediately gives

[ωn−1](1− ω)−n =

(
−n
n− 1

)
(−1)n−1 =

14



=

n−1 factors︷ ︸︸ ︷
(−n)(−n− 1)(−n− 2) · · · (−n− (n− 1) + 1)

(n− 1)!
(−1)n−1 =

=
(−1)n−1n(n+ 1)(n+ 2) · · · (2n− 2)

(n− 1)!
(−1)n−1 =

(
2n− 2

n− 1

)
. (1.2.4)

Putting (1.2.3) and (1.2.4) together we get the number of plane trees with n vertices

pn =
1

n

(
2n− 2

n− 2

)
= Cn−1.

The final result follows from the observation that a plane tree with n+ 1 vertices has n
edges.

Next we discuss well-labelled and embedded trees.

Definition 21. A well-labelled tree is a plane tree, where

1. all vertices have positive integer labels,

2. the labels of two adjacent vertices differ at most by one and

3. the label of the root vertex is one.

We denote the class of well-labelled trees by W and the subclass of well-labelled trees
with n edges by Wn.

Definition 21 suggests that we can associate for all τ ∈ W a label function ` : V (τ)→
N>0 such that

1. `(v0) = 1 where v0 is the root vertex of τ and

2. |`(u)− `(v)| ≤ 1 for all adjacent vertices u, v ∈ V (τ).

Definition 22. An embedded tree with increments 0 and ±1 is a plane tree, where

1. all its vertices have integer labels,

2. the labels of adjacent vertices differ by 0 or by ±1,

3. the label of the root vertex is zero.

We denote the class of embedded trees with increments 0 and ±1 by E and the subclass
of embedded trees with increments 0 and ±1 and with n edges by En. Also, when talking
about embedded trees, we always mean embedded trees with increments 0 and±1 because
these are the only ones which are of interest to us.
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Figure 1.8: Well-labelled and embedded trees with root vertex v0

Just as with well-labelled trees, we can associate a label function ` : V (τ) → Z that
satisfies

1. `(v0) = 0 where v0 is the root vertex of τ and

2. |`(u)− `(v)| ≤ 1 for all adjacent vertices u, v ∈ V (τ).

Lemma 7. The number of embedded trees with n edges is given by

|En| =
3n

n+ 1

(
2n

n

)
.

Proof. Suppose τn ∈ En and choose an arbitrary edge e ∈ V (τn). The labels of the
head and tail of e are either equal or differ atmost by one according to the definition
of an embedded tree. Therefore the number of labellings of a plane tree that yield an
embedded tree is 3n. Thus Lemma 6 gives us

|En| = 3n · C(n) =
3n

n+ 1

(
2n

n

)
.

Observe that we cannot use the same argument to count the possible labellings that turn
a plane tree into a well-labelled tree because of the positivity condition of well-labelled
trees. We will address this problem in a different way in Section 2.4.

Definition 23. Let τ be a labelled tree and define a mapping N for the class of all
labelled trees by translating all labels in τ such that the minimum label is equal to zero
and the remaining labels are shifted accordingly. We call N (τ) the normalized tree.

Definition 24. Let τw ∈ W and τe ∈ E . The label distribution of τw is the sequence
(λτwk )k≥1, where λk is the number of nodes in τw with label k. Likewise, the label dis-
tribution of τe is the sequence (Λτek )k∈Z, where Λk is the number of nodes in τe with
label k.
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1.3 The Contour Process of a Plane Tree

Among the many existing encodings for trees one that will be of special interest to us is
the so called contour exploration or contour process.

Definition 25. Let τn ∈ Pn with root vertex v0. Denote further with (e0, e1, ..., e2n−1)
the sequence of oriented edges bounding the only face of τn, starting with the edge
incident to v0. We call this sequence the contour exploration or contour process of
τn.

For a plane tree τn ∈ Pn and its contour exploration (e0, e1, ..., e2n−1) we denote by
ui := e−i the i-th visited vertex in the contour exploration and set

Dτn(i) := dτn(ui, v0)

for all i ∈ {0, ..., 2n− 1} where dτn(ui, v0) is the natural distance on τn when viewed as
planar map (see Definition 13). We also set e2n := e0 and u2n := u0. The function Dτn

can be extended by linear interpolation

Cτn(s) := (1− {s})Dτn(bsc) + {s}Dτn(bsc+ 1)

for all 0 ≤ s ≤ 2n where {s} := s− bsc is the fractional part of s. Cτn is a non-negative
path of length 2n starting and ending at 0 with slope ±1 between integer values. We call
Cτn the contour function of τn and denote the set of all contour functions of length
2n with Cn. An example of a plane tree together with its contour function is depicted in
Figure 1.9.

Figure 1.9: A plane tree with its contour process and its contour function

It can be shown that the number of contour functions matches the Catalan numbers
Cn (see [31, Chapter I, Example I.16]) which is also the number of plane trees with n
edges according to Lemma 6. Therefore the equality of cardinalities |Cn| = Cn = |Pn|
guarantees the existence of a bijective mapping between contour functions of length 2n
and plane trees with n edges. More explicitly there holds:

Lemma 8. The mapping
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f :

{
Pn → Cn
τn 7→ Cτn

is a bijection.

We will deepen our study of the contour process in Chapter 3, especially in relation to
random walks.

Definition 26. Let τn ∈ Pn with contour exploration Eτn := (e0, e1, ..., e2n−1). A corner
is a sector between two consecutive edges of Eτn around a vertex. If τn is labelled then
the label of a corner c, denoted by `(c), is defined as the label of the corresponding vertex.
Also, we use the notation c− for the vertex associated with the corner c. If we speak of
the corner of a directed edge e we mean the corner associated with the vertex e−, the
edge e and the edge right before e in the contour exploration.

Figure 1.10: Corners of a plane tree

Remark 1. A vertex of degree k defines k corners and the number of corners of a plane
tree with n edges is 2n because every edge induces two corners.

Definition 27. Let τn ∈ Wn ∪En with contour exploration (e0, e1, ..., e2n−1). Define the
successor s of a corner i ∈ {0, ..., 2n− 1} by

s(i) := inf{j > i : `(j) = `(i)− 1}.

We also use the notation s(ei) := es(i).

The successor of a corner will play a crucial role in the next chapter when we discuss the
CVS bijection.
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2 CVS Bijection

In this chapter we will explore the Cori-Vauquelin-Schaeffer bijection (CVS bijection in
short) between certain classes of quadrangulations and trees. This correspondence serves
in the forthcoming sections as an essential tool to understand limit properties, namely
global properties of distances, of quadrangulations (and therefore also of their corre-
sponding tree structures). We restrict our study to the special case of quadrangulations,
but similar bijections exist for p-angulations (see [6]).

At first, we discuss how a rooted quadrangulation can be encoded as a well-labelled
tree in such a way that certain metric properties are preserved. This result was shown
by Schaeffer in his PhD Thesis [34] in the year 1998. This process can then be modified
to obtain a mapping that transforms a rooted and pointed quadrangulation into an em-
bedded tree. Afterwards, we will discuss the corresponding inverse procedures yielding
alltogether the following results:

Theorem 3 (Schaeffer). There exists a bijection between rooted quadrangulations with n
faces and well-labelled trees with n edges such that the profile of a rooted quadrangulation
is mapped onto the label distribution of the corresponding well-labelled tree.

Theorem 4. There exists a bijection between rooted and pointed quadrangulations with
n faces and two copies of the set of embedded trees with n edges such that the profile of
a rooted and pointed quadrangulation is mapped onto the label distribution of the corre-
sponding normalized embedded tree. (By “two copies” we mean the set {1,−1} × En.)

The idea to introduce a pointing in a quadrangulation and thus lift the positivity condi-
tion of well-labelled trees was first established by Chassaing and Schaeffer in [10].

2.1 Encoding of Quadrangulations as Trees

Our analyis follows along the lines of [10, Chapters 3.2-3.3] and [14, Chapter 5.1]. Suppose
q ∈ Qn and denote with e∗ = (v0, v1) its root edge. Start by labelling the vertices of q
by the distance from the root vertex v0. We construct a mapping Φ from Qn into Wn by
performing the following steps:

(T1) Obtain a new map q′ by dividing all confluent faces of q into two triangular faces
by an edge joining the two vertices with maximal label.

(T2) Define a subset of edges of q′ in the following way (see Figure 2.1):

a) In each confluent face of q, the edge that was added to form q′ is selected.

19



b) For each simple face f of q: Let v be the vertex with maximal label in f .
Choose the edge {v, w} in f such that f is on the left side of the directed edge
(v, w).

The edges selected in a) and b) are the edges of Φ(q).

(T3) Choose the head v1 as the root vertex of Φ(q) and discard v0 as well as the previous
root edge e∗ of q.

This completes the construction of Φ(q).

Figure 2.1: Local encoding rules (T1) and (T2)

Proposition 2. Φ sends a rooted quadrangulation with n faces on a well-labelled tree
with n edges.

Proof. We show that every vertex v ∈ V (q)\{v0} is also a vertex of V (Φ(q)) hence
V (q)\{v0} ⊆ V (Φ(q)). Since v 6= v0 there exists a vertex w ∈ V (q) adjacent to v.
Without loss of generality we can assume d(v)− d(w) = 1, where d(v) := dq(v, v0). The
edge (v, w) can be incident to

1. at least a confluent face or

2. at least a simple face (in which v has maximal label) or

3. two simple faces in which v has intermediate label.

All possible configurations can be seen (up two equivalent cases) in Figures 2.2-2.4.
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Figure 2.2: Configuration for case 1 Figure 2.3: Possible configurations for
case 2

Figure 2.4: Possible configurations for case 3

The selection rules guarantee that v is incident to the newly selected edge (blue), i.e.
v ∈ V (Φ(q)). Therefore V (q)\{v0} ⊆ V (Φ(q)).

Next we observe

• |V (Φ(q))| = n+ 1 because v0 6∈ V (Φ(q)) and Lemma 4

• |E(Φ(q))| = n because for all f ∈ F (q) there is exactly one edge selected.

Because q and q′ are planar it follows that each connected component of Φ(q) is planar.
Therefore Φ(q) is a forest of trees.
Suppose now that there exists a cycle C in Φ(q). According to the labelling rules all
the labels of C are equal or there is a path (k + 1, k, k + 1) as depicted in Figure 2.5.
The selection rules guarantee the existence of vertices v and w inside and outside of C
with d(v) = d(w) = min{d(u) : u ∈ V (C)} − 1. The shortest path from either v or w
to the root vertex v0 has to intersect the cycle because of Theorem 1. This leads to a
contradiction to the definition of the labelling because the labels of the shortest path
from either v or w to v0 have to decrease on every vertex. Therefore Φ(q) is a single tree
and by construction also well-labelled.
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Figure 2.5: Impossibility of cycles

An example to illustrate Theorem 2 can be seen in Figures 2.6-2.7.

Figure 2.6: A quadrangulation and the new map after (T1)

Figure 2.7: (T2) and the final tree Φ(q) with root vertex r after (T3)

The algorithm used to construct Φ can be slightly extended to obtain a mapping from
Q•n onto En together with an additional parameter ε ∈ {1,−1} :
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Suppose q ∈ Q•n with root edge e∗ = (v0, v1) and perform the following steps:

(T ′1) Apply steps (T1) − (T3) as in the construction of Φ. This yields a labelled plane
tree τ with root vertex v1.

(T ′2) Shift all labels of τ such that the new root vertex v1 gets label 0. This gives us an
embedded tree τ ′.

(T ′3) To ensure that the root edge of q can be recovered in the inverse procedure, we
need to encode the direction of e :

a) If e = (s(e0)−, e−0 ) in τ ′ (where s is the successor function), then set ε := 1.

b) If e = (e−0 , s(e0)−) in τ ′, then set ε := −1.

This procedure gives us the desired mapping

Φ̃ : Q•n → {1,−1} × En.

An example is depicted in Figures 2.8-2.9.

Figure 2.8: A pointed, rooted quadrangulation and the labelled plane tree after (T ′1)

Figure 2.9: The final tree Φ̃(τ) after (T ′2) and (T ′3) with root vertex r and ε = 1
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2.2 Encoding of Trees as Quadrangulations

We now discuss the construction of a mapping Ψ :Wn → Qn that will be the inverse of
the previously studied mapping Φ. Afterwards we modify this construction to obtain a
mapping Ψ̃ : En×{1,−1} → Q•n which will be the inverse of Φ̃. This section is motivated
by [10, Chapter 3.4.] and [29, Chapter 2.3].

Suppose τ ∈ Wn with root vertex v0 and label function `. Furthermore let (e0, ..., e2n−1)
be the contour exploration of τ . Also, we sometimes regard ` as a function ` : E(τ)→ Z
and define `(e) := `(e−) so that `(e) is the label of the tail of the edge e.

Define the image Ψ(τ) in four steps:

(Q1) Place a vertex v∗ with label 0 in the only face of τ (see Remark 1).

(Q2) Add edges between the corners ei and s(ei) for all i ∈ {0, ..., 2n−1}, where s is the
successor function.

(Q3) Delete all edges of the original tree τ .

(Q4) Take the edge arriving from v∗ at the corner before the root vertex v0 of τ as the
new root edge e∗ so that e∗ = (v∗, v0).

This completes the construction of Ψ(q).

An example of this encoding process can be seen in Figures 2.10-2.11.

Figure 2.10: A well-labelled tree and the resulting planar map after (Q1) and (Q2)
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Figure 2.11: Ψ(τ) with root edge e∗ after (Q3) and (Q4)

It is at first not obvious if (Q2) can be applied in a planarity-preserving way. We close
this gap now before continuing to examine the structure of Ψ(τ).

Lemma 9. The edges added in step (Q2) can be drawn in such a way that the newly
created graph is a planar map.

Proof. We show that having pairwise distinct corners c1, ..., c4 (that are ordered according
to the contour exploration) together with the planarity-violating conditions c3 = s(c1)
and c4 = s(c2) cannot occur (see Figure 2.12). If this were the case then we would have
`(c3) < `(c1) and `(c4) < `(c2). Furthermore s(c1) = c3 implies `(c2) ≥ `(c1). Likewise
s(c2) = c4 implies `(c3) ≥ `(c2). Putting this together we have `(c2) ≤ `(c3) < `(c1) ≤
`(c2) which is impossible.

Figure 2.12: Impossible edge-configuration

Lemma 10. For every τn ∈ Wn the image Ψ(τn) is a rooted quadrangulation with n
faces.

Proof. At first we observe that Ψ(τn) is connected because for every corner c there exists
a (finite) path (c, s(c), s(s(c), ..., c0) to the root corner c0. Next we want to deduce that
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every face of Ψ(τn) is quadrangular. Actually we show that every face of Ψ(τn) is either
simple or confluent as described by the encoding rules in Section 2.1. Since all faces of
Ψ(τn) are by construction build “around” τn, we consider an arbitrary edge of τn which
corresponds to two directed edges e and ē in the contour exploration of τn. There are
three possible cases (see Figure 2.13):

1. `(e+) = `(e−)−1: The encoding rules imply that s(e) is incident to e+ and thus we
have an edge from the corner of e− to the corner of e+. Next we look at the corner
c′ of the head of the directed edge ē. We have `(c′) = `(e−) = `(ē) + 1. s(c′) is
the first corner coming after c′ with label `(s(c′)) = `(e). s(s(c′)) is the first corner
coming after c′ with `(s(s(c′))) = `(e)− 2. This implies s(ē) = s(s(c′)) which leads
to the form of a simple face.

2. `(e+) = `(e−) + 1: This is equivalent to `(e−) = `(e+) − 1 and therefore we can
apply case 1 by interchanging the roles of e and ē.

3. `(e+) = `(e−) : Let c′ be the corner of the head of e and c′′ be the corner of the head
of ē. The identity `(e) = `(c′) = `(ē) = `(c′′) implies s(e) = s(c′) and s(ē) = s(c′′).
Therefore we have a face of the confluent type with the diagonal edge {e, ē}.

This shows that every edge of Ψ(τn) is in fact quadrangular. Also Ψ(τn) has 2n edges
(one for each corner of τn) and n + 2 vertices, so it must have n faces due to Euler’s
formula. Finally, Ψ(τn) is a rooted quadrangulation because of step (Q4).

Figure 2.13: Cases 1 and 3 occuring in the proof of Lemma 10

Since the algorithms used to construct Φ and Ψ are inverse to one another, we have the
following result:

Corollary 1 (CVS bijection for well-labelled trees). The mapping Ψ is a bijection be-
tween Wn and Qn. Its inverse is given by Φ.
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For a detailled argumentation why Ψ−1 = Φ holds, we refer the reader to the (rather
technical) proof of Proposition 2 in [10].

As already mentioned, the above procedure can be modified to obtain a mapping Ψ̃ from
{1,−1} × En onto Q•n : Suppose τ ∈ En and ε ∈ {1,−1}. Since we are now dealing with
labels which are not restricted to positive values, we have to modify (Q1) in the following
way:

(Q′1) Place a vertex v∗ in the only face of τ (see Proposition 1) and set

`(v∗) := min{`(u) : u ∈ V (τ)} − 1.

(Q′2) Apply (Q2), but with the additional setting of s(i) :=∞ if `(ei) = `(v∗).

(Q′3) Apply (Q3).

(Q′4) If ε = 1, we let the root edge e∗ be oriented from the corner s(e0) to e0 so that
e∗ = (s(e0)−, e−0 ). Otherwise we set e∗ := (e−0 , s(e0)−).

An example can be seen in Figures 2.14-2.15.

Figure 2.14: An embedded tree with ε = 1 and the planar map after (Q′1) and (Q′2)

Figure 2.15: Ψ̃(τ) with root edge e∗ after (Q′3) and (Q′4)
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Notice that (Q′1) is a generalization of (Q1) in the sense that if τ ∈ Wn with root vertex
w∗, there always holds min{`(u) : u ∈ V (τ)} = 1 and therefore l(w∗) = 0 as it is the case
in (Q1). (Q′1) is necessary because we are now dealing with labels that are not restricted
to positive values anymore.
Thus we have defined a mapping

Ψ̃ : {1,−1} × En → Q•n.

In analogy to Corollary 1 we obtain the following result:

Corollary 2 (CVS bijection for embedded trees). The mapping Ψ̃ is a bijection between
{1,−1} × En and Q•n. Its inverse is given by Φ̃.

A final word on the notation: consider an embedded tree τ ∈ En and ε ∈ {1,−1}. Let
q ∈ Q•n be the associated pointed quadrangulation constructed via the CVS bijection.
Then we will often inaccurately write Ψ̃(τ) = q instead of Ψ̃(ε, τ) = q if we are not
interested in the direction of the root edges of τ and q. The same abbreviation will be
used for the inverse mapping Φ̃, i.e. we may write Φ̃(q) = τ instead of Φ̃(q) = (ε, τ).

