
DIPLOMARBEIT

Development of a Multicomponent
Adsorption Solver in OpenFOAM

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Diplom-Ingenieurs unter der Leitung von

Ass.Prof. Dipl.-Ing. Dr. Michael Harasek

und der Betreuung von

Projektass. Bahram Haddadi Sisakht, MSc.
und

Projektass. Dipl.-Ing. Christian Jordan

am

E166 Institut für Verfahrenstechnik, Umwelttechnik und Technische
Biowissenschaften

eingereicht an der

Technischen Universität Wien

Fakultät für Maschinenwesen und Betriebswissenschaften

von

Clemens Gößnitzer
Matrikelnummer 1126267

Große Neugasse 22–24/1/15, 1040 Wien

Wien, im März 2016

C.Gößnitzer

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract

The aim of this thesis is to implement multicomponent adsorption models in the cus-
tom OpenFOAM computational fluid dynamics solver adsorpFoam developed at Vienna
University of Technology. This includes equilibrium and kinetics models. For this, two
multicomponent equilibrium models, the Extended Langmuir Model ELM and the Ideal
Adsorbed Solution Theory IAST, are used. They solely depend on single-component
isotherm data. For interspecies-dependent kinetics, a diffusion-based approach is cho-
sen.
As the results of a zero-dimensional model show, the quality of prediction of equilibria
is dependent on the chosen system of species. The model predictions are compared with
experimental data of six multicomponent systems taken from literature.
If experimental data are available, a simple extension to the ELM is possible. This
is done by introducing empirical interaction coefficients to account for competitive ad-
sorption, which improves the prediction of most systems. For this approach, data of
multicomponent adsorption experiments have to be obtained.
OpenFOAM, an open-source suite of CFD programs, is used in this thesis. The main
reasons for this choice are its openness and extensibility.
The implementation in OpenFOAM includes the adaptation of the governing equations,
calculation of adsorption equilibrium loading and rate of adsorption. Additionally, the
released heat of adsorption increases the temperature distribution of the adsorbing walls.
If the calculated rate of adsorption leads to nonphysical results, e.g. more mass adsorbing
in one cell than available, limiters are applied.
At the end, a working multicomponent adsorption model was included in the solver
adsorpFoam. It allows to define multiple adsorbing sites with different parameters per
species and site. This implementation is a first step towards multicomponent mass
transfer and serves as a basis for further work on the three-dimensional simulation of
multicomponent adsorption.

b

Kurzfassung

In dieser Arbeit wird die Implementierung von Mehrkomponenten-Adsorptionsmodellen
in den Löser für numerische Strömungssimulation (Computational fluid dynamics CFD)
adsorpFoam, entwickelt an der Technischen Universität Wien, beschrieben. Es werden
Gleichgewichts- und Kinetik-Modelle präsentiert. Die zwei verwendeten Modelle für das
Gleichgewicht von Mehrkomponenten-Adsorption sind einerseits das Extended Langmuir
Model ELM, und andererseits die Ideal Adsorbed Solution Theory IAST. Diese beiden
Modelle basieren auf Einzelkomponenten-Isothermen. Um gegenseitige Beeinflussung
der Spezies bei der Adsorption zu berücksichtigen, wurde ein Kinetik-Modell entwickelt,
welches auf Diffusion basiert.
Die Ergebnisse eines null-dimensionalen Modells zeigen, dass die Abweichung zwischen
Modellvorhersage und experimentellen Ergebnis der ermittelten Gleichgewichte von den
beteiligten Molekülen abhängt. Die Simulationen wurden mit sechs Mehrkomponenten-
Systemen verglichen. Die Daten zu den Experimenten wurden der Literatur entnommen.
Wenn experimentelle Daten zur Verfügung stehen, kann das Extended Langmuir Model
um sogenannte Interaktionskoeffizienten erweitert werden. Diese empirischen Parameter
werden aus den Messergebnissen berechnet und berücksichtigen die gegenseitige Beein-
flussung bei der Adsorption. Für diese Erweiterung benötigt man Daten aus Mehrkom-
ponenten-Adsorptionsversuchen.
Das verwendete Programm OpenFOAM ist eine frei verfügbare Sammlung von CFD-
Lösern. Die freie Verfügbarkeit des Quelltexts und Erweiterbarkeit waren ausschlaggeb-
end, dieses Programm zu verwenden.
Die Implementierung in OpenFOAM umfasst u.a. die Anpassung der Erhaltungsgle-
ichungen, Berechnungen von Gleichgewichtsbeladungen und Adsorptionraten. Zusät-
zlich erhöht die freigesetzte Adsorptionswärme die Temperaturverteilung der adsor-
bierenden Wände. Wenn die berechnete Adsorptionsrate zu physikalisch inkorreten
Ergebnissen führen würde, müssen Limiter angewandt werden.
Es wurde ein funktionierendes Modell für Mehrkomponenten-Adsorption in den Löser
adsorpFoam implementiert. Es ist möglich, mehrere adsorbierende Oberflächen zu de-
finieren, und die Parameter pro Komponente und Oberflächen zu wählen. Dies ist der
erste Schritt hin zu einer allgemeinen Lösung für Stoffübergang in der CFD und die
Implementierung dient als Basis, um weitere Modelle in der Zukunft hinzufügen zu kön-
nen.

c

Danksagung

Ich möchte mich an dieser Stelle bei all jenen bedanken, die diese Diplomarbeit er-
möglicht haben:
Meine Betreuer Bahram und Christian haben mich stets unterstützt, wenn ich einmal
nicht weiter wusste. Danke für die interessanten Gespräche abseits von CFD, Program-
mieren und Adsorption und für das gute Essen im Büro. Christian hat sich weiters die
Mühe gemacht, diese Arbeit Korrektur zu lesen.
Mein Dank gilt auch Michael, der zwar immer beschäftigt ist, trotzdem aber Zeit für
mich gefunden hat, um mir wertvolle Hinweise zu geben.
Danke auch an Benjamin, der mich bei der intensiven Fehlersuche unterstützt hat. Zwei
Paar Augen sehen mehr als eines.
Weiters möchte ich den Kollegen am Institut für Strömungsmechanik und Wärmeüber-
tragung, insbesondere Georg, Herbert und Johannes, dafür danken, dass sie mein Inter-
esse an Thermodynamik, Strömungsmechanik und der Linux-Kommandozeile geweckt
und verstärkt haben.
Respekt und Anerkennung gebührt meinen Eltern, die mich immer unterstützen und
ohne deren Hilfe und Motivation mein Leben ganz anders verlaufen wäre. Danke für
alles!

d

Contents

Abstract b

Kurzfassung c

Danksagung d

1. Introduction 6

2. Thermodynamics of Adsorption 8

2.1. Adsorption Equilibrium . 10
2.1.1. Single-component Adsorption . 12
2.1.2. Multicomponent Adsorption . 14

2.2. Adsorption Kinetics . 18
2.2.1. Linear Driving Force . 19
2.2.2. Diffusion-based Kinetics . 19

3. Implementation in Octave 21

3.1. Calculation of Adsorption Coefficients . 21
3.2. Extended Langmuir Model . 21
3.3. Extended Langmuir Model with Interaction Coefficients 21
3.4. Ideal Adsorbed Solution Theory . 22
3.5. Diffusion Kinetics . 24

4. Validation and Results in Octave 25

4.1. Validation . 25
4.2. Equilibrium Models . 25

4.2.1. Binary Systems . 26
4.2.2. Ternary Systems . 32
4.2.3. Comparison between ELM and ELM with IAC 36

4.3. Kinetics Models . 36

5. Computational Fluid Dynamics 40

5.1. Mathematical Fundamentals . 40
5.1.1. Discretisation . 41
5.1.2. Finite-difference Method . 45
5.1.3. Weighted Residual Methods . 45

