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Abstract

Distributed applications are becoming more common, especially cloud-based applications are
a major topic in recent research. These application mostly contain complex application logic
and should be built for dynamic adoption. Thus monitoring of an applications components is an
important topic for adaption and scalability.

There currently are different methods of adaption approaches: localized and remote.
Localized approaches do not always yield optimal solutions due to their localized views.

Adoption strategies might include or effect multiple parts of the application, or might need
information of those parts to create an optimal adoption strategy. Due to the localized view it is
impossible to assess the impact of the adaption effects in one part of the system on other system
parts, thus yielding sub-optimal adaption strategies and unforeseen side effects.

Remote approaches on the other hand provide a holistic view which allows for more intel-
ligent adoption strategies. But existing solutions have limitations with distributed applications.
Pure probing might not be feasible (e.g. bandwidth, granularity, . . . ) and the given level of
details may not be needed by the adaption control.

We propose a distributed architecture tracking framework based on architecture-based-self-
adaption. By decoupling the application and the model generation itself we are able to generate
a holistic view of the overall application architecture. Thus it is possible to perform optimal
adaption decisions for the application.

Our proposed framework is evaluated using a simple distributed application, that is a cloud-
based publish-subscribe system.
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Kurzfassung

Forschungen auf dem Gebiet der verteilten Anwendungen belegen dass diese immer mehr Be-
deutung gewinnen. Besonders Applikationen die in Cloud-basierten Umgebungen laufen

Diese Anwendungen enthalten meist komplexe Anwendungslogiken die darauf ausgelegt
sein sollten sich dynamisch an eine sich verändernde Umgebung anzupassen. Um Anpassungen
aufgrund solcher Umgebungen automatisiert durchführen zu können ist es wichtig Anwendun-
gen und deren Umgebungen zu beobachten.

Es existieren verschieden Ansätze um auf verschiedene Ereignisse, die während der Laufzeit
einer Anwendung aufträten, zu reagieren. Hierbei unterscheiden sich die Ansätze nur durch die
Umgebung in der sie eingesetzt werden.

Lokale Adaptionsstrategien basieren auf Informationen die eine Anwendung lokal sammeln
kann. Dies kann zu Adaptionsszenarien führen die nicht optimal für eine verteilte Anwendung
sein können. Solche Adaptionsstrategien umfassen meist mehrere Teile einer Applikation oder
benötigen Informationen von diesen um eine optimale Strategie zu erstellen. Aufgrund der Un-
vorhersehbarkeit, die eine solche Adaptionsstrategie auf eine verteile Applikation haben kann
sind diese für verteilte Anwendungen nicht zu empfehlen.

Durch externe Adaptionsmechanismen ist es möglich einen vollständigen Überblick über
eine verteile Applikation zu erhalten. Dies ermöglicht es bessere Adaptionsstrategien auszuar-
beiten. Existierende Ansätze weisen jedoch Beschränkungen für optimale Strategien für verteilte
Applikationen auf. Dies kann auf die verwendeten Ansätze zurückgeführt werden wie Informa-
tionen über das verteilte System gesammelt werden. Eine simple Sondierung von bestimmten
Informationen könnte aufgrund von diversen Faktoren (z.B. Bandbreite, Granularität, . . . ) nicht
praktikabel sein. Des weiteren könnten die gegebenen Informationen nicht ausreichend für Er-
stellung einer optimalen Adaptionsstrategie sein.

Wir stellen ein Framework vor welches speziell auf verteilte Applikationen ausgerichtet ist
und auf architecture-based-self-adaption basiert. Unser Ansatz entkoppelt die Applikation von
der Adaptionslogik. Dies erlaubt es einen Überblick über die gesamte Applikation einfach zu
erstellen und aufgrund dessen eine optimale Adaptionsstrategie zu erarbeiten.

Unser vorgestelltes Framework wird mittels einer simplen verteilten Applikation, einem
cloud-basierenden Publish-Subscribe System, evaluiert.
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CHAPTER 1
Introduction

Distributed systems are more and more associated with self-* properties. Especially the im-
portance of self-adaptive systems is increasing. Such systems are required to handle different
scenarios for self-adaption [7]:

• A system error covers an undesirable condition from the target system itself.

• Environmental changes and resource variability describe an undesirable condition that
arises outside the target system but causes problems for the target system itself.

• A change in user needs consists of a change to the requirements of the target system.

These scenarios share one common property of being a change that was not planned during the
system’s development.

To cover these scenarios self-adaptive system must be able to monitor and analyze changes
as well as adapt to those. There currently exist two different approaches to the realization of
self-adaptive systems:

• Internal mechanisms are heavily used in today’s software. These mechanisms include
exception handling and fault-tolerant protocols, which are easy to use and integrated in
most of today’s programming languages. They provide a localized view of the system and
are directly integrated in the system itself.

• External mechanisms provide a separation between the adaption itself and the target sys-
tem to be adapted. The adaptation logic is extracted from the target system and treated
as a separate component. Prominent existing approaches are the IBM MAPE loop [40]
illustrated in Figure 1.1 and the Closed-Loop control based on the Rainbow framework [7]
illustrated in Figure 1.2.

1



Figure 1.1: IBM MAPE loop [40]

Figure 1.2: Closed-Loop Control [7]

To react to different changes self-adaptive systems need a model to reflect the system and it’s
properties. Some recent work in this field suggests an architectural model. Such models provide
a global system perspective, expose important properties and constraints [16, 43, 44]. This type
of adaption is also known as architecture-based-self-adaption.

1.1 Motivation

Distributed applications are becoming more common, especially with the arising of cloud-based
applications distributed systems containing complex business logic have been created. Such
systems have been a major topic in recent research as well as the real world. These applications

2



should be built for dynamic adaption. The first step to the realization of self-adaptive systems is
to include monitoring for the extraction of important system properties.

There currently exist different methods of adaption approaches which do not yield optional
results for distributed systems:

• Localized approaches only provide a localized view of a single part of the application.
Adaption strategies might include or effect multiple parts of such applications, or might
need information of other parts to create an optimal adaption strategy. Thus such ap-
proaches might lead to undesired system adaptions yielding non-optimal application states
with unforeseen side effects.

• Remote approaches on the other hand provide a more holistic view of an application which
allows for more intelligent adaption strategies. But existing solutions have limitations
with distributed applications. Pure probing might not be feasible (e.g. limited bandwidth,
granularity, etc.) and the given level of details may not be needed by the adaption control.

• Other approaches are e.g. based on hierarchical decomposition of adaption managers, hid-
ing details within each level. These approaches include an inefficiency if there are many
decomposition levels. Upwards monitoring- as well as adaption (downward) events take
some time to reach it’s destination. These latency issues might cause undesired adoption
strategies.

We propose a distributed architecture tracking framework based on architecture-based-self-
adaption. We are able to deploy our framework localized or remotely using both kinds ap-
proaches. Thus we are able to generate a localized architecture view for each part of an applica-
tion and aggregate them to show the overall architecture of a distributed application.

Cloud-based environments create further challenges for distributed systems which aim to
optimally scale such applications. Resources may be added by creating new virtual machines
and thus extending a distributed application to handle increased system load and vice versa to
decrease the costs of running them. Thus we chose to run our evaluation scenario in such an
environment. From the previously described components of our evaluation application we run
most of them on virtual machines in the cloud. Namely publishers and the message broker are
each run on dedicated machines. To be as close as possible to a real-world scenario we run the
subscribers in a local (non-cloud) environment. This allows us to create audio streams in the
cloud and start the playback on commodity hardware, i.e. a Personal Computer (PC).

1.1.1 Motivated Scenario

We have aimed to evaluate our proposed approach using scenarios that already exist in the real
world, thus we have chosen to create a distributed system for audio-based streaming. This sce-
nario has some interesting traits that make it challenging for a distributed system, this includes,

3



but is not limited to, the real-time transfer of data and different quality of service levels to ensure
that the provided streams may be consumed without failures.

Furthermore we have extended the simple audio-based streaming scenario by using a publish-
subscribe system to handle multiple audio streams at the same time. This allows us to process
multiple stream sources simultaneously and gives clients the ability to only subscribe to certain
audio streams based on their preferences.

Our evaluation application consists of three components, publisher, message broker and sub-
scriber, as shown in Figure 1.3. We have created a generic publish-subscribe system that is ca-
pable of delivering all kinds of messages. The transport of audio data creates some challenges
for a publish-subscribe system. This includes the special handling of audio-based meta-data and
the delivery of messages in the correct order to support a successful playback of audio streams
for clients.

The scenario in general was inspired by the work presented in [18].

Figure 1.3: The components of our evaluation application each run separately.

Creating a dynamic publish-subscribe system where many clients may create difficulties
involving the dynamic handling of these. Most environments provide capabilities to handle these
scenarios with little to no effort, but some architecture-based software adaptation approaches do
not provide such capabilities. This requires us to overcome this shortcoming by extending the
approach itself to provide these capabilities.

Our approach is aimed to overcome these shortcomings by providing methods to directly
interact with the runtime architecture of an application. This allows the application to directly
manipulate the architecture and dynamically create or remove components or connectors. By
directly exposing the architecture we are not limited to a certain design- or architectural-pattern.
Thus our approach may be used in all kinds of architectures not just publish-subscribe systems.

Choosing a publish-subscribe system as our evaluation application ultimately allows us to
use it directly in our approach.

1.2 Results of the Master’s Thesis

The effective outcome of this thesis is a distributed architecture tracking framework providing
the following capabilities:
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• Local and decentralized (sub-)architecture management
The architectural model will be made ware of which elements (i.e. components or con-
nectors) are located on different hosts. Thus enabling control differentiation over those
elements that are under immediate control and those that require remotely triggered adap-
tation. By decoupling the application and architectural model generation we are able to
directly create a holistic view of the application as well as a view of the local architecture.

• Architecture probes and sensors for cloud application, based on our evaluation sce-
nario
The prototypical tools will allow the collection of architectural elements and their config-
uration in cloud-based environments. This includes the implementation of specific probes
and sensors tailored to the evaluation scenario.

• A distribution mechanism for aggregating the overall architecture on specific gran-
ularity levels
Based on the publish-subscribe paradigm higher level architecture model managers will
be able to specify at what granularity level they require change events (i.e. added/removed
components/connectors/links) and receive those events from various localized architecture
managers for ultimately constructing a holistic system architecture view.

The created framework is evaluated using a simple, cloud-based, publish-subscribe system. Thus
showing the integration of the framework, the creation of the architectural model and the advan-
tages of using the framework.

1.3 Structure of the Master’s Thesis

The topics of this thesis are organized as follows:

Chapter 2 will give an overview of related research work for runtime adoption and the
handling of runtime models. Additionally related work on the field of dependency injections is
presented.

Chapter 3 will introduce the tools and methods that will be used in this thesis. Here we will
cover the description of the architectural style and the associated technologies.

Chapter 4 presents the methodology of our approach and will present the our evaluation
scenario in more detail.

Chapter 5 presents our architecture tracking framework. We will explain the details of our
approach and the resulting framework. We will also show how the created framework can be
integrated into different kinds of applications.

Chapter 6 describes the evaluation of our approach using a simple publish-subscribe system
running in a cloud-based environment. We shall give a detailed overview of the scenario and the
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results we have extracted. Due to the cloud environment we can show how our approach works
in a decentralized environment.

Chapter 7 summarizes our work and will give an outlook to possible future work.
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CHAPTER 2
Related Work

This chapter gives an overview of existing research work regarding self-adaptive systems. Here
we will focus on the used models during design- and runtime and how these models are created
and extracted.

Additionally we will compare Myx and especially myx.fw to other existing solutions for
(architectural-) dependency injection.

2.1 Runtime Architecture Modeling

The Myx architectural pattern is one of many patterns used for architecture-based software adap-
tation. In this section we will compare different approaches that employ runtime monitoring as
our approach does. Here we will focus on the way each approach represents a running (dis-
tributed) system.

One of the first approaches of architectural software adoption was introduced by Gorlick
and Razouk [32] by using automated agents, called weavers, to monitor a distributed system
consisting of networks of fine grained tool fragments called weaves. These tool fragments work
with simple objects by using them as inputs and producing them as outputs and transporting
them via ports. Weaves themselves provide methods to observe their behavior which is used by
the weaver to dynamically adapt the weave.

One of the most popular approaches to runtime adaptability is the IBM’s approach to au-
tonomic computing [35, 40] which introduces autonomic managers and the IBM MAPE loop
(see Figure 1.1). Each autonomic element is managed by one or more autonomic manager(s)
which monitor the behavior of the element and it’s connections to other autonomic elements.
The autonomic manager is integrated at an architectural level.

In the following we will group the approaches by their employed (architectural) runtime
model.
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The C2 architectural style [49], a predecessor of the Myx architectural style, was one of the
first component and connector based architectural styles that has been used to issue architectural
changes at runtime [44, 45]. The runtime model is described by the C2 architectural style and
deployed with the application which allows it to evolve at runtime. This approach is extended
in [16] by describing the runtime model with XADL 2.0 and adding external monitoring for the
runtime model.

A widely used approach to runtime monitoring is the use of probes and gauges. One of the
first approaches to use probing to extract information about an architectural model at runtime
was described by Schmerl et. al. [46]. The approach uses probes to extract information about
the runtime system and gauges to propagate this information to a central entity creating the
architectural runtime model. This model is represented using Acme Architecture Description
Language (ADL) [23]. The defined probes represent a mapping of the architectural model and
the runtime observations.

Clemens et al. [8, 9] introduced multiple architectural views at runtime that follow differ-
ent styles. The paper introduces three view-styles: module-, component-and-connector- and
allocation view-type. Each of these styles represent another aspect of software architectures.

Another representative approach to self-adaptive software is Rainbow [22] which uses exter-
nal runtime architecture monitoring [24]. The running system is represented by a graph-based
architectural model [7] that is based on the different views introduced by Clemens et al. [8].
In this model the nodes represent components (which can be sub-architectures) and the edges
connectors, where each of them can have different kinds of architectural properties [4]. The
monitoring component is a central entity monitoring the whole application [25], which may be
decentralized. The extraction of architectural properties is done via probes and gauges and trans-
lated into the runtime model [5]. The rainbow framework comes with an integrated adaptation
engine which uses the Stitch language to define all kinds of adaptation strategies [6].

The Mobility- and Adaptation-Enabling Middleware (MADAM) [21] is an approach focus-
ing on the different variants of software architectures. It uses component frameworks [48] at
different stages in an applications development, that is at design- and runtime. As in other
approaches the component framework consists of components which may be atomic or a com-
position of other components. The components interact using ports for interaction (connectors).
Both components and connectors have different properties attached to them which may change
at runtime. The runtime monitoring is done by observing the properties attached to components
and connectors externally [33]. These observations are reflected into the runtime model, which
is called instance architecture model.

Di Marzo Serugendo et al. use an service-oriented architectural model in their approach pre-
sented in [17]. Each defined component contains runtime-meta-data. This meta-data is extracted
and stored directly by the runtime environment, which itself uses a service-oriented architecture
as well.

Weyes et al. [56] describe a truly decentralized approach to runtime adaptation. The archi-
tecture of an application is composed of self-adaptive units. As such self-adaptive units have
only control over the part of the application that is running on the local (sub-)system. Un-
like the monitoring of centralized setting, such as Rainbow or MADAM, the self-adaptive units
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may only directly monitor the local system, leading to a partial model of the complete sys-
tem. Therefore self-adaptive units may need to interact with other units to share the locally
collected data. The monitoring of a self-adaptive unit is composed of two parts. The first one
being platform-dependent hooks which extract values from the runtime system and platform-
independent interpretation logic which validates the monitored data and passes it to the runtime
model. The runtime model is represented by different meta-level models: the system model that
is a representation of the running system, the concern model which models objectives of a self-
adaptive unit (e.g. an optimization problem), the working model representing shared information
between meta-level computations and the coordination model used to describe the coordination
between other self-adaptive units. Meta-level computations are the typical feedback control loop
computations found in self-adaptive systems.

Amoui et al. [1] propose a low level approach to self-adaptive software. The Graph-Based
Runtime Adaptation Framework (GRAF) can be integrated into Java applications. The runtime
model is based on TGraphs [19], a graph based model describing the state of the adaptable
software. To handle the adaptations different behavior descriptions are directly integrated into
the runtime model. The state of the application is extracted using Java annotations and Aspect
Oriented Programming (AOP). It is described by explicitly exposed variables, control flow
points as exposed methods and actions as different behaviors for control flow points. The model
is updated as soon as the value of a variable changes which triggers the integrated adaptation
engine. As this is a low level approach it may only be used for adaptations of one application
instance which makes it unsuitable for distributed systems.

Using model-engineering based approaches and meta-models to define the architectural
models of an application is recently gaining more attention in research. Thus we will discuss
some of those recent approaches.

The approach described in [57] uses an architectural model which separates non-adaptive be-
havior from adaptive behavior. Global invariants define properties to be satisfied by the runtime
model. The verification of such properties is done using model checking.

Solomon et al. [47] introduce two separate models, a Platform Independent Model (PIM) and
a Platform Specific Model (PSM). The PIM represents the general architecture of an application.
The PIM is represented as a UML meta-model and is transformed into the PSM using different
mappings. The PSM is further partially transformed directly into executable code. Different
kinds of sensors send data about the running system to the runtime model which is filtered and
the PIM is updated accordingly.

The approach introduced by Vogel et al. [53] takes the idea of multiple meta-models even
further. The source model, which represents the runtime architecture of a managed element (e.g.
the whole application), is defined and updated using different kinds of sensors. The source model
is transformed into multiple target models, each raising the level of abstraction and representing
a different view on the architecture of the application. These models are used by the feedback
loop (e.g. the IBM MAPE loop [40]). This transformation is done via Triple Graph Grammars
[26, 27]. The adaptation of an application is done by reflecting the adaptive changes to the
different target models back to the source model and thus to the managed element itself using
effectors [52].
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The interaction of the different meta-models introduced by [53] is extended by [55] by in-
troducing a megamodel to describe the relations between the different models at runtime.

The approach presenting in [54] extends [53] by providing an incremental model synchro-
nization between the running system and the source model, again based on Triple Graph Gram-
mars.

Luckey et al. introduce an approach in [42] where UML is used throughout the adaption
process, as a specification language and a meta-model. Each adapt case consists of three parts,
a Monitor, an Adaptation and an Adaptation Context. The Monitor is used to monitor the a
managed element at runtime. It also defines the allowed values of these elements, named a
corridor. Once the value of an element leaves the specified corridor an event is emitted which
starts the adaptation of the managed element. Each adapt case is mapped to a MAPE-K model
[40] thus directly providing a feedback loop.

M. Vierhauser et al. [50, 51] propose a general purpose monitoring framework for Systems
of systems (SoS) named REMINDS. The approach is based on the Requirements Monitoring
Model (RMM) for specifying monitored requirements. These requirements are monitored using
probes that are integrated in the system to be monitored. All information extracted by a probe is
packaged into so called event models that are forwarded to the framework.

All of the approaches described above do not completely satisfy our requirements. Pure
probing does not allow us to quickly forward changes in an application’s architecture, the change
may only be observed on the next probing. The presented model-engineering based approaches
are not directly suitable for our approach but rather provide methods for extensions.

Choosing the Myx architectural style and the associated tools, like myx.fw, allows us to
directly hook into the architecture and extract all required information to create a runtime repre-
sentation of an application’s architecture.

2.2 Dependency Injection Frameworks

The Myx architectural style is a component and connector based architectural style. It comes
with an architecture framework to bridge the gap between the concepts of an architectural style
the capabilities of a given platform called myx.fw. Being an architecture framework it provides
a kind of dependency injection by using the definitions of the architectural style and an ADL to
create an instance of an application.

In this section we will compare myx.fw to frameworks and approaches that support similar
dependency injection features.

The myx.fw dependency injection is purely object oriented and directly coupled with the
Myx architectural style [2]. myx.fw interfaces are directly mapped to Java interfaces, thus if a
component or connector provides such an interface it directly exposes the Java interface. The
brick may choose to implement the Java interface itself or return a auxiliary object which does.
To acquire an instance of such a required interface in another brick myx.fw provides utility
methods which provide this functionality. myx.fw looks up the implementing class which is
specified in the architectural description of a brick and returns a fully initialized instance. The
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application is responsible to actually acquire an instance of a required interface, thus myx.fw
does not inject an object automatically.

The Context and Dependency Injection (CDI) provided by the Java EE application program-
ming environment is based on so called beans [37]. Nearly all Java classes may be used as such
beans. To use CDI an application requires a file called beans.xml to be present, which in most
cases is completely empty for it is only used to configure specific parts of CDI.

The dependency injection heavily relies on Java annotations. To inject a dependency into
a field it is required to annotate the field with the Inject1 annotation. This annotation defines
the implementation to use at the time of development or deployment. To use a specialized
implementation it is possible to add another annotation which specifies the specialized type.

It is possible to have more than one bean implementation to use for a specific purpose. To
define alternative implementations of a bean the class has to be annotated with the Alternative2

annotation. The definition of the alternative to use is by specifying the implementation in the
bean.xml file.

Producer methods provide a way to inject objects which are not beans or which may vary
at runtime, e.g. a random number. Such methods are annotated with the Produces3 annotation
and another annotation which defines where the dependency injection is used. These methods
return the injected value. If the value varies between invocations the field to be injected must
be of type Instance4. Producer methods combined with alternatives provide a way to choose the
implementation of a bean at runtime. In this case all possible implementations have to be known
by the producer method and it returns the implementation to choose. In most cases the possible
implementations are directly injected into the producer method by specifying them as injected
parameters using the New5 annotation which constructs new instances of the implementations.