A short summary of the relations between vertices, edges, faces and corners established
by the CVS bijection is listed in the table below:

Tree Quadrangulation
vertex with label k ←→ vertex at distance k to the root/pointed vertex

edge ←→ face
corners c and s(c) with labels i and j ←→ edge with labels i and j

2.3 Properties of the CVS Bijection

In the previous chapter we have discussed the CVS bijection between rooted quadrangu-
lations and well-labelled trees as well as a slightly modified version for rooted and pointed
quadrangulations and embedded trees. The outstanding property of the CVS bijection
is that distances from the root/pointed vertex in the quadrangulation are given by the
labels on the associated tree. We are going to discuss this property for embedded trees
only, but a similar result holds for well-labelled trees.

Lemma 11. Let τ ∈ En with associated label function ` and let q ∈ Q•n be the cor-
responding quadrangulation according to the CVS bijection, i.e. q = Ψ̃(τ). Then we
have

dq(u, v) ≥ |`(u)− `(v)|

for all u, v ∈ V (τ) ∪ {v∗} = V (q), where v∗ is the pointed vertex in q.
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Proof. We choose a path (wi)(i=1,...,d) from u to v such that d = d(u, v). Note that w1 = u
and wd = v. Since |`(c)− `(s(c))| = 1 for every corner c on the path we have

dq(u, v) = d =
d∑
i=2

|`(wi)− `(wi−1)| ≥ |
d∑
i=2

`(wi)− `(wi−1)| ≥

≥ `(wd)− `(w1)| = |`(u)− `(v)|.

This lower bound of the distance function gives rise to the following result (see [29,
Proposition 2.3.7]):

Proposition 3. Suppose τ ∈ En together with its associated label function `. Let q ∈ Q•n
be the corresponding quadrangulation due to the CVS bijection, i.e. q = Ψ̃(τ). Then we
have

dq(v, v∗) = `(v)−min`+ 1

for all v ∈ V (q)\{v∗}, where v∗ is the pointed vertex in q and min ` := min{`(v) : v ∈
V (τ)}.

Proof. Choose v ∈ V (τ) = V (q)\{v∗} and let cv be a corner in τ that is incident to v.
The path

(c, s(c), s2(c), ..., c0)

has length `(c) − `(c0) = `(v) − `(v∗) by construction. Since dq(v, v∗) is the path with
minimal distance we get

dq(v, v∗) ≤ `(v)− `(v∗) = `(v)−min`+ 1.

Controversely, choose a path (vi)(i=1,...,d) from v to v∗ with d = dq(v, v∗) in q. Then
Lemma 11 shows that

dq(v, v∗) ≥ |`(v)− `(v∗)| = `(v)−min`+ 1.

Unfortunately there is no similar expression for the distance between arbitrary vertices v
and w, but Proposition 3 will turn out to be of special importance when we discuss metric
properties of random quadrangulations in Chapter 5. A consequence of Proposition 3 is,
that the profile (Hq

k)k≥1 of a rooted and pointed quadrangulation q can be interpreted
in terms of the label function ` of the associated embedded tree, i.e.

Hq
k = |{v ∈ V (q) : dq(v, v∗) = k}| = |{v ∈ V (τ) : `(v)−min `+ 1 = k}| (2.3.1)

for every k ≥ 1. We dive further into the structural properties of the profile in Chapter
5 when we discuss limiting properties of large quadrangulations.
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Corollary 3. The CVS bijection Ψ̃ works in such a way that the number of vertices in
the quadrangulation with distance k from the pointed vertex is equal to the number of
vertices of label k in the normalized embedded tree.

Proof. This is just and alternative description of Proposition 3 and equation (2.3.1).

Corollary 3 says that the profile of a rooted and pointed quadrangulation is mapped onto
the label distribution of a normalized embedded tree by the CVS bijection. Notice that
a similar result holds for Φ :

Proposition 4. Suppose τ ∈ Wn together with its associated label function `. Let q ∈ Qn
be the corresponding quadrangulation due to the CVS bijection, i.e. q = Ψ(τ). Then we
have

dq(v, v0) = `(v)

for all v ∈ V (q)\{v0}, where v0 is the root vertex in q.

This again entails the following property:

Corollary 4. The CVS bijection Ψ works in such a way that the number of vertices in
the quadrangulation with distance k from the root vertex is equal to the number of vertices
of label k in the associated well-labelled tree.

We already mentioned that it is not possible to give an immediate expression of the
distance function between arbitrary vertices on a pointed quadrangulation in terms of
the label function of the associated embedded tree. Still it is possible to obtain two useful
bounds that come as close as possible.

Proposition 5. Suppose τ ∈ En with label function ` and associated pointed quadran-
gulation q via the CVS bijection, i.e. Ψ̃(τ) = q. Let u, v ∈ V (q)\{v∗} where v∗ is the
pointed vertex in q. Remembering the notation in Definition 26, we let cu and cv be two
corners of τ such that u = c−u and v = c−v .

1. Then there holds

dq(u, v) ≤ `(u) + `(v)− 2 min
c∈[cu,cv ]

`(c) + 2,

where [cu, cv] denotes the set of all corners encountered when starting from cu,
following the contour exploration and stopping at cv.

2. Then there holds
dq(u, v) ≥ `(u) + `(v)− 2 min

w∈[[u,v]]
`(w),

where [[u, v]] is the set of all vertices lying on the unique path from u to v in τ.
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Proof. To follow the proof more easily, we advice the reader to keep an eye on Figures
2.16 and 2.17. We start with the first point: letm := minc∈[cu,cv ]{`(c)} and denote with c′

the corner in [cu, cv] that assumes the minimal label, i.e. `(c′) = m. Because the successor
function is monotonically decreasing with step size −1, we see that c′ = s`(cu)−m. Using
the same argument we get s(c′) = s`(cv)−m+1. These equalities give us paths p1 and p2

with

p1 = {cu → s(cu)→ · · · → s`(cu)−m = c′ → s`(cu)−m+1 = s(c′)}

from cu to the successor of c′ of length `(cu)−m+ 1 and

p2 = {cv → s(cv)→ · · · → s`(cv)−m+1 = s(c′)}

from cv to the successor of c′ of length `(cv) −m + 1 in q. Concatenating p1 and p2 at
the common corner s(c′) yields a path p3 of length

`(cu) + `(cv)− 2m+ 2 = `(u) + `(v)− 2m+ 2.

The first claim of the proposition now holds because dq(u, v) is the length of a minimal
path between u and v in q and therefore less than or equal to the length of p3.

Figure 2.16: An examplified embedded tree as in the first point of the proof of Proposition
5 with the paths p1(blue) and p2(green) constructed according to the CVS
bijection together with the properly concatenated path p3(red).

We now turn to the second point. Let w ∈ [[u, v]] be such that `(w) = min{`(w′) :
w′ ∈ [[u, v]]}. If w = u or w = v then the statement follows trivially from Lemma 11.
Otherwise, we can write τ as the union τ = τ1 ∪ τ2 with τ1 ∩ τ2 = {w} and such that
u ∈ V (τ1), u 6∈ V (τ2) and v ∈ V (τ2), v 6∈ V (τ1). Consider a minima path γ from u to v
in q. There are now two possibilities:
Case 1: v∗ belongs to γ : then we have dq(u, v) = dq(u, v∗) + dq(v∗, v) and the result
follows from Lemma 11.
Case 2: v∗ does not belong to γ : from the choice of the subtrees τ1 and τ2 of τ, we can
find corners c1 in τ1 and c2 in τ2 such that c−1 and c−2 are consecutive vertices on γ and
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the corners c1 and c2 are connected by an edge of q. Therefore we have c2 = s(c1) or
c1 = s(c2). We only consider the first case (the other one is treated in a similar way).
The successor function property together with the fact that the contour exploration of τ
must visit w between any visit of u and v guarantees `(w) ≥ `(c2). Then, again due to
Lemma 11, we have

dq(u, v) = dq(u, c
−
2 ) + dq(c

−
2 , v)

≥ |`(u)− `(c−2 )|+ |`(v)− `(c−2 )|
≥ |`(u)− `(c−2 ) + `(v)− `(c−2 )|
= `(u) + `(v)− 2`(c−2 )

≥ `(u) + `(v)− 2`(w).

Figure 2.17: Illustration of the proof of the second point of Proposition 5.

We want to end this section with an interesting geometric construction involving three
vertices as described in [8].

Definition 28. Let q ∈ Qn and consider three distinct vertices v1, v2, v3 ∈ V (q). A
separating loop is a loop L on q that passes through v3 and separates v1 from v2,
in the sense that any path from v1 to v2 necessarily intersects L (see Figure 2.18). A
minimal separating loop is a separating loop of minimal length.
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Figure 2.18: A schematic picture of a separating loop.

Lemma 12. Let q be an unlabelled quadrangulation with n faces. Consider three dis-
tinct vertices v1, v2, v3 ∈ V (q) and denote with l123 the length of the minimal separating
loop that contains v3 and that separates v1 and v2. In this setting, we transform q into
a labelled, rooted quadrangulation in the following way: let v0 := v3 be the root vertex
of q and start labelling q in terms of the natural distance from v0. This yields a rooted
quadrangulation (with arbitrary choice of the root edge) that we also denote with q. Sup-
pose τ ∈ Wn is the well-labelled tree with label function ` associated with q via the CVS
bijection, i.e. τ = Φ(q). Then we have

l123 = 2 min
w∈[[u,v]]

`(w),

where [[u, v]] is the set of all vertices lying on the unique path from u to v in τ.

Proof. Let us first show that l123 ≥ 2m withm := minw∈[[u,v]] `(w) : consider an arbitrary
loop L separating v1 and v2. L must intersect the unique path from u to v in τ at some
vertex z. By decomposing L into a path L1 from z to v3 and a path L2 from v3 back to
z, we see that the lenghts of both L1 and L2 must be larger or equal to the value of `(z)
because `(z) is the minimal distance from z to v3 in q. This implies

l123 = |L1|+ |L2| = 2`(z) ≥ 2m,

where |Li| denotes the number of vertices in Li for i ∈ {1, 2}. Conversely, we can find a
separating loop L (see Figure 2.19) by considering a vertex z with minimal label `(z) = m
on the unique path P between u and v (in τ) by picking two corners of z on opposite
sites of P and considering the successor chain of these two corners. Both of these chains
have length m and end at v3 because the successor function is monotonically decreasing.
Because l123 is the length of a minimal separating loop, we obtain l123 ≤ 2m and hence
l123 = 2m.
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Figure 2.19: Construction of a minimal separating loop L in the proof of Lemma 12.

2.4 Enumeration of Rooted Quadrangulations

The first breakthough in enumerating (planar) maps was due to Tutte [36] in 1963. His
method used a recursive description of maps with the help of generating functions. This
resulted in the so-called “quadratic-method”. With this approach he obtained for example
the formula

2 · 3n

(n+ 2)(n+ 1)

(
2n

n

)
(2.4.1)

for the number of maps with n edges. The downside of Tutte’s method is that it does
not reveal insights into the structure of the respective objects. On the other hand, a
bijective approach gives a deeper understanding of the combinatorial properties of the
objects in question.

In this short section we use the CVS bijection to justify that formula (2.4.1) holds for
the number of rooted quadrangulations with n faces (which is also the number of well-
labelled trees with n edges) as well.

Finally, we want to mention that the enumerative theory of maps has not only many
connections to different branches of mathematics but to theoretical physics as well. For
example, maps have been used in the study of quantum gravity as discrete models for
random geometries (see [22]).

Corollary 5. For every n ∈ N there holds

|Qn| = |Wn| =
2 · 3n

n+ 2
· Cn,

where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.
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Proof. First we notice that |Q•n| = (n+2) · |Qn| since every non-pointed quadrangulation
has n+ 2 vertices and each one of them induces a distinct element of Q•n. Then we have
|{1,−1} × En| = |Q•n| due to the CVS bijection. This give us

|{1,−1} × En| = (n+ 2) · |Qn| (2.4.2)

With Remark 7 we get that |{1,−1} × En| is also equal to 2 · 3n|Pn|. Since the number
of plane trees is given by the Catalan numbers according to Lemma 6 we obtain

|{1,−1} × En| = 2 · 3n · Cn (2.4.3)

Putting (2.4.2) and (2.4.3) together we conclude

|Qn| =
2 · 3n

n+ 2
· Cn.

Corollary 5 together with Lemma 7 entails the following relation between the number of
well-labelled and embedded trees with n edges:

Corollary 6. For every n ∈ N there holds

|Wn| =
2

n+ 2
· |En|.

Of course, these enumerative results lead directly to corresponding probabilistic descrip-
tions:

Corollary 7. Let qn ∈ Qn and wn ∈ Wn be chosen uniformly at random. Let further
q•n ∈ Q•n and (εn, τn) ∈ {1,−1} × En be chosen uniformly at random such that εn is
independent of τn. Then qn has the same distribution as Ψ(wn) and q•n has the same
distribution as Ψ̃(εn, τn).

Proof. Choose a fixed quadrangulation q ∈ Qn. The fact that wn is uniformly distributed
in Wn is transfered by the CVS bijection and therefore the quadrangulation Ψ(wn) can
be seen as uniformly distributed in Qn. This gives us

P{qn = q} =
1

|Qn|
=

1

|Ψ(Wn)|
= P{Ψ(wn) = q}.

Likewise, choose a fixed, pointed quadrangulation q• ∈ Q•n. Again, Ψ̃(τn) is uniformly
distributed in Q•n and we obtain

P{q•n = q•} =
1

|Q•n|
=

1

|Ψ̃({1,−1} × En)|
= P{Ψ̃(εn, τn) = q•}.
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3 Convergence of the Contour Process

In Section 1.3 we gave a brief introduction to the one-to-one relationship between a
plane tree and its associated contour process. The goal of this chapter is to use this
knowledge in order to show that certain metric properties of large random plane trees
can be described in terms of the so-called Brownian excursion. Inevitably, we are led
into the study of random walks and Brownian motion. This alone is a considerably large
field of exploration and so we restrict our attention to what is relevant for our purpose.
Brownian motion will be of special interest because it turns out to be a limiting object
in the context of (properly rescaled) random walks. This is the statement of Donsker’s
theorem in Section 3.3.

3.1 Convergence in Distribution and Stochastic Processes

The major tools for studying properties of large random trees are to be found in the
theory of stochastic processes and in particular convergence in distribution. Both are
central concepts of probability theory which we cover now briefly. A more elaborate
discussion about these topics can be found in almost any book about stochastic processes,
for example [32].

Definition 29. Suppose (E, d) is a metric space endowed with the Borel σ−field B
constructed from the topology that is induced by the metric d. Let Xn and X be E-
valued random variables. Then we say that Xn converges in distribution to X, if, for
every bounded continuous function g : E → R,

lim
n→∞

E[g(Xn)] = E[g(X)].

We write Xn
d−→ X for convergence in distribution.

The following theorem justifies the naming “convergence in distribution”.

Theorem 5. Suppose (E, d) is a metric space endowed with the Borel σ−field constructed
from the topology that is induced by the metric d. Let Xn and X be E-valued random
variables with distribution functions Fn(x) := P{Xn ≤ x} and F (x) := P{X ≤ x} for
x ∈ E. Then the following assertions are equivalent:

1. Xn
d−→ X

2. limn→∞ Fn(x) = F (x) for all x ∈ E such that F is continuous in x.

3. lim supn→∞ P{Xn ∈ K} ≤ P{X ∈ K} for all closed sets K ⊆ E.
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Sometimes it is useful to relate convergence in distribution with pointwise convergent
random variables. More precisely, the following is true duo to Skorokhod, see [5, Theorem
6.7]:

Theorem 6 (Skorokhod’s representation theorem). Suppose (E, d) is a metric space. Let
Xn and X be E-valued random variables such that Xn

d→ X. Then there exist random
variables Yn and Y on a common probability space (Ω,B,P) such that

1. Xn has the same probability distribution as Yn and likewise X has the same proba-
bility distribution as Y,

2. P{Yn → Y } = 1, i.e. Yn(ω)→ Y (w) almost surely for every ω ∈ Ω as n→∞.

We recall the basic definition of a stochastic process:

Definition 30. Let (Ω,B,P) be a probability space, (Z,Z) an arbitrary space with σ-
field Z and I an indexset. Then a stochastic process {Xi : i ∈ I} is a family of random
variables defined on (Ω,B,P) such that

Xi :

{
Ω → Z

ω 7→ Xi(ω)
(3.1.1)

is B-Z measurable for all i ∈ I.

If not otherwise mentioned, we will only be concerned with real-valued stochastic pro-
cesses, i.e. processes with (Z,Z) = (R, σ(R)) where σ(R) is the Borel σ-field on R
induced by the Euclidean topology.

Definition 31. Let (Ω,B,P) be a probability space and (Z,Z) an arbitrary space with
σ-field Z and I an indexset as in Definition 30. Let X := {Xi : Ω → Z : i ∈ I} be a
stochastic process and set

(∆X(ω))(i) := Xi(ω)

for every ω ∈ Ω and i ∈ I. The law of the stochastic process X is the pushforward
measure LX := P ◦∆−1

X defined on the space of all functions from I into Z.

Another very important concept in probability theory are Markov processes. They are
special stochastic processes whose long term behaviour is completely determined by the
transition probabilities between the various states of the process and not on where the
process started or what happened “in the past”. We formalize this heuristic description
now:

Definition 32. Let (Ω,B) be a measurable space. A filtration F := {Ft : t ≥ 0} is a
sequence of σ−fields with Ft ⊆ B satisfying

t1 ≤ t2 ⇒ Ft1 ⊆ Ft2 .
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Notice that a stochastic process {Xi : i ≥ 0} naturally induces a filtration by setting
Ft := σ({X−1

i (B) : i ≤ t, B ∈ B}) for all t ≥ 0.

Definition 33. Let {Xt : t ≥ 0} be a stochastic process on the probability space (Ω,B,P)
with values in (Z,Z). We call {Xt : t ≥ 0} a Markov process with respect to the
filtration F , if for all 0 ≤ s < t and A ∈ Z

P{Xt ∈ A|Fs} = P{Xt ∈ A|Xs}

almost surely.

A special class of stochastic processes are the so-called Gaussian processes.

Definition 34. A real-valued stochastic process {Xt : t ≥ 0} is a Gaussian process if
for any choice of distinct values t1, ..., tk ≥ 0, the random vector X := (Xt1 , ..., Xtk) has
a multivariate normal distribution with mean vector µ = E[X] and covariance function
Σ = Cov(X,X).

A Gaussian process is completely determined by its mean

µ(t) := E[Xt]

and covariance function

Σ(s, t) := Cov(Xs, Xt)

respectively. In fact the following result holds, which is a consequence of Kolmogorov’s
extension theorem:

Proposition 6. Let µ be a real-valued function on R+ and Σ a non-negative definite
function on R+ × R+. Then there exists a Gaussian process with mean function µ and
covariance function Σ.