5.2. Finite-volume Method . 47
5.2.1. Interpolation . 47

Contents

5.3. Conservation Equations . 49
5.3.1. Total Mass Balance . 50
5.3.2. Partial Mass Balance . 50
5.3.3. Momentum Balance . 50
5.3.4. Energy Balance . 51

5.4. Pressure-velocity Coupling . 52
5.4.1. PISO Algorithm . 52
5.4.2. SIMPLE Algorithm . 53
5.4.3. PIMPLE Algorithm . 53

5.5. Prediction of Material Properties . 53
5.5.1. Diffusion Coefficients in Gas Mixtures 55

6. Introduction to OpenFOAM 56

6.1. User Side . 56
6.1.1. Preprocessing . 57
6.1.2. Starting the Simulation . 57
6.1.3. Postprocessing . 57

6.2. Programming Side . 57
6.2.1. General Structure of a Solver . 57
6.2.2. File Input and Output . 58
6.2.3. Data Types . 61
6.2.4. Partial Differential Equations . 61
6.2.5. Turbulence Modelling . 61

6.3. Solver for Flows with Chemical Reactions 61
6.4. Solver for Flows with Single-component Henry Adsorption 63

6.4.1. Adaptation of Conservation Equations 63
6.4.2. Temperature and Species Boundary and Initial Conditions 65

7. Implementation in OpenFOAM 66

7.1. Reading Input Parameters . 66
7.2. Adsorption Calculations . 67

7.2.1. Preparations . 67
7.2.2. Calculating the Adsorption Equilibrium 68
7.2.3. Calculating the Rate of Adsorption 68
7.2.4. Applying Limiters . 69
7.2.5. Division by Area . 69
7.2.6. Adsorption Enthalpy . 69
7.2.7. Pitfalls . 70

7.3. Adaptation of Conservation Equations . 71
7.4. Information Output . 71
7.5. Boundary Conditions . 72
7.6. Example Case Setup . 72

7.6.1. The adsorptionProperties Dictionary 72

8. Validation and Results in OpenFOAM 75

8.1. Validation . 75
8.2. Test Cases . 77

8.2.1. Cuboid . 77
8.2.2. Packed Bed . 78

f

Contents

9. Summary, Discussion and Outlook 91

Bibliography 93

A. Octave i

A.1. Implementation Code . i
A.2. Results of Implementation in Octave . ix

B. Example Case Setup in OpenFOAM xvi

B.1. 0 directory . xvi
B.2. constant directory . xx
B.3. system directory . xxvii

Index xxxi

g

List of Figures

2.1. Nomenclature of adsorption . 8
2.2. The six types of physisorption after IUPAC 9
2.3. Four different single-component adsorption isotherms 13

3.1. Flowchart of the algorithm for solving IAST 23

4.1. Adsorbed amount for the system CH4–CO 26
4.2. absolute error of the mole fraction of CO for the system CH4–CO2 27
4.3. absolute error of the adsorbed amount for the system CH4–CO2 27
4.4. Adsorbed amount for the system CH4–CO2 28
4.5. absolute error of the mole fraction of CH4 for the system CH4–CO2 28
4.6. absolute error of the adsorbed amount for the system CH4–CO2 29
4.7. Adsorbed amount for the system CO–H2 29
4.8. absolute error of the mole fraction for the system CO–H2 30
4.9. absolute error of the adsorbed amount for the system CO–H2 30
4.10. Adsorbed amount for the system CO2–CO 31
4.11. absolute error for the system CO2–CO . 31
4.12. absolute error of the adsorbed amount for the system CO2–CO 32
4.13. Adsorbed amount for the system CH4–CO–H2 33
4.14. absolute error of the mole fraction for the system CH4–CO2–H2 33
4.15. absolute error of the adsorbed amount for the system CH4–CO–H2 34
4.16. Adsorbed amount for the system CH4–CO2–H2 34
4.17. absolute error of the mole fraction for the system CH4–CO2–H2 35
4.18. absolute error of the adsorbed amount for the system CH4–CO2–H2 . . . 35
4.19. Adsorbed amount for the system CH4–CO–H2 36
4.20. Adsorbed amount for the system CO2–CO 37
4.21. Diffusion-based kinetics for the system CH4–H2–CO2–CO 37
4.22. Diffusion-based kinetics for the system CH4–CO2–CO 38
4.23. Diffusion-based kinetics for the system CH4–CO 38
4.24. Diffusion-based kinetics with initial loading for the system CH4–CO . . . 39

5.1. Three different types of grids . 42
5.2. Three different discretisation schemes and the actual derivative 43
5.3. The finite-volume method on a two-dimensional grid 47
5.4. Three different interpolation schemes . 48
5.5. Flowchart of the PISO algorithm . 52
5.6. Flowchart of the SIMPLE algorithm . 53
5.7. Flowchart of the PIMPLE algorithm . 54

List of Figures

6.1. Flowchart of a generic OpenFOAM solver 59
6.2. Two-dimensional representation of data points for different field variable

types . 62

7.1. Flowchart of the adsorption implementation 70

8.1. Test and validation case with three cells 75
8.2. Outline of the square tunnel . 77
8.3. Dynamic behaviour of the square tunnel simulation with ELM 78
8.4. Dynamic behaviour of the square tunnel simulation with IAST 78
8.5. Geometry of the packed bed . 79
8.6. Results for pressure and velocity magnitude of the steady-state calculation 81
8.7. Distribution of the gas mass fraction of carbon monoxide in the packed bed 82
8.8. Distribution of the gas mass fraction of methane in the packed bed 82
8.9. Distribution of the gas mass fraction of carbon dioxide in the packed bed 83
8.10. Distribution of the gas mass fraction of hydrogen in the packed bed . . . 83
8.11. Velocity magnitude profile of the packed bed 84
8.12. Distribution of the pressure inside the packed bed 85
8.13. Pressure drop in the packed bed . 85
8.14. Temperature distribution in the packed bed 86
8.15. Distribution of the temperature inside the packed bed 86
8.16. Distribution of the adsorbed amount of carbon monoxide in the packed bed 87
8.17. Distribution of the adsorbed amount at equilibrium of carbon monoxide

in the packed bed . 87
8.18. Distribution of the adsorbed amount of methane in the packed bed 88
8.19. Distribution of the adsorbed amount of carbon dioxide in the packed bed 88
8.20. Adsorbed amount of the three components in the packed bed 89
8.21. Relative total continuity errors for the packed bed simulation 90

2

List of Tables

8.1. Boundary conditions for the packed bed simulation 80

A.1. Adsorbed amount according to experiment, ELM and IAST for the system
CH4–CO . x

A.2. Adsorbed amount according to experiment, ELM and IAST for the system
CH4–CO2 . xi

A.3. Adsorbed amount according to experiment, ELM and IAST for the system
CO–H2 . xii

A.4. Adsorbed amount according to experiment, ELM and IAST for the system
CO2–CO . xiii

A.5. Adsorbed amount according to experiment, ELM and IAST for the system
CH4–CO–H2 . xiv

A.6. Adsorbed amount according to experiment, ELM and IAST for the system
CH4–CO2–H2 . xv