Enterprise Java Beans (EJB) are beans running in a custom container provided by the un-
derlying Java EE server, e.g. a Glassfish server. There are two different types of EJB: session-
and message-driven beans. Session beans may be directly invoked by their exposed interface.
Message-driven beans do not expose an interface but rather providing a message listener which
can be invoked by sending a message via e.g. Java Message Service (JMS).

Session beans may be injected using the EJB6 annotation which is the simplest way of ob-
taining such beans. Another way is to use Java Naming and Directory Interface (JNDI) lookups
by invoking the static lookup method on the InitialContext7 class.

The dependency injection of the Spring Framework is centered around the Spring Inversion
of Control (IOC) container [38]. Injectable objects are once again referred to as beans. There
exist multiple forms of defining injectable beans: via eXtensible Markup Language (XML),

1javax.inject.Inject
2javax.enterprise.inject.Alternative
3javax.enterprise.inject.Produces
4javax.enterprise.inject.Instance
5javax.enterprise.inject.New
6javax.ejb.EJB
7javax.naming.InitialContext
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annotations or plain Java. Spring supports all kinds of classes to be injectable beans, which is
not possible with CDI. The Spring based dependency injection framework is compatible with
the CDI based annotations.

By reading the bean configuration with an instance of the ApplicationContext8 interface en-
ables to use the getBean method to retrieve a fully configured bean including all dependencies
of it.

The Spring framework supports the automatic wiring of beans, that is a required bean does
not have to be referenced. According to the documentation this approach has some limitations
and a required bean should explicitly be referenced.

Guice is a dependency injection framework provided by Google [31]. Unlike the other
discussed frameworks the configuration of injectable objects is done solely via Java code. De-
pendencies of beans can be defined via so called bindings [29]. The bindings are configured
by creating an implementation of the AbstractModule9 classes configure method. In this
method all dependencies of an injectable class can be bound by different types [28]. The most
important kinds of bindings are:

• Linked bindings — Map a type to it’s concrete implementation.

• Binding annotations — Annotations can be used to specify the concrete implementation
to use if multiple implementations exist.

• Instance bindings — It is possible to bind to a concrete instance of an object.

To define an object to be injected Guice uses the Inject10 annotation and supports constructor-,
method- and field injections. Here it is possible to mark method- and field injections as optional
allowing them to only be injected if there is a matching implementation.

As the Spring framework Guice is compatible with CDI based annotations [30].

The described approaches offer some excellent methods of dependency injections, CDI, EJB,
Spring and Guice are more mature in this field than myx.fw. We have chosen myx.fw because
of the direct support for the Myx architectural style.

8org.springframework.context.ApplicationContext
9com.google.inject.AbstractModule

10com.google.inject.Inject
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CHAPTER 3
Background

In order to gain thorough understanding of the methods used to create this thesis, this chapter
will work through the technologies that were used by our approach and why we chose them.

3.1 Myx Architectural Style

The Myx architectural style [10,36] is a set of constraints put on development to elicit beneficial
properties. It is based on the C2- [49] and the Weaves architectural style [32].

The style enforces the following rules on the architecture:

• Basic entities are components and connectors, collectively called bricks.

• Components are the source for computation providing services to other bricks.

• Connectors are the source for communication by moving data between bricks.

• Bricks communicate only through well-defined interfaces with specific service-types and
directions. Two different service-types exist: provided and required. Provided interfaces
are used for bricks providing services for others and are invoked by those bricks. Required
interfaces on the other hand are used to invoke services provided by other bricks. The
direction of an interface determines the flow of control. Three directions are usable: in,
out or inout.

• Bricks are connected via links. They are associations between provided and required
interfaces, having exactly two endpoints. Links may only occur between the two different
service-types. Links between the same service-type are not permitted.

• All bricks have two domains called top and bottom. Each interface must be assigned to
one of those. Interfaces of both service-types may occur on each domain. Links are used
to connect a interfaces on a brick’s top domain to an interface of another brick’s bottom
domain. Thus inducing layering of Myx architectures.
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• The creation of a cycle is not permitted. Thus a brick may never be above or below itself
and a link may not connect a brick to itself.

• Applications have at least one main thread of control. Each brick may create and maintain
new threads as necessary.

• Communication is based on specific patterns which are described below.

3.1.1 Communication Patterns

The Myx architectural style provides different communication patterns. In this subsection we
aim to describe the ones most common.

These patterns can be categorized into synchronous- and asynchronous invocations. Syn-
chronous invocations are only permitted upwards, meaning from a brick’s top domain to another
brick’s bottom domain. Asynchronous invocations on the other hand are permitted in both direc-
tions. The difference between the two categories is described below by describing each pattern.

Synchronous Call

This pattern represents a synchronous procedure call, see Figure 3.1. Here no explicit connector
is used between two components, but the call itself is an implicit connector. A call transfers the
thread of control from the calling component to the called component.

Figure 3.1: Myx Synchronous Call Pattern [36]

Synchronous Call with Proxy

This pattern is an extension to the Synchronous Call by an intervening connector called proxy.
The proxy is used to pass the calls onto the called component but may provide additional features
enabling dynamic linking, data format transformation, logging or debugging, see Figure 3.2.
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Figure 3.2: Myx Synchronous Call with Proxy Pattern [36]

Asynchronous Notification

This communication pattern allows bricks of higher layers to notify underlaying bricks of state
changes, see Figure 3.3. This is done by the asynchronous event pump connector. Such a
connector receives a message on its provided interface and forwards that message to all bricks
connected to its provided interface. To ensure the asynchronous communication the messages
are forwarded in a separate thread.

Asynchronous Request

This pattern works the same way as the asynchronous notifications pattern, but reversing the
flow of control to upwards, see Figure 3.4.

3.2 xADL

xADL 2.0 is an extensible ADL based on XML [14, 15]. Using an ADL allows for the easy
description of different software architectures. Thus we use xADL to describe the design- and
runtime architecture of a monitored application as well as our approach itself.

xADL is defined as a set of XSDs providing it with extensibility and flexibility. It currently
contains the following set of schemes:

• run- and design-time elements of a system

• support for architectural types
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Figure 3.3: Myx Asynchronous Notification Pattern [36]

Figure 3.4: Myx Asynchronous Request Pattern [36]

• advanced configuration management concepts such as versions, options, and variants

xADL is not bound to any particular architectural style, tool or methodology thus it may be used
if an architectural style changes. The hierarchical composition of the xADL schemes can be seen
in Figure 3.5. The purposes and features provided by each schema are described in Table 3.1.

xADL is an application of xArch [11], a standard for XML-based representation of soft-
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Figure 3.5: Hierarchical composition (dependencies) of the xADL 2.0 XSDs. Child nodes are
dependent on their parent node [15]

ware architectures. It provides a common core XML notation as a stand-alone representation
of architectures and as a starting point for more advanced XML-based ADLs. xArch consists
of one single XML schema for defining instance structures for architectures, called instances.
This XML schema is also the basis of xADL, which can be seen in Figure 3.5 as the top level
element.

One of the reasons we have chosen xADL was it’s close connection to the Myx architectural
pattern which eases the development of our approach. But due to the fact that xADL is not
bound to an architectural style enables us to switch it with little to no effort.

3.2.1 Schemes

In our approach we focused on three xADL schemes, xArch Instance, Structure and Types and
Implementation. This subsection will be used to describe these schemes in more detail.

xArch Instance

This schema is the basis for all xADL schemes. It provides the root element for all xArch and
xADL documents as well as the elements for identifiers, descriptions, directions, links to other
XML elements, arbitrary groups and elements for hierarchical construction.

As the name suggests its main purpose is to describe instances, that is component-, connector-
, interface- and link instances. An InterfaceInstance is composed of an Identifier, a Description
and a Direction. A ComponentInstance or ConnectorInstance is composed of an Identifier, a
Description, multiple InterfaceInstanes and a SubArchitecture. To define links between compo-
nent and connectors this schema defines LinkInstances, which consists of a Description and two
XML links to InterfaceInstances.

It is used to represent the runtime architecture of an application.
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Purpose Schema Features Included

Architecture Modeling -
Description and Prescription

xArch Instance

Component, connector, inter-
face, and link instances; arbi-
trary groups; hierarchical con-
struction.

Structure and Types

Design-time architectural
prescription; architectural
structure (components, con-
nectors, interfaces, and links),
programming-language style
types-and-instances model;
hierarchical construction via
types.

Instantiatable Architectures Implementation
Abstract placeholder for imple-
mentation information for com-
ponents and connectors.

Java Implementation
Java-specific implementation in-
formation for components and
connectors.

Architecture Configuration
Management / Product
Family Architectures

Options Optional components, connec-
tors, and links.

Variants Variant component and connec-
tor types.

Versions Version graphs for components,
connectors, and interfaces.

Table 3.1: xADL 2.0 schemes and features provided [15]

Structure and Types

This schema defines the design-time architectural perception. That is it provides elements for
components, connectors, interfaces and their types.

Types are definitions for their corresponding elements. An InterfaceType is composed of an
Identifier and a Description. A ComponentType or ConnectorType is composed of an Identifier,
a Description, multiple Signatures and a SubArchitecture. A Signature is a method to say that a
component or connector should contain a specific interface.

The structures of an architecture are described as Component, Connector and Interface. A
Component or Connector is composed of an Identifier, a Description, multiple Interface defini-
tions and their types. A Interface is composed of an Identifier, a Description, a Direction and a
Signature. To connect components and connectors this schema defines Links, which consists of
a Description and two XML links to Interfaces.
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Implementation

This schema extends components, connectors and interfaces (and their types) to contain imple-
mentation specific information. That is an element called Implementation. Extensions of this
schema, such as the Java Implementation schema further add Java specific information, such as a
main class by the element JavaClassName. This information gives us the possibility to correctly
instantiate ad architectural description.

3.2.2 Choosing xADL

We have chosen xADL, especially xADL 2.0, over other approaches, like UML or Systems
Modeling Language (SysML), mainly due to the tight integration with the Myx architectural
pattern. But due to the fact that xADL is not bound to any architectural style and the easy
extensibility makes it a logical choice for our approach.
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CHAPTER 4
Achieving Decentralized Application

Architecture Monitoring

To monitor the architecture of an application at runtime one must be able to access the architec-
ture of such application at runtime or keep track of it by some other means. In Section 2.1 we
have described other approaches that utilize probing for architectural properties or integrate them
into the source code of an application and expose them to be monitored by external services.

We propose an approach that seamlessly integrates into an application with minimal over-
head. It actively publishes events about specific architectural properties and aggregates them
into the applications runtime architecture. Thus the architecture’s changes are directly reflected
into the runtime model. Figure 4.1 shows how different applications are monitored by our ap-
proach. The Figure shows two application instances named App A and App B, both based on
the Myx architectural style, and each running on different hosts. Both application instances are
connected to each other by a link that cannot be created with the current tools associated with
the Myx architectural style, depicted by the dotted line. Our approach, shown as the Monitor
extracts the following architectural properties from the application instances (depicted by the
lines originating from the Monitor):

• components and connectors

• local and external links between bricks

• a brick’s runtime status

• properties about the host where the application is running

After the architectural properties have been extracted they are forwarded to be aggregated. This
task is done by the Monitor and it forwards each extracted architectural property to the Aggrega-
tor, which is shown in Figure 4.2. The Aggregator uses the received architectural properties to
create the runtime architecture of each application instance. By extracting properties for external
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Figure 4.1: Extracting architectural properties from an application at runtime.

links we are not only able to create localized views of each application instance but can connect
them to each other. To be aware of the decentralized architecture of distributed application we
use the properties that are extracted from the host to integrate them directly into the runtime
architecture and associate application instances with it.

Figure 4.2: Aggregating (distributed) architectures.

In the following sections we will describe our approach in more detail. We will show how the
runtime architecture of an application is created and how distributed architectures are supported
as described.
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4.1 From Blueprint to Instance

Both design-time and runtime architecture are utilized by our approach. That is we require the
design-time architecture to be known to use it as a blueprint for the runtime architecture and
use it directly to instantiate an application. This allows us to only forward certain architectural
properties for the aggregation process to work instead of transferring all the information about
the runtime architecture. The aggregation process uses the design-time architecture to extract all
required information to create the full runtime architecture of an application.

Our approach requires the design-time architecture to be described using xADL. That is it
has to be specified using the Structure and Types schema inside the xADL file. The resulting
runtime architecture, also being described using xADL, uses the xArch Instance scheme as a
basis. In the following we will describe how we are able to create the runtime architecture of an
application using it’s design-time equivalent as a basis and how it is possible to create a mapping
between both of them.

To create a runtime architecture based on it’s design-time architecture our approaches is
composed of three steps:

1. Extraction of architectural properties — The extraction of architectural properties mostly
takes place at the lowest possible level, that is the instantiation of an application. Here the
main properties to create the runtime architecture are extracted by our approach.

2. Propagation of extracted properties — The extraction of architectural properties does
not yet yield a runtime architecture. The extracted properties are packed into simple events
containing all required information about the architectural property. All of them share the
following properties:

• A unique event identifier.

• A time stamp that refers to the time the event was created.

• An identifier referencing the running application.

The properties that each different event contains is described in the following. The event
is then propagated to the aggregation process.

3. Aggregation of the runtime architecture — Our aggregation process is based directly
on the described events, which are the source for the resulting runtime architecture. Each
event is handled differently by our approach which will be described in the following.

In the following we will show how the runtime architecture of an application is created using
the described architectural properties and steps. We will also show what kind of information is
extracted for each property and how it is used to create the resulting runtime architecture.
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4.1.1 Basic Architectural Elements

The basic elements of a runtime architecture are components, connectors, the associated inter-
faces and the links ultimately connecting the elements.

These elements are based on the design-time architecture. xADL allows us to create in-
stances for these runtime elements using the xArch Instance scheme. This scheme offers the
basics to create a runtime architecture but it does not provide us with the capabilities to validate
if the created runtime architecture complies to the design-time architecture. It also does not
allow for a analysis if attached architectural restrictions have been violated. Using the xArch In-
stance scheme also requires us to extract all the information about these elements and propagate
them to the aggregation process.

To ease this process we have created a xADL extension named xArch Instance Mapping
which extends certain parts of the xArch Instance scheme. Namely it provides extended types
for ComponentInstance, ConnectorInstance and InterfaceInstance.

The Listings 4.1, 4.2 and 4.3 show the XSDs of these extensions. Our scheme provides
three new Types called MappedComponentInstance, MappedConnectorInstance and Mapped-
InterfaceInstance. The two types MappedComponentInstance and MappedConnectorInstance
are extensions to ComponentInstance and ConnectorInstance respectively. They both extend
their base by a single property called blueprint. This property allows us to specify a link to the
design-time component or connector. The MappedInterfaceInstance type extends InterfaceIn-
stance with a single property called type which is used to provide a link to the interface’s type
which is specified in the design-time architecture.

The full xArch Instance Mapping XSD can be found in the appendix.

<!-- TYPE: MappedComponentInstance -->
<xsd:complexType name="MappedComponentInstance">

<xsd:complexContent>
<xsd:extension base="archinst:ComponentInstance">

<xsd:sequence>
<xsd:element name="blueprint" type="archinst:XMLLink" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Listing 4.1: The xArch Instance Mapping xADL schema extension for components.

<!-- TYPE: MappedConnectorInstance -->
<xsd:complexType name="MappedConnectorInstance">

<xsd:complexContent>
<xsd:extension base="archinst:ConnectorInstance">

<xsd:sequence>
<xsd:element name="blueprint" type="archinst:XMLLink" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Listing 4.2: The xArch Instance Mapping xADL schema extension for connectors.
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<!-- TYPE: MappedInterfaceInstance -->
<xsd:complexType name="MappedInterfaceInstance">

<xsd:complexContent>
<xsd:extension base="archinst:InterfaceInstance">

<xsd:sequence>
<xsd:element name="type" type="archinst:XMLLink" minOccurs="0"

maxOccurs="1" />
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Listing 4.3: The xArch Instance Mapping xADL schema extension for interfaces.

Component and Connectors

The architectural properties for the creation and destruction of components and connectors are
extracted directly from the underlying runtime which handles the instantiation and shutdown of
the application. Our approach extracts the runtime identifier of the created instance as well as the
blueprint identifier, which identifies the instance in the design-time architecture. Additionally
we add the type of event, that is if the instance was added or removed, as well as the type of
instance, being component or connector. All this information is packed into an event called
XADLEvent, this kind of event represents changes to components and connectors.

Once our aggregation process encounters a XADLEvent, for a added component or connec-
tor, we validate if it is already contained within the runtime architecture. This is done by validat-
ing that the runtime identifier is not yet present in it. The next step is to create the instance based
on it’s blueprint. We either create a MappedComponentInstance or MappedConnectorInstance
with the given runtime identifier and add the blueprint identifier as well. To fully create the
instance we copy the other properties including the interfaces of the instance. Here we create
MappedInterfaceInstances which include the interface’s type. The created instance is finally
added to the runtime architecture. If the instance is already present in the architecture or the
blueprint element cannot be found we do not add the instance.

If a component or connector is removed and we receive such an event we again validate if
the instance is present in the architecture and remove it if found. This removal also includes all
associated links that are still connected to it.

Local Links

The architectural properties for the creation of local links between components and connectors
are extracted at the same level as information about components and connectors. Here the un-
derlying runtime creates an event called XADLLinkEvent once a link is created. The event and
thus the architectural property contains the information about both ends of the link, that is the
runtime- and blueprint identifier of the source- and destination instance. Additionally the type
of the interface is included as well as the type of event, that is if the link has been created or
removed.

If a local link is created and our aggregation process encounters a XADLLinkEvent we extract
the matching interfaces from the source- and destination instances by matching the interface’s
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type. This is be done by using the MappedInterfaceInstance’s type. Myx only allows us to
establish links between two interfaces that correspond to the same interface type, which allows
us to base our linking process on it. The interfaces are extracted by comparing the type of all
interfaces on the source- and destination instance with the given type and use the first matching
interface. The simplicity of this approach imposes some drawbacks. It is currently not possible
for an instance to have multiple interfaces with the same type. If two matching interfaces could
be extracted a LinkInstance is created between them.

Once the local link is removed we simple remove the created LinkInstace from the runtime
architecture.

4.1.2 The Runtime Status

Just as the other architectural properties the runtime status of a component- or connector in-
stance is extracted by the underlying runtime. Here we again extract the runtime- and blueprint
identifier of the instance as well if the instance has entered a running state or has been stopped.
This architectural property is represented by an event called XADLRuntimeEvent.

Our aggregation process currently handles these kind of events by appending the state of the
instance to it’s description directly in the runtime architecture.

4.2 Supporting Distributed Architectures

By using the previously described architectural properties we are able to monitor the runtime
architecture of an application. Yet we are not able to fully monitor distributed applications
because important information is still lacking from our runtime architecture.

In the following subsections we will discuss how our approach allows the integration of
distributed architectures.

4.2.1 Recognizing Distributed Applications

We are yet not able to distinguish between local- and distributed architectures. Therefore our
approaches uses a simple concept of hosts to describe the environment of an application instance.

This concept of a host is integrated directly into the runtime architecture of an application.
That is multiple hosts may be added to the architecture which are described using a unique
identifier. This identifier needs to be generated by the underlying runtime using different utilities.
Each host allows for the definition of a description of the host itself, associated properties about
the host and lists of hosted components, connectors, groups and sub-hosts. Thus our concept of
hosts is used to describe the physical- or virtual environment of an application instance.

To be able to use this concept in the runtime architecture we have again extended xADL and
propose an extension called xArch HostProperty. This extension provides a top level type called
HostedArchInstance, which is an extension to the ArchInstance type introduced in the xArch
Instance scheme. Listing 4.4 shows the XSD for the introduced type.
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<!-- TYPE: HostedArchInstance -->
<xsd:complexType name="HostedArchInstance">

<xsd:complexContent>
<xsd:extension base="archinst:ArchInstance">

<xsd:sequence>
<xsd:element name="host" type="Host" minOccurs="0" maxOccurs="

unbounded" />
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

Listing 4.4: The xADL schema extension for hosted architectural instances.

This type allows us to define an unlimited number of hosts for a runtime architecture. The
definition of a host is depicted in Listing 4.5. By referencing components and connectors for
each host we are able to get a more detailed view of the runtime architecture which allows us to
distinguish distributed architectures.

<!-- TYPE: Host -->
<xsd:complexType name="Host">

<xsd:sequence>
<xsd:element name="description" type="archinst:Description" />
<xsd:element name="hostProperty" type="Property" minOccurs="0" maxOccurs="

unbounded" />
<xsd:element name="subhost" type="Host" minOccurs="0" maxOccurs="unbounded"

/>
<xsd:element name="hostsComponent" type="ElementRef" minOccurs="0"

maxOccurs="unbounded" />
<xsd:element name="hostsConnector" type="ElementRef" minOccurs="0"

maxOccurs="unbounded" />
<xsd:element name="hostsGroup" type="ElementRef" minOccurs="0" maxOccurs="

unbounded" />
</xsd:sequence>
<xsd:attribute name="id" type="archinst:Identifier" />

</xsd:complexType>

Listing 4.5: The xADL schema extension for hosts.

The properties associated with a host are created as a simple map. Here a key may be
associated with one ore more values. These properties are meant to be used to describe all kinds
of information about the host itself, e.g. the network host-name or information about the current
system load. Listing 4.6 shows the XSD of such properties.

<!-- TYPE: Property -->
<xsd:complexType name="Property">

<xsd:sequence>
<xsd:element name="name" type="archinst:Description" />
<xsd:element name="value" type="archinst:Description" minOccurs="1"

maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

Listing 4.6: The xADL schema extension for host properties.

