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Abstract

The resonance frequencies of whispering gallery mode resonator (WGMR) are a↵ected by
various parameters such as temperature, pressure or an interaction of a dielectric material
with the evanescent of the WGMs.

Here, we investigate a frequency detuning method based on moving a dielectric substrate
towards the WGMR. As long as the dielectric substrate has not touched the resonator, the
detuning will undergo an exponential change as the distance decreases. This technique can
be used for dielectric material analysis and sensing due to the shifts of the whispering gallery
modes.

Furthermore, if the dielectric substrate applies a pressure on the WGMR, it can change
the mode frequency in the range of few GHz. We characterize this tuning method and its
potential use as a continuous frequency tuning mechanism for nonlinear optical processes in
the WGMR.
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Chapter 1

Introduction

Biological and mechanical sensing applications using microcavities have drawn increasing at-
tention over the recent years [1]. Due to high sensitivity and small size of microcavities, they
are a good candidate for sensing and can have many industrial applications. Furthermore,
the ability of fine resonance frequency tuning in these cavities make them suitable to match
the atomic transitions or lock the laser frequencies.

Whispering gallery mode resonators (WGMR) are a kind of optical microcavities which
confines light via total internal reflection. The interaction with the surrounding medium by
the evanescent field which is coming out of the resonator can be used for sensing applications
or tuning the resonance frequency. In mechanical tuning and sensing applications, a small
change in the geometry of the microsphere causes a shift in the resonance frequency. Such
frequency shifts can be measured optically with very high precision [2, 3]. State of the art
experiments achieve a resolution limit down to detecting single molecules [4, 5] or proteins
[6].

The high quality factors and the wavelength independent nature of total internal reflection
make WGMRs an ideal candidate for nonlinear optics. Moreover, lithium niobate has a
high �(2) nonlinearity which can be a suitable host material in WGMRs. Parametric down
conversion (PDC), where one pump photons decay into one pair of signal and idler photons,
is one of the wide applications of WGMRs made of lithium niobate [7, 8]. Due to energy
conservation, a set of tuning mechanisms based on the mode analysis of the WGMR spectrum
at the pump wavelength can be used for precise tuning of the frequency of signal and idler.
One way to tune the resonance frequency is changing the temperature of crystal. With only
the temperature tuning, one is limited to discrete solutions of the phase-matching conditions.
Continuous tuning of the parametric frequencies on the MHz scale is achieved by pressure
tuning and manipulating the evanescent fields [9].

In this thesis we investigate the resonance frequency shifts of di↵erent WGMR via mov-
able dielectric substrates. The dielectric can change the resonance frequency by interacting
with WGR evanescent field or by applying mechanical pressuring the resonator. The tem-
perature tuning as a discrete frequency tuning and temperature stabilization with di↵erent
TE and TM mode shifts is also considered. This study can provide the precise continuous
wavelength tuning over 100 nm of both modes with controllable bandwidth between 7.2 and
13 MHz for a WGR single photon sources [10]. The experimental results show that the
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distance of coupling prism with the resonator can a↵ect the mode shifts di↵erently. This
should be considered in mode analysis as a factor of evanescent field interactions.

This thesis is structured as follows. The second chapter shows the theoretical overview
of electromagnetic field in WGR and describes briefly the properties of lithium niobate
as a material for the WGR. In the third chapter, we describe the di↵erent parts of the
experimental setup. Furthermore, we demonstrate our resonator fabrication techniques and
introduce a portable vacuum chamber design for a next generation of WGR setup. In the
fourth part we show results on the the stability of the system and the resonance frequency
shifts due to movable dielectric substrate. In fifth chapter we draw our conclusions and
elaborate on future plans.



Chapter 2

Theoretical background

This chapter describes the theories which supports the experimental results. The first section
generally describes the electromagnetic wave with Maxwell’s equations and the wave equa-
tion. The second section is about lithium niobate properties, the material which the WGMR
is made of it in this project. The third section will introduce our micro-cavity resonator
called whispering gallery mode resonator and describes its features.

2.1 Basics of electrodynamics

Starting from Maxwell’s equation in vacuum as the simplest system and continuing with the
e↵ect of a material on electromagnetic wave propagating toward it is the goal of this section.
The nonlinear response of the medium which can a↵ect the properties of light is considered
in the last part.

2.1.1 The Maxwell’s and wave equations

An electromagnetic filed is described by the electric vector field ~E(r, t) and the magnetic field
~B(r, t) that are functions of position and time. Therefore, six scalar functions of position
and time are required to describe light in free space. But these functions are interrelated by
the Maxwell’s equations [11]. The homogeneous Maxwell’s equations are:

r. ~B = 0, (2.1a)

r⇥ ~E = �@ ~B

@t
, (2.1b)

and the inhomogeneous Maxwell’s equations are described as:

r. ~E =
⇢

✏
0

, (2.2a)

r⇥ ~B = µ
0

j +
1

c2
@ ~E

@t
, (2.2b)
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Which, ✏
0

and µ
0

are permittivity and permeability in vacuum, respectively. ⇢ is the charge
density and j is the current density. Considering electromagnetic wave in vacuum, ⇢ and j
are zero and c = 1/

p
✏
0

µ
0

is the speed of light. The wave equation in vacuum can be derived
from Maxwell’s equations by applying the curl operation (r⇥) to Eq.(2.1b) and using the
vector identity relation (r⇥(r⇥ ~E) = r(r. ~E)�r2 ~E). Then with substitution of Eq.(2.2b)
for j = 0 one reaches to:

r⇥ (r⇥ ~E) +r⇥ @ ~B

@t
= �r2 ~E +

1

c2
@2 ~E

@t2
= 0. (2.3)

The right side of Eq.(2.3) is known as wave equation. In general case the wave equation can
be written as:

�r2u+
1

c2
@2u

@t2
= 0, (2.4)

where u is a scalar function with components of ~E and ~B. Eq.(2.4) can be solved in di↵erent
boundary conditions to limit the problem to a discrete set of eigenstates.

2.1.2 Material equations

For the description of electromagnetic field in medium, a macroscopic approach is used to
explain the e↵ects of many single particles interact with field. In this case the electric field
~E and magnetic filed ~B are related to the displacement filed ~D and magnetizing field ~H,
respectively.

~D(t) = ✏
0

~E + ~P , (2.5a)

~B(t) = µ
0

~H + ~M. (2.5b)

In linear optics, the polarization density ~P depends linearly upon the electric field strength
and described by:

~P = �(1) ~E, (2.6)

where �(1) is known as the first order susceptibility and is scalar for isotropic materials. �(1)

defines materials relative permittivity (✏
r

) and velocity of electromagnetic wave in medium.

✏
r

= ✏
0

(1 + �(1)), (2.7)

c0 =
1

✏
r

µ
r

=
c

n
, (2.8)

which c0 is the phase velocity of the wave, µ
r

is the relative permeability and n is the refractive
index which can be di↵erent depends on direction and polarization of light in an anisotropic
crystals.

For anisotropic materials, the polarization density and the electric field are generally not
in the same direction. The relation between the vector ~P and ~E depends on the direction of
the vector ~E and is written as [11]:



P
i

=
X

j

✏
0

�
ij

E
j

, (2.9)

for linear, nondispersive and homogeneous medium. The indexes i, j = 1, 2, 3 donate the x, y
and z components, respectively. The dielectric properties of the medium are then described
by 3⇥3 array of �

ij

and form the electric susceptibility tensor �. A similar relation between
D and E applies:

D
i

=
X

j

✏
ij

E
j

, (2.10)

which ✏
ij

are elements of the electric permittivity tensor.

Figure 2.1: Basic example of using the ellipsoid to analyze propagation along the y axes in
a z cut lithium niobate and n

x

= n
y

. The n
x

and n
z

define the refractive index for p and s
polarized light, respectively.

Energy conservation rule and time reversal symmetry, show that the ✏
ij

is a symmetric
matrix. According to linear algebra, any symmetric matrix can be diagonalized by a suitable
choice of the basis vectors, ✏

ij

can be written as diagonal matrix. With this choice for the
basis (called coordinate axes) one can write Eq.(2.10) for nonmagnetic and transparent
material as:
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where ✏
ii

= ✏
0

n2

i

. Here the energy density equation is:

U =
1

2
~E. ~D =

1

2


D2

x

✏
0

n2

x

+
D2

y

✏
0

n2

y

+
D2

z

✏
0

n2

z

�
, (2.11)



and it can be written as an elipsoid equation.

↵2

x

n2

x

+
↵2

y

n2

y

+
↵2

z

n2

z

= 1, (2.12)

which ~↵ = ( ~D/
q

2✏
0

~U)2. This ellipsoid can describe the crystal refractive index in any
direction and called index ellipsoid. The optic axis is an orthogonal axes to the circle cross
section of this ellipsoid. (shown in Fig.2.1). Generally, crystals have three principal refractive
indices. If all the three indices are the same, the medium is characterized as isotropic
(n

x

= n
y

= n
z

); if two of them are the same, is characterized as uniaxial (n
x

= n
y

6= n
z

);
and if all three are di↵erent, is called biaxial (n

x

6= n
y

6= n
z

). Uniaxial has one optical axes
but biaxial has two.

In optics, dispersion is a phenomena in which the phase velocity of a wave depends
on its frequency. The media having this property is a dispersive media. In such a media
the relation between the vectors ~P and ~E is dynamic rather than instantaneous [11]. The
presence of a time between the input and output vector can change the P (t) (see Fig.2.2).
For linear and isotropic materials the dynamic relation between arbitrary electron field ~E(t)
and polarization density ~P (t) can be expressed as a convolution for t0  t:

~P (t) = ✏
0

Z 1

�1
�(t� t0) ~E(t0)dt0. (2.13)

Figure 2.2: Response of a linear shift-invariant system to pulses in a dispersive media

Alternatively, a dynamic linear system may be described by its transfer function. As an
example, the transfer function at frequency ⌫ is ✏

0

�(⌫), where �(⌫) is the Fourier transform
of �(t) so that it is frequency-dependent susceptibility.

2.1.3 Nonlinear optics

Nonlinear optics is the study of phenomena that occur as a consequence of the modification
of the optical properties of a material system by presence of light [12]. The beginning of
nonlinear optics is widely considered to be the discovery of second-harmonic generation by
Franken et al. in 1961 which is basically inversion of parametric down conversion (PDC)



process presented in section (2.3.4). In nonlinear optics Eq.(2.6) can be generalized by
expressing the polarization ~P as a power series in the electric field ~E as:

~P = �(1) ~E + �(2) ~E2 + �(3) ~E3 + ...