List of Symbols

A area in m2

C adsorption loading in molm−2

Cm mole-based monomolecular layer capacity in molm−2

Cm
m mass-based monomolecular layer capacity in kgm−2

Ceq equilibrium adsorption loading in molm−2

D diffusion coefficient in m2 s−1

F Helmholtz free energy in J

G Gibbs free enthalpy in J

J flux in mol s−1 m−1

Ke Henry coefficient in molm−2 Pa−1

Ki linear driving force coefficient of order i > 0 in s−1 mol1 − im2i − 2

L mobility coefficient in smol kg−1

M molar mass in kgmol−1

R gas constant in Jmol−1 K−1

Ra rate of adsorption in mol s−1

Rd rate of desorption in mol s−1

Ri change of mass of component i in kg s−1

S entropy in JK−1

T temperature in K

U internal energy in J

V adsorbed amount in Ncm3 g−1

ΩD non-dimensional diffusion collision integral

Θ relative uptake

α thermal diffusion coefficient in m2 s−1

List of Symbols

δ relative error

ǫi characteristic energy of component i in J

η interaction coefficient in the extended Langmuir model

γ activity coefficient

µ viscosity in Pa s

µi chemical potential of component i in Jmol−1

φ surface potential of the adsorbed phase per mass of the adsorbent in J kg−1

π spreading pressure in Nm−1

πr reduced spreading pressure in mol kg−1

σ molar area of the adsorbed phase in m2 mol−1

σi characteristic length of component i in m

D diffusion kinetics coupling matrix

T stress tensor

ζ bulk viscosity in Pa s

b ratio of adsorption and desorption parameter in Pa−1

f fugacity in Pa

g molar Gibbs free enthalpy in Jmol−1

k Boltzmann constant in JK−1

ka adsorption rate coefficient in mol s−1 Pa−1

kd desorption rate coefficient in mol s−1

l unit length in m

n number of moles in mol

n0 number of adsorbed moles per mass of the adsorbent in mol kg−1

nF Freundlich coefficient

p pressure in Pa

ri change of mass of component i per volume in kgm−3 s−1

w mass fraction

x mole fraction of the adsorbed phase

y mole fraction of the gas phase

z non-dimensional difference of the surface potential to the reference state

C Courant number

STP standard temperature and pressure at 273.15K and 105 Pa

5

CHAPTER 1

Introduction

With today’s need to find new sources of fuels for industrial and personal use, adsorp-
tion will become more and more important, for its ability of separating and cleaning
synthesis gas, or selectively removing carbon dioxide from a feed gas. This requires the
prediction and design of adsorption apparatus and leads to the necessity for advanced
simulation techniques. However, a complete implementation for detailed simulation like
computational fluid dynamics, also known as CFD, was not freely available before.
Also, more general models of mass transfer to account for multiple phenomena from a
fluid phase to a solid in CFD are not available. One step to solve this problem was
already done by members of the thermal process engineering group at Vienna University
of Technology. By adding single-component adsorption capability to an already available
open-source solver, they established the adsorpFoam framework as described in [Haddadi
et al., 2014] and [Haddadi et al., 2015b]. An extension to support multi-region is also
available [Haddadi et al., 2015a]. In this thesis, version 1.3.2 of the solver was used.
This version does not provide multi-region support. The aim of this thesis is to take the
next step and account for more than one adsorbing species. The long-term goal is to
greatly generalise mass transfer, only needing one application for many different kinds
of phenomena.
Starting with simple one-component Henry adsorption, which was already available in
the research group [Haddadi et al., 2014], this thesis will show ways, explanation and
testing for multicomponent adsorption on different adsorbents. In the end, there should
be a modular, general solver which provides multiple equilibrium and kinetics models
which should be run-time selectable.
However, it is not feasible to account for every detail in the context of one single master
thesis. The main focus is on finding already used models in literature, and including them
as library into the working solver. Therefore, some basic simplifications and assumptions
will be made during modelling. Furthermore, the aim is to find and implement already
existing models in literature, and not to develop new ones.
Adsorption simulation models are already available in commercial process simulation
tools like Aspen Adsim [Aspen, 2016]. However, these tools have to be paid for. Its
models are often zero- or one-dimensional, without offering the capabilities and degree
of detail CFD can provide. The advantages of CFD are as follows: Not only is the
adsorption phenomenon considered, but also the flow and concentration gradients can
be made visible. It accounts for pressure drop based on the Navier-Stokes equation and
provides a detailed, three-dimensional geometry. Also, detailed temperature distribution
can be shown and channelling effects can be recognised and avoided.

1. Introduction

This thesis will be divided into nine chapters. In chapter 2, the general problem of ad-
sorption will be described, starting with equilibrium and kinetics for a single adsorbing
component. Then, the currently available models for more than one adsorbing compo-
nent will be presented. Next, a diffusion-based kinetics model will be presented, which
is adapted from literature.
In chapter 3, the implementation of the models in Octave, a Matlab-like high-level
programming language for numerical computations, will be shown. Some peculiarities
will be outlined which will become more important at a later stage.
In chapter 4, the validation and results of the Octave models are presented. Comparison
of six multicomponent systems with experimental data from literature are given. The
results of the diffusion-based kinetics model will be given.
In chapter 5, an overview of CFD will be given and the fundamental mathematical
concepts will be introduced. Afterwards, the finite-volume method and the conservation
equations will be outlined in more detail. Additionally, the problem of pressure-velocity
coupling and prediction of material properties – a crucial, but often neglected issue –
will be addressed.
In chapter 6, the main tool used in this thesis, OpenFOAM, will be introduced. The
fundamental aspects of this program will be given. The main focus lies on the program-
ming of new features which will become important later on. Then, the already available
solvers suitable for implementing adsorption models are presented.
In chapter 7, the implementation of the adsorption models into the custom OpenFOAM
solver adsorpFoam is described. The different approaches for each model are reasoned.
Next, the necessary adaptations to the conservation equations are explained and some
pitfalls which have to be considered when running and extending this solver are given.
In chapter 8, the final results of the implementation in OpenFOAM are validated us-
ing simple geometries and small grid size. Then, some more complex case setups are
presented.
In chapter 9, the concepts, perceptions and results are summed up and an outlook for
possible additional work and refinements in the future is given.

7

CHAPTER 2

Thermodynamics of Adsorption

Adsorption is the attachment of fluid molecules on the surface of a solid. It is an
exothermic process that takes place at the surface of a solid as illustrated in figure 2.1.
The molecules of the fluid adsorb on the surface of a solid, called adsorbent, to form
a layer or adsorbed phase, also called adsorbate. The bond between adsorbate and
adsorbent can be either physical or chemical, called physisorption and chemisorption,
respectively. In this chapter, only physisorption of gases will be considered, although
some concepts may be applicable to chemisorption and liquid-phase adsorption as well.

Adsorbent (solid)

Gas phase

Adsorbate

Surface

Adsorption
Desorption

Figure 2.1.: Nomenclature of adsorption.

Since adsorption is a surface-driven phenomenon, open pores, i.e. pores visible to the
surface, can significantly increase the capacity of an adsorbent. Depending on the size
of its diameter, there are three different kind of pores [Do, 1998]:

• Micropores with a diameter less than 2nm,

• mesopores with a diameter between 2 nm to 50nm,

• and macropores with a diameter greater than 50nm.

Almost all physisorption isotherms can be grouped in one of six basic types classified by
the International Union of Pure and Applied Chemistry IUPAC as shown in figure 2.2.
At sufficiently low pressures, all types show linear behaviour which is called Henry’s Law
region. The types of physisorption are as follows [Sing, 1985]:

2. Thermodynamics of Adsorption

Partial pressure

A
m

ou
n
t

ad
so

rb
ed

I II

B

III

2

1IV

B

2

1

V IV

Figure 2.2.: The six types of physisorption after IUPAC, 1: adsorption, 2: desorption, B:
beginning of multimolecular layers adsorption (adapted from [Sing, 1985]).

• Type I: reversible with a concave to the partial pressure curve and adsorption limit.
This type is normally referred to as Langmuir isotherm.

