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Abstract

One of the major challenges in modern software engineering is dealing with the increasing com-
plexity of software systems. The new paradigm of model-driven engineering (MDE) promises to
handle this complexity using the abstraction power of software models based on languages such
as the Unified Modeling Language (UML). The objective of MDE is to generate executable code
from a set of diagrams with little or no intervention of a developer. These diagrams are referred
to as model of the system to be implemented. Usually multi-view models are employed, where
each diagram shows a different view on the system, altogether providing a holistic representa-
tion. This shift from code-centric development to MDE requires a modeling language based on
a solid formal semantics, which is considered one of the major current challenges in MDE re-
search and in future improvements of the UML. Further, with this high valorization of software
models, also stronger requirements on their consistency come along since errors introduced on
the model level can result in faulty code. The models are central to the evolution of a software
system and therefore undergo continuous and often parallel modifications that can introduce in-
consistencies. However, necessary consistency management tasks are often too cumbersome to
be performed manually due to the size of the models. Hence, automated methods are required.

In this work we formalize a modeling language based on the UML. Our language contains
two views: the state machine diagram and the sequence diagram. We then identify three prob-
lems that can occur in models based on this language. The Sequence Diagram Merging Problem
deals with merging two modified versions of a sequence diagram in a way that keeps them
consistent with the set of state machines they are related to. The State Machine Reachability
Problem asks whether a combination of states in a set of state machines can be reached from
some global state by sending and receiving messages between the state machines. The Sequence
Diagram Model Checking Problem asks whether a sequence diagram is consistent with the set
of state machines it instantiates. For each problem, we propose an encoding to the satisfiability
problem of propositional logic (SAT) in order to solve it with an off-the-shelf SAT solver and
we determine its computational complexity. We evaluate our approaches based on a set of hand-
crafted models and on grammar-based whitebox fuzzing, for which we develop a random model
generator. The results of our experiments show that we can solve instances of these problems of
reasonable size on standard hardware with state-of-the-art SAT solvers.
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Kurzfassung

Der Umgang mit der zunehmenden Komplexität moderner Softwaresysteme stellt eine der größ-
ten Herausforderungen der modernen Softwareentwicklung dar. Modellgetriebene Entwicklung
(engl. model-driven engineering, MDE) verspricht einen einfacheren Umgang mit dieser Kom-
plexität durch Nutzung der Abstraktionsfähigkeiten modellbasierter Sprachen wie zum Beispiel
der Unified Modeling Language (UML). Das Ziel von MDE ist es von einer Menge an Dia-
grammen, dem Modell für das zu entwickelnde System, lauffähigen Programmcode ohne oder
mit minimaler Zuhilfenahme eines Entwicklers automatisch zu generieren. Für diesen Zweck
werden meist Modelle mit mehrfachen Sichten verwendet. Solche Modelle enthalten mehrere
Arten von Diagrammen, wobei jede Art eine andere Sicht auf das System ermöglicht und die
Kombination der Diagramme das System in seiner Gesamtheit beschreibt.

Dieser Wechsel des Fokus von textuellem Programmiercode auf die Softwaremodelle der
MDE verlangt nach einer über eine solide formale Semantik verfügenden Modellierungssprache.
Die Entwicklung einer solchen Modellierungssprache gilt als eine der größten Herausforderun-
gen in der Forschung zu MDE und für zukünftige Verbesserungen der UML. Weiters bringt diese
wesentliche Aufwertung der Softwaremodelle strengere Anforderungen bezüglich deren Kon-
sistenz mit sich, da Fehler auf Modellebene sich in den Programmcode weiterpropagieren. Ihre
neue Führungsrolle im Entwicklungsprozess stellt die Modelle ausserdem in den Mittelpunkt
der Sofwareevolution, wodurch sie häufigen und oftmals parallelen Änderungen ausgesetzt sind.
Die damit entstehenden Aufgaben im Bereich des Konsistenzmanagements, des Testens und der
Fehlerbehebung sind bedingt durch die Größe der Modelle zu komplex um manuell durchgeführt
zu werden. Automatische Methoden sind daher unumgänglich.

In dieser Arbeit formalisieren wir eine Modellierungssprache, die auf der UML basiert und
zwei Sichten beinhaltet, nämlich das Zustandsdiagramm und das Sequenzdiagramm. Wir iden-
tifizieren drei Probleme, die in auf dieser Sprache basierenden Modellen auftreten können. Das
Sequence Diagram Merging Problem befasst sich mit der Integration von parallel an einem
Sequenzdiagramm durchgeführten Änderungen mit dem Ziel, ein mit einer Menge von Zu-
standsdiagrammen konsistentes Sequenzdiagramm zu erstellen. Das State Machine Reachability
Problem beschreibt, ob eine Kombination aus in verschiedenen Zustandsdiagrammen enthalten-
en Zuständen von einem gegebenen globalen Zustand erreichbar ist. Das Sequence Diagram
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Model Checking Problem fragt, ob ein Sequenzdiagramm konsistent ist mit der Menge an Zu-
standsdiagrammen, die es instanziiert. Für jedes der drei Probleme erstellen wir eine Kodierung
als aussagenlogisches Erfüllbarkeitsproblem, das mit einem gängigen, frei verfügbaren Solver
gelöst werden kann, und ermitteln seine computationale Komplexität. Wir evaluieren unseren
Lösungsansatz mit handgefertigten Instanzen und mittels einer grammatikbasierenden White-
Box-Fuzzing-Methode, wofür wir einen randomisierenden Modellgenerator entwickeln. Die
Resultate unserer Experimente zeigen, dass Instanzen unserer Probleme von brauchbarer Größe
von einem gängigen Solver auf gängiger Hardware in vertretbarer Zeit gelöst werden können.
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Chapter 1

Introduction

There is unlikely to exist a silver bullet, says Frederick Brooks in his 1987 seminal paper [20],
to conquer the increasing complexity of software. The term “complexity”, however, is rather
overloaded even if restricted to the context of computer science, and it concerns software in
many different ways. Brooks’ statement is certainly correct regarding complexity in the algo-
rithmic sense: Unless P equals NP, nothing can tame the computational complexity of a piece of
software trying to solve one of the vast number of NP-hard problems, many of them very rele-
vant in practice. Other uses of the term “complexity” concerning software systems describe the
difficulty of representing the problem domain or the complicated interaction of large numbers
of data items.

Brooks introduces two categories of complexity for software systems, namely essential com-
plexity and accidental complexity. The former concerns the essence of the software and the latter
deals with its representation in a programming language. He conjectures that essential complex-
ity not only forms a significantly larger portion of the complexity of a software system but that
is also very hard to reduce.

Brooks attributes the irreducibility of essential complexity to four properties, among them
the property of state space complexity and the property of unvisualizability. There cannot be
much doubt about the former property, however the latter property is being more and more
invalidated by the advances of software and hardware technology. Indeed, his two arguments
against “graphical programming”, by which he refers to visual representations of software, being
a silver bullet to eliminate some essential complexity, are the poor expressiveness of the then
state-of-the-art visual tool of flow charts and the too small size of the screens to display a visual
representation.

Five years later, David Harel, father of the state charts, which are a visual formalism to
represent software systems, responds to Brooks’ arguments with a strong focus on the then state
of the art of software modeling [64]. He says
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“A ‘vanilla’ approach to modeling, together with powerful notions of executability
and code generation, may have a profound impact on the essence of developing
complex systems.”

His line of argument is based on an analogy between the complexity removed by high-level
programming languages from one-person programs previously written in assembler languages
and the complexity of the in 1992 increasingly complex software, summarized as reactive sys-
tems, which he claims can be removed by visual programming formalisms.

Indeed, more than 20 years later, visualization of software is almost omnipresent. It is
employed in various stages of hardware and software development and for many different pur-
poses of formal or informal nature. Models are used as informal drafts, for communication
with clients, for documentation purposes, and, with the relatively new development paradigm
of model-driven engineering (MDE), as primary development artifacts from which executable
code is derived [19]. Also, several modeling techniques more sophisticated than the flow chart
arose during the 1980s and 1990s, many of them linked to the development paradigm of object-
oriented programming, which was then gaining more and more importance.

Soon various efforts were taken to unify and standardize these developments in modeling,
eventually resulting in the Unified Modeling Language (UML) in its first version of 1997, which
was significantly revised and extended to a new version in 2005, and is currently in its version
2.4.1 [60, 106]. The UML is a multi-view modeling language consisting of a set of diagrams
to depict a system from different angles, with different levels of abstraction, and with each
diagram focusing on either a static or a dynamic aspect of the system. The information of a
software system is spread over different complementary diagrams where similar diagrams make
up a view. Some information can be redundant with respect to different views. The UML is
widely employed, particularly in industry, to support software engineering processes. However,
in the research community of software modeling and MDE, more and more criticism appears
regarding the UML’s lack of formality [27, 65, 66].

In MDE, multi-view software models take over an important role as core development ar-
tifacts in order to deal with the complexity of modern software systems [13]. The objective is
to generate executable code directly from the models with little or no intervention of a devel-
oper [109]. This shift from code-centric development to MDE thus requires a modeling language
based on a solid formal semantics, which is considered one of the major current challenges in
MDE research [52] and in future improvements of the UML [51].

With this high valorization of software models, also stronger requirements on their consis-
tency come along since errors introduced on the model level in the worst case result in faulty
code. Performing a leading role in the development process, the models are also central to the
evolution of a software system and undergo continuous and often parallel modifications. Modifi-
cations are handled in activities like synchronization, versioning, and co-evolution, each of them
demanding change propagation between the different views in order to keep them consistent.
Due to the size of the models, their consistency management, testing, and debugging are tasks
too cumbersome to be done manually [109]. Hence, automated methods are required to support
the mentioned evolution tasks [52]. Interestingly, this necessity was already predicted by Harel
in his 1992 response to Brooks’ position paper [64].

Techniques based on formal methods, which have been around for over 30 years for tex-
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tual code [34], recently found their way into MDE [53, 116]. In particular, approaches based
on model checking [33] have gained much popularity in software verification during the past
20 years. Model checking aims at verifying a system with respect to a specification by exhaus-
tive state traversal and returns an execution trace violating the specification if such an execution
trace exists. The system is represented by finite automata or similar models. The major chal-
lenge of model checking is to handle the exponential number of states in systems, also known as
the state explosion problem [33]. One of the most successful approaches to this problem is sym-
bolic model checking [32], which was initially based on binary decision diagrams [93]. Bounded
model checking, by putting a bound on the length of the execution trace, later led to compact
encodings to the satisfiability problem of propositional logic (SAT) [15].

Other symbolic approaches to bounded model checking include encodings to the satisfiabil-
ity problem of quantified Boolean logic (QSAT) [38, 71]. Quantified Boolean formulas (QBF)
are an extension of propositional formulas that allows to universally or existentially quantify
propositional variables. The quantification lifts the satisfiability problem of QBF to PSPACE-
completeness (from the NP-completeness of SAT) [99]. Therefore, encodings of bounded model
checking to QSAT can be more compact than to SAT. Several solvers are available for this
logic [10,56,69,88], but so far, QBF solving methods still seem to be too immature to be applied
on an industrial scale. Apart from efficient solving, also the generation of concrete solutions for
a formula is likely to be significantly harder than for SAT. Our recent contributions in this area
[5,6,41,42] can lead to more efficient methods for the generation of solutions to QBFs and hence
make QBF a more practical host language for PSPACE-complete problems.

Consistency problems occurring in the evolution of software models often include model
checking problems. For example, a sequence diagram can be regarded as a specification for
a system modeled by a set of state machines [21, 22]. Several translations to input languages
of model checkers, mainly to the explicit (not symbolic) model checker SPIN have been pro-
posed [21, 40, 68, 79, 80, 86, 98, 101, 108, 112]. However, most of their implementations do not
seem to have gone beyond a prototypical state or were never updated to deal with newer versions
of the UML. A reason for this could be the semantic differences between the software models
and the model checker’s input language, which make equivalence preserving translations very
challenging [21, 22].

The challenge of overcoming these semantic heterogeneities raises the question whether this
translation step is really required and how a low-level encoding, for example to propositional
logic, would perform. At least one work [97] presents positive results regarding this question by
proposing an encoding to propositional logic for a reachability analysis of state machines and
by showing it to be more computationally efficient than translations to standard model checkers
for three examples.

Further research directions in this area therefore suggest symbolic encodings of similar prob-
lems on the one hand and into different languages on the other hand. The most popular language
is propositional logic, but QBFs provide another attractive language in particular when it comes
to finding compact encodings for PSPACE-complete problems.

In this work, we introduce a definition of a formal semantics for a software modeling lan-
guage and identify three model consistency problems that can occur in different model man-
agement tasks during the evolution of software models expressed in the formalized language.
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We then suggest symbolic approaches to solving these problems and present an in-depth per-
formance evaluation of these approaches based on handcrafted instances and on grammar-based
whitebox fuzzing. We finish this work with an outlook to future work on solving more complex
problems with symbolic encodings to QBF.

1.1 Contributions

The contributions of this work are threefold. They deal with a formal description of the seman-
tics of a subset of the UML, with a set of symbolic approaches to three consistency problems
occurring within these semantics, and an evaluation of these approaches based on grammar-
based whitebox fuzzing, Most of our results have been published at conferences, workshops,
and in journals.

1.1.1 Formalization of a Modeling Language

The use of software models in areas likes MDE requires a formal definition of their semantics.
In particular, a formalization of model concepts is indispensable in order to identify and define
consistency problems that can occur among them. We consider two UML-derived views of a
software model, the sequence diagram and the state machine. Both adopt fundamental concepts
of the respective UML views. We first define their syntax by means of a UML metamodel and
then we describe the classes of the metamodel in a mathematical notation in order to formally
define their semantics in terms of a set of intra-view and inter-view properties. We provide for-
mal definitions of these properties by a set of formulas in the language of propositional logic.
We presented most of these contributions at the 5th Conference on Software Language Engineer-
ing [124], in an article in “Softwaretechnik-Trends” [26], at the 10th Workshop on Model-Driven
Engineering, Verification, and Validation [72], at the 7th Conference on Software Language En-
gineering [74], and in an article in “Computer Languages, Systems & Structures” [73]. Our
work received the Best Paper Award at the 7th Conference on Software Language Engineering.

1.1.2 Verification Problems in Software Modeling

We identify three problems that can occur during the evolution of a software model, show that
they are in the complexity class P, respectively NP-complete, and propose symbolic encodings to
solve them. First, the Sequence Diagram Merging Problem deals with producing a new version
of a sequence diagram out of two modified versions in the context of optimistic model version-
ing, where the new version must fulfill some requirements regarding semantic consistency with
the set of state machines that the lifelines of the sequence diagram instantiate. Solutions to this
problem directly assist the developer with the model management task of versioning. Second,
we deal with two verification problems whose automated resolution supports different stages of
the model evolution. Both problems ask whether a certain specification of the system is fulfilled.
In the State Machine Reachability Problem, a specification is given by a combination of states,
each from a different state machine. In the Sequence Diagram Model Checking Problem, a
specification is given by a sequence diagram. Both problems ask whether a set of state machines
implements the specification. We presented most of these contributions at the 5th Conference
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on Software Language Engineering [124], in an article in “Softwaretechnik-Trends” [26], at
the 10th Workshop on Model-Driven Engineering, Verification, and Validation [72], at the 7th
Conference on Software Language Engineering [74], and in an article in “Computer Languages,
Systems & Structures” [73].

1.1.3 Experimental Evaluation by Grammar-based Whitebox Fuzzing

We provide prototype implementations of the symbolic approaches described in the previous
contribution within the Eclipse Modeling Framework (EMF) [49]. Since real-life test cases are
difficult to obtain and often cover only very specific areas of the problem space, we provide a
set of handcrafted models from which instances of our problems can be derived, and further
suggest a randomized method to generate artificial scenarios in order to facilitate fuzz-testing
of our tools. This method is easily extensible to be applied to other tools dealing with Ecore
models of the EMF.

We use our handcrafted models to evaluate all approaches, apply fuzz-testing to two of our
prototype implementations, and report on the scalability of our approaches based on the re-
sults. We presented our method of grammar-based whitebox fuzzing for modeling tools at the
8th Haifa Verification Conference [123], its application to the Sequence Diagram Model Check-
ing Problem at the 7th Conference on Software Language Engineering [74], and its application
to the State Machine Reachability Problem in an article in “Computer Languages, Systems &
Structures” [73].

1.2 Outline

The structure of this thesis follows roughly the contributions described above. After introducing
some preliminaries and basic notions, we devote a chapter to a precise definition of the software
models we are dealing with. Based on these definitions, we present a set of consistency problems
and methods based on propositional logic to solve these problems in the following chapter. We
then dedicate a chapter to an in-depth evaluation of our approach. After drawing the conclusions
of this work, we suggest some future work that combines our contributions of this work and
some of our recent contributions in the area of QBF certification.

Chapter 2, Preliminaries. In this chapter we first introduce some basic formal notions and
terminology used in this thesis. Then we present the syntax and semantics of propositional logic
and give some information on the syntax and semantics of the UML.

Chapter 3, The Tiny Multiview Modeling Language (tMVML). We introduce the Tiny Mul-
tiview Modeling Language (tMVML), the language of the software models used in this thesis.
We devote three sections to its definition. First, we describe the abstract syntax of the language
as a UML metamodel. Then we derive a formal description of the tMVML from the metamodel,
and finally, we describe the behavioral aspects of the tMVML along with some semantic proper-
ties. Parts of this chapter are based on our publications [26, 72–74, 124].
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Chapter 4, Verification Problems in Software Modeling. This chapter is devoted to software
model consistency problems in the two areas of model versioning and model verification. We
first review related work for both fields and then present three problems, one of them in the
former, and two of them in the latter field. For each problem, we give an intuitive example
before formally describing the problem. We then show how the problem can be solved by an
encoding to propositional logic and prove its computational complexity. Parts of this chapter are
based on our publications [26, 72–74, 124].

Chapter 5, Evaluation. We describe the implementations of the encodings presented in Chap-
ter 4 within the Eclipse Modeling Framework [49], our set of handcrafted models to derive
instances of the three problems presented in Chapter 4, and our approach to grammar-based
whitebox fuzzing to generate random instances of problems related to software models. We
then present results regarding the scalability of our symbolic encodings for each of the prob-
lems. Parts of this chapter are based on our publications [72–74, 123, 124].

Chapter 6, Conclusions. We draw the conclusions of our work, describe possible extensions
and give an overview regarding future research directions towards solving model consistency
problems of higher complexity by applying encodings to QBF.
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Chapter 2

Preliminaries

This chapter introduces basic notions and terminology used throughout this work. In partic-
ular, we introduce some mathematical conventions, the syntax and semantics of propositional
logic, and some basics on the Unified Modeling Language (UML), in particular the UML class
diagram.

2.1 Mathematical Conventions and Relational Properties

We use the following mathematical notations.
We refer to the power set of a set X by P(X). For a tuple Y = (y1, . . . , yn) and i ∈ [1..n]

we refer to the projection to the i-th element by πi(Y ) = yi.
We enclose a sequence of symbols with the brackets “[” and “]”, e.g., we use [a, b, c] to

denote a sequence S. We refer to a symbol at position i in sequence S by S[i], e.g, S[2] = b.
A sequence can be empty and we denote this empty sequence by [].

We use the following properties of binary relations, where a binary relation is a collection of
pairs over some alphabet A. The relation R is total if for all a, b ∈ A it holds that (a, b) ∈ R or
(b, a) ∈ R (or both). The relation R is transitive if for all a, b, c ∈ A it holds that if (a, b) ∈ R
and (b, c) ∈ R then (a, c) ∈ R. The relation R is reflexive if for all a ∈ A it holds that
(a, a) ∈ R. It is irreflexive if for all a ∈ A it holds that (a, a) 6∈ R. The relation R is
antisymmetric if for all a, b ∈ A it holds that if (a, b) ∈ R and (b, a) ∈ R then a = b.

2.2 Propositional Logic

We first present an informal overview of propositional logic and then formally define its syntax
and semantics as can be found in standard literature [28]. Propositional logic is concerned with
statements represented by Boolean variables that can be assigned the truth values true and false.
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Statements can be connected to form sentences by connectives like and or or. Depending on
the truth values assigned to the variables and on the connectives, a sentence evaluates to true or
false. For example, the variable x can represent the statement “it is raining today” and y can
represent the statement “the streets are wet”. If x is assigned true and y is assigned false, then
the sentence “it is raining today and the streets are wet”, represented by x ∧ y where ∧ means
“and”, evaluates to false.

The syntax of a logic describes how symbols (variables and connectives) can be connected
to form a well-formed sentence. The semantics of a logic describes the meaning of well-formed
sentences, that is, a mapping of sentences to a domain. In the case of propositional logic or
quantified Boolean logic, this domain contains the two truth values true and false.

The representation of an application problem in a certain domain by sentences in some logic
is called an encoding. Reasoning in some domain by using an encoding is called symbolic since
facts inside the domain are represented by symbols.

We continue with a formal presentation of the syntax and the semantics of propositional
logic.

2.2.1 Syntax

The language of formulas in propositional logic is defined over a set V of variables, the two
logical symbols Verum (>) and Falsum (⊥), and the logical operators ¬ and ∨. Any v ∈
V ∪ {>,⊥} is a propositional formula. If φ is a propositional formula then so is ¬φ and if φ1
and φ2 are propositional formulas, then so is φ1 ∨ φ2. We use the auxiliary symbols “(” and
“)” to group subformulas and we use the additional operators conjunction (∧), implication (→),
and equivalence (↔), which are defined for the propositional formulas φ1 and φ2 as follows:
(φ1∧φ2) = ¬(¬φ1∨¬φ2), (φ1 → φ2) = (¬φ1∨φ2), and (φ1 ↔ φ2) = (¬φ1∨φ2)∧(¬φ2∨φ1).
When the symbols “(” and:“)” are absent, then the order of precedence over the operators is ¬
with the highest precedence followed by ∧, ∨,→, and↔ in this order.

We call a variable v and its negation ¬v literals. We often write v for ¬v and say that
v is a positive literal and v is a negative literal. Further, a clause is a disjunction of literals.
A propositional formula that contains only a conjunction of clauses is in Conjunctive Normal
Form (CNF).

Alternatively, a propositional formula φ in CNF over the set of variables V and with a set of
literals L = V ∪ {v | V} can be defined by φ ⊆ P(L), i. e., as a set of sets of literals. We often
write a formula in CNF as sets of literals in round brackets. We write � for the empty clause.

We refer to the set of variables occurring in the propositional formula φ by vars(φ) and to
the variable of a literal ` by var(`).

Example 2.2.1. The string φ = ((x ∨ z) ∧ (y ∧ z)) ∧ (x→ (y ∨ z)) is a propositional formula.
The symbols x, y, z, and z are the literals of this formula. The symbols x, y, and z are the
variables of this formula. The conjunction of disjunctions (x ∨ z) ∧ (y) ∧ (z) ∧ (x ∨ y ∨ z) is a
CNF representation of φ. ♦
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>
true

⊥
false

φ ¬φ
true false
false true

φ1 φ2 φ1 ∨ φ2
true true true
true false true
false true true
false false false

Table 2.2.1: Truth tables describing the semantics of propositional logic.

2.2.2 Semantics

The evaluation of a propositional formula φ is due to an assignment σ : vars(φ)→ {true, false}
of a truth value to each variable. The assignment can be partial or total. The formula evaluates to
either of the truth values according to the truth tables depicted in Table 2.2.1. A total assignment
leads to a truth value of the whole formula. Alternatively, an assignment σ can be seen as a set
of literals such that if var(`) is assigned to true then ` ∈ σ, and if var(`) is assigned to false then
` ∈ σ (note that since a variable can be assigned only one truth value, at most one of ` or ` is
in σ). Accordingly, σ is total if for each v ∈ vars(φ) either v ∈ σ or v ∈ σ, and it is partial
otherwise.

A propositional formula is called satisfiable if there exists an assignment which evaluates
the formula to true, otherwise it is called unsatisfiable. A propositional formula that evaluates
to true under any possible assignment is called valid. The problem of deciding whether a sat-
isfying assignment exists for some propositional formula is called the satisfiability problem of
propositional logic (SAT).

Example 2.2.1 (Cont. from p. 8). The formula φ is satisfiable witnessed by the complete assign-
ment x 7→ true, y 7→ false, z 7→ true, which can also be described by the set {x, y, z} of literals.
A satisfying partial assignment is y 7→ false, z 7→ true, or the set {y, z} of literals. ♦

Two propositional formulas φ1 and φ2 are logically equivalent, denoted φ1 ≡ φ2, if they
are satisfied by the same set of assignments. Two formulas are satisfiability equivalent if φ1 is
satisfiable if and only if φ2 is satisfiable. For a propositional formula φ a logically equivalent
formula in CNF can be created by applying a set of equivalence-preserving transformation rules.
In particular, these are double negation elimination, i.e., ¬¬φ ≡ φ, distribution, i.e., (x) ∨ (y ∧
z) ≡ (x∨ y)∧ (x∨ z), and deMorgan’s law, i.e., ¬(x∧ y) ≡ ¬x∨¬y and ¬(x∨ y) ≡ ¬x∧¬y.
Applying these rules can have an exponential overhead with respect to the size of the formula
due to the application of the distribution rule.

However, when only satisfiability equivalence is required, then φ can be transformed into a
CNF formula φcnf with linear overhead with respect to the formula size by introducing auxiliary
variables [114]. Due to the auxiliary variables, the formula φcnf is not logically equivalent to φ,
but the satisfying assignments to the formulas are closely related. In particular, any satisfying
assignment to φ can be extended to a satisfying assignment to φcnf by adding assignments to the
auxiliary variables, and for any satisfying assignment to φcnf the truth values for the variables
contained in both φcnf and φ are also a satisfying assignment to φ. Therefore, this translation
provides a practical means to prepare non-CNF formulas to be solved by a SAT solver that
requires a formula in CNF as input, which is the case for most of the state-of-the-art SAT solvers.
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2.3 The Unified Modeling Language (UML)

The result of a unification of a myriad of modeling languages, the Unified Modeling Language
(UML) is today’s most popular general-purpose visual modeling language [106]. It is applied
in various domains, in particular such related to software development, and in various stages
of development reaching from design sketches to specification and documentation purposes.
It features a set of different diagrams that allow to view a system from different angles, with
different levels of abstraction, and with different focus points. This high degree of generalization
and flexibility, however, comes along with an inherent complexity and different, sometimes
contradicting, requirements to the design of the language. For these reasons, among others, the
UML lacks a formal specification, in particular with regards to its semantics [106].

The UML consists of a set of diagrams, each with a different purpose. Some, such as the
state machine diagram, focus on dynamic aspects, others, such as the class diagram, on static
aspects, and others are designed for end-user documentation, such as the use-case diagram. The
terminology of the UML combines diagrams that are closely related into views [106]. However,
many views contain only one diagram, such as the state machine view (contains only the state
machine diagram) or the static view (contains only the class diagram). In this work, we therefore
use the terms “view” and “diagram” synonymously when the context is clear.

2.3.1 Syntax

Other than for textual languages, where the appearance of the symbols is usually integrated in
the definition of their syntax, for visual languages the abstract syntax is distinguished from the
concrete syntax. The former describes the components and their relations to one another, and
the latter describes their concrete visual design.

Most of the abstract syntax of the UML is defined by a diagram of the UML itself — the
class diagram. A class diagram defining the syntax of other diagrams is commonly referred to
as metamodel [62]. Hence, the UML metamodel describes the major part of the syntax of the
diagrams of the UML in class diagram notation. The syntax of the metamodel itself, i.e., of the
UML class diagram, is defined by another class diagram, the metametamodel. The approach
works in a bootstrapping fashion [113], where on the most basic layer, anything is described
by classes and their relationships. A class, in this most basic form, has a name and can be
instantiated. The second layer instantiates “class” by elements that represent the syntax of the
class diagram, which can then be used to describe other diagrams.

Figure 2.3.1 shows some components of the class diagram in their concrete syntax. The
basic components of a class diagram are classes that can relate to one another by associations
or by generalizations. Classes are usually depicted as rectangles and associations as lines. A
class has a name and a (possibly empty) set of attributes, and an association may have a name
and attributes and may indicate cardinalities of the objects instantiating the connected classes.
A composition is a special kind of association relating a class to its container class. If an instance
of a container is deleted, then the instances of the classes it contains are also deleted. This is
not the case for instances of classes that are connected via an association that is not a composi-
tion. A generalization relates a class to its superclass(es), meaning that the former inherits all
associations and attributes from the latter. Cardinalities are given in positive integers and the
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A

boolean: foo

A class A with one attribute
of type boolean.

A B
associate1 *

An association associate between two classes A and B with
cardinality constraints that allow an unbounded number of
instances of B to be associated to one instance of A.

A B*
{ordered}

A composition of A and B where an instance of A is
composed of an unbounded number of instances of B and an
order is imposed over the instances of B.

A

A”A’
A class A with two
subclasses A’ and A”.

Figure 2.3.1: Components of the class diagram in their concrete syntax.

asterisk symbol (“*”) for an unbounded number of associated instances. They are indicated at
both ends of regular associations and at one end of compositions. Compositions per definition
have cardinality 1 at the container side. Attributes of associations describe properties of the
instances of the connected class. The only attribute used in this work is the {ordered} attribute,
which enforces an order over the associated instances. The UML class diagram consists of many
more components than described above, but we confine this overview to the components used in
this work. A detailed description of the full UML can be found in the UML specifications, the
UML Infrastructure [61] and the UML Superstructure [62].

Most of the syntax of all remaining diagrams of the UML is defined by the UML meta-
model. Additional syntactic elements of the UML, which exceed the expressive power of the
class diagram, are defined in a formal language, the Object Constraint Language (OCL) [63]. In
this work, however, we rely on syntactic elements of UML diagrams that can be described by
a class diagram. A precise definition of the syntax used by the UML can be found in the UML
Infrastructure [61].

2.3.2 Semantics

The semantics of the UML is described only imprecisely and mostly in natural language inside
the UML Superstructure [62], which is part of the official UML Standard. This lack of formality
can be disregarded in many applications of visual modeling such as high-level design or general
documentation of a system. However, other applications, such as code generation, as performed
in model-driven engineering, or precise specifications of a system strictly require a formal se-
mantics. For such applications, a formal definition of the semantics of the visual language,
possibly a subset of the UML, is indispensable. The lack of precision and the confusion about
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its semantics has been recognized by Harel and Rumpe [65,66], who emphasize the importance
of defining semantics of visual languages in the same way as for textual languages, that is, by
mapping its syntactic elements to a semantic domain.