3.2 Random Walks

We shall now be concerned with sums of discrete random variables and their properties.
These objects are called random walks and are a well-known topic in probability theory.
Random walks and especially their limiting behaviour is important in our context because
there is a close relationship to the contour process of large, random plane trees. In this
section we set up the necessary notations and derive some basic propositions on which
we can build up.

Definition 35. Let {Xk : k ≥ 1} be discrete, independent and identically distributed
(in short i.i.d.) random variables with values in Zd. A stochastic process {Sn : n ≥ 0} is
called a random walk on Zd, if S0 = 0 and

Sn = X1 +X2 + · · ·+Xn
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for all n ∈ N. In this case we say that the random walk is supported by the random
variables {Xk : k ≥ 1}.

Random walks can for example be interpreted as the movement of a particle from position
Sn−1 to Sn during the time interval [n − 1, n]. These movements are independent and
identically distributed for all n ∈ N because Sn − Sn−1 = Xn.

Figure 3.1: One-dimensional random walk

Figure 3.2: Two-dimensional random walk
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Figure 3.3: Three-dimensional random walk

Note that in this work we are only interested in the lattice Z, i.e. we always have d = 1
in Definition 35.

Definition 36. A random walk {Sn : n ≥ 0} supported by i.i.d. random variables
{Xk : k ≥ 1} is called simple if

1. Xk ∈ {1,−1}

2. P{Xk = 1} = p and P{Xk = −1} = 1− p where 0 < p < 1

for all k ≥ 1.
If p = 1

2 the simple random walk is called symmetric, otherwise asymmetric (see Fig-
ure 3.4).

We state two simple properties:

Lemma 13. Let {Sn : n ≥ 0} be a simple random walk supported by {Xk : k ≥ 1}. Then
for all n ∈ N

1. E[Sn] = n(2p− 1)

2. V[Sn] = 4np(1− p)

Proof. The first point follows easily from

E[Xk] = 1 · p+ (−1)(1− p) = 2p− 1 (3.2.1)

together with the linearity of the expectation and the fact that the random variables Xk

are i.i.d. for all k ≥ 1:
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E[Sn] = E[X1 + · · ·+Xn] = E[X1] + · · ·+ E[Xn] = n(2p− 1).

The second point is a direct consequence of Steiner’s translation theorem and (3.2.1):

V[Sn] = V[X1] + · · ·V[Xn] = nV[X1] =

= n(E[X2
1 ]− E[X1]2) = n(1− (2p− 1)2) = 4np(1− p)

Figure 3.4: Symmetric (blue) and asymmetric (black) simple random walks.

Lemma 14. Let {Sn : n ≥ 0} be a simple random walk. Then for every k ∈ N the
probability density function is given by

P{S2n = 2k} =

(
2n

n+ k

)
pn+k(1− p)n−k.

Proof. S2n = X1 + · · · + X2n equals 2k if and only if there are exactly n + k indices
i1, ..., in+k ⊆ {1, ..., 2n} such that Xil = 1 for all l = 1, ..., n+ k. The probability density
function for S2n = 2k is now given by the binomial distribution

P{S2n = 2k} =

(
2n

n+ k

)
pn+k(1− p)2n−(n+k) =

(
2n

n+ k

)
pn+k(1− p)n−k.

If we allow the supporting random variables {Xk : k ≥ 1} of a random walk {Sn : n ≥ 0}
to take values in R, then the central limit theorem states that the distribution of

Sn√
n

=
X1 + · · ·+Xn√

n

approaches that of a normal distribution with mean zero and variance σ2 as n tends
towards ∞. More precisely, for −∞ < r < s <∞,
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lim
n→∞

P
{
r ≤ Sn√

n
≤ s
}

=
1√
2πσ

ˆ s

r
e−

y2

2σ2 dy. (3.2.2)

Forgetting for a moment that we chose r and s independent of n, one might be drawn to
use equation (3.2.2) to approximate the probability density function of {Sn : n ≥ 0} for
large n :

P{Sn = k} = P
{
k√
n
≤ Sn√

n
<
k + 1√
n

}
≈ 1√

2πσ

ˆ k+1√
n

k√
n

e−
y2

2σ2 dy. (3.2.3)

Nonetheless, this should be understood as a heuristic argument only because the terms
k√
n
and k+1√

n
depend on n. In the next section we shall see that the central limit theorem

can be extended to certain random functions based on random walks. That is the state-
ment of Donsker’s theorem which will serve as a major tool to establish a limit law for
the contour process of a random plane tree.

The next lemma relates symmetric, simple random walks to contour functions of random
plane trees. This should be understood as a motivation for more elaborate connections
between these two objects.

Suppose τn ∈ Pn is a random plane tree with n edges and Cτn ∈ Cn the contour function
of length 2n asssociated with the contour process of τn as defined in Section 1.3. Cτn is
a uniformly distributed random variable in Cn because the mapping that associates τn
with its contour function is a bijection according to Lemma 8.
Suppose further {Sn : n ≥ 0} is a symmetric, simple random walk. By linear interpolation
we can extend {Sn : n ≥ 0} to a random continuous function

S :

{
R≥0 → R
t 7→ Sbtc + (t− btc)(Sbtc+1 − Sbtc)

(3.2.4)

where btc := max{k ∈ Z : k ≤ t}. The restriction S|An with An := {t ∈ R≥0 : t ≤
2n∧S(t) ≥ 0∧S(2n) = 0} is then a uniformly distributed contour function of length 2n
and hence also an element of Cn. Lemma 15 summarizes this observation.

Lemma 15. Let S be the linear interpolation of a symmetric, simple random walk as
in (3.2). Then the contour function Cτn associated with a random plane tree τn with n
edges has the same distribution as S|An .

3.3 Brownian Motion and Donsker’s Theorem

We would now like to discuss an extension of the central limit theorem to random func-
tions

S̃n(t) :=
S(nt)√

n
(3.3.1)
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for all t ∈ [0, 1], where S is the continuous, linear interpolation of a symmetric, simple
random walk {Sn : n ≥ 0} as defined in (3.2). Donsker’s theorem (Theorem 7) shows
that the macroscopic picture of such random functions can be described by the so-called
(standard) Brownian motion. In reverse this means that (standard) Brownian motion
can be obtained by taking the limit (in terms of convergence in distribution) of certain
random walks.

An example of a Brownian motion is the process of chaotic displacements of particles
suspended in a liquid or gas. These chaotic displacements are the result of collisions with
the molecules of the medium. One possible mathematical model of such a motion is the
so-called Wiener process.

Definition 37. A real-valued stochastic process {B(t) : t ≥ 0} is called a Brownian
motion (or Wiener process) with start in x ∈ R if the following holds:

1. P[B(0) = x] = 1,

2. the process has independent increments, i.e. for all times 0 ≤ t1 ≤ t2 ≤ ... ≤ tn the
increments B(tn)−B(tn−1), B(tn−1)−B(tn−2), ... , B(t2)−B(t1) are independent
random variables,

3. for all t ≥ 0 and h > 0, the increments B(t + h) − B(t) are normally distributed
with expectation zero and variance h,

4. the function t 7→ B(t) is almost surely continuous.

We say that {B(t) : t ≥ 0} is a standard Brownian motion if it starts with x = 0.

Figure 3.5: Brownian motion in dimension one
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Figure 3.6: Brownian motion in dimension two

Brownian motion can be studied in arbitrary dimensions, but we are here only interested
in dimension one (which we also assume from now onwards). Note that we do not know
yet if such a process actually exists. Luckily, it does and one can find a possible con-
struction in [25, Chapter 3.2].

A very simple, but import property of Brownian motion is its scaling invariance, which
can be derived immediately from Definition 37.

Lemma 16 (Scaling invariance). Suppose {B(t) : t ≥ 0} is a standard Brownian motion
and let a > 0. Then the process {X(t) : t ≥ 0} defined by X(t) := 1

aB(a2t) is also a
standard Brownian motion.

A natural question to ask is, how much time a Brownian motion spends in A ⊆ R. In
order to answer this, we introduce the occupation measure µt of a standard Brownian
motion {B(s) : s ≥ 0} by

µt(A) :=

ˆ t

0
1A(B(s)) ds (3.3.2)

for t ≥ 0 and arbitrary Borel sets A ⊆ R. It can be shown that the time a Brownian
motion spends in a certain Borel subset of R is comparable to its Lebesgue measure.
More precisely, almost surely µt is absolutely continuous with respect to the Lebesgue
measure (see [30, Theorem 3.25]).

The key to the proof of Donsker’s theorem lies in the fact that a symmetric, simple
random walk {Sn : n ≥ 0} can be “embedded” into a Brownian motion {B(t) : t ≥ 0} in
the sense that there exists a sequence {Tn : n ≥ 0} such that Sn = B(Tn). This technique
is called the Skorokhod embedding (see [30, Chapter 5.3]). A consequence is Lemma 17.
For a proof we refer again to [30, Lemma 5.24].
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Lemma 17. Let {Sn : n ≥ 0} be a symmetric, simple random walk. Suppose further
{B(t) : t ≥ 0} is a Brownian motion. Then, for any normalized, random variable X, i.e.
E[X] = 0 and V[X] = 1, there exists a sequence 0 = T0 ≤ T1 ≤ T2 ≤ ... such that

1. {B(Tn) : n ≥ 0} has the distribution of {Sn : n ≥ 0} with increments given by the
law of X,

2. the sequence {S̃n : n ≥ 0} constructed from this random walk as in (3.3.1) satisfies

lim
n→∞

P

{∣∣∣∣∣∣∣∣B(nt)√
n
− S̃n(t)

∣∣∣∣∣∣∣∣
∞
> ε

}
= 0,

where the supremum norm ||.||∞ is taken over all t ∈ [0, 1].

Theorem 7 (Donsker’s theorem). Let {Sn : n ≥ 0} be a symmetric, simple random walk
supported by i.i.d. random variables {Xk : k ≥ 1} and suppose that they are normalized,
i.e. E[Xk] = 0 and V[Xk] = 1 for all k ≥ 1. Then on the space of continuous functions
on [0, 1] together with the metric induced by the supremum norm ||.||∞, the sequence
{S̃n : n ≥ 1}, as defined in (3.3.1), converges in distribution to a standard Brownian
motion B := {B(t) : t ∈ [0, 1]}, i.e.

S̃n
d−→ B. (3.3.3)

Proof. Suppose {B(t) : t ∈ [0, 1]} is a standard Brownian motion. Lemma 16 with
a :=

√
n shows that the sequence {B̃n(t) : t ∈ [0, 1]} defined by B̃n(t) := B(nt)√

n
is

also a standard Brownian motion. Denote with C[0, 1] the set of real-valued, continuous
functions on [0, 1] and suppose K ⊆ C[0, 1] is closed. Define for ε > 0

Kε := {f ∈ C[0, 1] : ∃g ∈ K : ||f − g||∞ ≤ ε}.

Then

P{S̃n ∈ K} ≤ P{B̃n ∈ Kε}+ P{||S̃n − B̃n||∞ > ε}.

Again the scaling invariance, Lemma 16, entails P{B̃n ∈ Kε} = P{B ∈ Kε} and therefore

P{S̃n ∈ K} ≤ P{B ∈ Kε}+ P{||S̃n − B̃n||∞ > ε}. (3.3.4)

According to the second point in Lemma 17, limn→∞ P{||S̃n − B̃n||∞ > ε} equals 0 and
because K is closed we have

lim
ε→0

P{B ∈ Kε} = P
{
B ∈

⋂
ε>0

Kε

}
= P{B ∈ K}. (3.3.5)

Putting (3.3.4) and (3.3.5) together, we get

lim sup
n→∞

P{S̃n ∈ K} ≤ P{B ∈ K}.
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Theorem 5 then provides S̃n
d−→ B.

Note that the assumption of normalized supporting random variables {Xk : k ≥ 1} in
Theorem 7 is no loss of generality forXk with finite variance, since we can always consider
the normalization

Xk − E[Xk]√
V[Xk]

.

Donsker’s theorem is also often called Donsker’s invariance principle because the limit
(3.3.3) is independend of the exact distribution of the supporting random variables {Xk :
k ≥ 1}.

3.4 Brownian Excursion and Random Plane Trees

So far we have seen that the continuous functions S̃n, originating from a properly rescaled
random walk, converge in distribution to a standard Brownian motion. Motivated by
Lemma 15 one might expect a similar behaviour for the contour function Cτn of a plane
tree τn. What needs to be considered, is, that Cτn assumes only non-negative values in
contrast to S̃n. In dealing with this issue, we first introduce Brownian excursion. Our
discussion in this section follows [29, Chapter 3.1].

Brownian excursion is a process which can be described in several ways. One possibility
is the so-called Vervaat transform [37]. Another one is to define it as a certain Markov
process (see for example [14, p.111-112]). Our approach is to model Brownian excursion
as a rescaled, standard Brownian motion with compact support conditioned to remain
non-negative.

Suppose {Bt : t ≥ 0} is a standard Brownian motion and set

d := inf{t ≥ 1 : Bt = 0},

g := sup{t ≤ 1 : Bt = 0}

Because P{B0 = 0} = 1 and P{B1 6= 0} = 1 almost surely we get (together with the
continuity of t 7→ Bt almost surely) g < 1 < d almost surely. This allows the following
Definition:

Definition 38. The stochastic process {Bt : t ∈ [g, d]} is called the Brownian excur-
sion. The normalized Brownian excursion is the stochastic process e := {et : t ∈
[0, 1]} with

et :=
|Bg+t(d−g)|√

d− g
.
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Figure 3.7: Brownian excursion

Suppose now Cτn is the contour function associated with the contour process of a plane
tree τn with n edges. Similar to (3.3.1) we set

C̃τn(t) :=
Cτn(2nt)√

2n
(3.4.1)

for t ∈ [0, 1] and call this the normalized contour function of τn. Then, as a conse-
quence of Donsker’s theorem and motivated by Lemma 15, the following holds:

Theorem 8. Let (τn)n≥0 be a sequence of random plane trees with τn ∈ Pn and associated
contour functions Cτn ∈ Cn. Then on the space of continuous, non-negative real-valued
functions on [0, 1] together with the metric induced by the supremum norm ||.||∞, the
sequence {C̃τn : n ≥ 1} of normalized contour functions, as defined in (3.4.1), converges
in distribution to a normalized Brownian excursion e = {et : t ∈ [0, 1]}, i.e.

C̃τn
d−→ e.

For a proof we refer to Le Gall and Miermont [21, Theorem 2.10]. Theorem 8 is the key
to unveil geometric properties of large random trees as we shall see now.

Corollary 8. Let (τn)n≥0 be a sequence of random plane trees, i.e. τn ∈ Pn with root
vertex vn0 ∈ V (τn). Then the following convergences in distribution hold, where e = {et :
t ∈ [0, 1]} is the normalized Brownian excursion:

1. The maximal graph distance from the root vertex vn0 as declared in Definition 14
satisfies

Rτn(vn0 )√
2n

d−→ sup
t∈[0,1]

et.
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2. For a uniformly chosen vertex un ∈ V (τn) there holds

dτn(un, v
n
0 )√

2n

d−→ eU ,

where U is a uniform random variable in [0, 1] independent of e.

Proof. The first point follows immediately from Theorem 8 by observing that the maxi-
mal graph distance from the root vertex vn0 of τn is nothing other than

Rτn(vn0 ) = sup
t∈[0,2n]

C̃τn(t),

where C̃τn is the normalized contour function associated with τn. In order to prove the
second point we would also like to interpret dτn(un, v

n
0 ) in terms of C̃τn so that we are

again in the position to apply Theorem 8.
First we notice that it is sufficient to prove the convergence when un is replaced by a
uniformly chosen vertex of τn that is distinct from the root vertex vn0 .
Suppose t ∈ [0, 2n) and let (wni )i=0,...,n be the vertex sequence associated with the contour
exploration of τn. We define a function 〈.〉 by setting

〈t〉 :=

{
dte, if Cτn has positive slope immediately after t,
btc, otherwise,

where btc := max{k ∈ Z : k ≤ t} and dte := min{k ∈ Z : k ≥ t}. Then, if un ∈
V (τn)\{vn0 }, we have wn〈t〉 = un if and only if t is a time when the contour process around
τn explores one of the two directed edges immediately preceding or succeeding un (see
Figure 3.8).

Figure 3.8: Situation for wn〈t〉 = un

Therefore the Lebesgue measure of {t ∈ [0, 2n) : wn〈t〉 = un} equals 2. It follows that if
U is a uniformly chosen random variable in [0, 1] and independent of τn, then wn〈2nU〉 is
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uniform in V (τn)\{vn0 }. Hence, it suffices to prove the desired result with wn〈2nU〉 instead
of un. Thus we have

dτn(wn〈2nU〉, v
n
0 )

√
2n

=
Cτn(〈2nU〉)√

2n
=
Cτn(2n 〈2nU〉2n )
√

2n
= C̃τn

(
〈2nU〉

2n

)
.

The requirements of Theorem 8 are satisfied because U ∈ [0, 1] ⇔ 2nU ∈ [0, 2n] ⇔
〈2nU〉

2n ∈ [0, 1] and therefore

dτn(wn〈2nU〉, v
n
0 )

√
2n

= C̃τn

(
〈2nU〉

2n

)
d−→ eU .

It can be shown that the distribution of eU in Theorem 8 obeys the following law

P{eU > x} = e
−x2
2 ,

for x ≥ 0. This is the so-called Rayleigh distribution. Due to Chung [12] one finds the
distribution of supt∈[0,1] et > x to be

P
{

sup
t∈[0,1]

et > x

}
= 2

∞∑
j=1

(4j2x2 − 1)e−2j2x2 =

√
2π

5
2

x3

∞∑
j=1

j2e−
π2j2

2x2 , (3.4.2)

for x > 0. (3.4.2) is called Theta distribution.

Figure 3.9: Rayleigh (left) and approximated Theta (right) distributions
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4 The Brownian Continuum Random
Tree

In the previous chapter we have studied metric properties of large random trees with the
help ouf their corresponding contour processes. Such investigations have a long history
and yielded indeed very interesting results. A cornerstone was laid by Aldous [2, 3, 4]
around 1991. He didn’t just investigate asymptotic properties of random trees, but was
also interested in a possible limiting object of a sequence of random trees itself. This
“limiting tree” is the so-called Brownian continuum random tree (CRT) which falls into
a class of trees that are commonly referred to as real-trees. The aim of this chapter is to
construct the CRT and to discuss its relationship with large random plane trees.