• Type II: reversible, multilayer adsorption on a non-porous or macroporous adsor-
bent. Point B indicates the beginning of multimolecular layers adsorption.

• Type III: the curve of the isotherm is convex to the partial pressure curve. Those
kind of isotherms are rather uncommon.

• Type IV: adsorption with hysteresis, for capillary condensation taking place in
mesopores. Again, point B indicates the beginning of multimolecular layers ad-
sorption and there is an adsorption limit.

• Type V: similar to type III, with an adsorption limit and hysteresis. Like type III,
this type is not very common.

• Type VI: stepwise multimolecular layers adsorption takes place at this type, on a
uniform non-porous surface. The height of each steps represents the monomolecu-
lar layer capacity.

The used adsorbents vary, depending on the adsorbing species, pressure and temperature.
Alumina can be used in industrial areas for drying gas streams from moisture. It has a
specific surface of 200m2 g−1 to 300m2 g−1 [Do, 1998].
Another widely used adsorbent is silica gel. It is a coagulation of very small silicic acid
particles. As alumina, it is used to remove moisture from air flows, for its high affinity to

9

2. Thermodynamics of Adsorption

water. The typical specific surface exceeds the one from alumina, with maximum values
as high as 900m2 g−1 [Do, 1998].
Activated carbon is probably the most used adsorbent. It is rather cheap, and has a
very high specific surface of up to 1200m2 g−1. Furthermore, its pore size distribution
favours adsorption and it has many functional groups containing oxygen at the surface.
Those groups are a result of the production process which typically involve oxygen-rich
raw materials [Do, 1998].
Another common adsorbent are zeolithes. Although there are natural types of zeolithes,
most used adsorbents are made synthetically. It is possible to make many types of
zeolithes, to satisfy different requirements [Ruthven, 1984].
For separation of gases, two different dynamic adsorption procedures are known: Pres-
sure-Swing Adsorption PSA and Thermal Swing Adsorption TSA. For continuous opera-
tion, both require at least two adsorption beds and are working by a shift of equilibrium.
PSA is a technique where the pressure is decreased, and therefore, desorption will take
place if the bed is in equilibrium before. So, it is possible to selectively remove one or
more components which have a higher affinity to the adsorbent than the rest.
With TSA, temperature is increased to lower the equilibrium loading. PSA is suitable
for rapid changes of adsorption and desorption cycles, and does not require heat input.
Sometimes, a combination of both is used to maximise performance.
A packed bed adsorber is most commonly used in industry. The adsorbent is loosely
packed inside a column. For being able to run continuously, more than one adsorption
column is necessary.

2.1. Adsorption Equilibrium

Equilibrium in adsorption always implies a dynamic equilibrium, meaning that rate of
adsorption and rate of desorption are equal. Therefore, from a macroscopic point of
view, there occurs no visible change at equilibrium. Normally, isotherm conditions are
assumed when describing adsorption equilibria.
If not stated otherwise, the assumptions for the subsequent considerations are as follows:

• Localised adsorption: each adsorbed molecule takes up the same area and cannot
move on the surface. The surface can be divided into adsorption sites.

• Flat, homogeneous surface: everywhere on the surface, the affinity for the adsorb-
ing molecules is the same. No capillary condensation takes place.

• Monomolecular layer: one adsorption site can take up only one molecule simulta-
neously.

In order to describe adsorption equilibria, the equation for the change of the Helmholtz
free energy F is modified. It reads as follows [Stephan and Mayinger, 1999]:

dF = −SdT − pdV +
N
∑

i=1

µidni, (2.1)

with temperature T , pressure p, volume V , entropy S, chemical potential µi and number
of moles ni of component i. The total number of components is N .

10

2. Thermodynamics of Adsorption

Now, the so-called spreading pressure π is introduced. It can be interpreted as difference
between the surface tension of a clean surface and a surface covered with adsorbate and
is defined as follows [Ruthven, 1984]:

π = −

(

∂U

∂A

)

S,V ,n
. (2.2)

with the internal energy U and surface area A. Comparing the above definition of the
spreading pressure with the definition of the pressure, the similarity becomes more clear:

p = −

(

∂U

∂V

)

S,V ,n
. (2.3)

Now, the pressure is replaced by the spreading pressure [Do, 1998]:

dF = −SdT − πdA +
N
∑

i=1

µidni. (2.4)

Integration at constant π, T and µ gives:

F = −πA +
N
∑

i=1

µini. (2.5)

Now, the above equation is differentiated:

dF = −πdA − Adπ +
N
∑

i=1

µidni +
N
∑

i=1

nidµi. (2.6)

Subtracting equation (2.4) from (2.6) gives the Gibbs equation for a plane surface:

−Adπ + SdT +
N
∑

i=1

nidµi = 0. (2.7)

For equilibrium, isotherm conditions are assumed, dT = 0:

−Adπ +
N
∑

i=1

nidµi = 0. (2.8)

The above equation connects the chemical potential with the spreading pressure and is
used in the subsequent section to derive an equation of state for the adsorbed phase.

11

2. Thermodynamics of Adsorption

2.1.1. Single-component Adsorption

For one component, equation (2.8) reduces to:

−Adπ + ndµ = 0. (2.9)

Assuming ideal gas behaviuor, with the chemical potential µg = µ0
g + RT ln p, the gas

constant R and the chemical potential at reference state µ0
g, the isotherm Gibbs equation

for one component reads as:

(

dπ

d ln p

)

T

= CRT , (2.10)

with the number of adsorbed moles per area C = nA−1.

Henry Type Adsorption

For an ideal surface at infinite dilution, equation (2.10) becomes

πσ = RT , (2.11)

with the molar area σ = C−1. This is comparable to the ideal gas equation. There is a
linear dependence between pressure and number of adsorbed molecules:

C(p) = Kep, (2.12)

with the Henry coefficient Ke. This type of isotherm is only valid at low pressures.
Figure 2.3(a) shows a Henry adsorption isotherm with Ke = 5 × 10−3 mol g−1 bar−1.

Freundlich Type Adsorption

The Freundlich isotherm is an empirical extension to the Henry adsorption with an
additional parameter, the so-called Freundlich parameter 0 < nF < 1:

C(p) = KepnF . (2.13)

Figure 2.3(b) shows a Freundlich adsorption isotherm with Ke = 5 × 10−3 mol g−1 bar−1

and nF = 0.85.

Langmuir Type Adsorption

This type of adsorption isotherm was first described by [Langmuir, 1918]. Assuming the
following equation of state [Do, 1998]:

πσ = RT
σ

σ0
ln

σ

σ − σ0
, (2.14)

the isotherm reads as follows:

12

2. Thermodynamics of Adsorption

0 2 4 6 8 10
0

1

2

3

4

5
·10

−2

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
m

o
lg

-1

(a) Henry adsorption isotherm.

0 2 4 6 8 10
0

1

2

3

4
·10

−2

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
m

o
lg

-1

(b) Freundlich adsorption isotherm.

0 2 4 6 8 10
0

1

2

3

4
·10

−2

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
m

o
lg

-1

(c) Langmuir adsorption isotherm.

0 2 4 6 8 10
0

1

2

3

4
·10

−2

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
m

o
lg

-1

(d) Freundlich-Langmuir adsorption
isotherm.

Figure 2.3.: Four different single-component adsorption isotherms.

13

2. Thermodynamics of Adsorption

C(p) = Cm
bp

1 + bp
, (2.15)

with the temperature-dependent parameter b and the monomolecular layer loading Cm.
This adsorption type is limited in terms of adsorbed amount at high pressure, where the
adsorbed amount C approaches Cm. The two parameters can be calculated using the
following relations:

b(T) = b0 exp
T0

T
, (2.16)

Cm(T) = C0
m + C1

mT , (2.17)

with suitable parameters b0, T0, C0
m and C1

m. C1
m is almost always negative. Therefore,

a higher temperature will decrease b and Cm, and the equilibrium loading.
Figure 2.3(c) shows a Langmuir adsorption isotherm with Cm = 4 × 10−2 mol g−1 and
b = 5bar−1.