The need for a formal semantics is also reflected by various efforts to formalize the UML or
subsets in the literature. First works appeared for the previous version of the UML (UML 1.3)
a few years after the birth of the UML. Real-time action logic has been applied to define a
structured axiomatic semantics [83] for a subset of UML 1.3. Object-Z, which is an object-
oriented specification language based on Zermelo-Fränkel set theory and first-order logic, has
been used to formalize the UML class diagram, the state machine diagram, and the sequence di-
agram [75,95]. The initiative “precise UML” was particularly devoted towards a general formal
semantics for the UML [47] and involved in the definition of the current version of the UML,
UML 2.4.1.

However, as of version 2.4.1, the UML does not have a standardized formal semantics.
Instead, most formalizations are provided whenever needed for a particular domain and therefore
often focus on a particular subset of the UML. Mostly, it is automated code generation or formal
verification of software models that motivate the introduction of a formal semantics. With the
new development paradigm of MDE, the OMG itself started working on an execution semantics
for some UML models, in particular the class diagram and the state machine diagram, resulting
in the OMG standard fUML [59]. Another motivation to formalize the semantics of the UML
is to prove particular theoretical properties of UML models. In this context, the computational
complexity of general reasoning over UML class diagrams has been shown to be EXPTIME-
complete by a reduction from a problem in a particular description logic and an encoding of the
UML class diagram into a particular description logic [11].
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Chapter 3

The Tiny Multiview Modeling
Language (tMVML)

This chapter introduces the modeling language concepts essential for the verification problems
discussed in Chapter 4. These concepts are strongly inspired by the Unified Modeling Language
(UML) as specified by the OMG [60]. The UML contains a set of diagrams that describe the
system under development from different points of view. However, these diagrams lack a com-
plete formal semantics and therefore require us to establish formal definitions that go beyond
what is offered by the UML Standard. We therefore establish the tiny Multiview Modeling Lan-
guage (tMVML), a modeling language that is a syntactic subset of the UML and provide a formal
semantics. We focus on two diagrams, the state machine diagram and the sequence diagram, as
the three verification problems discussed in Chapter 4 refer to these two views.

Our approach to dealing with the syntax and semantics of the tMVML is as follows. We first
define its syntax by the tMVML metamodel using the UML metamodeling approach described
in Section 2.3, i.e., the tMVML metamodel is a UML class diagram specifying the syntax of the
tMVML diagrams. It covers two diagrams, the state machine diagram and the sequence diagram,
and their interplay. Hence, these two diagrams are instances of the tMVML metamodel.

With the same motivation as in other works on the formalization of the UML, e.g., [50, 78],
we then represent the tMVML metamodel in a mathematical notation by concisely defining each
component and its relations to other components. These definitions facilitate explanations on
behavioral aspects of the tMVML diagrams. The behavioral aspects are not described by the
metamodel because the metamodel is only suitable to define the syntax. These aspects can
rather be considered as a part of the semantics as their definition is necessary to describe seman-
tic properties of the diagrams. We later define the semantic properties using propositional logic
within the encodings given for the problems in Sections 4.2 to 4.4. Through the encodings to
propositional logic, the syntactic representations of tMVML models are given a formal seman-
tics. The properties can be considered the semantic domain of the tMVML and the respective
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Figure 3.1.1: Event-based version of the tMVML metamodel.

encodings of the syntactic elements can be considered the semantic mapping.
This chapter consolidates the definitions given in our previous publications [72, 74, 124].

The implementation of the tMVML metamodel is available on our project website.1

3.1 The tMVML Metamodel

The tMVML metamodel describes the static structure and the abstract syntax of our modeling
language. We present two versions of the tMVML metamodel, depicted in Figures 3.1.1 and
3.1.3. They differ only in the presence of the class Event and its children. For better readability
we often typeset instances of metaclasses in standard lowercase font using the same name as the
metaclass, e.g., in order to refer to an instance of the metaclass State we write “state”.

The tMVML metamodel has a root class Model which contains two classes representing
views, SequenceDiagramView and StateMachineView, and the class ActionSymbol. Action sym-
bols realize the communication between different state machines and describe communication in
sequence diagrams. When the context is clear, we often call them “symbols” instead of “action
symbols”.

The StateMachineView contains a set of state machines, each containing a set of states, one
of which is the initial state. States are connected by transitions. To each transition an action
symbol can be assigned as trigger and one or more action symbols can be assigned as effects.

In the concrete syntax, we mostly follow the conventions of the UML state machine. Rect-
angles with rounded corners denote states which are connected by transitions. Each transition
carries a label that consists of two parts separated by the symbol “/”; a trigger on the left side
and a set of effects on the right side. We use the special symbol ε on the left side of the symbol

1http://modelevolution.org/prototypes
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working waiting

desperate

ε/orderCoffee

coffeeDone/-

error/-repaired/-

error

preparingidle

maintenance

orderCoffee/-

ε/coffeeDone

ε/errororderCoffee/-

ε/repair

done/repaired

idle

repairing

ε/donerepair/-

PhD Student (PhD)

Coffee Machine (CM)

Maintenance

Figure 3.1.2: Three state machines modeling a PhD student, a coffee machine, and a mainte-
nance unit.

“/” to indicate that a transition has no trigger and we use the symbol “-” to indicate the empty set
of effects. As in the UML, we indicate the initial state of a state machine by an incoming edge
originating from a black dot.

Example 3.1.1. Figure 3.1.2 shows three state machines instantiating the tMVML metamodel
in concrete syntax. They describe the behaviors of a PhD student, a coffee machine, and a
maintenance unit for the coffee machine. The state machine “PhD Student” contains three states,
“working”, “waiting”, and “desperate”, where “working” is the initial state, and four transitions
connecting the states using action symbols as triggers and effects. ♦

The SequenceDiagramView contains a set of sequence diagrams. A sequence diagram con-
sists of a set of lifelines and a set of messages. Each lifeline instantiates a state machine, i.e., it
implements the behavior described by the state machine. Each message carries an action symbol
and is attached via a send event and a receive event to one or two lifelines.

The order over events is useful to model both asynchronous and synchronous message pass-
ing with timed events, i.e., where the times of dispatch and receipt of a message are not the
same. The assumption that the transfer of a message does not consume time, i.e., the time of
dispatch and receipt are the same, implies a total order of the messages. Events can therefore be
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Figure 3.1.3: Alternative metamodel of the tMVML, disregarding the Event class and its chil-
dren.

disregarded. A modified metamodel that excludes events and imposes an order over messages
directly is depicted in Figure 3.1.3. Depending on the application, one or the other metamodel
can be more appropriate.

The problems discussed in Chapter 4 are all defined under the assumption that message
passing does not consume time. We nevertheless provide a formalization based on ordered
events and a simplification thereof based on ordered messages. The former helps us to stay close
to the definition of sequence diagrams in the UML standard and to extend our approach to timed
events in future work. The latter is more straightforward and intuitive when it comes to defining
the latter two of the problems in Sections 4.3 and 4.4.

Like we did for state machines, we follow the concrete syntax of the UML to depict se-
quence diagrams. Lifelines are shown as rectangles with a dashed vertical line underneath. Each
lifeline’s name is shown inside the rectangle before the symbol “:”, followed by the name of the
state machine it instantiates after the symbol “:”. Along the lifelines, a sequence of messages can
be aligned. Each message is depicted as an arrow from the sender lifeline to the receiver lifeline
labeled with the symbol being sent. The set of symbols sent by messages of a sequence diagram
is the same as the set of symbols used in the state machines its lifelines instantiate. Events are
depicted implicitly by the arrowtips and arrowends of messages.

Example 3.1.2. Figure 3.1.4 shows a sequence diagram that describes a communication scenario
between lifelines instantiating the state machines in Figure 3.1.2. The lifelines alice and bob
instantiate the state machine PhD Student, the lifeline cm instantiates the state machine Coffee
Machine, and the lifeline m instantiates the state machine Maintenance. The lifelines send and
receive messages between one another. The messages are ordered along the lifelines from top to
bottom, i.e., the first message is wantCoffee sent by alice and received by cm and the last message
is coffeeDone sent by cm and received by alice. ♦
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error
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done
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Figure 3.1.4: A sequence diagram showing an interaction between two PhD students, a coffee
machine, and a maintenance unit.

3.2 Formal Description of the tMVML

This section provides a formal description of the static structure of the tMVML by translating the
elements of the metamodel into a mathematical notation.

Some elements can be translated in a straightforward manner. For example, classes that
only act as containers for other classes, i.e., whose only associations are compositions, can be
regarded as sets of instances of the classes they are composed of. This way, Model, the root
class of the metamodel can be defined as a triple containing three sets of instances of Action-
Symbol, StateMachineView, and SequenceDiagramView. In the same way, the latter two classes
can be defined as sets of instances of StateMachine, respectively SequenceDiagram. Both classes
StateMachineView and SequenceDiagramView serve only as containers for a set of objects of the
classes StateMachine and SequenceDiagram respectively. They could be omitted, but we in-
cluded them as an extra layer to make the notion of a “view” explicit. The formal descriptions
become more complicated when other associations, generalizations, or attributes on associations
or classes are involved.

The universe of discourse for the definitions of the tMVML metamodel is the quintuple A =
(AS ,AA,AL,AE ,AM ) where AS denotes a set of states, AA denotes a set of action symbols,
AL denotes a set of lifelines, AE denotes a set of events, and AM denotes a set of messages.

The class StateMachine is defined as follows.

Definition 3.2.1 (State Machine). Given the universe A with π1(A) = AS and π2(A) = AA, a
state machine M is a quintuple (S, ι, Atr , Aeff , T ), where

• S ⊆ AS is a set of states,

• ι ∈ S is a designated initial state,

• Atr , Aeff ⊆ AA are sets of symbols used as triggers and effects, and

• T ⊆ S × Atr ∪ {ε} × P(Aeff ) × S is a set of transitions such that there is no transition
(s, ε, ∅, s′) ∈ T for any s, s′ ∈ S. 4
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A state machine consists of a set of states including an initial state, two alphabets with
symbols for triggers and effects, respectively, and a transition relation between the states. For a
transition t ∈ T with t = (s, trg , eff , s′), s is the source state of the transition, s′ is the target
state, trg is a symbol (trigger) which can be the special symbol ε 6∈ Atr , and eff is a set of
symbols (effects).

On the behavioral level, which we discuss in Section 3.3, the receipt of its trigger trg initiates
the execution of a transition and the receipt of each effect in eff by a different state machine
completes the execution of the transition. A transition containing ε as trigger can be initiated no
matter whether any symbol has been received. A transition containing the empty set as effects is
completed without triggering other transitions. We assume that no transition of a state machine
contains both ε as trigger and the empty set as effects. Such transitions can be eliminated by
contracting the connected states.

Example 3.1.1 (Cont. from p. 15). In Figure 3.1.2, the state machine PhD Student contains the
states S = {working, desperate,waiting}, the triggers Atr = {coffeeDone, error, repaired}, the
effect Aeff = {orderCoffee}, and the transitions T = {(working, ε, {orderCoffee},waiting),

(waiting, coffeeDone, ∅,working),

(waiting, error, ∅, desperate),

(desperate, repaired, ∅,working)}. ♦

The definition of the class SequenceDiagram is more complex and builds on definitions of
the classes Lifeline and Message. They can be described with or without the notion of events,
which facilitates the description of messages that are sent and received at different times. As
described in the metamodel of Figure 3.1.1, a sequence diagram contains a set of lifelines, a set
of events, and a set of messages. Additionally, a lifeline is connected to a set of messages via
a send event and a receive event. The {ordered} constraint on the relation between the classes
Lifeline and Event puts the events into a sequence relative to the lifeline.

This formulation forms a basis to model communication between lifelines and timed events.
Under the assumption that no time passes between the send and the receive event of a message,
however, the {ordered} constraint only needs to be imposed over messages, not over events. This
way the classes Event and its two inheritors SendEvent and ReceiveEvent can be omitted, as
depicted in Figure 3.1.3.

We first provide a definition of a sequence diagram based on an {ordered} constraint on
events as described by the metamodel in Figure 3.1.1 and refer to it as event-based sequence
diagram. For this type of sequence diagram, we further define two properties well-formedness
and time consistency. An event-based sequence diagram fulfilling these two properties results
in a sequence diagram where the transmission of messages does not consume time. Second
we define a sequence diagram based on an {ordered} constraint on messages which completely
disregards events as described by the metamodel in Figure 3.1.3. This alternative definition is
shorter and possibly more intuitive when it comes to describing the verification problems of
Section 4.3 and 4.4. Both definitions of a sequence diagram are based on definitions of its
components, the classes Lifeline and Message.
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Definition 3.2.2 (Event-based Lifeline). Given a setM of state machines and the universe A
with π3(A) = AL and π4(A) = AE an event-based lifeline is a tuple (l ,M,Esd , Erv , >) where

• l ∈ AL is the name of the lifeline,

• M ∈M is the state machine the lifeline instantiates,

• Esd ⊆ AE is a set of send events associated to the lifeline,

• Erv ⊆ AE is a set of receive events associated to the lifeline,

• Esd and Erv are disjoint, and

• > ⊂ (Esd ∪ Erv )× (Esd ∪ Erv ) is a transitive, antisymmetric, and irreflexive relation.
4

A lifeline is an instance of a state machine M . The name l allows to distinguish different
instances of the same state machine. The sets Esd and Erv contain send and receive events on
the lifeline, and the relation > describes the {ordered} constraint of its events as modeled in the
tMVML metamodel.

Definition 3.2.3 (Event-based Message). Given the universeA with π2(A) = AA and π4(A) =
AE a message is a triple (es, a, er) where

• es ∈ AE is the send event,

• a ∈ AA is an action symbol, and

• er ∈ AE \ {es} is the receive event. 4

The definition of a message is straightforward as it is associated to exactly one action symbol,
one send event, and one receive event.

Definition 3.2.4 (Event-based Sequence Diagram). Given the universe A with π2(A) = AA,
π3(A) = AL, and π4(A) = AE , and a setM of state machines, a sequence diagram is a pair
(L,N ), where L is a set of lifelines overM and AL, and N is a set of messages over AA and
AE , such that

• for any two lifelines L and L′ in L their names π1(L) and π1(L′) are distinct,

• for any two lifelines L and L′ the sets π3(L), π4(L), π3(L′), and π4(L′), i.e., their sets of
send and receive events, are pairwise disjoint,

• for any two messages N and N ′, π1(N), π3(N), π1(N ′), and π3(N ′), i.e., their send and
receive events, are pairwise distinct, and

• for EL =
⋃
L∈L π3(L) ∪

⋃
L∈L π4(L) and EN =

⋃
N∈N π1(N) ∪ ⋃N∈N π3(N) there

exists a bijective function that maps EL to EN and vice versa, i.e., each event on a lifeline
is bijectively associated to an event of a message. 4
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Figure 3.2.1: Sequence diagram indicating messages and events.

The definition of a sequence diagram contains a set of lifelines and a set of messages as
described by the metamodel. It further establishes the relation between messages and lifelines
via events. The set of events contained in an event-based sequence diagram can therefore be
retrieved via the set of messages.

Example 3.1.2 (Cont. from p. 16). Figure 3.2.1 shows a sequence diagram in concrete syntax,
which additionally indicates some events. (Usually, events are not explicitly depicted in the con-
crete syntax, cf. Figure 3.1.4.) In this sequence diagram, L contains the lifelines alice, cm, and
m. The lifelines are instances of the state machines PhD Student, Coffee Machine, respectively
Maintenance of Figure 3.1.2.

The diagram contains six messages, m1 to m6, each of which is depicted as an arrow between
two lifelines. Each arrowhead represents a receive event and each arrowtail a send event. For ex-
ample, for message m4 = (doneSnd, done, doneRcv), doneSnd is its send event, done its symbol,
and doneRcv its receive event. All messages’ events are connected to a lifeline. For example,
lifeline cm handles events orderCoffee1Rcv, errorSnd, repairSnd, doneRcv, orderCoffee2Rcv, and
coffeeDoneSnd. ♦

We use the following functions to refer to elements of an event-based sequence diagram
given the universe A, a set M of state machines, and an event-based sequence diagram D =
(L,N ).

• act : N → AA, snd : N → AE , and rcv : N → AE , such that for all N ∈ N it holds
that act(m) = π2(N), snd(m) = π1(N), and rcv(m) = π3(N), i.e., these functions refer
to the action symbol, send event, and receive event of a message.

• symb : AE → AA is a partial function such that symb(e) = a if and only if there exists a
message N ∈ N with either snd(N) = e or rcv(N) = e, and act(N) = a, i.e., the action
symbol of the message an event is associated to. Note that each function value is unique
due to the pairwise disjointness of sets of events on lifelines and distinctness of events on
messages as described in Definition 3.2.4.
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Figure 3.2.2: Time-inconsistent sequence diagram.

• life : AE → L is a partial function such that life(e) = l if and only if e ∈ π3(L) ∪ π4(L),
where π3(L) is the set of send events on lifeline L and π4(L) is the set of receive events
on lifeline L. Note that each function value is unique due to the pairwise disjointness of
sets of events on lifelines as described in Definition 3.2.4.

The following properties restrict the definition of a sequence diagram concerning its event
orderings. First, well-formedness of a sequence diagram enforces an order on the events with
respect to a lifeline.

Definition 3.2.5 (Well-Formedness). A sequence diagram (L,N ) is well-formed if and only if
for each L ∈ L the relation π5(L) is total. 4

A well-formed sequence diagram poses a total order over events per lifeline, but not over
messages. This way, it allows a message N to be received after a message N ′ even if N has
been sent before N ′ on the same lifeline. Figure 3.2.2 shows such a case with messages m1
and m2. When such “overtaking” of messages is not present, then a sequence diagram is time-
consistent. The definition of time consistency is based on a message ordering relation over a
sequence diagram, which describes an order of the sequence diagram’s messages according to
the order of its events.

Definition 3.2.6 (Message Ordering). Given a well-formed sequence diagram (L,N ), the mes-
sage ordering relation � ⊆ N × N contains a pair (N,N ′) if and only if for N = (es, a, er),
N ′ = (e′s, a

′, e′r), L = life(es), >L= π5(L), L′ = life(er), and >L′= π5(L
′) it holds that

• life(e′s) = L and es >L e′s,

• life(e′r) = L and es >L e′r,

• life(e′s) = L′ and er >L′ e′s, or

• life(e′r) = L′ and er >L′ e′r. 4
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Example 3.1.2 (Cont. from p. 16). In the sequence diagram of Figure 3.2.1, the message order
is given by m1 � m2 � m3 � m4 � m5. ♦

Definition 3.2.7 (Time Consistency). A well-formed sequence diagram is called time-consistent
if and only if its message ordering relation � is antisymmetric. 4

Example 3.1.2 (Cont. from p. 16). The message order for the sequence diagram in Figure 3.2.1
is antisymmetric. Therefore, the sequence diagram is time-consistent. In the sequence diagram
of Figure 3.2.2, the message order contains the two pairs m1 � m2 and m2 � m1, therefore the
message order is not antisymmetric and the sequence diagram is time-inconsistent. ♦

Well-formedness and time consistency of a sequence diagram result in a total order over the
messages. For such diagrams we give a shorter and possibly more intuitive description below.
The description disregards the notion of events and directly imposes an order on messages with
respect to the sequence diagram. The corresponding metamodel is depicted in Figure 3.1.3.
We first have to re-define the classes Lifeline and Message since their event-based definitions
(cf. Definitions 3.2.2 and 3.2.3) refer to events.

Definition 3.2.8 (Lifeline). Given a setM of state machines and the universe A with π3(A) =
AL, a lifeline is a pair (l ,M) where l ∈ AL is the name of the lifeline and M ∈ M is the state
machine instantiated by the lifeline. 4

The new definition of a lifeline differs from the event-based definition in Definition 3.2.2
only in that the sets of send events and receive events and their relation is removed.

Definition 3.2.9 (Message). Given the universe A with π1(A) = AS and π2(A) = AA, and a
set L of lifelines such that each lifeline’s state machine is defined over AS and AA, a message
is a triple (σ, a, ρ) where

• σ ∈ L ∪ {ε} is the sending lifeline,

• a ∈ AA ∪ {ε} is the message symbol, and

• ρ ∈ L \ {σ} is the receiving lifeline,

such that σ = ε if and only if a = ε. 4

The new definition of a message differs from the event-based definition in Definition 3.2.3
in that it refers directly to lifelines instead of events. For a message (σ, a, ρ), the sender lifeline
σ either refers to a state machine or is the empty sender ε when the empty symbol ε is received.
Note that for better readability, we do not show empty messages in figures depicting sequence
diagrams in concrete syntax. The receiver lifeline ρ refers to a state machine.

Based on these definitions of a lifeline and of a message, a sequence diagram can be defined
as follows.

Definition 3.2.10 (Sequence Diagram). Given the universe A with π2(A) = AA and π3(A) =
AL, and a setM of state machines over AA, a sequence diagram is a pair (L, µ) where L is a
set of lifelines overM and AL, and µ = [N1, . . . , Nn] is a sequence of messages such that
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• for any two lifelines L and L′ in L their names π1(L) and π1(L′) are distinct, and

• for i ∈ [1..n] and Ni = (σi, ai, ρi) it holds that σi, ρi ∈ L and ai ∈ AA.
4

Example 3.2.1. The sequence diagram in Figure 3.2.1 contains the set

L = {(alice,PhD), (cm,CM), (m,maintenance)}

of lifelines and the sequence

µ = [((alice,PhD), orderCoffee, (cm,CM)), . . . , ((cm,CM), coffeeDone, (alice,PhD))]

of messages. ♦

Finally, we can define the sequence diagram view and the state machine view as sets of
sequence diagrams, respectively state machines, and a model as a triple containing a sequence
diagram view, a state machine view, and an alphabet shared by the two views.

Definition 3.2.11 (State Machine View). Given the universe A, a state machine view is a set of
state machines (Definition 3.2.1). 4

Definition 3.2.12 (Sequence Diagram View). Given the universe A and a set M of state ma-
chines over A, a sequence diagram view is either a set of event-based sequence diagrams (Defi-
nition 3.2.4) or a set of sequence diagrams (Definition 3.2.10).

4

Definition 3.2.13 (Model). A model is a triple (A,M,D) where M is a state machine view
over A and D is a sequence diagram view over A andM. 4

3.3 Behavioural Aspects of the tMVML

In this section we describe the interplay between instances of state machines and the connec-
tion between sequence diagrams and state machines. In particular, we describe two levels of
consistency a sequence diagram can have with respect to the set of state machines its lifelines
instantiate. The first level of consistency, trigger consistency, considers only receive events of a
sequence diagram, which occur as triggers in state machines. Trigger consistency verifies that a
sequence of receive events in a lifeline of a sequence diagram occurs as a sequence of triggers
directly connecting states of the associated state machine. To check whether a sequence diagram
is trigger-consistent, it suffices to check that each lifeline is trigger-consistent.

The second level of consistency, full consistency, considers both receive and send events of a
sequence diagram, which occur as triggers and effects in state machines. It checks whether there
exists a path in the communication between the instances of the state machines that represents
the sequence of messages in the sequence diagram. This type of consistency depends on the
interaction between the lifelines by message passing.

The definition of a path is relevant for both types of consistency. Since trigger consistency
only relates to single state machines, the required definition of a path also relates only to states
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of a single state machine. For full consistency, we need a different kind of path that relates sets
of states where each set contains a state of each state machine of the model. We refer to the
former as trigger-based path and to the latter as path.

3.3.1 Trigger Consistency

A trigger-based path considers only the triggers of a state machine.

Definition 3.3.1 (Trigger-based Path). Given a state machineM = (S, ι, Atr , Aeff , T ), a trigger-
based path in M is a sequence [a1, a2, . . . , an] of trigger symbols with ai ∈ Atr for i ∈ [1..n]
such that there exists a sequence [(s1, a1, A1, s2), (s2, a2, A2, s3), . . . , (sn, an, An, sn+1)] of
transitions in M . 4

Based on the definition of a trigger-based path we define trigger consistency as follows.

Definition 3.3.2 (Trigger Consistency of a Lifeline). Let

• D = (L,N ) be a well-formed and time-consistent event-based sequence diagram,

• L = (l ,M,Esd , Erv , >) ∈ L be an event-based lifeline of D,

• M = (S, ι, Atr , Aeff , T ) be a state machine modeling the behavior of L, and

• [e1, . . . , en] be the sequence of events where for all i, j with 1 ≤ i, j ≤ n it holds that
ei, ej ∈ Erv and ei > ej if and only if i > j.

Then the lifeline L is trigger-consistent with M if and only if there exists a trigger-based
path A = [a1, a2, . . . , an+m] in M containing m occurrences of ε such that for the path B =
[b1, b2, . . . , bn] corresponding toAwith all occurrences of ε removed it holds that bi = symb(ei)
for i ∈ [1..n]. 4
Example 3.3.1. In Figure 3.2.1, consider lifeline cm. The state machine instantiated by cm is Cof-
feeMachine (cf. Figure 3.1.2). The sequence of receive events on this lifeline is [orderCoffee1Rcv,
doneRcv, orderCoffee2Rcv]. The sequence [orderCoffee, done, orderCoffee] of symbols from the
messages connected to these events exists as path of triggers in CoffeeMachine connecting the
states idle, preparing, error, maintenance, idle, preparing in this order. The lifeline cm is therefore
trigger-consistent with its state machine. If message m4 was swapped with message m5, then
cm would not be trigger-consistent, as from the only state that can be reached by a transition
triggered by orderCoffee there is no outgoing transition triggered by orderCoffee. ♦

Definition 3.3.3 (Trigger Consistency). A sequence diagram D is trigger-consistent if and only
if

• D is well-formed,

• D is time-consistent, and

• all lifelines of D are trigger-consistent with respect to their state machine (cf. Defini-
tion 3.3.2.

4
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Figure 3.3.1: Extended state machine corresponding to the state machine PhD Student of Fig-
ure 3.1.2.

3.3.2 Full Consistency

Other than trigger consistency, full consistency of a sequence diagram also takes into account
the communication between lifelines and therefore both the triggers and effects of the respective
state machines. It verifies whether a sequence of messages can be sent and received by the set of
state machines instantiated by the sender and receiver lifelines of the messages (state machines
are duplicated when instantiated more than once). Such a sequence of messages moves along a
path that connects global states, where each global state is a set of states containing one state
for each instantiation of a state machine.

We first introduce the notion of an extended state machine. An extended state machine
introduces an additional state for each transition in order to separate the events of receiving a
symbol (receive event) and sending one or more symbols (send events). This facilitates a more
intuitive description of the communication between state machines.

Definition 3.3.4 (Extended State Machine). Given a state machine M = (S, ι, Atr , Aeff , T ),
the extended state machine M∗ is a state machine (S ∪ S∗, ι, Atr , Aeff , T ∗) where

• S∗ = {s∗t | t ∈ T} and

• T ∗ = {(s, trg , ∅, s∗t ), (s∗t , ε, eff , s′) | (s, trg , eff , s′) ∈ T}.
4

An extended state machine introduces an intermediate state s∗t for each transition t of the
original state machine. An intermediate state has exactly one incoming transition, which is
triggered by the trigger of t and has no effect. It also has exactly one outgoing transition, which
leads to the target state of t with no trigger and with the effects from t. An intermediate state can
be identified by the source state, the target state, the trigger, and the effects of the transition. We
call S the original states and S∗ the intermediate states of a state machine. Any state machine
can be translated to exactly one extended state machine and vice versa. We often refer to the
extended state machine corresponding to a state machine M by M∗.

The extended state machine helps to distinguish between the event of having received the
trigger and the event of being able to send the effects. Other than a non-extended state machine,
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it can contain transitions which have both ε as trigger and the empty set as effects. These tran-
sitions connect intermediate states to original states when the corresponding transition of the
non-extended state machine has the empty set as effect.

Figure 3.3.1 depicts the extended state machine of the state machine PhD Student. In con-
crete syntax, we represent the intermediate states by black diamonds with rounded corners.

A global state captures a configuration of a collection of state machines. It is a tuple of states
containing exactly one state per instantiation of an (extended) state machine.

Definition 3.3.5 (Global State). Given a collection M = {M1, . . . ,Ml} of (extended) state
machines, a global state ŝ is a tuple (s1, . . . , sl) ∈ S1 × · · · × Sl where Si is the set of states of
Mi for 1 ≤ i ≤ l. 4

Example 3.3.1 (Cont. from p. 24). A global state of the three extended state machines in
Figure 3.1.2 instantiated by the lifelines of the sequence diagram in Figure 3.2.1 is

(desperate, <maintenance/done/repaired/idle>, idle)
where the second state refers to the intermediate state on the transition from maintenance to

idle in state machine CM. ♦

The communication between lifelines takes place through symbols received as triggers and
sent as effects on their transitions. A transition t of a state machineM can only be executed when
the trigger of t is received by M and all effects of t are received by state machines other than
M . To capture this semantics, we define multimessages and their admissibility and application.

Definition 3.3.6 (Multimessage). Given a set M∗ = {M∗1 , . . . ,M∗l } of extended state ma-
chines, the empty sender ε, and the set AA of symbols, a multimessage over M∗ is a pair
(σ, {(a1, ρ1), . . . , (ak, ρk)}) where either

(1) • σ =M∗d for some d ∈ [1..l]

• {(a1, ρ1), . . . , (ak, ρk)} ∈ P(Aeff
d ×M∗ \ {σ}) such that for 1 ≤ i ≤ k all ρi are

pairwise distinct, or

(2) • σ = ε and

• {(a1, ρ1), . . . , (ak, ρk)} ∈ P({ε} ×M∗).

A message (σ, a, ρ) equals the multimessage (σ, {(a, ρ)}). 4

A multimessage is a set of messages where either (1) symbols are sent from one state ma-
chine to a set of different state machines or (2) the empty symbol is received as trigger by one or
more state machines. Case (1) corresponds to the set of effects on a transition of a state machine
received as triggers by other state machines. Case (2) describes the “receipts” of the empty sym-
bol as messages sent from empty senders in order to initiate transitions with ε as trigger. In the
sequel we call this an empty multimessage.

In a global state of a collection of state machines, there exists a (possibly empty) set of multi-
messages that contains messages with symbols that occur as triggers and effects on the outgoing
transitions of the particular states or with the symbol ε from the empty state machine ε. We call
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a multimessage of this set admissible with respect to a global state. If this set is empty, then
it means that no more communication between the state machines is possible. In the following
definitions, it is important to separate the receipt and the sending of messages. They therefore
refer to extended state machines rather than to regular state machines.

Definition 3.3.7 (Admissibility of a Multimessage). Given a setM∗ = {M∗1 , . . . ,M∗l } of ex-
tended state machines with M∗i = (Si, ιi, A

tr
i , A

eff
i , Ti) for all i ∈ [1..l], and a global state

ŝ = (s1, . . . , sl) ∈ S1×· · ·×Sl, a multimessageN = (M∗d , {(a1, ρ1), . . . , (ak, ρk)}) overM∗
is admissible in ŝ if the following holds.