Our approach does not yet support the depicted groups and sub-hosts. These elements may
be used for further research and development. The full xArch HostProperty XSD can be found
in the appendix.
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The propagation of these architectural properties is once again based on events. Here we
have created an extensions to our existing base event which adds the following properties:

• The unique identifier of the host.

• The type of event, i.e. is the property being added, updated or removed.

These properties are common the all architectural properties. In the following we will show how
our approach integrates the different host based architectural properties.

Hosts

The architectural properties for general information about a host are extracted directly by the
underlying runtime. This is done at the startup and shutdown of an application instance. Our
approach extracts the unique host identifier as well as the name of the host. This information is
packed into an event called XADLHostInstanceEvent which simply extends the base event with
a description about the host, which is used to store the name of the host.

Once our aggregation process encounters such a XADLHostInstanceEvent we either add or
remove a host from the runtime architecture. As a safety measure there exist some limitations
as when a host is allowed to be added and removed. Our approach does not add a host with the
same unique identifier twice and only allows the removal of a host if it is no longer associated
with any components, connectors, groups or sub-hosts.

Hosted Components and Connectors

The architectural properties for hosted components and connectors are extracted form the under-
lying runtime as well. Here our approach extracts the required information about the host and
the component or connector once it is added to or removed from the runtime architecture. All
this information is propagated to the aggregation process using a XADLHostingEvent which en-
capsulates multiple components, connectors, groups and sub-hosts. Our approach does currently
make no use of the fact that event is capable of holding information about many components or
connectors, yet we issue one event per added or removed runtime instance.

The aggregation process for XADLHostingEvents is a rather simple one. If a component or
connector is added we associate it with the host specified in the event. Once it is to be removed
we simply remove the created association.

The creation of these associations allows us to describe a distributed architecture and inte-
grate this description directly into the runtime architecture.

Host Properties

Each host may be associated with multiple properties which may be used to describe detailed
information about the host. This architectural property is not directly extracted by our approach,
we rather provide the means to integrate different extraction mechanisms dynamically into a
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monitored application. The extracted properties are encapsulated by our approach into a XADL-
HostPropertyEvent which may hold one or more properties. The event itself does not impose
any restrictions on the property’s type.

Our aggregation process handles three different kinds of XADLHostPropertyEvents, that is
the addition, update and removal of them. If properties are added or updated they are directly
integrated into the runtime architecture and associated with the given host. The only difference
between these two types of events is the that an update overwrites the existing properties. Our
approach imposes a limitation on the name and value(s) of a property, that is they have to be
serialized into simple strings. The value of a property may also be a list of such strings. Once
a property should be removed we remove all properties that are contained in the event from the
runtime architecture.

Our approach comes with some predefined extraction mechanisms which provide the means
to extract information about the CPU utilization and memory usage of the host.

4.2.2 Creating Links Between Distributed Instances

Distributed applications are usually not composed of isolated instances but rather these instances
are communicating with each other. Myx and xADL do not support to define such links in
the design-time architecture and the associated tools do not support the creation and thus the
monitoring of such external interconnections.

Our approach provides the means to monitor these connections and to integrate them into
the runtime architecture of an application. To represent such external links in the runtime archi-
tecture and distinguish them from locally created links we introduce another xADL extension
called xArch External Identified Links. It provides a new type ExternalIdentifiedLinkInstance
which extends the LinkInstance type by a single attribute called extId. This attribute allows us
to specify an identifier that represents an external connection. Listing 4.7 shows the XSD of the
extension.

<!-- TYPE: ExternalIdentifiedLinkInstance -->
<xsd:complexType name="ExternalIdentifiedLinkInstance">

<xsd:complexContent>
<xsd:extension base="archinst:LinkInstance">

<xsd:attribute name="extId" type="archinst:Identifier" />
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

Listing 4.7: The xADL schema extension for externally identified links.

We impose no restrictions on the type of connection, our approach simply requires that an
interface with the same type is present on both endpoints of the connections.

Because it is not possible to simply monitor these connections it is the developer’s responsi-
bility to integrate the following behavior into the component or connector that utilizes external
connections. Each endpoint, be it component or connector, of an external connection needs to
create an unique identifier that identifies the connection once it is established. This identifier
has to be the same for both endpoints. As soon as the establishment of the connection has been
finished each endpoints needs to pack the unique connection identifier alongside the runtime-
and blueprint identifier of the endpoint, as well as the interface type and information if the con-
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nection has been established or destroyed into a so called XADLExternalLinkEvent which is then
sent to our aggregation process. Once the connection has been disconnected each endpoint needs
to send a XADLExternalLinkEvent once more signaling the destruction of the connection.

If our aggregation process consumes a XADLExternalLinkEvent we extract the matching
interface for the connection. Here we use the same approach as for locally created links. The
extracted interface is then stored and associated with the external connection identifier. Once
two or more events are received containing the same identifier a link is created between their
matching interfaces. Here we create a new ExternalIdentifiedLinkInstance and add it to the
architecture. It is important to note that each instance is connected to all stored instances. This
logic only imposes a single restriction on the creation and monitoring of external connections:
Each instance must generate the same identifier for the connection, if the identifiers do not match
the link cannot be established.

Once an external link is removed from the architecture we simply remove all matching Ex-
ternalIdentifierdLinkInstances that are associated with the received interface.

4.3 The Architecture Tracking Framework

After the theoretical description of our approach we take a closer look at some general imple-
mentation details of our approach. We have created a framework that is composed of two loosely
coupled applications, Monitor and Aggregator. The Monitor is responsible for running a Myx
based application, the extraction of architectural properties as well as the propagation of those
properties. The Aggregator handles the propagated architectural properties and aggregates the
resulting runtime architecture of the monitored application.

Both applications are based on the Myx architectural style, we thus use Myx based applica-
tions to monitor Myx based applications. In this section we will give a detailed description of
both applications of the framework, that is we will show and describe the design-time architec-
ture of each application.

4.3.1 Monitor

The Monitor is responsible for running and monitoring a Myx based application. That is it
instantiates an application instance, extracts all required architectural properties and propagates
them accordingly.

The architecture of the application can be seen in Figure 4.3. It is based on the architecture
of the launcher application of ArchStudio 4 [12] and was extended to monitor and propagate our
defined architectural properties. The architecture itself is composed of six components which
will be described in the following.

Bootstrap

The Bootstrap component is the main entry point for running an application. It fetches the
design-time architecture of the application from the ModelRoot component. Afterwards the
Launcher component is instructed to launch the application specified by the design-time archi-
tecture.
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Figure 4.3: The architecture of the framework’s monitor.

ModelRoot

The ModelRoot component represents the design-time architecture which is specified by a xADL
document. To allow maximum flexibility we expose the complete architectural document by
exposing the root elements of the xADL document.

Launcher

The Launcher component is responsible for instantiating the design-time architecture. This is
done by parsing the architecture exposed by the ModelRoot component and finally launching the
contained components and connectors using the MyxRuntime component.

MyxRuntime

The MyxRuntime component provides all capabilities to instantiate an application based on the
Myx architectural style. It is also used to monitor the instantiated application by extracting some
architectural properties. These properties include information about components and connectors,
local links and the runtime status of components and connectors. The extracted properties are
propagated using the EventManager component.
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EventDispatcher

The EventDispatcher component may be used to provide extended application monitoring capa-
bilities which mostly comprise properties about the application’s environment, that is informa-
tion about the host. The component allows to run multiple dispatcher instances and provides the
means to propagate extracted properties via the EventManager component.

These capabilities allow us to monitor a host by extracting host-based architectural proper-
ties.

EventManager

The EventManager components handles the propagation of architectural properties to e.g. our
aggregation process. The component itself is constructed in a simple way so it may be replaced
easily.

4.3.2 Aggregator

The runtime architecture of an application is not directly constructed by the Monitor instead it
propagates all extracted properties to a given endpoint. It is the Aggregator’s responsibility to
receive these propagated architectural properties and create a runtime architecture accordingly.

We have constructed the Aggregator in a way that it is able to act as an endpoint for archi-
tectural properties and create the resulting runtime architecture, as well as further propagate the
received architectural properties. We thus chose a publish-subscribe system [3] as the basis for
our Aggregator. It currently supports the topic-based publish-subscribe scheme [20]. As this
system is part of our motivated- and thus our evaluation scenario we are able to reuse some parts
of our proof of concept implementation.

Using the publish-subscribe pattern we are able to create the runtime architecture of a local
or distributed application and achieve hierarchical decomposition by allowing each connected
subscriber to subscribe to only some architectural properties.

The design-time architecture of the application can be seen in Figure 4.4 and is based on ar-
chitecture of our evaluation scenario shown in Figure 6.1. In the following we will describe each
component and connector of the architecture to get a better understanding of the application.

PublisherDispatcher and SubscriberDispatcher

These two components are responsible for handling incoming connections. They share a com-
mon functionality with the only difference being the creation of different connectors. Each
component waits for an incoming connection and instructs the underlying runtime to create a
new handling instance. This instance is either a PublisherEndpoint or SubscriberEndpoint. The
incoming connection is then provided to the created handling instance. This is done by an inter-
face that allows the handling instance to poll the connection.

The creation of the handling instances is done via the MyxRuntimeAdapter component.
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Figure 4.4: The architecture of the framework’s aggegator.

MyxRuntimeAdapter

This component exposes the underlying runtime to the other components and connectors. This
allows us to directly manipulate the runtime architecture of the application and dynamically
create and remove specific components or connectors. This behavior is exposed via an interface
that defines the allowed runtime architecture manipulation. Here it would be possible to expose
the complete runtime architecture but it is encouraged to only specify the behavior that is allowed
by the application.

Currently our approach uses this feature to create instances of PublisherEndpoint and Sub-
scriberEndpoint instances.

PublisherEndpoint

This connector is one of the two dynamically created connectors in our design-time architecture.
It is not instantiated while starting up the application but once a publisher connects. It fetches
the incoming connection from the PublisherDispatcher instance and then listens for incom-
ing events. Each event is directly forwarded to the MessageDistributor connector which takes
care of forwarding them to the appropriate subscribers. The connector listens for events until
the connection is closed, and removes itself from the runtime architecture using the MyxRun-
timeAdapter.
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ModelRoot

The ModelRoot component represents the design-time- and runtime architecture of the moni-
tored application which is specified as a xADL document as well. It provides the necessary
methods to read, create and update the runtime architecture as well as the means to read the
design-time architecture.

SubscriberEndpoint

This connector, as the PublisherEndpoint, is dynamically created. It is instantiated once a sub-
scriber connects and fetches the connection from the SubscriberDispatcher instance. The con-
nector first consumes the subscribed topics from the subscriber connection. Once the topics
are received it fully connects itself to the MessageDistributor connector using the MyxRun-
timeAdapter, thus receiving all events from the connected publishers. As the PublisherEndpoint
if the connection is closed it automatically removes itself from the runtime architecture.

The subscribed topics are given as a list of regular- or glob syntax expressions [39]. Based
on the given topics the subscriber is able to receive all or only specific events.

The SubscriberEndpoint connector is not only responsible for forwarding messages to con-
nected subscribers but is also an interface to receive information about specific components or
connectors of the runtime architecture. If a subscriber receives an event about an instance that
it does not yet know it can simply request information about this brick. The connector listens
for such requests and queries the ModelRoot component for information about the requested
component or connector, returning information about the instance itself and it’s interfaces.

XADLRuntimeManager

The xADLRuntimeManager component is integrated in the architecture as a subscriber. It re-
ceives events about previously defined topics that describe all the architectural properties except
ones about hosts.

Once an event with an architectural property is received we invoke the logic described in
the previous two sections and atomically update the runtime architecture represented by the
ModelRoot component.

HostedRuntimeManager

The HostedRuntimeManager component is also designed as a subscriber. It receives only events
about host-based architectural properties and invokes the logic described in the previous section.
Here we excessively use the xADL extension xArch HostProperty to represent the properties in
the runtime architecture.

MessageDistributor

This connector is the central exchange point between the connected publishers and the sub-
scribers. It is based on the event pump which is already a part of the Myx architectural style.
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It implements a special kind of asynchronous notification that allow us to forward all incom-
ing events in the order they were received whilst using features of concurrency. We are also
able to store initial events that may hold meta-data and send them to each connected outgoing
connection.

4.3.3 Deploying the Framework

Now that both applications of our approach have been described we are now able to create
deployment strategies for different kinds of monitored applications. Here we will describe three
specific deployment strategies that show the flexibility of our approach. It is important to note
that our approach is not limit to these strategies due to the decoupling of both Montitor and
Aggregator.

To monitor the runtime architecture of a (non-distributed) application both Monitor and
Aggregator can be deployed on the same host. Figure 4.5 shows this deployment strategy.

Figure 4.5: The simplest deployment scenario where both Monitor and Aggregator are running
on the same host.

To monitor a distributed application and aggregate the overall runtime architecture the Ag-
gregator can be decoupled from the Monitor and deployed as a centralized entity. Thus it is pos-
sible that multiple Monitor instances propagate their architectural properties to the centralized
Aggregator which yields a holistic view of the runtime architecture of a distributed application.
This deployment strategy is shown in Figure 4.6.

To reduce the amount of transmitted data to the central Aggregator instance it is possible to
combine the two previous deployment strategies. Figure 4.7 shows an Aggregator instance on
each host the application is running which represent a localized view of the runtime architecture.
To create a holistic view of the distributed application’s runtime architecture the local Aggregator
instances are able to further propagate some (or all) received architectural properties to a central
Aggregator instance which constructs the runtime architecture of the distributed application.
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Figure 4.6: A deployment scenario for distributed applications with a centralized Aggregator.

Using this combined strategy we are able to only propagate certain properties to the central-
ized Aggregator instances, thus reducing the aggregation complexity and the bandwidth usage
for transmitting the architectural properties.

Figure 4.7: A deployment scenario for distributed applications with a local Aggregator, for local
runtime architecture monitoring, and another centralized Aggregator, for distributed runtime
architecture aggregation.
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CHAPTER 5
Runtime Architecture Tracking: An

Implementation

For an application to use our approach we have created a proof of concept implementation that
is provided as a framework for architectural monitoring. It is composed of two loosely coupled
applications which describe both parts of our approach, that is the Monitor and Aggregator.
We will show how an application can be monitored and how the runtime architecture of an
application is aggregated.

This chapter is based on the architecture description of our proof of concept implementation
outlined in Section 4.3. Thus we will omit a description of the application’s architecture and
keep the focus on the implementation details. In the following sections we will describe the
proof of concept implementation of our approach. This includes the monitoring of a Myx based
application and the aggregation of an application’s runtime architecture.

5.1 Implementation Specific Background

Our proof of concept implementation uses some technologies that have yet to be described.
We will use this section to provide background knowledge of these technologies. Finally we
will outline the technologies that have actually been used to implement our proof of concept
application.

5.1.1 myx.fw

The Myx architectural style does not match a specific platform or programming language thus
an architectural framework is required to bridge the gap between the concepts of an architectural
style and a platform. myx.fw [2, 10, 36] is a framework for the Myx architectural style built in
Java. It provides mechanisms to implement components and connectors and is used to instantiate
them, thus yielding a running application.
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In contrast to the Myx architectural pattern components and connectors are summarized
under the term brick, which will be used to reference both component and connectors. Bricks
are classes that implement an interface called IMyxBrick1. Thus the implementing class must
provide two capabilities, a life-cycle provider and service objects. A life-cycle provider is a class
implementing the interface IMyxLifecycleProcessor2. This interface defines four methods (init,
begin, end and destroy) that are called by the framework as bricks are created, attached, detached
and destroyed respectively. Service objects are implementations of provided interfaces. For each
interface a brick provides it must create an object that implements the specified interface.

To provide support for runtime dynamism the framework provides an extended version if
the IMyxBrick interface called IMyxDynamicBrick3. It requires a brick to implement callback
methods for notifications once an interface has been connected or disconnected.

To simplify the process of creating bricks the framework provides an abstract class called
AbstractMyxSimpleBrick4 that already implements most of the methods of IMyxBrick. The only
method an extended class is required to implement is getServiceObject. This method allows to
specify the true implementation of each provided interface. It is up to the implementing class
which life-cycle methods are needed and thus must be implemented.

To show how a brick is implemented using the means of myx.fw Listing 5.1 shows a brick
that is used in our proof of concept implementation. It outlines how provided interfaces are
returned using the getServiceObject method where the name of the interface is compared as
well as how objects behind required interfaces are acquired by using the MyxUtils5 class in the
method begin.

This class also shows how applications may achieve concurrency by using the method init
to initialize the logic, the method begin to begin the concurrent execution and the method end
for shutdown.

To create and manage Myx applications the framework provides an interface called IMyxRun-
time6. This interface provides methods to manipulate the runtime architecture. That is it allows
us to add or remove bricks and it’s associated interfaces and create links between bricks. There
exists a default implementation that may be accessed by a caller outside the myx.fw (e.g. a main
method). This default implementation is used by myx.fw itself but also by ArchStudio to instan-
tiate a Myx based application. The design of the class allows for an easy extension of it and thus
enables us to extend the default functionality.

1edu.uci.isr.myx.fw.IMyxBrick
2edu.uci.isr.myx.fw.IMyxLifecycleProcessor
3edu.uci.isr.myx.fw.IMyxDynamicBrick
4edu.uci.isr.myx.fw.AbstractMyxSimpleBrick
5edu.uci.isr.myx.fw.MyxUtils
6edu.uci.isr.myx.fw.IMyxRuntime

38



package at.ac.tuwien.dsg.pubsub.middleware.comp;

[...]

public abstract class Dispatcher<E> extends AbstractMyxSimpleBrick implements
IDispatcher<E> {

[...]

public static final IMyxName IN_IDISPATCHER = MyxInterfaceNames.IDISPATCHER;
public static final IMyxName OUT_MYX_ADAPTER = MyxInterfaceNames.IMYX_ADAPTER;

private ExecutorService executor;
private Runnable runnable;

protected IMyxRuntimeAdapter myxAdapter;

[...]

@Override
public Object getServiceObject(IMyxName interfaceName) {

if (interfaceName.equals(IN_IDISPATCHER)) {
return this;

}
return null;

}

@Override
public void init() {

executor = Executors.newSingleThreadExecutor();
runnable = new Runnable() {

public void run() {
[...]

}
};

}

@Override
public void begin() {

myxAdapter = MyxUtils.<IMyxRuntimeAdapter> getFirstRequiredServiceObject(this,
OUT_MYX_ADAPTER);

executor.execute(runnable);
}

@Override
public void end() {

executor.shutdownNow();
}

[...]

}

Listing 5.1: A simplified implementation of a brick which is used in our proof of concept
implementation. Here most of the IMyxLifecycleProcessor methods are used to control the
behavior of the brick.
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5.1.2 xADL Tool Support

xADL provides a set of libraries, that are implemented in Java, which provide an Application
Programming Interface (API) to access xADL documents. These libraries combined are called
Data Binding Library (DBL) [14] and provide interfaces and objects corresponding to the ele-
ments defined in a xADL schema. Each XML type defined in a xADL schema has an interface
and a corresponding class implementing it. Listing 5.2 shows an excerpt of the interface IArch-
Structure7 and shows how a xADL schema can be accessed.

xADL further provides a tool called apigen [13, 15] which can be used to generate Java
code for a given set of xADL schemes. This tool is not specific to xADL but rather can be
used to generate Java code to access all kind of XML files that conform to a given XSD. This
tool, however, has some limitations as it only supports a subset of XSD. Thus it is best used to
generate Java code for xADL and extensions of it.

public interface IArchStructure extends edu.uci.isr.xarch.IXArchElement{
[...]
/**
* Gets the component from this ArchStructure with the given

* id.

* @param id ID to look for.

* @return component with the given ID, or <code>null</code> if not found

*/
public IComponent getComponent(String id);
[...]
/**
* Gets the connector from this ArchStructure with the given

* id.

* @param id ID to look for.

* @return connector with the given ID, or <code>null</code> if not found

*/
public IConnector getConnector(String id);
[...]

}

Listing 5.2: Excerpt of the interface IArchStructure

5.1.3 Chosen Technologies

We have chosen Java 7, ArchStudio 4 [12], the included myx.fw 4.1.50 and XADL 2.0 for our
proof of concept implementation. ArchStudio [45] provides methods to create and run an appli-
cation by it’s architecture description. Due to it’s integration into the Eclipse8 platform it was
used to design the architecture descriptions by the Myx architectural style in xADL. Eclipse was
later used to implement our framework.

These technologies provide many advantages, most of them were already outlined in the
previous sections. The advantage this theses benefited most is the flawless interaction of these
technologies with each other.

With all the advantages these technologies provide they also come with some drawbacks and
limitations:

7edu.uci.isr.xarch.types.IArchStructure
8http://www.eclipse.org/
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• The editors included in ArchStudio do not handle xADL extensions very well, this con-
cludes in unexpected errors while viewing and manipulating architecture descriptions.

• The DBL was originally written to be compatible with Java 5, thus it does not include
modern language features such as generics.

• While myx.fw provides an API to manipulate an application it does not handle the dynamic
creation of bricks very well. To connect newly created components or connectors to other
specific bricks, the implementation needs to know the name of those which results in
specifying architectural properties directly in the source code.

5.2 Monitoring an application’s runtime architecture

The monitoring of an application, be it distributed or not, is done by our Monitor application.
This application acts as a bootstrap for applications based on the Myx architectural pattern.
The application is based on the architecture outlined in Section 4.3.1. The architecture and it’s
implementation is based on the source of ArchStudio 4 [12]. Mostly all of the code has been
rewritten by using the DBL and our custom myx.fw extensions.