4.1 Excursion Functions

Before we discuss the Brownian CRT in depth, we want to ground our survey in the
knowledge that we have already established. This also motivates the construction of the
CRT. First observe that the relationship between a plane tree and its contour process is
of great importance. Roughly speaking we have seen so far, that (after normalization)
the asymptotic behaviour of a sequence of contour functions can be interpreted in terms
of the Brownian excursion. In taking this leap, we somehow left the discrete world of
the contour process and stepped into the realm of an object whose laws are governed by
probability theory. Nevertheless, one might suggest that Brownian excursion can be used
to describe a certain “limiting-tree” in the same way as the contour process describes a
finite plane tree. Actually, this object turns out to be the Brownian CRT.

We start by giving an equivalent description of the natural distance on a plane tree
and follow the development in [29, Chapter 3.2]:

Lemma 18. Let τn ∈ Pn with its associated contour exploration (en0 , ..., e
n
2n−1) and

contour function Cτn ∈ Cn. Define the function Čτn by setting

Čτn(i, j) := inf{Cτn(k) : k ∈ N, i ≤ k ≤ j} (4.1.1)

for i, j ∈ {0, ..., 2n − 1} such that i ≤ j. Then the natural distance dτn on τn can be
written as

dτn(vni , v
n
j ) = Cτn(i) + Cτn(j)− 2Čτn(i, j) (4.1.2)

where vnr := (enr )−as in the discussion after Definition 25.
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Proof. Denote with vni ∧ vnj the highest common ancestor in τn, i.e. vni ∧ vnj is the vertex
on the highest level in τn on the unique path between vni and vnj that is smaller than
(or equal to) the levels of vni and vnj (see Figure 4.1). This means vni ∧ vnj = vnk if and
only if Cτn(k) = Čτn(i, j). Therefore vni ∧ vnj is on level Čτn(i, j). Also, the unique path
from vni to vnj , which goes from vni down to vni ∧ vnj and then from vni ∧ vnj up to vnj , has
length dτn(vni , v

n
j ) = Cτn(i) +Cτn(j)− 2Čτn(i, j). Notice that vni ∧ vnj = vni if and only if

vni 4 vnj , where 4 is the partial order on τn as defined in (1.2.1).

Figure 4.1: Example for Ĉτn

Observe that (4.1.2) does not depend on the choice of the indices i and j, meaning that
if we choose i′ and j′ such that vni = vni′ and v

n
j = vnj′ , we get the same result because the

contour function depends only on the level of the vertices and not on their order in the
contour exploration.

Lemma 18 suggests how a function might look like if it is to act as a contour function of
a tree-like object. We extend this idea to describe “continuous” trees.

Definition 39. Let g : [0, 1] → R+ be a non-negative, continuous function with g(0) =
g(1) = 0. We call g an excursion function. For s, t ∈ [0, 1], let

ǧ(s, t) := inf{g(u) : min{s, t} ≤ u ≤ max{s, t}}

and set

dg(s, t) := g(s) + g(t)− 2ǧ(s, t). (4.1.3)

Definition 40. Let (X, d) be an arbitrary space with d : X × X → R+ satisfying
d(x, x) = 0 and d(x, y) = d(y, x) for every x, y ∈ X. We say that (X, d) satisfies the four
point condition if for every s, t, u, v ∈ X,

d(s, t) + d(u, v) ≤ max{d(s, u) + d(t, v), d(s, v) + d(t, u)}.
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Figure 4.2: The four point condition holds on a tree (with leaves s, t, u and v): d(s, t) +
d(u, v) ≤ d(s, u) + d(t, v) = d(s, v) + d(t, u)

We observe the following property of the four point condition:

Lemma 19. The four point condition implies the triangular inequality.

Proof. Let (X, d) be as in Definition 40 and choose s, t, u ∈ X arbitrarily. By setting
v := u we get

d(s, t) = d(s, t) + d(u, v)

≤ max{d(s, u) + d(t, u), d(s, u) + d(t, u)}
= d(s, u) + d(t, u) = d(s, u) + d(u, t)

which is the triangular inequality.

The previous lemma states that the four point condition is a generalization of the trian-
gular inequality. It is also closely related to real trees as we shall see soon.

Lemma 20. Let g be an excursion function and dg as in (4.1.3). Then for every
s, t, u, v ∈ [0, 1], the four point condition for dg is equivalent to

ǧ(s, u) + ǧ(u, v) ≥ min{ǧ(s, u) + ǧ(t, v), ǧ(s, v) + ǧ(t, u)}.

Proof. This follows by applying simple transformations:

dg(s, t) + dg(u, v) ≤ max{dg(s, u) + dg(t, v), dg(s, v) + dg(t, u)} ⇔

g(s) + g(t)− 2ǧ(s, t) + g(u) + g(v)− 2ǧ(u, v) ≤ max

{
g(s)+g(u)−2ǧ(s,u)+g(t)+g(v)−2ǧ(t,v),

g(s)+g(v)−2ǧ(s,v)+g(t)+g(u)−2ǧ(t,u)

}
⇔

−ǧ(s, t)− ǧ(u, v) ≤ max{−ǧ(s, u)− ǧ(t, v),−ǧ(s, v)− ǧ(t, u)} ⇔
−(ǧ(s, t) + ǧ(u, v)) ≤ −max{ǧ(s, u) + ǧ(t, v), ǧ(s, v) + ǧ(t, u)} ⇔

ǧ(s, t) + ǧ(u, v) ≥ min{ǧ(s, u) + ǧ(t, v), ǧ(s, v) + ǧ(t, u)}.
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Lemma 21. The function dg satisfies the four point condition for every excursion func-
tion g.

Proof. Accorindg to Lemma 20 it is sufficient to verify

ǧ(s, t) + ǧ(u, v) ≥ min{ǧ(s, u) + ǧ(t, v), ǧ(s, v) + ǧ(t, u)}

for every s, t, u, v ∈ [0, 1]. This is not very difficult to prove, but a little tedious. We
differentiate the following cases:

1. s ≤ t ≤ u ≤ v : We have ǧ(s, u) ≤ ǧ(s, t) and ǧ(t, v) ≤ ǧ(u, v). This implies
ǧ(s, u)+ ǧ(t, v) ≤ ǧ(s, t)+ ǧ(u, v) and hence min{ǧ(s, u)+ ǧ(t, v), ǧ(s, v)+ ǧ(t, u)} ≤
ǧ(s, t) + ǧ(u, v).

2. s ≤ u ≤ t ≤ v : We further distinguish:

a) ǧ(s, v) = ǧ(u, t) : Then this is also equal to ǧ(s, t) = ǧ(u, v) and the result
follows.

b) ǧ(s, v) = ǧ(s, u) and ǧ(u, t) ≤ ǧ(t, v) : Then ǧ(s, t) = ǧ(s, v) and ǧ(u, v) =
ǧ(u, t) and again the result follows.

c) ǧ(s, v) = ǧ(s, u) and ǧ(t, v) ≤ ǧ(u, t) : Then ǧ(s, t) = ǧ(s, u) and ǧ(u, v) =
ǧ(t, v) from which the result follows. The remaining cases in Case 2 are sym-
metric to those already discussed.

3. s ≤ u ≤ v ≤ t :

a) ǧ(s, t) = ǧ(u, v) : Then these quantities are equal to ǧ(s, u) = ǧ(t, v) from
which the claim follows.

b) ǧ(s, t) = ǧ(s, u) ≤ ǧ(u, v) ≤ ǧ(v, t) : Then ǧ(s, t) = ǧ(s, v) and ǧ(u, v) =
ǧ(u, t).

c) ǧ(s, t) = ǧ(s, u) ≤ ǧ(v, t) ≤ ǧ(u, v) : From this the result follows directly.

All remaining case are symmetric to the ones discussed above.

Proposition 7. For every excursion function g the space ([0, 1], dg) is a pseudometric
space.

Proof. The symmetry of dg and dg(s, s) = 0 for every s ∈ [0, 1] are obvious. The
triangular inequality is a direct consequence of Lemma 21 together with Lemma 19.

4.2 Real Trees

Aldous approach in finding a limit for certain sequences of finite trees was to identify
those trees as continuous functions or compact subsets of the Banach space of absolutely
summable sequences `1 = {(xi)i∈N :

∑
n∈N |xi| < ∞}. Without going into more detail,
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this view reminds one of the use of coordinates instead of working with more abstract
objects. Another possibility is to interpret trees as topological spaces or, more precisely
as metric spaces. This might seem unfamiliar at first, so let us motivate this view:
Suppose τ is an arbitrary tree embedded into the plane such that τ ⊆ R2 and all edges
are straight lines with length one. Let us also assume that the edges only intersect at
their incident vertices. In this way we can provide a natural metric on τ by defining
the distance between two vertices as the length of the unique path through the tree that
connects them. The uniqueness of this path is guaranteed by the tree-structure. This
leads to the definition of so-called real trees. An elobarete exploration of the theory of
real trees can be found in [15, Chapter 3.3].

Definition 41. A metric space (T , d) is a real tree if the following properties hold for
every x, y ∈ T ,

(R1) There is a unique isometric map φx,y : [0, d(x, y)] → T such that φx,y(0) = x and
φx,y(d(x, y)) = y.

(R2) If φ̃ : [0, 1]→ T is a continuous injective map with φ̃(0) = x and φ̃(1) = y, then

φ̃([0, 1]) = φx,y([0, d(x, y)]).

Notice that Definition 41 actually reassembles the properties of a tree (in the graph the-
oretical sense) in a continuous way: (R1) guarantees the uniqueness of a “path” between
x and y in T and (R2) insists that T is free of “loops”. Since we are also interested in
rooted trees, we extend this definition in the following way:

Definition 42. A rooted real tree (T , d, ρ) is a real tree with a distinguished point
ρ ∈ T that we call root in analogy to the root vertex of plane trees.

Quite an interesting description of a real tree can be given in terms of the four point
condition. For a proof, see for instance [13, 11].

Proposition 8. Let (X, d) be a connected metric space. Then (X, d) is a real tree if and
only if it satisfies the four point condition.

Suppose now that g is an excursion function as in Definition 39. According to Lemma
21 the space ([0, 1], dg) is a pseudometric space. We define a binary relation ≈g on
[0, 1] in the following way: For s, t ∈ [0, 1] we let s ≈g t if and only if dg(s, t) = 0, i.e.
≈g = {(s, t) ∈ [0, 1]2 : dg(s, t) = 0}. Obviously, ≈g is an equivalence relation. The idea is
that every s ∈ [0, 1] can be interpreted as a vertex of a tree where we identify s and t if
and only if

g(s) = g(t) = ǧ(s, t).

More precisely, let Tg := [0, 1]/ ≈g be the quotient set and denote with

πg : [0, 1]→ Tg (4.2.1)
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the canonical projection. We can equip Tg with a distance function by setting

dTg(πg(x), πg(y)) := dg(x, y). (4.2.2)

The function dTg is well-defined: Suppose πg(x) = πg(x
′) and πg(y) = πg(y

′). We have
to show that dTg(πg(x), πg(y)) = dTg(πg(x

′), πg(y
′)). The triangular inequality implies

dg(x, y) ≤ dg(x, x′) + dg(x
′, y) = dg(x

′, y) ≤ dg(x′, y′) + dg(y
′, y) = dg(x

′, y′)

and

dg(x
′, y′) ≤ dg(x′, x) + dg(x, y

′) = dg(x, y
′) ≤ dg(x, y) + dg(y, y

′) = dg(x, y).

Putting these together we get dg(x, y) ≤ dg(x′, y′) ≤ dg(x, y) and therefore

dTg(πg(x), πg(y)) = dg(x, y) = dg(x
′, y′) = dTg(πg(x

′), πg(y
′)).

Lemma 22. For every excursion function g the space (Tg, dTg) is a metric space.

Proof. It is clear that dTg is a pseudometric because all properties of dg are inherited.
What is left open is to show that dTg(πg(x), πg(y)) = 0 implies πg(x) = πg(y). This
follows from the definition of ≈g because dTg(πg(x), πg(y)) = 0 is equal to dg(x, y) = 0
which entails x ≈g y and hence πg(x) = πg(y).

We can also equip (Tg, dTg) with a partial order 2 by setting s 2 t for s, t ∈ Tg if and
only if

g(s) = ǧ(s, t)

Proposition 9. For every excursion function g the space (Tg, dTg) is a compact real tree.

Proof. First observe that the canonical projection πg between the metric spaces ([0, 1], dg)
and (Tg, dTg) is obviously continuous because dTg(πg(x), πg(y)) = dg(x, y). Therefore,
(Tg, dTg) is compact and connected as a continuous image of the compact and connected
space ([0, 1], dg). The result follows now from Lemma 21 and Proposition 8.

Proposition 9 tells us that we can construct a compact real tree with the help of an
excursion function. We say that the real tree Tg is coded by the excursion function
g. Notice also that we can interpret (Tg, dTg) as rooted real tree by identifiying the
equivalence class ρTe := πg(0) = πg(1) as the root.
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Figure 4.3: Coding of a subtree (blue) of a real tree by its excursion function. This image
can be seen as a continuous analog of Figure 4.1.

To simplify the notation we abbreviate the distance function dTg of a real tree (Tg, dTg)
with dg from now on. This is justified by (4.2.2). It should be clear from the context if
dg is a distance on [0, 1] or on the real tree Tg. We also set ρg := ρTg for the root.

In analogy to the graph theoretical notions of “degree” and “leaf”, we can define the
following:

Definition 43. Let (T , d) be a real tree. For every x ∈ T , the degree deg(x) of x is the
number of connected components of T \{x}. The set Lf(T ) is the set of all x ∈ T such
that T \{x} is connected, i.e. deg(x) = 1. A point x ∈ Lf(T ) is called a leaf of T . The
complements of leaves, denoted by Sk(T ), is the skeleton of T .

Observe also that every real tree Tg = [0, 1]/ ≈g induces a natural probability measure
on Tg by setting

λg := λ ◦ π−1
g (4.2.3)

where λ denotes the Lebesgues-measure on [0, 1] and πg is again the canonical projection
from [0, 1] to Tg. This measure allows us to convert random points in [0, 1] to random
variables in Tg, i.e. if t ∈ [0, 1] is uniformly chosen at random, then we can view πg(t) as
uniformly, λg−distributed random variable in Tg.

In the world of real trees there is also a natural analogue corresponding to the fact, that
for any two distinct vertices in a discrete tree, there exists a unique path between them.

Definition 44. Let (T , d) be a real tree. Any isometric embedding φx,y : [0, d(x, y)]→
T with φx,y(0) = x and φx,y(d(x, y)) = y is called a geodesic path and its image
φx,y([0, d(x, y)]) a geodesic segment between x and y in (T , d).

Notice that the existence of geodesic paths follows immediately from the definition of a
real tree (in the same way as the existence of a unique path between to distinct vertices
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in a discrete tree follows from its graph theoretical definition). Furthermore, a geodesic
path between x and y is uniquely determined by x and y. The following lemma gives an
explicit description of the geodesic paths from/to the root:

Lemma 23. Let (Tg, dTg , ρg) be a rooted real tree and set for every t ∈ [0, 1] with 0 ≤
r ≤ g(t),

γ+
t (r) := inf{s ≥ t : g(s) < g(t)− r},
γ−t (r) := sup{s ≤ t : g(s) < g(t)− r}

where inf ∅ := 1 and sup ∅ := 0. Denote this common value with Γt(r) := πg(γ
−
t (r)) =

πg(γ
+
t (r)) for every r ∈ [0, g(t)]. Then Γt is the (unique) geodesic path from πg(t) to the

root ρg.

Proof. At first we observe dg(γ−t (r), γ+
t (r)) = 0 for every r. Therefore, dTg(πg(γ

−
t (r)), πg(γ

+
t (r))) =

dg(γ
−
t (r), γ+

t (r)) = 0 and hence πg(γ−t (r)) = πg(γ
+
t (r)). We denote this common value

with Γt(r) as in the claim of the lemma. Γt is a function from [0, dTg(πg(t), πg(0))] =
[0, g(t)] into Tg, since dTg(πg(t), πg(0)) = dg(t, 0) = g(t). It satisfies Γt(0) = πg(γ

+
t (0)) =

πg(t) and

Γt(dTg(πg(t), πg(0))) = Γt(dg(t, 0))

= Γt(g(t) + g(0)− 2ǧ(t, 0))

= Γt(g(t) + g(0)− 2g(0))

= Γt(g(t))

= πg(γ
−
t (g(t)))

= πg(0),

as required by the property (R1) (see Definition 41). What remains open is to check the
isometry condition of Γt:

dTg(Γt(r),Γt(r
′)) = dTg(πt(γ

+
t (r)), πt(γ

+
t (r′)))

= dg(πt(γ
+
t (r)), πt(γ

+
t (r′)))

= g(γ+
t (r)) + g(γ+

t (r′))− 2ǧ(γ+
t (r), γ+

t (r′))

= g(t)− r + g(t) + r′ − 2(g(t)− r′)
= r′ − r,

for every 0 ≤ r ≤ r′ ≤ g(t). This completes the proof.

Finally, we use the theory about real trees to define the Brownian CRT:

Definition 45. The Brownian CRT is the compact rooted real tree (Te, de, ρe) where e
is the normalized Brownian excursion as in Definition 38.
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Notice that the real tree (Te, de, ρe) is well-defined because the normalized Brownian
excursion is a random continuous function satisfiying all the properties of an excursion
function.

Figure 4.4: Visualization of a large random tree, which is an approximation of the Brow-
nian CRT (by Igor Kortchemski).

4.3 The Gromov-Hausdorff Topology

In the previous section we have constructed the Brownian CRT Te with the help of
the normalized Brownian excursion e. We already know that the normalized Brownian
excursion e is a stochastic process on the space of continuous real-valued functions on
[0, 1] endowed with the Borel σ−field obtained by the Euclidean topology on [0, 1]. In
order to view the compact real tree (Te, de) itself as a random variable, we have to provide
a meaningful σ−field on the set of all compact real trees. The aim of this section is to
construct such a σ−field with the help of the so-called Gromov-Hausdorff topology. By
following [15, Chapter 4.2-4.3], we take a step back and look at the problem from a more
general viewpoint at first.

Definition 46. Let (X, d) be a metric space and A,B ⊆ X non-empty subsets. The
Hausdorff distance is defined by

dH(A,B) := max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
.

We give an equivalent description of the Hausdorff distance that might be more intuitiv:
Denote with Br(x) the open ball of radius r > 0 centered at x. Then the Hausdorff
distance is given by

dH(A,B) = inf{r > 0 : A ⊆ Ur(B) ∧B ⊆ Ur(A)},
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where Ur(S) :=
⋃
x∈S Br(x) for S ⊆ X. Heuristically speaking, the Hausdorff distances

measures how far two subsets of a metric space are from each other (see Figure 4.5). On
the space of non-empty subsets of a metric space, dH is a pseudometric. If we condition
the non-empty subsets to be closed, then dH is a metric. We will now use the Hausdorff
distance to introduce a distance between compact metric spaces.