• If M∗d 6= ε then

(1) (sd, ε, {a1, . . . , ak}, s′d) ∈ Td, and

(2) there exists a setR ⊆ {1, . . . , l} \ {d} and a bijective function rec : {1, . . . , k} → R
such that for i ∈ [1..k] it holds that ρj =M∗rec(j) and (srec(j), aj , ∅, s′rec(j)) ∈ Trec(j).

• Otherwise, if M∗d = ε then there exists a set R ⊆ {1, . . . , l} \ {d} and a bijective func-
tion rec : {1, . . . , k} → R such that for j ∈ [1..k] it holds that ρj = M∗rec(j) and
(srec(j), ε, ∅, s′rec(j)) ∈ Trec(j).

4

There are two requirements for a multimessage with a sender other than ε to be admissible
in a global state: (1) the sender’s state in the global state is an extended state with an outgoing
transition containing the set {a1, . . . , ak} of effects, and (2) each receiver’s state in the global
state has an outgoing transition triggered by the respective symbol from the multimessage. Note
that we are dealing with extended state machines, which means that a transition cannot carry
a trigger symbol other than ε together with a non-empty set of effects. Therefore it can never
happen that a receiver state machine ρi sends any effects while executing the transition triggered
by some symbol ai. In order for an empty multimessage to be admissible, all receivers’ states
have to be in an intermediate or original state with an outgoing transition containing ε as trigger.

After applying an admissible multimessage, that is, after sending and receiving the symbols
of the multimessage, a global state ŝ′ is reached as follows.

Definition 3.3.8 (Application of a Multimessage). Given a set M∗ = {M∗1 , . . . ,M∗l } of ex-
tended state machines with M∗i = (Si, ιi, A

tr
i , A

eff
i , Ti) for all i ∈ [1..l], a global state ŝ =

(s1, . . . , sl) ∈ S1 × · · · × Sl, and a multimessage N = (M∗d , {(a1, ρ1), . . . , (ak, ρk)}) over
M∗ that is admissible in ŝ, a global successor state ŝ′ of ŝ after applying N is given by
ŝ′ = (next(s1), . . . , next(sl)) where for i ∈ [1..l]

(1) next(si) = s′d if M∗d 6= ε and i = d,

(2) next(si) = s′i if i ∈ R, and

(3) next(si) = si otherwise.
4

27



The global successor state ŝ′ is reached from ŝ by applying a multimessage. It can differ
from ŝ in the sender’s state (unless the sender is ε) and the receivers’ states reached by transitions
that carry as effects or as trigger, respectively, a symbol of the applied multimessage. Case (1)
defines that unless the sender is ε, the sender’s state changes from an extended state to its only
successor state, case (2) that the receivers’ states change according to the received symbol into
an intermediate state, and case (3) that all other state machines remain in their current state.

Example 3.3.1 (Cont. from p. 24). Consider the three lifelines (alice,PhD), (cm,CM), and
(m,Maintenance) instantiating the state machines in Figure 3.1.2, and the global state ŝ =
(desperate, <maintenance/done/repaired/idle>, idle) of their extended state machines. The set
of admissible messages from ŝ contains only the message {((cm,CM), repaired, (alice,PhD))}.
There are three outgoing transitions from states contained in ŝ, and only those from the states
in the state machines instantiated by cm and by alice can send or receive a symbol. The symbol
received by the outgoing transition from the state idle in Maintenance is not sent by any outgoing
transition of another state in ŝ. Applying N to the global state ŝ reaches the global successor
state (<desperate/repaired/ε/working>, idle, idle). ♦

The set of admissible multimessages in a global state can contain a subset of multimessages
that are independent, i.e., that have no sender or receiver in common. The multimessages in such
a set can be applied simultaneously. We call a set of independent multimessages a transaction.
It is defined as follows.

Definition 3.3.9 (Transaction). A transaction is a nonempty set {N1, . . . ,Nl} of multimessages
with Ni = (σi, {(ai,1, ρi,1), . . . , (ai,ki , ρi,ki)}) such that for all i ∈ [1..l] and j ∈ [1..ki] it holds
that σi 6= ρi,j , i.e., all state machines occurring in the multimessages are distinct. 4

A transaction is admissible if all its multimessages are admissible. The global state reached
by applying a transaction is the global state reached by applying each of the transaction’s multi-
messages.

Along a path we can step through global states of a set of state machines.

Definition 3.3.10 (Path). A path µ from a global state ŝ0 to a global state ŝk is a sequence
µ = [C1, . . . , Ck] of transactions such that there exists a sequence [ŝ0, . . . , ŝk] of global states
where for all i ∈ [1..k], Ci is admissible in state ŝi−1 and ŝi is the global successor state of ŝi−1
after applying Ci. 4

A path is a sequence of transactions connecting global states. The length of a path is the
number of its transactions. Along a path, a global state is reachable from another global state.

Definition 3.3.11 (Reachability). A global state ŝj is reachable from ŝi if there is a path from ŝi
to ŝj . 4

Example 3.3.1 (Cont. from p. 24). For the state machines Coffee, PhD Student, and Maintenance
of Figure 3.1.2, the global state (waiting, <idle/orderCoffee/∅/preparing>, idle) is reachable by the
path [(ε, {(ε,PhD)}), (PhD, {(orderCoffee,CM)})] from the global state (waiting, idle, idle). ♦

A sequence diagram can be understood to model a path in a set of instantiations of state
machines. In this case a message of the sequence diagram is interpreted as a multimessage with
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a singleton set of effects. We connect the two views by defining k-consistency and full consis-
tency between them. Intuitively, a sequence diagram is consistent to a set of state machines,
if the sequence of messages occurs somewhere along a path between the global states of the
instantiations of the state machines such that the beginning of this path is reachable from the
global initial state, which contains each state machine’s initial state. The views are k-consistent
if this holds for a path of length at most k.

Definition 3.3.12 (k-Consistency). Given a setM of extended state machines and a sequence
diagram D = (L, µ) overM with L = {L1, . . . , Ll} and π2(Li) = (Si, ιi, A

tr
i , A

eff
i , Ti) for

i ∈ [1..l] it holds thatD andM are k-consistent if there exists a path of length at most k starting
at ŝ = (ι1, . . . , ιl) and leading to a global state ŝ′ such that a global state ŝ′′ is reachable from ŝ′

by applying only each message of the sequence µ in the order of the sequence and zero or more
empty messages in between the messages. 4

If the path can be of arbitrary length, then the two views are fully consistent.

Definition 3.3.13 (Full Consistency). Given a setM of extended state machines and a sequence
diagramD = (L, µ) overMwith L = {L1, . . . , Ll} and π2(Li) = (Si, ιi, A

tr
i , A

eff
i , Ti) for i ∈

[1..l] it holds that D andM are fully consistent if there exists a path starting at ŝ = (ι1, . . . , ιl)
and leading to a global state ŝ′ such that a global state ŝ′′ is reachable from ŝ′ by applying only
each message of the sequence µ in the order of the sequence and zero or more empty messages
in between the messages. 4

The following example illustrates this notion of consistency.

Example 3.3.1 (Cont. from p. 24). The sequence diagram of Figure 3.1.4 is inconsistent with
the state machines of Figure 3.1.2. There is no path in instantiations of the state machines that
contains the sequence of messages modeled in the sequence diagram. However, the sequence
diagram containing only the first four messages of those modeled in Figure 3.1.4 is k-consistent
for k = 9 (and therefore also fully consistent) with the state machines. They model the path

[(ε, {(ε,PhD)}),
(PhD, {(orderCoffee,CM)}),
(ε, {(ε,CM)}),
(ε, {(ε,CM)}),
(CM, {(error,PhD)}),
(ε, {(ε,CM), (ε,PhD)}),
(CM, {(repair,Maintenance)}),
(ε, {(ε,CM), (ε,Maintenance)}),
(Maintenance, {(done,CM)})]

containing nine transactions. ♦

With these formal definitions at hand, in the next chapter we will formally describe three
consistency problems related to trigger consistency and k-consistency.
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Chapter 4

Verification Problems in Software
Modeling

A major difference between traditional software engineering and model-driven software engi-
neering (MDE) lies in the nature of the core development artifacts. These artifacts, which in
traditional software engineering comprise mainly textual code, are represented by (visual) soft-
ware models in MDE. Often these models are expressed in multi-view modeling languages like
the UML. The goal of MDE is to leverage the abstraction power of these models in order to
deal with the complexity of modern software systems [13], and to further exploit the models to
automatically generate executable code with little or no intervention of a developer [109].

With this increasing valorization of software models, stronger requirements on their cor-
rectness come along. At the same time, in their role as core artifacts, the software models are
increasingly sensitive to the impact of evolution [52]. Model management tasks such as synchro-
nization, versioning, or co-evolution can involve changes in one view of the model that result in
inconsistencies with another view of the model [89], which due to their multi-view nature and
the size of the software, are often hard to spot for a human developer. However, in particular
when the models are employed in automatic code generation, such inconsistencies propagate to
the executable system and can result in serious errors. Therefore, automated methods are re-
quired to alleviate the developer from responsibilities. Such methods can be applied in different
evolution scenarios, e.g., they can directly support necessary model management tasks or verify
the result of a (possibly manually) performed task.

In this chapter, we propose automated methods that tackle three different problems, one di-
rectly supporting a model management task and two for verification purposes that can be applied
in different evolution scenarios. First, the Sequence Diagram Merging (SDMERGE) Problem oc-
curs in the management task of model versioning. In an evolution scenario where two versions
of a sequence diagram have been created by different developers this task requires the two ver-
sions to be merged into a new sequence diagram which considers the changes of both developers
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and which is trigger-consistent with the state machines its lifelines instantiate (cf. Section 3.3,
Definition 3.3.3). Second and third, we consider two verification problems which rely on the se-
mantics of full consistency and k-consistency (cf. Section 3.3, Definitions 3.3.13 and 3.3.12), the
State Machine Reachability (SMREACH) Problem, and the Sequence Diagram Model Checking
(SDCHECK) Problem. The SMREACH problem asks whether a certain configuration of state
machines, i.e., a combination of at most one state per state machine, is reachable from some
global state. We call such a configuration a partial global state. An instance of the SMREACH

problem takes as input a set of state machines and a partial global state over this set. The SD-
CHECK problem applies the semantics of full consistency to ask whether a sequence of messages
described in a sequence diagram can be executed from some global state of the instantiations of
the state machines such that this global state is reachable from the global initial state. The global
initial state is the global state where all state machines are in their initial state.

We bound both of these problems by the parameter k. The k-SMREACH problem asks
whether a partial global state over a set of state machines is reachable by a path of length at most
k from some global state, and the k-SDCHECK problem asks whether a sequence diagram can
be executed after a path of length at most k from the global initial state.

In order to solve these problems, we propose encodings to the satisfiability problem of propo-
sitional logic (SAT). Over the last years, propositional logic has proven to be a powerful host
language for a wide range of real-life problems like verification and planning, particularly be-
cause of the availability of efficient and stable solvers [102]. The formula encoding the problem
can then be handed to an off-the-shelf solver. If a solution exists, the solver returns a logical
model which can be translated into a concrete solution to the problem. Otherwise, the solver
reports the formula to be unsatisfiable, which means that no solution to the encoded problem
exists. In addition to help finding a solution to the problem, the SAT encodings provide a formal
definition of the semantics of the two properties trigger consistency and k-consistency.

The semantic differences between the SDMERGE problem and the other two problems result
in differences between the encoding of the former problem and the encodings of the latter two
problems. On the other hand, the semantic similarities between the k-SMREACH problem and
the k-SDCHECK problem result in many similarities of the encodings of the two problems.
Indeed, only few adaptations are needed to convert the encoding of the k-SMREACH problem
into an encoding of the k-SDCHECK problem.

We first discuss work related to the three problems. Then, for each problem, we give a prob-
lem definition accompanied by a small example, describe an encoding to propositional logic,
and prove its computational complexity. We devote a separate chapter, Chapter 5, to an in-depth
evaluation of our method.

4.1 Related Work

Work related to the problems tackled in this chapter stems from two fields of research. In the
field of model versioning we are dealing with results regarding the detection of differences be-
tween independently changed artifacts and regarding the consolidation of the changes. The field
of model verification covers many kinds of syntactic and semantic consistency checks within
one or more views of a software model. In both fields the notion of “consistency” is central,
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but its definitions are highly heterogeneous, depending on the type of diagrams under consid-
eration and covering only syntactic aspects in some cases, and semantic aspects in others. It is
therefore often difficult or impossible to compare the different approaches with respect to their
performance.

4.1.1 Model Versioning

The inherent complexity of the software development process [100] has resulted in a variety of
tools supporting team work and change management [35]. In particular, version control systems
(VCS) provide a powerful means to assist the evolution of software by automated merging and
tracking of changes introduced by multiple developers. Versioning systems that manage parallel
modifications on a software artifact are called optimistic versioning systems. Often, they provide
sophisticated means of conflict resolution by comparing and merging the independently evolved
versions with a common ancestor. In traditional software engineering, VCS are applied to textual
artifacts such as source code. MDE, however, puts software models into a more central position
and therefore creates a need to version control them too. However, mainly due to the graph-
based nature of models, the requirements of model versioning systems strongly diverge from the
requirements of traditional versioning systems for text-based artifacts [2, 7, 9].

In the past decade, several model versioning systems based on different approaches have
been proposed. In particular, exploitation of the graph-based nature of the models and analysis
of composite changes in order to detect and automatically resolve conflicts has shown to be
successful [24, 30]. Most approaches, however, mainly target the syntactic part of a model and
mostly neglect the semantics such as inter-view consistency. In the following, we give a short
overview on model versioning approaches.

Westfechtel [121] discusses the merge of ordered features in models of the Eclipse Modeling
Framework by aggregating elements into linearly ordered clusters. The order within a cluster is
determined either at random or by a user. However, the merge is performed on the metamodel
level in order to keep the approach generic, and therefore the information available within the
model cannot be used for merging. Gerth et al. [55] provide dedicated merge support for business
process models ensuring a consistent outcome. They formalize process models as process terms
and use a term rewriting system to detect and interactively resolve merge conflicts. However,
there is no support to compute all valid merge solutions. Cicchetti et al. [30] propose to define
conflict patterns which can be tailored towards the application on sequence diagrams. Such a
conflict pattern can be equipped with a reconciliation strategy for resolving the conflict.

Nejati et al. [96] present an approach to merge two state machines. Their approach exploits
syntactical as well as semantic information provided by the models in order to compare variants
and perform consistency checks.

Reiter et al. [103] suggest semantic views constructed via a manual normalization process.
Two different revisions of a model are normalized according to this process and compared to
detect conflicts. Semantics are considered in the normalization process, but the later comparison
only considers syntactic features. Maoz et al. [92] define semantic equivalence, which can be
independent of syntactic differences. Their work focuses on the task of differencing, which
is one part of merging process, but they do not cover the whole merging process. Further, an
in-depth survey on model versioning has been published by Brosch et al. [23].
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To the best of our knowledge, no previous work has considered inter-view consistency be-
tween sequence diagrams and state machines for the merging process. We consider such an
approach in Section 4.2 of this work.

4.1.2 Model Verification

Besides approaches tackling problems of specific model management tasks such as model ver-
sioning, many model verification techniques can be employed to support various model man-
agement tasks. For example, the question whether a sequence diagram is still consistent with a
set of state machines can be asked after any evolution step that contains any kind of changes to
either of the views.

Related work verifying the consistency of a software model covers a very broad field, pos-
sibly due to the lack of common consent on the meaning of the term “consistency”. It can be
roughly categorized along two dimensions. On the one hand, there are approaches performing
only syntax checks, for example in works by Egyed [44] and by Mens et al. [94] and such taking
semantics or behavioral aspects into account. On the other hand some approaches focus on one
single view and others consider multi-view consistency. In this section, we focus on related work
with respect to semantics and behavior for both single and multi-view consistency problems.

In the category of single-view consistency checking, Cabot et al. [29] verify the behavioral
aspects of UML class diagrams annotated with operation contracts, which are declarative de-
scriptions of operations specified as pre- and postconditions in the Object Constraint Language
(OCL), an extension of the UML to define syntactic components for which the UML meta-
model is not expressive enough. Other single-view approaches tackle the state machine or the
sequence diagram view by applying model checking [33]. Alur and Yannakakis [3] present the-
oretical results on model checking of hierarchical state machines. In particular, they establish
that reachability analysis and checking of linear properties, which are both applications of model
checking, can be performed without flattening the state machines. Lilius and Porres [86] formal-
ize UML 1.0 state machines in order to employ the SPIN model checker [67] to check for various
properties of the model. A formal verification technique for UML 2.0 sequence diagrams em-
ploying linear temporal logic (LTL) formulas and the SPIN model checker to reason about the
occurrences of events is introduced by Lima et al. [87]. Ter Beek et al. [112] present their own
model checking framework to check for event-based logic constraints in state machines and so
do Zhang and Liu [125] to check for safety properties in UML state machines. Symbolic encod-
ings for the model checker nuSMV [31] have been proposed for hierarchical state machines [40]
and activity diagrams [46].

Concerning multi-view consistency checking, Diskin et al. [39] present a framework based
on category theory for consistency checking between views. They integrate the relevant parts
of the models into one global metamodel such that all instance models become instance mod-
els thereof. These instance models can then be checked for inconsistencies. Van Der Straeten
et al. [118] use the SAT-based constraint solver Kodkod to detect and resolve inconsistencies be-
tween class and sequence diagrams. Egyed [43] applies instant consistency validation by rules
formulated in OCL which shows to be very efficient on large models. Sabetzadeh et al. [107]
present an approach to check consistency between a set of different, but overlapping models by
merging this set of models into one model. Tsiolakis [115] suggests to collect constraints dis-
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tributed over views like the class diagram or the state machine and integrate them in a sequence
diagram in terms of state invariants yielding pre- and postconditions for individual messages.

Approaches considering inter-view consistency between state machines and sequence di-
agrams include the following. Lam and Vitus [82] present an algebraic approach to express
the consistency checking problem in the π-calculus, but they do not discuss the practical re-
alization of their approach. Van der Straeten et al. [117] propose to use description logics to
formally describe the consistency between class diagrams, sequence diagrams, and state ma-
chines. Bernardi et al. propose to use Petri nets for checking the consistency between different
diagrams [12]. Communication, however, is only considered at the class level and not at the
instance level. Engels et al. [45] propose to check consistency by evaluating dedicated consis-
tency constraints represented in form of collaborations. Graaf and Van Deursen [58] and Whittle
and Schumann [122] suggest to synthesize a state machine from a given sequence diagram and
then compare the automatically generated state machine to the given state machine. Therefore,
they realize normalization, transformation, and comparison steps, respectively. In [58], however,
the comparison requires manual intervention. Further, Feng and Vangheluwe propose to use a
simulation-based approach for consistency checking [48].

In particular for consistency checking between the state machine and the sequence diagram
views, the use of model checking [33] is very popular. Usually, the model checkers provide
languages to describe finite state automata, which are also the conceptual basis of state ma-
chines. Inverardi et al. [68] present their own definition of a multi-view modeling, simulation,
and verification environment, the software architecture (SA), describing the static and behavioral
structures of systems with component, state transition, and sequence diagrams. They propose
to employ the model checker SPIN [67] to check for different inter-view consistency properties.
The tools HUGO [108] and CHARMY [101] also employ the model checker SPIN [67]. HUGO
verifies whether the interactions of a UML 1.0 collaboration diagram are consistent with a set of
state machines. The tool automatically translates the state machine diagrams to PROMELA, the
input language of SPIN, and generates “never claims” from the collaboration diagrams, which
are then verified by SPIN. Another version of HUGO [79, 80] is based on the model checker
UPPAAL [84]. Other than HUGO, which uses a UML based definition of collaboration dia-
grams and state machines, CHARMY builds on the previously introduced SA [68]. CHARMY
also translates the modeled artifacts to PROMELA and calls SPIN to either locate deadlocks
and unreachable states in the state machines, or to verify temporal properties of the system. Fi-
nally, we also proposed to verify inter-view consistency between sequence diagrams and state
machines [21, 22].

Most of these tools have been discontinued with the introduction of UML 2.0 or are unavail-
able. In our related works [21,22] we experienced that one of the major challenges of approaches
based on expressing state machines in an input language of model checkers is to overcome se-
mantic heterogeneities between the two representations. However, other than having to deal with
this intermediate step, the state machine model could be encoded in a more low-level language
such as propositional logic in order to avoid such semantic restrictions. Indeed, this approach
is proposed and shown to be more efficient than translations to standard model checkers by
Niewiadomski et al. [97]. In Sections 4.3 and 4.4, we follow this idea of symbolic encodings,
but we propose an alternative encoding inspired by works on solving planning problems [105].
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4.2 Guided Merging of Sequence Diagrams – the SDMERGE
Problem

This section presents the Sequence Diagram Merging (SDMERGE) Problem. The objective of
solving this problem is to compute a sequence diagram that considers (possibly conflicting)
changes applied by two different developers to the same initial sequence diagram and that is
trigger-consistent with the state machines it instantiates. In our problem formulation, we con-
sider as changes only additions of messages and lifelines to a sequence diagram. A formulation
that also considers deletions could result in a more complex problem.

We first give an intuition of the problem with a small example based on three state machines
that implement a simplified version of an email protocol. We then give a formal problem defini-
tion followed by an encoding of the problem to the satisfiability problem of propositional logic
(SAT). The encoding expresses the semantics of the property of trigger consistency (cf. Sec-
tion 3.3, Definition 3.3.3), and therefore forms parts of the formal semantics of the tMVML.
Finally, we show that the SDMERGE problem is solvable in time polynomial in the input size.
Given this result, a SAT solver may not seem to be the appropriate tool to tackle this problem.
However, apart from solving the SDMERGE problem, our SAT encoding serves to define the
semantics of trigger consistency and, given the rather basic problem formulation, it will later
serve as a foundation to encode more complex problem formulations.

4.2.1 A Motivating Example

Figure 4.2.1 shows three state machines implementing a simplified variant of the Simple Mail
Transfer Protocol (SMTP). The state machine Client starts in state Idle and waits until it receives
uCon, which triggers its transition to state conPend. During the execution of the transition it
sends the symbol sCon, which is received by the state machine Server and triggers its transition
from state waiting to accepting. During the execution of this transition Server sends the symbol
ok, which is again received by Client, triggering the transition to state connected, and so on.

The state machine User represents the (human) interaction with the state machine Client. It
has only one state from which it can send any of a set of commands to Client.

Figure 4.2.2 shows three sequence diagrams Do, Dα, and Dβ . A sequence diagram is
trigger-consistent with the state machines instantiated by its lifelines if for each lifeline the se-
quence of received messages is a trigger-based path in the corresponding state machine (cf. Sec-
tion 3.3, Definitions 3.3.1 and 3.3.2). For the uppermost diagram in Figure 4.2.2, Do, the se-
quence of received messages for lifeline c:Client corresponds to the sequence [uCon, ok, ok] of
triggers. This sequence can be found as a trigger-based path in the state machine Client connect-
ing states idle → conPend → connected → identified. A similar argument holds for the lifeline
s:Server and the sequence [sCon, sHello] of triggers. The lifeline u:User instantiates the state
machine User, which never receives, but only sends symbols. Therefore, this lifeline is also
consistent.

Based on the sequence diagram Do, the following evolution scenario starts. Two modelers,
Alice and Bob, independently perform some modifications. Alice extends the scenario with a
logout message resulting in the revised sequence diagram Dα, and Bob adds a communication
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sDone/-

sFrom/ok

sHello/ok

sData/ok

default ε/uQuitε/uRcpt

ε/uCon ε/uRetry

ε/uData ε/uMail

Client

Server User

Figure 4.2.1: State machines of an email client, an email server, and a user.

to send an email, resulting in Dβ . Trying to merge the modifications of both modelers without
any additional information, it cannot be decided in a straightforward manner in which order the
added messages from both revisions should be arranged. Hence, we have a merge conflict.

Several time-consistent merges of the sequence diagram are possible. In particular, all per-
mutations of the two concatenated message sequences are time-consistent. We further assume
that the modelers wish to preserve the relative order of their added messages and therefore, out of
the time-consistent merges, we consider only such merges that fulfill this constraint. However,
many of such merges are trigger-inconsistent with the state machines. For example, the sequence
[uCon, sCon, ok, sHello, ok, uQuit, uMail, sFrom, ok, uRcpt, sRcpt, ok, uData, sData, sDone, ok]

is a permutation of all original and all added messages that preserves the relative order of the
additions, but it is not trigger-consistent with the instantiated state machines.

Indeed, Alice’s changes have to be appended after Bob’s changes, as in any other possible
merging scenario the resulting sequence diagram models a scenario which is forbidden by the
state machines.

37
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Figure 4.2.2: Evolution of a sequence diagram.

4.2.2 Problem Definition

In the context of optimistic model versioning, two versions of a concurrently evolved model, the
revisions, have to be combined into a consolidated version. We consider the problem of merging
two revisions of a trigger-consistent event-based sequence diagram into a new trigger-consistent
event-based sequence diagram by using information from the original sequence diagram and the
associated state machines.

In this section, we work only with the event-based definitions of a sequence diagram, that is,
with Definition 3.2.2 of an event-based lifeline, Definition 3.2.3 of an event-based message, and
Definition 3.2.4 of an event-based sequence diagram, all of which occur in Section 3.2. Hence,
in the current section, when we write “lifeline”, “message”, or “sequence diagram” we mean the
event-based versions according to the above definitions.

First, we define a revision of a sequence diagram as an extension of a sequence diagram by
messages and lifelines.

Definition 4.2.1 (Revision). A sequence diagram Dα = (Lα,Nα) defined over the universe A
is a revision of a trigger-consistent sequence diagram Do = (Lo,No) also defined over A if and
only if Lo ⊆ Lα, No ⊆ Nα, and Dα is trigger-consistent. 4
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Dγ1 Dγ2 Dγ3 Dγ4 Dγ5 Dγ6

Figure 4.2.3: Sequence diagram Do and two revisions Dα and Dβ (top) with their six time-
consistent, but not necessarily trigger-consistent merges (bottom) and the values of the function
posx for x ∈ {o, α, β, γ1, . . . , γ6}.

Example 4.2.1. In Figure 4.2.2, the sequence diagramsDα andDβ are revisions of the sequence
diagram Do. In Dα, a sequence of messages representing a cancellation of the connection, and
in Dβ , a sequence of messages representing the receipt of an email have been added. ♦

A consolidated version of a sequence diagram and two of its revisions is a trigger-consistent
sequence diagram that contains the messages and lifelines of the original sequence diagram
and all added messages and lifelines from the revisions. The order of messages relative to the
original diagram and to the revisions is maintained.

In the rest of this section, we use the position function pos to refer to the position of a
message in a sequence diagram.

Definition 4.2.2 (Position of a Message). Given a time-consistent sequence diagram D =
(L,N ), the position function pos : N → {1, . . . , |N |} maps a message to an integer such
that for all N,N ′ ∈ N it holds that pos(N) = pos(N ′) if and only if N = N ′ and pos(N) >
pos(N ′) if and only if N � N ′. 4

In a consolidated version, each of the messages added to one of the revisions can be placed
on one of a set of positions. This set of positions maintains the relative order of the messages in
the revisions. We return this set of positions for each message by the function allow.
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Definition 4.2.3 (Allowed Positions). Given three trigger-consistent sequence diagrams Dx =
(Lx,Nx), for x ∈ {o, α, β}, where Dα and Dβ are revisions of Do, and posx : Nx →
{1, . . . , |Nx|} with x ∈ {o, α, β} are the position functions, let N = No ∪ Nα ∪ Nβ and
I = {1, 2, . . . , |N |}. Then allow : N → P(I) assigns to each message N a set of positions,
such that

• if N ∈ No and poso(N) = posα(N) = posβ(N) then allow(N) = {poso(N)} (N re-
mains at the same position),

• if N ∈ No and poso(N) 6= posα(N) or poso 6= posβ(N), then for N ′ = {M ∈ Nα |
posα(M) < posα(N)} ∪ {M ∈ Nβ | posβ(M) < posβ(N)}, it holds that allow(N) =
{poso(N)+ |N ′|} (N is shifted to a position such that messages which have been inserted
into revisions before N can be placed on positions before N in the consolidated version),

• if N 6∈ No and N ∈ Nα then for

– N ′ ∈ No such that posα(N
′) = maxN∈No|posα(n)<posα(N) pos(N),

– N ′′ ∈ No such that poso(N
′′) = poso(N) + 1,

– N ′ =
{
{N ∈ Nβ | posβ(N) < posβ(N

′)} if posα(N
′) > 1

∅ otherwise
(N ′ contains all messages that were added to the other revision before the closest
predecessor of N from No), and

– N ′′ =
{
{N ∈ Nβ | posβ(N) < posβ(N

′′)} if posα(N
′′) < |Nα|

Nβ \ No otherwise
(N ′′ contains all messages that were added to the other revision before the closest
successor of N from No),

it holds that allow(N) = {i ∈ I | posα(N) + |N ′| ≤ i ≤ posα(N) + |N ′′|}, and

• if N 6∈ No and N ∈ Nβ then allow is defined as for the case N 6∈ No and N ∈ Nα but
with α and β exchanged in the whole definition.

4
Example 4.2.2. Consider the sequence diagrams Do, Dα and Dβ shown in the upper part of
Figure 4.2.3, where Dα and Dβ are revisions of Do. In Dα, the message a4, and in Dβ the
messages b4 and b5 are added between the original messages o2 and o3. In a merged sequence
diagram, each of a4, b4 and b5 must again be placed between o2 and o3. Also, in order to
maintain their order from the revisions, b5 must be placed after b4. Similar conditions are given
for the messages a5 and b6 inserted after o3. Table 4.2.1 shows the values of the pos and allow
functions for each message N in the sequence diagrams Do, Dα, and Dβ of Figure 4.2.3. ♦

If in the merged sequence diagram each messageN is placed on one of the positions defined
in allow(N) and exactly one message has been placed at each position, then the merged sequence
diagram is time-consistent (cf. Section 3.2, Definitions 3.2.5, 3.2.6, 3.2.7). However, in order for
the merged sequence diagram to be trigger-consistent, the messages have to be placed such that
the lifelines are trigger-consistent with respect to their state machines. If this is also the case,
then the merged diagram is a consolidated version, defined as follows.
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N poso(N) posα(N) posβ(N) allow(N) Remark
o1 1 1 1 {1}

o2 2 2 2 {2}
o3 3 4 5 {6} N ′ = {a4,b4,b5}
a4 - 3 - {3,4,5} N ′ = ∅, N ′′ = {b4,b5}
a5 - 5 - {7,8} N ′ = {b4,b5}, N ′′ = {b4,b5,b6}
b4 - - 3 {3,4} N ′ = ∅, N ′′ = {a4}
b5 - - 4 {4,5} N ′ = ∅, N ′′ = {a4}
b6 - - 6 {7,8} N ′ = {a4}, N ′′ = {a4,a5}

Table 4.2.1: Allowed positions for each message of Figure 4.2.3.