⌘ ~P (1) + ~P (2) + ~P (3) + ...
(2.14)

The quantities �(2) and �(3) are known as the second and third order nonlinear optical
susceptibilities, respectively. Furthermore, the displacement field can be written as ~D =
~D(1) + ~D(2) + ~D(3) + ... regarding to Eq.(2.5a).

By the divergence theorem, Gauss’s law for the field ~P can be stated as

r.~P = �⇢, (2.15)

where @ ~P/@t = ~j . This indicates that the wave function in nonlinear, nonmagnetic ( ~M = 0)
media can be written as:

r(r.E)�r2E = � 1

c2
@2E

@t2
� µ

0

@2P

@t2

r2E � 1

c2
@2E

@t2
= µ

0

@2P

@t2
. (2.16)

Eq.(2.16) is valid for all homogeneous and isotropic media.

2.2 Properties of lithium niobate

Uniaxial and biaxial (see section 2.1.2) crystals present the interesting and counterintuitive
property of two di↵erent indices of refraction on the electromagnetic’s wave direction of
propagation and polarization state. This physical property is known as birefringence. Optical
waveplates, beam splitters, and group velocity delay compensation plates are only a few of
the optical devices whose operation is based on birefringence. In this section we describe
some properties of lithium niobate as a widely used uniaxial crystal. The WGMR in our
experiment is made of z-cut lithium niobate.

2.2.1 Sellmeier equation

The Sellmeier equation is an empirical relationship between the refractive index and wave-
length for a particular transparent medium. It is used to determine the dispersion of light in
the medium. The Sellmeier equation for Lithium niobate with magnesium doping is defined
as: [13]

n2

i

=
A

0,i

+ A
Nb

Li

c
Nb

Li

+ A
Mg,i

c
Mg

(�
0,i

+ µ
0,i

F )�2 � ��2
� A

IR,i

�2 + A
UV

, (2.17)

where � is the wavelength and F = f(T )� f(T
0

) is a temperature dependent with:

f(T ) = (T + 273)2 + 4.023⇥ 105

coth(

261.6

T + 273
)� 1

�
. (2.18)



The other values are constant and mentioned in Ref. [14]. Based on Eq.(2.17, 2.18), the
refractive index also depends on temperature.

2.2.2 Thermal expansion

Axial expansion of lithium niobate due to temperature variation is described by the thermal
expansion coe�cient ↵ [15]:

↵ = a(1 + bT + cT 2 + dT 3). (2.19)

This is an empirical equation and obtained from the third-order polynomial fit to the ex-
perimental data. The coe�cients in this equation have values of a = 5.14, b = 13.43⇥ 10�6,
c = 17.55⇥ 10�9 and d = 16.3⇥ 10�12 at room temperature. The results of this equation is
in Angstrom (e.g. ↵ = 5.151 Å at 298 K). The expansion has a di↵erent value for di↵erent
axis regarding the crystal structure.

2.2.3 Elasticity

The elasticity of a solid can be described by the strain in the material that results from a
mechanically applied stress. This relationship is linear and is represented by Hooke’s law
[16],

S
ij

=
X

kl

c
ijkl

�
kl

, (2.20)

where S
ij

is the strain tensor and �
kl

is the stress tensor. c
ijkl

is the fourth-order sti↵ness
tensor. A reciprocal expression can also be written as

�
ij

=
X

kl

s
ijkl

S
kl

, (2.21)

which s
ijkl

is the elastic compliance. If body torques are ignored, it can be shown that s
ijkl

=
s
ijlk

= s
jikl

[17]. With this relation the 81 elements tensor is reduced to 36 independent
elements. Since the lithium niobate crystal possesses 3m point group symmetry, all tensors
describing the physical properties of lithium niobate must follow this symmetry. This basic
principle was first asserted by Neumann in 1833 [18]. As a result, the elastic compliance
ends up with 6⇥ 6 matrix:

s =

2

6666664

s
11

s
12

s
13

s
14

0 0
s
12

s
11

s
13

�s
14

0 0
s
13

s
13

s
33

0 0 s
0

s
14

�s
14

0 s
44

0 0
0 0 0 0 s

44

2s
14

0 0 0 0 2s
14

2(s
11

� s
12

)

3

7777775

which has only 6 independent parameters and the values for constant electric field are shown
in table 2.1.



s
11

s
12

s
13

s
14

s
33

s
44

Ref

5.83 -1.15 -1.45 -1.00 5.02 17.10 [19]

5.78 -1.01 -1.47 -1.02 5.02 17.00 [16]

Table 2.1: Elastic compliance coe�cien [⇥10�12 m2/N ] at constant electric field in LiNbO
3

2.3 Whispering-gallery resonators

In the first part of 20th century numerous studies were conducted on optical micro cavities
with di↵erent structures. One of these cavities with cylindrical, spherical or toroid shape is
whispering-gallery resonators (WGR) was discovered by W. W. Hansen [20].

Whispering-gallery waves were explained for sound waves by Lord Rayleigh in 1878 before
discovery of optical WGR. Rayleigh discovered that sound waves can travel on the wall’s of
the St Paul’s Cathedral dome (Fig.2.3.a is a picture of the dome). This was a revision to a
previous misconception; whispers could be heard across the dome but not at any intermediate
position.

Figure 2.3: a) Dome of St Paul’s Cathedral in London with acoustic whispering-gallery
property. The image is taken from Ref. [21]. b) Top view of whispering-gallery resonator
with radius R. The light is confined inside the resonator due to total internal reflection.

In whispering gallery resonators the light circling around the cavity, supported by con-
tinuous total internal reflection of the cavity surface (see Fig.2.3.b). After one round trip the
light can return to the same point with the same phase and hence interfere constructively
with themselves, forming standing waves that trapped inside the cavity [22]. Due to their
small size, high transmittance and narrow bandwidth of the cavity resonance they are a
suitable candidate for vast range of applications such as: tunable single photon source [10],
single-particle sensing [1], narrow-band optical filtering [23], temperature measurement and



stabilization [24], pressure measurement [25], di↵erent phenomena of nonlinear interactions
(such as wave mixing and Raman and parametric scattering) [26, 27].

2.3.1 Field build-up in resonator

WGRs can be modeled as liner cavities, which consist of two mirrors aligned on one optical
axis. They exactly retro-reflect the incident light beam (see Fig.2.4). The optical path
length in a linear cavity is derived from the round trip of light in cavity with length d and
inner refractive index n at a certain wavelength �

0

. Whenever the optical path matches the
multiple of its wavelength, a constructive interference occurs:

m�
0

= 2dn. (2.22)

where m is the integer number of wavelengths who covers the resonator length, �
0

is the
light wavelength inside the resonator, d is the resonator length and n is the refractive index
of media inside the resonator. If an electromagnetic field E

in

with frequency ⌫ impinges

Figure 2.4: Linear resonator with an inner refractive index n and two end mirrors with
di↵erent intensity reflectivities R

1

and R
2

. The transmission of an incoming electric wave
with amplitude E

i

n can constructively interfere in resonance frequency.

on the first mirror, it gets partly reflected and transmitted. R
i

and T
i

(i = 1, 2) are the
reflectivity and transmissivity, respectively. The transmitted part is E

0

=
p

T cav

1

E
in

and
after each round trip, the amplitude E

j

(j 2 N) of the electric filed is attenuated due to
medium absorption ↵

x

and transmission through both mirrors. The electromagnetic field
experiences a phase shift of � = 2⇡(⌫ � ⌫

0

)(2nd/c) which ⌫
0

= c/�
0

is the central resonance
frequency [28]. All these e↵ects are shown with frequency dependent feedback parameter
g(⌫).

E
j+1

= g(⌫).E
j

=
p

Rcav

1

.Rcav

2

e2d↵x .ei�.E
j

. (2.23)



At the end the amplitude of the electric field inside and outside the cavity and reflected is:

E
cav

= (1 + g(⌫) + g2(⌫) + g3(⌫) + ...)E
0

geometric seriesz}|{
=

1

1� g(⌫)
E

0

= E
in

p
T cav

1

1�
p

Rcav

1

.Rcav

2

e2d↵x .ei�
, (2.24a)

E
out

= E
in

p
T cav

1

.T cav

2

ed↵x .ei�

1�
p

Rcav

1

.Rcav

2

e2d↵x .ei�
, (2.24b)

E
refl

=
E

in

p
R

1

ei⇡ + E
in

T
1

p
R

2

ed↵x .ei�

1�
p

Rcav

1

.Rcav

2

e2d↵x .ei�
, (2.24c)

where the factor ei⇡ in Eq.(2.24c) explains the phase shift due to the reflection at an optical
denser surface. With knowing I

i

= |E
i

|2, the normalized intensity can also be written as

Figure 2.5: The Lorentzian normalized reflected intensity (I
refl

/I
in

) peaks for two di↵erent
finesse number due to di↵erent transmitted and reflected value is presented. The free spectral
range (FSR) is the distance between two minimum peak position. Full with at half maximum
(FWHM) around the one central frequency is also shown with bandwidth � for di↵erent
finesse F.



follows [29]:

I
cav

I
in

=
T
1

(1�
p

R
1

R
2

e�2d↵

| {z }
a

)2 + 4
p
R

1

R
2

e�2d↵ sin2(�/2)

=
T
1

(1� a2)
.

1

1 + (2F/⇡)2 sin2(�/2)
, (2.25a)

I
out

I
in

=
T
1

T
2

e�2d↵

(1�
p
R

1

R
2

e�2d↵)2 + 4
p
R

1

R
2

e�2d↵ sin2(�/2)
, (2.25b)

I
refl

I
in

=
(
p
R

1

� (R
1

+ T
1

)
p
R

2

e�2d↵) + 4(R
1

+ T
1

)
p
R

1

R
2

e�2d↵ sin2(�/2)

(1�
p
R

1

R
2

e�2d↵)2 + 4
p
R

1

R
2

e�2d↵ sin2(�/2)
, (2.25c)

In Eq.(2.25a) we introduce the finesse F which is generally used as a measure for the quality
of cavity

F =
⇡
p

|a|
1� |a| , (2.26)

where, a =
p
R

1

R
2

e�2d↵. Consider the ⇡ phase shift in Eq.(2.24c) if both outcoming and
reflected fields are equal in amplitude, the result will be zero due to total destructive inter-
ference in the reflection port at the critical frequency ⌫

0

. This case is called resonator critical
coupling and described by:

p
R

1

=
p

R
2

e�2d↵ critical coupling. (2.27)

The two other case are:

p
R

1

>
p

R
2

e�2d↵ over coupling, (2.28)
p

R
1

<
p

R
2

e�2d↵ under coupling. (2.29)

Over coupling and under coupling cases lead to reflection and the transmission is not opti-
mum. The maximum output intensity I

out

is also reached for critical coupling. Regarding
Eq.(2.27-2.29) with changing the reflection or optical path one can change the coupling
regime.