The monitoring of an application is composed of three steps:

1. Application Instantiation

2. Extraction of architectural properties

3. Propagation of architectural properties

In the following we will describe how our proof of concept implementation implements each of
these steps.

5.2.1 Instantiating an Application

The first step for monitoring an application is it’s startup also called instantiation. Our frame-
works implements the logic to instantiate a Myx based application specified by a xADL doc-
ument using mxy.fw. This instantiation process uses the xADL DBL to read the architecture
description and myx.fw to instantiate the application. This process is based on an existing one
which is used by ArchStudio 4. We have reimplemented the instantiation process and introduced
our monitoring capabilities. In the following we will describe our customized process which is
shown in Algorithm 5.1.

The first step is to read and parse the architectural description using the DBL, see Line 2, that
is the types and structures inside the xADL document. We extract all bricks that are required
for the instantiation of an application. Each brick is validated, including it’s interfaces, and
brought into a custom representation which allows for easy access to the properties needed by
the instantiation process. It is important to note that we extract the bricks in a specific order that
is given by analyzing the dependencies (i.e. links) of each brick.
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input: An IArchStructure instance s

1 create base container;
2 bricks← parse architecture of s;
3 foreach brick b in bricks do
4 if b has a sub-architecture then
5 call instantiate for sub-architecture of b;
6 map container interfaces of b;
7 end
8 else if b has implementation then
9 extend init properties of brick b;

10 add brick b;
11 extend properties of all interfaces of b;
12 add interfaces of b;
13 weld init links of b;
14 call init life-cycle method of b;
15 end
16 end
17 foreach brick b in bricks do
18 weld begin links of b;
19 call begin life-cycle method of b;
20 end
Algorithm 5.1: The algorithm for our instantiation process to instantiate a xADL structure.

In the next step we evaluate for each brick if it contains a sub-architecture which has to
be handled specially. Due to the fact that a sub-architecture is represented as another structure
in a xADL document we are able to call the algorithm once more, see Line 5. After the sub-
architecture has been instantiated we have to map the interfaces of the brick to interfaces in the
sub-architecture.

Once an atomic brick is encountered we create an instance of it using myx.fw, that is we
use an instance of IMyxRuntime to add the brick to the runtime architecture, see Line 10. For
our monitoring solution to work we have to extend the init properties of the brick and inject
the blueprint identifier and it’s type (component or connector) before it is added to the runtime
architecture, see Line 9. The next step is to add all interfaces of the brick. Once again we
have to extend the properties of each interface for our monitoring solution to work and inject
the interface’s type, see Line 11. The interface is then added to the brick using the manipulated
properties. After the brick has been fully added to the runtime architecture it’s init links are
welded, i.e. created. Here we only create links which contain interfaces whose service type
is given, that is they are defined as required or provided. As a last step we call the life-cycle
method init of the brick.

To fully instantiate the architecture we have to process all bricks one more time, see Lines 17
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to 20. Here we add the remaining links of each brick, named begin links, thus ensuring that all
bricks are connected as described in the architectural description. The final step is to call the
life-cycle method begin of the brick.

5.2.2 Extracting Architectural Properties

The next step in our monitoring process is the extraction of architectural properties. Here we
use different means for extraction, that is we are able to extract most of the properties automat-
ically but there are some that can only be extracted by the developer. In the following we will
describe how we have implemented the extraction of each architectural property that is used by
our approach.

Using myx.fw

The central entity of any application instantiated using myx.fw is an instance of the interface
IMyxRuntime. The exposed methods of this interface allow us to add or remove bricks, interfaces
and links. Due to the architecture of the myx.fw and the central characteristic of the interface
IMyxRuntime we have chosen to use it to intercept certain method calls and extract some of our
architectural properties. As the interface IMyxRuntime already has an implementation called
MyxBasicRuntime9 contained in myx.fw we have chosen to extend this class and override certain
methods. The method signatures of the overridden methods can be seen in Listing 5.3. As
myx.fw does not differentiate between components and connectors as well as it does not know
of interface types we have to rely on our instantiation algorithm to inject this information. This
behavior has been described in detail in the previous section.

We have created a class called MyxMonitoringRuntime10 which extends MyxBasicRuntime
and overrides the listed methods. This class is used to extract most of our architectural properties.
In the following we will describe how it’s overridden methods are used for extraction.
public interface IMyxRuntime {

[...]
public void addBrick(IMyxName[] path, IMyxName brickName, IMyxBrickDescription

brickDescription) throws MyxBrickLoadException, MyxBrickCreationException;
public void removeBrick(IMyxName[] path, IMyxName brickName);
[...]
public void addInterface(IMyxName[] path, IMyxName brickName, IMyxName

interfaceName, IMyxInterfaceDescription interfaceDescription,
EMyxInterfaceDirection interfaceDirection);

public void removeInterface(IMyxName[] path, IMyxName brickName, IMyxName
interfaceName);

[...]
public IMyxWeld createWeld(IMyxName[] requiredPath, IMyxName requiredBrickName,

IMyxName requiredInterfaceName, IMyxName[] providedPath, IMyxName
providedBrickName, IMyxName providedInterfaceName);

public void addWeld(IMyxWeld weld);
public void removeWeld(IMyxWeld weld);
[...]
public void begin(IMyxName[] path, IMyxName brickName);
public void end(IMyxName[] path, IMyxName brickName);

9edu.uci.isr.myx.fw.MyxBasicRuntime
10at.ac.tuwien.dsg.myx.monitor.MyxMonitoringRuntime
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[...]
}

Listing 5.3: Method signatures of IMyxRuntime that are used by our proof of concept
implementation.

Components and Connectors To extract information about bricks we use the methods ad-
dBrick and removeBrick. As their names suggest, these methods target a brick’s creation and
removal in the runtime architecture. The creation of a bricks is done by the method addBrick.
By simply overloading it we cannot extract all information needed to monitor this architectural
property. We only get the bricks runtime identifier, aka it’s name, but we do not know it’s
blueprint identifier or if it is a component or connector. Our approach uses the instantiation
process to inject additional information about a brick using the properties defined by the bricks
description. By maintaining a mapping of runtime identifiers to their associated blueprint iden-
tifiers we are able handle the removal of bricks by overloading the method removeBrick as well.
The described mapping provides us with the means to extract all required information for the
removal of a brick, i.e. it’s blueprint identifier as well as the type of brick. As we extract infor-
mation about created or removed brick using these methods we are able to use them to associate
the extracted component or connector with the host it is running.

Local Links Our monitoring approach for links, be it local or external, is based on the in-
terfaces associated with a link. Thus we use the methods addInterface and removeInterface to
create a mapping of the interfaces runtime identifier, i.e. the interface’s name, and it’s type and
associate this mapping with the interface’s brick. Here we also used our instantiation process to
inject the interface’s type into the description of the interface. Therefore we had to extend the
interface IMyxInterfaceDescription11 for the ability to inject properties into the method addIn-
terface. This new interface is called IMyxInitPropertiesInterfaceDescription12 and provides a
single method to get associated properties. Our instantiation process uses an implementation of
this interface to inject the interface’s type. Information about the creation and removal of a local
link is extracted by overloading the methods addWeld and removeWeld. Both of these methods
are given an instance of the interface IMyxWeld13 as an argument which represents the added
or removed link. This interface contains nearly all required information about links, that is we
are able to access the brick’s- and the interface’s runtime identifiers of both link endpoints. By
accessing the previously created mapping to extract the types of both endpoint interfaces we are
able to extract all information required for the architectural property of a local link, including
it’s creation and removal.

The Runtime Status The runtime status of a brick can be determined by the calls to it’s life-
cycle methods. Thus our approach overrides the methods begin and end. We assume that the
given brick is in a running state once the begin method is called. This state is maintained until

11edu.uci.isr.myx.fw.IMyxInterfaceDescription
12at.ac.tuwien.dsg.myx.fw.IMyxInitPropertiesInterfaceDescription
13edu.uci.isr.myx.fw.IMyxWeld
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the end method is called or the brick is removed from the runtime architecture. Each life-cycle
method may be called for a single brick or all bricks inside of a container, thus allowing us to
extract the runtime status of multiple bricks.

General Information about a Host Our custom IMyxRuntime implementation extracts the
name of the application’s host at the beginning of the instantiation process and the corresponding
event is emitted. Whilst shutting down the application in a last step we once again emit an event
marking the end of the application.

Outside Monitoring

Using myx.fw to extract our architectural properties does not yield a solution for all of our de-
scribed architectural properties, thus we have to rely on other means to extract them. This mostly
involves the developer of an application who has to integrate functionality which is specific to
our solution. In the following we will describe how the remaining architectural properties are to
be extracted and how our approach supports the developer on completing these tasks.

External Links Links between bricks to external services, be it bricks in other application
instances or different communication endpoints, cannot be monitored by myx.fw. Information
about these external connections have to be extracted directly from the brick which utilizes
the connection. Thus it is the developers responsibility to correctly monitor these links. Here
we support the developer by providing a class called AbstractMyxExternalConnectionBrick14

which eases the propagation of this architectural property. In Section 5.5 we will show how an
application may integrate this class to monitor an external link.

Host-Based Properties As some of the host-based properties can be extracted using myx.fw,
see above, it is not possible to extract information about the host itself. We have created the
possibility to integrate such extended monitoring capabilities next to the application itself. The
EventDispatcher component in the architecture of our Monitor application is responsible for
running extended monitoring capabilities next to the actual application. Here we use an interface
called EventDispatcher15 which is an extension to the Runnable16 interface. This allows us to
execute instances of our interface in their own threads. The provided method run should be
used to execute the monitoring capabilities. Here we impose no limitation on the tools used
inside this method and the extracted information. We rather provide an abstract class called
AbstractEventDispatcher17 which eases the propagation of host-based properties. For our proof
of concept implementation we have created two such EventDispatcher implementations which
extract information about the hosts Computational Processing Unit (CPU) utilization and it’s
memory usage using Java features. Here it would also be possible to execute Operating System
(OS)-specific tools and programs to extract different kinds of information, e.g. the hosts Internet
Protocol (IP)-addresses or the host-name.

14at.ac.tuwien.dsg.myx.monitor.AbstractMyxExternalConnectionBrick
15at.ac.tuwien.dsg.myx.monitor.ed.EventDispatcher
16java.lang.Runnable
17at.ac.tuwien.dsg.myx.monitor.ed.AbstractEventDispatcher
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5.2.3 Propagation of Architectural Properties

The propagation of architectural properties is the process of transporting information from our
Monitor application to our Aggregator. The EventManager component in our Monitor applica-
tion exposes an interface named EventManager18 which provides a single method called handle.
This method takes an instance of the abstract class Event19 and is responsible for handling the
given event by e.g. forwarding it to the Aggregator. The Event class and it’s child classes are
based on the events defined in Section 4.1 and 4.2 and are outlined in Figure 5.1. Due to the
structure and properties of the defined events we are able to directly create a class structure.

Our base event class contains four properties: id, timestamp, archtiectureRuntimeId and
eventSourceId. The id is a (pseudo-)randomly generated identifier, namely an UUID v4 [41],
which uniquely identifies the event. The time stamp contains the unix-timestamp which refers to
the time the event was created. The architectureRuntimeId is and identifier that marks the current
application, see Section 5.5 for further details. Finally the eventSourceId defines the source of
the event, that is the location the event was created. In our proof of concept implementation this
refers to the creating class. The full definition of our base class can be found in the appendix.

All other events encapsulate all the information required for the architectural property.

18at.ac.tuwien.dsg.myx.monitor.em.EventManager
19at.ac.tuwien.dsg.myx.monitor.em.events.Event
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<<abstract>>
Event

id : String
timestamp : Long
architectureRuntimeId : String
eventSourceId : String

XADLEvent
runtimeId : String
blueprintId : String
eventType : EventType
elementType : ElementType

XADLRuntimeEvent
runtimeId : String
blueprintId : String
runtimeEventType : RuntimeEventType

XADLLinkEvent
sourceRuntimeId : String
sourceBlueprintId : String
sourceInterfaceType : String
destinationRuntimeId : String
destinationBlueprintId : String
destinationeInterfaceType : String
eventType : EventType

XADLExternalLinkEvent
runtimeId : String
blueprintId : String
interfaceType : String
externalConnectionId : String
eventType : EventType

<<abstract>>
XADLHostEvent

hostId : String
eventType : EventType

XADLHostPropertyEvent
properties : Properties

XADLHostingEvent
componentIds : List<String>
connectorIds : List<String>
groupIds : List<String>
subHostIds : List<String>

XADLHostInstanceEvent
description : String

Figure 5.1: Class hierarchy for events containing architectural properties as an UML class dia-
gram.
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All of the listed event classes are used throughout our Monitor and Aggregator applications.
The Monitor application creates the events, either automatically or by providing the means so
allow the developer to do so, and emits them using the EventManager which is responsible for
transporting the events to the Aggregator. The Aggregator listens for such incoming events and
processes them to create the resulting runtime architecture.

As the event classes are used to describe architectural properties they can be associated
with them, thus we create them whilst extracting all of our architectural properties. The ex-
tracted properties are directly forwarded to the EventManager. The default implementation of
the EventManager simply drops all incoming events and should not be used for application
monitoring. We provide an alternative implementation which can be used to communicate with
the Aggregator component. This implementation also injects some properties into each event.
That is the architectureRuntimeId and hostId, for XADLHostEvents. After injecting these prop-
erties the event is associated with a topic and sent to the Aggregator. The topic is used in the
publish-subscribe system of our Aggregator. Table 5.1 shows the event classes, their associated
architectural property and topic.

The topic is specified as a simple string and identifies a certain kind of event. To allow
for extended matching which is not only based on the type of event but on other properties
as well our approach adds the blueprint- or host identifier to the shown base topic. For the
events XADLEvent, XADLRuntimeEvent and XADLExternalLinkEvent the blueprint identifier
is appended to the topic so it results in the string <event-identifier>.<blueprint-identifier>,
e.g. event.xadl.componentffa80065-dd76782b-71c4b832-18f7133c. For XADLLinkEvents the
blueprint identifiers of both source- and destination brick are appended to the topic result-
ing in <event-identifier>.<source-blueprint-identifier>.<destination-blueprint-identifier>, e.g.
event.xadlexternallink.componentffa80065-dd76782b-71c4b832-18f7133c.componentffa80065-dd76b5d8-
c36ff1da-18f71360. For XADLHostEvent and it’s children the host identifier is appended to
the event identifier which results in the string <host-event-identifier>.<host-identifier>, e.g.
event.xadlhost.property.fff20c0e-f569c1a7-b867d7fe-a26e08fd. Using these topics allows for
specialized subscriptions in our Aggregator.

Event Class Architectural Property Topic
Event event
XADLEvent Components & Connectors event.xadl
XADLRuntimeEvent The Runtime Status event.xadlruntime
XADLLinkEvent Local Links event.xadllink
XADLExternalLinkEvent External Links event.xadlexternallink
XADLHostEvent event.xadlhost
XADLHostingEvent Hosted Components & Connectors event.xadlhost.hosting
XADLHostInstanceEvent Hosts event.xadlhost.instance
XADLHostPropertyEvent Host Properties event.xadlhost.property

Table 5.1: Event classes, their architectural properties and topics.

As some of our architectural properties cannot be extracted automatically and require a developer
we still describe features of our proof of concept implementation which ease the propagation
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process of these architectural properties.

External Links

For our approach to be able to monitor externally created links the application has to emit a
XADLExternalLinkEvent. We support the developer by providing an abstract class called Ab-
stractMyxExternalConnectionBrick20 which can be used as the basis of a brick utilizing external
connections. This class is an extension of the AbstractMyxSimpleBrick class and provides two
methods for the dispatching of XADLExternalLinkEvents, see Listing 5.4.
package at.ac.tuwien.dsg.myx.monitor;

[...]

public abstract class AbstractMyxExternalConnectionBrick extends AbstractMyxSimpleBrick
{

[...]
protected void dispatchExternalLinkConnectedEvent(String interfaceType, String

externalConnectionIdentifier) { [...] }
protected void dispatchExternalLinkDisconnectedEvent(String interfaceType, String

externalConnectionIdentifier) { [...] }
[...]

}

Listing 5.4: The two exposed methods to propagate external link events.

These two methods indicate either that an external connection as been established or shut down.
They both require the interface’s type and connection identifier to be present. Once the brick
has established an external connection it should call the dispatchExternalLinkConnectedEvent
method with the interface’s type and the corresponding connection identifier. After the connec-
tion’s shutdown the method dispatchExternalLinkDisconnectedEvent needs to be called. List-
ing 5.5 shows how we have used the provided methods in our evaluation application to propagate
events about an external connection being created and shut down. It is important to note that the
interface type has to be known by the implementation. It is currently not possible to inject this
type dynamically so the interface’s type has to be defined directly in the source code.

20at.ac.tuwien.dsg.myx.monitor.AbstractMyxExternalConnectionBrick
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package at.ac.tuwien.dsg.pubsub.subscriber.comp;

[...]

public abstract class Subscriber<E> extends AbstractMyxExternalConnectionBrick {

[...]

private ExecutorService executor;
private Runnable runnable;

[...]

@Override
public void init() {

[...]

executor = Executors.newSingleThreadExecutor();
runnable = new Runnable() {

@Override
public void run() {

[...]
String connectionIdentifier = getExternalConnectionIdentifier();
dispatchExternalLinkConnectedEvent("interfaceType0bcf68ee-6bf6-488c-

af3f-105447849d8e", connectionIdentifier);
[...]
dispatchExternalLinkDisconnectedEvent("interfaceType0bcf68ee-6bf6-488c-

af3f-105447849d8e", connectionIdentifier);
[...]

}
};

}

@Override
public void begin() {

[...]
executor.execute(runnable);

}

[...]

/**
* Get the external connection id of the connected {@link Endpoint}.

*
* @return

*/
protected abstract String getExternalConnectionIdentifier();

}

Listing 5.5: Example usage of the AbstractMyxExternalConnectionBrick class by a componentn
of our subscriber evaluation application.
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The tricky part in handling external connections is the generation of the connection identifier
which has to be the same for all interfaces involved in the external connection. Listing 5.6
shows how a connection identifier can be created for connections involving sockets.
package at.ac.tuwien.dsg.pubsub.subscriber.comp.socket;

[...]

public class SocketByteSubscriber extends Subscriber<byte[]> {
[...]

@Override
protected String getExternalConnectionIdentifier() {

Socket s = [...];
// from,to
return s.getLocalAddress().getHostAddress() + ":" + s.getLocalPort() + "," + s.

getInetAddress().getHostAddress() + ":" + s.getPort();
}

[...]
}

Listing 5.6: Generating a connection identifier for a socket based connection.

Host-Based Properties

The extraction of host-based properties is not directly handled in our Monitor application but can
be run next to the actual application. Our approach uses the interface EventDispatcher to exe-
cute such monitoring utilities. To support the developer in propagating the extracted properties
we have created an abstract class called AbstractEventDispatcher which provides two methods
which ease the creating of XADLHostPropertyEvents and their propagation. Listing 5.7 shows
the method signatures of these two methods. The method initHostPropertyEvent creates a fully
configured instance of XADLHostPropertyEvent and the method dispatch forwards the event to
the EventManager which further propagates it.

As an example implementation we have provided our approach to monitor the CPU utiliza-
tion of a host. Listing 5.8 shows the class and how we have created a continuous monitoring
utility.
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package at.ac.tuwien.dsg.myx.monitor.ed;

[...]

public abstract class AbstractEventDispatcher implements EventDispatcher {
[...]
/**
* Dispatch a {@link Event} to the {@link EventManager}.

* @param event

*/
final protected void dispatch(Event event) { [...] }

/**
* Initialize a {@link XADLHostPropertyEvent}.

* @return

*/
protected XADLHostPropertyEvent initHostPropertyEvent() { [...] }

}

Listing 5.7: The two exposed methods to handle host property events.

package at.ac.tuwien.dsg.myx.monitor.ed.dispatchers;

[...]

@SuppressWarnings("restriction")
public class CPUMonitor extends AbstractEventDispatcher {

[...]
@Override
public void run() {

OperatingSystemMXBean osb = (OperatingSystemMXBean) ManagementFactory.
getOperatingSystemMXBean();

while (true) {
// create event and set properties
XADLHostPropertyEvent cpuLoadEvent = initHostPropertyEvent();
if (osb.getSystemCpuLoad() >= 0) {

cpuLoadEvent.getHostProperties().put(XADLHostProperties.CPU_SYSTEM_LOAD
, osb.getSystemCpuLoad());

}
if (osb.getProcessCpuLoad() >= 0) {

cpuLoadEvent.getHostProperties().put(XADLHostProperties.
CPU_PROCESS_LOAD, osb.getProcessCpuLoad());

}
// dispatch the event
if (!cpuLoadEvent.getHostProperties().isEmpty()) {

dispatch(cpuLoadEvent);
}
// sleep for some time
try {

Thread.sleep(5 * 1000);
} catch (InterruptedException e) {

return;
}

}
}

}

Listing 5.8: Our example implementation to extract the CPU utilization of the current host.
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5.3 Aggregating a runtime architecture

Our proof of concept implementation of the Aggregator is, as the Monitor run using myx.fw with
it’s architecture outlined in Section 4.3.2. It is based on the message broker of our evaluation
application which is described in Section 6.1. Due to this fact we will skip most of the details of
our publish-subscribe implementation and focus on the aggregation of the runtime architecture.

The Aggregator is designed as a loosely coupled application that can be run with or without
a Monitor instance. It acts as an endpoint for receiving events about architectural properties and
is responsible for creating the resulting runtime architecture. Due to the nature of a publish-
subscribe system we are not limited to creating the runtime architecture but are also able to
directly act as a message broker and forward the received architectural properties.