Freundlich-Langmuir Type Adsorption

As the Freundlich isotherm, this is an empirical extension to the Langmuir isotherm, with
0 < nF < 1. Thermodynamic consistency is lost, since Langmuir adsorption assumes
a fixed number of adsorption sites. This is not the case anymore if the Freundlich
parameter is introduced:

C(p) = Cm
bpnF

1 + bpnF
, (2.18)

Figure 2.3(d) shows a Freundlich-Langmuir adsorption isotherm with Cm = 4 × 10−2 mol g−1,
b = 5bar−1 and nF = 0.85.

2.1.2. Multicomponent Adsorption

Although actual single-component adsorption does not often occur as most gases consist
of more than one species, the extension to multicomponent adsorption is not very well
covered in literature. Often, the diluting gases do not adsorb very well. The presented
models in this section were developed many decades ago. The aim of the presented
models is to predict multicomponent adsorption without the need of experimental data.
However, introducing empirical so-called interaction coefficients from experiments will
improves the results, as shown in later chapters.

Extended Langmuir Model (ELM)

The extended Langmuir model ELM is derived from the same assumptions as the single-
component Langmuir isotherm. Here, it is obtained by assuming a dynamic equilibrium,
and not an equation of state. The rate of adsorption Ra,i of component i is proportional
to the fraction of vacant sites and the partial pressure pi = yip with the mole fraction
of the gas phase yi. It can be written as [Do, 1998]:

14

2. Thermodynamics of Adsorption

Ra,i = ka,ipi



1 −
N
∑

j=1

Cj

Cm,j



 , (2.19)

with the adsorption rate coefficient ka,i. The index j is introduced to differentiate
between the rate of adsorption for one component, denoted with the index i, and the sum
of all species, denoted with j. The rate of desorption Rd,i of component i is proportional
to the fraction of occupied sites and is unaffected by the partial pressure:

Rd,i = kd,i
Ci

Cm,i
, (2.20)

with the desorption rate coefficient kd,i. At equilibrium, adsorption and desorption rate
have to be equal. Therefore, the following must hold:

bipi



1 −
N
∑

j=1

Cj

Cm,j



 =
Ci

Cm,i
, (2.21)

with bi = ka,i/kd,i as the ratio of adsorption and desorption parameter. Summing over
all species, it reads as:

N
∑

i=j

Cj

Cm,j
=

∑N
j=1 bjpj

1 +
∑N

j=1 bjpj

, (2.22)

or, considering only one component:

Ci(p) = Cm,i
bipi

1 +
∑N

j=1 bjpj

. (2.23)

The extended Langmuir model is widely used, but lacks thermodynamic consistence
unless the monomolecular layer capacities Cm of all species are the same. The reason for
this condition is that Langmuir adsorption assumes a fixed number of adsorption sites,
where molecules can attach. In practice, this condition is rarely met and models which
preserve such consistency are described in literature [Bai and Yang, 2001].

Extended Langmuir Model with Interaction Coefficients (ELMIAC)

An extension to the ELM is the introduction of empirical interaction coefficients IAC.
Those IAC can be calculated from experimental data and were first proposed by [Schay,
1956]. The isotherm reads as follows:

Ci(p) = Cm,i
(bi/ηi)pi

1 +
∑N

j=1(bj/ηj)pj

. (2.24)

with the interaction coefficient ηi of component i. The IAC may be calculated using
experimental data [Ritter and Yang, 1987]:

ln ηi = ln bipi − ln
Cmes,i/Cm,i

1 −
∑N

j=1 Cmes,j/Cm,j

. (2.25)

15

2. Thermodynamics of Adsorption

Ideal Adsorbed Solution Theory (IAST)

The ideal adsorbed solution theory IAST can predict multicomponent adsorption equi-
libria using only the single-component isotherms of all species. This isotherm can be of
any type. It is also possible to use experimental data without modelling the isotherm.
The Gibbs free enthalpy per mole of the adsorbate is [Do, 1998]:

g =
N
∑

i=1

g0
i + gm, (2.26)

with the Gibbs free enthalpy at reference state g0
i and the molar free enthalpy of mixing

defined as follows:

gm = RT
N
∑

i=1

xi ln γixi, (2.27)

with the activity coefficient γi of component i and the mole fraction xi of component i
in the adsorbed phase. Combining equations (2.26) and (2.27) and using the definition
of the Gibbs free enthalpy G = U − TS, the following equation is obtained:

U − TS
∑N

i=1 ni

=
N
∑

i=1

xig
0
i + RT

N
∑

i=1

xi ln γixi. (2.28)

The starting thermodynamics equations for the adsorbed phase and the gas phase, re-
spectively, read as follows [Do, 1998]:

U − TS − φm −
N
∑

i=1

µini = 0, (2.29)

U − TS + pV −
N
∑

i=1

µini = 0. (2.30)

m denotes the mass of the adsorbent.
Combining equations (2.28) and (2.29) gives:

φm
∑N

i=1 ni

+
N
∑

i=1

xiµi =
N
∑

i=1

xig
0
i + RT

N
∑

i=1

xi ln γixi = 0. (2.31)

with the surface potential of the adsorbate φ per unit mass. The spreading pressure
π and the specific surface potential φ are linked with the area, πA = φ. Using the
definition of the chemical potential for an ideal gas with fugacity f , equation (2.31) can
be rewritten as:

φ

n0
+ RT

N
∑

i=1

xi ln
fi

γixi
+

N
∑

i=1

xi

(

µ0
i − g0

i

)

= 0. (2.32)

16

2. Thermodynamics of Adsorption

n0 is the sum of all adsorbed moles divided by the mass of the adsorbent m.
The molar Gibbs free enthalpy expressed in terms of pressure of the pure component
reads as follows [Do, 1998]:

g0
i =

φ0
i

n0
i

+ µ0
i . (2.33)

Combining equations (2.32) and (2.33), the fundamental equation for the mixture is
obtained:

RT
N
∑

i=1

xi ln
fi

f0
i γixi exp zi

+ φ

(

1

n0
−

N
∑

i=1

xi

n0
i

)

= 0, (2.34)

with the fugacity f0
i of component i at reference state, and zi as non-dimensional differ-

ence of surface potential to reference state:

zi = −
φ − φ0

i

n0
i RT

.

For an ideal adsorbed solution, the following must hold (γi = 1):

fi = f0
i xi exp zi. (2.35)

This is equal to setting all terms to zero in equation (2.34) and yields:

1

n0
=

N
∑

i=1

xi

n0
i

. (2.36)

With fi = pyi and a hypothetical pressure p0
i , the second equation for an ideal adsorbed

solution is obtained:

pyi = p0
i xi exp zi. (2.37)

Using equation (2.10), the reduced spreading pressure is obtained. The reduced pressure
is equal to the surface potential divided by temperature and molar gas constant. It reads
for the pure component i as:

πr
0 =

π0A

RT
=

φ0

RT
= −

∫ p0
i

0

n0
i (p̃0

i)

p̃0
i

dp̃0
i , (2.38)

where n0
i (p0

i) is the adsorbed amount for the single species i per mass adsorbent. The
adsorbed amount can be calculated from any type of isotherm, e.g. Langmuir isotherm,
or even from experimental data.
[Myers and Prausnitz, 1965] suggested that the surface potential of the mixture is the
same as the surface potential of all pure components. Therefore, zi is zero and the
following set of equations is obtained:

17

2. Thermodynamics of Adsorption

φ

RT
=

φ0
i

RT
= −

∫ p0
i

0

ni(p̃
0
i)

p̃0
i

dp̃0
i , (2.39)

pyi = p0
i xi, (2.40)

N
∑

i=1

xi

ni(p0
i)

=
1

n
, (2.41)

N
∑

i=1

xi = 1. (2.42)

Equation (2.40) can be interpreted as Raoult’s law for gas-adsorbed phase equilibrium.
Furthermore, the sum of all mole fractions in the gas phase and the adsorbed phase must
be equal to one.
The set of equations (2.39) to (2.42) provides 2N + 1 relations:

• N − 1 relations with equation (2.39),

• N relations with equation (2.40),

• one relation with equation (2.41),

• and one relation with equation (2.42).