In case of high frequency, the intensity in reflection port can be modeled with Lorentzian
function. The full width at half maximum (FWHM) around the central frequency at nor-
malized reflection intensity I

refl

/I
in

is called the resonator bandwidth � (see Fig.2.5). The
spacing in optical frequency between two successive reflected or transmitted optical intensity
maxima or minima is called free spectral range (FSR) and it derived from Eq.(2.22)



FSR =
c

2dn
=

1

⌧
, (2.30)

where ⌧ donates the light round trip time in the resonator. Consequently, the FSR can also
be written as (see [28] for proof):

FSR = � · F . (2.31)

Another important parameter for characterizing a cavity is the quality factor Q which
describes ability of the cavity to store energy. The Q factor of a resonant cavity is given by:

Q =
2⇡⌫

0

E

P
, (2.32)

where E is the stored energy in the cavity and P = �dE/dt is the power dissipated in one
oscillation period. Also, Q is equal to the ratio of the resonant frequency to the bandwidth
of the cavity resonance.

Q =
⌫
0

�
(2.33)

A high finesse and Q factor can be achieved with proper coating of end mirrors or with total
internal reflection mechanism.

2.3.2 Mode spectrum

The knowledge of mode in WGR can help to describe evanescent field e↵ect of specific mode
and to control the narrow-band phase-matching conditions in nonlinear processes such as
second-harmonic generation (SHG) or parametric down-conversion (PDC).

The full information on the mode numbers is contained in the far field images of the
outcoupled modes, and in the frequency spectrum of the outcoupled light. However, the
exact identification of whispering-gallery modes (WGM) can be challenging in practice [30].

By using Maxwell’s equations (2.1a, 2.1b, 2.2a, 2.2b), we determine the structure of the
fields in a dielectric sphere located in vacuum. To solve this problem, it is convenient to use
the spherical coordinate system r, ✓,� and solving the Helmholtz equation r2U + k2U = 0
for a dielectric sphere, with appropriate boundary conditions [11]. The Helmholtz equation
in spherical coordinate is:
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+
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r2 sin ✓

@

@✓

✓
sin ✓

@U
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◆
+

1

r2 sin✓

@2U

@�2

+ k2U = 0, (2.34)

where U is a scalar function represents the complex amplitude of ~E for any of its three
components (E

r

, E
✓

, E
�

) or (H
r

, H
✓

, H
�

) of magnetic filed ~H. The electric and magnetic
field can be written as:
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, (2.35c)

which k = k
0

(✏µ)1/2 is wave number inside the sphere and k = k
0

= !/c is wave number
outside the sphere [31]. If we assume the potential U in the form:

U(r) = R(r)⇥(✓)�(�), (2.36)

then, by substituting this to Eq.(2.35) we have:

⇥(✓) = Pm

n

(cos ✓), (2.37)

�(�) =

(
sinm�

cosm�
(2.38)

For a sphere of radius R and refractive index n, the solution is in the form:

U i

ml

(r, ✓,�) /
p
rJ

l+1/2

(nk
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r)P l

m

(cos ✓) exp(±im�), (2.39)

inside the dielectric sphere (r  R) and

U e

ml

(r, ✓,�) /
p
rH(1)

l+1/2

(nk
0

r)P l

m

(cos ✓) exp(±im�) (2.40)

outside the dielectric sphere (r > R). Here J
l

is the Bessel function of the first kind of order l,

H(1)

l

is the Hankel function of the first kind of order l, and P l

m

is the Legendre function. In a
way of solving this equation the field ~E and ~H inside the sphere should satisfy the conditions
on the boundaries. These conditions can be satisfied after the appropriate choice of a free
parameter k

0a

and arbitrary constants C
i,e

. The continuity condition for the tangential
components of the field at the interface between the sphere and vacuum leads us to the
characteristic equations determining the acceptable values for k

0a

and the relation between
wave number k and the sphere radius R. Because the characteristic equation contains many
roots, they determine an infinite set of the wave vectors (eigenfrequencies) for a given radius
of the sphere. In this case, it is necessary to introduce the index q, which indicates the
corresponding solution.

For this reason, the eigen modes of a dielectric sphere are described by three indices m,
l, q. The greater the root number q, the greater number of zeroes of the function are located
inside the sphere. As a result the index q corresponds to the number of nodes of the given
mode lying inside the sphere along the radial direction. The number m defines the field
nodes along � direction which in general it is quite large for the large radius WGR (m is in
range of 104 in these experiments), and l is the number of field maxima in polar direction.



Figure 2.6: The angular dependence of the fields is given by the associated Legendre polyno-
mials Pm

l

(cos ✓). In a) the angular shape of a mode with m=l and l=1000 is shown. In b)
this angular shape for m-l=2 (p = 2) and l=1000 is depicted [32]

Another number p = l � |m|, which is not independent number, defines as angular mode
number. The spherical modes are similar to the modes of Gaussian beam [32] with radius of
(2/l)1/2R. Therefore we have:

Pm

l

(cos ✓)

Pm

l

(0)
⇡

H
m�l

(
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n(⇡

2

� ✓))

H
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(0)
exp

⇣
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⇡

2
� ✓)2/2

⌘
(2.41)

with the Hermitian polynomials H
m�l

(
p
l ✓). This equation can help us to find the shape of

Gaussian beam for di↵erent p value (see Fig.2.6). The mode with high l = m value is very
close to equator and referred as fundamental modes when the q number is one. Modes with
non-zero p value can exhibit an oscillation in transverse structure.

In this project we are considering the WGR which is looks like a cross section of a sphere
(see Fig.2.7.b). For such a resonator, one can connect the mode numbers l, q, and p to the
resonant optical frequency ⌫

l,q,p

with using the dispersion relation [30].
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which r is radius of disk curvature (small radius), parameter x is 1 or 1/n2 depending on
polarization and n is the refractive index of disk resonator. The q-th root of the Airy function
↵
q

¿ 0 can be approximated as ↵
q

= [3/2(q1/4)]2/3. This equation determines the resonance
frequency of each mode and it can be useful to extract the temperature dependency of
frequency shifts of a mode



Figure 2.7: a) Whispering-gallery mode in a microsphere resonator with radius R. The
intensity of the electromagnetic field decays exponentially out of the resonator b) The radial
q, azimuthal m and polar l number of the mode is associated with spatial position of the mode
in spherical reference [30]. The angular mode number p=l-m gives the number of maxima in
polar direction.

TE and TM Modes

The mode inside the WGR made of dielectric material can classify in three groups regarding
the polarization and boundary condition. In this classification the light that is polarized
parallel to the optical axis is called transverse electric (TE) modes and has no electric field
in the direction of propagation, the light that is polarized perpendicular to the optical axis
is called transverse magnetic (TM) modes and has no magnetic field in the direction of
propagation and the light which is linearly with angle to optical axis or circularly polarized
is called TEM modes. If the WGR made of a birefringent crystal, each of these polarized
modes can have di↵erent refractive indices (see section 2.1.2) and consequently di↵erent
frequencies.

2.3.3 Evanescent field coupling

In general, methods of coupling the light into the WGR are divided into three categories:
free wave coupling, fluorescent coupling and evanescent coupling.

In free wave coupling, by illuminating the resonator from the outside, one can excite
whispering gallery modes inside the resonator. Similarly, the excited WGMs can also leak
out of the resonator into the free space. This form of coupling is extremely ine�cient even
for ultra-high-Q resonators.

Florescent coupling is based on doped resonators with a fluorescent substance (e.g. quan-
tum dots), which emits a broad spectrum of light when excited at a short wavelength. By
illuminate the doped whispering gallery resonator, the fluorescent substance in the resonator



starts emitting a broad spectrum of longer wavelength light, which then gets trapped inside
the resonator.

In evanescent filed coupling the light can be coupled in or out of WGR by using fiber
tapers, side-polished fiber coupling, or prisms. This method has a high coupling e�ciency
and therefore it is the method which we used in this experiment. In practice, e�cient
coupling with this method needs a fine alignment. Evanescent field coupling occurs when
a structure possessing an optical evanescent field has been brought in the vicinity of the
resonator, so that the evanescent fields of the resonator and the coupler overlap significantly.
As an example, prism evanescent field coupling is illustrated in Fig.(2.8). The following
description is based on [33, 23, 34]. Due to the total internal reflection inside the resonator,
in high-Q WGR the field drops outside the resonator approximatly as exp(��r) where:

�2 ⇡ k2(n2

s

� 1) and, k = (2⇡/�)
p
n2

s

� 1

for resonator surrounded by air. Here n
s

is the resonator refractive index. For a given
wavelength � of the coupling beam, one can calculate the angle of incidence for n

s

refractive
index of resonator and n

p

refractive index of prism with Snell’s law:

sin ✓
0

=
n
s

n
p

. (2.43)

With assumption that the wave which is propagated inside the prism and resonator is a plane
wave and with geometry of Fig.(2.8), one can derive kn

p

sin ✓
0

= kn
s

. This condition can
be satisfied if the WGR exhibit equal or lower refractive index than the prism. Overlapping
the resonator and the prism evanescent field produce a coupling between them which is
calculated as follow.

The field of resonator E
R

for the chosen j-th mode can be driven from Eq.(2.39, 2.40)
and conveniently represented in the form:

E
R

= ej
R

b
j

E�iw

j

t + c.c., (2.44)

where R is the resonator radius, b
j

is the slow amplitude, m
j

is the characteristic frequency
and eJ

R

describes the spatial distribution field of the mode in an isolated dielectric sphere.
The plane wave which is incident on the inner surface of the prism at an angle greater than
the angle of total internal reflection (✓

0

) has a field of E
p

where:

E
p

=

Z
e�
p

a
�

(t) e�i!