In the following we will describe how the different events are handled throughout the Aggre-
gator, how the runtime architecture is created and how we used the underlying publish-subscribe
system to allow for further property propagation.

5.3.1 Handling of Architectural Events

The Aggregator uses the underlying publish-subscribe system to receive architectural properties.
Each connected Monitor instance is handled by an instance of the PublisherEndpoint component
which forwards the received events to the MessageDistributor.

There exist two components in the architecture of the Aggregator that are responsible for
handling the incoming architectural events to construct the runtime architecture of an applica-
tion. The XADLRuntimeManager and HostedRuntimeManager are designed and integrated as
simple subscribers, thus directly receiving all incoming events. They both filter the received
events by predefined topic which allow them to only receive certain events.

They both are able to read and write the persisted design- and runtime architecture using the
ModelRoot component. This component exposes these architectures using the DBL. That is it
exposes the design-time architecture by instances of IArchStructure. The runtime architecture is
exposed by instances of IArchInstance.

The Aggregator is able to construct the runtime architecture of multiple applications at the
same time, under the assumption that they use the same design-time architecture so that all
elements are known. This behavior is achieved using the architectureRuntimeId property that is
contained in each event. We create a runtime architecture representation, namely an instance of
IArchInstance, for each received identifier and populate it using the associated events.

Our approach allows to aggregate a distributed application using a single or multiple ar-
chitecutreRuntimeIds. For a logic grouping it is encouraged that all application instances in a
distributed application use the same architectureRuntimeId so that all architectural elements are
contained inside the same IArchInstance instance.

XADLRuntimeManager

The XADLRuntimeManager is responsible for handling all non-host-based architectural events,
that is XADLEvents, XADLRuntimeEvents, XADLLinkEvents and XADLExternalLinkEvents. The
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events are filtered by using patterns that match these classes. Each event is handled differently
but accordingly to the specification that was described in Section 4.1 and 4.2. Here we exces-
sively use our introduced xADL extensions.

Whilst processing one of the above events we follow a defined structure. At first an IArchIn-
stance instance is extracted from the existing runtime architecture or a new instance is created.
The changes described by the event are then done in this specific instance. It is possible to per-
sist the runtime architecture after each processed architectural event we encourage the periodic
persit to outsource and persist it periodically.

HostedRuntimeManager

The HostedRuntimeManager handles all host-based architectural events, that is all subclasses
of XADLHostEvent. Like the XADLRuntimeManager we use predefines topics to only receive
events containing host-based architectural properties.

The host-based properties are persisted in the runtime architecture using the xADL xArch
HostProperty extension. As this extension provides an extension to the IArchInstance we have
to promote the extracted IArchInstance to a IHostedArchInstance21 instance using methods of
the DBL.

Once an instance of IHostedArchInstance is created we are able to process the received
events and update the runtime architecture as specified in Section 4.2.

5.3.2 Using the Publish-Subscribe System

By using a publish-subscribe system as the base of our Aggregator allows us to use it as a
message broker and thus allow received architectural events to be further propagated. That is
we allow subscribers to connect to the Aggregator as well which are handled by instances of
the component SubscriberEndpoint. This component waits for the subscriber to publish it’s
subscribed topics and then connects itself to the MessageDistributor and ModelRoot. By con-
necting to the MessageDistributor we receive all incoming events and match their topic against
the subscribed ones. If the topic matches the event is forwarded to the subscriber.

By providing different topics we are able to only subscribe to certain events, bricks or hosts.
Our approach provides three means to specify a topic: by a simple string, a regular expres-
sion or by a glob pattern [39]. By using the topics for each event we are able to subscribe
only to certain events. E.g. by specifying the glob pattern event.xadl.* we only subscribe to
XADLEvents. By using the glob pattern *.componentffa80065-dd76782b-71c4b832-18f7133c
we are able to receive only events associated with the component identified by the blueprint
identifier componentffa80065-dd76782b-71c4b832-18f7133c. By providing multiple such top-
ics it is possible to receive only certain events or events about certain bricks or hosts.

For subscriber that have connected after most of the instantiation events have been propa-
gated and thus the subscriber does not have all required information, we provide the means for

21edu.uci.isr.xarch.hostproperty.IHostedArchInstance
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a subscriber to request further information about a brick. That is the SubscriberEndpoint imple-
mentation listens for incoming requests about certain bricks and extracts this information from
the runtime architecture using the ModelRoot component. Here we currently support general
information about the brick, that is we return the bricks description and all it’s interfaces. The
interfaces are specified by their runtime- and type identifier. By allowing subscribers to request
additional information about bricks gives them the ability to construct the runtime architecture
of an application even if some events have not been delivered to them.

5.4 Communication

After both applications of our framework have described we will visualize the event propagation
process in more detail and present the communication between Monitor and Aggregator. There-
fore we have created a number of diagrams which show the event propagation process for each
application and between both of them.

The Monitor’s event propagation centers around the EventManager component which is
responsible for forwarding events to the Aggregator. Most of the architectural properties are
extracted and the corresponding events are propagated whilst instantiating or shutting down an
application. Figure 5.2 shows a sequence diagram where the instantiation of an application is
shown. We have sectioned the sequence diagram into the different stages of the instantiation
process. This demonstrates when events are propagated by the MyxRuntime component and by
a brick itself.

We also show how the EventDispatcher is running next to the actual application and is able
to propagate events at any time during the instantiation process or afterwards.
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Figure 5.2: The Monitor application’s instantiation process and the included event propagation
depicted as an UML sequence diagram.
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The event handling of the Aggregator is shown in Figure 5.3. Each incoming connection, that is
the EventManager instance of a monitored application, is represented by an instance of the Pub-
lisherEndpoint component. This component simply listens and forwards all incoming events to
the MessageDistributor. The MessageDistributor handles the event in an asynchronous manner
and forwards it to all connected subscriber. The XADLRuntimeManager and HostedRuntime-
Manager are such subscribers and take care of the architectural aggregation, outlined in the
diagram. As the Aggregator acts as a message broker and allows the further propagation of
events. Each other subscriber is handled by an instance of the SubscriberEnpoint which simply
forwards all received events to it.

PublisherEndpoint MessageDistributor XADLRuntimeManager HostedRuntimeManager ModelRoot SubscriberEndpoint

consume()

consume()

update()

consume()

update()

Architecture AggregationArchitecture Aggregation

consume()

Event PropagationEvent Propagation

Figure 5.3: The Aggregator’s event handling including the runtime architecture aggregation and
further event propagation as an UML sequence diagram.

Finally we will show how the Aggregator communicates with two Monitor instances and other
subscribers in Figure 5.4. This diagram contains two EventManager instances that are associ-
ated with two distinct monitored applications. It shows how the incoming events are handled
asynchronously by the Aggregator’s MessageDistributor and forwarded to the subscriber in a
sequential way.

5.5 Framework Integration

In this section we will describe how our framework may be integrated into a Myx and myx.fw
based application. Here we show which steps are already handled by the framework and which
steps a developer must take to fully integrate our framework.
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consume(e1)

consume(e1)
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consume(e2)

consume(e2)

e2

Figure 5.4: The communication between the Monitor and the Aggregator applications as an
UML sequence diagram.

We will show this by using two application scenarios, a simple (non-distributed) application,
where connections are not dynamically established, and a distributed application with dynamic
connection establishment.

5.5.1 Instantiation

The first step to integrate our framework into an application is to use it to instantiate the appli-
cation to be monitored. Therefore the framework has to be added to the application’s classpath,
which enables the framework to interact with the classes of the application. Once the classpath
has been adapted we are able to launch the application using our command line bootstrapping
application, called Bootstrap22.

This application instantiates our Monitor which instantiates the application itself. The Boot-
strap allows to define certain settings at the application’s startup. These settings are given as
command line parameters. Listing 5.9 shows the usage of the Bootstrap and gives an overview
of the customizable settings.

Usage:
java at.ac.tuwien.dsg.myx.monitor.Bootstrap file [--structure structureName] [--id

architectureRuntimeId] [--event-dispatcher className] [--event-manager className
] [--event-manager-connection-string connectionString]

where:
file: the name of the xADL file to bootstrap
--structure structureName: the name of the structure to bootstrap
--id architectureInstanceId: the architecture runtime id
--event-dispatcher className: the event dispatcher class name that should be

instantiated
--event-manager className: the event manager class name that should be used to

propagate events
--event-manager-connection-string connectionString: the connection string that should

be used to propate events

Listing 5.9: Usage of our command line bootstrapping application

22at.ac.tuwien.dsg.myx.monitor.Bootstrap
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The Bootstrap application only requires a single parameter to instantiate an application, all other
parameters are optional:

• file — The only required parameter is the file where the design-time architecture of the
application is defined, given as a xADL document. This file is forwarded to the Model-
Root.

• structure — Using this parameter allows to define the ArchStructure which should be
instantiated. As a xADL document may contain multiple ArchStructure elements this
parameter gives us the ability to choose which ArchStructure should be instantiated. If this
parameter is not given we use the first ArchStructure that is found in the xADL document.

• id — This parameter allows to define a custom architectureRuntimeId which is used by
the EventManager component and injected into each propagated event. By using the
same architectureRuntimeId we are able to group the runtime architecture of a distributed
application in the aggregation process. If the parameter is omitted a random architecture-
RuntimeId is generated.

• event-dispatcher — Using this parameter allows us to add custom EventDispatcher in-
stances by providing the class name of the instance. Here we allow to define multiple
instances by repeatedly using the parameter. The Bootstrap application forwards all given
class names to the EventDispatcher component which creates instances of these classes
and linking them to the EventManager. It is important to note that the application halts if
an EventDispatcher instance could not be created.

• event-manager — As the default implementation of the EventManager drops all incom-
ing events we have defined an easy way to customize the used EventManager class. By
providing the class name of the instance to be used our Bootstrap takes care of instanti-
ating the EventManager instance. It is important to note that the application halts if the
EventManager instance could not be created.

• event-manager-connection-string — To enable the EventManager instance to connect to
different Aggregator instances it is possible to pass a simple connection string to it. The
EventManager instance has to handle the usage of the connection string itself as the Boot-
strap only passes it to it.

If the provided settings are not sufficient for correctly instantiating an application it is possible
to extend the Bootstrap class and modify the behavior as required. As an example we have used
an extended class for running the Aggregator application which can be seen in the next section.

To get a better understanding of the usage of the described Bootstrap application we show
it’s usage by running the message broker of our evaluation scenario. Listing 5.10 shows the
command which allows us to run the application. Here we have not specified any of the extended
settings and simply told the Bootstrap application to instantiate it.
$ java at.ac.tuwien.dsg.myx.monitor.Bootstrap pubsub.xml --structure pubsub

Listing 5.10: Instantiation of the message broker of our evaluation application
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Listing 5.11 shows a command to instantiate the message broker as well. Here we have used
all of our optional settings to configure the monitoring of the application. We have specified a
custom EventManager implementation with an associated connection string. We have also used
the previously described EventDispatcher for monitoring the CPU utilization of the host.
$ java at.ac.tuwien.dsg.myx.monitor.Bootstrap pubsub.xml --structure pubsub --id

ArchitectureRuntimeId-72d4a895-4960-4bcb-af73-d0c1036cee55 --event-dispatcher at.
ac.tuwien.dsg.myx.monitor.ed.dispatchers.CPUMonitor --event-manager at.ac.tuwien.
dsg.pubsub.em.EventManagerImpl --event-manager-connection-string "tcp://localhost
:9000"

Listing 5.11: Instantiation of the message broker of our evaluation application with included
monitoring capabilities

5.5.2 Monitoring

To be able to monitor and aggregate the runtime architecture of an application it is required to
start the Aggregator application before the application to be monitored. To prepare the Aggre-
gator for the aggregation of an application it is required to adapt the initialization parameters
of the ModelRoot component. Here the parameter file must point to the xADL document con-
taining the design-time architecture of the application to be monitored. After these adaptations
have been done the Aggregator can be started by it’s bootstrapping class MyxMonitoringAggre-
gator23, see Listing 5.12. This class is an extension of the Bootstrap class and eases the startup
of the application. Listing 5.13 shows how the application may be run using the Bootstrap class.
$ java at.ac.tuwien.dsg.myx.monitor.aggregator.MyxMonitoringAggregator

Listing 5.12: Running the Aggregator

$ java at.ac.tuwien.dsg.myx.monitor.Bootstrap myx-monitor-aggregator.xml --structure
aggregator

Listing 5.13: Running the Aggregator using the Bootstrap application

After the Aggregator is running the used EventManager instance has to be pointed to the Ag-
gregator. Therefore it is required that a compatible EventManager implementation is used and
the injected connection string is used to direct it to the Aggregator. Listing 5.11 shows how this
behavior may be achieved.

5.5.3 Integration for Distributed Applications

The simple monitoring of the runtime architecture may be sufficient for small applications but
may not suffice for distributed applications. Distributed applications often utilize connections
between each other or other external services that cannot be described using Myx or created us-
ing myx.fw. These applications may use the abstract class AbstractMyxExternalConnectionBrick
described in Section 5.2.3.

23at.ac.tuwien.dsg.myx.monitor.aggregator.MyxMonitoringAggregator
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Distributed applications may handle connections in different ways. Whilst some approaches
may bundle external connections into a single brick others may use one brick per connection.
This behavior cannot be described using Myx and is difficult to implement using myx.fw. The
message broker of our evaluation application is designed to handle each connection, be it in-
coming or outgoing, using it’s own brick. Therefore we had to extend myx.fw to provide a way
to manipulate the runtime architecture of an application and allow for the dynamic creation of
bricks. We have achieved this behavior by exposing the used IMyxRuntime instance and allow
the application to access it. Therefore we have created an abstract class AbstractMyxMonitor-
ingRuntimeAdapter24 which allows it’s subclasses to access the current IMyxRuntime instance
using the method getMyxRuntime. Listing 5.14 shows an excerpt of the class and the exposed
method. As we can see the class is intended to be the basis of a simple brick.

As it would be possible to fully expose the IMyxRuntime instance it is encouraged to only
allow the modification of the runtime architecture using a defined interface. In the message bro-
ker of our evaluation application we have designed an interface named IMyxRuntimeAdapter25

which exposes methods for the allowed runtime architecture modifications. We then created a
brick named MyxRuntimeAdapter26 that implements this interface and thus exposes the runtime
architecture manipulation. To allow other bricks in the runtime architecture to use it we have
created a component MyxRuntimeAdapter which uses this class. Listing 5.15 shows this brick
and how we have used the IMyxRuntime instance to manipulate the runtime architecture.
package at.ac.tuwien.dsg.myx.monitor;

[...]

public abstract class AbstractMyxMonitoringRuntimeAdapter extends
AbstractMyxSimpleBrick {

[...]

protected final IMyxRuntime getMyxRuntime() { [...] }
}

Listing 5.14: The exposed methods of the AbstractMyxMonitoringRuntimeAdapter class.

24at.ac.tuwien.dsg.myx.monitor.AbstractMyxMonitoringRuntimeAdapter
25at.ac.tuwien.dsg.pubsub.middleware.interfaces.IMyxRuntimeAdapter
26at.ac.tuwien.dsg.pubsub.middleware.comp.MyxRuntimeAdapter
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package at.ac.tuwien.dsg.pubsub.middleware.comp;

public class MyxRuntimeAdapter extends AbstractMyxMonitoringRuntimeAdapter implements
IMyxRuntimeAdapter {

[...]

@Override
public void createPublisherEndpoint(String publisherEndpointClassName, Dispatcher

<?> dispatcher) {
IMyxName publisherEndpoint = MyxUtils.createName([...]);
[...]
getMyxRuntime().addBrick(PATH, publisherEndpoint, publisherEndpointDesc);
[...]
getMyxRuntime().addInterface(PATH, publisherEndpoint, MyxInterfaceNames.

IDISPATCHER, dispatcherDesc, EMyxInterfaceDirection.OUT);
[...]
getMyxRuntime().init(PATH, publisherEndpoint);
[...]
getMyxRuntime().addWeld(getMyxRuntime().createWeld(PATH, publisherEndpoint,

MyxInterfaceNames.IDISPATCHER, PATH,
MyxUtils.getName(dispatcher), MyxInterfaceNames.IDISPATCHER));
[...]
getMyxRuntime().begin(PATH, publisherEndpoint);

}

@Override
public void shutdownPublisherEndpoint(PublisherEndpoint<?> endpoint) {

[...]
getMyxRuntime().end([...]);
getMyxRuntime().destroy([...]);
[...]
getMyxRuntime().removeWeld([...]);
[...]
getMyxRuntime().removeInterface([...]);
[...]
getMyxRuntime().removeBrick(PATH, brickName);

}

@Override
public void createSubscriberEndpoint(String subscriberEndpointClassName, Dispatcher

<?> dispatcher) {
[...]

}

@Override
public void wireSubscriberEndpoint(SubscriberEndpoint<?> subscriber) {

[...]
}

@Override
public void shutdownSubscriberEndpoint(SubscriberEndpoint<?> endpoint) {

[...]
}

}

Listing 5.15: The usage of the AbstractMyxMonitoringRuntimeAdapter class in our evaluation
application.
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CHAPTER 6
Evaluation

Our monitoring approach was created to be easily integrated into new and existing myx.fw ap-
plications. To evaluate that our approach is working as described we have constructed a publish-
subscribe system which will be used to show the feasibility of our approach. As an extension of
this evaluation application we have applied our tools on ourself and used the message broker as
the basis for our Aggregator application.

This chapter will describe the general implementation details of our evaluation application,
the different scenarios as well as their results. This chapter will close with the definition of
best-practices and eventual shortcomings of the approach.

6.1 Implementing a Publish-Subscribe System

We have chosen to use a simple publish-subscribe system [3] as our evaluation scenario which
currently supports the topic-based publish-subscribe scheme [20]. As it is a proof of concept
implementation we have created a system that does not persist messages and is thus using the
concept of send-and-forget. The system is tailored for the transmission of audio streams which
leads to some interesting challenges:

• Meta-data of audio streams has to be transmitted to each connecting client to ensure the
playback.

• The stream itself has to be transferred in the correct order to each client.

• The dynamic handling of many clients using the Myx architectural style and it’s associated
tools.

This section will give an overview of the design-time architecture for each part of the evaluation
application and will describe the general message structure as well as the routing process.
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6.1.1 Architecture

Our evaluation application is not only composed of a message broker but also a publisher and
subscriber. Each of these is constructed as an application of it’s own and thus has it’s own
design-time architecture. In the following we will describe the design-time architecture of each
application with the focus lying on the architecture of the message broker as it is reused in our
Aggregator application.

Message Broker

The message broker implements the described publish-subscribe pattern utilizing the topic-based
scheme. Our approach handles each client by using it’s own connector. This characteristic is one
of the main challenges of our approach. Each incoming connection is accepted by a dispatcher
unit which delegates the creation of the connector to the underlying runtime. In the following
we will describe the design-time architecture of the application and how we implemented the
dynamic creation of connectors.

Figure 6.1 shows the design-time architecture of the application. We will describe each
component and connector that is contained in this architecture to get a better understanding of
it’s tasks.

Figure 6.1: The architecture of the message broker.

PublisherDispatcher and SubscriberDispatcher These two components are responsible for
handling of incoming connections. They share a common functionality with the only difference
being the creation of different connectors. Each component waits for an incoming connection
and instructs the underlying runtime to create a new handling instance. This instance is either
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a PublisherEndpoint or SubscriberEndpoint. The incoming connection is then provided to the
created handling instance by using an interface that allows the handling instance to poll the
connection. Due to the inner workings of the myx.fw it is not possible to easily forward the
connection to the created connector, thus we used the polling approach to forward it. The polling
itself is defined by an interface called IDispatcher which is described in Listing 6.1.

The creation of the handling instances is done via the MyxRuntimeAdapter component.
package at.ac.tuwien.dsg.pubsub.middleware.interfaces;

import at.ac.tuwien.dsg.pubsub.network.Endpoint;

public interface IDispatcher<E> {
/**
* Get the next pending endpoint.

*
* @return

*/
public Endpoint<E> getNextEndpoint();

}

Listing 6.1: The IDispatcher interface definition.

MyxRuntimeAdapter This component exposes the underlying runtime to the other compo-
nents and connectors, that is we expose a portion of the used IMyxRuntime instance. This allows
us to directly manipulate the runtime architecture of the application and dynamically create and
remove specific components or connectors. This behavior is exposed via an interface that de-
fines the allowed runtime architecture manipulation. Here it would be possible to expose the
complete runtime architecture but it is encouraged to only specify the behavior that is allowed
by the application.

Currently our approach uses this feature to create instances of PublisherEndpoint and Sub-
scriberEndpoint instances.

PublisherEndpoint This connector is one of the two dynamically created connectors in our
design-time architecture. It is not instantiated whilst starting up the application but once a pub-
lisher connects. The creation is done using the MyxRuntimeAdapter component. It fetches the
incoming connection from the PublisherDispatcher instance and then listens for incoming mes-
sages. Each message is directly forwarded to the MessageDistributor connector which takes
care of forwarding them to the appropriate subscribers. The connector listens for messages until
the connection is closed or an message of type CLOSE is received. In this case the connector
removes itself from the runtime architecture using the MyxRuntimeAdapter component.