Figure 4.5: The Hausdorff distance between the sets A and B

Definition 47. Let (X, dX) and (Y, dY ) be compact metric spaces. The Gromov-
Hausdorff distance dGH(X,Y ) = dGH((X, dX), (Y, dY )) between these spaces is de-
fined by

dGH(X,Y ) := inf dH(φX(X), φY (Y )), (4.3.1)

where the infimum is taken over all metric spaces (Z, dZ) and all isometric embeddings
φX : X → Z and φY : Y → Z from X and Y into Z (see Figure 4.6).

Remembering property (R1) of a real tree, we should mention that the mappings φX
and φY are actually sets of mappings φX = {φXa,b : [0, dX(a, b)] → X : a, b ∈ X} and
likewise φY = {φYa,b : [0, dY (a, b)] → Y : a, b ∈ Y }. For the upcoming discussion we will
stick with the slightly incorrect but simpler notation as in (4.3.1) and ask the reader to
keep this in mind.
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Figure 4.6: One step in the evaluation of the Gromov-Hausdorff distance between the
compact metric spaces (X, dX) and (Y, dY ) by computing the Hausdorff met-
ric between the isometric copies φX(X) and φY (Y ) in (Z, dZ).

The Definition of the Gromov-Hausdorff distance makes it necessary to consider all pos-
sible embedding spaces (Z, dZ). This is quite unhandy. In fact it is enough to consider
the disjoint union X∪̇Y of X and Y and all possible metrices dX∪̇Y on X∪̇Y whose
restrictions to X and Y coincide with dX and dY . In that way, dGH is equal to

dGH(X,Y ) = inf{r > 0 : dH(X,Y ) < r}

where dH(X,Y ) is evaluated in the space (X∪̇Y, dX∪̇Y ) under the conditions mentioned
above. Although this is an improvement, it still leaves the question of how to find an
optimal metric on X∪̇Y unanswered.

Definition 48. Let X and Y be two sets. A correspondence between X and Y is a
subset R ⊆ X × Y such that for every x ∈ X there exists at least one y ∈ Y for which
(x, y) ∈ R and similarly for every y ∈ Y there exists an x ∈ X for which (x, y) ∈ R. We
let Cor(X,Y ) be the set of all correspondences between X and Y.

Definition 48 is equivalent to saying that the restrictions of the two canonical projections
X × Y → X and X × Y → Y to R are surjective. Correspondences will give us a more
natural description of the Gromov-Hausdorff distance.

Definition 49. Let R be a correspondence between metric spaces (X, dX) and (Y, dY ).
The distortion dis(R) = dis(R, dX , dY ) of R is defined as

dis(R) := sup{|dX(x, y)− dY (x′, y′)| : (x, x′), (y, y′) ∈ R}.
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Theorem 9. For any two metric spaces (X, dX) and (Y, dY ),

dGH(X,Y ) =
1

2
inf{dis(R) : R ∈ Cor(X,Y )}.

For a proof we refer to [15, Theorem 4.11].

Definition 50. Let (T, dGH) be the space of isometry classes of compact real trees
equipped with the Gromov-Hausdorff distance.

We collect some important properties of (T, dGH). For a proof of these results we refer
to [15, Theorem 4.14] and [15, Theorem 4.23].

Theorem 10. (T, dGH) is a metric space.

Theorem 11. (T, dGH) is complete and separable.

Since we are mainly interested in rooted trees, we now extend the definition of aWe now
define the rooted Gromov-Hausdorff distance for (T, dGH) in a similar way to Definition
47.

Definition 51. Let (X, dX , ρX) and (Y, dY , ρY ) be two rooted real trees. The rooted
Gromov-Hausdorff distance drGH(X,Y ) = drGH((X, dX , ρX), (Y, dY , ρY )) between these
two spaces is defined by

drGH(X,Y ) := inf max{dH(φX(X), φY (Y )), dZ(φX(ρX), φY (ρY ))}, (4.3.2)

where the infimum is taken over all metric spaces (Z, dZ) and all isometric embeddings
φX : X → Z and φY : Y → Z from X and Y (as unrooted trees) into Z.

In analogy to Theorem 9 we can describe the rooted Gromov-Hausdorff distance in terms
of the distortion

drGH(X,Y ) =
1

2
inf{dis(R) : R ∈ Cor(X,Y ), (ρX , ρY ) ∈ R}. (4.3.3)

Definition 52. Let (Tr, drGH) be the metric space of isometry classes of compact rooted
real trees equipped with the rooted Gromov-Hausdorff metric.

Notice that we have defined drGH for pairs of rooted real trees in Definition 51 and
not for pairs of isometry classes of compact rooted real trees. Nevertheless the right
side of (4.3.2) does not depend on the element of the isometry class of (X, dX , ρX) and
(Y, dY , ρY ) respectively and is therefore well-defined.

For a proof of the next result we refer again to [15, Theorem 4.31].

Theorem 12. (Tr, drGH) is complete and separable.
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We want to mention at this point that (4.3.3) allows us to define a Gromov-Hausdorff
distance for arbitrary triples (X, dX , ρX) and (Y, dY , ρY ) where (X, dX) and (Y, dY ) are
metric spaces and ρX and ρY are elements of X and Y respectively. This is possible
because (4.3.3) does not depend on the mappings φX and φY that are required in order
to turn a metric space into a real tree (property (R1)). In its most general setting, we
can even look at triplets (X, dX , ρX), where ρX = (ρ1

X , . . . , ρ
k
X) ∈ Xk. This gives rise to

the following definition that we need in a later chapter:

Definition 53. A k−pointed metric space is a triple (X, dX , ρX) where (X, dX) is
a metric space and ρX = (ρ1

X , . . . , ρ
k
X) ∈ Xk. We denote with (Mk, d

k
GH) the space

of isometry classes of k−pointed compact metric spaces (preserving the distinguished
points) equipped with the k−pointed Gromov-Hausdorff distance dkGH defined by

dkGH(X,Y ) :=
1

2
inf{dis(R) : R ∈ Cor(X,Y ) ∧ (ρiX , ρ

i
Y ) ∈ R∀i = 1, . . . , k},

where (Y, dY , ρY ) is another k−pointed metric space. In the case of k = 1 we simply
call the triple (X, dX , ρX) a pointed metric space and d1

GH the pointed Gromov-
Hausdorff distance.

It can be shown similarily to Theorem 11 that (Mk, d
k
GH) is complete and seperable.

The next lemma relates real trees and their associated excursion functions, see [20,
Lemma 2.3].

Lemma 24. Let g1 and g2 be two excursion functions from R+ → R+ with compact
support and g1(0) = g2(0). Then

drGH(Tg1 , Tg2) ≤ 2||g1 − g2||∞,

where Tgi are the rooted real trees associated with gi for i = 1, 2 and || · ||∞ denotes the
supremum norm.

Proof. We construct a correspondence Rg2g1 between Tg1 and Tg2 by setting

R := {(x1, x2) : x1 = πg1(t) and x2 = πg2(t) for some t ≥ 0}.

Clearly,R is a correspondence by the surjectivity of πg1 and πg2 . Suppose now (σ1, σ2), (η1, η2) ∈
R with s, t ≥ 0 such that πg1(s) = σ1, πg2(s) = σ2 and πg1(t) = η1, πg2(t) = η2. Recalling
dg(x, y) = g(x) + g(y)− 2ǧ(x, y), we compute

|dg1(σ1, η1)− dg2(σ2, η2)| = |g1(σ1)− g2(σ2) + g1(η1)− g2(η2)−
2(ǧ1(σ1, η1)− ǧ2(σ2, η2))|. (4.3.4)

The functions ǧi(σi, ηi) = inf{gi(ζ) : min(σi, ηi) ≤ ζ ≤ max(σi, ηi)} are bounded by

ǧi(σi, ηi) ≤ gi(σi) and ǧi(σi, ηi) ≤ gi(ηi)
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for i = 1, 2. Thus we can estimate (4.3.4) with the triangular inequality

|dg1(σ1, η1)− dg2(σ2, η2)| ≤ ||g1 − g2||∞ + ||g1 − g2||∞ + 2||g1 − g2||∞
= 4||g1 − g2||∞.

Taking the supremum over all (σ1, σ2), (η1, η2) ∈ R yields dis(R) ≤ 4||g1−g2||∞. Because
(ρg1 , ρg2) = (πg1(0), πg2(0)) ∈ R, we can use equation (4.3.3) to conclude

drGH(Tg1 , Tg2) =
1

2
inf{dis(R) : R ∈ Cor(Tg1 , Tg2), (ρg1 , ρg2) ∈ R}

≤ 1

2
dis(Rg2g1)

≤ 2||g1 − g2||∞.

In short, Lemma 24 tells us that two (rooted) real trees are close if their excursion
functions are close with respect to the corresponding metrics. Observe that Lemma 24 is
equally true if we interpret Tg1 and Tg2 as unrooted real trees. Yet another formulation
of Lemma 24 is to say that the mapping

Γ : g 7→ (Tg, dg, ρg) (4.3.5)

from the space of all excursion functions to (Tr, drGH) is (Lipschitz-) continuous. This
allows us to identify the Brownian CRT Te as a random variable, being the image under Γ
of the normalized Brownian excursion e. More precisely, (Te, de, ρe) is a random variable
taking values in the space Tr of isometry classes of compact rooted real trees endowed
with the Borel σ−field associated with the rooted Gromov-Hausdorff topology, i.e. the
topology induced by the rooted Gromov-Hausdorff distance. This allows us to introduce
probabilty theory into the world of real trees.

4.4 Convergence of Plane Trees as Metric Spaces

Equipped with the knowledge about real trees discussed in the previous section, we can
now state the following result that allows us to view the CRT as a continuous limit of
properly rescaled, discrete random trees (see [29, Theorem 3.3.4]):

Theorem 13. Let (τn)n≥1 be a sequence of random plane trees where τn is uniformly
distributed over Pn with associated root vertex vn0 ∈ V (τn) and natural distance dτn. Then
the following convergence in distribution holds in the space (Tr, drGH):(

V (τn),
dτn√
2n
, vn0

)
d−→ (Te, de, ρe). (4.4.1)
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Proof. We first observe that
(
V (τn), dτn√

2n
, vn0

)
can not only be viewed as a random

variable in the space of all compact metric spaces, but also as a compact rooted real
tree. Likewise we can interpret (Te, de, ρe) as a random variable in the space Tr duo to
Lemma 24 together with equation (4.3.5) and the succeding remarks. Therefore the limit
in (4.4.1) makes sense. Next, let (en0 , ..., e

n
2n−1) be the contour exploration associated with

τn. We define the mapping

h :

{
{0, 1, ..., 2n} × [0, 1] → V (τn)× Te
(i, t) 7→ (uni , πe(t))

(4.4.2)

with uni := (eni )− (see Definition 25) and πe as in (4.2.1). We build a sequence of
correspondences (Rn)n∈N between V (τn) and Te by setting

Rn := h({(i, t) : i ∈ {0, 1, ..., 2n} and t ∈ [0, 1] such that i = b2ntc}).

The surjectivity of h guarantees that Rn is indeed a correspondence for every n ∈ N. We
evaluate the distortion of Rn :
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dis(Rn) = sup

{∣∣∣∣ 1√
2n
dτn(x, x′)− de(y, y′)

∣∣∣∣ : (x, y), (x′, y′) ∈ Rn
}

= sup

{∣∣∣∣ 1√
2n
dτn(x, x′)− de(y, y′)

∣∣∣∣ : ∃ix, ix′ , ty, ty′ with

(x, y) = h(ix, ty) and (x′, y′) = h(ix′ , ty′) such that

ix = b2ntyc and ix′ = b2nty′c
}

= sup

{∣∣∣∣ 1√
2n
dτn(x, x′)− de(y, y′)

∣∣∣∣ : ∃ix, ix′ , ty, ty′ with

(x, y) = (unix , πe(ty)) and
(x′, y′) = (unix′ , πe(ty′)) such that

ix = b2ntyc and ix′ = b2nty′c
}

= sup

{∣∣∣∣ 1√
2n
dτn(x, x′)− de(y, y′)

∣∣∣∣ : ∃ty, ty′ with

(x, y) = (unb2ntyc, πe(ty)) and

(x′, y′) = (unb2nty′c
, πe(ty′))

}
= sup

{∣∣∣∣ 1√
2n
dτn(unb2nrc, u

n
b2nsc)− de(πe(r), πe(s))

∣∣∣∣ : r, s ∈ [0, 1]

}
= sup

{∣∣∣∣ 1√
2n

(
Cτn(b2nrc) + Cτn(b2nsc)− 2Čτn(b2nrc, b2nsc)

)
−de(πe(r), πe(s))

∣∣∣∣ : r, s ∈ [0, 1]

}
. (4.4.3)

Notice that the previous equality is due to (4.1.2). Remembering that de(πe(r), πe(s)) on
Te is equal to de(r, s) on [0, 1] and using the normalized contour function C̃τn to express
Cτn , we see that (4.4.3) is equal to

sup

{∣∣∣∣C̃τn(
b2nrc

2n
) + C̃τn(

b2nsc
2n

)− 2 ˇ̃Cτn(
b2nrc

2n
,
b2nsc

2n
))− de(r, s)

∣∣∣∣ : r, s ∈ [0, 1]

}
= sup

{∣∣∣∣dC̃τn (
b2nrc

2n
,
b2nsc

2n
)− de(r, s)

∣∣∣∣ : r, s ∈ [0, 1]

}
.

By using Skorokhod’s representation theorem (Theorem 6) we can assume that we are
working on a probablity space in which the convergence of Theorem 8 holds almost
surely rather than in distribution. This gives us dis(Rn) → 0 as n → ∞. The fact that
h(0, 0) = (un0 , ρe) ∈ Rn together with identity (4.3.3) concludes the proof.
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Actually, the Brownian CRT is not only the scaling limit of random plane trees but
also of many other different classes of combinatorial trees. For instance, if (τn)n≥0 is a
sequence of uniformly distributed rooted Cayley trees1 with n vertices, then one obtains(

V (τn),
dτn√

4n

)
d−→ (Te, de)

in the space (T, dGH). Likewise, a sequence of uniformly distributed (rescaled) binary
trees with 2n edges converges in distribution to the CRT. By way of this, one can view
the CRT as a kind of universal limiting object in the setting of combinatorial trees.

Next we notice that the choice of the root ρe of the CRT is of no significance when
viewed from a probabilistic standpoint:

Proposition 10. For every t ∈ [0, 1], the Tr−valued random variables (Te, de, ρe) and
(Te, de, ρe(t)) have the same distribution.

Proof. Consider a plane tree τn ∈ Pn with contour exploration (e0, ..., e2n−1) and uni :=
e−i . By definition the root vertex of τn is un0 . For every k ∈ {0, 2n− 1} we can re-root τn
and obtain the same tree with new root vertex unk . Obviously, this procedure is a bijective
mapping on Pn. Therefore, (V (τn), dτn , u

n
0 ) has the same distribution as (V (τn), dτn , u

n
k)

for every k ∈ {0, 2n− 1}. The same argument as in Theorem 13 entails(
V (τn),

dτn√
2n
, unb2ntc

)
d−→ (Te, de, ρe(t))

in the space (Tr, drGH).

By randomizing t in Proposition 10, we obtain the following result:

Corollary 9 (Re-rooting Invariance). Let U be a λe−distributed random variable (see
(4.2.3)) in the Brownian CRT. Then the two Tr−valued random variables (Te, de, ρe)
and (Te, de, U) have the same distribution.

Finally, we want to mention that the Brownian CRT has an interesting property con-
cerning its leaves (see Definition 43):

Proposition 11. For every t ∈ [0, 1], the point πe(t) is almost surely a leaf. In particular,
the set of leaves of Te is uncountable and λe(Lf(Te)) = 1. Moreover, for every x ∈ Sk(Te)
there holds deg(x) ∈ {2, 3} almost surely.

4.5 The Hausdorff Dimension of the Brownian CRT

In this short section we want to introduce another terminology, the so-called Hausdorff
dimension as well as its relation to the Brownian CRT. The Hausdorff dimension is a
number that is based on the topological structure of the underlying space. It enjoys
special attention in the field of self-similar or “fractal” sets. We start with a definition:

1A Cayley tree is a tree in which every non-leaf node has a fixed number of edges attached to it.
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Definition 54. Let (X, ρ) be a metric space, A ⊆ X, d ∈ [0,∞] and δ ∈ (0,∞). Set

Hd
δ (A) := inf{

∞∑
i=1

diam(Ui)
d : ∀(Uj)∞j=1 : Uj ⊆ X ∧A ⊆

∞⋃
j=1

Ui ∧ diam(Ui) < δ}

where diam(U) := sup{ρ(x, y) : x, y ∈ U} for every U ⊆ X,U 6= ∅ and diam(∅) := 0.
Then the d−dimensional Hausdorff measure Hd(A) of A is defined by

Hd(A) := sup
δ>0

Hd
δ (A) = lim

δ→0
Hd
δ (A).

If X is a subset of Rd with d ∈ N+, then the Hausdorff measure Hd is a finite, translation-
invariant Borel-measure. A standard theorem of measure theory implies that there exists
a constant cd > 0 such that Hd = cdλd where λd is the d−dimensional Lebesgue mea-
sure. More precisely, this constant can be expressed in terms of the d−dimensional ball
Bd

1/2(0) ⊆ Rd with radius 1/2, i.e. cd = λd(B
d
1/2(0))−1. The d−dimensional Hausdorff

measure can therefore be seen as the scaled d−dimensional Lebesgue measure. The case
d = 0 also yields a well-known object: If A is a finite subset of X, i.e. A = {a1, . . . , an}
for some n ∈ N and ai ∈ X, we can set Ui := ai for i = 1, . . . , n and Ui :=∞ for i > n.
This gives for every δ > 0,

H0
δ (A) = inf{

∞∑
i=1

diam(Ui)
0 : ∀(Uj)∞j=1 : Uj ⊆ X ∧A ⊆

∞⋃
j=1

Uj ∧ diam(Uj) < δ}

≤
n∑
i=1

diam({ai})0 +

∞∑
i=n+1

0 = n.

Taking the limit δ → 0 yields H0(A) = limδ→0H
0
δ (A) ≤ n. On the other hand, let δ > 0

be such, that mini 6=j ρ(ai, aj) = 2δ and choose an arbitrary covering (Ui)
n
i=1 of A with

diam(Ui) < δ for i = 1, . . . , n. Then it follows

∞∑
i=1

diam(Ui)
0 ≥

∞∑
i=1

diam(Ui ∩A)0 =
n∑
i=1

diam({ai})0 = n.