�

td� + c.c. (2.45)

The a
B

(t) are the slowly varying spatial amplitudes. By substituting Eq.(2.44) and (2.45)
into the Maxwell’s equations and performing spatial integration and averaging over time,
we can obtain the overlap integrals. The coupling is determined by the overlap integral of
the evanescent fields of prism and WGM. The normalized reflected intensity, which is the
transmittance T , is described by:

T =


1� A.ce�2kd

1 + ce�2kd

�
2

, (2.46)



Figure 2.8: Evanescent field coupling with a diamond prism. ✓
0

is the coupling angle and
determined by the total internal reflection condition.

The prefactor A describes the modal overlap integral between the incident field in the prism
and the propagating mode in the resonator which is normally 0  A  1. c is the ratio
between the intrinsic losses and the highest possible coupling losses and d is the gap between
the resonator and the prism.

The Q-factor in WGMRs can be described as:

1

Q
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Q
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+
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Q
c

, (2.47)

where Q
0

is the intrinsic quality factor:

Q
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and Q
c

is the loading quality factor parameter for prism coupling:
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The ↵ is linear attenuation in the resonator caused by scattering, absorption, and radiation.
indcies s, c are related to the resonator and the coupler (prism), respectively. The other
parameters are determined previously. Loading quality factor depends on coupling prism
distance. The total Q versus distance is shown in Fig.(2.9) for di↵erent wavelength.

2.3.4 Parametric down conversion

A material with second-order susceptibility �(2) can connects two electrical fields to generate
a third one. commonly, the process, where two sub-harmonics fields are used to generate
an harmonic field, is called sum frequency generation. In the special case that the two sub-
harmonics comprise the same oscillation frequency, this process is called second harmonic



Figure 2.9: The theoretical Q-factor value versus the distance between the coupling prism
and the resonator. The intrinsic quality factor Q

0

is determined when the coupling prism
is far from the resonator. a) The Q-factor in resonator with R=1.9 mm and the pump and
signal wavelength at 532 nm and 1064 nm, respectively. b) The Q-factor in resonator with
R=1.08 mm, and pump=410 nm and signal=500 nm.

generation. In reverse, if one harmonic field is used to generate two sub-harmonics, the
process is called parametric down conversion (PDC). In practice for PDC, pump photons (p)
incident on a nonlinear crystal can be converted into two photons, called the signal (s) and
idler (i). This process is important in quantum optics, used especially to produce entangled
photon pairs, and also constitutes an excellent method to produce a source of single photons
[35].

According to energy conservation rule, the sum of the energies of signal and idler will
always match the energy of the pump (p). In Ref. [36] the coupled wave equations for the
parametric amplification process in a linear resonator with length L have been defined as:
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with the conversion e�ciency (overlap integral) of:

� =
1

2L

Z
2L

0

x(2) exp(i�k y)dy. (2.51)

Here, ↵
p,s,i

are the slow varying amplitudes and �
p,s,i

are the corresponding loss coe�cient.
The propagation direction is chosen to be in y-direction and the mismatch in the wave vectors
�k and the energy �! is given by:
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. (2.52)



There are two main conditions, which have to be fulfilled in an e�cient phase matching.
First, the energy between the modes must be conserved. This implies, that the energy mis-
match �! has to be far smaller than the loss coe�cients �

p

and �
s,i

. Second, the conversion
e�ciency (Eq.2.51) should be maximal. Therefore, either �k should be minimal. In bire-
fringent materials the PDC process can also depends on polarization. Whenever the signal
and idler have the same polarization (ordinary or extraordinary) and oppose to the pump
polarization is called type I parametric down conversion and when signal and idler have a
di↵erent polarization is called PDC type II.

In order to describe the field in WGRs, one can use the spherical geometry. As a result,
the angular part of a whispering-gallery mode (WGM) is described by spherical harmonics
Y l

m

, and the radial part is described by spherical Bessel functions j(k
q

r). In this case the
linear conversion e�ciency (Eq.2.51) becomes:
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where the radial and the angular part of the general wave equation has been separated in
Eq.(2.53).

Now with writing interaction Hamiltonian, one can derive the equation of motions which
are related to Langevin forces and these forces are also related to the pump power [37].
With calculating this value in the critical coupling condition, one can obtain the PDC power
threshold for the di↵erent wavelength � [38].
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where, Q
p

, Q
s

are the quality factor of pump and signal respectively, n is the refractive index
of WGR and � is the overlap integral. This equation can helps us to estimate the minimum
value of pump power for PDC generation.

2.3.5 Temperature tuning of the mode spectrum

Any small change of the optical length of resonator causes the resonance frequency shift.
Thermal changes can a↵ect the refractive index (thermal refractivity) and size of the res-
onator (thermal expansion) [39]. Former is calculated by Sellmeier equation 2.17 and latter
calculate with Eq.(2.19). In an anisotropic crystal (e.g. lithium niobate) these e↵ects can
provide di↵erent resonance shifts regarding the polarization and number of the modes (see
section 2.2).

To find out the relation between frequency shifts with temperature one can starts with
WGM dispersion equations which have been discussed as a complete form in [40] and the
truncated form, which retains only positive powers of the orbital momentum L in [24]:

f n

2⇡c
⇡ 1

R

⇥
L+ ↵

q

(L/2)1/3
⇤
, (2.55)

where f is the WGM frequency, R is the resonator radius and n is the refractive index
for given polarization and wavelength. Here, n and R are functions of temperature T . By
di↵erentiating Eq.(2.55) with respect to T , we have:
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The second term of Eq.(2.56) are equal to the thermorefractivity ↵(o)

n

and ↵(e)

n

for ordi-
nary and extraordinary mode, respectively. The third term is equal to thermal expansion
coe�cients and have a same value for both polarization modes:

d

dT
f
o,e

⇡ c

�
↵(o)

l

, (2.57)

which c and � are light speed and beam wavelength in vacuum, respectively. The frequency
di↵erence between the modes depends only on the di↵erential thermorefractivity while the
thermal expansion is the same for both modes. Consequently, the temperature variations in
WGR is zero if the frequency shifts of two modes with di↵erent polarization (TE and TM)
regarding to each other is zero.
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When the temperature changes, the frequency shifts is di↵erent for each mode regarding
to its numbers. By using Eq.(2.42), we can find the the frequency shifts via the temperature
(see Fig.2.10).

Figure 2.10: The numerical simulation of frequency shifts via the temperature of lithium
niobate WGR with R = 1.08 mm. All modes have a red shifting with the temperature increase.
These shifts is shown for TE, TM and the di↵erence between them at � = 820 nm.



2.3.6 Pressure tuning of the mode spectrum

Applying pressure on a WGR can change the geometry or the material property of it and as
a result change the resonance frequency of the WGR. In order to obtain the pressure e↵ect in
WGR, we assume the hollow spherical resonator with outer diameter R and inner diameter b
as shown in Fig.(2.12) in hydrostatic pressure surrounding the sphere. We should note that
in this experiment we have an asymmetric pressure on a disc shape resonator. As a result,
this theory cannot fit to the experimental data completely but here the mode behavior (not
exact shift) via the pressure is considered.

As stated in Eq.(2.22) the approximate resonance condition for a WGR is:

Figure 2.11: A hollow spherical WGR under hydrostatic external pressure P
0

[41].

m�
0

= 2⇡Rn (2.59)

with substituting 2⇡R with d. A fractional change in both the index of refraction and the
radius will induce a shift in the WGM [41]:
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In the following we will derive the analytic expression for both strain (da/a) and stress
(dn/n) e↵ect due to hydrostatic pressure. The change of refractive index with the applied
mechanical stress is given by the Neumann-Maxwell equation:
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where �
rr, ✓✓, ��

are distributions of the principal stresses in the radial r, tangential ✓, and
polar �, directions, respectively. The � is a function of b, a, p
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and p
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. The n
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, n
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are



Figure 2.12: The frequency shifts in spherical WGR made of lithium niobate under hydro-
static pressure at 532 nm wavelength (see Eq. 2.64).

the refractive indices in the direction of the three principle stresses and n
0r

, n
0✓

, n
0�

are those
values for the unstressed material. C

1

and C
2

are the elasto-optical constants as described
in section 2.2.3 for lithium niobate. Now the fractional change in the refractive index due to
mechanical stress is:
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With substituting Eq.(2.61) into Eq.(2.62) we can find the refractive index variation due to
the pressures p

0

and p
i

.
The radial displacement u of any point r inside sphere is obtained as:
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which G and ⌫ are the shear modulus and the Poisson ratio of the sphere material, re-
spectively. These constant value are obtained from elastic compliance tensor. The external
pressure P

0

and inner pressure, P
i

are also appear in Eq.(2.63) and distributions of the prin-
cipal stresses. The displacement for WGR with redius R is u(R)/R = dR/R. Summation of
the refractive index and the radius changes according to Eq.(2.60) gives us the wavelength
variation for a hollow sphere resonator. In special case, for solid resonator b = 0 and neglect
inner pressure P

i

:
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The graph for frequency shifts in lithium niobate is shown in Fig.(2.12). The same method
of pressure e↵ect has been explained in Ref. [25] as a high resolution force sensor.



2.3.7 Frequency shifts induced by a dielectric coupler

The light inside the whispering-gallery resonator (WGR) is confined with total internal
reflection and provide the evanescent field around the resonator. By inserting a material like
a dielectric into this field one can change the property of the filed. In order to calculate this
e↵ect we model the resonator as a cylinder shape as shown in Fig.(2.13). The incident electric
filed E

i

is scattered in all direction of resonator’s plane (evanescent field) which has been
shown with E

s

. Due to presence of dielectric material the scattered field from the resonator
is reflected by dielectric and giving rise to the field E

sr

. The total field incident upon
the resonator is that formed from the superposition of the incident field and the reflected
scattered field (E

eff

= E
i

+ E
sr

).
The mode shifts can be driven in the resonator via position of the dielectric substrate

[42],

Figure 2.13: The geometry of evanescent field shifts problem. The incident field E
i

is scat-
tered by WGMR and reflected from the prism surface giving rise to a field E

ir

which is
neglectable. The scattered field E

s

is reflected due to dielectric surface and produce the E
sr

field. The e↵ective coupling field is a superposition of E
s

and E
sr

[42].
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where �!
k

is the resonance frequency shifts, �
k

and ⌘⌫
k,0

are the bandwidth and scattering
coe�cient, respectively. K⌫

kk

is the complex self-coupling coe�cient.
Equation 2.65 describes the resonance frequency change from introduction of any per-

turbing structure e.g. prism or particle. Here, we are trying to derive the self-coupling
coe�cient for a disc resonator, perturbed by a planar interface based upon a Mie scattering
and Fresnel-type reflection methodology. Reflection of each plane wave component at the



prism surface can be described using the Fresnel reflection coe�cient, such that we can write:
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The coupling coe�cients follows by evaluation of the integrals
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Figure 2.14: WGMR resonance shifts via movable ZnO dielectric substrate for di↵erent size
of resonators: a) R=2.5 mm and b)R=1.6 mm. Solid and dash lines depict calculations for
TM and TE modes respectively.