SubscriberEndpoint This connector, as the PublisherEndpoint, is dynamically created using
the MyxRuntimeAdatper component. It is instantiated once a subscriber connects and fetches
the connection from the SubscriberDispatcher instance. The connector first consumes the sub-
scribed topics from the connection identified by a message of type TOPIC. Once the topics
are received it fully connects itself to the MessageDistributor connector using the MyxRun-
timeAdapter thus receiving all messages from the connected publishers. As the PublisherEnd-
point if the connection is closed it removes itself from the runtime architecture.
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The SubscriberEndpoint exposes a generic interface called ISubscriber which defines a sin-
gle method to consume messages named consume, see Listing 6.2. Using a generic interface
once more allows us to transfer all kinds of messages. This interface does not yet impose any
restrictions on the received messages thus it is the responsibility of the implementing class to
handle the filtering of messages. This method is invoked by the PublisherEndpoint through the
MessageDistributor connector.

package at.ac.tuwien.dsg.pubsub.middleware.interfaces;

import at.ac.tuwien.dsg.pubsub.message.Message;

public interface ISubscriber<E> {
/**
* Consume a received message.

*
* @param message

*/
public void consume(Message<E> message);

}

Listing 6.2: The ISubscriber interface definition.

MessageDistributor This connector is the central exchange point between the connected pub-
lishers and the subscribers. It is based on the event pump that is already a part of the Myx ar-
chitectural style but implements a special kind of asynchronous notifications that allows us to
forward all incoming messages in the order they were received whilst using features of con-
currency. The origins of this special requirement is our audio streaming scenario where it is
important that the messages are delivered in the correct order to ensure the playback of a stream.

Publisher and Subscriber

The message broker is the main part of our evaluation scenario but consists of the publisher
and subscriber as well which send and receive messages respectively. In the following we will
describe the architectures of both applications.

The publisher is used to send messages to the message broker. As our evaluation scenario is
about transmitting audio streams it sends audio based messages. Figure 6.2 shows it’s design-
time architecture which consists of one component and one connector. The MessageCreator
component is responsible for generating messages and sending it to the Publisher connector.
This connector forwards the received messages to the message broker or any other compatible
endpoint.

As our evaluation scenario suggests we have created a MessageCreator implementation that
allows to transmit an audio stream to the message broker. Here we use the name of the stream as
the topic. Using this topic a subscriber is capable of receiving the audio stream. As a first step
we send an initial message containing the meta data of the stream. This message is stored until
the stream is finished and sent to each connected subscriber.
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Figure 6.2: The architecture of publisher.

The subscriber on the other side is used to receive messages. In our evaluation case we play
back a received audio stream. Figure 6.3 shows the design-time architecture of the subscriber, it
consists of a connector and a component. The Subscriber connector is responsible for connect-
ing to the message broker or a any other compatible client. It publishes the subscribed topics
and waits for incoming messages which are directly forwarded to the MessageConsumer. The
MessageConsumer component is responsible for consuming the received messages.

For our evaluation scenario we have created a MessageConsumer implementation that uses
the received messages to play back the transmitted audio stream. The Subscriber connector
publishes the subscribed audio stream name as the topic so the message broker forwards the
correct audio data.

Figure 6.3: The architecture of the subscriber.

6.1.2 Messages

Our publish-subscribe systems uses simple messages for communication. A message consists
of a type, a topic and the payload. The payload of a message may hold any kind of data, thus
our approach imposes no restrictions on the transferred data.

Our evaluation application is based on a generic class called Message1. This class contains
the described properties of a message, i.e. it’s type, topic and payload. As this class is generic

1at.ac.tuwien.dsg.pubsub.message.Message
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we are able to hold any kind of data as long as there exists a Java representation of it. The source
code of this class may be found in the appendix.

We currently support five types of messages: TOPIC, INIT, DATA, CLOSE and ERROR that
arise from the audio streaming scenario. Each type of message is handled in a differnt may:

• TOPIC — This message represents the subscribing topics of a subscriber. Only if a sub-
scriber sends this kind of message it is fully connected to the messaging infrastructure.

• INIT — Publishers are able to send these kind of messages to instruct the message broker
to send them to each connected subscriber on connection establishment. The origins of
this kind of message lies in the transport of audio streams, where the first bytes of a
stream contain meta-data about it and thus need to be received by the subscriber to ensure
the correct output.

• DATA — This kind of message represents the usual data transfered by a publish-subscribe
system.

• CLOSE — Another message type originating in the transport of audio streams. The pub-
lisher is able to signal the end of a stream by publishing this kind of message, thus remov-
ing all messages of type INIT associated with the stream.

• ERROR — Represents a general error emitted by the publisher, message broker or the
underlying transport protocol.

Along with the type of a message the corresponding topic is contained. This topic is represented
as a simple string and is used in the message routing process to select the receiving subscribers.

6.1.3 Client Handling

Each client in our publish-subscribe system is represented by a generic interface called End-
point2. A client can be described as the end of an external connection which is capable of
sending and receiving messages. Listing 6.3 shows the interface definition and thus the two
exposed methods receive and send.

Our current implementation uses sockets and a simple text based protocol for the transporta-
tion of messages. Here we are able to transfer any kind of message by serializing the message
itself.

2at.ac.tuwien.dsg.pubsub.network.Endpoint
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package at.ac.tuwien.dsg.pubsub.network;

import java.io.Closeable;
import java.io.IOException;

import at.ac.tuwien.dsg.pubsub.message.Message;

/**
* Interface that specifies the methods of a real network endpoint.

*
* @param <E>

*/
public interface Endpoint<E> extends Closeable {

/**
* Receive a message.

*
* @return

*/
public Message<E> receive() throws IOException;

/**
* Send a message.

*
* @param msg

*/
public void send(Message<E> msg) throws IOException;

}

Listing 6.3: The Endpoint interface definition.

6.1.4 Message Routing

The differences between publishers and subscribers allows for a custom handling of these two
clients, combining blocking- and non-blocking Input/Output (IO).

Once a publisher connects an instance of PublisherEndpoint is created. This connector
starts a new thread which listens for incoming messages. Once a message is received it is
directly forwarded to the MessageDistributor. We listen for messages until a closing message is
received, that is a message of type CLOSE, or the connection was closed.

If a subscriber connects an instance of SubscriberEnpoint is dynamically created. As a first
step we wait for the subscriber to publish it’s subscribed topics. These topics are published using
a message of type TOPIC and are specified as a simple list. We support different kinds of topics,
that is simple strings, regular- or glop pattern expressions [39]. Each topic is represented by an
interface called Topic3 which exposes a single method matches, see Listing 6.4. We have created
matching implementations for all our supported topic types which can be found in the appendix.

3at.ac.tuwien.dsg.pubsub.message.topic.Topic
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package at.ac.tuwien.dsg.pubsub.message.topic;

/**
* Interface providing the methods used to match a topic pattern.

*/
public interface Topic {

/**
* Return if the given topic matches the pattern.

*
* @param topic

* @return

*/
public boolean matches(String topic);

}

Listing 6.4: The Topic interface definition.

Once the subscriber has published it’s subscribed topics it is connected to the MessageDistrib-
utor and is thus able to receive messages. If a message is published the PublisherEndpoint
invokes the consume method of the ISubscriber interface, implemented by the SubscriberEnd-
point, through the MessageDistributor. Our implementation first validates if one of the sub-
scribers topics matches the topic of the message and forwards it to the subscriber. If the topics
does not match the message is simply ignored.

The MessageDistributor is the central exchange point for messages as it forwards the method
calls of all PublisherEndpoint instances to all SubscriberEndpoint instances. It acts as a connec-
tor between the two connectors and forwards all calls from the PublisherEndpoint instances to
the consume method of the ISubscriber interface to all SubscriberEndpoint instances.

The connector is based on the EventPumpConnector4, which is the myx.fw implementation
of the asynchronous notification pattern. As all connectors in the myx.fw it implements the In-
vocationHandler5 interface which allows the instance to be used by a proxy object and thus
allows the implementation of the communication patterns described by Myx. By implement-
ing the interface IMyxDynamicBrick the connector gets notified once a new Myx interface is
connected or disconnected using the methods interfaceConnected and interfaceDisconnected.
We use these methods to keep track of all connected outgoing interfaces which allows us to
forward all method calls to them. The EventPumpConnector uses a single thread, which is
represented by an instance of the interface Executor6 or ExecutorService7, for asynchronous ex-
ecution which guarantees the required ordering. Using a single thread to forward messages is
not feasible if many publishers or subscribers are connected. As any other implementation of
the Excecutor using multiple threads does not guarantee that the messages are delivered in the
correct order we had to create an extension of the Executor and ExecutorSercive interface called
IdentifiableExecutorService8. This interface extends the ExecutorService by a single method
execute that allows to specify an identifier for a given Runnable, see Listing 6.5. This identifier
guarantees that all tasks submitted with the same identifier are executed by the same thread.

4edu.uci.isr.myx.conn.EventPumpConnector
5java.lang.reflect.InvocationHandler
6java.util.concurrent.Executor
7java.util.concurrent.ExecutorService
8at.ac.tuwien.dsg.concurrent.IdentifiableExecutorService
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The MessageDistributor uses the called object itself, that is the subscriber, as an identifier thus
guaranteeing that the messages are delivered sequentially.

The MessageDistributor allows to store initial messages, that is messages of type INIT,
which may hold meta-data, e.g. the used audio codec for a stream, and send them to each con-
nected outgoing connection. Here we save all such Message instances and forward them once
a subscriber is connected to the MessageDistributor. Here we use the method interfaceCon-
nected of the IMyxDynamicBrick interface to directly forward all stored initial messages to the
subscriber.

package at.ac.tuwien.dsg.concurrent;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.RejectedExecutionException;

/**
* An extension to the {@link ExecutorService} interface that allow to

* execute tasks on specific {@link Thread}s using identifiers.

*/
public interface IdentifiableExecutorService extends ExecutorService {

/**
* Executes the given command at some time in the future. The command may

* execute in a new thread, in a pooled thread, or in the calling thread,

* at the discretion of the {@code Executor} implementation. This method

* guarantees that a {@link Runnable} with the same identifier is always

* executed by the same {@link Thread}.

*
* @param command

* the runnable task

* @param identifier

* the identifier

* @throws RejectedExecutionException

* if this task cannot be accepted for execution

* @throws NullPointerException

* if command is null

*/
void execute(Runnable command, int identifier);

}

Listing 6.5: The IdentifiableExecutorService interface definition.

6.2 Problem Instances

For the evaluation of our framework we have created different scenarios which demonstrate it’s
feasibility and stability. In this section we will first describe the goal of each scenario and their
instantiation order including the amount of instances that are actually created.

6.2.1 Audio-Streaming Based Publish-Subscribe

The first evaluation scenario is based on our motivated scenario. We have created a publish-
subscribe implementation that is capable of streaming simple audio messages based on the Java
package javax.sound.sampled. Thus we are able to play sounds stored in Waveform Audio File
Format (WAVE), which is natively supported by Java.
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In this scenario the publisher reads an audio file into a simple byte buffer, packs the data
into an instance of the Message class and sends it to the message broker. Due to WAVE we have
to treat the first read message as meta-data thus publishing it with the type INIT which enables
all subscribers to correctly play the streamed sound. Once the whole file has been published we
publish a message of type CLOSE enabling all subscribers to stop the playback and shut down
correctly. We use the name of the audio file as our topic to allow for the concurrent streaming of
multiple audio streams.

The subscriber is also constructed in a very simple way. It waits for a message of type
INIT and creates an audio stream based on the Java package javax.sound.sampled. It forwards
all received messages of type DATA to the audio stream, enabling the audio playback. The
subscriber listens for messages until a message of type CLOSE is received or the connection is
closed. Here we subscribe to the previously named filename of the audio file so we receive the
correct stream.

For this scenario we have used two audio files each with a length of around five minutes
which results in a maximum subscriber runtime of around five minutes.

The amount of publishers and subscribers in this scenario is fixed. We define two sub-
scenarios that consist of the following instantiation orders:

• Scenario 1

1. The message broker.

2. One subscriber instance subscribing to the first audio file.

3. One publisher instance publishing the first audio file.

• Scenario 2

1. The message broker.

2. Three subscriber instances, two subscribing to the first audio file and one subscribing
to the second one.

3. Two publisher instances, one publishing the first audio file and the other one pub-
lishing the second one.

We have verified that the audio streaming was working as expected by ensuring that the stream
was played correctly. Scenario 2 was verified by playing a single stream at a time by only
allowing one subscriber to actually output sound. The volume of all other subscribers has been
reduced to zero. This required us to execute the scenario multiple times.

6.2.2 Event Based Publish-Subscribe

Our second evaluation scenario is our framework itself, in more detail our Aggregator applica-
tion. As the message broker of our evaluation scenario is the basis for the Aggegator application
we use the publish-subscribe pattern to propagate architectural properties and thus we have cre-
ated an additional evaluation scenario. Here we can validate the feasibility by comparing the
aggregated runtime architecture with the expected one.
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6.2.3 Monitoring Distributed Applications

To show that our evaluation application is working correctly in a distributed environment with
many application instances we have created different scenarios to demonstrate that our approach
is capable of handling them. For these scenarios we have created custom implementations of a
publisher and a subscriber.

Each publisher that is used in these scenarios is transmitting empty dummy messages. Here
we used a custom MessageCreator component which generates a specific amount of messages
and transmits them to the message broker. It is possible to define a waiting period between each
transmitted message. This allows us to send small messages over a long period of time.

The used subscriber has also been adapted for this scenario. Here we use a custom Message-
Consumer component that simply drops all incoming messages that are transferred to it.

To ease the testing process we have extend our bootstrapping application that has been de-
scribed in Section 5.5.1 and is named LoadTestBootstrap9. This application extends the known
settings by allowing the instantiation of multiple application instances. Listing 6.6 shows the
usage of this application and gives an overview of the newly customizable settings.
Usage:

java at.ac.tuwien.dsg.myx.monitor.evaluation.LoadTestBootstrap file [--structure
structureName] [--id architectureRuntimeId] [--event-dispatcher className] [--
event-manager className] [--event-manager-connection-string connectionString]
[--amount count] [--ramp-up-time seconds] [--run-time seconds]

where:
file: the name of the xADL file to bootstrap
--structure structureName: the name of the structure to bootstrap
--id architectureInstanceId: the architecture runtime id
--event-dispatcher className: the event dispatcher class name that should be

instantiated
--event-manager className: the event manager class name that should be used to

propagate events
--event-manager-connection-string connectionString: the connection string that should

be used to propate events
--amount count: the amount of instances to create
--ramp-up-time seconds: the time in which the instances should be launched
--run-time seconds: the time in seconds how long the application is kept running

Listing 6.6: Usage of our command line load testing bootstrapping application

The LoadTestBootstrap application extends Bootstrap by the following parameters, which once
again are optional:

• amount — This parameter defines the applications instances that should be instantiated.
The default behavior is to just start a single instance which matches the behavior of the
Bootstrap application.

• ramp-up-time — By specifying a ramp-up time it is possible to define the timespan in
which all application instances are to be instantiated. The default behavior is to start all
instances as soon as possible which is a ramp-up time of zero.

9at.ac.tuwien.dsg.myx.monitor.evaluation.LoadTestBootstrap
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• run-time — This parameter specifies the maximum runtime of all application instances.
Once the maximum runtime is reached the shutdown of all instances is forced. If this
parameter is omitted the instances may run indefinitely.

To get a better understanding of the usage of the described bootstrapping application we will
show it’s usage by running the publisher of our evaluation scenario. Listing 6.7 shows the
command which allows to run an application like with the Bootstrap application, in this case the
publisher of our evaluation scenario. By not specifying any parameters just a single application
instance is created.
$ java at.ac.tuwien.dsg.myx.monitor.evaluation.LoadTestBootstrap pubsub.xml --structure

pub

Listing 6.7: Instantiation of the publisher of our evaluation application using the
LoadTestBootstrap application

Listing 6.8 shows the extended command line usage to instantiate multiple instances of the
application. Here we have specified that five instances should be started in ten seconds. After
120 seconds the shutdown of all five application instances is forced.
$ java at.ac.tuwien.dsg.myx.monitor.evaluation.LoadTestBootstrap pubsub.xml --structure

pub --amount 5 --ramp-up-time 10 --runtime 120

Listing 6.8: Instantiation of the publisher of our evaluation application using the
LoadTestBootstrap application with usage of the described parameters

We have created different scenarios that show that our framework and the evaluation application
are running correctly in an environment with many publishers and subscribers:

• Scenario 1 — For our first scenario we use a fixed amount of 200 publishers and 200
subscribers. The ramp-up time for publishers is set to 10 seconds and the corresponding
runtime is set to 50 seconds which yields a maximum runtime for our publishers of 60
seconds. For subscribers we use a ramp-up time of 30 seconds and a runtime of 30 seconds
resulting in a maximum runtime of 60 seconds as well.

• Scenario 2 — For the second scenario we keep the fixed amount of publishers and sub-
scribers from the previous scenario. The ramp-up time is randomized between 20 and 40
seconds for both publishers and subscribers and the runtime is set to 30 seconds for both
instances which results in a maximum runtime of 70 seconds.

• Scenario 3 — The third scenario is fully randomized. We use a randomized amount of
publishers and subscribers between 150 and 200 instances. We again use a random ramp-
up time of 20 to 40 seconds. The runtime of all instances is now randomized between 20
and 40 seconds resulting in a maximum runtime of 80 seconds.

All of the three scenarios are executed using our LoadTestBootstrap application. This allows us
to limit the maximum runtime of the instantiated applications as well as run them multiple times.
To increase the total runtime of each scenario we run the described scenarios for publishers and
subscribers 20 times, yielding a total runtime for each scenario of more than 20 minutes. We
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thus simulate application instances that connect to and disconnect from the message broker over
time.

6.2.4 Environment

All parts of our evaluation application are running in different environments. The message
broker and publisher are being run on a server in the cloud and the subscriber is run locally. The
Aggregator of our framework is also run on a server in the cloud environment.

For our distributed application simulation we chose to run all parts of the application in the
cloud environment.

The cloud instances are based on OpenStack10 and are using an Ubuntu 14.04 LTS Image
with Java 7 installed. We used the m2.medium instance flavor which provides 3 VCPUs with
5760 MB of memory for each virtual machine.

The local environment is represented by a Dell Latitude E6410 laptop which contains an
Intel Core i7 M620 CPU with 2.67 GHz and 8 GB memory and is running Windows 7 with Java
7 installed.

It is important to note that for all our evaluation runs we have started the aggregation com-
ponent as a first step. Once it was in a running state the other instantiation steps were executed.

6.3 Results

The results of our evaluation scenarios consist of two parts, the runtime architecture of the
evaluation application and different statistics of the execution.

6.3.1 Runtime Architecture

The main result while executing our aggregation component is a runtime architecture. This
architecture is described using the xADL schema xArch Instances and our introduced extensions.

For each of our evaluation scenarios we will show the resulting runtime architecture once
all application instances are running, that is all components and connectors are instantiated and
linked.

6.3.2 Statistics

To extract more sophisticated data from the evaluation scenarios and it’s execution we have
created a special component called StatisticsSubscriber11, which is directly integrated into the
Aggregator as a subscriber. That is, it is connected to the MessageDistributer which enables us
to inspect all received architectural properties.

The component is able to extract the following statistics and save them in the Comma Sepa-
rated Values (CSV) format for them to be further processed:

10http://www.openstack.org
11at.ac.tuwien.dsg.myx.monitor.aggregator.evaluation.StatisticsSubscriber
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• Amount of instantiated bricks — We are able to show the amount of instantiated brick
in the monitored application over it’s runtime.

• Amount of active external connections — The amount of active external connections
between parts of an application is shown over it’s runtime.

• Amount of instantiated application instances — Here we show the amount of appli-
cation instances, i.e. parts of the monitored application that might be connected to each
other.

• Amount of hosts — We show the amount of currently involved hosts in the runtime
architecture.

• Consumed events — For each kind of event we show the amount that was consumed by
the Aggregator over time which allows us to further analyze the aggregation process.

The values for the described statistics are saved for every second of the application’s runtime
which allows us to display them over time and easily extract aggregated values.

6.4 Evaluation of Feasibility

By executing the scenarios described in Section 6.2.1 and validating the extracted results we
can assure that our approach is working as expected. We also validate the scenario described in
Section 6.2.2 by using our Aggregator to extract the evaluation results which further proves the
feasibility of our approach.

We will show this by first describing the runtime architecture of the scenario’s application
and comparing it with it’s design-time architecture. As a last step we will show our custom
statistics extracted by the Aggregator.

6.4.1 Scenario 1

To be able to execute the first scenario described in Section 6.2.1 we have to take a look at the
design-time architectures of all used application parts. Thus we will show the message broker,
the publisher and the subscriber, see Section 6.1.1 Figure 6.4 shows the combined design-time
architecture of all three applications. To show where each application is executed we have added
the hosts to the Figure, which are not part of the design-time architecture.

Once the scenario has been started, that is all applications were in a running state, we have
extracted the runtime architecture from the Aggregeator which is shown in Figure 6.5. If we
compare it to the described design-time architecture we can see that all bricks have been cre-
ated and linked as expected. We can see that the message broker has dynamically instantiated
and linked the PublisherEndpoint and SubscriberEndpoint connectors by using the MyxRun-
timeAdapter which shows us that the dynamic creation of brick is working as described. The
runtime status of each brick has been appended to it’s description and is represented by the
string [RUNNING]. We also notice that the publisher and subscriber have been linked with the
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message broker, which can be seen by the connections between the bricks Publisher and Pub-
lisherEndpoint as well as between SubscriberEndpoint and Subscriber. To distinguish these
external links from locally created links they are displayed as a dotted line in the Figure. The
hosts the applications are running on are also shown in the Figure. If we compare them with the
hosts described in the design-time architecture we can see that the information about the hosts
was extracted correctly.