By taking the infimum over all possible coverings (Ui)
n
i=1 of A with diam(Ui) < δ we

obtain H0(A) = limδ→0H
0
δ (A) ≥ n and therefore H0(A) = n. If A is not finite, then

H0(A) is infinity. In summary, H0(A) is the counting measure if d = 0.

The next result is a direct consequence of the definition of the Hausdorff measure.

Lemma 25. Let (X, ρ) be a metric space, A ⊆ X and (Ui)i≥1 a δ−covering of A, i.e.
diam(Ui) < δ for every i ≥ 1. Then for every t > s, we have

Ht
δ(A) ≤ δt−sHs

δ (A).
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Proof. The assumption diam(Ui) < δ implies diam(Ui)
t−s < δt−s and therefore

diam(Ui)
t = diam(Ui)

t−sdiam(Ui)
s < δt−sdiam(Ui)

s.

Summing over all Ui yields
∑

i≥1 diam(Ui)
t ≤ δt−s

∑
i≥1 diam(Ui)

s. The claim follows
after taking the infimum over all coverings.

A direct consequence of the previous result is:

Proposition 12. Let (X, ρ) be a metric space, A ⊆ X and 0 ≤ s < t < ∞. Then there
holds

1. Hs(A) <∞⇒ Ht(A) = 0.

2. Ht(A) > 0⇒ Hs(A) =∞.

Proof. Under the assumption Hs(A) <∞ we obtain

Ht(A) = lim
δ→0

Ht
δ(A) ≤ lim

δ→0
δt−sHs

δ (A) = Hs(A) · lim
δ→0

δt−s = 0

by using Lemma 25. The second point follows quiet similar: again due to Lemma 25 we
get 1

δt−sH
t
δ(A) ≤ Hs

δ (A) for every δ > 0. Taking the limit δ → 0 yields Hs(A) =∞.

The previous Proposition guarantees the existence of a unique value where the Hausdorff
measure “jumps” from ∞ to 0, see Figure 4.7:

Corollary 10. Let (X, ρ) be a metric space. For every A ⊆ X there exists a unique
value d ∈ R+

0 ∪ {∞} such that Ht(A) = 0 if t > d and Hs(A) =∞ if s < d.
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Figure 4.7: The two sketches on top outline the statement of Proposition 12 and the one
at the bottom shows the consequence according to Corollary 10.

This leads to the following definition:

Definition 55. Let (X, ρ) be a metric space and A ⊆ X. Then the Hausdorff dimen-
sion dimH(A) of A is the unique value d from Corollary 10 satisfying

dimH(A) := d = inf{t ≥ 0 : Ht(A) = 0} = sup{s ≥ 0 : Hs(A) =∞}.

The Hausdorff dimension is often used to analyze certain “fractal” sets. The reader might
get a feeling concerning its meaning by looking at Figure 4.8.

Figure 4.8: The Sierpinski triangle S, the Koch curve K and the Mandelbrot set M
have Hausdorff dimensions dimH(S) = 1.5849, dimH(K) = 1.2619 and
dimH(M) = 2.
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In view of our discussion, the following holds:

Theorem 14. Almost surely, the Hausdorff dimension dimH(Te) of the Brownian CRT
(Te, de) equals 2.

A proof can be found in [27, Proposition 3.4].
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5 Scaling Limit Results

In the previous section we showed that one can derive the convergence of a sequence of
random plane trees towards the Brownian Continuum Random Tree with the help of the
contour process. We would like to extend this result to embedded trees. The first prob-
lem one encounters, is that embedded trees are not uniquely determined by their contour
process alone because the contour process contains no information about the labels. We
address this issue by introducing the contour pair of an embedded tree. This leads us to
the study of a random object called the Brownian snake that plays an important role in
describing the limit behaviour of a sequence of random embedded trees in terms of their
contour pairs.

Our further discussion will then focus on metric properties, especially the radius, of
large random quadrangulations. In order to state these results, we combine the CVS
bijection (Chapter 2) with the limit results obtained for random contour pairs. This will
also lead to the appearance of a certain random measure, called the Integrated Super-
Brownian Excursion, that we discuss briefly.

We follow mainly the works of [10, Chapter 6],[14, Chapter 5.2.2] and [29, Chapter
3.4].

5.1 Contour Pairs of Embedded Trees

The contour pair is a natural way to encode an embedded tree or, more generally speak-
ing, any labelled tree. But we are only interested in embedded trees. We start with the
following definition:

Definition 56. Suppose τn ∈ En with associated label function `τn and let

Lτn(i) := `τn(uni )

be the label of the i−th visited vertex in the contour exploration (see Definition 25). By
linear interpolation we can extend Lτn to a continuous function on [0, 2n] that we also
denote with Lτn . We call Lτn as function from [0, 2n]→ R the label contour function
of τn. We denote with Ln the set of all label contour functions operating on En. The
contour pair of τn is then defined as the pair (Cτn , Lτn) where Cτn ∈ Cn is the associated
contour function and Lτn ∈ Ln the associated label contour function.

In this way we can extend the statement of Lemma 8 to embedded trees (see Figure 5.1):
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Proposition 13. The contour pair construction is a bijection between the sets En and
Cn × Ln.

Figure 5.1: An embedded tree τ with its uniquely determined contour pair (Cτ , Lτ ).

We define similar to (3.4.1) a scaled version of the label contour function by setting

L̃τn(t) :=

(
9

8n

)1/4

Lτn(2nt) (5.1.1)

for t ∈ [0, 1], τn ∈ En and Lτn ∈ Ln. We call L̃τn the normalized label contour func-
tion of τn.

In Theorem 8 we have already seen that a sequence of uniformly at random chosen nor-
malized contour functions (C̃τn)n≥1 converges in distribution to the normalized Brown-
ian excursion e. We would like to extend this result to the normalized contour pair
(C̃τn , L̃τn) that is itself a random variable taking values in C([0, 1],R)2.1

At this point we want to dig a little deeper and study the label function `τn from a differ-
ent angle. Consider an embedded tree τn ∈ En with contour exploration (en0 , e

n
1 , ..., e

n
2n−1)

and uni = (eni )−. Suppose v is a uniformly chosen vertex in V (τn)\{un0} and define the
random variable

Yv := `τn(v)− `τn(v−),

where v− denotes the ancestor of v in the contour exploration of τn. Obviously, the
random variables {Yv : v ∈ V (τn)\{un0}} are uniform in {−1, 0, 1} and independent. If
we denote by u ≺ v the fact that u is an ancestor of v in the contour exploration of τn,
then we obtain

1C([0, 1],R) is the space of all continuous R−valued functions on [0, 1].
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`τn(v) =
∑

u≺v,u6=un0

Yu.

Therefore, `τn can be seen as a random walk supported by the random variables {Yv :
v ∈ V (τn)\{un0}}. This might suggest according to the results about random walks that
a possible limit of a sequence of randomly chosen, normalized label contour functions
(L̃τn)n≥1, which are build on top of the label functions (`τn)n≥1, is (again) strongly con-
nected to the Brownian motion.

A final word on the choice of the scaling factor ( 9
8n)1/4 in (5.1.1) that is, of course,

not chosen arbitrarily. We have just seen, that the label function `τn can be written as
a sum of independend, random variables Y := {Yv : v ∈ V (τn)\{un0}}. Every Yv ∈ Y
satisfies E[Yv] = 0 and

V[Yv] = E[Y 2
v ]− E[Yv]

2 = 0 · 1

3
+ 1 · 2

3
=

2

3
.

Also, the asymptotic length of a branch of τn going from un0 to unb2ntc equals
√

2net

according to Theorem 8. This information is reflected in the scaling factor ( 9
8n)1/4 which

can be seen by rewritting it in the form(
9

8n

)1/4

=

(
9

4 · 2n

)1/4

=
1

(4
9)1/4(2n)1/4

=
1

(2
3)1/2(2n)1/4

=
1√

(2
3)
√√

2n
.

By the central limit theorem, one might then expect the convergence of the normalized
label contour functions

L̃τn

(
b2ntc

2n

)
=

(
9

8n

)1/4

Lτn(b2ntc) =

(
9

8n

)1/4

`τn(unb2ntc) =
`τn(unb2ntc)√

(2
3)
√√

2n

to a centered Gaussian random variable. Again, this motivates a possible convergence of
the normalized contour pair (C̃τn , L̃τn) which we aim to find in the next section.

5.2 Brownian Snake

During the previous two chapters, Brownian motion and Brownian excursion were crucial
in understanding the convergence of the contour process as well as the Brownian CRT.
In order to study the limiting behaviour of the normalized contour pair (C̃τn , L̃τn), we
will once more introduce an object that is build upon Brownian motion and Brownian
excursion. We start with a formal definition:

Definition 57. Let e be the normalized Brownian excursion. The Brownian snake is
the path-valued stochastic process
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W := {Ws : s ∈ [0, 1]}
where Ws = {Ws(t) : t ∈ [0, es]} obeys the following properties:

1. for all s ∈ [0, 1], t 7→Ws(t) is a standard Brownian motion defined for t ∈ [0, es].

2. {Ws : s ∈ [0, 1]} is a continuous Markov process satisfying for s1 < s2 the following
properties: Let m := ěs1,s2 (see Definition 39), then

a) {Ws1(t) : t ∈ [0,m]} = {Ws2(t) : t ∈ [0,m]} and
b) {Ws2(m + t) : t ∈ [0, es2 −m]} is a standard Brownian motion starting from

Ws2(m) and independent of Ws1 .

This looks a bit cumbersome at first, but we advice the reader to take a look at Figure
5.2 which breaths some life into this technical definition. Loosely speaking, for every
s ∈ [0, 1], Ws is a spatial path with random lifetime es evolving according to the standard
Brownian motion. We can therefore view the Brownian snake as a “branching” Brownian
motion. Alternatively it can be seen as an embedding of the CRT or, equally true, as a
process on the CRT. In the present work we will not be concerned with the full Brownian
snake, but only with its “head”.

Figure 5.2: A visualization of the Brownian snake by Jérémie Bettinelli. The shadowy
part represents the normalized Brownian excursion. For every s ∈ [0, 1], we
observe the path Ws by cutting the surface at the right depth and by looking
at the edge of the cut piece.

Definition 58. Let W := {Ws : s ∈ [0, 1]} be the Brownian snake. Define for s ∈ [0, 1]
and Ŵs := Ws(es)) the contour pair Xs :=

(
es, Ŵs

)
. Then the stochastic process

X := {Xs : s ∈ [0, 1]} (5.2.1)
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is called the head of the Brownian snake. The normalized Brownian excursion e is
in this context also called the life-time process of the head of the Brownian snake.

The full Brownian snake can be reconstructed from its head in the same way as an em-
bedded tree can be reconstructed from its contour pair, i.e. Ws(t) = Ŵsup{s′≤s:es′=t}.
We refer to the works of Le Gall ([16] for example) or Marckert and Mokkadem [26] for
further information on the Brownian snake.

Another way of introducing the head of the Brownian snake without considering the
full snake is in terms of a certain Gaussian process. Although this is not as explicit as
Le Gall’s approach (Defintion 57), it fits nicely into our discussion of excursion functions
and real trees. Consider an excursion function g : [0, 1] → R+ as studied in Section 4.1
with its associated real tree (Tg, dg). We define a Gaussian process (see Definition 34)
Zg := {Zg(t) : t ∈ [0, 1]} with mean function µ(t) = E[Zg(t)] = 0 and covariance function

Σ(s, t) = Cov(Zg(s), Zg(t)) = ǧ(s, t) (5.2.2)

for every s, t ∈ [0, 1]. This implies E[Zg(s) · Zg(t)] = ǧ(s, t) because

Cov(Zg(s), Zg(t)) = E[Zg(s) · Zg(t)]− E[Zg(s)]︸ ︷︷ ︸
=0

· E[Zg(t)]︸ ︷︷ ︸
=0

= ǧ(s, t).

Hence

V[(Zg(s)− Zg(t)] = E[(Zg(s)− Zg(t))2]

= E[Zg(s)
2]− 2E[Zg(s) · Zg(t)] + E[Zg(t)

2]

= g(s)− 2ǧ(s, t) + g(t)

= dg(s, t). (5.2.3)

Notice that the existence of the Gaussian process Zg is not trivial, but guaranteed by
Proposition 6. To subsequently motivate the definition of Zg, one should view each
“time” t ∈ [0, 1] as a vertex of the real tree Tg and Zg(t) as the position of this vertex.
Furthermore, we would like to recall the function Čτn from equation (4.1.1) associated
with a plane tree τn ∈ Pn. We have seen that Čτn(i, j) can be interpreted as the value of
the contour function Cτn of the highest common ancestor of the vertices vni and vnj ac-
cording to the contour exploration of τn. Also, we identified for every excursion function
g a function ǧ whose definition and interpretation was motivated by Čτn . In fact this
construction was a generalization of a contour function for “continuous” trees. Therefore,
the formula (5.2) for the covariance of Zg(s) and Zg(t) can be viewed as the value of the
“contour function” g of the highest common ancestor of the “vertices” s and t in the real
tree Tg.

Turning back to equation (5.2.3), we see that dg(s, t) = 0 implies

P{Zg(s)− Zg(t) = 0} = 1.
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Hence the following result holds:

Lemma 26. For every s, t ∈ [0, 1], dg(s, t) = 0 implies Zg(s) = Zg(t) alsmost surely.

Remembering the definition of the real tree Tg = [0, 1]/ ≈g with ≈g = {(s, t) ∈ [0, 1]2 :
dg(s, t) = 0}, Lemma 26 now allows us to interpret Zg as a stochastic process on Tg or,
more precisely, as Brownian motion indexed by the real tree Tg. It therefore makes sense
to identify the process Zg in terms of

{Zg(t) : t ∈ [0, 1]} =̂ {Zg(x) : x ∈ Tg}

as a Gaussian process on Tg starting at the root ρg. This view allows the alternative form
of (5.2.2) as

Cov(Zg(x), Zg(y)) = dg(ρg, x ∧ y)

for every x, y ∈ Tg, where x ∧ y denotes the highest common ancestor of x and y in Tg.
In the particular case where the excursion function g is piecewise monotone, Tg can be
considered as a discrete tree and Zg can be constructed by running independent, stan-
dard Brownian motions along the edges of Tg.

Finally, we specialize g to the normalized Brownian excursion e which yields the Gaus-
sian process Ze. Notice that Ze = {Ze(t) : t ∈ [0, 1]} obviously does not directly coincide
with our former definition of the head of the Brownian snake X = {

(
es, Ŵs

)
: s ∈ [0, 1]},

but rather with {Ŵs : s ∈ [0, 1]}. That is the reason why Ze is also called the terminal
point process of the head of the Brownian snake.

We are now in the position to state the main result of this section that is due to Chassaing
and Schaeffer [9]:

Theorem 15. For every n ≥ 1, let τn be uniformly distributed over En with associated
label function `τn . Let (C̃τn , L̃τn) be the normalized contour pair associated with τn. Then
the following convergence in distribution holds in the space C([0, 1],R)2:

(C̃τn , L̃τn)
d−→ (e, Ze),

where e is the normalized Brownian excursion and Ze is the terminal point process of the
head of the Brownian snake.

The previous theorem is an extension of Theorem 8 which made a convergence statement
about plane trees only. We will make use of Theorem 15 extensively in the next section.

5.3 Radius and Profile

In this section we want to combine the results established so far in order to obtain metric
limiting properties of random quadrangulations. More precisely, we want to combine the
CVS-Bijection together with the convergence result of the contour pair as established in
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the previous section to gain an understanding of how the radius of large, random quad-
rangulations behaves. Our discussion will also make us come across a random measure
called the Integrated Super-Brownian Excursion which is closely related to the radius of
a quadrangulation.

The first property of the next theorem is due to Chassaing and Schaeffer [9] and the
second is due to Le Gall [17].

Theorem 16. For n ≥ 1, let qn be uniformly distributed over Q•n with pointed vertex v∗n.
Let further Ze be the terminal point process of the head of the Brownian snake. Then

1. we have (
9

8n

)1/4

Rqn(v∗n)
d−→ supZe − inf Ze.

2. if un is another vertex chosen uniformly in V (qn) and independent of v∗n, then(
9

8n

)1/4

dqn(un, v
∗
n)

d−→ supZe.

Proof. Let τn be uniformly chosen at random in En with label function `τn and associated
normalized label contour function L̃τn . Let further εn ∈ {1,−1} also be uniformly chosen
and independent of τn. Then by Corollary 7 we can assume that qn = Ψ̃(ε, τn), where Ψ̃
is the CVS bijection (Corollary 2) between {1,−1} × En and Q•n. The interpretation of
the natural distance dqn on qn with the help of the label function `τn of the associated
embedded tree τn (Proposition 3) by way of the CVS bijection gives us

(
9

8n

)1/4

Rqn(v∗n) =

(
9

8n

)1/4

max
wn∈V (qn)

dqn(wn, v
∗
n)

=

(
9

8n

)1/4

max
wn∈V (qn)

(`τn(wn)−min(`τn) + 1)

=

(
9

8n

)1/4

(max `τn −min `τn + 1)

=

(
9

8n

)1/4

(maxLτn −minLτn + 1)

= sup L̃τn − inf L̃τn +

(
9

8n

)1/4

.

Property 1 is then obtained by Theorem 15.
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As for Property 2, instead of choosing un uniformly in V (qn), we choose it without
loss of generality uniformly in V (τn)\{vn0 } = V (qn)\{{v∗n} ∪ {vn0 }}, where vn0 is the root
vertex of τn. We now follow the proof of Corollary 8: if U is a uniformly chosen random
variable in [0, 1] and independent of τn, then wn〈2nU〉 is uniform in V (τn)\{vn0 }, where
(wni )i=0,...,n is the sequence of vertices associated with the contour process of τn and vn0
is the root vertex in τn. Hence it is sufficient to prove the result with wn〈2nU〉 instead of
un. As in the proof of Corollary 8, the requirements of Theorem 8 are satisfied and we
obtain

(
9

8n

)1/4

dqn(wn〈2nU〉, v
∗
n) =

(
9

8n

)1/4

(`τn(wn〈2nU〉)−min `τn + 1)

=

(
9

8n

)1/4

(Lτn(〈2nU〉)−minLτn + 1)

= L̃τn(〈2nU〉)− inf L̃τn +

(
9

8n

)1/4

,

which converges in distribution to Ze(U)− inf Ze due to Theorem 15. This completes the
proof of the second point of the theorem, because Ze(U)−inf Ze has the same distribution
as supZe which is a consequence of the re-rooting invariance (Corollary 9).

The previous theorem allows us to state an interesting result concerning the limiting
behaviour of the (scaled) profiles of a sequence of random quadrangulations. Suppose
qn ∈ Q•n with pointed vertex v∗n and associated profile (Hqn

k )k∈Z. For k ∈ N, we interpret
the profile as a function

Iqn : k 7→ Hqn
k ,

i.e.
Iqn(k) = |{u ∈ V (qn) : dqn(u, v∗n) = k}|.