For di↵erent polarization the K⌫

kk
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where r
s

and r
p

denote the reflection coe�cient for s and p polarized waves, respectively.
The complex propagating angle � is an element of �± where �± are integration contours in
the complex plane. The imaginary and the real part of � can gives us the frequency shifts
and the bandwidth of a mode, respectively. With substituting Eq.(2.68) in Eq.(2.65) one
can derive the mode shifts equation:
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where p = m + m0, q = 2n
2

kh , u = sinh �, v = � sinh �, v
max

= [(p2/q2) � 1]1/2 and
µ = m/n
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kR. We also have defined p/q = µ(R/h) = µ⇢. The variable N
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In Fig.(2.14) the solution of this equation via variable distance d is plotted.



Chapter 3

Experimental setup

In this chapter the experimental setup is described. In the first section a method of fabri-
cation of WGMR is explained. The second section introduces the components and di↵erent
parts of setup. In the third section we calibrate the fine positioner which we used in the
experiment. In the last section we will demonstrate a new design of WGMR setup which is
portable and more stable.

3.1 Fabrication of whispering-gallery resonator

We fabricate the WGRs from commercially available lithium niobate (LiNbO
3

) wafer with
5.8% MgO-doped. We use hollow core brass drill which is mounted on a turning machine
and diamond slurry with 30 µm particle to cut out a disc-shape part of the wafer. Then the
disc is glued on a brass rod with high-temperature epoxy. The rod has 50 mm height and
13 mm diameter which is tapered towards the tip (see Fig.3.1-a). For the curved rim cut we
use a diamond cutter which is controlled by a fine positioner stage close to the rotating disc
(see Fig.3.1.b).

To achieve a high Q-factor resonator we polish the resonator’s surface while the WGR is
turning. The optical tissues impregnated with diamond slurry with di↵erent size of diamond
particles from 9 µm to 0.1 µm are used for fine polishing. This polishing is done step by
step from greater diamond particles to smaller ones. The tissue used for cleaning the disc
should be changed in each step to prevent any scratches caused by residual particles on the
disc. We use ethanol and isopropanol for cleaning.

To measure the fraction of the radius of curvature of the disc, we use the Newton rings
interference patterns. In this technique, a thin transparent plate e.g. glass is placed on top
of the resonator in a way that it touches the resonator’s rim. The fringes can be observed
with a microscope in an elliptic shape which semi-major axes a and semi-minor axes b of
ellipsoid are related to radius of the resonator R and curvature r, respectively.

a =
p
m�R (3.1)

b =
p
m�r (3.2)

The light wavelength is � and the number of dark fringes is m.
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Figure 3.1: a) The rods with di↵erent sizes of resonators. The rod consists of two parts
which can screw into each other and change the height of resonator in experimental setup.
A hole drilled on the top to place a thermistor inside. b) Di↵erent pasts of turning machine
setup: 1) turning machine, 2) diamond cutter, 3) rod and 4) camera.

3.2 Experimental scheme

In this experiment we are trying to tune the resonance frequency of WGR with movable
dielectric substrate. We use three di↵erent tunable laser diodes with three di↵erent res-
onators. The basic setup for all the measurements is depicted in Fig.(3.2). We use an
aluminum chamber to isolate the resonator from temperature fluctuations in the laboratory.
Inside the chamber, there are two piezoelectric called Attocube positioner located at two
sides of the resonator.

The first piezoelectrics (Attocube) holds the prism coupler and the second piezo a di-
electric material which is a glass coated by a layer of zinc oxide with 100 nm thickness or
x-cut lithium niobate in these experiment. The surface roughness of ZnO is measured with
an atomic force microscope (AFM) (shown in Fig.3.3).

The Attocubes can adjust the distance between the prism and the resonator or the
dielectric and the resonator. Two translation mounts (Thorlabs XYZ Translation Mount)
hold the lenses with 8 mm focal length close to the resonator. The lens before the prism
is called the incoupling lens and it focuses the light into the prism. The lens after the
prism which collimates the light again is called outcoupling lens. The polarization of the
linear polarized light of the laser can be controlled by a half-wave plate HWP. Together
with the polarizing beam splitter PBS we can vary the power ratio of the transmitted (p-
polarized) and the reflected (s-polarized) light. The reflected light is coupled to a Fabry-
Perot interferometer (Toptica-DL100) with a free spectral range FSR of 1 GHz. The Fabry-
Perot signal is monitored by a ”Lecroy-wavejet 334” oscilloscope and is used as a frequency
reference.

The transmitted light will again pass through a HWP and a PBS. Both the reflected
and the transmitted light from PBS should couple to the resonator but due to the di↵erent
refractive indices for di↵erent polarization in lithium niobate (see section 2.2) the outcoupling



Figure 3.2: a) Scheme of the experimental setup. The polarization of incident light is con-
trolled by half wave plate polarizer HWP. Both p-polarization and s-polarization light are
coupled in and out of z-cut WGMR using the diamond prism. The p-polarized and s-polarized
light generate TM and TE modes in z-cut WGR, respectively. The outcoupled light is splitted
in di↵erent polarization with a polarized beam splitter PBS and detected separately. b) A
photo of the setup.

angle can be di↵erent. These angles are achieved from Eq.(2.43). To compensate this
deviation and guide both TE and TM light into the outcoupling lens, we set two beam paths
with di↵erent polarization and translation mirror mounts. After coupling the light into the
resonator, the outcoming light is splitted with the PBS and collected by two photo diodes.



Figure 3.3: Surface roughness measurement of ZnO with atomic force microscopy AFM. The
vertical distance resolution of this measurement is 0.1 nm. a) The areas with more than 10
nm height di↵erence are masked. These areas can be some dust particles on the surface of
ZnO plate. b) The 3D picture shows 4 peaks with more than 5 nm height.

Light coupling to the resonator

Light coupling to the resonator is done in several steps. The frequency is swept a few GHz
by applying a voltage to the piezo mirror (PZT) in the laser. Next, we put the coupling
prism in contact with resonator and focus the light on the contacting point. A part of light
is reflected from the inner surface of prism and the other part travels through the resonator
and coupled out with the prism. Due to di↵erent beam paths of the directly reflected light
and the light coming from the resonator, form fringe patterns in the far field. We put an
outcoupling lens to collimate the light and send it to a detector.

The e↵eciency of WGR coupling depends on the distance between the prism and the
resonator (coupling distance). The distance which has a maximum coupling contrast called
critical coupling point. In order to find this point, we put the prism in the contacting position
with WGR and move the prism back stepwise for a few nanometers until the modes have
maximum coupling contrast (maximum depth).

Optical properties of the resonator

One can characterize the optical properties of the resonator e.g, bandwidth and FSR, by
measuring the transmission spectrum. These properties are shown for a R=1.6 mm resonator
in Fig.3.4 for TE and TM polarization. The bandwidth is related to the distance between
resonator and the prism. We measure the bandwidth close to the critical coupling distance.
the amount of bandwidth and FSR allow us to find the fineness or Q-factor (see section
2.3.1)



Figure 3.4: FSR range of TE and TM modes for a lithium niobate WGR with R = 1.6 mm
and r = 0.16 mm from the newton ring measurement.

3.3 Calibration of the Attocube positioner

A quantitative description of frequency shifts versus distance requires a calibration of posi-
tioner devices. To obtain the absolute distance or displacement in a range of nanometer, we
should calibrate the positioner components.

Attocube positioner is a piezoelectric (see [43] for more detail) which can be controlled
by a voltage source (attocube controller) and moves stepwise or continuously. A typical way
to measure the displacement with high accuracy is to use Michelson interferometer setup
as shown in Fig.3.5. In this setup, a movable mirror on the positioner moves towards the
PBS stepwise to change the beam path in one arm. The intensity of the interfered light will
change due to constructive and destructive interference and is captured by a photo detector.
To determine the relation between displacement x of the Attocube and the intensity I, we
fit a sinusoidal function to the experimental data (See Fig.3.5).

I = A+B.sin

✓
4⇡x

�

◆
(3.3)

x(V ) = aV 2 + bV + c (3.4)

(3.5)

The relation between the applied voltage and the Attocube displacement is:

x(V ) =
�

4⇡
(�0.008V 2 + 1.188V ), (3.6)



Figure 3.5: a) Michelson interferometer setup for calibrating the Attocube positioner. b)
Recorded transmission of the Michelson Interferometer as a function of the change of the
Attocube positioner. The black dots correspond to the measured datapoints, the blue line
represent the sinusoidal fit.

where, V is the applying voltage and I
0

is the initial intensity. The V 2 term determines that
the Attocube positioner behaves quadratically, which we discard for small displacements.
For low applied voltage 0.1 V, are equals to 7 nm displacement.

3.4 Measurement of the contact point

In order to calibrate the distance between the resonator and the dielectric substrate, we
should find the contacting point (the first point which the dielectric substrate touch the
resonator) as an origin. With this origin, the Attocube positioner can provide us the absolute
position of the prism or dielectric. Because of the high resistivity (⇡ 3⇥1014 �.m) of lithium
niobate [44], it is not possible to use a electrical current between the dielectric substrate and
the resonator to find the contact point. Therefore, we use a sensitive piezoelectric sensor
(see Fig.3.6.a).