Our comparison between the design-time- and runtime architecture shows that everything
was instantiated correctly thus we assume that the evaluation application as well as the Aggre-
gator are working as described. To further prove the feasibility we will validate our custom
statistics that were extracted over the runtime of the application using the Aggregator.
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Figure 6.4: The design-time architecture of the audio-based publish-subscribe scenario using
one publisher and subscriber.
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Figure 6.5: Resulting runtime architecture of the audio-based publish-subscribe scenario using
one publisher and subscriber.
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Over the runtime of our evaluation application different events arise. In the first step all appli-
cations are started and the the audio streaming begins. At around 200 seconds the publisher
finishes the streaming of the file. Because reading an audio file and sending it over the network
does not take as long as replaying the stream, the publisher finishes it’s work way before the sub-
scriber. After a runtime of 300 seconds, which is the length of the audio stream, the subscriber
has finished the replay thus shutting itself down. Some time later we manually shut down the
message broker labeling the end of our evaluation run.

We have thus described four major events in our evaluation run which are associated with
changes in our runtime architecture. These changes can be shown using our custom statistics:

1. Application startup.

• The amount of instantiated bricks is increased to 10 (see Figure 6.6), which is the
correct amount of bricks for our running evaluation application.

• The amount of external connections is increased to two (see Figure 6.7). These rep-
resent the connections between the publisher and subscriber to the message broker.

• The amount of instantiated application instances increases to three (see Figure 6.8).
These instances represent the instantiated message broker, publisher and subscriber.

• The amount of hosts that run parts of our application increases to three (see Fig-
ure 6.9). This results due to the fact that we use one host for each application part.

2. Publisher shutdown at around 200 seconds of runtime.

• At this time we can see that the amount of instantiated bricks drops to seven. That is
the two bricks of the publisher are shut down as well as the VirtualPublisherEndpoint
instance of the message broker.

• Due to the shutdown the amount of external connections drops to one.

• The amount of instantiated applications parts as well as hosts running them drops to
two respectively.

3. Subscriber shutdown at around 300 seconds of runtime.

• With the shutdown of the subscriber we can see that the amount of instantiated bricks
drops to five. Here the VirtualSubscriberEndpoint is not shut down directly. That is
the result of the asynchronous subscriber architecture which will leave the subscriber
open until the next message is published.

• Due to the shutdown the amount of external connections drops to zero, thus no such
connections are contained in the runtime architecture anymore.

• The amount of instantiated applications parts as well as hosts running them drops to
one respectively.

4. Message broker shutdown at around 330 seconds of runtime.
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• After the message broker is shut down all parts of the evaluation application are shut
down, dropping the amount of instantiated bricks, external connections, application
instances and hosts to zero.

The extracted statistics further prove the feasibility of our approach and we can see that the
implemented publish-subscribe pattern works as expected in both applications using it, that is
the message broker and the Aggregator.
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Figure 6.6: The amount of instantiated bricks over the runtime of the application.

To show how our approach performed we have show the average memory usage of each
host whilst running the evaluation scenario. Figure 6.10 shows the memory usage in Mega
Bytes (MB) over the runtime of the evaluation application. The memory usage of the message
broker results from our architecture which allows publishers to publish message as soon as
possible thus resulting in messages that are held back at the message broker as the subscribers
are able to receive all these messages instantly.

For creating the runtime architecture and extracting the described statistics we solely relied
on our architectural properties. Each change in the application’s runtime architecture is accom-
panied by an event about the change, see Section 5.2.3. The transmitted events of this scenario
can be seen in Figure 6.11 and are categorized by their type and their amount is shown over the
runtime of the evaluation application.

As we can see most of the events were received once the state of the applications is changed,
e.g. at the startup or shutdown of an application. The only type of event that is received con-
tinuously are events of type XADLHostPropertyEvent, which are generated periodically by the
EventDispatcher instances described in Section 5.2.
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Figure 6.7: The amount of active external connections over the runtime of the application.
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Figure 6.8: The amount of instantiated application instances over the runtime of the application.
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Figure 6.9: The amount of hosts that run parts of the application over it’s runtime.
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(a) Memory usage of the publishers.
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(b) Memory usage of the subscribers.
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(c) Memory usage of the message broker.

Figure 6.10: The memory usage for each of the uses hosts in our evaluation application over
time.

84



0 100 200 300
0

2

4

6

Runtime in seconds

A
m

ou
nt

of
ev

en
ts

(a) Received XADLEvents.
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(b) Received XADLRuntimeEvents.
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(c) Received XADLLinkEvents.
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(d) Received XADLExternalLinkEvents.
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(e) Received XADLHostPropertyEvents.
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(f) Received XADLHostingEvents.

Figure 6.11: The different events received by the Aggregator over time.
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6.4.2 Scenario 2

The second scenario described in Section 6.2.1 is an extension of our first audio streaming
scenario. Here we use multiple publishers and subscribers to transport different audio streams.
Figure 6.12 again shows the combined design-time architecture of all applications including the
hosts which are not part of the design-time architecture. Here we can see that two publisher-
and three subscriber applications are started on one host respectively. Given these additional
connections the design-time architecture of the message broker has not been changed as all
connections are handled dynamically.

Again we have extracted the runtime architecture from the Aggregator once all applications
were started which is shown in Figure 6.13. If we compare it to the design-time architecture
we can once again see that all bricks have been created an linked as expected. The message
broker has created two instances of the PublisherEndpoint connector and three instances of the
SubscriberEndpoint connector dynamically. These dynamically created connectors show that
currently our approach handles each connection with it’s own connector. It is not possible to use
one connector for multiple incoming or outgoing connections. Each publisher and subscriber
have once again been connected to the message broker with links between the the bricks Pub-
lisher and PublisherEndpoint as well as between SubscriberEndpoint and Subscriber. These
connections are again shown as dotted lines so we are able to distinguish them from locally
created links. Our current implementation of publishers and subscribers does not allow the
streaming of multiple audio streams via one application. The runtime status of each brick has
again been appended to their description. We again have added the hosts the applications are
running on to the Figure. Comparing them to the hosts outlined in the design-time architecture
we can again see that the information about the hosts have been extracted correctly.

This comparison shows that our approach is working correctly with multiple instances of the
same application part. It further proves the feasibility of our approach. As in Section 6.4.1 we
will validate our custom statistics that were extracted by the Aggregator.
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Figure 6.12: The design-time architecture of the audio-based publish-subscribe scenario using
multiple publishers and subscribers.
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Figure 6.13: Resulting runtime architecture of the audio-based publish-subscribe scenario using
multiple publishers and subscribers.
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We can once again extract specific events that label changes in our runtime architecture. In
the first step all applications are started. For us to be able to see the changes of the runtime
architecture more clearly we delay the startup of each subscriber and publisher. At around
200 seconds the publishers have all finished streaming their used audio file. After 300 seconds
all subscribers have finished replaying the streamed audio file, thus shutting themselves down.
As both of our audio files have a length of around 5 minutes the runtime of publishers and
subscribers does not change. Some time later we again shut down the message broker manually
labeling the end of our second evaluation run.

We have thus described four major events in our evaluation run which are associated with
changes in our runtime architecture. These changes can be shown using our custom statistics:

1. Application startup.

• The amount of instantiated bricks is increased over time to 20 (see Figure 6.14),
which is the correct amount of bricks for our running evaluation application.

• The amount of external connections is increased to five (see Figure 6.15). These rep-
resent the connections between the publisher- and subscriber instances to the mes-
sage broker.

• The amount of instantiated application instances increases to six (see Figure 6.16).
These instances represent the instantiated message broker, publisher- and subscriber
instances.

• The amount of hosts that run parts of our application increases to three (see Fig-
ure 6.9). Due to the fact that all instances of publishers and subscribers are run on a
single host respectively this amount does not change in comparison of the previous
scenario.

2. Publisher shutdown at around 200 seconds of runtime.

• At this time we can see that the amount of instantiated bricks drops to 13. All
publisher instances as well as their VirtualPublisherEndpoint bricks at the message
broker are shut down.

• Due to the shutdown the amount of external connections drops to three.

• The amount of instantiated applications drops to four.

• The amount of hosts running parts of the application drops to two.

3. Subscriber shutdown at around 300 seconds of runtime.

• With the shutdown of the subscriber instances we can see that the amount of instan-
tiated bricks drops to seven. Note that the VirtualSubscriberEndpoint bricks are not
shut down due to the asynchronous architecture.

• Due to the shutdown the amount of external connections drops to zero.

• The amount of instantiated applications parts as well as hosts running them drops to
one respectively.
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4. Message broker shutdown at around 330 seconds of runtime.

• After the message broker is shut down the whole evaluation application is shut down,
dropping the amount of instantiated bricks, external connections, application in-
stances and hosts to zero.

The extracted statistics again prove the feasibility of our approach. We also prove that our
handling of hosts is done correctly independent of the amount of applications running on one
host.
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Figure 6.14: The amount of instantiated bricks over the runtime of the application.

Again we show the average memory usage of each host whilst running the evaluation sce-
nario, see Figure 6.18. Here we can see that the increased amount of publishers and subscribers
yields a higher memory usage for the message broker.

As in Section 6.4.1 we show the used events in Figure 6.19 which are again categorized by
their type.

We can see a general increase of received events resulting from more monitored applications.
As in the previous scenario we can see that most events were received once the state of the
application is changed. Due to the startup delay we can see that the events created at the startup
and destruction of an application is distributed over the startup delay itself.
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Figure 6.15: The amount of active external connections over the runtime of the application.
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Figure 6.16: The amount of instantiated application instances over the runtime of the applica-
tion.
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Figure 6.17: The amount of hosts that run parts of the application over it’s runtime.
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(a) Memory usage of the publishers.
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(b) Memory usage of the subscribers.
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(c) Memory usage of the message broker.

Figure 6.18: The memory usage for each of the uses hosts in our evaluation application over
time.

93



0 100 200 300
0

5

10

Runtime in seconds

A
m

ou
nt

of
ev

en
ts

(a) Received XADLEvents.
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(b) Received XADLRuntimeEvents.
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(c) Received XADLLinkEvents.
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(d) Received XADLExternalLinkEvents.
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(e) Received XADLHostPropertyEvents.
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(f) Received XADLHostingEvents.

Figure 6.19: The different events received by the Aggregator over time.94



6.5 Evaluation of Performance

After proving the feasibility of our approach we will show that it works well for distributed ar-
chitectures by executing the scenarios described in Section 6.2.3 and again validate the extracted
results.

Because of the amount of instantiated application parts we have omitted the visualization of
the design-time- and resulting runtime architecture once all application parts are running. The
validation will solely be based on our custom statistics extracted by the Aggregator.

By comparing the scenarios and the results described in Section 6.4 we can predict some of
the results to be extracted. Due to the fact that the scenarios have a long runtime we will not
be able to see single events in the resulting diagrams, we will only be able to see the startup
and shutdown of application parts. Due to amount of transferred events we have aggregated
the resulting statistics and used the mean values that have been extracted over ten seconds of
runtime.

6.5.1 Scenario 1

The first scenario described in Section 6.2.3 executes both publishers and subscribers with the
same maximum runtime. This means we should be able to see periodic architectural changes,
that is each time the publishers and subscribers are started up or shut down. The different ramp-
up times should yield a slower startup of application instances. But due to the maximum runtime,
that publishers and subscribers share, we should see that the shutdown of all instances happens
within a small time window. Because we start these application instances 20 times we should be
able to observe this behavior 20 times.

We can again describe all the events that cause changes in the runtime architecture that were
used in the previous scenarios. But due to the length of our evaluation run not all of these
events are clearly shown in our statistics. We thus describe only four major events that cause the
runtime architecture to change significantly:

1. Message broker startup.

• The amount of instantiated bricks is increased to four.

• The amount of external connections remains at zero.

• The amount of instantiated application instances increases to one.

• The amount of hosts that run parts of our application increases to one.

2. Publisher and subscriber startup

• The amount of instantiated bricks is increased to 1204 (see Figure 6.20). If we com-
pare this number to the scenario description we can see that this number is correct,
that is there are four bricks created by the message broker, two bricks for each of the
200 publishers and subscriber and one is dynamically created for each publisher and
subscriber that connects to the message broker.
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• The amount of external connections is increased correctly to 400 (see Figure 6.21)
representing the connections between publishers and subscribers to the message bro-
ker.

• The amount of instantiated application instances increases to 401 (see Figure 6.22).

• The amount of hosts that run parts of our application increases to three (see Fig-
ure 6.23).

3. Publisher and subscriber shutdown

• With the shutdown of the publishers and subscribers the number of bricks decreases
to four, leaving only the message broker running.

• The amount of external connections decreases to zero.

• The amount of application instances and hosts running parts of our application de-
crease to one, that is the message broker.

4. Application shutdown.

• After all publishers, subscribers and the message broker are shut down the amount
of instantiated bricks, external connections, application instances and hosts drops to
zero.

The startup and shutdown of publishers and subscribers are executed exactly 20 times as the
scenario descriptions stated. Because publishers and subscribers are executed separately from
each other the startup and shutdown of application instances begins to overlap over time, thus
the amount of instantiated bricks, external connections, application instances and hosts does not
decrease to the lowest possible value.

To show how our approach is performing with many publishers and subscribers we again
show the average memory usage of each host, see Figure 6.24. If we compare the memory usage
to the previous two scenarios all hosts require by far a higher amount of memory. Yet with the
used number of publishers and subscribers the memory usage of our message broker is smaller
than expected. As in the other figures we are able to see when the publisher or subscribers have
been started or shut down due to the flapping memory usage.

If we take a closer look at the transmitted events, shown in Figure 6.25 we can see that
the startup and shutdown of publishers and subscribers is quite different. Due to the ramp-up
time we use to start up all instances we can see that events are transmitted over time, whilst
the shutdown on the other hand happens instantly thus transmitting many events in a short pe-
riod of time. For the evaluated scenario a total number of 405 816 events were received by
the aggregation component leading to an average of 308 events per second. The majority of
those are XADLHostPropertyEvents that are received continuously. Because each application
instances is transmitting these events the number of events increases with each additional ap-
plication that is running on a host which is already hosting a monitored application. A total
of 169 802 XADLHostPropertyEvents were received. If we reduce the number of transmitted
XADLHostPropertyEvents in a way that there is only one sender per host would result in a total
number of only 528 transferred XADLHostPropertyEvents which would reduce the total number
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Figure 6.20: The amount of instantiated bricks over the runtime of the application.
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Figure 6.21: The amount of active external connections over the runtime of the application.
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Figure 6.22: The amount of instantiated application instances over the runtime of the applica-
tion.

of received events to 236 542. This leads to an average of only 180 per second. All of this could
reduce the number of received events and thus network usage by over 40%.

As the Aggregator extracts general statistics about all received events which also includes
the received events over the application’s runtime we are able to perform these calculations.
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Figure 6.23: The amount of hosts that run parts of the application over it’s runtime.
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(a) Memory usage of the publishers.
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(b) Memory usage of the subscribers.
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(c) Memory usage of the message broker.

Figure 6.24: The memory usage for each of the uses hosts in our evaluation application over
time.
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(a) Received XADLEvents.
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(b) Received XADLRuntimeEvents.
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(c) Received XADLLinkEvents.
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(d) Received XADLExternalLinkEvents.
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(e) Received XADLHostPropertyEvents.
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(f) Received XADLHostingEvents.

Figure 6.25: The different events received by the Aggregator over time.
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6.5.2 Scenario 2

The seconds scenario described in Section 6.2.3 resembles the first one in nearly all properties.
The only change is that we have added some randomness to the ramp-up time of the startup
process of the publishers and subscribers. This leads to an evaluation run that is closer to a
real-world application where not all applications start respectively shut down at the same time.

As before we can identify the four major events that cause significant changes to the runtime
architecture:

1. Message broker startup.

• The amount of instantiated bricks is increased to four.

• The amount of external connections remains at zero.

• The amount of instantiated application instances increases to one.

• The amount of hosts that run parts of our application increases to one.

2. Publisher and subscriber startup

• The amount of instantiated bricks is again increased to 1204 (see Figure 6.26), the
amount of external connections increases to 401 (see Figure 6.27), the amount of
instantiated application instances increases to 400 (see Figure 6.28) and the number
of hosts running parts of our application increases to three (see Figure 6.29). Because
we have not changed the number of publishers and subscribers these numbers are the
same as in the previous scenario.

3. Publisher and subscriber shutdown

• With the shutdown of the publishers and subscribers the number of bricks again
decreases to four, leaving only the message broker running.

• The amount of external connections decreases to zero.

• The amount of application instances and hosts running parts of our application de-
crease to one, that is the message broker.

4. Application shutdown.

• After all publishers, subscribers and the message broker are shut down the amount
of instantiated bricks, external connections, application instances and hosts drops to
zero.

Due to the randomness of the ramp-up time we can see that the startup and shutdown of pub-
lishers and subscribers are again overlapping over time. Thus yielding results that are closer to
a real-world scenario for publish-subscribe systems.

The startup and shutdown of publishers and subscribers are executed exactly 20 times once
more. Because publishers and subscribers are executed separately from each other and the added
randomness the startup and shutdown of application instances begins to overlap earlier over time,
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Figure 6.26: The amount of instantiated bricks over the runtime of the application.
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Figure 6.27: The amount of active external connections over the runtime of the application.
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Figure 6.28: The amount of instantiated application instances over the runtime of the applica-
tion.

again not reducing the amount of instantiated bricks, external connections, application instances
and hosts to the lowest possible value.

Again we show the average memory usage of each host whilst running our evaluation sce-
nario, see Figure 6.30.

The transmitted events show that the startup and shutdown of publishers and subscribers
overlap with increased runtime as well, see Figure 6.31. The Aggregator received total number
of 390 391 events for the evaluated scenario, yielding an average of 296 events per second.
Once again most of the transmitted events were of type XADLHostPropertyEvent. If we can
again reduce the amount of continuously transmitted events to one sender per host we would
only receive around 236 556 events leading to an average of only 180 events per second. This
once again reduces the amount of transmitted events by around 40%.
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Figure 6.29: The amount of hosts that run parts of the application over it’s runtime.
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(a) Memory usage of the publishers.

0 500 1,000
0

500

1,000

1,500

Runtime in seconds
M

em
or

y
us

ag
e

in
M

B

(b) Memory usage of the subscribers.
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(c) Memory usage of the message broker.

Figure 6.30: The memory usage for each of the uses hosts in our evaluation application over
time.
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(a) Received XADLEvents.
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(b) Received XADLRuntimeEvents.
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(c) Received XADLLinkEvents.
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(d) Received XADLExternalLinkEvents.
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(e) Received XADLHostPropertyEvents.
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(f) Received XADLHostingEvents.

Figure 6.31: The different events received by the Aggregator over time.
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6.5.3 Scenario 3

The third and last scenario described in Section 6.2.3 is fully randomized. That is we randomize
not only the ramp-up time of publishers and subscribers but also the amount of instantiated
instances as well as their runtime.

The previous two scenarios have shown that our approach is working for large distributed
architectures. By randomizing all available options we can evaluate a rapidly changing architec-
ture over it’s runtime. These rapid changes are visualized in most of our extracted statistics like
instantiated bricks (Figure 6.32), external connections (Figure 6.33) and application instances
(Figure 6.34). Even the amount of hosts running application parts (Figure 6.35) shows these
changes, but not as clearly as the other statistics. That is we have not changed the amount of
hosts compared to the other two scenarios.

All statistics show that our approach is working feasible for rapidly changing distributed
architectures. Because we have already discussed the major events that cause these rapid changes
in the previous two scenarios they will be omitted here.
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Figure 6.32: The amount of instantiated bricks over the runtime of the application.

Again we show the average memory usage of each host whilst running our evaluation sce-
nario, see Figure 6.36.

If we take a closer look at the transmitted events one last time we can see that the rapid
changes are also reflected as our statistics are based on these events, see Figure 6.37.

The Aggregator received a total number of 335 191 events for the evaluated scenario, yield-
ing an average of 256 events per second. Again most of the transmitted events were of type
XADLHostPropertyEvent. If we can reduce the amount of continuously transmitted events to
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Figure 6.33: The amount of active external connections over the runtime of the application.

one sender per host we would only receive 204 262 events leading to an average of 156 events
per second. This reduces the amount of transmitted events by around 40%, which is close to the
savings extracted from the other scenarios.
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Figure 6.34: The amount of instantiated application instances over the runtime of the applica-
tion.
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Figure 6.35: The amount of hosts that run parts of the application over it’s runtime.
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(a) Memory usage of the publishers.
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(b) Memory usage of the subscribers.
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(c) Memory usage of the message broker.

Figure 6.36: The memory usage for each of the uses hosts in our evaluation application over
time.
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(a) Received XADLEvents.
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(b) Received XADLRuntimeEvents.
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(c) Received XADLLinkEvents.
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(d) Received XADLExternalLinkEvents.

0 500 1,000
0

50

100

150

200

Runtime in seconds

A
m

ou
nt

of
ev

en
ts

(e) Received XADLHostPropertyEvents.
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(f) Received XADLHostingEvents.

Figure 6.37: The different events received by the Aggregator over time.
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6.6 Best Practices & Framework Limitations

We have seen that our approach is working as expected and can be used to monitor large dis-
tributed applications. Our evaluation scenarios provided us with this kind of information but
they also revealed some limitations of our approach. Some of the limitation described above
will be tackled in Chapter 7 by providing ways to overcome these limitations in future releases.

For our dynamic creation of bricks to work the developer needs to store all the information
about the bricks to be created in the application itself. We need to know the blueprint identifier
and all the types and names of interfaces the brick would have. The same applies to the linking
of external interfaces. Here the developer needs to store the name and type of the interface and
use these properties to dispatch the correct XADLExternalLinkEvent.

The best way to solve this would be to integrate the dynamically created bricks into the
design-time architecture so our approach would be able to directly use this information.