X1 X2
b6/-

b4/-o2/-

o3/-
Y1 Y2

o1/-

b5/- a4/-

a5/-

X Y

Figure 4.2.4: The state machines modeling the behavior of the lifelines in Figure 4.2.3.

Definition 4.2.4 (Consolidated Version). Given the trigger-consistent sequence diagrams Do =
(Lo,No), Dα = (Lα,Nα), and Dβ = (Lβ,Nβ), where Dα and Dβ are revisions of Do, a
consolidated version Dγ = (Lγ ,Nγ) is a sequence diagram where

• Lγ = Lα ∪ Lβ ,

• Nγ = Nα ∪Nβ ,

• for each N ∈ Nγ it holds that pos(N) ∈ allow(N), and

• Sγ is trigger-consistent.

4

Example 4.2.2 (Cont. from p. 40). Consider the example shown in Figures 4.2.3 and 4.2.4. The
upper part of Figure 4.2.3 depicts the original sequence diagram Do and two of its revisions
Dα and Dβ with the values of the respective posx function. The revised diagrams contain added
messages between messages o2 and o3 and at the end of the diagram. The lower part of the figure
depicts six different time-consistent merged diagrams Dγ1 to Dγ6. Figure 4.2.4 shows two state
machines describing the behavior of the lifelines. The two merged diagrams Dγ5 and Dγ6 are
also consolidated versions, i.e. they are trigger-consistent with respect to the state machines
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depicted in Figure 4.2.4. It can be verified that the sequence of message symbols received
by lifeline y of the rightmost diagram, i.e., [o1, b5, a4, a5] occurs as trigger-based path in state
machine Y and so does the sequence of lifeline x, i.e., [o2, b4, o3, b6]. However, the other merged
diagrams Dγ1 to Dγ4 are not trigger-consistent. For example, the sequence [o1, a4, b5, a5] of
lifeline y cannot be found as trigger-based path in state machine Y. ♦

Finally, the Sequence Diagram Merging Problem is defined as follows.

Definition 4.2.5 (Sequence Diagram Merging (SDMERGE) Problem).
Instance: The universe A, a set M of state machines over A, and three trigger-consistent

sequence diagrams Do = (Lo,No), Dα = (Lα,Nα), and Dβ = (Lβ,Nβ) over A
andM, where Dα and Dβ are revisions of Do.

Question: Does there exist a consolidated version of Do, Dα, Dβ?
4

4.2.3 Encoding to SAT

We propose to translate the SDMERGE problem to the satisfiability problem of propositional
logic (SAT) (cf. Section 2.2). In order to define a propositional encoding for a problem like
the SDMERGE problem, first some basic components of the problem that can be represented
by Boolean variables have to be identified. Then these components are connected by operators
of propositional logic such that they convey the semantic properties of the problem. A positive
solution of the resulting formula is expressed by a logical model of the formula, i.e., a mapping of
all variables to true or false (cf. Section 2.2.2). The assigned meaning of the variables evaluated
to true then describes the solution of the encoded problem.

We first present the set of variables the encoding of the SDMERGE problem is based on.
Using these variables we define the semantic properties of well-formedness (cf. Section 3.2,
Definition 3.2.5), time consistency (cf. Section 3.2, Definition 3.2.7), and trigger consistency
(cf. Section 3.2, Definition 3.3.3), which make up the property of trigger consistency required
by a solution of the SDMERGE problem. Then, based on these formulas, we present a set of
formulas whose conjunction encodes the SDMERGE problem.

A solution of an instance of the SDMERGE problem is a sequence of messages where each
message causes the state machine of its receiver to change to a certain state. This allows us to
make statements like “if message N is the first message in the sequence, then at first the state
machine M that receives the message is in a state s that has an outgoing transition with N as
trigger”, and “next, M changes to a state that has an incoming transition with N as trigger and
is connected to s with this transition”.

The basic components that can be represented by propositional variables in order to express
such statements in propositional logic are for example “messageN is at position i of the message
sequence” or “state machine M is in state s at position i of the message sequence”. Therefore,
we define the set V of variables that encode the SDMERGE problem as follows.

Given a setM = M1, . . . ,Ml of state machines with Mi = (Si, ιi, A
tr
i , A

eff
i , Ti) for i ∈

[1..l], and an event-based sequence diagram D = (L,N ), let n = |N | and let S =
⋃

1≤i≤l Si.
Then V is the union of the following sets:
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Position Message Variable Source State Variable Target State Variable
Symbol in va in vsrc in vtgt

1 o1 o11 Y1 cY 1
1 Y1 vtY 1

1

2 o2 o22 X1 cX1
2 X2 vtX2

2

3 b4 b43 X2 cX2
3 X2 vtX2

3

4 b5 b54 Y1 cY 1
4 Y1 vtY 1

4

5 a4 a45 Y1 cY 1
5 Y2 vtY 2

5

6 o3 o36 X2 cX2
6 X1 vtX1

6

7 b6 b67 X1 cX1
7 X1 vtX1

7

8 a5 a58 Y2 cY 2
8 Y1 vtY 1

8

Table 4.2.2: Variables encoding messages of a sequence diagram and source and target states of
state machines for each position according to the rightmost merge of Figure 4.2.3.

• va = {Ni | N ∈ N ∧ i ∈ [1..n]} is a set of variables that encode the placement of each
message symbol to a position. If Ni evaluates to true, it means that message N is placed
at position i.

• vsrc = {csi | 1 ≤ i ≤ n, s ∈ S)} is a set of variables that encode states that are acting
as a source state of a transition being triggered by a message at a certain position. If
csi evaluates to true, it means that s is the source state of the transition triggered by the
symbol of the message placed on i.

• vtgt = {vtsi | 1 ≤ i ≤ n, s ∈ S} is a set of variables that encode states that are acting
as a target state of a transition being triggered by a message at a certain position. If vtsi
evaluates to true, it means that s is the target state of the transition triggered by the symbol
of the message placed on i.

Example 4.2.3. Columns 3, 5, and 7 of Table 4.2.2 show the variables evaluating to true for the
rightmost merge in Figure 4.2.3. By receiving message o1, state machine Y moves from state
Y1 to Y1 on position 1, by receiving message o2, state machine X moves from state X1 to X2 on
position 2, and so on. This behavior is determined by the evaluation of the respective variables
to true. Other variables, for example variable o12 meaning that message o1 is placed on position
2, evaluate to false. ♦

Using the sets of Boolean variables described above we express the properties of an event-
based sequence diagram. First, the following formula defines well-formedness (cf. Section 3.2,
Definition 3.2.5) of the sequence diagram by requiring a total relation over the messages.
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∧
N∈N

( n∨
i=1

Ni

)
∧
∧
N∈N

∧
i,j∈[1..n]
i 6=j

(
N i ∨N j

)
(Well-Formedness)

The second formula defines time consistency (cf. Section 3.2, Definition 3.2.7).

∧
N∈N

n∧
i=1

[
Ni →

∨
N ′∈N ,
N ′�N

∨
i<j≤n

N ′j

]
(Time Consistency)

Finally, in order to be trigger-consistent (cf. Section 3.3, Definition 3.3.3) the sequence of
messages imposed by their positioning must correspond to a trigger-based path for each of the
state machines receiving the messages.

Example 4.2.3 (Cont. from p. 43). The rightmost merge in Figure 4.2.3 with its solution ex-
pressed as variables evaluating to true in Table 4.2.2 is a trigger-consistent solution because the
sequence of messages corresponds to paths in the state machines receiving them. State machine
X moves along a path through states X1→ X2→ X2→ X1→ X1. State machine Y moves along
a path through states Y1→ Y1→ Y1→ Y2→ Y1. ♦

We split the definition of trigger consistency into three formulas in order to be more intuitive.
Other than the previous two formulas, the formulas defining trigger consistency have to take into
account not only the positioning of messages, but also the semantics of state machines and their
interplay with the message sequence.

The first two formulas towards the definition of trigger consistency concern only state vari-
ables, i.e., variables from the sets vsrc and vtgt. The first formula defines that to each position
of the message sequence, exactly one source state and exactly one target state must be assigned.

n∧
i=1

[( ∨
csi∈vsrc

csi

)
∧
( ∨
vtsi∈vtgt

vtsi

)
∧
∧
s∈S

∧
r∈S\s

(
(csi ∨ cri ) ∧

(
vt
s
i ∨ vtri

))]
(State Machines – State Positions)

The second formula defines the requirement that the sequence of states implied for each state
machine by the positions of its states must be connected by transitions. This is a requirement
to establish a trigger-based path along the states with respect to their positions. This means that
the target state of a state machine at some position i must be the same as the next source state of
the same state machine at a position j with j > i. States of other state machines can be placed
at any position k with i < k < j.

n∧
i=1

∧
M∈M

∧
s∈π1(M)

[(
vtsi →

∧
r∈π1(M)\s

cri+1

)
∧
( i∧
j=1

(
vtsi ∧

j∧
l=1

csl →
∧

r∈π1(M)\s

crj+1

))]
(State Machines – Paths)
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Example 4.2.3 (Cont. from p. 43). The sequence of message symbols in the second column
of Table 4.2.2 implies the sequence [Y1,Y1,Y1,Y2,Y1] of states for state machine Y, and the
sequence [X1,X2,X2,X1,X1] of states for state machine X. These sequences are determined for
each state machine by the first line containing one of its states in the column “Source State”
followed by its states in the following lines in the column “Target State”. ♦

The third formula defines the essence of trigger consistency. It ensures that the source and
target states at each position are actually connected by a transition that carries as trigger symbol
the message symbol placed at the same position. This formula uses the function trans returning
all transitions of the state machine instantiated by the lifeline receiving a messageN that carry as
trigger the same symbol as the message, i.e., trans(N) = {t | t ∈ π4(π2(rcv(N))) and π2(N) =
π2(t)}.

∧
N∈N

n∧
i=1

[
Ni →

∨
t∈trans(N)

(
c
π1(t)
i ∧ tπ4(t)i

)]
(Trigger Consistency)

The encoding of the SDMERGE problem is based on the above definitions of the properties
of a trigger-consistent model. Recall that the SDMERGE problem asks whether for a set of
state machines, a sequence diagram, and two revisions of the sequence diagram, a consolidated
version exists (cf. Definition 4.2.4). This consolidated version contains all messages of the
original version and all added messages of its revisions, respects relative order of the messages,
and is trigger-consistent. Hence the consolidated version must fulfill all the properties expressed
in the above formulas and additionally take into account the added messages and their possible
positions defined by the allow function (cf. Definition 4.2.3).

Given an instance of the SDMERGE problem consisting of the sequence diagrams Dx =
(Lx,Nx) with x ∈ {o, α, β}, let N = Nα ∪ Nβ be the set of all messages (note that the
messages of Do are already contained in both Dα and Dβ as no deletions are allowed). The
full encoding of the SDMERGE problem is expressed by a conjunction of the following formu-
las (4.2.1) to (4.2.4).

The first formula is based on the formula (Well-Formedness). The set N over which the
conjunction iterates contains all messages that are to be contained in the consolidated version,
i.e., the messages of the original sequence diagram and those of the two revisions. The positions
of the messages that have to be considered are restricted to those precalculated by the allow
function. Therefore, other than the formula (Well-Formedness), which iterates over all positions,
formula (4.2.1) iterates only over those that are returned by the allow function. The formula
encodes that each message must be placed on exactly one of the positions returned by its allow
function and no messages can be placed on the same position, which ensures well-formedness
of the merged sequence diagram.

∧
N∈N

( ∨
i∈allow(N)

Ni

)
∧

∧
i,j∈allow(N)

i 6=j

(
N i ∨N j

)
(4.2.1)

45



The next formula is based on the above formula (Time Consistency). Similarly to for-
mula (4.2.1), it also differs in that it restricts the positioning of messages to those positions
that are returned by the allow function.

∧
N∈N

∧
i∈allow(N)

[
Ni →

∨
N ′∈N ,
N ′�N

∨
j>i,

j∈allow(N ′)

N ′j

]
(4.2.2)

Finally, among the three formulas concerning trigger consistency, only the third formula has
to consider the allow function since the first two encode only properties of the state machines.
Hence formula (4.2.3) is the same as formula (State Machines – State Positions), formula (4.2.4)
is the same as formula (State Machines – Paths), and formula (4.2.5) restricts the range of posi-
tions of formula (Trigger Consistency) by those returned by the allow function. Formula (4.2.4)
uses the function trans returning all transitions of the state machine instantiated by the life-
line that receives a message N and carries as trigger the same symbol as the message, i.e.,
trans(N) = {t | t ∈ π4(π2(rcv(N))) and π2(N) = π2(t)}.

n∧
i=1

[( ∨
csi∈vsrc

csi

)
∧
( ∨
vtsi∈vtgt

vtsi

)
∧
∧
s∈S

∧
r∈S\s

((
csi ∨ cri

)
∧
(
vt
s
i ∨ vtri

))]
(4.2.3)

n−1∧
i=1

∧
M∈M

∧
s∈π1(M)

[(
vtsi →

∧
r∈π1(M)\s

cri+1

)
∧

i∧
j=1

((
vtsi ∧

j∧
l=1

csl
)
→
( ∧
r∈π1(M)\s

crj+1

))]
(4.2.4)

∧
N∈N

∧
i∈allow(N)

[
Ni →

∨
t∈trans(N)

(
c
π1(t)
i ∧ tπ4(t)i

)]
(4.2.5)

Given an instanceM of the SDMERGE problem, its encoding as a conjunction of the for-
mulas (4.2.1) to (4.2.4) is of size polynomial with respect to the size of M. This is the case
because any of the formulas (4.2.1) to (4.2.4) contains at most four nested iterations over sets
contained in the input.

4.2.4 Computational Complexity

We show that the SDMERGE problem is in the complexity class P. To this end, we show how
the problem can be solved with an algorithm based on dynamic programming [8] running in
polynomial time with respect to the size of the instance. The design of this algorithm is based
on the following two observations regarding event-based time-consistent sequence diagrams
(cf. Definitions 3.2.4 and 3.2.7). Recall that time consistency imposes a total order over the set of
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messages in the sequence diagram, making this set a sequence. To enhance the presentation, in
the remainder of this section we denote a message only by its message symbol when the context
is clear.

Observation 4.2.1 (Revision Fragments). Two revisions Dα = (Lα,Nα) and Dβ = (Lβ,Nβ)
of an event-based time-consistent sequence diagram Do = (Lo,No) can be divided into frag-
ments as follows. Let oi and oj be two messages of Do at positions i and j such that poso(oj) =

poso(oi) − 1. Then F (i,j)
x = [N ∈ Nx | posx(oi) < posx(N) < posx(oj)] for x ∈ {α, β}

are the sequences of messages inserted in the revisions Dα and Dβ respectively, between oi and
oj . Further, let o1 be the first message and oe be the last message of Do, and the sequences
F

(•,1)
x = [N ∈ Nx | posx(N) < posx(o1)] and F (e,•)

x = [N ∈ Nx | posx(N) > posx(oe)] for
x ∈ {α, β} be the fragments containing the sequences added at the beginning and at the end of
Do respectively. According to the allow function the consolidated version contains between the
messages oi and oj , before message o1, and after message oe a sequence of messages that con-
tains only the messages of fragments F (i,j)

α and F (i,j)
β , F (•,1)

α and F (•,1)
β , and F (e,•)

α and F (e,•)
β

respectively, and maintains their relative order.

Example 4.2.2 (Cont. from p. 40). The problem instance depicted in Figure 4.2.3 contains the
fragments F (2,3)

α = [a4], F (2,3)
β = [b4, b5], F (e,•)

α = [a5], F (e,•)
β = [b6]. ♦

Observation 4.2.2 (Independence of Lifelines). Trigger consistency (other than full consis-
tency) depends only on sequences of symbols that are received by a lifeline and that occur
as triggers in the respective state machine, thereby fully ignoring the sent symbols occurring
as effects in the respective state machine. Further, for a sequence diagram D = (L,N ) to
be trigger-consistent, each of its lifelines L ∈ L must be trigger-consistent, but the trigger
consistency of one lifeline does not depend on the trigger consistency of any other lifeline
(cf. Definition 3.3.3). Therefore, given a sequence diagram Do = (Lo,No) and two revisions
Dα = (Lα,Nα) and Dβ = (Lβ,Nβ) of Do, in order to merge two fragments F (x,y)

α and F (x,y)
β

for (x, y) ∈ {(•, 1), (e, •)}∪{(i, j) | 1 ≤ i, j ≤ |No|, j = i−1}we have to merge for each life-
line L ∈ Lα ∪Lβ each F (x,y)

α,L with F (x,y)
β,L . Each of these sequences contains only messages that

are received by the same lifeline L and are contained in the fragment (x, y) of Dα or Dβ . Based
on these sequences, we then have to determine whether any sequence F (i,j)

γ,L merging F (i,j)
α,L and

F
(i,j)
β,L is trigger-consistent with the state machine instantiated by L. If this is the case, then any

sequence F (i,j)
γ that contains all messages of F (i,j)

γ,L for all L ∈ L and maintains their relative
order is trigger-consistent.

Example 4.2.2 (Cont. from p. 40). In Figure 4.2.3 consider the fragments F (2,3)
α = [a4] and

F
(2,3)
β = [b4, b5] of revisions Dα and Dβ respectively. The sequences F (2,3)

α,y = [a4], F (2,3)
β,x =

[b4], and F (2,3)
β,y = [b5] separate these fragments by their receiver lifelines x and y. A trigger-

consistent merge of F (2,3)
α and F (2,3)

β with respect to the state machines in Figure 4.2.4 consists

of a trigger-consistent merge of F (2,3)
α,y and F (2,3)

β,y with the message of F (2,3)
β,x added before, after,

or at an arbitrary position in between the merge. ♦
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X1 X2
b6/-

b4/-

a6/-

o2/-

o3/-

Y1 Y2

Y3

o1/-

b5/- a4/-

a5/-

b7/-

b5/-

a5/-

X Y

Figure 4.2.5: The state machines modeling the behavior of the lifelines in Figure 4.2.6.

From Observations 4.2.1 and 4.2.2 it follows that the difficulty of solving this problem lies
in merging for each lifeline L ∈ Lα ∪ Lβ and for each (x, y) ∈ {(•, 1), (e, •)} ∪ {(i, j) | 1 ≤
i, j ≤ |No|, j = i − 1} the fragments F (x,y)

α,L and F (x,y)
β,L of message sequences. Computing the

fragments as discussed in Observation 4.2.1 is trivial, as is picking an arbitrary interleaving of
the merged sequences F (x,y)

γ,L for each L as discussed in Observation 4.2.2.
To merge two message sequences P andQwhere all messages are received by the same life-

line into a sequence that is trigger-consistent with the state machine instantiated by the lifeline,
we propose an approach based on dynamic programming [8]. Dynamic programming is a well-
known method for solving such problems that can be broken down into overlapping subprob-
lems. Dynamic programming algorithms for problems like the longest common subsequence
problem are discussed in standard literature on algorithms [36].

In our case, the problem is to find an interleaving between P and Q such that the result rep-
resents a path of triggers in a state machine. This problem contains the subproblems of merging
any of the subsequences of P that start with the first message of P to any of the subsequences
of Q that start with the first message of Q. To compute such a trigger-consistent subsequence,
we only need the following information:

• The indices of the last messages of subsequences of P andQ such that these subsequences
can be trigger-consistently merged, and

• the set of transitions reached by a path consisting of some interleaving of these two sub-
sequences.

The result of each trigger-consistent merge of two subsequences can then be used to compute
the following subsequence containing one more message from either of the sequences P or Q.

Example 4.2.4. Consider the sequence diagram Do and its two revisions Dα and Dβ in Fig-
ure 4.2.6 and the two state machines in Figure 4.2.5, which the lifelines of the sequence diagrams
instantiate. The revisions contain four lifeline-related fragments; F (e,•)

α,x = [a6] and F (e,•)
β,x = [b4]

are received by lifeline x, and F (e,•)
α,y = [a4, a5] and F (e,•)

β,y = [b5, b7, b5] are received by life-
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Figure 4.2.6: A sequence diagram and two of its revisions trigger-consistent with respect to the
state machines depicted in Figure 4.2.5.

line y. Now consider the two fragments F (e,•)
α,y and F

(e,•)
β,y containing messages received by

lifeline y. The problem of trigger-consistently merging these two sequences has the overlapping
subproblems of trigger-consistently merging the subsequences [a4] and [b5], [a4] and [b5, b7],
[a4, a5] and [b5], [a4, a5] and [b5, b7], etc. Computing the set of transitions reached by inter-
leaving the two subsequences [a4] and [b5, b7] can be based on the set of transitions stored for
interleaving the subsequences [a4] and [b5]. Similarly, computing the set of transitions for the
two subsequences [a4, a5] and [b5] can also be based on the set of transitions stored for [a4] and
[b5]. Then, computing the set of transitions reached by interleaving the subsequences [a4, a5]
and [b5, b7] can be based on the set of transitions stored for interleaving the subsequences [a4, a5]
and [b5] and the subsequences [a4] and [b5, b7], etc.

♦

The following recurrence relation reach shows that given the sequences P and Q and a state
machine M = (S, ι, Atr , Aeff , T ) the set of transitions reached for each subproblem can be
computed in time O(|P | · |Q| · |T |).

Definition 4.2.6 (Reachable Transitions). Given a state machine M = (S, ι, Atr , Aeff , T ), the
function succ : P(T ) → P(T ) maps a set T ′ ⊆ T of transitions to the set of transitions suc-
ceeding T ′, i.e., succ(T ′) = {(s′, a, s′′) ∈ T | ∃(s, b, s′) ∈ T ′}. Further, given two sequences
P and Q of symbols contained in Atr , the function reach : {1..|P |}×{1..|Q|} → P(T ) returns
the set of transitions that are reached by a sequence of triggers containing the first i symbols of
sequence P and the first j symbols of sequence Q for i ∈ [1..|P |] and j ∈ [1..|Q|] as follows.

reach(0, 0) = T ′,
reach(i, 0) = {(s, a, s′) ∈ succ(reach(i− 1, 0)) | a = P [i]},
reach(0, j) = {(s, a, s′) ∈ succ(reach(0, j − 1)) | a = Q[j]},
reach(i, j) = {(s, a, s′) ∈ succ(reach(i− 1, j)) | a = P [i]} ∪

{(s, a, s′) ∈ succ(reach(i, j − 1)) | a = Q[j]}.

4
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(i, j) (P [i], P [j]) reach(i, j)

(0, 0) (−,−) {(Y1, o1,Y1)}
(0, 1) (−, b5) {(Y1, b5,Y1)}
(1, 0) (a4,−) {(Y1, a4,Y2)}
(1, 1) (a4, b5) {(Y1, a4,Y2)} ∪ ∅
(0, 2) (−, b7) {(Y1, b7,Y3)}
(2, 0) (a5,−) {(Y2, a5,Y1), (Y2, a5,Y3)}
(1, 2) (a4, b7) ∅ ∪ ∅
(2, 1) (a5, b5) {(Y2, a5,Y1), (Y2, a5,Y3)} ∪ {(Y1, b5,Y1), (Y3, b5,Y1)}
(2, 2) (a5, b7) ∅ ∪ {(Y1, b7,Y3)}
(0, 3) (−, b5) {(Y3, b5,Y1)}
(1, 3) (a4, b5) {(Y1, a4,Y2)} ∪ ∅
(2, 3) (a5, b5) {(Y2, a5,Y1), (Y2, a5,Y3)} ∪ {(Y3, b5,Y1)}

Table 4.2.3: The computation of the reach function for the instance of the SDMERGE problem
depicted in Figures 4.2.5 and 4.2.6

When applied to an instance of the SDMERGE problem, the set T ′ of transitions in the above
definition contains the set of transitions reached by applying the previous sequence of messages
if one exists, and otherwise T ′ = T .

Example 4.2.5. Table 4.2.3 shows the sets of transitions reached by subsequences of the two
fragments F (e,•)

α,y = [a4, a5] and F (e,•)
β,y = [b5, b7, b5] containing the messages received by life-

line y of the fragments in diagrams Dα and Dα of Figure 4.2.6. The first line refers to the
set of transitions reached without applying any of the messages in F (e,•)

α,y or F (e,•)
β,y . This is the

set of transitions reached by applying the previous sequence of messages received by lifeline
y. The following lines show the sets of transitions reached by applying the first i messages of
sequence P and the first j messages of sequence Q. Since the last line does not contain the
empty set, there exists a trigger-consistent interleaving of P and Q. Such an interleaving can be
found by picking some transition, for example (Y3, b5,Y1), in the last row of the table, check-
ing its predecessors (1, 3) and (2, 2) for transitions with target state Y3, picking (Y1, b7,Y3)
from (2, 2) , then picking (Y2, a5,Y1) from (2, 1), then picking (Y1, a4,Y2) from (1, 1), and
finally picking (Y1, b5,Y1) from (0, 1), resulting in the sequence [b5, a4, a5, b7, b5]. Depending
on which transitions are picked, other solutions include the sequences [a4, a5, b5, b7, b5] and
[b5, b7, b5, a4, a5]. ♦

If the fragments F (i,j)
α,L and F (i,j)

β,L for a lifeline L are followed in sequence diagrams Dα

and Dβ by a message sequence Fo,L containing a sequence of messages received by L in
the original sequence diagram, then from at least one target state reached by a transition in
reach(|F (i,j)

α,L |, |F
(i,j)
β,L |) there must exist a path corresponding to the sequence Fo,L for the merge

to be trigger-consistent. The set T ′ reached by paths from these target states is then used to
compute the subsequent merge from fragments F (i′,j′)

α,L and F (i′,j′)
β,L for i′ > i if such fragments

exist.
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Corollary 4.2.1. The SDMERGE problem is in P.

We have shown that some solution of the SDMERGE problem can be found in polynomial
time, however, it should be noted that the number of solutions can be exponential, as explained
by the following observation.

Observation 4.2.3 (Number of Solutions). Let Dα = (Lα,Nα) and Dβ = (Lβ,Nβ) be two re-
visions of the sequence diagram Do = (Lo,No), and let Fα and Fβ be two fragments in Dα and
Dβ . Then the number of time-consistent merges of Fα and Fβ is (|Fα|+|Fβ |)!

|Fα|!|Fβ |! . For the total num-

ber of merges we have to consider all fragments F (x,y)
α and F (x,y)

β for (x, y) ∈ {(•, 1), (e, •)} ∪
{(i, j) | 1 ≤ i, j ≤ |No|, j = i − 1} inserted between two messages of the original sequence

diagram and build the product
∏

(x,y)∈{(•,1),(e,•)}∪{(i,j)|1≤i,j≤|No|,j=i−1}
(|F (x,y)

α |+|F (x,y)
β |)!

|F (x,y)
α |!|F (x,y)

β |!
. The

number of time-consistent merges is the maximal number of trigger-consistent merges, which
can be reached if any trigger can be consumed from any state.

4.3 Reachability – the k-SMREACH Problem

This section presents the bounded formulation k-SMREACH of the State Machine Reachability
Problem. Other than the SDMERGE problem discussed in the previous section, this problem
relies on the definition of k-consistency (cf. Section 3.3, Definitions 3.3.13 and 3.3.12), which,
in contrast to trigger consistency, also consider sending of messages in sequence diagrams and
effects on transitions in state machine. This problem asks whether in a set of state machines
a partial global state is reachable from some global state (cf. Definition 3.3.5). on a path
with a size of at most k transactions. In practical applications this global state is likely to be
represented by the set of states containing the initial state of each state machine. However, since
for the problem definition and solving it does not make a difference where to start, we use a
generalized formulation. The partial global state can be seen as a partially specified global state;
it contains at most one state of each state machine.

For positive instances of this problem, that is, for which such a sequence of messages exists,
a sequence diagram can be generated which is k-consistent with the state machines for k = 1
(one empty message may be necessary to reach an intermediate state before the first message of
the sequence diagram can be sent).

In this section we refer to state machines instead of instances of state machines where the
context is clear. It does not make a difference for the problem formulation, because two instances
of the same state machine can be represented by two state machines implementing the same
behavior.

We first motivate the problem by presenting an intuitive example on the interaction between
a PhD student, a coffee machine, and a payment unit. We then give a formal problem definition
followed by an encoding of the problem to SAT. The encoding expresses the semantics of the
property of k-consistency and therefore forms a part of the semantics of the tMVML. Finally, we
show that the SMREACH problem is NP-complete.
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Figure 4.3.1: State machines of a student, a coffee machine, and a payment unit.

4.3.1 A Motivating Example

Figure 4.3.1 shows the state machines of a student and a coffee machine implementing a work-
flow of a student’s interaction with a coffee machine and the payment unit of the coffee machine.
Recall that each transition carries a label consisting of a symbol called trigger to the left, and a
set of symbols called effects to the right of the symbol “/”. The empty trigger ε indicates that the
transition can be executed without receiving any trigger symbol. The symbol “–” represents the
empty set of effects. The receipt of the trigger symbol causes the state machine to attempt an
execution of the transition changing its current state from the source state to the target state of
the transition. The symbols in the set of effects are sent during the execution of the transition.
The execution of a transition is only finished if each of its effects is received as a trigger by a
different state machine in its current state.

A possible instance of the k-SMREACH problem are the state machines depicted in Fig-
ure 4.3.1 and the question whether a partial global state containing the states desperate from the
state machine PhD Student and error from the state machine Coffee Machine is reachable from
the global state containing the states working from PhD Student, idle from Coffee Machine, and
ready from Payment Unit by a path of length at most 5. In this case, the answer is positive. The
sequence diagram representing such a path by its message sequence is depicted in Figure 4.3.2.

On the other hand, a partial global state containing the states waiting from PhD Student and
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alice:PhD Student cm:Coffee Machine pu:Payment Unit

orderCoffee

money

ok

error

Figure 4.3.2: Sequence diagram depicting a sequence leading the two state machines of Fig-
ure 4.3.1 to the partial global state (desperate, error).

error from Coffee Machine is not reachable from the global state (working, idle, ready) by a path
of length at most 5.

4.3.2 Problem Definition

The k-SMREACH problem deals with the existence of a path to a set of states in state machines
of a state machine view. It is based on the Definitions 3.3.4 to 3.3.12 regarding k-consistency
in Section 3.3. The set of states to be reached contains at most one state of each state machine.
Hence it does not necessarily specify a complete global state as defined in Definition 3.3.5. We
therefore define a partial global state as a tuple containing for each state machine either one of
its states or the fresh symbol “ς ” as follows.