The piezo is attached on the top of Attocube positioner and connected to oscilloscope
to monitor the signal induced by pressure. We apply a triangle voltage to the Autocube
positioner by a function generator ”Tectronix AFG 3022”. In this case Attocube oscillates
back and forth as it moves towards the block. When the piezo has not touched the block the
voltage that it produces is zero but as soon as the piezo hits the block, a peak will appear
in signal (see Fig.3.6). If the Attocube continues moving toward the block the peak height
is increased until the block and the Attocube oscillate together. Afterwards, the voltage of
piezo will not raise with increasing the voltage of piezo (see Fig. 3.7). The resolution of
exact contacting point depends on signal to noise ratio of piezo voltage and it is around 16



Figure 3.6: a) Setup for measuring the contacting point. We calibrate the distance between
the resonator and the dielectric substrate using contacting point as an origin. The piezo
(black) is attached to the Attocube and isolated with two pieces of ceramic material. A small
piece of aluminum is used as a tip b) The applied voltage to the Attocube is a sawtooth pattern
(red trace) function. The output voltage of the piezo shows the contact point. The blue trace
shows the contacting of tip and block when the tip is in maximum point of oscillation. When
the tip is completely in contact with the block during the oscillation and they oscillate together
the maximum of the peak is higher and the decay time is longer (orange trace).

nm in these experiments.

Contacting 
point

Figure 3.7: The piezo voltage via the Attodube movement toward the block is plotted. The
contacting of the piezo and the block induces a voltage in the piezo. The gray rectangular
shows the resolution of contacting point and it is 16 nm in this experiment.



3.5 Design of the setup chamber

WGRs are monolithic resonators and therefore very sensitive to temperature drifts and
vibrations. To avoid these e↵ects, one should shield the WGMR from environment. Here
we design an aluminum vacuum chamber for the WGR with 20 cm length, 19 cm width and
12cm height which it will be used in next generation of our WGMR experiments.

Figure 3.8: The portable aluminum chamber with optomechanical components a) in 3D mod-
eling and b) a picture of setup. The chamber has four windows for the optics and one hole
for evacuation. The electronics in the setup is connected via 15 pin D-type feedthrough.

As it is shown in Fig.(3.8), the chamber has four windows for incoming and outcoming
light. The windows are set in 135� angle to have maximum coupling of light into the resonator
regarding the prism coupling technique. These windows are covered by CF flanges for 10�9

bar with ability of changing for di↵erent coating window or using fiber coupling port. Inside
the chamber there are four commercial lens mounts where each has three degrees of freedom
for precise adjustment. The rod which is used in this chamber can be adjusted in di↵erent
height level.

Temperature inside the chamber is controlled by ”Wavelength Electronics LFI-3751” tem-
perature controller, a thermistor (NTC 100k⌦) as a sensor and a peltier ”UEPT-4151”. The
sensor and peltier element are located inside the rod to measure and change the temperature
of the resonator. The electronic parts are connected to the 15 Pin, D-Type feedthrough on
CF flange. The rod is mounted on a ceramic material and isolated from the metallic body of
the chamber. This helps to reduce environment temperature e↵ects on the resonator. The
lid of chamber is made of transparent Plexy glass which allows us to see inside the chamber
and control the setup easier. For this reasons this chamber can be used in many WGMR
sensitive experiments.



Chapter 4

Results and discussion

The resonance frequency of WGMR can change with several parameters such as temperature,
pressure or evanescent field-material interaction. Tuning the resonance frequency has vast
range of applications. The setup has to be stabilized in order to accurately measure the e↵ect
of these parameters. Therefore, in the first section, we examine the temperature stability
of the system. In the second section we focus on the possibility of the generation of PDC
using a 410 nm pump laser in a temperature stabilized lithium niobate WGMR. Finally, we
investigate the shift of the resonance frequency when a movable dielectric material approaches
the resonator.

4.1 Temperature stabilization with TE and TM modes

As described in section 2.3.5, the di↵erential shifts of the TE and TM mode frequencies allow
us to monitor the temperature variation due to di↵erent thermal coe�cients [39]. For this
reason we couple horizontal (TM) and vertical (TE) polarization simultaneously with the
setup as shown in Fig.(4.1.a). The radius of resonator is R = 1.08 mm and its curvature is
r = 0.16 mm. In this experiment we use a diode laser at 820 nm and test the temperature
stabilization of resonator chamber with measuring TE and TM mode shifts at 109.9�C. The
same experiment at 69.9�C and in vacuum is mentioned in Ref. [45].

The shifts of TE and TM mode in a period of time can be evaluate with two methods.
In the first method, di↵erential shifts between the minimum of a TE and a TM mode are
analyzed. The corresponding modes are determined in the mode spectrum of WGMR and
named case I and case II (see Fig. 4.1.b). The second method uses the technique of cross-
correlation of traces with more than 4 GHz range to extract the di↵erential drift between an
ensemble TE and TM mode frequencies. In both methods the frequency shifts can convert
to changes in temperature regarding Fig.(2.10) (for more information see [45]).

To reduce the e↵ect of pump frequency drifts one can use the second method. Fur-
thermore, in the cross-correlation method there is no need to track selected peaks which
can be disturbed during the measurement. The double cross-correlation idea evaluates the
cross-correlation of TM and TE mode frequencies at each time-step by correlating the first
time-step with each consecutive time-steps. The diagram of this method is shown in Fig.(4.2).
Each step of this diagram is also showed in Fig.(4.3). The variation of maxima in double
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cross-correlation picture, leads us the temperature drifts of resonator at that time.

Figure 4.1: a) The main part of the temperature stabilization setup. We set the temperature
at 109.9�C. The laser has both TE and TM mode polarization. The outcoupled light is
split with PBS and absorbed with di↵erent photo detector. b) Normalized TE and TM mode
spectra for the whispering gallery resonator. Traces with label case I and case II determine
di↵erent frequency drifts for di↵erent selected TE and TM modes.

In order to measure the frequency shifts, we run the system for one hour with one second
time-steps. The captured data is analyzed with both frequency shifts of minimum of the
modes and cross-correlation shifts methods in Fig.4.4. In this graph the frequency drifts
from the initial frequency is calculated. The di↵erent frequency shifts in case I and case II
represent the frequency shifts due to the temperature variation depend on number of the
modes. But in double cross-correlation method a wide range of frequencies are analyzed and
the shifts are independent from the mode number.

As it shown in Fig. 4.4 the frequency shifts in first 20 min is around 2 MHz but it rises
to more than 10 MHz in next 40 min. The reason can be the temperature fluctuations in the
laboratory (see Fig.4.5). The fluctuations are mainly ±1�C at 21.5�C but the temperature
fluctuation raises at specific hours because of the tra�c in the lab. Another reason might be
the limited sensitivity of the temperature sensor. If the temperature fluctuation is smaller
than the sensitivity of the sensor, the controller does not activate the heater.



Figure 4.2: The diagram of the data processing via cross-correlation. At each time step TE
and TM spectra are cross-correlated. In the next step the cross-correlations are correlated
again to determine the drifts.

Figure 4.3: a) We record 3 time steps of the TE and TM modes spectrum. b) We cross-
correlate the corresponding TE and TM modes at each time steps. c) Double Cross-
correlation of mods between first time step and the other next steps are shown. Inset: The
zoom of peak shows the frequency drifts from central frequency.



Figure 4.4: We calculate frequency drifts from the cross correlations method and the direct
di↵erential frequency of case I and case II. Di↵erent resonance frequency shifts for the case
I and case II indicate each mode number can shifts di↵erently with thermal changes. Both
methods show similar behavior but the frequency drifts of the cross correlation method di-
verges less and it is not dependent on the mode number. Here, 10 MHz frequency shift is
approximately equal to 1 mK temperature drift (see Fig. 2.10).

Figure 4.5: The laboratory temperature fluctuation in 24 hours. The temperature fluctuate
roughly 2 �C at each 2 hours time interval. At 17:00 and 12:00, the tra�c in lab is heavy
and the lab door open and close a lot. This will raise the fluctuation.



4.2 Towards parametric down conversion using blue

light

Lithium niobate is a widely-used nonlinear crystal to generate parametric down conversion
at 532 nm pump light with low power threshold (few µW) [38]. But generating a PDC in
ultra violate (UV) regime is challenging. In theory, this process is possible, however, the
conversion e�ciency of that is extremely low. The temperature dependence of PDC for 410
nm pump light is shown in Fig.(4.6). This graph is plotted with a program which has been
written in QIV group based on calculation in section 2.3.4, 2.3.2 and Sellmeier equation
(2.17). The generated signal has a wavelength around 500 nm and it is almost temperature
independent. As shown in this graph, the e�ciency of PDC at 410 nm is low.

Figure 4.6: Numerical simulations of phase-matching solutions between di↵erent WGMs with
di↵erent radial mode numbers q. Here, the angular mode number p is zero.

In this experiment we use 410 nm pump laser (SHG of 820 nm) with the maximum power
of 350 mW and the e↵ective power of 35 mW before the resonator chamber. The setup is
similar to Fig.(4.1.b) as described before with Fabry-Perot interferometer as a frequency
reference. Equation 2.54 represents that the PDC power threshold is highly depend on
the quality factor of the resonator for the pump and the signal. According to [38] the
experimental power threshold for 532 nm is at least 3 orders of magnitude larger than
theoretical prediction. The reason can be the resonator geometry. The calculation has been
done for spherical resonator but here we have a semi-spherical resonator. To understand the
power threshold at 410 nm, first we calculate it numerically. The graph of lithium niobite
absorption coe�cients points out the lithium niobate absorption in 410 nm is higher than



532 nm [46]. Considering the Q-factor Eq.(2.47), one can plot the Q-factor versus prism
coupling distance for di↵erent wavelengths numerically (see Fig.2.9).

Figure 4.7: Mode spectrum of lithium niobate WGR at a wavelength of 410 nm. The green
line shows the laser sweeping when it is not coupled to the WGR. The red line is the spectrum
of coupled light to the resonator. finding the fundamental mode is di�cult because the modes
are highly overlaped. Fabry-Perot is used as a frequency source in the lower trace.