Then upon scaling, Iqn converges to a certain random measure. This result is (again)
due to Chassaing and Schaeffer [9]:

Theorem 17. For n ≥ 1, let qn be uniformly distributed over Q•n with pointed vertex
v∗n ∈ V (qn). Then the following convergence in distribution holds for the weak topology
on the space of probability measures on R+ :

Iqn(( 9
8n)1/4(.))

n+ 2

d−→ I,

where I is the occupation measure of Ze above its infimum, defined as follows: for every
non-negative, measurable g : R+ → R,

ˆ
g dI :=

ˆ 1

0
g(Ze(s)− inf Ze) ds. (5.3.1)
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Proof. Let g : R+ → R be a bounded continuous function. We evaluate the integral of g

with respect to the measure µqn :=
Iqn (( 9

8n
)1/4(.))

n+2 :

ˆ
g dµqn =

1

n+ 2

∑
k∈N

Iqn(k)g((
9

8n
)1/4k)

=
1

n+ 2

∑
k∈N
|{w ∈ V (qn) : dqn(w, v∗n) = k}| · g((

9

8n
)1/4k)

=
1

n+ 2

∑
k∈N

∑
w∈V (qn),dqn (w,v∗n)=k

1 · g((
9

8n
)1/4k)

=
1

n+ 2

∑
w∈V (qn)

g((
9

8n
)1/4dqn(w, v∗n))

= Eun [g((
9

8n
)1/4dqn(un, v

∗
n))]

d−→ EU [g(Ze(U)− inf Ze)]

=

ˆ 1

0
g(Ze(s)− inf Ze) ds

=

ˆ
g dI,

where Eun and EU means that we take the expectation only with respect to un and U
in the corresponding expressions (un and U as in the proof of Theorem 16, Point 2).
The convergence in distribution is then (again) duo to Point 2 of the proof of Theorem
16.

At this point we want to mention another interesting random measure that is similar in
structure to I and closely related to embedded trees:

Definition 59. Let Ze be the terminal point process of the head of the Brownian snake.
Then the (one-dimensional) Integrated Super-Brownian Excursion (ISE) is the
random measure µISE defined by

µISE(A) :=

ˆ 1

0
1A(Ze(s)) ds

for every Borel set A ⊆ R and supported by a random interval 0 ∈ [L,R] ⊆ R.

The ISE was introduced by Aldous [1] as a limit of certain branching processes. We do
not want to go into further detail about the meaning and applications of the ISE because
that is a complex topic on its own. We just want to hint at some of its properties: First,
its structure is similar to the occupation measure µt of the Brownian motion as defined
in (3.3.2). By way of this, it can be seen as the occupation measure of the terminal point
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process of the head of the Brownian snake. Furthermore, integration with respect to µISE
satisfies ˆ

g dµISE =

ˆ 1

0
g(Ze(s)) ds (5.3.2)

for any measurable function g. Notice the similarity of (5.3.2) and (5.3.1). Actually,
they are shifted versions of one another, i.e. I is the image of µISE under the shift
x 7→ x− inf Ze. The support of I is therefore the shifted support [0, R− L] of µISE.

Also, as the support [L,R] of the ISE satisfies L = inf Ze and R = supZe, the lim-
iting behaviour of the radius of a sequence of random quadrangulations as obtained in
Theorem 16 can be seen as the width of the support of µISE , i.e.:

Corollary 11. With the notation of Theorem 16, the sequence of random variables
(n−1/4Rqn(v∗n) : n ≥ 1) converges in distribution (up to rescaling) to the width of the
support [L,R] of µISE,

Rqn(v∗n)

n1/4

d−→

(
8

9

)1/4

(R− L).

The last result about the ISE that we want to mention and that is interesting in terms
of our study is, that the ISE appears as the limiting measure of a sequence of probability
measures defined on top of the label distributions of randomly choosen embedded trees
(see [1]):

Theorem 18. For n ≥ 1, let τn be uniformly distributed over En with associated label
function `τn and label distribution (Λτnk )k∈Z as in Definition 24. Consider the random
probability measure on R defined by

µn :=
1

n+ 1

∑
v∈V (τn)

Λτn`τn (v)δc·`τn (v)·n−1/4 , (5.3.3)

where δx denotes the Dirac measure at x and the constant c equals
√

3. Then the following
convergence in distribution holds in the space of probability measures on R :

µn
d−→ µISE.

In fact, Theorem 18 not only holds for embedded trees, but also for the classes of all
labelled plane trees with increments ±1 and binary trees as well. For labelled plane trees
with increments ±1 the constant c in (5.3.3) equals

√
2 and for binary trees it equals 1.

We end our little side trip into the Integrated Super-Brownian Excursion with two ref-
erences that deal with the subject in more depth, namely [35] and [16].
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6 The Brownian Map

In the previous chapter we were able to derive some interesting conclusions about ran-
dom, pointed quadrangulations and distances between their vertices by combining the
CVS bijection with scaling limit results about random embedded trees. We have also
seen that a sequence of randomly chosen and properly rescaled embedded trees converges
in distribution towards a “limiting tree” that we identified as the Brownian CRT. It is
now tempting in view of the structural similarity between embedded trees and pointed
quadrangulations established by the CVS bijection that there also exists a “limiting map”
of a sequence of randomly chosen quadrangulations - again, up to rescaling. We outline
the necessary steps in order to deal with this problem:

At first, we extend the distance function dqn of a pointed quadrangulation qn ∈ Q•n
to a continuous function Dqn on the interval [0, 2n]. Furthermore, we can introduce an-
other distance function, named by D◦τn , with the help of the label contour function Lτn
associated with the embedded tree τn := Φ̃(qn) by way of the CVS bijection. By relat-
ing a properly rescaled version of Dqn with a rescaled version of D◦τn we are led to the
observation that any sequence of such rescaled functions Dqn converges along a suitable
subsequence in distribution towards a random, continous real-valued function on [0, 1]
(see Theorem 19 and the limit in (6.1.5)). This limiting function, denoted by D, allows
us to define in analogy to the construction of the Brownian CRT, the quotient space

S := [0, 1]/ ≈D,

where ≈D is defined similar to the equivalence relation ≈e. Esssentially, this space
equipped with the quotient distance DS induced by D, turns out to be the limit in
distribution of a sequence of uniformly distributed pointed quadrangulations qn, i.e. the
convergence (

V (qn),
( 9

8n

)1/4
dqn

)
d−→ (S, DS)

for the Gromov-Hausdorff topology on the set of compact metric spaces holds even with-
out having to take an appropriate subsequence. We call (S, DS) the Brownian Map
because it is an analogon of the Brownian CRT (Te, de) in the world of pointed quadran-
gulations. In fact, there is a close relation between S and Te that we outline at the end
of this chapter. Our forthcoming in-depth study follows the work of Le Gall [18].
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6.1 Convergence of Quadrangulations as Metric Spaces

Consider for the ongoing discussion a pointed quadrangulation qn ∈ Q•n with distance
function dqn and pointed vertex v∗. Let τn ∈ En be the image of qn under the CVS
bijection, i.e. Φ̃(qn) = τn and denote with `τn its associated label function. Let further
(en0 , ..., e

n
2n−1) be the contour exploration of τn and set uni := (eni )− as always. We define

a pseudo-metric on {0, ..., 2n}1 that we denote with Dqn by

Dqn(i, j) := dqn(uni , u
n
j ).

The proofs of the metric properties obtained in the previous chapter were all rooted
in the fact that the distance dqn was expressible in terms of the contour pair of the
(normalized) contour pair (Cτn , Lτn). Unfortunately, this does not hold for the pseudo-
metric Dqn . The only distances that we are able to handle are the distances to the pointed
vertex v∗ according to Proposition 3:

Dqn(i, 0) = dqn(uni , u
n
0 )

= dqn(uni , v∗)

= `τn(uni )−min`τn + 1

= Lτn(i)−minLτn + 1, (6.1.1)

for every i ∈ {0, ..., 2n}. To work around this problem, we introduce another distance
function on {0, ..., 2n} with the help of the label contour function Lτn of the associated
embedded tree τn by setting

D◦τn(i, j) := Lτn(i) + Lτn(j)− 2 max
{

min
i≤k≤j

Lτn(k), min
j≤k≤i

Lτn(k)
}

+ 2,

where the ranges of the minima are to be understood as “cyclic”, i.e. if j < i, the condition
i ≤ k ≤ j means that k ∈ {i, i + 1, ..., 2n} ∪ {0, 1, ..., j} and similarly for the condition
j ≤ k ≤ i if i < j.

Lemma 27. For every i, j ∈ {0, ..., 2n} there holds

Dqn(i, j) ≤ D◦τn(i, j).

Proof. We exclude the trivial case i = j and assume without loss of generality i < j. Then
with u := uni and v := unj , we get according to (and with the notation of) Proposition 5,
point 1.:

1Remember that we always set en2n := en0 and un2n := un0 .
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Dqn(i, j) = dqn(u, v)

= `τn(u) + `τn(v)− 2 min
c∈[cu,cv ]

`τn(c) + 2

= Lτn(i) + Lτn(j)− 2 min
i≤k≤j

Lτn(k) + 2

≤ Lτn(i) + Lτn(j)− 2 max
{

min
i≤k≤j

Lτn(k), min
j≤k≤i

Lτn(k)
}

+ 2

= D◦τn(i, j).

We now extend the distance function Dqn to non-integer values by linear interpolation.
If s, t ∈ [0, 2n], we set

Dqn(s, t) := (dse − s)(dte − t)Dqn(bsc, btc)
+ (dse − s)(t− btc)Dqn(bsc, dte)
+ (s− bsc)(dte − t)Dqn(dse, btc)
+ (s− bsc)(t− btc)Dqn(dse, dte),

where bxc := max{k ∈ Z : k ≤ x} and dxe := bxc + 1. In the same way we extend D◦τn
to a function on [0, 2n]2.
Thus, Dqn is continuous on [0, 2n]2 and satisfies the triangular inequality (which is not
the case for D◦τn). Also, the bound Dqn ≤ D◦τn still holds. We define in analogy to (5.1.1)
a rescaled version of these functions by letting for s, t ∈ [0, 1],

D̃qn(s, t) :=

(
9

8n

)1/4

Dqn(2ns, 2nt)

and

D̃◦τn(s, t) :=

(
9

8n

)1/4

D◦τn(2ns, 2nt). (6.1.2)

Corollary 12. For every n ≥ 1, let D̃◦τn be constructed from a uniformly at random
chosen pointed quadrangulation qn ∈ Q•n as in (6.1.2) and denote with τn the associated
embedded tree by way of the CVS bijection. Then the following convergence in distribution
holds for the uniform topology on C([0, 1]2,R):

D̃◦τn
d−→ D◦,

with
D◦(s, t) = Ze(s) + Ze(t)− 2 max

{
min
s≤ζ≤t

Ze(ζ), min
t≤ζ≤s

Ze(ζ)
}

and where Ze is the terminal point process of the head of the Brownian snake.
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Proof. Let s, t ∈ [0, 1]. The result follows from Theorem 15 by inserting into the definition
of D̃◦τn :

D̃◦τn(s, t) =

(
9

8n

)1/4

D◦τn(2ns, 2nt)

=

(
9

8n

)1/4

(Lτn(2ns) + Lτn(2nt)− 2 max
{

min
2ns≤ξ≤2nt

Lτn(ξ), min
2nt≤ξ≤2ns

Lτn(ξ)
}

+ 2)

= L̃τn(s) + L̃τn(t)− 2 max
{

min
s≤ ξ

2n
≤t
L̃τn

( ξ

2n

)
, min
t≤ ξ

2n
≤s
L̃τn

( ξ

2n

)}
+
(18

n

)1/4

d−→ Ze(s) + Ze(t)− 2 max
{

min
s≤ζ≤t

Ze(ζ), min
t≤ζ≤s

Ze(ζ)
}

= D◦(s, t),

where the minima are again to be understood as “cyclic” in the sense that if t < s the
condition s ≤ ζ ≤ t means that ζ ∈ [s, 1] ∪ [0, t] (and likewise for ξ

2n).

In order to state the main result of this section, we need some new terminology:

Definition 60. Let (X, d) be a metric space and denote with P(X) the set of all Borel2

probability measures on X. A probability measure P ∈ P(X) is said to be tight if for
every ε > 0 there exists a compact subset K ⊆ X such that P (K) ≥ 1 − ε. A family of
probability measures M ⊆ P(X) is tight if for every ε > 0 there exists a compact set
K ⊆ X such that infP∈M ≥ 1− ε.

Theorem 19. For every n ≥ 1, let qn be uniformly distributed over Q•n. Denote with
L the family of laws of the processes {D̃qn(s, t) : s, t ∈ [0, 1]} as n varies. Then L is
relatively compact for the weak topology on the space P(C([0, 1]2,R)).

Proof. Let s, t, s′, t′ ∈ [0, 1] and set τn := Φ̃(qn). Then the triangular inequality for D̃qn

together with D̃qn ≤ D̃◦τn yields

|D̃qn(s, t)− D̃qn(s′, t′)| = |D̃qn(s, t)− D̃qn(t, s′) + D̃qn(t, s′)− D̃qn(s′, t′)|
≤ |D̃qn(s, t)− D̃qn(t, s′)|+ |D̃qn(t, s′)− D̃qn(s′, t′)|
≤ |D̃qn(s, s′)|+ |D̃qn(t, t′)|
= D̃qn(s, s′) + D̃qn(t, t′)

≤ D̃◦τn(s, s′) + D̃◦τn(t, t′).

For a fixed δ > 0, this leads to the important estimate

sup
|s−s′|≤δ
|t−t′|≤δ

{D̃qn(s, t)− D̃qn(s′, t′)} ≤ 2 sup
|r−r′|≤δ

D̃◦τn(r, r′). (6.1.3)

2A Borel measure is a measure defined on all Borel sets of the underlying topological space.
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Define for ε > 0
Kδ,ε := {f ∈ C([0, 1]2,R) : sup

|r−r′|≤δ
f(r, r′) ≥ ε}.

Then the convergence in Corollary 12 together with the fact that the sets Kδ,ε are closed
entails due to Theorem 5, point 3., that

lim sup
n→∞

P{D̃◦τn ∈ Kδ,ε} ≤ P{D◦ ∈ Kδ,ε}.

The right side approaches 0 as δ → 0 by the continuity of D◦ and because of D◦(r, r) = 0.
Now, taking η > 0 and letting ε = εk = 2−k, we can choose δ = δk,η such that

sup
n≥1

P{D̃◦τn ∈ Kδk,η ,2−k} ≤
η

2k

for every k ≥ 1. Taking the limit k → 1 entails

P

{ ⋂
k≥1

{
D̃◦τn ∈ Kδk,η ,2−k

}}
= P

{ ⋂
k≥1

{
D̃◦τn : sup

|r−r′|≤δk,η
D̃◦τn(r, r′) ≥ 2−k

}}
≤ η

2
< η

(6.1.4)
and hence

P

{ ⋂
k≥1

{
D̃◦τn : sup

|r−r′|≤δk,η
D̃◦τn(r, r′) ≤ 2−k

}}
≥ 1− η

for every n ≥ 1. LetK denote the set of all functions f ∈ C([0, 1]2,R) such that f(0, 0) = 0
and for every k ≥ 1,

sup
|s−s′|≤δk,η
|t−t′|≤δk,η

|f(s, t)− f(s′, t′)| ≤ 2−k.

The equations (6.1.3) and (6.1.4) imply D̃qn ∈ K with probability at least 1 − η. Fur-
thermore, K satisfies the conditions of the Arzelà-Ascoli Theorem (Theorem 24) and is
therefore compact. This means that L is tight in the space of probability measures on
C([0, 1]2,R). According to Prohorov’s Theorem (Theorem 25) this is equivalent to the
fact that L is relatively compact.

The relative compactness statement in the previous theorem allows us to obtain for
every sequence (D̃qn)n≥1 a convergent subsequence (D̃qn(k))k≥1 such that the limit in
distribution

D̃qn(k)
d−→ D (6.1.5)

exists for the uniform topology on C([0, 1]2,R). As a consequence of this, we find the
following corollary to be true:
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Corollary 13. For every n ≥ 1, let qn be uniformly distributed over Q•n with its associated
embedded tree τn ∈ En by way of the CVS bijection. Then the closure of the family of laws
of the triplets

(
C̃τn , L̃τn , D̃qn

)
n≥1

is compact in the space P(C([0, 1],R)2 × C([0, 1]2,R)).

This implies in particular that for every sequence of triplets
(
C̃τn , L̃τn , D̃qn

)
there exists

a subsequence (n(k))k≥1 of n ≥ 1 such that

(C̃τn(k) , L̃τn(k) , D̃qn(k))
d−→ (e, Ze, D) (6.1.6)

where e = {et : t ∈ [0, 1]} is the normalized Brownian Excursion, Ze = {Ze(t) : t ∈ [0, 1]}
is the terminal point process of the head of the Brownian snake and D is the limiting
function in (6.1.5). For the remaining part of this section, we fix one such subsequence
(n(k))k≥1 as in (6.1.6).

The following proposition states some important properties of the random function D
that we will rely on in the next chapter.

Proposition 14. For every s, t ∈ [0, 1], the following properties hold almost surely:

1. ([0, 1], D) is a metric space.

2. s ≈e t implies D(s, t) = 0, where ≈e is the equivalence relation on [0, 1] that was
used to construct the Brownian CRT Te = [0, 1]/ ≈e .

3. D(s, t) ≤ D◦(s, t).

Proof. The first result summarizes our previous discussion. Let us look at the second
point. With the notation of Corollary 13, we assume using Skorokhod’s representation
theorem, that we are working on a probability space where (e, Ze, D) is the limit of
(C̃τn(k) , L̃τn(k) , D̃qn(k)) in the almost sure sense. Suppose s ≈e t with s < t and {uni : i ∈
{0, ..., 2n}} = V (τn), where uni := (eni )− with (en0 , ..., e

n
2n−1) is the contour exploration of

τn. By definition, s ≈e t means de(s, t) = 0. Because of the almost sure convergence of
C̃τn(k) towards e, we can find integers 0 ≤ sn(k) < tn(k) ≤ 2n such that

sn(k)

2n(k)
→ s,

tn(k)

2n(k)
→ t as k →∞
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and unsn(k) = unsn(k) . This implies

D(s, t) = lim
k→∞

D̃qn(k)(s, t)

= lim
k→∞

( 9

8n(k)

)1/4
Dqn(k)(2n(k)s, 2n(k)t)

= lim
k→∞

( 9

8n(k)

)1/4
Dqn(k)

(
2n(k)

sn(k)

2n(k)
, 2n(k)

tn(k)

2n(k)

)
= lim

k→∞

( 9

8n(k)

)1/4
Dqn(k)(sn(k), tn(k))

= lim
k→∞

( 9

8n(k)

)1/4
dqn(k)(u

n
sn(k)

, untn(k))

= 0.