Definition 4.3.1 (Partial Global State). Given a set M = {M1, . . . ,Ml} of (extended) state
machines with Mi = (Si, ιi, A

tr
i , A

eff
i , Ti) for i ∈ [1..l], a partial global state is an l-tuple

ŝp ∈ S1∪{ς}×S2∪{ς}×· · ·×Sl∪{ς}, where ς is a new symbol not contained in any Si. 4

An extended state machine as defined in Definition 3.3.4 of Section 3.3 helps to distinguish
between the event of having received the trigger and the event of being able to send the effect,
and turned out to be very convenient when finding solving methods for consistency problems
with state machines. Other than a non-extended state machine, an extended state machine can
contain transitions which have ε as trigger and the empty set as effects (cf. Definitions 3.2.1
and 3.3.4 in Sections 3.2 and 3.3). Such transitions connect intermediate states to original states
when the corresponding transition of the non-extended state machine has the empty set as effect.
We call such intermediate states the environment of the respective original state. If an extended
state machine is inside the environment of some state s, then it can be treated as if it were in s.
The environment is necessary to translate a solving method based on an extended state machine
back and forth to the corresponding non-extended state machine.

Definition 4.3.2 (Environment). Given a state machine M = (S, ι, Atr , Aeff , T ), its extended
state machine M∗ = (S ∪ S∗, ι, Atr , Aeff , T ∗), and a state s ∈ S, the environment of s is given
by the function env : S → P(S∗) such that env(s =){s∗ | (s∗, ε, ∅, s) ∈ T ∗}. 4
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Figure 4.3.3: Extended state machines corresponding to state machines in Figure 4.3.1.

Example 4.3.1. Figure 4.3.3 depicts the extended state machines for the state machines shown
in Figure 4.3.1. The extended states are labeled. The environment of state working in state
machine PhD Student is {sx1, sx2}, i.e., the two intermediate states on its incoming transitions
that contain the empty set as effect. ♦

A partial global state subsumes one or more global states. Such global states contain each
state of the partial global state. We refer to this relation as matching. If the partial global state
refers to a non-extended state machine and the global state to an extended state machine, then
the environment (cf. Definition 4.3.2) has to be taken into account.

Definition 4.3.3 (Matching). Let M∗ = {M∗1 , . . . ,M∗l } be a set of extended state machines
with M∗i = (Si ∪ S∗, ιi, Atr

i , A
eff
i , Ti) for i ∈ [1..l], let ŝ = (s1, . . . , sl) be a global state with

si ∈ Si ∪ S∗i for i ∈ [1..l], and let ŝp = (p1, . . . , pl) be a partial state with pi ∈ Si for i ∈ [1..l].
Then ŝ matches ŝp if for all i ∈ [1..l] with pi 6= ς it holds that if si ∈ S then si = pi and if
si ∈ S∗ then si ∈ env(pi). 4

54



Finally, based on the definitions of a path (cf. Section 3.3, Definition 3.3.10) connecting
global states and that of reachability (cf. Section 3.3, Definition 3.3.11) of a global state, we
define the k-SMREACH problem as follows.

Definition 4.3.4 (k-SMREACH Problem).
Instance: A setM = {M1, . . . ,Ml} of state machines with Mi = (Si, ιi, A

tr
i , A

eff
i , Ti) for

i ∈ [1..l] where for all i, j ∈ [1..l] with i 6= j it holds that Si, Sj are disjoint and
Ti, Tj are disjoint, a global state ŝ overM, a partial global state ŝp overM, and a
positive integer k = p(l) for some polynomial p.

Question: Is there a path of length at most k from ŝ to a global state ŝ′ that matches ŝp?
4

We also refer to the partial global state ŝp as goal. We define the parameter k as a polynomial
in the number of state machines for complexity theoretical reasons. The encoding presented
below would be of exponential size with respect to the input if k is exponential in the number of
state machines.

4.3.3 Encoding to SAT

In order to find solutions to the k-SMREACH problem, we propose to encode it to the satis-
fiability problem of propositional logic (SAT). To this end, we build a propositional formula
representing an instance of the k-SMREACH problem and hand the formula to a SAT solver.
The solver returns SAT and a logical model if a global state subsumed by the partial global
state can be reached in at most k steps. Otherwise, it returns UNSAT. The logical model can be
translated back into a path leading to such a global state.

Similarly to Section 4.3 describing the SDMERGE problem, we first describe the set of
variables used to encode the k-SMREACH problem along with their meaning, and then present
a set of formulas that make up the encoding of the problem.

A solution to an instance of the k-SMREACH problem consists of a sequence of transactions
with length at most k such that applying these transactions to the state machines starting in the
given global state reaches a global state that matches the given partial state. Therefore, similarly
to the previous problem SDMERGE in Section 4.3, we can base the encoding on variables rep-
resenting relevant components like messages, states, or transitions, of the diagrams being placed
at specific positions with respect to the message sequence.

However, other than for the SDMERGE problem, where only trigger consistency was con-
sidered, we are now dealing with k-consistency, which also takes into account the sending of
messages and effects of transitions. This property has been defined in Section 3.3 based on ex-
tended state machines rather than state machines (cf. Definitions 3.3.4 and 3.3.12). Recall that
any state machine can be converted to an extended state machine by adding an extra state onto
each transition and separating the trigger symbol from the effect symbols. The encoding of the
k-SMREACH problem is based on extended state machines.

The set V of variables in the formula encoding the k-SMREACH problem is based on the
set of all symbols, all transitions, and all extended and regular states inside the problem def-
inition. For an instance of the k-SMREACH problem containing a set M = {M1, . . . ,Ml}
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of state machines, a global state ŝ = (x1, . . . , xl), and a partial state ŝp = (g1, . . . , gl), let
Mi = (Si, ιi, A

tr
i , A

eff
i , Ti) and let the corresponding extended state machine be M∗i = (Si ∪

S∗i , ιi, A
tr
i , A

eff
i , T ∗i ) for each i ∈ [1..l]. The following sets collect transitions, symbols, and

states over all involved state machines.

• T =
⋃

1≤i≤l Ti, the set of all transitions,

• A =
⋃

1≤i≤l

(
Atr
i ∪Aeff

i

)
, the set of all symbols,

• S =
⋃

1≤i≤l Si, the set of all states, and

• S∗ =
⋃

1≤i≤l S
∗
i , the set of all extended states over the extended versions of the state

machines.

The set V of variables occurring in the encoding is given by the union of the following sets
representing message symbols, transitions, original states, and intermediate states at different
positions of a path.

• vs = {si | s ∈ S, 0 ≤ i ≤ k} is a set of variables that encode states at positions. If a state
variable si is set to true, then the extended state machine to which s belongs is in state s
at position i.

• vx = {sxi | sx ∈ S∗, 0 ≤ i ≤ k} is a set of variables that encode intermediate states at
positions. If a state variable sxi is set to true, then the extended state machine to which
sx belongs is in state sx at position i.

• vt = {ti | t ∈ T , 0 ≤ i ≤ k} is a set of variables that encode transitions triggered at a
position due to a message placed at that position. If a transition variable ti is set to true,
then the transition t is being triggered at position i.

• va = {ai | a ∈ A, 0 ≤ i ≤ k} is a set of variables that encode whether a message
symbol is available to be consumed by another machine at a certain position. If a variable
ai is set to true, then some extended state machine tries to send a at position i for i > 0,
i.e., a transition has received a trigger and is waiting for a to be consumed by a different
extended state machine in order to complete the transition. When aj for j > i is set to
false, then the symbol is consumed at position j.

Note that we have defined a set of variables for the set S∗ of extended states, but we have no
set of variables encoding the additional transitions of the extended state machines. This is not
necessary as there is exactly one additional transition for each extended state (cf Definition 3.3.4)
and therefore it suffices to have a variable for each extended state.

In order to obtain a solution of a positive instance of the k-SMREACH problem, it suffices
to obtain the variables evaluated to true in the logical model returned by the SAT solver. The
following example describes how a solution is retrieved from a logical model.
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Position Symbols (va) (Extended) States (vs ∪ vx)
PhD Student Coffee Machine Payment Unit

0 working0 idle0 ready0

1 orderCoffee1,money1 sx11 idle1 ready1

2 waiting2 sx12 sx12

3 ok3 waiting3 waiting3 sx13

4 waiting4 sx24 ready4

5 waiting5 preparing5 ready5

6 waiting6 sx46 ready6

7 error7 waiting7 error7 ready7

8 sx48 error8 ready8

9 sx49 error9 ready9

10 sx410 error10 ready10

11 desperate11 error11 ready11

Table 4.3.1: Parts of a solution to reach the partial state (desperate, error) for the state machines
depicted in Figures 4.3.1 and 4.3.3, showing variables of the sets va, vs, and vx.

Example 4.3.2. Table 4.3.1 shows a positive solution to the question whether the partial global
state (desperate, error) can be reached by a path of length k ≤ 11 for the three state machines
depicted in Figures 4.3.1 and 4.3.3. Each word in the fields of columns “Symbols”, “PhD Stu-
dent”, “Coffee Machine”, and “Payment Unit” represents a variable evaluating to true in the
logical model of the SAT encoding. All other variables of these sets are evaluating to false. The
variable working0 in the first row means that at the zeroth position, the state machine containing
the state working is in that state. The field in column “Symbols” of this row is empty because
no state machine is trying to send a symbol, so all variables in va with index 0 are evaluating
to false.

At position 1, two symbols, orderCoffee1 and money1 are evaluating to true because a transi-
tion in state machine PhD Student has fired, and this state machine changes to the corresponding
intermediate state. At position 2, these two symbols have disappeared, i.e., they are evaluating
to false, because they are being consumed by state machines Coffee Machine and Payment Unit,
which in turn change their states to an intermediate state. The communications continue, un-
til at position 11, a global state matching the required partial state is reached. At positions 9
and 10 no changes occur, therefore the number of necessary steps to the matching goal state is
11− 2 = 9. ♦

To enhance the presentation of the formulas, we use the functions src, int, trg, eff, and tgt,
which are defined as follows. Let t = (s, trg , eff , s′) ∈ T be a transition of a state machine
corresponding to the two transitions (s, trg , ∅, s∗t ) and (s∗t , ε, eff , s′) in the respective extended
state machine. Then src(t) = s, int(t) = s∗t , trg(t) = trg , eff(t) = eff , and tgt(t) = s′.
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The first formula (Init) initializes the path by setting the states contained in the global state
ŝ with index 0 to true, and all other states and all symbols at index 0 to false. This means that at
position 0, all state machines are in their state as specified by ŝ and no symbol is waiting to be
consumed.

l∧
j=1

( ∧
s∈Sj ,s=xj

s0 ∧
∧

s∈Sj∪S∗j ,s 6=xj

s0
)
∧
∧
a∈A

a0 (Init)

For a position i > 0, a variable from va can occur in its positive polarity. This means that the
symbol has been made available as effect by a transition at position j ∈ [1..i] and is waiting to
be consumed by some transition as a trigger in a transaction on a position greater than i. When
the symbol is consumed at a later position, the symbol variable occurs in its negative polarity
with that index. Formula (4.3.1) ensures that whenever a transition is executed at some position
i, then the state machine changes from the transition’s source state at position i to its target state
at position i+ 1, the trigger symbol is set its negative polarity, and the effect symbols are set to
their positive polarity. We use the expression trg(t) 6= ε for the presentation of the formula. It is
replaced by the logical constants > and ⊥ during the generation of the formula.

k−1∧
i=0

∧
t∈T

[
ti →

(
src(t)i ∧ int(t)i+1 ∧

(
trg(t) 6= ε→

(
trg(t)i ∧ trg(t)

i+1
))
∧

∧
eff ∈eff(t)

(
eff

i ∧ eff i+1
))] (4.3.1)

The two formulas (4.3.2) and (4.3.3) take care of the polarity of the effect symbols. For-
mula (4.3.2) ensures that if a state machine does not leave its intermediate state, then the effect
symbols remain positive and formula (4.3.3) ensures that if it leaves its intermediate state, then
all effect symbols are set to false at the following position.

k−1∧
i=0

∧
t∈T

eff(t)6=∅

[
int(t)i ∧ int(t)i+1 →

∧
eff ∈eff(t)

eff i+1

]
(4.3.2)

k−1∧
i=0

∧
t∈T

eff(t)6=∅

[
int(t)i ∧ int(t)

i+1 →
∧

eff ∈eff(t)

eff
i+1
]

(4.3.3)

Formula (4.3.4) ensures that if the state machine is in an intermediate state at position i and
all effects have been consumed at position i+ 1, then at position i+ 1 the state machine leaves
the intermediate state and changes into the target state of the transition.
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k−1∧
i=0

∧
t∈T

[(
int(t)i ∧

∧
eff ∈eff(t)

eff
i+1
)
→
(

int(t)
i+1 ∧ tgt(t)i+1

)]
(4.3.4)

The three formulas (4.3.5), (4.3.6), and (4.3.7) are called frame axioms. They ensure that
there is always a transition when changes of symbols (formulas (4.3.5) and (4.3.6)) or changes
of states (formula (4.3.7)) occur.

k−1∧
i=0

∧
trg∈A

[
trg i ∧ trg

i+1 →
(( ∨

t∈T ,
trg(t)=trg

ti
)
∧

∧
t1,t2∈T ,

trg(t1)=trg(t2)=trg

(
t1
i ∨ t2i

))]
(4.3.5)

k−1∧
i=0

∧
eff ∈A

[
eff

i ∧ eff i+1 →
(( ∨

t∈T ,
eff ∈eff(t)

ti
)
∧

∧
t1,t2∈T ,

eff(t1)=eff(t2),
eff(t1),eff(t2)∈eff

(
t1
i ∨ t2i

))]
(4.3.6)

k−1∧
i=0

∧
s∈S

[
si ∧ si+1 →

∨
t∈T ,s=src(t)

ti
]

(4.3.7)

Formula (4.3.8) expresses that each state machine is in exactly one state at each position.

k−1∧
i=0

l∧
j=1

[( ∨
s∈(Sj∪S∗j )

si
)
∧

∧
s1,s2∈(Sj∪S∗j ),s1 6=s2

(
s1
i ∨ s2i

)]
(4.3.8)

Finally, formula (Goal) encodes the goal and the (extended) states of its environment for
index k. Recall that the goal ŝp = (g1, . . . , gl) contains the symbol ς when for a state machine
no state is defined for the goal.

l∧
i=1,gi 6=ς

(
gki ∨

∨
s∈env(gi)

sk
)

(Goal)

The formulas are converted to CNF (cf. Section 2.2), the input format of most SAT solvers.
To this end, we apply the Tseitin transformation [114] where necessary.

The encoding allows that nothing happens, i. e., no transaction takes place at some position.
In this case, the frame axioms ensure that the global state remains the same. This relaxation
implicitly encodes the “at most k” formulation of the problem: If at n positions nothing changes
and the goal is reached at index k for k ≥ n, it means that the length of the path is k − n.
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Example 4.3.2 (Cont. from p. 57). In the solution shown in Table 4.3.1 at position 2, the two
symbols orderCoffee and money are consumed (they disappear as variables evaluating to true
at that position) and therefore the states of all state machines change. In particular, the state
machine PhD Student changes into an original state because the transition’s symbols orderCoffee
and money are consumed, and the state machines Coffee Machine and Payment Unit change into
an intermediate state because they consume these symbols. At positions where states change
without symbols being consumed, as at positions 1, 3, 5, 6, 7, and 11, the state changes are
triggered by the empty symbol ε. At positions 9 and 10, nothing changes, so these two positions
can be removed. Then, the goal state is reached in 9 steps, which is less then k. ♦

A solution returned by the SAT solver consists of a set of positive and negative literals
representing variables set to true or false. By extracting the positive literals whose variables
represent states and transitions (i.e., variables from the sets vs, vx, and vt) we obtain the path of
at most k steps leading to the goal state. If the length of the path is less than k, then for some
consecutive indices the state variables represent identical states.

In order to simplify the encoding we assume that at each position, each symbol can be con-
sumable only once. Allowing a symbol to be consumable multiple times requires the integration
of counters, which can be realized, e.g., by building upon ideas presented in [110].

It can be verified that this encoding is of size polynomial with respect to the size of the
instance of k-SMREACH.

Observation 4.3.1. Given an instance R of the k-SMREACH problem, its encoding as a con-
junction of the formulas (Init), (Goal), and (4.3.1) to (4.3.8) is of size polynomial with respect to
the size of R because any of the formulas (Init), (Goal), and (4.3.1) to (4.3.8) contains at most
two nested iterations over sets contained in the input.

4.3.4 Computational Complexity

We show that the k-SMREACH problem is NP-complete. Its membership in NP follows directly
from Observation 4.3.1, i.e., from the fact that the k-SMREACH problem can be encoded in
polynomial time with respect to its input size into a formula in propositional logic.

Corollary 4.3.1. The k-SMREACH problem is in NP.

In order to prove NP-hardness of the k-SMREACH problem, we reduce a variation of the
3-satisfiability problem [54, Appendix A9.1, L02], the 3X3SAT problem, to the k-SMREACH

problem. The definition of the 3X3SAT problem allows each variable to occur at most three
times and each literal to occur at most twice in a propositional CNF formula where each clause
contains at most three literals. The 3X3SAT problem has been shown to be NP-complete [99,
Proposition 9.3].

Definition 4.3.5 (3X3SAT).
Instance: A set V of variables and a collection C of clauses over V such that for each clause

C ∈ C it holds that |C| = 3, each variable occurs at most three times in C, and each
literal occurs at most twice in C.

Question: Is C satisfiable?
4
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In our reduction we construct two setsMvars andMclauses of state machines, whereMvars

contains a state machine for each variable in V , andMclauses contains a state machine for each
clause in C. The alphabet of effects of the state machines inMvars and the alphabet of triggers
of the state machines inMclauses contain a different symbol for each occurrence of each variable
in C.

Each state machine Mv inMvars contains one state and one transition for each occurrence
of a variable v in C, and an initial state. This state machine does not receive any symbols, it
only sends symbols. Thus, all triggers on all its transitions are ε. The states are aligned along
two branches of transitions. Transitions on one branch refer to the occurrences of v in clauses as
positive literals and transitions on the second branch to the occurrences of v as negative literals.
This way, a state machine inMv cannot send symbols representing opposite literals of a variable
in the same run.

Each state machine MC for clause C inMclauses contains two states, an initial state and a
sink state, and for each literal contained in clause C, MC contains one transition connecting the
two states and one transition looping the sink state. Opposite to those inMvars , state machines
inMclauses only receive, but never send symbols. Their transitions therefore contain a trigger
other than ε and the empty set as effects. Each trigger on a transition connecting the two states
and on a transition looping the sink state in MC corresponds to a literal in C and vice versa. The
global state of the reduced instance is the set of all initial states inMvars andMclauses and the
goal state is the set of sink states inMclauses .

With this construction, each state machine inMvars sends symbols representing literals that
evaluate to true under one of the interpretations true or false of its variable to state machines
in Mclauses . Since there is no link between the two branches of a state machine in Mvars ,
only one branch can be contained in a path and hence only one interpretation be constructed
for the clauses in C. When a state machine MC in Mclauses reaches its sink state, then the
clause C is satisfied. Hence, when all state machines inMclauses reach their sink state, then the
propositional formula is satisfiable. If they cannot reach their sink state, then the propositional
formula is unsatisfiable. The loops on the sink states prevent the state machines inMvars from
getting stuck in a state when the sink state of a state machine in Mclauses has already been
reached by receiving a symbol from a different state machine inMvars .

We set k to 4|V| for the following reasons. A path along one branch of a state machine
inMvars can contain at most two transitions (recall that the 3X3SAT problem allows a literal
to occur at most twice) and the conversion into an extended state machine doubles the number
of transitions. Further, all variables may be necessary to satisfy the formula and therefore, all
state machines inMvars may be required to reach their sink state. Also, in the worst case, one
transaction can only contain one message, requiring one transaction for each transition in the
extended state machines forMvars .

Example 4.3.3. Table 4.3.2 shows a positive instance S = (V, C) of 3X3SAT with four clauses
and three variables. Figure 4.3.4 depicts the set M of state machines of the k-SMREACH

instance R = (M, ŝ, ŝp, k) reduced from S . The setMvars contains three state machines, one
for each variable and Mclauses contains four state machines, one for each clause. The initial
global state in R is ŝ = (xι, yι, zι, ι1, ι2, ι3, ι4), the goal state is ŝp = (g1, g2, g3, g4), and k is
4|Mvars | = 12.
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Clause Literals
1 {x, y}
2 {x, y}
3 {z}
4 {x, y, z}

Table 4.3.2: A satisfiable instance S of 3X3SAT.

xι

x4

x1 x2ε/cx1
ε/cx2

ε/cx4

yι

y1

y2

y4

ε/cy2

ε/cy4ε/cy1

zι

z4

z3ε/cz3

ε/cz4

Mx:

My:

Mz:

ι1 g1

cx1 /-

cy1 /-

cx1 /-

cy1 /-

ι2 g2

cx2 /-

cy2 /-

cx2 /-

cy2 /-

ι3 g3
cz3 /-

cz3 /-

ι4 g4

cx4 /-

cz4 /-

cy4 /-
cy4 /-

cx4 /-

cz4 /-

M1:

M2:

M3:

M4:

Mvars Mclauses

Figure 4.3.4: State machines reduced from the 3X3SAT instance in Table 4.3.2. Highlighted
transitions represent a path leading to the goal state. The transitions highlighted in blue belong
to the first transaction, those highlighted in red to the second transaction, and those in green to
the third transaction.
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The instance S is satisfied by the assignment x 7→ true, y 7→ false, z 7→ true. Under this
assignment, the occurrences of x evaluate to true in the clause C1 and the clause C2, and to
false in the clause C4, therefore satisfying C1 and C2. This evaluation corresponds to the upper
branch of the state machine Mx, which sends the symbols cx1 and cx2 leading state machines M1

and M2 to their goal states. Similarly, the literal y evaluates to true in clause C1 and in clause
C4, and the literal y to false in clause C2. The two evaluations of y to true correspond to the
lower branch of the state machine My, leading state machine M4 to its goal state and looping
the sink state of M1 (which has already reached its goal by the evaluation of x). The evaluation
of z leads M3 to its goal in a similar way. Therefore,R is a positive instance of k-SMREACH.

This example shows the role of the looping transitions on the sink state of the state machines
inMclauses : Without the looping transition receiving cy1 in M1, My could not send the symbol
cy4 to M4 and therefore, M4 would not reach its sink state. The communication of the symbols
can be found as the path

[{(Mx, c
x
1 ,M1), (Mz, c

z
3,M3)},

{(My, c
y
1,M1)},

{(Mx, c
x
2 ,M2), (My, c

y
4,M4)}]

of length 3 (some brackets are omitted as the multimessages are single messages). ♦

Lemma 4.3.1. The k-SMREACH problem is NP-hard.

Proof. Given an instance S = (V, C) of the 3X3SAT problem, we construct an instance R =
(M, ŝ, ŝp, k) of the k-SMREACH problem as follows.
M is the union of two sets Mvars and Mclauses of state machines constructed as fol-

lows. For each variable v in V , let Cv = {C | v ∈ vars(C)} be the set of clauses con-
taining a literal of v. Then the set Mvars contains for each variable v in V a state machine
Mv = (Sv, ιv, A

tr
v , A

eff
v , Tv) with

• Sv = {vι} ∪ {vC | C ∈ Cv},

• ιv = vι,

• Atr
v = {ε},

• Aeff
v = {cvC | C ∈ Cv}, and

• Tv =



{(vι, ε, {cvA}, vA), (vA, ε, {cvB}, vB), (vι, ε, {cvC}, vC)
| ` ∈ A, ` ∈ B, ` ∈ C, var(`) = v,A,B,C ∈ Cv} if |Cv| = 3

{(vι, ε, {cvA}, vA), (vA, ε, {cvB}, vB)
| ` ∈ A, ` ∈ B, var(`) = v,A,B ∈ Cv} ∪
{(vι, ε, {cvA}, vA), (vι, ε, {cvB}, vB)
| ` ∈ A, ` ∈ B, var(`) = v,A,B ∈ Cv} if |Cv| = 2

{(vι, ε, {cvA}, vA) | ` ∈ A, var(`) = v,A ∈ Cv} if |Cv| = 1.
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The setMclauses contains a state machine MC = (SC , ιC , A
tr
C , A

eff
C , TC) for each clause C

in C with

• SC = {ιC , gC},

• ιC = ιC ,

• Atr
C = {cvC | v ∈ vars(C)},

• Aeff
C = ∅, and

• TC = {(ιC , cvC , ∅, gC), (gC , cvC , ∅, gC) | v ∈ vars(C)}.

Further, we set the global state ŝ = {ιv |Mv ∈Mvars}∪{ιC |MC ∈Mclauses} such that it
contains all initial states of the state machines inM, the goal state ŝp = {gC |MC ∈Mclauses}
such that it contains the sink states of the state machines inMclauses , and k = 4|Mvars |.

The size of the reduced instance R of k-SMREACH is linear with respect to the size of the
instance S of 3X3SAT. In particular, it contains for each variable one state machine with at most
four states and three transitions, and for each clause one state machine with two states and at
most six transitions. We proceed with showing that S is a positive instance of 3X3SAT if and
only ifR is a positive instance of k-SMREACH.

(⇒) If S is a positive instance of 3X3SAT, then there exists an interpretation σ for each
variable in V under which the formula evaluates to true. This means that in each clause, at least
one literal evaluates to true (cf. Section 2.2). By construction, a state machine Mv inMvars can
send one of two sequences of symbols representing the clauses satisfied due to an assignment
of v to true or to false respectively, or one sequence if the literal only occurs in one polarity in
the formula. The state machines inMclauses can receive the symbols representing each clause’s
literals. Receiving these symbols leads the state machine’s initial state to the sink state or makes
the state machine stay in the sink state. It is always possible to execute all transitions along
a branch of a state machine in Mvars because the symbols can always be received by some
state machine inMclauses , either by a transition between source and sink state or by a transition
looping the sink state. A branch of a state machine inMvars contains at most two transitions,
which correspond to four transitions in the extended state machine. Assuming the case where
each transaction in the path contains only one message, we need k = 4|Mvars | transactions
to reach the goal state. Since under σ, at least one literal of each clause evaluates to true and
exactly one state machine inMclauses corresponds to one clause, all state machines inMclauses

reach their sink state. This makesR a positive instance of k-SMREACH.
(⇐) If R is a positive instance of SMREACH, then a path exists such that a partial global

state containing all sink states of the state machines inMclauses can be reached from the global
state containing all state machines’ initial states. This path contains for each state machine
MC inMclauses a transaction containing one of the symbols occurring as trigger on one of the
transitions between the initial state and the sink state of MC . The senders of these symbols are
state machines inMvars , each along one of its branches. Since each branch corresponds to an
assignment to a variable in S and each state machine inMclauses corresponds to a clause in S ,
an assignment satisfying the clauses in S can be retrieved from the branches. Note that, since
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exactly one branch of each state machine inMvars is contained in the path, it is ensured that a
variable is assigned exactly one truth value. Therefore, S is a positive instance of 3X3SAT.

Theorem 4.3.1. The k-SMREACH problem is NP-complete.

Proof. The theorem follows from Corollary 4.3.1 and Lemma 4.3.1

4.4 Model Checking – the k-SDCHECK Problem

In this section we deal with the k-SDCHECK problem, which concerns k-consistency (cf. Sec-
tion 3.3, Definition 3.3.12) between state machines and sequence diagrams. The k-SDCHECK

problem asks whether the communication described by a sequence diagram can be executed by a
set of state machines after at most k steps from the global state containing all initial states. Simi-
larly to a logical model for a satisfiable formula in propositional logic, for this problem a witness
can be returned for positive instances. This witness consists of a concrete communication trace
leading to a global state from which the sequence diagram can be executed.

Otherwise, if the instance is negative and therefore the message sequence cannot be exe-
cuted, then the first message of the sequence diagram that cannot be applied can be computed.
To this end, we systematically remove messages from the sequence diagram and solve these new
instances until a positive instance is found. The obtained information on up to which message
the sequence diagram can be executed can be used for debugging purposes. On this basis, in-
consistencies introduced during the evolution of a model cannot only be discovered easily, but
also be immediately corrected.

The scenarios modeled by the sequence diagram view of a software model can be interpreted
as either required or forbidden sequences of message exchange. A positive instance of this prob-
lem, that is, a sequence diagram that can be executed by the set of state machines, can therefore
be interpreted as a proof of the existence of a required behavior or as a proof of an error in the
system. This way, sequence diagrams can be used as test cases in different testing scenarios.
Similarly to the neg fragment used in UML state machines, we mark unwanted scenarios using
this notation and regard unmarked scenarios as wanted. As in the previous section, we refer to
state machines instead of instances of state machines whenever the meaning is clear.

We first give an intuition of this problem by a similar example as in Section 4.3 and then
describe the problem formally. To solve this consistency checking problem, we propose to use
a similar encoding as for solving the k-SMREACH problem (cf. Section 4.3). We finally show
that the problem is NP-complete by a proof similar to the proof in Section 4.3.

4.4.1 A Motivating Example

Figure 4.4.1 shows three state machines that describe the behaviors of a PhD student, a coffee
machine, and a maintenance unit for the coffee machine, Figure 4.4.2 shows the extended state
machines for the state machines in Figure 4.4.1, and Figure 4.4.3 shows two sequence diagrams
that describe communication scenarios between instances of the state machines in Figure 4.4.1.

A state machine is instantiated by one or more lifelines. In order to be consistent with the
state machines, the message sequence of a sequence diagram must be executable from some
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working waiting

desperate

ε/orderCoffee

coffeeDone/-

error/-repaired/-

error

preparingidle

maintenance

orderCoffee/-

ε/coffeeDone

ε/errororderCoffee/-

ε/repair

done/repaired

idle

repairing

ε/donerepair/-

PhD Student (PhD)

Coffee Machine (CM)

Maintenance

Figure 4.4.1: Three state machines modeling a PhD student, a coffee machine, and a mainte-
nance unit.

global state of the lifelines which is reachable from the global initial state, where a global state
is a tuple of states of the state machines instantiated by the lifelines. More precisely, from such
a global state it must be possible for each message after another to be a trigger in the sending
lifeline’s state machine instantiation and to be an effect in the receiving lifeline’s state machine
instantiation. In between the messages of the sequence diagram only empty messages (which
trigger transitions with the symbol ε as trigger) can be sent.

We distinguish two possible application scenarios for this problem. First, the scenario de-
picted in the sequence diagram can be desired. If the sequence diagram is consistent with the
state machines, then we know that the state machines fulfill the scenario. Otherwise, we can
obtain information about the global state of the state machines where the sequence first fails,
which helps to discover erroneous or missing transitions in the state machines. Second, the sce-
nario depicted in the sequence diagram can be undesired. In this case, if the sequence diagram is
consistent with the state machines, then we know that there is a bug in the state machines and we
can obtain a countertrace, namely a sequence of global states which follows from the application
of the message sequence.