The current implementation of the publish-subscribe pattern has some limitations due to it’s
current architecture. By handling each publisher in it’s own thread and directly receiving and
forwarding messages to the MessageDistributor without delay we loose the ability to reduce the
bandwidth of the publisher. Once the transmission to the subscribers takes a little longer it may
happen that many messages are held by the MessageDistributor which increases the memory
usage of the application. A solution to this limitation would be the usage of non-blocking IO.

The current message transport implementation suffers from the size of the transported archi-
tectural events. Our evaluations have shown that these messages are around 1 Kilobytes (KB)
each which leads to quite some network traffic while monitoring a distributed application. In
case of our evaluation scenario we transferred a maximum of around 400 MB on event data. A
way to overcome this would be to compress each message before it is transmitted.

Our evaluation results show that events of type XADLEvent and XADLRuntimeEvent are
tightly coupled. The instantiation algorithm described in Section 5.2.1 shows that once all bricks
are created their begin life-cycle method is called and thus for each brick both events are emitted.
As our approach currently transmits both events, a possible solution for a subscriber to reduce
the number of transfered events would be to subscribe only to events of type XADLEvent.
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CHAPTER 7
Conclusion and Future Work

This final chapter concludes this thesis with a brief summary of the methods and results that
have been presented and discussed. We will also recapitulate the results of this thesis that have
been introduced in Section 1.2. Finally we will address possible future work that we were not
able to cover.

7.1 Summary

The thesis starts with providing motivation for the creation of a decentralized architectural track-
ing framework including a motivated scenario. It follows by summarizing background infor-
mation about the technologies that were used for the framework. Furthermore we presented
research work related to the topics of this thesis.

We presented our approach to runtime architecture tracking by introducing our framework.
At first the theoretical background of our approach was presented which completely describes
how our framework works. We then presented our proof of concept implementation which
addresses all the described theoretical topics. We have also shown how it is possible to integrate
our framework into existing applications.

To verify that our approach works as expected we have presented a custom evaluation sce-
nario, which was based on our motivated scenario. We have outlined the different problem
instances that we have evaluated, presented and discussed the results for the feasibility and per-
formance of our approach. Ultimately we provided best practices and the limitations of our
approach.

We have published our work, that is the xADL extensions and the runtime architecture mon-
itoring framework, at the following locations:

• https://github.com/sideshowcecil/myx-monitor

• https://bitbucket.org/sideshow_bob/myx-monitor
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7.2 Results of the Master’s Theses Revisited

We recapitulate the results of the thesis by returning to the requirements introduced in Section 1.2
and summarize the work that has been accomplished to address them.

As Chapter 4, 5 and 6 show we have created a distributed architecture tracking framework
which satisfies the following requirements:

• Local and decentralized (sub-)architecture management
Using the two applications of our approach, that is Monitor and Aggregator, we are able
to extract architectural properties and aggregate them. The Aggregator may be deployed
on the same machine as the monitored application for local architecture aggregation. By
using a central Aggregator instance we are able to aggregate the complete architecture
of a distributed application. The decentralized setting of the runtime architecture is de-
fined by the xArch HostProperty xADL extension where we are able to assign a host to
each component or connector and thus directly reflecting the decentralized setting in the
architecture itself.

• Architecture probes and sensors for cloud application, based on our evaluation sce-
nario
Our approach introduces an event dispatcher which allows applications to install inde-
pendent monitoring capabilities. By combining it with the xArch HostProperty xADL
extensions gives us the ability to assign any kind of properties with a host, e.g. informa-
tion about the host itself or statistical data. Our proof of concept implementation currently
comes with two such dispatchers which can be used to monitor the load of a host.

• A distribution mechanism for aggregating the overall architecture on specific gran-
ularity levels
By using a publish-subscribe system as a base for our Aggregator we are able to use the
topic-based filtering to subscribe only to events about specific architectural properties.
Thus we are able to create a hierarchy of Aggregators with each operating on a different
granularity level.

7.3 Future Work

Following the work presented in this theses, there are some improvements and future work we
were not able to address sufficiently:

• Dynamic creation of bricks — Our current approach requires the manual specification
of blueprint identifiers int the source code. An extended version of ArchStudio may au-
tomatically injecting them into the architectural description and our approach uses this
information directly.

• Hosts — Information about the hosts are dynamically extracted by our approach. In a
future version it might be possible to specify the host itself in the design-time architecture
so the application may get launched on a specific host automatically.
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• Externalized links — These kind of connections have to be monitored and propagated
accordingly by the developer. By specifying information about the hosts in the design-
time architecture we would able to distinguish between local- and external links thus it
may be possible to directly specify them in the design-time architecture.

• Decentralized consensus — The current implementation of the aggregation of distributed
architectures currently yields a single hierarchal instance that has overview of the com-
plete system architecture. Whilst this approach can easily be extended to have multiple
of such instances, the problem remains that those instances have no knowledge of each
other. Future work may tackle to introduce a decentralized consensus between multiple
aggregation components as described in [56] to overcome this problem.

• Performance improvements — There are different kinds of performance improvements
that may be added to our framework:

– Using non-blocking IO — Our message broker is currently excessively using threads
to handle the different endpoints (publishers and subscribers). If many endpoints are
connected to the message broker it makes sense to use Java NIO [34] to handle all
connections.

– Batch event transfer — The current event manager transfers each message directly
to the configured aggregation component. To reduce the amount of transferred mes-
sages it would be applicable to transfer them in batches.

– Compression — The current implementation of the event propagation simply se-
rializes the events and sends them over the network. The reduce the amount of
transferred data a simple compression algorithm may be used.

• Supporting other technologies — Our framework currently supports only a proprietary
protocol for the propagation of architectural properties. Other technologies may be inte-
grated:

– JMS — It would be possible to include support for the JMS protocol for the transfer
of messages. The only requirement would be a connector which allows to send and
receive messages via JMS.

– RxJava — By integrating the Reactive Extensions for the JVM into our message
broker we might be able to increase it’s overall performance.
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APPENDIX A
Acronyms

ADL Architecture Description Language

ADT Abstract Data Type

AOP Aspect Oriented Programming

API Application Programming Interface

ASCII American Standard Code for Information Interchange

CDI Context and Dependency Injection

CPU Computational Processing Unit

CSV Comma Separated Values

DBL Data Binding Library

EJB Enterprise Java Beans

GRAF Graph-Based Runtime Adaptation Framework

IO Input/Output

IOC Inversion of Control

IP Internet Protocol

KB Kilobytes

JMS Java Message Service

JNDI Java Naming and Directory Interface

119



MADAM Mobility- and Adaptation-Enabling Middleware

MB Mega Bytes

OS Operating System

PC Personal Computer

PIM Platform Independent Model

POJO Plain Old Java Object

RMM Requirements Monitoring Model

PSM Platform Specific Model

SoS Systems of systems

SysML Systems Modeling Language

UML Unified Modeling Language

UUID Universal Unique Identifier

WAVE Waveform Audio File Format

XML eXtensible Markup Language

XSD XML Schema Definition

120



APPENDIX B
XADL Extensions

B.1 xArch Instance Mapping

<xsd:schema xmlns="http://www.ics.uci.edu/pub/arch/xArch/instancemapping.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:archinst="http://www.ics.uci.edu

/pub/arch/xArch/instance.xsd"
targetNamespace="http://www.ics.uci.edu/pub/arch/xArch/instancemapping.xsd"
elementFormDefault="qualified" attributeFormDefault="qualified">

<!-- Import namespaces used -->
<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"

schemaLocation="http://www.isr.uci.edu/projects/xarchuci/core/instance.xsd" />

<xsd:annotation>
<xsd:documentation>

xArch IInstance Mapping XML Schema 1.0

Change Log:
2014-05-01: Bernd Rathmanner [bernd.rathmanner@student.tuwien.ac.at]:

Initial Development

</xsd:documentation>
</xsd:annotation>

<!-- TYPE: MappedComponentInstance -->
<xsd:complexType name="MappedComponentInstance">

<xsd:complexContent>
<xsd:extension base="archinst:ComponentInstance">

<xsd:sequence>
<xsd:element name="blueprint" type="archinst:XMLLink" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<!-- TYPE: MappedConnectorInstance -->
<xsd:complexType name="MappedConnectorInstance">

<xsd:complexContent>
<xsd:extension base="archinst:ConnectorInstance">
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<xsd:sequence>
<xsd:element name="blueprint" type="archinst:XMLLink" />

</xsd:sequence>
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

<!-- TYPE: MappedInterfaceInstance -->
<xsd:complexType name="MappedInterfaceInstance">

<xsd:complexContent>
<xsd:extension base="archinst:InterfaceInstance">

<xsd:sequence>
<xsd:element name="type" type="archinst:XMLLink"

minOccurs="0" maxOccurs="1" />
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

</xsd:schema>

B.2 xArch External Identified Links

<xsd:schema xmlns="http://www.ics.uci.edu/pub/arch/xArch/extcon.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:archinst="http://www.ics.uci.edu

/pub/arch/xArch/instance.xsd"
targetNamespace="http://www.ics.uci.edu/pub/arch/xArch/extcon.xsd"
elementFormDefault="qualified" attributeFormDefault="qualified">

<!-- Import namespaces used -->
<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"

schemaLocation="http://www.isr.uci.edu/projects/xarchuci/core/instance.xsd" />

<xsd:annotation>
<xsd:documentation>

xArch External Identified Links XML Schema1.0

Change Log:
2014-05-03: Bernd Rathmanner [bernd.rathmanner@student.tuwien.ac.at]:
Initial Development

</xsd:documentation>
</xsd:annotation>

<!-- TYPE: ExternalIdentifiedLinkInstance -->
<xsd:complexType name="ExternalIdentifiedLinkInstance">

<xsd:complexContent>
<xsd:extension base="archinst:LinkInstance">

<xsd:attribute name="extId" type="archinst:Identifier" />
</xsd:extension>

</xsd:complexContent>
</xsd:complexType>

</xsd:schema>

B.3 xArch HostProperty

<xsd:schema xmlns="http://www.ics.uci.edu/pub/arch/xArch/hostproperty.xsd"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:archinst="http://www.ics.uci.edu

/pub/arch/xArch/instance.xsd"
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xmlns:archtypes="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"
targetNamespace="http://www.ics.uci.edu/pub/arch/xArch/hostproperty.xsd"
elementFormDefault="qualified" attributeFormDefault="qualified">

<!-- Import namespaces used -->
<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/instance.xsd"

schemaLocation="http://www.isr.uci.edu/projects/xarchuci/core/instance.xsd" />
<xsd:import namespace="http://www.ics.uci.edu/pub/arch/xArch/types.xsd"

schemaLocation="http://www.isr.uci.edu/projects/xarchuci/ext/types.xsd" />

<xsd:annotation>
<xsd:documentation>

xArch HostProperty XML Schema 1.0

Change Log:
2014-03-29: Bernd Rathmanner [bernd.rathmanner@student.tuwien.ac.at]:

Extending for instance elmenents
2012-07-24: Christoph Dorn [dorn@uci.edu]:

Initial Development

</xsd:documentation>
</xsd:annotation>

<!-- TYPE: HostedArchStructure -->
<xsd:complexType name="HostedArchStructure">

<xsd:complexContent>
<xsd:extension base="archtypes:ArchStructure">

<xsd:sequence>
<xsd:element name="host" type="Host"

minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<!-- TYPE: HostedArchInstance -->
<xsd:complexType name="HostedArchInstance">

<xsd:complexContent>
<xsd:extension base="archinst:ArchInstance">

<xsd:sequence>
<xsd:element name="host" type="Host"

minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>

</xsd:extension>
</xsd:complexContent>

</xsd:complexType>

<!-- TYPE: Host -->
<xsd:complexType name="Host">

<xsd:sequence>
<xsd:element name="description" type="archinst:Description" />
<xsd:element name="hostProperty" type="Property"

minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="subhost" type="Host"

minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="hostsComponent" type="ElementRef"

minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="hostsConnector" type="ElementRef"

minOccurs="0" maxOccurs="unbounded" />
<xsd:element name="hostsGroup" type="ElementRef"

minOccurs="0" maxOccurs="unbounded" />
</xsd:sequence>
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<xsd:attribute name="id" type="archinst:Identifier" />
</xsd:complexType>

<!-- TYPE: ElementRef -->
<xsd:complexType name="ElementRef">

<xsd:sequence>
<xsd:element name="ref" type="archinst:XMLLink"

minOccurs="1" maxOccurs="1" />
</xsd:sequence>

</xsd:complexType>

<!-- TYPE: Property -->
<xsd:complexType name="Property">

<xsd:sequence>
<xsd:element name="name" type="archinst:Description" />
<xsd:element name="value" type="archinst:Description"

minOccurs="1" maxOccurs="unbounded" />
</xsd:sequence>

</xsd:complexType>

</xsd:schema>
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APPENDIX C
Event System

C.1 Base Event Class

package at.ac.tuwien.dsg.myx.monitor.em.events;

import java.io.Serializable;
import java.util.UUID;

public abstract class Event implements Serializable {

private static final long serialVersionUID = -7750911233567472330L;

private final String id;
private final long timestamp;

private String architectureRuntimeId;
private String eventSourceId;

public Event() {
id = UUID.randomUUID().toString();
timestamp = System.currentTimeMillis();

}

public Event(Event copyFrom) {
id = UUID.randomUUID().toString();
architectureRuntimeId = copyFrom.getArchitectureRuntimeId();
timestamp = System.currentTimeMillis();
eventSourceId = copyFrom.getEventSourceId();

}

public String getId() {
return id;

}

public String getArchitectureRuntimeId() {
return architectureRuntimeId;

}

public void setArchitectureRuntimeId(String architectureRuntimeId) {
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this.architectureRuntimeId = architectureRuntimeId;
}

public long getTimestamp() {
return timestamp;

}

public String getEventSourceId() {
return eventSourceId;

}

public void setEventSourceId(String eventSourceId) {
this.eventSourceId = eventSourceId;

}

@Override
public String toString() {

return "Event [id=" + getId() + ", architectureRuntimeId=" +
getArchitectureRuntimeId() + ", timestamp="

+ getTimestamp() + ", eventSourceId=" + getEventSourceId() + "]";
}

}

126



APPENDIX D
Publish-Subscribe

D.1 Base Message Class

package at.ac.tuwien.dsg.pubsub.message;

import java.io.Serializable;

/**
* This class contains the data for messages sent over the PubSubMiddleware.

*
* @author bernd.rathmanner

*
* @param <E>

* resembles the message data.

*/
public class Message<E> implements Serializable {

private static final long serialVersionUID = 1L;

private final Type type;
private final String topic;
private final E data;

/**
* Basic constructor with predefined message type <code>DATA</code>.

*
* @param data

*/
public Message(String topic, E data) {

this(Type.DATA, topic, data);
}

/**
* Constructor for both message data and message type.

*
* @param data

* @param type

*/
public Message(Type type, String topic, E data) {
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this.topic = topic;
this.type = type;
this.data = data;

}

/**
* Get the message type.

*
* @return

*/
public Type getType() {

return type;
}

/**
* Get the message topic.

*
* @return

*/
public String getTopic() {

return topic;
}

/**
* Get the message data.

*
* @return

*/
public E getData() {

return data;
}

@Override
public String toString() {

return "[" + getType() + "] [" + getTopic() + "] " + getData();
}

/**
* All message types available.

*
* @author bernd.rathmanner

*
*/
public enum Type {

TOPIC, INIT, DATA, CLOSE, ERROR
}

}

D.2 Topic Implementations

D.2.1 String Topic

package at.ac.tuwien.dsg.pubsub.message.topic;

public class StringTopic implements Topic {

protected final String topic;

/**
* Constructor.
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*
* @param pattern

*/
public StringTopic(String topic) {

this.topic = topic;
}

@Override
public boolean matches(String topic) {

return this.topic.equals(topic);
}

@Override
public boolean equals(Object obj) {

if (obj == null && !(obj instanceof RegexTopic)) {
return false;

}
return topic.equals(obj);

}

@Override
public int hashCode() {

return getClass().hashCode() + topic.hashCode();
}

@Override
public String toString() {

return "[" + getClass().getName() + "] " + topic;
}

}

D.2.2 Regular Expression Topic

package at.ac.tuwien.dsg.pubsub.message.topic;

import java.util.regex.Pattern;

/**
* Implements {@link Topic} based on regular expressions.

*
* @author bernd.rathmanner

*
*/
public class RegexTopic implements Topic {

protected Pattern pattern;

/**
* Constructor.

*
* @param pattern

*/
public RegexTopic(String pattern) {

this.pattern = Pattern.compile(pattern);
}

@Override
public boolean matches(String topic) {

return pattern.matcher(topic).matches();
}
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@Override
public boolean equals(Object obj) {

if (obj == null && !(obj instanceof RegexTopic)) {
return false;

}
return pattern.toString().equals(((RegexTopic) obj).pattern.toString());

}

@Override
public int hashCode() {

return getClass().hashCode() + pattern.hashCode();
}

@Override
public String toString() {

return "[" + getClass().getName() + "] " + pattern;
}

}

D.2.3 Glob Pattern Topic

package at.ac.tuwien.dsg.pubsub.message.topic;

import java.util.ArrayList;
import java.util.List;

/**
* Implements {@link Topic} based on the glob pattern.

*
* @author bernd.rathmanner

*
*/
public final class GlobTopic extends RegexTopic {

/**
* Constructor.

*
* @param pattern

*/
public GlobTopic(String pattern) {

super(globToRegexp(pattern));
}

/**
* Convert a glob pattern into a regular expression.

*
* @param globPattern

* @return

*/
private static final String globToRegexp(String globPattern) {

StringBuilder buffer = new StringBuilder();

int length = globPattern.length();
for (int i = 0; i < length; ++i) {

char c = globPattern.charAt(i);

switch (c) {
case ’*’:

buffer.append(".*");
break;
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case ’?’:
buffer.append(’.’);
break;

case ’[’: {
int j = findClosingSquareBracket(globPattern, i);
if (j <= i + 1) {

// Something like "[" or "[]" has no special meaning.
buffer.append("\\[");

} else {
buffer.append(globPattern.substring(i, j + 1));
i = j;

}
}

break;

case ’{’: {
List<String> parts = new ArrayList<String>();
int j = splitCurlyBraceGroup(globPattern, i, parts);
int partCount = parts.size();
if (j <= i + 1 || partCount == 0) {

// Something like "{", "{}", "{,}", or "{,,}" has no
// special meaning.
buffer.append("\\{");

} else {
if (partCount == 1) {

// Not very useful but why not?
buffer.append(’(’);
buffer.append(globToRegexp(parts.get(0)));
buffer.append(’)’);

} else {
buffer.append(’(’);
for (int k = 0; k < partCount; ++k) {

if (k > 0) {
buffer.append(’|’);

}
buffer.append(’(’);
buffer.append(globToRegexp(parts.get(k)));
buffer.append(’)’);

}
buffer.append(’)’);

}
i = j;

}
}

break;

case ’\\’:
// Escaped char: add as is (that is, escaped).
buffer.append(c);
if (i + 1 < length) {

buffer.append(globPattern.charAt(++i));
}
break;

default:
if (!Character.isLetterOrDigit(c)) {

// Escape special chars such as ’(’ or ’|’.
buffer.append(’\\’);

}
buffer.append(c);
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}
}

return buffer.toString();
}

/**
* Find the closing bracket in a the given string.

*
* @param s

* @param offset

* @return

*/
private static int findClosingSquareBracket(String s, int offset) {

int nesting = 0;
char prevC = ’\0’;
int length = s.length();

for (int i = offset; i < length; ++i) {
char c = s.charAt(i);

switch (c) {
case ’[’:

if (prevC != ’\\’) {
++nesting;

}
break;

case ’]’:
if (prevC != ’\\’ &&
// Something like "[]a-b]" is equivalent to "[\]a-b]".

i != offset + 1) {
--nesting;

}

if (nesting == 0) {
return i;

}
break;

}

prevC = c;
}

return -1;
}

/**
* Split a curly braced group.

*
* @param s

* @param offset

* @param parts

* @return

*/
private static int splitCurlyBraceGroup(String s, int offset, List<String> parts) {

int groupOffset = offset;
int nesting = 0;
char prevC = ’\0’;
int length = s.length();

for (int i = offset; i < length; ++i) {
char c = s.charAt(i);
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switch (c) {
case ’{’:

if (prevC != ’\\’) {
++nesting;

}
break;

case ’}’:
if (prevC != ’\\’) {

--nesting;
}

if (nesting == 0) {
String part = s.substring(groupOffset + 1, i);
if (part.length() > 0) {

parts.add(part);
}

return i;
}
break;

case ’,’:
if (nesting == 1) {

String part = s.substring(groupOffset + 1, i);
if (part.length() > 0) {

parts.add(part);
}

groupOffset = i;
}
break;

}

prevC = c;
}

return -1;
}

}

D.3 ExecutorService Extension

package at.ac.tuwien.dsg.concurrent;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.RejectedExecutionException;

/**
* An extension to the {@link ExecutorService} interface that allow to

* execute tasks on specific {@link Thread}s using identifiers.

*/
public interface IdentifiableExecutorService extends ExecutorService {

/**
* Executes the given command at some time in the future. The command may

* execute in a new thread, in a pooled thread, or in the calling thread,

* at the discretion of the {@code Executor} implementation. This method

* guarantees that a {@link Runnable} with the same identifier is always

* executed by the same {@link Thread}.

*
* @param command
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* the runnable task

* @param identifier

* the identifier

* @throws RejectedExecutionException

* if this task cannot be accepted for execution

* @throws NullPointerException

* if command is null

*/
void execute(Runnable command, int identifier);

}
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