The case where s = t is trivial. The third point of the proposition is similarly obtained
by using D̃qn ≤ D̃◦τn and the convergence of D̃◦τn(s, t) to D◦(s, t).

We can now approach the main result of this section. For that, we define a relation ≈D on
[0, 1] that is similar in nature to the one used in the construction process of the Brownian
CRT: let s ≈D t if and only if D(s, t) = 0. Proposition 14, property 1., guarantees that
≈D is an equivalence relation. Let further

S := [0, 1]/ ≈D (6.1.7)

be the associated quotient space and denote with πS the canonical projection from [0, 1]
into S. We can equip S with the quotient distance

DS(πS(s), πS(t)) := D(s, t).

The triangular inequality for D assures that DS is well-defined. Furthermore, (S, DS)
is a metric space because all properties of D are inherited. Recalling the definition of a
pointed metric space in (53), we can now state the following result:

Theorem 20. For n ≥ 1, let qn be uniformly distributed over Q•n with associated distance
function dqn and pointed vertex v∗n and denote as always with Ze the terminal point process
of the head of the Brownian snake. Suppose further s∗ ∈ [0, 1] such that Ze(s∗) = inf Ze
and set x∗ := πS(s∗) Then the pointed metric space (S, DS , x∗) is the limit in distribution
of the pointed metric spaces (V (qn), (9/8n)1/4dqn , v

∗
n) for the pointed Gromov-Hausdorff

topology on M1 along the subsequence (n(k))k≥1, i.e.(
V (qn(k)),

( 9

8n(k)

)1/4
dqn(k) , v

∗
n(k)

)
d−→ (S, DS , x∗).

Moreover, there holds almost surely for every x ∈ S and s ∈ [0, 1] such that πS(s) = x,

DS(x, x∗) = D(s, s∗) = Ze(s)− Ze(s∗).
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Proof. To simplify the reading this proof, we use with a slight abuse of notation the
abbreviation k := n(k). Let us first assume by Skorokhod’s representation theorem
(Theorem 6) that the convergence in (6.1.6) holds in the almost sure sense, i.e.

(C̃τk , L̃τk , D̃qk) −→ (e, Ze, D) (6.1.8)

as k → ∞ with probability one, where τk = Φ̃(qk). For every k, let ik∗ ∈ {0, ..., 2n}
such that Lτk(ik∗) = minLτk . The procedure applied within the CVS bijection guarantees
dqk(v∗k, u

k
ik∗

) = 1 which implies

|dqk(v∗k, v)− dqk(ukik∗
, v)| ≤ 1 (6.1.9)

for every v ∈ V (qk). We construct a relation Rk between V (qk) and S by setting

Rk := {(ukb2ksc, πS(s)) : s ∈ [0, 1]} ∪ {(v∗k, x∗)}.

Because the canonical projection πS is surjective, Rk is also a correspondence. We
compute its distortion with respect to the metrics on V (qk) and S:

dis(Rk) = sup

{∣∣∣∣( 9

8k

)1/4
dqk(x, x′)−DS(y, y′)

∣∣∣∣ : (x, y), (x′, y′) ∈ Rk
}
(6.1.10)

According to the definition of Rk, we have to distinguish two cases for the values of the
pairs (x, y) and (x′, y′) in (6.1.10). First, we estimate the distortion of Rk for (x, y) =
(v∗k, x∗) and (x′, y′) ∈ {(ukb2ksc, πS(s)) : s ∈ [0, 1]} by using (6.1.9):

sup

{∣∣∣∣( 9

8k

)1/4
dqk(v∗k, u

k
b2ksc)−DS(x∗, πS(s))

∣∣∣∣ : s ∈ [0, 1]

}
≤ sup

{∣∣∣∣( 9

8k

)1/4
(1 + dqk(ukik∗

, ukb2ksc))−DS(x∗, πS(s))

∣∣∣∣ : s ∈ [0, 1]

}
=

( 9

8k

)1/4
+ sup

{∣∣∣∣D̃qk

( ik∗
2k
,
b2ksc

2k

)
−D(s∗, s)

∣∣∣∣ : s ∈ [0, 1]

}
The last expression converges to zero due to (6.1.8) and the fact that ik∗

2k converges to s∗.
Similarly, for (x, y), (x′, y′) ∈ {(ukb2ksc, πS(s)) : s ∈ [0, 1]} we can bound the distortion of
Rk from above by

sup

{∣∣∣∣( 9

8k

)1/4
dqk(ukb2ksc, u

k
b2ktc)−DS(πS(s), πS(st))

∣∣∣∣ : s, t ∈ [0, 1]

}
= sup

{∣∣∣∣D̃qk(
b2ksc

2k
,
b2ktc

2k
)−D(s, t)

∣∣∣∣ : s, t ∈ [0, 1]

}
which also tends to zero. Therefore, dis(Rk) → 0 as k → ∞ almost surely. Since
d•GH(X,Y ) = 1

2 inf{dis(R) : R ∈ Cor(X,Y ), (ρX , ρY ) ∈ R}, we can conclude that the
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pointed metric spaces (V (qk), (9/8k)1/4dqk , v
∗
k) also converge almost surely to (S, DS , x∗)

along the subsequence k = n(k) in the pointed Gromov-Hausdorff topology. In order to
show the second statement of the theorem, we use once more the uniform convergence in
(6.1.8) together with (6.1.1) which yields for x ∈ S and s ∈ [0, 1] with πS(s) = x,

DS(x∗, x) = D(s∗, s)

= lim
k→∞

D̃qk(
ik∗
2k
,
b2ksc

2k
)

= lim
k→∞

( 9

8k

)1/4
Dqk(2k

ik∗
2k
, 2k
b2ksc

2k
)

= lim
k→∞

( 9

8k

)1/4
dqk(ukik∗

, ukb2ksc)

= lim
k→∞

( 9

8k

)1/4
dqk(ukb2ksc, u

k
ik∗

)

= lim
k→∞

( 9

8k

)1/4
(Lτk(b2ksc)−minLτk + 1)

= lim
k→∞

(
L̃τk

(b2ksc
2k

)
−minL̃τk +

( 9

8k

)1/4
)

)
= Ze(s)− inf Ze

= Ze(s)− Ze(s∗).

In Theorem 13 we have seen, that a sequence of random plane trees converges in dis-
tribution towards a random limiting tree that we identified as the Brownian Continuum
Random Tree (Te, de, ρe). The convergence result in the last theorem can be seen as
an analogue for pointed quadrangulations. Indeed, the proofs of both statements are
quite similar in nature. One might therefore be tempted to call the pointed metric
space (S, DS , x∗) the “Brownian Continuum Random Map/Quadrangulation”. However,
we have to keep in mind that the whole construction depends on a fixed subsequence
(n(k))k≥1 of n ≥ 1. This fact clouds the beauty of Theorem 20 in the sense, that we are
not (yet) able to obtain the limit independently of the chosen subsequence (n(k))k≥1.
We address this obstacle in the next section.
A last point that might also be worth mentioning is, that we do not have an explicit
description of the metric DS of the limiting pointed metric space (S, DS , x∗) contrary to
the metric de of the Brownian CRT which can be computed directly with the help of the
normalized Brownian Excursion e (see (4.1.3)).

6.2 Uniqueness and Properties of the Brownian Map

We now approach the problem mentioned at the end of the last section. Let us recall
that the inequality D ≤ D◦ (see Proposition 14, point 3.) implies for every s, t ∈ [0, 1],
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DS(πS(s), πS(t)) = D(s, t) ≤ D◦(s, t).
Consider an integer k ≥ 1 and si, ti ∈ [0, 1] for every i ∈ {1, ..., k} such that s1 = s, tk = t
and ti ≈e si+1 for every i ∈ {1, ..., k − 1}. Then by the triangular inequality and again
by Proposition 14, we obtain

DS(πS(s), πS(t)) = D(s, t)

≤ D(s1, t1) +D(t1, s2) +D(s2, t2) +D(t2, s3) + · · ·+D(sk, tk)

=
k∑
i=1

D(si, ti) +D(t1, s2) +D(t2, s3) + · · ·+D(tk−1, sk)

=

k∑
i=1

D(si, ti) ≤
k∑
i=1

D◦(si, ti).

Notice that for k = 1 we obtain the original bound DS(πS(s), πS(t)) ≤ D◦(s, t). Letting,
for s, t ∈ [0, 1]

D∗(s, t) := inf
{ k∑
i=1

D◦(si, ti) : k ≥ 1, s = s1, t = tk, ti ≈e si+1, 1 ≤ i ≤ k − 1
}
,

we see that
DS(πS(s), πS(t)) ≤ D∗(s, t).

Also, most of the metric properties of D◦ are transferred to D∗ except that D∗(s, t) = 0
does not necessarily imply s = t. Therefore D∗ is a pseudo-metric on [0, 1]. D∗ can
be seen as resulting from “gluing” the space [0, 1] along the equivalence relation ≈e. In
analogy to the definition of the quotient space S in (6.1.7), we can set

S∗ := [0, 1]/ ≈D∗

where the equivalence relation≈D∗ is naturally defined by s ≈D∗ t if and only ifD∗(s, t) =
0. We can endow S∗ with the quotient distance by setting

DS∗(πS∗(s), πS∗(t)) := D∗(s, t),

where πS∗ denotes the canonical projection from [0, 1] into S∗. Marckert and Mokkadem
conjectured that (S∗, DS∗) is the unique scaling limit of the metric spaces (V (qn), (9/8n)1/4dqn)
as in Theorem 20. This is indeed the case:

Theorem 21. Almost surely, it holds that the functions DS and DS∗ are equal. Conse-
quently, the convergence(

V (qn),
( 9

8n

)1/4
dqn

)
d−→ (S, DS) = (S∗, DS∗)

for the Gromov-Hausdorff topology on the set of compact metric spaces holds without
having to take an appropriate subsequence.

90



A proof of this result can be found in [28, Theorem 1]. Theorem 21 allows us to call the
space (S, DS) = (S∗, DS∗) the Brownian Map.

Figure 6.1: Visualization of a large random quadrangulation, which is an approximation
of the Brownian Map (by Jérémie Bettinelli).

We now want to briefly discuss some important properties of the Brownian Map. At
first, there is a re-rooting property quiet similar to the one obtained for the Brownian
CRT (Corollary 9).

Proposition 15. Let k ≥ 1 and {Ui ∈ [0, 1] : 1 ≤ i ≤ k+1} independent uniform random
variables. Then (S, DS , x∗, πS(U1), . . . , πS(Uk)) and (S, DS , πS(U1), . . . , πS(Uk+1)) have
the same distribution, seen as random variables in the set Mk+1 of k+ 1−pointed metric
spaces.

The method of proof for this result is the same as for Theorem 20 but extended to
k + 1−pointed metric spaces.

Our previous study of the Brownian CRT has shown, that its Hausdorff dimension equals
2, almost surely. A similar result can be obtained for the Brownian Map:

Theorem 22. Almost surely, the Hausdorff dimension dimH(S) of the Brownian Map
(S, DS) equals 4.

For a proof of this result we refer to the discussion in [29, Theorem 4.4.3].

Finally, we want to give an alternative description of the Brownian Map by establishing a
relation with the Brownian CRT. For this, recall that originally we introduced the Brown-
ian Map as a quotient space S = [0, 1]/ ≈D where the equivalence relation≈D was defined
by s ≈D t if and only if DS(πS(s), πS(t)) = D(s, t) = 0. Notice, that this construction
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was based on a suitable subsequence. We also saw in Theorem 21 that (S,DS) coincides
(along any suitable subsequence) with the metric space (S∗, DS∗) which was defined by
S∗ = [0, 1]/ ≈D∗ and which does not depend on a fixed subsequence. The equivalence
relation used to construct S∗ satisfies s ≈D∗ t if and only if DS∗(πS∗(s), πS∗(t)) = 0. The
third equivalence relation that was important in our study was ≈e, which appeared in the
definition of the Brownian CRT Te = [0, 1]/ ≈e . Proposition 14, point 2., showed, that
for every s, t ∈ [0, 1], D(s, t) depends only on πe(s) and πe(t) and not on a any special
representatives. For a, b ∈ Te and any s, t ∈ [0, 1] satisfying a = πe(s) and b = πe(t), we
can therefore define

De(a, b) := D(s, t),

which yields a pseudo-distance on Te. We can use it to define (yet another) equivalence
relation ≈De

on Te by setting a ≈De
b if and only if De(a, b) = 0. Let

Se := Te/ ≈De

and denote with πSe the canonical projection from Te into Se. Let further

DSe(πSe(a), πSe(b)) := De(a, b)

be the quotient distance on Se for every a, b ∈ Te. Equipped with these new notations,
the following holds:

Proposition 16. The Brownian Map (S, DS) is isometric to (Se, DSe).

Proof. We define a mapping φ from S = [0, 1]/ ≈D into Se = Te/ ≈De
by

φ(a) := πSe ◦ πe(s)

for every a ∈ S with a = πS(s) for an appropriate s ∈ [0, 1]. Then, for a, b ∈ S with
a = πS(s) and b = πS(t), the calculation

DSe(φ(a), φ(b)) = DSe(πSe ◦ πe(s), πSe ◦ πe(t))

= De(πe(s), πe(t))

= D(s, t)

= DS(πS(s), πS(t))

= DS(a, b)

shows, that φ is an isometry.

The description of the Brownian Map in terms of a quotient of the Brownian CRT allows
us to further explore the equivalence relation ≈De

and hence the metric DS of which we
know very little so far. Theorem 20 showed, that it is possible to handle distances from
the pointed vertex x∗ ∈ S with the help of the terminal point process of the head of the
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Brownian snake, i.e. for x ∈ S and x = πS(s), we have (with the notation of Theorem
20)

DS(x, x∗) = D(s, s∗) = Ze(s)− Ze(s∗).

Suppose a, b ∈ Lf(Te) and let s, t ∈ [0, 1) such that πe(s) = a and πe(t) = b. Assume
that s < t and set

[a, b]e := πe([s, t])

[b, a]e := πe([t, 1] ∪ [0, s]).

It can be shown that [a, b]∩ [b, a] is the geodesic segment between a and b in Te consisting
of the union of the geodesic segments between a and the root ρe ∈ Te as well as ρe and
b, i.e. [a, b] ∩ [b, a] = Γs ∪ Γt with the notation of Lemma 23.

Theorem 23. Almost surely, for every distinct a, b ∈ Te,

a ≈De
b ⇔

{
a, b ∈ Lf(Te) and
Ze(a) = Ze(b) = max{minc∈[a,b]e Ze(c),minc∈[b,a]e Ze(c)}

(6.2.1)

The proof of this theorem is quiet arduous and can be found in [29, Theorem 5.1.1].
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Appendix

In this short appendix we collect two well-known theorems that are used occasionally
and which do not fit in any other chapter.

Theorem 24 (Arzelà-Ascoli). Let (X, T ) be a compact topological space and let M be a
closed subset of C(X,R) such that

1. For every x ∈ X, supf∈M |f(x)| is bounded

2. For every x ∈ X and ε > 0 there exists a neighbourhood U around x such that
|f(y)− f(x)| < ε for every y ∈ U, f ∈M.

Then M is compact if and only if 1. and 2. hold.

Theorem 25 (Prohorov’s Theorem). Let (X, d) be a complete and separable metric space,
and letM⊆ P(X), where P(X) is the set of Borel probability measures on X. Then the
following statements are equivalent:

1. M is tight.

2. For every ε > 0, there exists a compact subset K ⊆ X such that

inf
P∈M

P (Kε) ≥ 1− ε,

where Kε := {x ∈ X : infy∈K d(x, y) < ε}.

3. M is relatively compact.
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Conclusion and Outlook

In this thesis, we studied an interesting mapping between certain classes of discrete trees
(well-labellend and embedded trees) and (pointed) quadrangulations known as the CVS
bijection (Corollary 1 and Corollary 2). This correspondence turned out to be special
in the sense that it preserves certain metric properties between the investigated objects
which we used to obtain limiting expressions for the radius and profile of large ran-
dom pointed quadrangulations (Theorem 16 and Theorem 18). The CVS bijection also
helped us in the exploration of the limiting behaviour of large random quadrangulations.
Our discussion of these scaling limit results culminated in the discovery of two random
“continuous” structures which are called the Brownian Continuum Random Tree (CRT)
and the Brownian Map. We demonstrated that these two objects - being the limits in
distribution of a sequence of uniformly distributed embeeded trees and pointed quadran-
gulations respectively (Theorem 13 and Theorem 21) - are closely linked (Proposition
16). This observation can be seen as a “continuous” analogue to the fact that discrete
trees (well-labellend and embedded trees) and (pointed) quadrangulations are connected
by way of the CVS bijection.

We also want to use the opportunity to take a quick look beyond the scope of this thesis.
The first point worth mentioning is, that the main result of the first part of our work (the
CVS bijection in its versions for well-labelled and embedded trees) can be generalized to
multi-pointed quadrangulations. This was done by Bouttier, Di Francesco and Guitter
[24] and can be used to obtain further properties of the Brownian Map as for example
the joint law of distances between three randomly chosen vertices in the Brownian Map,
see [7]. Apart from that, there exist several other one-to-one correspondences between
similar classes of trees and maps. One of them is a recent bijection due to Ambjørn and
Budd [23] which offers astounding applications in the field of two-dimensional quantum
gravity.
Another point which is of relevance to us is concerned with Theorem 20 and Theorem
21 respectively: we have seen that a sequence of uniformly distributed pointed quad-
rangulations converges in distribution towards the Brownian Map (S, DS). Le Gall [18,
Theorem 3.4] showed that it is possible to extend this result to 2p-angulations (planar
maps where every face has 2p adjacent edges and again with the convention that if an
edge lies entirely inside a face it is counted twice):

Theorem. Almost surely there holds for every integer p ≥ 2,(
V (mn),

( 9

4p(p− 1)n

)1/4
dmn

)
d−→ (S, DS)

for the Gromov-Hausdorff topology on the set of compact metric spaces, where for every
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n ≥ 1, mn is a 2p−angulation with n faces and dmn denotes its associated natural
distance.

Finally, we want to mention that the Brownian Map is almost surely homeomorphic
to the 2−sphere S2 due to Le Gall and Paulin [19]. This topological equivalence of
the Brownian Map to S2 allows one to view it as a “random surface” which again is of
particular interest in theoretical physics. The proof of this so-called Sphericity Theorem
uses the description of the Brownian Map as quotient of the Brownian CRT as stated in
Proposition 16.
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