An example for each scenario is depicted in Figure 4.4.3. The left sequence diagram shows
a desired scenario. However, it is inconsistent with the state machines for the following reason.
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Figure 4.4.2: The extended state machines corresponding to those in Figure 4.4.1.

alice:PhD cm:CM m:Maintenance bob:PhD

repair
done

orderCoffee
coffeeDone

orderCoffee
coffeeDone

alice:PhD cm:CM bob:PhD

error
orderCoffee
coffeeDone

neg

Figure 4.4.3: (Left) A sequence diagram depicting a desired scenario that is inconsistent with
the state machines of Figure 4.4.1. The state machines have to be changed in order to allow the
scenario. (Right) A sequence diagram depicting a forbidden scenario that is consistent with the
state machines of Figure 4.4.1. The state machines have to be changed in order to forbid the
scenario.
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The first message of the sequence diagram, repair, can only be sent from the intermediate state
sx5 of the instance cm of Coffee Machine. This state can be reached, and then the message repair
can be sent by cm and consumed by the instance m of the state machine Maintenance. Also,
the following message done can be sent at the intermediate state between the states repairing
and idle of state machine Maintenance and received at state maintenance of state machine Coffee
Machine. After receiving done, the instance cm is in intermediate state sx6, from which it can
continue only after the symbol repaired is received by some other state machine. However, this
never happens in the sequence diagram and so the coffee machine never returns to state idle and
therefore cannot receive the symbol orderCoffee from PhD student bob.

We can now automatically discover the sequence of messages up to the message that cannot
be sent or received by systematically removing messages from the sequence diagram. In the
current example, the sequence diagram can be executed up to and including the message done
from m:Maintenance to cm:CM. A possible fix for this broken scenario would be to remove the
state desperate from the PhD student and to connect the transition with trigger error from the
state waiting directly to state working. Further, in the coffee machine, the effect of the transition
with trigger done from state maintenance to state idle would have to be replaced by ε.

The second diagram shows an unwanted scenario. It allows the coffee machine to prepare
coffee after receiving the error signal, but without receiving the repair signal. This scenario is
implemented in the state machines, so this also indicates a bug. The path to the global state from
which the sequence can be executed contains an empty message received by the instance alice
of PhD Student followed by sending orderCoffee from alice to instance cm of Coffee Machine and
another empty message received by cm. Then, cm is in the intermediate state on the transition
from preparing to error from where it can send a message containing the symbol error back to
alice and also the rest of the messages of the sequence diagram can be executed. The path to the
global state (waiting, sx3, idle) from where the sequence diagram can be executed hence consists
of an empty message, the message (alice, orderCoffee, cm), and two more empty messages.

4.4.2 Problem Definition

Given a sequence diagram and a set of communicating state machines modeling the behavior of
the lifelines in the sequence diagram, the Multiview Sequence Consistency (k-SDCHECK) Prob-
lem asks whether, from some global state that is reachable in k steps from the global initial state,
there is a path representing the sequence of messages described in the sequence diagram. The
sequence of messages in a sequence diagram is interpreted as path that contains only singleton
transactions of single messages and may contain empty messages in between them.

If such a path exists, then we call the two views k-consistent (cf. Section 3.3, Defini-
tion 3.3.12). The desired outcome of a wanted scenario (no neg label) depicted in a sequence
diagram is to be consistent with the state machine view, which means that the desired scenario is
indeed implemented in the state machines. The desired outcome of an unwanted scenario (neg
label) is to be inconsistent with the state machine view, which means that the state machines do
not implement the undesired trace.

The k-Multiview Sequence Consistency Problem is defined as follows.
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Definition 4.4.1 (k-Multiview Sequence Consistency (k-SDCHECK) Problem).
Instance: A set M = {M1, . . . ,Ml} of state machines over the universe A with Mi =

(Si, ιi, A
tr
i , A

eff
i , Ti) for i ∈ [1..l] where for all i, j ∈ [1..l] with i 6= j it holds

that Si, Sj are disjoint and Ti, Tj are disjoint, a sequence diagram D = (L, µ) over
M and A, and a positive integer k = p(l) for some polynomial p.

Question: AreM and D k-consistent?
4

As in Section 4.3, we define the parameter k as polynomial in the number of state machines
for complexity theoretical reasons. The encoding presented below would be of exponential size
with respect to the input if k is exponential in the number of state machines.

4.4.3 Encoding to SAT

To solve the k-SDCHECK problem we propose to encode it to the satisfiability problem of
propositional logic (SAT). To this end, we build a propositional formula representing an instance
of the k-SDCHECK problem and hand it to a SAT solver. The solver returns SAT and a logical
model if the sequence diagram of the k-SDCHECK problem instance can be executed after at
most k transactions between state machines instantiated by the lifelines. Otherwise, it returns
UNSAT. The logical model can then be translated back into a concrete sequence of transactions
between the lifelines and to the transitions triggered by the application of these transactions. The
sequence of transactions represents the path from the global initial state to the global state from
which the sequence diagram can be executed and the sequence of messages of the sequence
diagram. The solver returns UNSAT if the sequence diagram cannot be executed by the state
machines after at most k message exchanges.

As in the previous sections, we first describe the sets of variables used in the encoding and
then present the encoding as a set of formulas. The encoding is a modification of the encoding
discussed in Section 4.3 where we determined the reachability of a partial global state regardless
of a particular message sequence. As in Section 4.3, we deal with k-consistency (cf. Section 3.3,
Definition 3.3.12) defined over extended state machines (cf. Section 3.3, Definition 3.3.4).

We encode an instance of the k-SDCHECK problem as a propositional formula over a set V
of variables representing original states, intermediate states, transitions, and alphabet symbols.

LetM = {M1, . . . ,Ml} be a set of state machines over the universe A. For i ∈ [1..l], let
Mi = (Si, ιi, A

tr
i , A

eff
i , Ti) and M∗i = (Si ∪ S∗i , ιi, Atr

i , A
eff
i , T ∗i ), i.e., a state machine and

its extended state machine. Further, let D = (L, µ) be a sequence diagram over M with the
set L = {L1, . . . , Ll} of lifelines and the sequence µ = [N1, . . . , Nm] of messages. Then the
following sets collect transitions, symbols, and states over all involved state machines:

• T =
⋃

1≤i≤l Ti, the set of all transitions,

• A =
⋃

1≤i≤l

(
Atr
i ∪Aeff

i

)
, the set of all symbols,

• S =
⋃

1≤i≤l Si, the set of all states, and

• S∗ =
⋃

1≤i≤l S
∗
i , the set of all extended states over the extended versions of the state

machines.
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Recall that k is an integer defining the maximum length of the path leading to a global state
from which the message sequence in D is executed. However, we need variables for positions
greater than k in order to ensure the correct execution of the sequence diagram after k steps.
In particular, for a sequence diagram with n messages, we need 4n additional positions. The
factor 4 leaves room for three empty messages between the messages of the sequence diagram in
order to execute transitions with ε as trigger or the empty set as effects. It can never happen that
more than three additional messages are necessary for the state machines to send and receive the
next message in the sequence diagram because each transition in a state machine has a trigger,
a non-empty set of effects, or both. This way, in the corresponding extended state machine,
at most three positions are necessary to process empty messages between (intermediate) states
from where non-empty messages are sent or received. Therefore, the variables are indexed up to
k′ = k + 4n and also most formulas of the encoding count up to k′.

As in Section 4.3, the set V of variables is the union of the following sets.

• vs = {si | s ∈ S, 0 ≤ i ≤ k′} is a set of variables that encode states at positions. If a state
variable si is set to true, then the extended state machine to which s belongs is in state s
at position i.

• vx = {sxi | sx ∈ S∗, 0 ≤ i ≤ k′} is a set of variables that encode intermediate states at
positions. If a state variable sxi is set to true, then the extended state machine to which
sx belongs is in state sx at position i.

• vt = {ti | t ∈ T , 0 ≤ i ≤ k′} is a set of variables that encode transitions triggered at a
position due to a message placed at that position. If a transition variable ti is set to true,
then the transition t is being triggered at position i.

• va = {ai | a ∈ A, 0 ≤ i ≤ k′} is a set of variables that encode whether a message
symbol is available to be consumed by another machine at a certain position. If a variable
ai is set to true, then some extended state machine tries to send a at position i for i > 0,
i.e., a transition has received a trigger and is waiting for a to be consumed by a different
extended state machine in order to complete the transition. When aj for j > i is set to
false, then the symbol is consumed at position j.

Note that we have defined a set of variables for the set S∗ of extended states, but we have no
set of variables encoding the additional transitions of the extended state machines. This is not
necessary as there is exactly one additional transition for each extended state (cf Definition 3.3.4)
and therefore it suffices to have a variable for each extended state.

Similarly as for the k-SMREACH problem in Section 4.3, a solution of a positive instance of
the k-SMREACH problem can be retrieved by obtaining the meaning of the variables evaluating
to true in the logical model returned by the SAT solver. The following example describes how a
solution is retrieved from a logical model.

Example 4.4.1. Table 4.4.1 shows a positive witness to the question whether the sequence di-
agram on the right in Figure 3.1.4 is k-consistent for k = 4 with the set of state machines
depicted in Figure 4.4.1 and 4.4.2. Each word in the fields of columns “Symbols”, “alice:PhD”,
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Position Symbols (va) (Extended) States (vs ∪ vx)
alice:PhD cm:CM bob:PhD

0 working0 idle0 working0

1 orderCoffee1 sx11 idle1 working1

2 waiting2 sx12 working2

3 orderCoffee3 waiting3 preparing3 sx13

4 error4,orderCoffee4 waiting4 sx34 sx14

5 orderCoffee5 sx45 error5 sx15

6 desperate6 sx46 waiting6

7 desperate7 preparing7 waiting7

8 desperate8 preparing8 waiting8

9 desperate9 preparing9 waiting9

10 coffeeDone10 desperate10 sx210 waiting10

11 desperate11 idle11 sx211

12 desperate12 idle12 sx212

Table 4.4.1: A solution to executing the right-hand sequence diagram of Figure 4.4.3 after a
path of length 4 in the state machines of Figures 4.4.1 and 4.4.2, showing variables of the sets
va, vs, and vx.

“cm:CM”, and “bob:PhD” represents a variable evaluating to true in the logical model of the
SAT encoding. All other variables of these sets are evaluating to false. The variable working0

in the first row means that at the zeroth position, the state machine containing the state working
is in the state working. The field in column “Symbols” of this row is empty because no state
machine is trying to send a symbol, so all symbol variables are evaluating to false. At position
1, the symbol orderCoffee is evaluating to true because a transition in the instance alice of state
machine PhD has fired, and alice changes into the corresponding intermediate state. At posi-
tion 2, this symbol has disappeared, i.e., is evaluating to false, because it is being consumed by
instance cm of CM, which in turn changes its state to an intermediate state. At position 4, the
symbols error and orderCoffee are being tried to be sent by cm and bob. At position 5, the symbol
error is being consumed by alice, therefore the symbol variable evaluates to false, alice changes
its state to the intermediate state sx4, and cm changes its state to error. This corresponds to the
first message in the sequence diagram At position 6, alice changes its state to desperate by an
empty message, the evaluation of symbol orderCoffee changes to false, and cm, which consumes
the symbol orderCoffee, changes its state to the intermediate state sx4. This corresponds to the
second message of the sequence diagram. The remaining messages are sent and received sim-
ilarly. The solution shows how the sequence diagram is executed after a path of length k = 4.
The encoding counts up to k′ = 12 in order to accommodate the sequence diagram of length 3
and an upper bound of three additional empty messages before each message. Since less empty
messages are necessary in between the messages of the sequence diagram, at positions 8, 9, and
12, nothing changes. ♦
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As in Section 4.3, we present the encoding of the problem as a conjunction of different
formulas.

We define the following functions to enhance the presentation of the formulas. Let L =
(l ,M) be a lifeline instantiating the state machineM = (S, ι, Atr , Aeff , T ), and let (s, trg , ε, s∗t )
and (s∗t , ε, eff , s′) be transitions of the extended state machine M∗ of M . These two transitions
correspond to a transition t = (s, trg , eff , s′) of M . Further, let N = (σ, a, ρ) be a message.
Then trans(L) = T , src(t) = s, int(t) = s∗t , trg(t) = trg , eff(t) = eff , tgt(t) = s′, snd(N) =
σ, and symb(N) = a.

The first formula (Init) initializes the path by setting the global initial state at position 0 to
true, and all other states and all symbols to false. This means that at position 0, all state machines
are in their initial state and no symbol is waiting to be consumed. This formula is different to
formula (Init) in Section 4.3 in that at position 0 the state machines are in the global initial state
other than in some given global state.

l∧
j=1

(
ι0j ∧

∧
s∈Sj∪S∗j ,s 6=ιj

s0
)
∧
∧
a∈A

a0 (Init)

For a position i > 0, a variable from va in its positive polarity means that the respective sym-
bol has been made available as effect through a transaction at j ∈ [1..i] and is waiting to be
consumed by some transition as a trigger at a position greater than i. At the position where the
symbol is consumed, the symbol variable occurs in its negative polarity.

Formulas (4.4.1) to (4.4.8) are similar to formulas (4.3.1) to (4.3.8). They are different in
that they count up to k′ rather than up to k in order to accommodate the sequence diagram.

First, formula (4.4.1) ensures that whenever a transition is executed at some position i, then
the state machine changes from the transition’s source state at position i to its target state at
position i + 1, the trigger symbol is set its negative polarity and the effect symbols are set to
their positive polarity. It corresponds to the formula (4.3.1) in Section 4.3. We use the expression
trg(t) 6= ε for the presentation of the formula. It is replaced by the logical constants > and ⊥
during the generation of the formula.

k′−1∧
i=0

∧
t∈T

[
ti →

(
src(t)i ∧ int(t)i+1 ∧

(
trg(t) 6= ε→

(
trg(t)i ∧ trg(t)

i+1
))
∧

∧
eff ∈eff(t)

(
eff

i ∧ eff i+1
))] (4.4.1)

The two formulas (4.4.2) and (4.4.3) manage the polarity of the effect symbols and cor-
respond to formulas (4.3.2) and (4.3.3) in Section 4.3. Formula (4.4.2) ensures that if a state
machine does not leave its intermediate state, then the effect symbols remain positive and for-
mula (4.4.3) ensures that if it leaves its intermediate state, then all effect symbols are set to false
at the following position.
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k′−1∧
i=0

∧
t∈T

eff(t) 6=∅

[
int(t)i ∧ int(t)i+1 →

∧
eff ∈eff(t)

eff i+1

]
(4.4.2)

k′−1∧
i=0

∧
t∈T

eff(t)6=∅

[
int(t)i ∧ int(t)

i+1 →
∧

eff ∈eff(t)

eff
i+1
]

(4.4.3)

Formula (4.4.4) ensures that if the state machine is in an intermediate state at position i
and all effects have been consumed at position i + 1, then at position i + 1 the state machine
leaves the intermediate state and changes into the target state of the transition. It corresponds to
formula (4.3.4) in Section 4.3.

k′−1∧
i=0

∧
t∈T

[(
int(t)i ∧

∧
eff ∈eff(t)

eff
i+1
)
→
(

int(t)
i+1 ∧ tgt(t)i+1

)]
(4.4.4)

The three formulas (4.4.5), (4.4.6), and (4.4.7) are called frame axioms. They ensure that
there is always a transition when changes of symbols (formulas (4.4.5) and (4.4.6)) or changes
of states (formula (4.4.7)) occur. They correspond to formulas (4.3.5), (4.3.6), and (4.3.7) in
Section 4.3.

k′−1∧
i=0

∧
trg∈A

[
trg i ∧ trg

i+1 →
(( ∨

t∈T ,
trg(t)=trg

ti
)
∧

∧
t1,t2∈T ,

trg(t1)=trg(t2)=trg

(
t1
i ∨ t2i

))]
(4.4.5)

k′−1∧
i=0

∧
eff ∈A

[
eff

i ∧ eff i+1 →
(( ∨

t∈T ,
eff =eff(t)

ti
)
∧

∧
t1,t2∈T ,

eff(t1)=eff(t2)=eff

(
t1
i ∨ t2i

))]
(4.4.6)

k′−1∧
i=0

∧
s∈S

[
si ∧ si+1 →

∨
t∈T ,s=src(t)

ti
]

(4.4.7)

Formula (4.4.8) expresses that each state machine is in exactly one state at each position.
This formula corresponds to formula (4.3.8) in Section 4.3.

k′−1∧
i=0

l∧
j=1

[( ∨
s∈(Sj∪S∗j )

si
)
∧

∧
s1,s2∈(Sj∪S∗j ),s1 6=s2

(
s1
i ∨ s2i

)]
(4.4.8)
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Finally, formula (Seq) encodes the sequence of messages to be executed after k steps. It
sets the symbol of each message first to true and in the subsequent position to false, then it
ensures the state changes of intermediate states, and finally, it ensures that no other message is
received during the execution of the sequence diagram. Note that the frame axioms take care of
the changes of the transition variables.

∧
i∈{1,...,n},
j=k+4i

[
symb(Ni)

j ∧ symb(Ni)
j+1 ∧

( ∨
t∈trans(snd(Ni)),
eff(t)∈symb(Ni)

(
int(t)j ∧ int(t)

j+1
))

∧

∧
a∈A,

a6=symb(Ni)

( (
aj → aj+1

)
∧
(
aj+1 → aj+2

)
∧
(
aj+2 → aj+3

) )] (Seq)

The formulas are converted to CNF (cf. Section 2.2), the input format of most SAT solvers,
during the generation of the encoding. To this end, we apply the Tseitin transformation [114]
where necessary.

In the same way as the encoding for the reachability problem of Section 4.3, the encoding
of the k-SDCHECK problem allows that nothing happens, i.e., that no transaction takes place at
some position. It is ensured by the frame axioms that in this case, the global state remains the
same. This relaxation implicitly encodes the “at most k” steps formulation. If at n positions
nothing happens and the execution of the message sequence starts at position k for k ≥ n, it
means that the length of the transaction sequence executed before the message sequence of the
sequence diagram is of length k − n.

A solution returned by the SAT solver consists of a set of positive and negative literals
representing variables set to true or false. By extracting the positive literals whose variables
represent states and transitions (i.e., variables from the sets vs, vx, and vt) we obtain the path of
at most k steps leading to the execution of the sequence diagram, and the state changes of the
state machines during the execution of the sequence diagram. If the length of the path is less
than k, then for some consecutive indices the state variables represent identical states.

In order to simplify the encoding, we assume that each symbol can be consumable only once
at each position. Allowing a symbol to be consumable multiple times requires the integration of
counters, which can be realized, e.g., by building upon ideas presented in [110].

It can be verified that this encoding is of size polynomial with respect to the size of the
instance of k-SDCHECK.

Observation 4.4.1. Given an instance K of the k-SDCHECK problem, its encoding as a con-
junction of the formulas (Init), (Seq), and (4.4.1) to (4.4.8) is of size polynomial with respect to
the size of K because any of the formulas (Init), (Seq), and (4.4.1) to (4.4.8) contains at most
two nested iterations over sets contained in the input.

4.4.4 Computational Complexity

We show that the k-SDCHECK problem is NP-complete. Its membership in NP follows di-
rectly from Observation 4.4.1, i.e., the fact that the k-SDCHECK problem can be encoded in
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polynomial time with respect to its input size into a formula in propositional logic.

Corollary 4.4.1. The k-SDCHECK problem is in NP.

The proof of NP-hardness of the k-SDCHECK problem is based on the proof of NP-hardness
of the k-SMREACH problem (cf. Lemma 4.3.1). In a similar way as for the k-SMREACH

problem, we reduce the 3X3SAT problem (cf. Definition 4.3.5) to the k-SDCHECK problem.
Recall that the 3X3SAT problem is a variation of the 3-satisfiability problem [54, Appendix
A9.1, L02] where each variable can occur at most three times and each literal can occur at most
twice in a propositional CNF formula that contains at most three literals per clause. This problem
has been shown to be NP-complete [99, Proposition 9.3].

In our reduction we construct two sets of state machines in a similar way as in the proof of
Lemma 4.3.1 for the k-SMREACH problem. The setMvars contains a state machine for each
variable in V , and the setMclauses contains a state machine for each clause in C. We additionally
build a state machine MD that is not contained in any of the two sets. This additional state
machine is used to execute the sequence diagram.

The alphabet of effects of the state machines in Mvars and the alphabet of triggers of the
state machines inMclauses contain a different symbol for each occurrence of each variable in C.
The alphabet of triggers of each state machine inMclauses contains an additional symbol that
does not occur in any of the alphabets of the state machines inMvars . The alphabet of effects
of MD contains all the additional symbols from the alphabets of the state machines inMclauses .

Just as for the reduction to the k-SMREACH problem, each state machine Mv in Mvars

contains one state and one transition for each occurrence of a variable v in C, and an initial state.
Such a state machine does not receive any symbol, it only sends symbols. Thus, all triggers on
all its transitions are ε. The states are aligned along two branches of transitions. Transitions
on one branch refer to the occurrences of v in clauses as positive literals and transitions on the
second branch to the occurrences of v as negative literals. This way, a state machine in Mv

cannot send symbols representing opposite literals of a variable in the same run.
Each state machine MC for clause C in Mclauses contains two states, an initial state and

a sink state, and for each literal contained in C, Mclauses contains one transition connecting
the two states and one transition looping the sink state. Other than in the reduction to the k-
SMREACH problem, MC contains one additional transition looping the sink state. State ma-
chines in Mclauses only receive, but never send symbols. Their transitions contain a trigger
other than ε and the empty set as effects. Each trigger on a transition connecting the two states
and on a transition looping the sink state in MC corresponds to a literal in C and vice versa. The
additional transition looping the sink state is triggered by the additional symbol.

The additional state machine MD contains only one state and for each clause in C one tran-
sition. Each transition is triggered by ε and carries as effect one of the additional symbols of
the state machines in Mclauses such that each of the additional symbol occurs on exactly one
transition as effect.

We further build a sequence diagram that instantiates each state machine once, i.e., it con-
tains one lifeline for each state machine. The message sequence of the sequence diagram con-
tains exactly one message for each clause in C sent from the lifeline instantiating MD and re-
ceived by the respective lifeline instantiating a state machine MC inMclauses , and carrying as
symbol the additional symbol ofMC . The order of the messages in the sequence can be arbitrary.
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Name Clause
C1 {x, y}
C2 {x, y}
C3 {z}
C4 {x, y, z}

Table 4.4.2: A satisfiable instance S of 3X3SAT.

With this construction, each state machine inMvars sends symbols representing literals that
evaluate to true under one of the interpretations true or false of its variable to state machines in
Mclauses . Since there is no link between the two branches of a state machine inMvars , only
one branch can be contained in a path and hence only one interpretation be constructed for the
clauses in C. When a state machine MC inMclauses reaches its sink state, then the clause C is
satisfied. The sequence diagram can be executed if and only if all state machines inMclauses

reach their sink states. When they do so, then the propositional formula is satisfiable because
all its clauses are satisfied. If at least one state machine cannot reach their sink state, then the
propositional formula is unsatisfiable. The loops on the sink states prevent the state machines in
Mvars from getting stuck in a state when the sink state of some state machine inMclauses has
already been reached by receiving a symbol from a different state machine inMvars .

We set k to 4|V| for the following reasons. A path along one branch of a state machine
inMvars can contain at most two transitions (recall that the 3X3SAT problem allows a literal
to occur at most twice) and the conversion into an extended state machine doubles the number
of transitions. Further, all variables may be necessary to satisfy the formula and therefore, all
state machines inMvars may be required to reach their sink state. Also, in the worst case, one
transaction can only contain one message, requiring one transaction for each transition in the
extended state machines forMvars .

The following example illustrates the reduction.

Example 4.4.2. Table 4.4.2 shows a positive instance S = (V, C) of 3X3SAT with four clauses
and three variables. Figure 4.4.4 depicts the setM of state machines and Figure 4.4.5 depicts the
sequence diagram of the k-SDCHECK instanceK = (M, D, k) reduced from S. The setMvars

contains three state machines, one for each variable, and the set Mclauses contains four state
machines, one for each clause. The sequence diagram contains a sequence of four messages,
one for each clause. Each message is sent from lifeline md and each of the lifelines m1 to m4

receives the message containing the symbol that loops the sink state of its state machine and is
unique within its transactions. The parameter k is set to 4|Mvars | = 12.

The instance S is satisfied by the assignment x 7→ true, y 7→ false, z 7→ true. Under this
assignment, the occurrences of x evaluate to true in the clause C1 and the clause C2, and to
false in the clause C4, therefore satisfying C1 and C2. This evaluation corresponds to the upper
branch of the state machine Mx, which sends the symbols cx1 and cx2 leading state machines M1

andM2 to their sink states. Similarly, the literal y evaluates to true in clauseC1 and in clauseC4,
and the literal y to false in clause C2. The two evaluations of y to true correspond to the lower
branch of the state machine My, leading state machine M4 to its sink state and looping the sink
state ofM1 (which reached its sink state earlier by the evaluation of x). The evaluation of z leads
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MD :

Figure 4.4.4: State machines reduced from the 3X3SAT instance in Table 4.4.2. Highlighted
transitions represent a path leading from the global initial state to the execution of the sequence
diagram. The transitions highlighted in blue belong to the first transaction, those highlighted in
red to the second transaction, those in green to the third transaction, and those in purple to the
execution of the sequence diagram.
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md:MD m1:M1 m2:M2 m3:M3 m4:M4 mx:Mx my :My mz :Mz

d1

d2

d3

d4

Figure 4.4.5: Sequence diagram reduced from the 3X3SAT instance in Table 4.4.2.

M3 to its sink state in a similar way. Since all state machines inMclauses are in their sink states,
the sequence diagram can be executed. Therefore, K is a positive instance of k-SDCHECK.

This example shows the role of the looping transitions on the sink state of the state machines
inMclauses . Without the looping transition receiving cy1 inM1,My could not send the symbol cy4
to M4 and therefore, M4 would not reach its sink state. The communication of the symbols can
be arranged in the path

[{(mx, c
x
1 ,m1), (mz, c

z
3,m3)},

{(my, c
y
1,m1)},

{(mx, c
x
2 ,m2), (my, c

y
4,m4)},

{(md, d1,m1)},
{(md, d2,m2)},
{(md, d3,m3)},
{(md, d4,m4)}]

of length 7, where the last four transactions contain messages of the sequence diagram (cf.
Section 3.3 Definition 3.3.10, some brackets are omitted as the multimessages are single mes-
sages). ♦

Lemma 4.4.1. The k-SDCHECK problem is NP-hard.

Proof. Given an instance S = (V, C) of the 3X3SAT problem, we construct an instance K =
(M, D, k) of the k-SDCHECK problem as follows.
M is the union of the setsMvars ,Mclauses , and {MD} of state machines, which are con-

structed as follows. For each variable v in V , let Cv = {C | v ∈ vars(C)} be the set of clauses
containing a literal of v. Then the setMvars contains for each variable v in V a state machine
Mv = (Sv, ιv, A

tr
v , A

eff
v , Tv) with

• Sv = {vι} ∪ {vC | C ∈ Cv},

• ιv = vι,

78



• Atr
v = {ε},

• Aeff
v = {cvC | C ∈ Cv}, and

• Tv =



{(vι, ε, {cvA}, vA), (vA, ε, {cvB}, vB), (vι, ε, {cvC}, vC)
| ` ∈ A, ` ∈ B, ` ∈ C, var(`) = v,A,B,C ∈ Cv} if |Cv| = 3

{(vι, ε, {cvA}, vA), (vA, ε, {cvB}, vB)
| ` ∈ A, ` ∈ B, var(`) = v,A,B ∈ Cv} ∪
{(vι, ε, {cvA}, vA), (vι, ε, {cvB}, vB)
| ` ∈ A, ` ∈ B, var(`) = v,A,B ∈ Cv} if |Cv| = 2

{(vι, ε, {cvA}, vA) | ` ∈ A, var(`) = v,A ∈ Cv} if |Cv| = 1.

The setMclauses contains a state machine MC = (SC , ιC , A
tr
C , A

eff
C , TC) for each clause C

in C with

• SC = {ιC , gC},

• ιC = ιC ,

• Atr
C = {cvC | v ∈ vars(C)} ∪ {dC},

• Aeff
C = ∅, and

• TC = {(ιC , cvC , ∅, gC), (gC , cvC , ∅, gC) | v ∈ vars(C)} ∪ {(gC , dC , ∅, gC)}.

MD = (S, ι, Atr , Aeff , T ) is a state machine with S = {s}, ι = s, Atr = ∅, Aeff = {dC |
C ∈ C}, and T = {(s, ε, dC , s) | C ∈ C}. Further, D = (L,N ) is a sequence diagram over
M where L = {(mv,Mv) | v ∈ V} ∪ {(mC ,MC) | C ∈ C} ∪ {(md,MD)} and N is an
arbitrary sequence containing each message of the set {(md, dC ,mC) | C ∈ C} of messages
exactly once. We set k = 4|Mvars |.

The size of the reduced instance K of k-SDCHECK is linear with respect to the size of the
instance S of 3X3SAT. In particular, it contains for each variable one state machine with at most
four states and at most three transitions, for each clause one state machine with two states and at
most seven transitions, and one additional state machine with one state and as many transitions
as clauses. We proceed with showing that S is a positive instance of 3X3SAT if and only if K is
a positive instance of k-SDCHECK.

(⇒) If S is a positive instance of 3X3SAT, then there exists an interpretation σ for each
variable in V under which the formula evaluates to true. This means that in each clause, at
least one literal evaluates to true (cf. Section 2.2). By construction, a state machine Mv in
Mvars can send one of two sequences of symbols representing the clauses satisfied due to an
assignment of v to true or false respectively, or one sequence if the literal only occurs in one
polarity in the formula. The state machines in Mclauses can receive the symbols representing
each clause’s literals, where they lead the state machine’s initial state to the sink state or make
the state machine stay in the sink state. It is always possible to execute all transitions along
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a branch of a state machine in Mvars because the symbols can always be received by some
state machine inMclauses , either by a transition between source and sink state or by a transition
looping the sink state. A branch of a state machine inMvars contains at most two transitions,
which correspond to four transitions in the extended state machine. Assuming the case where
each transaction in the path contains only one message, we need k = 4|Mvars | transactions to
reach the sink states of each state machine inMclauses . Since under σ, at least one literal of each
clause evaluates to true and exactly one state machine in Mclauses corresponds to one clause,
all state machines in Mclauses reach their sink state. From a global state containing the sink
states of all state machines inMclauses and the state s of MD, the sequence diagram D can be
executed. This makes K a positive instance of k-SDCHECK.