Normally, the gas mole fractions, total pressure and temperature are given. This yields
2N + 1 unknowns and therefore, zero degrees of freedom. The unknowns are:

• N mole fractions in the adsorbed phase xi,

• N hypothetical pressures p0
i ,

• and the total number of adsorbed moles n.

However, the inverse problem can be posed as well: In that case, the adsorbed mole
fractions and the total adsorbed amount are given. The corresponding total pressure
and gas mole fractions have to be calculated:

• N mole fractions in the gas phase yi,

• N hypothetical pressures p0
i ,

• and the total pressure p.

2.2. Adsorption Kinetics

In chemistry, the knowledge of the equilibrium of e.g. a reaction does not explain
the problem completely. Often, chemical reactions are hindered by kinetic restrictions.
Therefore, kinetics have to be considered as well.

18

2. Thermodynamics of Adsorption

2.2.1. Linear Driving Force

The adsorption rate is assumed to be only dependent from the difference of the equilib-
rium and the currently adsorbed amount. This yields the linear driving force model [Sir-
car and Hufton, 2000]:

∂Ci

∂t
=

∞
∑

j=1

[sgn (Ci,eq − Ci)]
j+1 Kj (Ci,eq − Ci)

j , (2.43)

with suitable coefficients Kj . Ceq,i denotes the equilibrium loading of component i. The
first term is introduced to prevent the loss of the algebraic sign due to even powers,
which is important if desorption occurs.

2.2.2. Diffusion-based Kinetics

The driving force of adsorption is the gradient of the chemical potential. Assuming an
ideal gas, the flux Ji of component i is given by:

J i = −LiCi∇µi, (2.44)

where Li is the mobility coefficient of component i. Multiplying equation (2.44) with
the surface normal vector leads to:

Ji = −LiCi
∂µi

∂x
. (2.45)

Inserting the chemical potential for an ideal gas, it reads as:

Ji = −LiRTCi
∂ ln pi

∂x
. (2.46)

−LiRT can be replaced by the diffusivity of component i in the mixture, Dm,i. Taking
a closer look at the gradient of partial pressure and applying the chain rule, it can be
rewritten as:

∂ ln pi

∂x
=

1

pi

∂pi

∂x
=

1

pi

N
∑

j=1

∂pi

∂Cj

∂Cj

∂x
. (2.47)

Putting this system of equations in matrix-vector form, the following is obtained:

J = −D ·
∂C

∂x
, (2.48)

with:

D =

{

Dij = Dm,i
Ci

pi

∂pi

∂Cj

}

.

19

2. Thermodynamics of Adsorption

The original model presented in [Do, 1998] is for intraparticle diffusion of the adsorbate.
However, the gradient can be modelled with the difference of the equilibrium adsorption
concentration for the pressure in the gas phase and the current adsorbed concentration
divided by length. So, the change of adsorbed moles per unit length l is given by:

∂C

∂t
= −

J

l
=

D

l
·

Ceq − C

∆x
. (2.49)

20

CHAPTER 3

Implementation in Octave

Octave is a freely available, Matlab-like, interpreted language for numerical computa-
tions. One of its advantages is that the calculations are vector and matrix-based, and
therefore, doing computations for more than one species simultaneously is easy to write.
The models described in section 2 are implemented using a zero-dimensional model. This
means that only adsorption equilibria are calculated and infinite supply of gas phase is
assumed, without considering mass balance, flow properties or control volumes. The
main purpose of this implementation is to display the results of the various adsorption
models, organise and test the equations required for the implementation of the adsorption
models and to serve as a validation for the OpenFOAM implementation.
The code presented in this chapter was written by the author, can be found in appendix A
and is freely available under the MIT License [OSI, 2016].

3.1. Calculation of Adsorption Coefficients

The Langmuir parameters are calculated using equations (2.16) and (2.17). In this thesis,
the four necessary adjustment parameters are taken from [Ritter and Yang, 1987].

3.2. Extended Langmuir Model

The extended Langmuir model is implemented using equation (2.23). It is shown in
listing 3.1.

Listing 3.1: Implementation of the ELM in Octave.

1 function C = ELM (p, y, Cm , b)

2 C = Cm .* b .* y * p / (1 + sum (b .* y * p));

3 end

3.3. Extended Langmuir Model with Interaction Coefficients

Here, the calculations of IAC based on experimental data from [Ritter, 1985] is done as
described by equation (2.25).

3. Implementation in Octave

Listing 3.2: Calculation of the IAC in Octave.

1 function eta = IAC (p, y, Cm , b, C_mes)

2 eta = (1 - sum (C_mes ./ Cm)) * p * y .* b .* Cm ./ C_mes ;

3 end

3.4. Ideal Adsorbed Solution Theory

First, an estimation of the reduced spreading pressure πr is calculated. Assuming that
the single-component isotherm is of Langmuir type, the following is valid [Do, 1998]:

πr
est =

πestA

RT
=

φest

RT
=

∑N
i=1 Cm,i

N
ln

(

1 +
N
∑

i=1

bipi

)

. (3.1)

If Langmuir single-component isotherm is assumed, the virtual pressure p0
i can be cal-

culated analytically without iterating:

p0
i =

1

bi

(

exp
πr

Cm,i
− 1

)

. (3.2)

If other isotherms are used, equation (2.39) has to be solved numerically. Next, the mole
fractions of all species can be calculated using equation (2.37):

xi =
pi

p0
i

. (3.3)

The convergence criterion is that the sum of mole fractions of the adsorbed species must
be unity or very close to unity:

∣

∣

∣

∣

∣

1 −
N
∑

i=1

xi

∣

∣

∣

∣

∣

≤ conv. limit, (3.4)

where the convergence limit is set by the user. In this thesis, it is set to an order of
magnitude of around 10−6 to 10−8. If this limit is met, the computation may continue.
If it is not met, a new spreading pressure of the (n + 1)th iteration has to be calculated
using the value of the (n)th iteration:

πr
n+1 = πr

n

N
∑

i=1

xi. (3.5)

For stability reasons, there are some limiters and a relaxation factor applied in the actual
implementation, as seen in lines 7 to 15 of listing 3.3. Then, the adsorbed amount is
calculated as follows:

ni =
xi

∑N
j=1 xj/nj(p0

j)
. (3.6)

The flowchart of the algorithm is shown in figure 3.1.

22

3. Implementation in Octave

Previous time step

Initial estimation of π.

Calculate virtual pressures pi
0

Calculate mole fractions of adsorbed phase.

Sum of xi converged?Set new estimation for π.

Calculate adsorbed amount Ci.

Next time step

yes

no

Figure 3.1.: Flowchart of algorithm for solving IAST.

Listing 3.3: Implementation of the IAST in Octave.