The numerical Q-factor for 500 nm (signal) at the critical coupling point is around 2.2⇥
107 and for 410 nm is 1.03 ⇥ 107. But finding the Q-factor at 410 nm in experiment is
challenging. Because of the modes are overlapped in critical coupling region, finding the
fundamental mode is di�cult. This mode overlapping cause the mode bandwidth seems
wider and therefore the measurable Q-factor can have smaller amount than the real Q-factor.
The spectrum of resonator with 10 GHz sweeping is shown in Fig.(4.7). The experimental
Q-factor for 410 nm pump light is roughly 1.01⇥ 106. Calculating the power threshold with
e↵ective quadratic nonlinearity (�(2) = 17⇥10�12 [m/V]) and overlap integral (� = 2.64⇥109

m�3) gives the value of 55.1 µW . According to three orders of magnitude di↵erence between
theory and experimental result [38] observed in an earlier work, this value should be 55.1
mW . The maximum e↵ective power in this experiment is 35 mW before the aluminum
chamber and we should also consider the losses in the chamber. In order to achieve PDC we
should increase the e↵ective power or the Q-factor of pump laser at 410 nm.

4.3 Frequency tuning of whispering-gallery modes

In this section we are trying to explain the frequency tuning of the resonator with movable
dielectric material. The dielectric substrate can tune the resonance frequency by applying a
pressure on the resonator or the interaction of evanescent field and substrate. The temper-
ature changes which is not desirable in this experiment can shift the resonance frequency as
well. In all the experiments in this section we used Matlab code to control the position of



second Attocube and evaluate the data. In data evaluation process, by selecting a mode, the
program will plot the bandwidth, frequency shifts and reflected intensity of the mode while
the Attocube is moving.

4.3.1 Local temperature variations

In this experiment we used a diode laser with the infrared light at a wavelength of 820 nm.
The WGR is z-cut lithium niobate with the resonator radius R=1.6 mm and the curvature
radius r = 0.16 mm. In order to align the system we use green light at 532 nm. Green light
has florescent e↵ect inside the diamond which could help to follow the light direction inside
the prism and find the proper incident angle. After this rough alignment, we switch the laser
into IR and align the system for this laser precisely. The scheme of main part of setup and
the side view of the resonator and the dielectric substrate is shown in Fig.(4.8).

Figure 4.8: a) Scheme of the frequency tuning setup with movable dielectric material made of
zinc oxide. The temperature is set above room temperature (45�C). b) Side view of the setup.
The dielectric blocks the convection (red arrows) which causes the resonator to heat up. The
thermistor under the resonator does not feel this local warming because of its distance to the
top of the rod and as a result the temperature controller will not compensate the temperature
change.

The second Attocube moves towards the resonator stepwise. Because of stranger e↵ect
and easier calculation in theory we try to select the fundamental mode. But finding this
mode is not always straightforward. We can guess the fundamental mode or a mode with
small mode number from coupling contrast and bandwidth (see Fig.4.9.a). We measure
the mode shifts for TE and TM via coupling distance by applying a voltage to the second
Attocube.

Applying 21 V to the Attocube corresponds to 1400 nm displacement. The graph of
frequency shifts versus Attocube displacement is shown in Fig.(4.9.b) at 45�C. This graph
illustrates that the mode is shifted even when the dielectric substrate moves far from the
resonator (around 1 µm far). The possible scenario is in the presence of dielectric substrate,
the convection is influenced by the surface of dielectric substrate. This can change the



Figure 4.9: a) We assume the marked mode is a fundamental mode in the WGMR spectrum
while it has the narrowest bandwidth and the maximum coupling contrast. b) The frequency
shifts of the selected mode in each Attocube moving steps. The vertical dashed line shows
the probable contacting point. The temperature variations can shift the resonance frequency
due to the dielectric substrate movement. Before the contacting point, in temperature e↵ect
area, the Attocube voltage is directly proportional to the dielectric substrate displacement (⇡
69 nm/V). The mode shifts in pressure e↵ect area most probably arises from the dielectric
substrate pressure on the resonator.

temperature of the WGR and heat up the upper part of the rod localy. While the thermistor
is inside the rod and is located 14 mm lower from its tip, the thermistor cannot recognize
these changes and will not compensate the temperature di↵erence (see Fig.4.8.b). With
moving the dielectric substrate towards the resonator, the temperature changes and it shifts
the resonance frequency as well.

In Fig.(4.9) the red shift turns to blue shift around the vertical dashed line. This can
points out either the dielectric substrate hit the resonator or the WGR evanescent filed
interact with the dielectric substrate. The same experiments have been done at 30�C, 60�C
and 75�C and the results is obtained .

4.3.2 Frequency shifts at room temperature

One way to avoid local temperature drift is measuring the data at room temperature and
without temperature controller. While the resonator is completely shielded with the cham-
ber, room temperature variations has a minor e↵ect on the resonator. In Fig.(4.10) the
mode shifts via voltage of Attocube at room temperature is illustrated. When voltage of
the Attocube is zero, the distance between the WGR and the dielectric substrate is much
greater than evanescent filed of the WGR. By applying voltage to the Attocube this dis-
tance is reduced until the dielectric substrate contacts the resonator. Despite Fig. 4.9.b, in



Figure 4.10: The TE mode shifts versus the position of dielectric substrate is plotted. The
mode shifts is saturated when the dielectric substrate is far from the resonator at room tem-
perature. The laser drifts can slightly shift the mode in this region. We consider the point in
which the bandwidth is changed as a contacting point. The mode shifts before the contacting
point can be described by evanescent field e↵ect.

Figure 4.11: Frequency shifts in Fabry-Perot and WGR due to temperature and laser central
frequency drifts. The slops of linear fitting in a stable temperature must be the same.

this measurement there is a very small shift when the dielectric substrate is far from the



resonator. This can reinforce the hypothesis that temperature controller a↵ects the mode
shifts when the on dielectric substrate is moving towards the resonator.

The small mode shift when the distance between the dielectric substrate and the WGR is
great can arise from the laser drift in time. Fig. 4.11 determines the mode shifts in the WGR
and Fabry-Perot. In order to estimate the laser frequency drift, we compare the Fabry-Perot
mode shifts with resonator mode shifts. Then with linear fit, we can find the estimate value
of laser drifts in period of time.

If the dielectric substrate touch the resonator and push it toward the coupling prism, the
coupling distance will be changed and as a result the bandwidth of the mode will also change.
Therefore, We consider the point in which the bandwidth start to shift as a contacting point.
The mode shifts before this point can be caused by the e↵ect of evanescent field and the
shifts after the contacting point can be due to the pressure e↵ect.

Figure 4.12: The position dependent shifts of resonance frequencies of a WGMR with radius
R = 1.6 mm at a wavelength of 820 nm. The modes with di↵erent polarization shift in a
same direction.

The di↵erent TE and TM modes are shifted in the same direction when the dielectric
substrate moves toward the resonator (see Fig. 4.12). The shift before the assumed contact
point is not more than 10 MHz.

One important point at room temperature experiment is the system must be in equi-
librium with its surrounding. This process can take a quite long time (over 6 hours) if the
system was in higher or lower temperature before.



Movable coupling prism

The resonance frequency can also shifts when we are trying to couple the resonator with
movable diamond coupling prism. Regarding to size of the chamber, we could not use the
piezo to find the contacting point but one can approximately find this point with variations
in bandwidth of a mode (see Fig.4.1).

Figure 4.13: We plot the bandwidth of TE and TM modes of the WGMR (R = 1.6 mm)
against the displacement of the coupling prism. We can extract the contacting point by a
fitting from Eq.(4.2) to the TE and TM experimental data. Here the fitting parameter A
for TE mode is one. This means this resonator properties are quite similar to spherical
resonator. This value is 0.83 for the TM mode.

The mode bandwidth rises exponentially with the distance between the prism and the
WGR in evanescent field and can be calculated as:

� = �
i

+ �
c

(4.1)

where �
i

is the intrinsic bandwidth and is a constant value. �
c

is the loading bandwidth and
derives from Eq.(2.49, 2.33). The Eq.(4.1) can be applied for spheroidal resonator with a
constant coe�cient A as a factor of geometrical changes:

� = const.+ A�
c

. (4.2)

With applying the simulated data from the theory we can estimate the position of the
resonator. This can help us to find the prism coupling mode shifts before it touch the WGR
(see Fig.4.14). Here the maximum mode shifts is roughly 6 MHz for TM.



Figure 4.14: The resonance frequency of the TE and TM modes shifts with movable coupling
prism. Theses shifting are caused by moving the dielectric substrate in the evanescent filed
of the WGR. As theory predicted, both shifts are in a same direction.

Figure 4.15: The normalized coupling contrast of TE and TM modes against the traveling
distance of the coupling prism. We extract the critical coupling distance for TE (20 nm) and
TM (34 nm) by fitting Eq.(2.46) to the data. The modal overlap between the incident field
in the prism and the propagating mode in the resonator A is 0.4 in this case. The fitting
mismatch for TM mode can caused by the step jump of the Attocube during the experiment.

As we mentioned in section (2.3.3) the normalized reflected intensity is zero in critical
coupling and is one when the prism is far away. To find out the critical coupling distance
one can plot the reflected intensity value for di↵erent coupling distance (see Fig.4.15). Here



the numerical graph (see Eq.2.46) does not fit to the experimental data but it illustrates
the same behavior. This mismatch can be result of the Attocube jump in steps during the
move. The other reason is the coupling contrast for TE and TM is around 14 % and 22 %,
respectively in the critical coupling distance. Therefore, the coupling contrast in each step
is rather small and they are not clearly distinguishable and can increase the measurement
error during the experiment. The graph approximately can show us the critical coupling
distance for TE and TM modes which is important for a e�cient coupling in WGMR.

In this experiment, we were able to confirm the interaction of evanescent field with any
material can change the resonance frequency. This can help us to analyze the WGMR
spectrum in di↵erent coupling ratio. Additionally with moving a dielectric in the evanescent
field we can finely tune the resonator without any mechanical or geometrical changes in the
resonator.

4.3.3 Pressure tuning by movable dielectric substrate

For two reasons the resonance frequency can shift when substrate is hundreds of nonometer
far form the resonator: 1. The temperature e↵ects and 2. The laser frequency drifts. Due
to the length of field decay outside the WGR (⇡ 110 nm), the evanescent filed cannot a↵ect
the resonance frequency in a range of 600 nm displacement (from 21 to 12 V in Fig.4.10). As
a result, the mode shifts in this region cannot be only because of the evanescent field e↵ect.

Figure 4.16: The pressure tuning setup using piezoelectric to find the contacting point. The
laser is swept over an adjustable bandwidth for 20 ms and set to central frequency for 80
ms. The second Attocube oscillate after 35 ms delay. After this 100 ms, the Attocube moves
forward one step (0.1 V). This process is repeated for the given Attocube steps iterations.