(⇐) If K is a positive instance of k-SDCHECK, then a path exists such that a partial global
state containing all sink states of the state machines inMclauses can be reached from the global
initial state. Only from such a state the sequence diagram can be executed. Such a path contains
for each state machineMC inMclauses a transaction containing one of the symbols occurring as
trigger on one of the transitions between the initial state and the sink state of MC . The senders
of these symbols are state machines inMvars , each along one of its branches. Since each branch
corresponds to an assignment to a variable in S and each state machine inMclauses corresponds
to a clause in S, an assignment satisfying the clauses in S can be retrieved from the branches.
Note that, since exactly one branch of each state machine inMvars is contained in the path, it is
ensured that a variable is assigned exactly one truth value. Therefore, S is a positive instance of
3X3SAT.

Theorem 4.4.1. The k-SDCHECK problem is NP-complete.

Proof. The theorem follows from Corollary 4.4.1 and Lemma 4.4.1
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Chapter 5

Evaluation

We implemented our solving methods for the k-SMREACH problem (cf. Section 4.3), the k-
SDCHECK problem (cf. Section 4.4), and the SDMERGE problem (cf. Section 4.2) in the
three tools Global State Checker, Sequence Diagram Checker, and Sequence Diagram Merger
respectively. All tools integrate an off-the-shelf SAT solver. We tested the implementations with
respect to their scalability and correctness.

All prototype implementations are available as Eclipse plugins on our project website.1 They
are built into one coherent framework and adhere to Ecore metamodels of the Eclipse Modeling
Framework (EMF) that implement the metamodels described in Section 3.1.

To test our approaches, representative benchmark sets were required, but no existing bench-
marks fulfilled our requirements. Benchmark sets as presented by Brosch et al. [25] contain
only modeling scenarios of a single view and focus on class diagrams. We therefore established
our own benchmark sets. First, we handcrafted three sets of intuitive and small instances, and
second, we developed an approach to generate random instances of models defined by an Ecore
metamodel in order to apply grammar-based white-box fuzzing. Although the models of our
benchmark set are formulated in tMVML, they can be reused in other case studies because they
are realized as Ecore models. Hence, a translation to other modeling languages like the UML
can be achieved by the means of model transformations. All benchmarks and their solutions are
also available on our project website.2

In this chapter, we first give an overview of the implementation of our framework and then
describe the crafted instances and the generation of random instances. Each problem’s evaluation
is then discussed in a separate section. First, we describe the evaluations of the Global State
Checker and the Sequence Diagram Checker on both crafted instances and random instances
and then we describe the evaluation of the Sequence Diagram Merger on crafted instances.

1http://modelevolution.org/prototypes
2http://modelevolution.org/media/eval-model-verification
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Figure 5.1.1: Workflow of a test run for an instance of one of our problems.

5.1 Implementation and Testing Environment

The implementations of our approaches to the three previously discussed verification problems
are embedded into the Eclipse Modeling Framework (EMF), the core technology of the Eclipse
Modeling Project.3,4 Eclipse is a popular integrated development environment for many pro-
gramming languages, in particular Java. EMF provides a metamodel (Ecore) to define the syntax
of multi-view software models (cf. Section 2.3), an editing framework to create and modify the
models, and a code generation facility that allows to retrieve Java code from the models. Ecore
also allows to define metamodels other than the Ecore metamodel itself.

We provide instances of our problems as models that instantiate an Ecore metamodel. This
metamodel implements the event-based metamodel (Figure 3.1.1) for instances of the SD-
MERGE problem and the alternative metamodel (Figure 3.1.3) for instances of the k-SMREACH

problem and the k-SDCHECK problem.
Figure 5.1.1 depicts the general workflow of a test run for an instance of one of the problems.

First, the SAT Encoder translates the problem instance into a propositional formula according
to its respective encoding. Measures, such as the introduction of Tseitin variables [114], are
taken to convert the formula into conjunctive normal form (CNF) (cf. Section 2.2) without
exponential blowup. The data structure representing the encoding is then handed to a SAT Solver
and a Variable Map is created that assigns the encoding’s Boolean variables to statements of the
encoded problem (cf. descriptions of encodings in Sections 4.2, 4.3, and 4.4). All our tools are
implemented in Java. As SAT solvers we employ Picosat [14] for the SDMERGE problem and
SAT4J [85] for the k-SMREACH problem and the k-SDCHECK problem.

The SAT solver returns UNSAT, SAT, or it times out if the instance is too hard and a timeout
is set. If it returns UNSAT, it means that the problem has no solution. If it returns SAT, it means
that a solution exists. In this case, the SAT solver also returns a logical model for the formula
that encodes the problem. This model contains the set of variables that are set to true in order
to evaluate the formula to true (cf. Section 2.2). Using the Variable Map, these variables are

3http://www.eclipse.org/modeling
4http://www.eclipse.org/modeling/emf/
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Coffee Mail Philosophers
Number of state machines 3 3 6
Total number of states 8 15 15
Total number of transitions 18 23 21
Size alphabet 10 13 12

Table 5.2.1: Sizes of the crafted models.

then mapped back into statements regarding the respective problem by the Solution Builder.
The mapping of all these variables represents a solution of the problem. We finally confirm
that the retrieved solution indeed solves the initial problem instance by using a simulation tool
that can check the (trigger) consistency of a software model by stepping through a sequence of
transactions. This simulation should always pass. If it fails, then the tool has an error which
must be corrected. In all test runs described in the following sections the simulation passed.

We executed all experiments on a computer with an Intel Core i5-540M CPU with 2.53GHz
and 8GB of RAM.

5.2 Crafted Benchmark Set

We designed three models containing different numbers of state machines, states, and transitions
in order to test our prototype implementations of the three problems on intuitive examples. Based
on these models, we retrieved problem-specific instances for the k-SMREACH problem, the k-
SDCHECK problem, and the SDMERGE problem. These three models are

• a model about a coffee machine (“Coffee”) similar to our running example in Sections 4.3
and 4.4, as depicted in Figure 5.2.1,

• a simplified variant of the SMTP protocol (“Mail”) similar to our running example in
Section 4.2, as depicted in Figure 5.2.2, and

• a variant of the well-known dining philosopher problem with three philosophers (“Philoso-
phers”), inspired by the running example in the work of Varró [120], as depicted in Fig-
ure 5.2.3.

Table 5.2.1 gives an overview of the sizes of the instances.
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Figure 5.2.1: The crafted model “Coffee”.
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Figure 5.2.2: The crafted model “Mail”.
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Figure 5.2.3: The crafted model “Philosophers”.
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5.3 Random Model Generation

We generated instances of the k-SMREACH problem and the k-SDCHECK problem at random
in order to apply white-box fuzzing for debugging and performance evaluation of our implemen-
tations. To this end, we developed a random model generator based on the tool we presented in
previous work [123], which we adapted to the two problems. Our model generation tool con-
sists of two components, a generator to build syntactically correct diagrams, and a simulator to
ensure that a message sequence is indeed consistent with the state machines.

The generator takes as input a set of parameters regarding the size of the instances, such as
the number of state machines, the number of states, the number of transitions, or the size of the
alphabet. These parameters strongly influence whether the instance will be positive or negative.
For example, for a set of state machines that have a high number of states with few transitions
and many different triggers and effects, it is more difficult to find a path to some global state
than it is for a set of state machines with few states, many transitions, and a small alphabet. We
fine-tuned the parameter values manually in order to obtain a reasonable probability to generate
a positive or a negative instance, respectively.

In the following, we first describe the random generation of state machines, which is used for
evaluating both the k-SMREACH problem and the k-SDCHECK problem. Then we describe the
random generation of a partial global state, which we use to create instances of the k-SMREACH

problem, and the random generation of (in)consistent sequence diagrams, which we use to create
instances of the k-SDCHECK problem.

5.3.1 Generation of State Machines

We build a set of state machines based on the following parameters.

• nrStatemachines: An integer greater than 0 defining the number of state machines.

• minNrStates and maxNrStates with minNrStates ≤ maxNrStates: Two integers greater
than 0 defining bounds on the number of states per state machine. The actual number is
chosen uniformly at random between and including these bounds for each state machine.

• minNrTrans and maxNrTrans with minNrTrans ≤ maxNrTrans: Two integers greater
than 0 defining bounds on the number of transitions per state machine. The actual number
is chosen uniformly at random between and including these bounds for each state ma-
chine. In order to avoid isolated states, these numbers should depend on minNrStates and
maxNrStates.

• nrSymbols: An integer greater than 0 defining the size of the alphabet the state machines
are defined over.

• probTrigger: A rational between 0 and 1 (inclusively) defining the probability of a transi-
tion to contain a trigger symbol other than ε.

• probEff: A rational between 0 and 1 (inclusively) defining the probability of a transition
to contain an effect symbol.
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For each state machine, our algorithm chooses uniformly at random a number of states and
transitions in between the bounds minNrStates and maxNrStates, respectively minNrTrans and
maxNrTrans, and connects the states by transitions randomly in a way such that no state is
isolated. To at least one outgoing transition from the initial state the trigger ε is added in order
to allow some communication sequence to start. To all other transitions, a trigger other than
ε is added with probability probTrigger. To each transition containing ε as trigger an effect is
added, and to all other transitions one effect is added with probability probEff and the empty set
is added with probability 1− probEff. Each time a trigger or an effect is added, a fresh symbol
is created and added to the alphabet until the alphabet has reached size nrSymbols. After that,
the trigger and effect symbols are chosen uniformly at random out of the alphabet.

5.3.2 Generation of Goal States

We build random instances of the k-SMREACH problem by randomly choosing a goal state
based on a previously generated set of state machines. The additional parameter relGoalSize, a
rational between 0 and 1 (inclusively), defines the size of the goal state relative to the number of
state machines. We set the number of states in the goal state to relGoalSize times the number of
state machines rounded up to the next integer.

5.3.3 Generation of Sequence Diagrams

We build random instances of the k-SDCHECK problem by adding sequence diagrams to a previ-
ously generated set of state machines. Here the following additional parameters are considered.

• nrLifelines: An integer greater than 0 defining the number of lifelines to be contained in
the sequence diagram.

• nrMessages: An integer greater than 0 defining the number of messages to be contained
in the sequence diagram.

• probInconsistency: A rational between 0 and 1 (inclusively) defining the probability for
the generator to insert a random message in order to make the model inconsistent.

For each lifeline, a state machine is chosen uniformly at random from the state machine
view. If nrLifelines > nrStatemachines then it is ensured that each state machine is instantiated
at least once and otherwise it is ensured that no state machine is instantiated more than once.
In order to ensure consistency, the model simulator keeps track of the visited global states of
the lifelines’ state machines. The main data structure in the simulator represents possible global
states as a hashmap with lifelines as keys and a set of states of the state machine instantiated
by the lifeline as value. For each lifeline, the hashmap is initialized with all initial states of the
respective state machine. All admissible messages with respect to these states are calculated
according to the current global state stored in the simulator. One message is chosen uniformly
at random, appended to the message sequence, and the simulator is updated according to all
possible successor states with respect to the application of the chosen message. This is repeated
k+nrMessages times in order to generate a sequence diagram that can be executed after at most
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k steps. It can also happen that the sequence diagram can be executed after less than k steps
after a different path than the one followed or even on the same path at an earlier position. Note
that the state machines are non-deterministic, and therefore the number of possible states and
admissible messages can become very large.

To obtain unsatisfiable instances, the generator inserts with probability probInconsistency
one random message at a random position. To create a random message a sender, a receiver,
and a symbol are chosen uniformly at random among the set of lifelines respectively the alpha-
bet. After inserting this random message the current global state is reset to the global initial
state. This procedure, however, still can result in a satisfiable instance. For this reason, the
value for probInconsistency often has to be rather high in order to achieve a reasonable share of
unsatisfiable instances.

The parameter values for the state machines influence to a great extent the difficulty of
creating a consistent sequence diagram and it can easily happen that no or only a small message
sequence can be generated. For example, a high value for probTrigger along with a high value
for nrSymbols results in transitions containing different triggers and effects, which makes the
generation of a consistent sequence diagram difficult.

5.4 Evaluation of the Global State Checker

Our prototype implementation and testing environment for our encoding of the k-SMREACH

problem correspond to the workflow described in Figure 5.1.1 of Section 5.1. A problem in-
stance consists of a set of state machines, a partial global state over these state machines, and
a value for the bound k. The encoder module receives such a problem instance and produces
a propositional formula in CNF according to the encoding described in Section 4.3. The SAT
solver either returns UNSAT, SAT, or times out. If it returns UNSAT, it means that the problem
has no solution, i.e., that the specified state is not reachable in k steps. If it returns SAT, it
means that there exists a solution, i.e., a path of length at most k from the initial configuration
to a global state matching the specified goal. In this case, the SAT solver additionally returns
a logical model of the formula representing the problem, which the Solution Builder translates
to a solution of the k-SMREACH instance using the Variable Map. Our simulation tool then
executes the path on the set of state machines in order to confirm the correctness of the Global
State Checker and to give feedback to the user.

Figure 5.4.1 shows the graphical user interface of our prototype. The user can select the
goal state directly in the modeling editor, enter the bound k, and start the Global State Checker.
For convenience, it may be specified whether the selected goal state is expected to be reachable
or not. Red or green highlighting indicates how the expected result compares to the actual
result. The console in Figure 5.4.1 lists some test cases of the coffee machine model described
in Section 5.2. The expanded subitems of the third test case in Figure 5.4.1 show the path to the
goal state found by the Global State Checker.

89



Figure
5.4.1:

G
raphicaluserinterface

ofthe
G

lobalState
C

hecker.

90



5.4.1 Evaluation with Crafted Instances

We evaluated the Global State Checker using the set of crafted models described in Section 5.2.
Based on these models, we built instances of the k-SMREACH problem using as goal states
different combinations of states. For the models “Coffee” and “Mail” we built one instance for
each possible goal state, and for the model “Philosophers”, we selected 100 instances at random
for goal states of size 1, 3, and 6. For each of the combinations for the goal states we tested
instances for the values 3, 15, 100, and 500 for k. For instances of the model “Philosophers” we
further set a timeout of 200 seconds as some of the instances with k set to 500 turned out to be
very challenging for the SAT solver. For all instances, ŝ (the starting state of the path) was set to
the global initial state, i.e., the global state where each state machine is in its initial state.

Details on the outcomes of the test cases are presented in Tables 5.4.1, 5.4.2, and 5.4.3.
As could be expected, the encoding times, solving times, numbers of clauses, and numbers of
variables increase with an increasing value for k and the bottleneck for the overall runtimes is
the task of solving rather than the task of encoding the instances with increasing size (number
of clauses and number of variables) of the instances.

The solving times with respect to the size of the goal state show a different behavior for
each model. With a higher value for the size of the goal state, the solving times decrease for
satisfiable instances for the model “Coffee”, they increase for satisfiable instances for the model
“Mail”, and they stay around the same values for the model “Philosophers”.

The solving times for satisfiable instances are noticeably shorter than those for unsatisfiable
instances. These runtimes depend on the SAT solver and can be different when employing
a different solver or different heuristics. However, it is very interesting that for randomized
instances (cf. next subsection) the opposite is the case despite of using the same solver.

The number of variables stays the same for different sizes of goal states because no new
variables have to be introduced in order to describe a different goal. However, the numbers of
clauses change slightly, which is due to the env function (cf. Section 4.3) that returns different
numbers of states around the goal state depending on the transitions around the states contained
in the goal state.

By “path length” we refer to the length of the found path from the initial global state to the
goal state in satisfiable instances. The fact that it increases only slightly with increasing values
for k indicates that lower values for k are sufficient to find a path for satisfiable instances.

The numbers of satisfiable instances increase with higher values for k, respectively the num-
bers of unsatisfiable instances decrease. This is the case because a goal state that can be reached
by a path of length at most i can also be reached by a path with length at most j for j > i. The
threshold for the choice of a value for k seemed to be at 3 < k ≤ 15 for all models. The value
15 as the upper bound for k coincides with the upper bound of states in the crafted models.
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Size of goal state / number of state machines 1/3
k 3 15 100 500
Number of instances SAT 5 8 8 8
Number of instances UNSAT 3 0 0 0
Average number of clauses 660 4,140 28,790 144,790
Average number of variables 200 848 5,438 27,038
Average path length SAT 0.4 4 17 23
Average encoding time 2 11 242 507
Average solving time SAT <1 4 304 2,780
Average solving time UNSAT <1 n/a n/a n/a

Size of goal state / number of state machines 2/3
k 3 15 100 500
Number of instances SAT 6 11 11 11
Number of instances UNSAT 15 10 10 10
Average number of clauses 649 4,129 28,779 144,779
Average number of variables 200 848 5,438 27,038
Average path length SAT 0.5 4 12 19
Average encoding time 2 11 83 453
Average solving time SAT <1 4 245 4,844
Average solving time UNSAT <1 11 5,224 106,548

Size of goal state / number of state machines 3/3
k 3 15 100 500
Number of instances SAT 2 3 3 3
Number of instances UNSAT 16 15 15 15
Average number of clauses 637 4,117 28,767 144,767
Average number of variables 200 848 5,438 27,038
Average path length SAT 0.5 3 18 26
Average encoding time 2 11 84 449
Average solving time SAT <1 2 121 5,440
Average solving time UNSAT <1 9 2,510 45,483

Table 5.4.1: Results of the evaluation of instances derived from the model “Coffee” for different
sizes of the goal state and different values for k. All times are given in milliseconds.
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Size of goal state / number of state machines 1/3
k 3 15 100 500
Number of instances SAT 3 11 11 11
Number of instances UNSAT 12 4 4 3
Nr. instances timeout 0 0 0 1
Average number of clauses 926 7,382 53,112 268,312
Average number of variables 275 1,163 7,453 37,053
Average path length SAT 0.7 5 8 12
Average encoding time 4 17 176 654
Average solving time SAT <1 6 183 2,493
Average solving time UNSAT <1 15 1,583 31,707

Size of goal state / number of state machines 2/3
k 3 15 100 500
Number of instances SAT 3 13 13 13
Number of instances UNSAT 56 46 46 44
Nr. instances timeout 0 0 0 2
Average number of clauses 881 7,337 53,067 268,267
Average number of variables 275 1,163 7,453 37,053
Average path length SAT 0.3 6 10 19
Average encoding time 3 17 125 639
Average solving time SAT <1 9 164 5,390
Average solving time UNSAT <1 15 1,356 38,844

Size of goal state / number of state machines 3/3
k 3 15 100 500
Number of instances SAT 1 3 3 3
Number of instances UNSAT 44 42 42 41
Nr. instances timeout 0 0 0 1
Average number of clauses 854 7,310 53,040 268,240
Average number of variables 275 1,163 7,453 37,053
Average path length SAT 0 7 16 22
Average encoding time 3 16 122 640
Average solving time SAT <1 11 660 8,214
Average solving time UNSAT <1 13 1,265 35,445

Table 5.4.2: Results of the evaluation of instances derived from the model “Mail” for different
sizes of the goal state and different values for k. All times are given in milliseconds.
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Size of goal state / number of state machines 1/6
k 3 15 100 500
Number of instances SAT 12 15 15 7
Number of instances UNSAT 3 0 0 0
Nr. instances timeout 0 0 0 8
Average number of clauses 621 3,861 26,811 134,811
Average number of variables 257 1,085 6,950 34,550
Average path length SAT 0.8 4 27 106
Average encoding time 1 12 86 452
Average solving time SAT <1 6 503 116,543
Average solving time UNSAT <1 n/a n/a n/a

Size of goal state / number of state machines 3/6
k 3 15 100 500
Number of instances SAT 36 58 58 13
Number of instances UNSAT 64 42 42 2
Nr. instances timeout 0 0 0 85
Average number of clauses 611 3,851 26,801 134,801
Average number of variables 257 1,085 6,950 34,550
Average path length SAT 0.8 4 29 121
Average encoding time 2 12 86 447
Average solving time SAT <1 6 1,396 170,540
Average solving time UNSAT <1 42 26,646 30,472

Size of goal state / number of state machines 6/6
k 3 15 100 500
Number of instances SAT 1 5 5 1
Number of instances UNSAT 98 95 95 79
Nr. instances timeout 0 0 0 20
Average number of clauses 605 3,845 26,795 134,795
Average number of variables 257 1,085 6,950 34,550
Average path length SAT 1 5 29 163
Average encoding time 2 11 81 436
Average solving time SAT <1 6 1,235 177,892
Average solving time UNSAT <1 8 4,541 2,434

Table 5.4.3: Results of the evaluation of instances derived from the model “Philosophers” for
different sizes of the goal state and different values for k. All times are given in milliseconds.
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small medium large
nrStatemachines 4 12 30
minNrStates 2 4 8
maxNrStates 3 6 12
minNrTrans 6 16 40
maxNrTrans 9 24 60
probTrigger 0.5 0.3 0.3
probEff 0.5 0.3 0.3
nrSymbols 4 8 16
k 3 6 12

Table 5.4.4: Parameter values to generate random instances of the k-SMREACH problem.

5.4.2 Evaluation with Random Instances

We generated random instances of the k-SMREACH problem using our tool described in Sec-
tion 5.3 and assigned them to three different groups according to their size.

An instance’s size is determined by the values of the parameters discussed in Section 5.3 and
by the bound k. Apart from its size, these values also determine the probability of a randomly
generated instance to be positive or negative. We aimed at generating instance groups that dif-
fer clearly in their size and that contain enough positive and negative instances to draw some
conclusions.

The parameters strongly influence each other. For example, a small number of states with
a high number of transitions results in a rather dense state machine. A model containing dense
state machines along with a small alphabet is likely to contain many goal states that are reach-
able as it facilitates a high number of communication scenarios. On the other side, a model
with sparse state machines and a large alphabet are likely to contain many goal states that are
unreachable. Also, a small value for k is likely to produce negative instances for models that
contain state machines with many states, however, a high value for k may unnecessarily increase
the size of the encoding for models that contain state machines with few states.

We executed some preliminary runs in order to fine-tune the parameter values. Table 5.4.4
shows the parameter values per group that we set for our test runs. As discussed above, the
parameters strongly influence each other. These dependencies between the parameters are con-
sidered in our choice of their values. Parameters minNrTrans and maxNrTrans depend on the
parameters minNrStates respectively maxNrStates in that their value is multiplied by 3 for the
set "small", by 4 for the set "medium" and by 5 for the set "large". The values of nrSymbols are
the values of minNrStates multiplied by 2. We set the value of k is to maxNrStates following
the results of the evaluation of the crafted instances.

The size of the goal state is determined by relGoalSize. For this parameter we test the three
values 0.25, 0.5, 0.75 and 1 for each category. It describes the size of the goal state relative to
nrStatemachines (cf. Section 5.2). We further set a timeout of 300 seconds for the SAT solver.

Table 5.4.5 describes the results of our experiments over 1,000 randomly generated instances
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in each category and for each value for relGoalSize.
We distinguish solving times for UNSAT and SAT instances. It can be seen that the average

solving time for UNSAT instances is considerably lower than for SAT instances. This behavior is
opposite to what we observed for crafted instances in the previous subsection. In many cases, the
SAT solver detects trivial contradictions already when reading the input clauses, which explains
the extremely low solving times for UNSAT instances. Further, the solving times scale worse
than the encoding time for SAT instances, which is an expected behavior given the complexity
of the problem. However, this is not the case for UNSAT instances. Together with the much
lower solving times of UNSAT instances compared to SAT instances, this indicates that UNSAT
instances are likely to contain a contradiction that is very easy to find by the SAT solver Sat4j.

The relative number of SAT instances decreases with increasing values for relGoalSize,
which is an expected behavior since high values for relGoalSize result in more constraints. This
can also be seen in the evaluation of the crafted instances (cf. Tables 5.4.1, 5.4.2, and 5.4.3). for
this problem.

Also, the solving times increase with increasing values for relGoalSize in the SAT instances
of sets “small” and “medium”, as they did for the SAT instances of the crafted instances. For
the SAT instances in the set “large” this is not the case. However, the average solving time for
the instances with a fully specified goal state contains only one instance due to a high number
of timeouts, so this number cannot be considered representative. The additional constraints
resulting from higher values for relGoalSize seem to harden the search for the SAT solver in
SAT instances. For the UNSAT instances we cannot observe such a behavior.

We further computed the length of the path to the goal state in the solution of positive in-
stances. This path length remains unchanged between different sizes of the goal state. It in-
creases with the size of the instance as could be expected. Note that this path length is not
necessarily the minimal path length.

The number of clauses and the number of variables increase considerably with the sizes of
the instances, however, up to the instances in the “large” set, this can still be handled reasonably
by the SAT solver.
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small
relGoalSize 0.25 0.5 0.75 1
Number of instances SAT 688 380 207 151
Number of instances UNSAT 312 620 793 849
Number of instances timeout 0 0 0 0
Average number of clauses 1,057 1,070 1,055 1,043
Average number of variables 270 271 270 269
Average path length SAT 0.6 0.7 0.8 0.9
Average encoding time 1 2 1 2
Average solving time SAT <1 <1 <1 <1
Average solving time UNSAT <1 <1 <1 <1

medium
relGoalSize 0.25 0.5 0.75 1
Number of instances SAT 571 251 89 15
Number of instances UNSAT 429 749 911 985
Number of instances timeout 0 0 0 0
Average number of clauses 49,408 48,997 49,137 49,212
Average number of variables 3,601 3,594 3,602 3,605
Average path length SAT 3 3 3 3
Average encoding time 80 82 82 82
Average solving time SAT 29 49 81 106
Average solving time UNSAT 9 15 15 13

large
relGoalSize 0.25 0.5 0.75 1
Number of instances SAT 826 562 18 1
Number of instances UNSAT 174 284 410 481
Number of instances timeout 0 154 572 518
Average number of clauses 1,840,776 1,838,285 1,842,420 1,844,834
Average number of variables 41,601 41,573 41,615 41,637
Average path length SAT 10 10 10 10
Average encoding time 3,043 3,062 3,070 3,093
Average solving time SAT 32,252 167,243 247,311 113,609
Average solving time UNSAT 556 1,066 2,456 2,717

Table 5.4.5: Results over 1,000 randomly generated instances of the SMREACH problem for
each category. All times are given in milliseconds.
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5.5 Evaluation of the Sequence Diagram Checker

Our prototype implementation and our testing environment for our approach to solving the k-
SDCHECK problem correspond to the workflow described in Figure 5.1.1.

An instance of the k-SDCHECK problem consists of a set of state machines, a sequence
diagram, and a value for the bound k. We translate such an instance to propositional logic by
the SAT Encoder using the encoding described in Section 4.4. After the encoding phase, the
obtained formula is passed to the SAT solver, which returns UNSAT, SAT, or it times out.

If it returns UNSAT, it means that the problem has no solution, i.e., the sequence of messages
specified by the sequence diagram cannot be applied from any state reachable in k steps from
the global initial state, and the model is inconsistent. If it returns SAT, it means that there exists
a solution, i.e., a path in the state machines which conforms to the message sequence in the
sequence diagram and is reachable by a path of length at most k from the global initial state.
In this case, the SAT solver additionally returns a logical model of the formula representing the
problem, which the Solution Builder translates to a solution of the k-SDCHECK instance using
the Variable Map. We then apply our simulation tool to confirm the solution returned by the
Sequence Diagram Checker and to give feedback to the user.

Other than in the evaluation of our approach to the k-SMREACH problem, we also further
process negative instances of the k-SDCHECK problem, i.e., such instances, for which the SAT
solver returned UNSAT. Therefore, we remove the last message from the encoding and call the
SAT solver again. Eventually, the SAT solver returns SAT or no message is left. In the former
case, the remaining sequence diagram is consistent with the state machines. The information
about the removed messages can be used to debug the model.

Figure 5.5.1 shows the graphical user interface of the Sequence Diagram Checker for an
instance of the “Coffee” model. The sequence diagram in this model can be executed by the
state machines up to and including the symbol wantCoffee sent from bob to cm. The interface
allows the user to step through a whole trace by coloring the current messages, transitions, and
states, which can be very useful in order to understand the interplay between the different state
machines and it provides valuable debugging assistance.

5.5.1 Evaluation with Crafted Instances

Similarly as for the k-SMREACH problem, we tested the implementation of our approach to
solving the k-SDCHECK problem using instances based on the set of crafted models described
in Section 5.2. For each model, we created a set of consistent instances and a set of inconsis-
tent instances by adding a consistent, respectively an inconsistent, sequence diagram, and by
setting the bound k to the values 3, 15, 100, and 500. The sequence diagrams are depicted in
Figures 5.5.2, 5.5.3, and 5.5.4.

Recall that the encoding of instances of the k-SDCHECK problem is based on k′, which
denotes the bound k plus the number of positions required by the sequence diagram. More
specifically, k′ equals k plus four times the number of messages in the sequence diagram (cf. the
description of the encoding in Section 4.4). The encoding of the k-SDCHECK problem hence
iterates each constraint up to k′ other than only up to k. For this reason, the numbers of clauses
and variables are higher for the encodings of instances of the k-SDCHECK problem than they
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alice:PhD cm:CM tec:Technician

orderCoffee

error

requestFix

rejectAppointment

requestFix

confirmAppointment

alice:PhD bob:PhD cm:CM Tec:Technician

orderCoffee

error

requestFix

orderCoffee

coffeeDone

neg

Figure 5.5.2: Two sequence diagrams for the crafted k-SDCHECK instances based on the model
in Figure 5.2.1. The left diagram models a desired scenario, the right diagram models an unde-
sired scenario.

user:User client:Client server:Server

uMail
sFrom

ok
uRcpt

sRcpt
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uData
sData
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user:User client:Client server:Server

uMail
sFrom
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uRcpt

sRcpt
uData

sData
ok

neg

Figure 5.5.3: Two sequence diagrams for the crafted k-SDCHECK instances based on the model
in Figure 5.2.2. The left diagram models a desired scenario, the right diagram models an unde-
sired scenario.

are for instances of the k-SMREACH problem although the parameter values for creating the
instances are the same.

Details on the outcomes of the test cases are presented in Tables 5.5.1, 5.5.2, and 5.5.3. The
first two lines indicate the values for k and k′.

Except for the instances created from the model “Mail” all instances that were created con-
sistently were found to be consistent already for k set to 3. It can be seen from the state machines
in Figure 5.2.1 with the left hand sequence diagram in Figure 5.5.2 modeling the case “Coffee”
and from the state machines in Figure 5.2.3 with the upper sequence diagram in Figure 5.5.4
modeling the case “Philosophers” that the first message of the sequence diagram occurs as ef-
fect in some outgoing transition of the initial state of some state machine. However, this is not
the case for the sequence diagram for the model “Mail” in the left hand part of Figure 5.5.3
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p1:P1 f1:F1 p2:P2 f2:F2 p3:P3 f3:F3

p1-acquire-f1

p2-acquire-f2

p3-acquire-f3

p1:P1 f1:F1 p2:P2 f2:F2 p3:P3 f3:F3

p1-acquire-f1

p2-acquire-f2

p3-acquire-f3

p1-acquire-f2

p2-acquire-f3

p3-acquire-f1

neg

Figure 5.5.4: Two sequence diagrams for the crafted k-SDCHECK instances based on the model
in Figure 5.2.3. The top diagram models a desired scenario, the bottom diagram models an
undesired scenario.

and the set of state machines depicted in Figure 5.2.2. Here, the state identified of state machine
Client has to be reached in order start the path represented by the sequence diagram. Therefore,
with k set to 3, the instance is inconsistent, but with k set to 15 or higher, it is consistent.