1 function C = IAST (p, y, params)

2 counter = 0;

3 correct = 1;

4 z_est = 1;

5

6 do

7 if (correct < 10 && correct > 0.1)

8 z_est *= 0.75 * (correct - 1) + 1;

9 else

10 if (correct > 1)

11 z_est *= 8;

12 else

13 z_est *= 0.125;

14 end

15 end

16

17 switch (params . isotherm)

18 case " langmuir "

19 p0 = 1 ./ params .b .* (exp (z ./ params .Cm) .- 1);

20 otherwise

21 error ("no recognised single - component isotherm specified ");

22 end

23

24 x = p * y ./ p0;

25 correct = sum (x);

26 ++ counter ;

27

28 if (counter > params . maxIter)

29 break ;

30 end

31 until (abs (sum (x) - 1) < params . convergence)

32

33 n0 = params .Cm .* params .b .* p0 ./ (1 .+ params .b .* p0);

34

35 C = x / sum (x ./ n0);

36 end

23

3. Implementation in Octave

3.5. Diffusion Kinetics

First, the diffusion coefficients for all species for the mixture are calculated as described in
section 5.5.1. Next, the coupling matrix defined in equation 2.49 is evaluated, assuming
Langmuir adsorption. It implies:

{Dij} =











Dm,i
Ci/Cm,j

1−
∑N

k=1
Ck/Cm,k

if i 6= j;

Dm,i

(

1 +
Ci/Cm,i

1−
∑N

k=1
Ck/Cm,k

)

if i = j.
(3.7)

With this coupling matrix, the change of loading can be calculated:

∂C

∂t
=

D

l
·

C − Ceq

∆x
, (3.8)

where l denotes the unit length. The denominator has to be determined by comparing
experimental data with model predictions. In this thesis, it was chosen arbitrarily. Using
this equation, the loading for the new time step is obtained:

C(t + ∆t) = C(t) +
∂C(t)

∂t
∆t. (3.9)

If D is a diagonal matrix, the diffusion-based kinetics model simplifies to a linear driving
force model.

Listing 3.4: Implementation of the diffusion-bases kinetics in Octave.

1 function rate = diffusion_kinetics (Dm , C, Ceq , Cm)

2 for i = 1: length (C)

3 for j = 1: length (C)

4 D(i, j) = Dm(i) * ((i == j) + C(i) / (Cm(j) * (1 - sum (C ./ Cm))));

5 end

6 end

7

8 delta_C = Ceq .- C;

9 rate = (D * delta_C ’) ’;

10 end

24

CHAPTER 4

Validation and Results in Octave

The results obtained with Octave serve as validation for the OpenFOAM implementa-
tion. The source of experimental data was the master thesis of J.A. Ritter [Ritter, 1985]
and a paper in which the results were summed up [Ritter and Yang, 1987]. The units
used in that paper are volume at standard temperature and pressure per gram adsorbent
and pound-force per square inch. For clarity, the pressure is transformed to Pascal, the
unit of adsorbed amount is unchanged in this chapter.

4.1. Validation

Validation was done by calculating the average interaction coefficients and comparing
them to the values given in the paper [Ritter and Yang, 1987]. The IAC can be calculated
using the following:

ηi = bipi
Cmes,i

Cm,i



1 −
N
∑

j=1

Cmes,j

Cm,j



 . (4.1)

Since the obtained interaction coefficients are the same for the implementation in Octave
and in the paper, the models are assumed to be implemented correctly. Furthermore,
certain characteristics, like the very low equilibrium adsorption loading of hydrogen are
displayed correctly by the implementation. A total of six multicomponent systems were
checked with data from literature.

4.2. Equilibrium Models

The pressure is in a range of 7bar to 28 bar and the temperature is in a range of 290K
to 298K, respectively.
Systems with H2S are not considered, for its known non-ideal behaviour. The relative
error is defined as follows:

δ = 100
Vcalc − Vmeas

Vmeas
, (4.2)

where Vcalc denotes the adsorbed volume by the model, and Vmeas represents the mea-
sured adsorbed volume.

4. Validation and Results in Octave

The standard deviation of the quantity φ with a mean value of φ̄ is defined as follows:

σφ =

√

√

√

√

1

N − 1

N
∑

i=1

(

φi − φ̄i

)

. (4.3)

The interaction coefficients improve the extended Langmuir model substantially; how-
ever, experimental data is necessary for calculation those parameters. All errors are
calculated using the absolute deviation. In the figures in sections 4.2.1 and 4.2.2, the
index ‘meas’ denotes measured values reported by [Ritter and Yang, 1987], whereas
the indices ‘elm’, ‘iac’ and ‘iast’ represent the values calculated by the models ELM,
ELMIAC and IAST implemented in Octave, respectively.

4.2.1. Binary Systems

Binary systems containing CO2 are not very well predicted. Generally, IAST predicts
mole fractions and adsorbed amount at least slightly better. Since the sum of all mole
fractions must add up to unity, the mean and maximum errors and standard deviations
of the mole fractions of the adsorbed phase are equal for both components.

CH4–CO

The system CH4–CO is predicted rather well by both ELM and IAST, respectively.
There is one outlier at around 22bar, where the reported measured adsorbed loading is
probably not correct, since the values at higher pressure are lower, which is physically
not correct. The range of pressure is 9bar to 27 bar, with six data sets available. Fig-
ure 4.1 shows the adsorbed amount of ELM and IAST, compared with the measurement.
Figures 4.2 and 4.3 show the absolute error of the mole fraction and adsorbed amount,
respectively.

5 10 15 20 25 30
0

50

100

150

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CH4,meas

CH4,elm

CH4,iast

(a) CH4.

5 10 15 20 25 30
0

5

10

15

20

25

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

COmeas

COelm

COiast

(b) CO.

Figure 4.1.: Comparison of measurement and model of adsorbed amount for the system
CH4–CO.

The ELM predicts the mole fractions of the adsorbed phase with a mean absolute error
of 2.3 %mol, and a maximum of 4.8 %mol. The standard deviation is 1.4 %mol. The
equilibrium loading is predicted with an absolute mean absolute error of 10.0Ncm3 g−1

26

4. Validation and Results in Octave

for CH4 and 1.3Ncm3 g−1 for CO, respectively. The standard deviation is 9.3Ncm3 g−1

and 1.0Ncm3 g−1, respectively, with an maximum error of 28Ncm3 g−1for CH4 and
of 3.0Ncm3 g−1 for CO, respectively. Not considering the outlier, the mean absolute
error of predicted adsorbed amount is 6.2Ncm3 g−1 for CH4 and 1.5Ncm3 g−1 for CO,
respectively. The maximum error is 9.2Ncm3 g−1 and 3.0Ncm3 g−1, and the standard
deviation is 2.3Ncm3 g−1 and 0.9Ncm3 g−1, respectively.

5 10 15 20 25 30
0

1

2

3

4

5

pressure in bar

a
b
so

lu
te

er
ro

r
in

%
m

o
l

COelm

COiast

Figure 4.2.: absolute error of the mole fraction of CO for the system CH4–CO.

The IAST shows a mean absolute error of the mole fractions of 1.7 %mol, a maximum of
4.3 %mol and a standard deviation of 1.3 %mol. The adsorbed amount is predicted with
a mean absolute error of 9.4Ncm3 g−1 for CH4 and 1.0Ncm3 g−1 for CO, respectively.
The standard deviation is 9.3Ncm3 g−1 and 0.8Ncm3 g−1, respectively, with a maximum
error of 28Ncm3 g−1 and 2.6Ncm3 g−1, respectively. Without the outlier, the mean
absolute error of adsorbed amount is 5.7Ncm3 g−1 for CH4 and 1.0Ncm3 g−1 for CO,
with a maximum error of 8.4Ncm3 g−1 and 2.6Ncm3 g−1 and a standard deviation of
2.2Ncm3 g−1 and 0.9Ncm3 g−1, respectively.