Figure 4.17: We measure the position dependent shifts of resonance frequencies of TE and
TM modes at a wavelength of 532 nm. The contacting point is measured with a piezoelectric
transducer having an approximate accuracy of 0.23 V (16 nm). Small nonlinear frequency
shifts for TE and TM modes around the contacting point are observed, which we attribute
them to a polarization of the dielectric substrate by WGMR evanescent fields. For higher
voltages, we measure nearly linear frequency shifts as we expected from section (2.2.3). Here
the shifts are in di↵erent directions regarding the mode polarization.

We consider on situation that the dielectric substrate touches the resonator and presses
it. In order to study the pressure e↵ects, we should find the exact contacting point with the
method which is explained in section (3.4). In this experiment we use another setup shielded
with polyethylene foam. The laser light is SHG of Nd-YAG (green light) at 532 nm and we
work with the z-cut lithium nionate resonator with R = 2.5 mm and r = 0.58 mm [9]. Here,
the ZnO dielectric substrate is glued to an aluminum tip. The laser, function generator and
oscilloscope, are connected to the laser trigger (see Fig.(4.16). The laser sweeping time is
set to 20 ms in the current experiment. After the sweeping, the laser frequency is set to the
central frequency for 80 ms. At this time, the function generator starts to sweep with 15
ms delay. Indeed, the function generator has 35 ms delay and sweeps 20 ms. This generator
sends 15 mV signal to the Attocube controller. The signal applified by factor of 15 and
it is applied to the second Attocube positioner. The Attocube can oscillate around 16 nm
with this voltage. This is enough to see the signal when the piezo hit the resonator. The
intensity of piezo signal in each step is plotted in Fig.(4.17) This voltage will saturate when
the dielectric substrate is completely in contact with resonator during the oscillation.

The frequency shifts of TE and TMmodes are measured with moving the second Attocube
towards the resonator. Here the TE mode has a red shift but the TM mode shifts into
blue. According to the section (2.3.6) the shifts should be in same direction for hydrostatic



pressure. Interestingly, in the previous setup these shifts were in the same direction for
di↵erent polarizations (see Fig. 4.12).

The asymmetric applied pressure or di↵erent order of the modes can be the reason of
di↵erent shift directions of TE and TM modes. In Ref. [47] symmetric pressure on a
solid polystyrene microsphere causes the shifts of the modes. These shifts can be in same
or di↵erent direction due to the mode numbers. The paper mentioned, after a specific
number the mode shifts direction will change. But this number is p ⇡ 150 for polystyrene
microspheres. In our experiment the angular mode number cannot be near 150. But it is
possible for lithium niobate this number is di↵erent from polystyrene. To understand this
critical angular mode number of lithium niobate one should solve the same problem with
this material.

4.3.4 Evanescent field tuning by movable dielectric substrate

The dielectric substrate can have interact with the evanescent field of WGMR according to
theory and experiments [1]. The movable dielectric substrate in the evanescent field change
the resonance frequency of the resonator. The Fig.(4.12) illustrates the evanescent filed

Figure 4.18: a) The evanescent field tuning setup with movable x-cut lithium niobate prism.
The s-polarized light can outcouple into a second x-cut prism made of lithium niobate but the
p-polarized has a higher refractive index in the WGMR than the second prism and it cannot
coupled out with the second prism. b) The resonance frequency of TM modes (p-polarized)
are changed inside the evanescent field with the position of movable second prism. After the
assumed contact point the di↵erent mode are moving in di↵erent directions depending on
mode numbers. Some modes are shifted before the contacting point which we attribute it to
evanescent field e↵ect. This shifts are appeared as a kink in the contacting point area.

has a minor influence on resonance frequency. Hence, we used a high Q-factor resonator and
select the mode with 2.2 MHz bandwidth to see the mode shifts better. Here, we used a



Figure 4.19: The changes in coupling contrast and resonance frequency (mode shifts) for
TE and TM modes. The contacting point is selected with the drastic change in coupling
contrast. The TM mode shifts exponentially in evanescent field of WGMR around 6 MHz.
The TE mode coupling contrast is decreased gradually due to second prism outcoupling and
the resonance frequency shifts does not considerable.

Figure 4.20: The numerical simulation of the evanescent field e↵ects. The TE and TM mode
shifts are a factor of 10 greater than the experimental results. Both TE and TM modes are
shifting in same direction (red shift).



WGMR made of lithium niobate with R=2.13 mm and diode laser at 1550 nm wavelength.
To avoid pushing the resonator to prism side and changing the coupling distance, we put
the substrate with 90� angle to the prism. Here, the dielectric substrate is an x-cut lithium
niobate prism (see Fig.4.18.a). This experiment has been done by Florian Sedlmeir.

In the spectrum of p-polarization light, there are some modes where drifts in di↵erent
direction as shown in Fig.(4.18.b). The graph elaborate that the pressure can drifts the
modes in di↵erent directions due to their mode numbers. Here, some modes have a kink
before they start to drift linearly.

We investigate the region which the kink appears. In Fig.(4.19), the coupling contrast
and the shifts of TE and TM modes are plotted. The drastic change in coupling contrast
of TM mode indicates that the substrate and the resonator are in contact. For TE mode
the light is outcoupled with x-cut lithium niobate (second prism). Therefore, the coupling
contrast has gradually decreased. This phenomena is known as selective coupling. The s-
polarized light into the x-cut lithium niobate prism and z-cut WGR made of same material
produces TM and TE modes, respectively. TE modes in resonator (z-cut lithium niobate).
Due to the polarization dependence of refractive index in lithium niobat (see section 2.2),
the refractive index of the TE modes is smaller than the TM. As stated in Eq.(2.43) the
light can only couple when n

p

is greater than n
s

. Therefore the TE mode can couple out
with the x-cut prism but TM mode cannot outcoupled.

Figure 4.21: A tilt of substrate or resonator can make a gap in equatorial position of a
WGMR when the substrate touches the resonator. The length of this gap depends of tilting
angle and the resonator’s small radius (radius of curvature). This length can be more than
the length of the evanescent field of the mode.

The frequency shifts due to the evanescent field is clearly more than 5 MHz. But this
value according to the theory should be 100 MHz (see Fig.4.20). Below we will discuss about
few parameters which can cause this di↵erence.



• The theory shows the frequency shifts in the fundamental mode but the mode which
we have selected can be a higher order mode with less intensity and shorter decay
distance.

• The WGMR and the dielectric substrate must be completely orthogonal to each other.
Any tilt of WGMR or dielectric material can cause a gap between them when the
dielectric substrate touch the resonator. In Fig.(4.21) we determine the gap after
touching for di↵erent tilting angle of the substrate. This gap can be more than the
length of field decay if the dielectric substrate is tilted only 2 degree.

• In theory, the resonator has a cylindrical geometry. This means the whole surface
of resonator in polar direction interact with substrate but in spherical geometry the
interaction surface will decrease due to rim curvature.

Although the mode is shifted 5 to 10 MHz in this experiment but we are able to tune
the frequency continuously and without mechanical interaction with this method.

It is remarkable to know that by coupling the light with one prism we can in principle
always steer the beams such that we find a mode that couples well, but if we try to couple
out the same mode with a second prism the tilt of this second prism has to match with the
first prism.



Chapter 5

Conclusion and outlook

Frequency tuning of WGMR can be used in spontaneous parametric down convention (SPDC)
experiment to tune the single signal and single idler photons continuously. This tuning has
also many applications in atomic transition and the quantum communication.

In this thesis we investigated the frequency tuning of the WGMR via a movable dielectric
substrate. The WGMR in this experiment is a spheroidal resonator made of lithium niobate.
The movable dielectric is a plane surface glass coated by a layer of zinc oxide with 100 nm
thickness or a x-cut lithium niobate prism. The dielectric substrate could interact with
evanescent field of WGMR and manipulate the resonance frequency (up to 10 MHz for
large disc R=2.1 mm). According to the theory and experimental results (see Fig.4.19)
the resonance frequency will exponentially increase with deceasing the distance between
the dielectric substrate and the WGR. When the movable dielectric substrate touches the
resonator, it will change the elasticity and geometry of the resonator. Applying external
pressure on the resonator by moving the dielectric substrate forward can tune the mode
frequency in a range of few GHz [9]. In contrast to evanescent field tuning, the resonance
frequencies are changing linearly with pressure. The direction of the mode shift (red or blue
shift) depends on the number of WGMs. The mode shift changes its slop as the angular mode
number p is higher than critical p number [47]. This p mode number is still not calculated
for lithium niobate WGR.

The resonance frequency highly depends on temperature. We measured the temperature
stability of the system with di↵erential shift of individual TM and TE modes. The TE and
TM modes frequencies have di↵erent temperature coe�cients in lithium niobate WGMR.
Their di↵erential shift provides a sensitive way to measure of the temperature variations.
The stability of the temperature in this case was less than 1 mK during 20 minutes.

In order to have a reliable measurement we redesigned an aluminum chamber to shield
the resonator from surrounding changes. This can improve the stability of system and make
the setup portable.

As a first application of our WGR setup we investigated the PDC process for lithium
niobate (with 5% Mg doped) resonator in blue light (410 nm wavelength). The maxium
power which we pumped into the resonator was around 38 mW. According to the theory
and in comparison with the experimental results at 532 nm wavelength (green light), the
power threshold should have been more than 55 mW. This threshold is much higher than the
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value for green light. One reason for this di↵erence is higher intrinsic absorption of lithium
niobate at blue light.

As a future plan one can find the pressure e↵ect for specific mode number. This has been
done for uniaxial pressure on solid polystyrene microspheres in theory and experiment [47].
With calibrating the mode shifts via pressure, the WGMR can be used as a sensitive pressure
sensor. The relation between pressure and the mode number can also help to identify the
modes. In this thesis, the frequency shift of interaction between WGR’s evanescent field and
movable dielectric substrate was simulated for a cylindrical resonator disc. A future analysis
of spheroidal WGMR can explain our measured shifts. Furthermore, the dielectric substrate
tilting can reduce interaction for the fundamental modes. By addjusting the resonator,
coupling prism and dielectric substrate with more accurate device and controlling them with
more degrees of freedom we can avoid such experimental errors.
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