As can be expected, the numbers of clauses, the numbers of variables, the encoding times,
and the solving times increase with increasing values for k. For inconsistent instances, we report
two values as solving time. One indicates the time taken to determine inconsistency for the full
message sequence and the other indicates the time taken to find the first message where the
sequence starts to be inconsistent. The former only consists of solving one unsatisfiable SAT
instances, but the latter consists of solving one or more unsatisfiable SAT instances and at most
one satisfiable instance. However, the more messages are removed, the smaller the instance
becomes with respect to the number of clauses and the number of variables. The encoding times
are considerably higher for inconsistent instances due to the implementation. It re-encodes each
instance multiple times in order to find the first failing message. The numbers stated represent
the sum over all these encodings. This re-encoding is not necessary – a faster implementation
would instead track all added clauses and then remove those clauses that relate to the removed
message(s).

For consistent instances we further report the length of the path leading to the execution
of the sequence diagram. This length is expected to be 0 or more for the instances “Coffee”
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and “Philosophers” and 5 or more for the instance “Mail”, as can be verified by the models
depicted in the respective figures. Our tool reports longer paths for higher values of k because
the number of possible solutions increases with increasing values of k and the SAT solver does
not necessarily return the solution with the shortest path.

For inconsistent instances, we report the number of messages that have to be removed in
order to make the sequence diagram k-consistent. Here also the values found by our tool are
as expected. For example, for the inconsistent instance of the model “Mail” as depicted by the
right hand sequence of Figure 5.5.3 and the state machines in Figure 5.2.2 we made a copy of
the consistent instance as depicted by the left hand sequence of Figure 5.5.3 and removed the
sixth message. As expected, for k set to 15, 100, and 500, the last three messages have to be
removed in order for the sequence to be k-consistent. For k set to 3, all messages are removed,
as for this bound, neither of the sequence diagrams in Figure 5.5.3 is k-consistent.

All instances except the instances from the model “Philosophers” with the highest bound
are not only solved in reasonable time but also they are very easy for the SAT solver to handle.
This can be concluded by the solving times being lower than the encoding times. This behavior
cannot be observed in the evaluation of the crafted instances of the k-SMREACH problem (cf.
Section 5.4, Tables 5.4.1, 5.4.2, and 5.4.3). It seems that the presence of the clauses encoding the
sequence diagram allows the SAT solver to work considerably more efficiently on the generated
instances of the k-SDCHECK problem than on the generated instances of the k-SMREACH

problem.
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Coffee consistent
k 3 15 100 500
k′ 27 39 124 524
Number of clauses 7,895 11,375 36,025 152,025
Number of variables 1,508 2,156 6,746 28,346
Path length 0 0 14 12
Encoding time 212 257 510 1,218
Solving time 39 135 507 673

Coffee inconsistent
k 3 15 100 500
k′ 23 35 120 520
Number of clauses 11,309 17,273 59,518 258,318
Number of variables 1,783 2,683 9,058 39,058
Messages removed 2 2 2 2
Encoding time 773 808 1,932 3,564
Solving time 37 62 78 156
Solving time to find message 115 285 3,297 56,981

Table 5.5.1: Results of the evaluation of four instances of the k-SDCHECK problem derived
from the model “Coffee”. All times are given in milliseconds.
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Mail consistent
k 3 15 100 500
k′ 39 51 136 536
Number of clauses 20,459 26,783 71,578 282,378
Number of variables 2,960 3,848 10,138 39,738
Path length n/a 5 14 14
Messages removed 9 n/a n/a n/a
Encoding time 664 366 604 1,548
Solving time 24 125 355 1,132
Solving time to find message 103 n/a n/a n/a

Mail inconsistent
k 3 15 100 500
k′ 35 47 132 532
Number of clauses 18,289 24,613 69,408 280,208
Number of variables 2,659 3,547 9,837 39,437
Messages removed 8 3 3 3
Encoding time 574 564 1,058 4,255
Solving time 19 18 21 76
Solving time to find message 82 314 547 2,857

Table 5.5.2: Results of the evaluation on four instances of the k-SDCHECK problem derived
from the model “Mail”. All times are given in milliseconds.
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Philosophers consistent
k 3 15 100 500
k′ 15 27 112 512
Number of clauses 4,017 7,257 30,207 138,207
Number of variables 1,088 1,916 7,781 35,381
Path length 0 3 25 170
Encoding time 164 210 530 2,128
Solving time 32 76 894 694,491

Philosophers inconsistent
k 3 15 100 500
k′ 27 39 124 524
Number of clauses 7,407 10,647 33,597 141,597
Number of variables 1,919 2,747 8,612 36,212
Messages removed 3 3 3 3
Encoding time 470 536 1,373 3,695
Solving time 13 13 25 114
Solving time to find message 121 131 1,389 781,779

Table 5.5.3: Results of the evaluation on four instances of the k-SDCHECK problem derived
from the model “Philosophers”. All times are given in milliseconds.
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small medium large
nrStatemachines 3 6 12
minNrStates 2 4 8
maxNrStates 3 6 12
minNrTrans 6 16 40
maxNrTrans 9 24 60
probTrigger 0.5 0.3 0.3
probEff 0.5 0.3 0.3
nrSymbols 4 8 16
nrLifelines 4 12 30
nrMessages 2 4 10
probInconsistency 0.6 0.6 0.6
k 3 6 12
k′ 11 22 52

Table 5.5.4: Parameter values to generate random instances of the k-SDCHECK problem.

5.5.2 Evaluation with Random Instances

We randomly generated instances of the k-SDCHECK problem using our tool described in Sec-
tion 5.3 and assigned them to different groups according to their size similarly as we did to
evaluate our approach to the k-SMREACH problem in Section 5.4.

Except for nrStatemachines, all parameter values are set as for the k-SMREACH problem.
The value of nrStatemachines is lower because the size of the instance is regulated by the
nrLifelines, i.e., the number of instantiations of the state machines. The values of nrLifelines
therefore are the same as for nrStatemachines in the evaluation of the k-SMREACH problem.
Further, the parameter probInconsistency denotes the probability for an instance to be tried to
be created as negative instance (cf. Section 5.3). Table 5.5.4 shows the values of all parameters.
A timeout of 300 seconds was set for the SAT solver.

Recall that the encoding of instances of the k-SDCHECK problem is based on k′, which
denotes the bound k plus the number of positions required by the sequence diagram. All con-
straints regarding the consistency therefore refer to positions up to k′ rather than k, which can
result in a considerably higher number of clauses and variables compared to the encoding of the
k-SMREACH problem.

Table 5.5.5 describes the results of our experiments over 1,000 randomly generated instances
in each category. We distinguish both encoding times and solving times by SAT and UNSAT
instances. We further show the average times used to find the failing message in the cases of
UNSAT instances, which includes a call to the SAT solver each time a message is removed
from the sequence diagram, and the average number of removed messages. The numbers of
clauses and the numbers of variables refer to the initial encoding of each instance, not taking
into account the modified instances after unsatisfiability is detected, as the re-encoding results
in less variables and less clauses than the initial encoding due to the removed message(s). We
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distinguish the encoding times by SAT and UNSAT instances because those for UNSAT instances
are considerably higher. As discussed above, this is due to the implementation, which re-encodes
each instance when a message is removed from an inconsistent instance.

Similarly to the results of the evaluation with random instances of the k-SMREACH problem,
the solving times for positive instances are considerably higher than those for negative instances.
This is not surprising as the instances are created in a similar way and with the same values for
the parameters they have in common (except for parameter nrStatemachines, which corresponds
to the parameter nrLifelines of the k-SDCHECK problem). Negative instances are determined
so fast that even multiple calls to the SAT solver in order to find the first failing message, are
faster than determining a positive instance, as can be seen in the fifth line of Table 5.5.5. Note
that finding the first failing message includes solving one positive instances, but this instance is
smaller than the initial (negative) instance due to the removal of messages.

The numbers of clauses and the numbers of variables are much higher than those in the re-
spective groups of randomly created instances of the k-SMREACH problem (cf. Table 5.4.5)
because all constraints have to be encoded up to k′ for the k-SDCHECK problem other than
only up to k for the k-SMREACH problem. Like for the crafted instances, we also report the
path lengths for the consistent instances and the numbers of removed message for the inconsis-
tent instances. The former unsurprisingly increases with increasing values for k. The latter is
around half of the number of messages, which is not surprising given that we create inconsistent
instances by adding an arbitrary message at a position chosen uniformly at random.

Similarly as for the k-SMREACH problem, even though the number of variables and the
number of clauses increase considerably, the SAT solver still manages to solve the instances
with acceptable runtimes except for the instances of the group “large”, where more than one
third timed out. We conclude that the overall runtimes for our randomly created instances are
good even if executed on standard hardware. The overall runtime for UNSAT instances can
probably be improved by using a binary search to find the failing message instead of removing
trailing messages one after another. This way, the SAT solver has to be called less often.
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small medium large
Number of instances SAT 399 437 101
Number of instances UNSAT 601 563 540
Number of instances timeout 0 0 359
Average number of clauses 3,940 78,800 2,661,457
Average number of variables 695 6,161 80,734
Average number of removed messages UNSAT 1.5 2.4 5
Average path length SAT 0.7 2.4 7.7
Average encoding time SAT 11 142 3,858
Average encoding time UNSAT 18 335 19,130
Average solving time SAT 3 210 149,072
Average solving time UNSAT <1 45 3,302
Average solving time UNSAT find message 2 126 103,985

Table 5.5.5: Results over 1,000 randomly generated instances of the k-SMREACH problem for
each category. All times are given in milliseconds.
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5.6 Evaluation of the Sequence Diagram Merger

The prototype implementation of our approach for solving the SDMERGE problem is an exten-
sion of the workflow described in Figure 5.1.1. It consists of four modules: difference provider,
SAT encoder, SAT solver, and model merger. All modules except for the SAT solver are im-
plemented in Java. The difference provider and the model merger are based on an implementa-
tion of the tMVML metamodel (cf. Section 3.1) represented as Ecore model within the Eclipse
Modeling Framework (EMF).5 To solve SAT instances, we use the off-the-shelve SAT solver
PICOSAT [14].

Figure 5.6.1 depicts the interaction between these modules. First, the diff provider prepares
the instance to be more easily processable for the SAT encoder. Therefore, it takes a tMVML
conformant trigger-consistent sequence diagram and two revisions thereof as input and calcu-
lates the set of atomic differences based on EMF Compare’s three-way comparison.6 Even if
EMF Compare reports different kinds of atomic changes, such as add, update, or delete, our
current implementation processes only those changes where messages or lifelines are added to
the sequence diagrams. The differences are then analyzed and a table that implements the allow
function is created.

The SAT Encoder receives as input three sequence diagrams and the table implementing the
allow function, and generates the encoding as described in Section 4.2. The non-CNF part of the
encoding is converted to CNF on-the-fly. As explained in Section 4.2, each message and each of
its allowed positions according to the allow function is represented by a Boolean variable. This
information is maintained in a table that maps message/position pairs to Boolean variables and
vice versa.

Next, the SAT solver processes the generated formula and either returns UNSAT or a logical
model consisting of a Boolean variable assignment. If a logical model is found, it is handed
over to the merger. The merger identifies the variables that encode message/position pairs and
maps them back to messages and positions. Based on this information, a consolidated version
conforming to the tMVML metamodel is retrieved by copying the original sequence diagram and
inserting the added messages of the two revisions at their respective positions. This consolidated
version is verified for its trigger-consistency and added to the set of found solutions.

In practical applications, model developers are likely to be interested in more than one so-
lution to an instances of this problem. They may want to retrieve different consistent merges in
order to choose one that fits their intentions. Therefore, we try to find another solution by adding
the negation of the logical model to the previous encoding. This way we make sure that in the
following iteration a different logical model, if one exists, is found. This procedure is repeated
until the SAT solver returns UNSAT, i.e., no more solutions exist.

We evaluated our approach based on the crafted benchmark set described in Section 5.2
which consists of three different families modeling a coffee machine, a simplified version of the
SMTP protocol, and a variant of the dining philosophers problem. We defined five versioning
scenarios for each of these families. For each versioning scenario, we distinguished three dif-
ferent cases with respect to the state machines related to the lifelines. In real-life development

5http://www.eclipse.org/modeling/emf/
6http://wiki.eclipse.org/EMF_Compare
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Figure 5.6.1: Implementation workflow to retrieve solutions for instances of the SDMERGE

problem.

scenarios, it can happen that a lifeline is sketched without having a state machine specified. If
no state machine is specified for a lifeline, we assume a state machine that contains only one
state from which any action symbol can be received, similar to the state machine “User” shown
in Figure 4.2.1 of Section 4.2. The cases we distinguish therefore are (1) all lifelines are fully
specified by state machines, (2) some lifelines are specified by state machines, and (3) no lifeline
is specified by a state machine.

The number of solutions when no state machine is specified equals the number of time-
consistent solutions described in Observation 4.2.3 for the same sequence diagrams because
time consistency disregards the state machine view. This number constitutes an upper bound
to the number of solutions. In practice, it is drastically reduced by the constraints imposed by
trigger consistency with the state machines.

The state machines featured in three different sets of problem instances are described in
Section 5.2. The sizes of these state machines are described in Table 5.2.1. For each set, we con-
structed five different versioning scenarios as sequence diagrams. The sizes of these sequence
diagrams are shown in the first six rows of Tables 5.6.1, 5.6.2, and 5.6.3. In particular, they
show the names, the number of lifelines, and the number of messages of each instance’s original
sequence diagram and its two revisions.

These tables further show statistics on the numbers of solutions and on the runtimes of the
different instances. For those instances whose number of solutions exceeded 1,000 we stopped
the algorithm when 1,000 solutions were found. For each solution we confirmed its correctness
as described in Section 5.1.

As could be expected, the evaluation shows that in general a specification of all state ma-
chines results in few solutions quickly found and a specification of few state machines results
in many solutions. Some instances were created in a way that no merge is possible, which was
also returned by the solver. As expected, when no state machines are specified, the number of
merges adhered to the number of merges defined by formula discussed in Observation 4.2.3.

The runtimes are feasible for practical applications whenever there are few solutions. To deal
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Coffee
Instance 1 2 3 4 5

Do
Number of lifelines 2 2 2 2 2
Number of messages 5 5 0 5 5

Dα
Number of lifelines 2 2 2 2 2
Number of messages 6 6 2 9 9

Dβ
Number of lifelines 2 2 2 2 2
Number of messages 9 6 2 9 9

All state machines
Number of solutions 2 0 2 2 34
Runtime <1 <1 <1 <1 2.9

Some state machines
Number of solutions 2 0 6 70 34
Runtime <1 <1 <1 6.0 2.9

No state machine
Number of solutions 5 2 6 70 70
Runtime <1 <1 <1 6.0 6.0

Table 5.6.1: Overview of the SDMERGE instances derived from the model “Coffee”, their
numbers of solutions, and their runtimes in seconds.

Mail
Instance 1 2 3 4 5

Do
Number of lifelines 3 3 3 3 3
Number of messages 5 5 5 5 5

Dα
Number of lifelines 3 3 3 4 4
Number of messages 7 8 14 14 14

Dβ
Number of lifelines 3 3 3 3 3
Number of messages 12 15 14 16 18

All state machines
Number of solutions 1 0 2 2 2
Runtime <1 <1 <1 <1 1.5

Some state machines
Number of solutions 1 2 2 2 2
Runtime <1 <1 <1 <1 <1

No state machine
Number of solutions 55 110 >1,000 >1,000 >1,000
Runtime 3.8 8.0 205 215 232

Table 5.6.2: Overview of the SDMERGE instances derived from the model “Mail”, their num-
bers of solutions, and their runtimes in seconds.

with the existence of too many solutions, an extension of our approach could accept additional
constraints from the developers. For example, the developers may not want to consider all
possible interleavings of messages that have been added between two messages of the original
sequence diagram as the intended addition to a sequence diagram by one developer may be a
scenario that they do not want to be interrupted.
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Philosophers
Instance 1 2 3 4 5

Do
Number of lifelines 4 4 4 4 4
Number of messages 0 0 0 0 0

Dα
Number of lifelines 4 4 4 4 4
Number of messages 2 1 9 9 9

Dβ
Number of lifelines 4 4 4 4 4
Number of messages 5 5 9 5 5

All state machines
Number of solutions 6 0 506 253 0
Runtime <1 <1 90 33 <1

Some state machines
Number of solutions 15 5 >1,000 >1,000 >1,000
Runtime 1.4 <1 201 167 168

No state machine
Number of solutions 15 5 >1,000 >1,000 >1,000
Runtime 1.8 <1 164 120 121

Table 5.6.3: Overview of the SDMERGE instances derived from the model “Philosophers”, their
numbers of solutions, and their runtimes in seconds.
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Chapter 6

Conclusions

We conclude this work with a summary of the main results and a discussion of future research
directions. The work presented in this thesis was motivated by the increasing valorization of
software models driven by the new paradigm of model-based software engineering. In their
new role as first-class development artifacts, it is imperative for the models to have a formal
semantics. Based on this semantics, consistency problems that occur during the evolution of a
system can be identified and solved.

We formalized a modeling language based on the popular but mostly informal modeling
language UML. To this end, we first described its syntax and behavioral aspects in a mathemat-
ical notation and then used the formal language of propositional logic to express some semantic
properties regarding model consistency. Using this formalization, we identified three problems
that can occur in models using this language; the SDMERGE problem, the k-SMREACH prob-
lem, and the k-SDCHECK problem. The SDMERGE problem asks whether two modifications
of a sequence diagram can be merged into a new sequence diagram in a way that preserves con-
sistency with the state machines of the model. The k-SMREACH problem asks whether in a set
of state machines some combination of states is reachable in k steps from some global state. The
k-SDCHECK problem asks whether the communication between a given set of state machines
represents the sequence of messages defined by a sequence diagram, i.e., whether the two views
are k-consistent.

We proposed an encoding to the satisfiability problem of propositional logic for each of
the problems. This is a popular approach to NP-complete problems in order to solve them by
off-the-shelf solvers. We also used this approach to solve the SDMERGE problem, which is
tractable, in order to obtain a basis that we can use for future, possibly intractable, extensions of
this problem.

We further showed the computational complexity of each of the problems: P-membership
for the SDMERGE problem and NP-completeness for the other two problems.

We evaluated our approaches based on a set of handcrafted models and on grammar-based
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whitebox fuzzing, for which we developed a random model generator. The implementation was
based on the Eclipse Modeling Framework (EMF) [49] and the modeling language we expressed
as Ecore model. The results of our experiments showed that we can solve instances of these
problems of reasonable size on standard hardware with freely available SAT solvers despite of
the generated instances of the SAT problem being relatively large.

We draw the following conclusions from this work:

• A concise formalization and a formal semantics of a modeling language are essential
for the identification and for solving verification problems. Only if the meaning of the
concepts is fixed, the properties they should satisfy can be unambiguously formulated and
then be checked.

• Propositional logic is a practical host language to solve problems in the area of model
verification. The similarity between the encoding of the k-SMREACH problem and of the
k-SDCHECK problem shows how, by small adaptations, the encoding of one problem can
be used for other problems in this area.

• An off-the-shelf SAT solver solves SAT instances generated from instances of the dis-
cussed verification problems in less than one second for randomly generated instances
containing up to 12 state machines with a total of up to 72 states and 288 transitions, re-
gardless of the instance being positive or negative. Larger instances, with up to 30 state
machines and with a total of up to 360 states and 1800 transitions require more time, in
particular when they are positive. Some negative instances of this size could be solved in
less than five seconds, but the positive instances solved required around 2.5 minutes.

• The definition of the modeling language used in this work contains basic modeling con-
cepts of the UML. However, despite leaving out more complex modeling features, two of
the problems we identified are already NP-hard. It can be expected that extensions of the
language result in even harder problems that have to be tackled with different approaches.

We proceed with discussing some open issues that follow immediately from this work and
some long-term research topics in this area.

6.1 Open Issues

In the following we describe some future work regarding the three problems discussed in this
work and regarding the evaluation of our approach.

6.1.1 The SDMERGE Problem

Our definition of the SDMERGE problem (cf. Section 4.2) is restricted in at least two ways.
First, it is based on the weaker notion of trigger consistency rather than on full consistency
(cf. Definitions 3.3.3 and 3.3.13). Second, it allows only additions as changes, i.e., it does not
consider deletions. Further, as can be seen from our evaluation problem (cf. Section 5.6), the
set of solutions can become very large, which is impractical. Direct interaction with the human
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modeler can help to restrict the set of solutions when too many are available. Also, such an
interaction could provide means to weaken the constraints when no solution can be found.

An approach that considers full consistency (or k- consistency) and changes that can consist
of both additions and deletions would be more useful in practice. However, such extensions also
pose new challenges when dealing with this problem. Using the semantics of full consistency
other than trigger consistency implies taking into account the communication between state
machines, which considerably increases the state space that has to be considered. This possibly
lifts the computational complexity of the problem.

In order to solve such a variation of the SDMERGE problem based on k-consistency, ideas
from the encodings of the k-SMREACH problem and the k-SDCHECK problem (cf. Sections 4.3
and 4.4) could be used, since these encodings include the semantics of k-consistency.

Dealing with deletions of messages as part of a revision of a sequence diagram imposes
new challenges in interpreting the intentions of the modelers. For example, it could happen that
modeler A adds a sequence of messages to the end of a sequence of messages of the original
sequence diagram, modeler B deletes the last message of the original sequence diagram, but this
last message is required in order to execute the sequence added by modeler A. Such contradictory
changes can also happen when considering only additions as it could happen that no interleaving
exists that contains all added messages of both modelers. However, when also considering
deletions this may be even more likely to happen. Hence, it will be necessary to develop a
method to capture the intention of the modelers whenever consistent merges are not possible.
This could based on an interaction with the modeler, where they can add their intention via a
graphical interface and instruct the tool to overrule one change or another.

An explicit expression of the modeler’s intention could also help to decrease the number
of possible merges, which can become very high (cf. Section 5.6). For example, the intention
of a developer when adding a sequence of messages to a sequence diagram may be to keep
this sequence atomic, i.e., without interleavings of another message sequence. Such constraints
could be added graphically, e.g., by adding a combined fragment like “critical” defined by the
UML [62].

6.1.2 The k-SMREACH and k-SDCHECK Problems

For these two problems, the communication between state machines (respectively, instances of
state machines) takes place by multimessages, where a multimessage contains a set of messages
sent by one state machine and received by different state machines. However, it is not clear
what sending and receiving multimessages means for sequence diagrams. In our definitions
(cf. Section 3.2) a sequence diagram contains only single messages. For the formulation of the
k-SDCHECK problem this did not pose any problem, because a message is also a multimessage.
It would be interesting to define a notion of sending and receiving multimessages in sequence
diagrams and to clarify their impact on the notion of consistency with the state machines.

Another open issue is dealing with the bound k, which strongly influences not only the size of
the encoding but also the performance of the SAT solver, as we could see from our experiments
on crafted instances (cf. Sections 5.4 and 5.5). It would therefore be useful to have a method to
determine a lower bound k̂ for k such that a k̂-inconsistent model remains k̂-inconsistent for k
greater than k̂.

115



6.1.3 Evaluation

The results of our evaluations highly depend on the employed SAT solver. Depending on the
solving techniques implemented by the SAT solver it may perfom better or worse on one type of
encoding than on another. It could be interesting to compare the performance of different SAT
solvers on our instances.

Given the lower computational complexity of the SDMERGE problem, it could be interesting
to compare the symbolic approach to an implementation of the algorithm described in the proof
of Theorem 4.2.1.

Further, the random generation of negative instances of the k-SDCHECK problem could be
implemented in different ways. In this work, we inserted a random message at a random position
assuming this to likely result in an inconsistent model. However, this method resulted in negative
instances that were very easy to solve (cf. results in Section 5.5). In real life, it can be expected
that an error introduced by a human modeler is not that random. For instance, they may rather
insert a message that does indeed occur as trigger, respectively effect, in the state machines of
the connected lifelines, but that only cannot be executed at the respective position. It could be
interesting to see whether such inconsistencies are harder to find by the SAT solver.

6.2 Beyond SAT

In this work, we considered software models that implement a subset of the concepts suggested
by popular modeling languages like the UML. This way, we built a foundation of formal seman-
tics for a modeling language and of symbolic approaches to the consistency problems encoun-
tered. These problems were inside the complexity class NP and therefore reasonably solvable
by a SAT solver. However, many practical extensions to both the modeling language and the
problems described in this work can be found that probably result in problems that are of higher
computational complexity. Also, problems other than verification of consistency can be identi-
fied, which also can be of higher computational complexity.

In this section, we present some ideas for extensions of the language and the problems
discussed in this work. We propose to use quantified Boolean formulas [76] as a host language to
solve these problems if they are PSPACE-complete. We further summarize our previous results
in the area of solution extraction for QBF, which contributed to the applicability of QBF toolsets.

Possible extensions and new problems include the following.

6.2.1 Additional Language Concepts

Other language concepts can be added to our modeling language in order to make it more useful
in practice. These include hierarchical states for state machines, combined fragments, invariants,
and guards for sequence diagrams, and other types of diagrams like the activity diagram, all
suggested by the UML Superstructure [62]. With these concepts added, we will have to extend
the definition of consistency, and the computational complexity of the consistency problems
discussed in this work may increase.
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6.2.2 Extensions of the k-SMREACH and k-SDCHECK Problems

In this work, we considered k-bounded formulations of these two problems (cf. Sections 4.3
and 4.4). The chosen bound strongly influences not only the size of the encoding but also the
performance of the SAT solver, as we could see from our experiments on crafted instances
(cf. Sections 5.4 and 5.5). It will therefore be useful to investigate unbounded formulations
of these problems and to determine their computational complexity. Depending on the result,
solving the problems based on a QBF encoding can be attempted.

6.2.3 Identification of New Problems

The following are two examples for new problems that can occur during the evolution of soft-
ware models. First, in automated merging environments like model versioning systems, it would
be useful to have the merging tool compute a repair strategy whenever two versions of a model
cannot be consistently merged. The need for assisted merging environments has already been
identified by France and Rumpe [52] and Almeida da Silva et al. [37] and an approach to consis-
tency detection and repair in a multi-view environment has been suggested by Macedo et al. [90],
who employed a SAT solver for these tasks. For the models considered in our previous work,
such a repair strategy could include the deletion or addition of messages or a modification of the
state machines. Second, keeping state machines consistent with a set of sequence diagrams or
creating a new set of state machines that is consistent with a given set of scenarios described in a
set of sequence diagrams can be considered a synthesis problem. A tool solving such problems
could help the developer create a software system from a set of scenarios. Works by Bloem et
al. [16–18] could serve as basis for such an approach.

6.2.4 QBF as Host Language

In this work, we have shown that encodings to the SAT problem and the application of SAT
solvers work well to solve verification problems of software models that are in the complexity
class NP. To solve problems of higher complexity, a similar approach is to use symbolic methods
like encodings to QBF for those problems that are PSPACE-complete. Such encodings allow to
employ existing tools in a similar way as we employed a SAT solver for problems discussed in
this work.

Practical applications of QBF as host language exist for problems in the areas of hardware
debugging [1, 91], verification [38, 111], planning [104], two-player games [57], electronic de-
sign automation [70, 81], among others. In particular, QBF encodings proposed for bounded
model checking [38,71] could be interesting for our future work with encoding problems occur-
ring in software model engineering.

Quantified Boolean logic extends propositional logic (cf. Section 2.2 by allowing quanti-
fiers over Boolean variables. However, since the determination of truth or falsity of a QBF is a
PSPACE-complete problem, dealing with the solution of a QBF is more difficult than it is for
a formula in propositional logic. A solution of a QBF can be represented as a control strat-
egy [57] expressed by an algorithm that computes assignments to universal variables rendering
the QBF false, respectively existential variables rendering the QBF true, or as a control cir-
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cuit [4] expressed by Herbrand functions for a false QBF, respectively Skolem functions for a
true QBF.

Similarly to a model of a propositional formula, a control strategy or a circuit can be mapped
to the solution of a problem encoded as a QBF, for example, the system to be synthesized.
Therefore, efficiently dealing with solutions of a QBF is crucial for the practical usefulness of
a symbolic encoding of a problem into a QBF. State-of-the-art approaches to obtain strategies
or circuits require traversing a Q-resolution proof [77] of a QBF after being returned by a QBF
solver such as DepQBF [88]. However, for many real-life applications, these Q-resolution proofs
are too large to handle.

To deal with this problem, much effort has been spent recently in the QBF community. In
particular, the Q-resolution calculus has since been extended in different ways. Balabanov and
Jiang [4] proposed long-distance Q-resolution (LQ-resolution), which allows certain tautological
resolvents for the deduction rules of Q-resolution, and Van Gelder proposed to add resolution
over universal variables to the rules of Q-resolution (QU-resolution) [119]. Based on these
results, we showed the following in other work.

• LQ-resolution allows for exponentially shorter proofs compared to Q-resolution for a fam-
ily of QBFs [41, 42].

• LQ-resolution implemented in the popular solver DepQBF results in better performance
with respect to the number of backtracks, resolution steps, and learned clauses [41].

• Strategy extraction as proposed by Goultiaeva et al. [57] can be applied in the same manner
to LQ-resolution [41, 42].

• The extraction of circuits from LQ-resolution proofs is possible in time polynomial in the
size of the proof [5].

• LQ-resolution and QU-resolution are incomparable with respect to their proof complex-
ity [6].

• A proof system that combines LQ-resolution with QU-resolution is even more powerful
than any of the two [6].

Our future work will hence include the identification of harder problems arising in the area
of software modeling. Building on the propositional encodings presented in this work, we will
translate these problems to a more powerful host language. QBF will be a natural choice to serve
as such a language, being a natural extension of propositional logic, given the recent advances
in QBF solving and certification, and given the availability of off-the-shelf toolsets. Also, the
previously mentioned existing approaches to solving similar problems with QBF encodings can
be used as references. It will be interesting to see how recent efforts in QBF solving, in partic-
ular our previous work on efficient solution extraction, affects practical results in solving such
problems and whether state-of-the-art QBF solvers are capable to solve them in reasonable time.
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