5 10 15 20 25 30
−30

−20

−10

0

10

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CH4

CO

(a) ELM.

5 10 15 20 25 30
−30

−20

−10

0

10

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CH4

CO

(b) IAST.

Figure 4.3.: absolute error of the adsorbed amount for the system CH4–CO.

CH4–CO2

The system CH4–CO2 is predicted better by IAST than ELM. Figure 4.4 shows the
adsorbed amount measured and predicted by both models. There are six data sets with

27

4. Validation and Results in Octave

a pressure range of 8bar to 23 bar. Figures 4.5 and 4.6 show the absolute error of the
mole fraction and adsorbed amount, respectively.

8 10 12 14 16 18 20 22 24
0

20

40

60

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CH4,meas

CH4,elm

CH4,iast

(a) CH4.

8 10 12 14 16 18 20 22 24
0

50

100

150

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CO2,meas

CO2,elm

CO2,iast

(b) CO2.

Figure 4.4.: Comparison of measurement and model of adsorbed amount for the system
CH4–CO2.

The mean absolute error of the mole fractions of the adsorbed phase with ELM is
10.2 %mol, with a maximum error of 12.2 %mol and a standard deviation of 2.0 %mol. The
adsorbed amount at equilibrium is predicted with a mean absolute error of 12.4Ncm3 g−1

for CH4 and 18.5Ncm3 g−1 for CO2, respectively. The maximum errors are 17.2Ncm3 g−1

and 31.4 , and the standard deviations are 4.4Ncm3 g−1 and 9.2Ncm3 g−1, respectively.

8 10 12 14 16 18 20 22 24
−5

0

5

10

15

pressure in bar

a
b
so

lu
te

er
ro

r
in

%
m

o
l

CH4,elm

CH4,iast

Figure 4.5.: absolute error of the mole fraction of CH4 for the system CH4–CO2.

IAST is predicting this system better than ELM, with a mean absolute error of the
mole fractions of 1.0 %mol, a maximum error of 1.3 %mol and a standard deviation of
0.3 %mol. The adsorbed loading at equilibrium is predicted well with a mean absolute
error of 1.4Ncm3 g−1 for CH4 and 4.5Ncm3 g−1 for CO2, respectively. The maximum
errors are 3.4Ncm3 g−1 and 9.0Ncm3 g−1, with a standard deviation of 1.2Ncm3 g−1

and 4.5Ncm3 g−1, respectively.

CO–H2

IAST produces better results than ELM at almost all pressures. Figure 4.7 shows the
measured equilibrium loading, and the predictions with ELM and IAST. The pressure

28

4. Validation and Results in Octave

8 10 12 14 16 18 20 22 24
−40

−20

0

20

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CH4

CO2

(a) ELM.

8 10 12 14 16 18 20 22 24
−40

−20

0

20

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CH4

CO2

(b) IAST.

Figure 4.6.: absolute error of the adsorbed amount for the system CH4–CO2.

varies between 11 bar to 18 bar, with four available data sets. Figures 4.8 and 4.9 show
the errors for mole fraction and adsorbed amount at equilibrium, respectively.

10 12 14 16 18 20
0

20

40

60

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

COmeas

COelm

COiast

(a) CO.

10 12 14 16 18 20
0

2

4

6

8

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

H2,meas

H2,elm

H2,iast

(b) H2.

Figure 4.7.: Comparison of measurement and model of adsorbed amount for the system
CO–H2.

ELM predicts the mole fraction of the adsorbed phase with a mean absolute error of
3.4 %mol and a maximum error of 7.2 %mol. The standard deviation is 3.1 %mol. The
adsorbed amount is calculated resulting in a mean absolute error of 5.6Ncm3 g−1 for CO
and 1.4Ncm3 g−1 for H2, respectively. Here, the maximum error is 11.0Ncm3 g−1 and
2.2Ncm3 g−1, and the standard deviation is 5.0Ncm3 g−1 and 0.9Ncm3 g−1, respectively.
When using IAST, the results show a mean absolute error of 2.9 %mol for the mole frac-
tion of the adsorbed phase, with a maximum error of 6.9 %mol and a standard deviation
of 2.9 %mol. The adsorbed amount at equilibrium is predicted with a mean absolute
error of 5.5Ncm3 g−1 for CO and 1.3Ncm3 g−1 for H2, respectively. Here, the maximum
error is 10.8Ncm3 g−1 and 2.1Ncm3 g−1 and the standard deviation is 4.9Ncm3 g−1 and
0.7Ncm3 g−1, respectively.

29

4. Validation and Results in Octave

10 12 14 16 18 20
−2

0

2

4

6

8

pressure in bar

a
b
so

lu
te

er
ro

r
in

%
m

o
l

COelm

COiast

Figure 4.8.: absolute error of the mole fraction for the system CO–H2.

10 12 14 16 18 20
−5

0

5

10

15

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1 CO

H2

(a) ELM.

10 12 14 16 18 20
−5

0

5

10

15

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1 CO

H2

(b) IAST.

Figure 4.9.: absolute error of the adsorbed amount for the system CO–H2.

30

4. Validation and Results in Octave

CO2–CO

Like system CH4–CO2, this system is also significantly better predicted by IAST than
ELM. Figure 4.10 shows the measured loading at equilibrium, and the predictions of
ELM and IAST. Here, a pressure range of 8bar to 24bar is available, with six data
sets. Figures 4.11 and 4.12 show the errors for mole fraction and adsorbed amount at
equilibrium, respectively.

5 10 15 20 25
0

50

100

150

200

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CO2,meas

CO2,elm

CO2,iast

(a) CO2.

5 10 15 20 25
0

10

20

30

40

50

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

COmeas

COelm

COiast

(b) CO.

Figure 4.10.: Comparison of measurement and model of adsorbed amount for the system
CO2–CO.

ELM predicts the mole fraction of the adsorbed phase with a mean absolute error of
12.2 %mol, a maximum error of 14.6 %mol and a standard deviation of 2.1 %mol. The
equilibrium loading is calculated resulting in a mean absolute error of 19.9Ncm3 g−1 for
CO2 and 13.8Ncm3 g−1 for CO, respectively. The maximum error is 32.6Ncm3 g−1 and
15.4 , and the standard deviation is 9.6Ncm3 g−1 and 1.6Ncm3 g−1, respectively.

5 10 15 20 25
0

5

10

15

20

pressure in bar

a
b
so

lu
te

er
ro

r
in

%
m

o
l

COelm

COiast

Figure 4.11.: absolute error of the mole fraction for the system CO2–CO.

As stated, IAST produces better results, with a mean absolute error of the mole frac-
tion of the adsorbed phase of 4.8 %mol, a maximum error of 7.3 %mol and a standard
deviation of 2.1 %mol. The adsorbed amount is predicted with a mean absolute error
of 8.7Ncm3 g−1 for CO2 and 5.2Ncm3 g−1 for CO, respectively. The maximum er-
ror is 17.6Ncm3 g−1 and 7.9Ncm3 g−1 and the standard deviation is 5.7Ncm3 g−1 and
2.6Ncm3 g−1, respectively.

31

4. Validation and Results in Octave

5 10 15 20 25
−40

−20

0

20

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CO2

CO

(a) ELM.

5 10 15 20 25
−40

−20

0

20

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CO2

CO

(b) IAST.

Figure 4.12.: absolute error of the adsorbed amount for the system CO2–CO.

4.2.2. Ternary Systems

Two ternary systems were reported by [Ritter and Yang, 1987]. The first system is
predicted not well by both models. IAST predicts the second system significantly better
than ELM.

CH4–CO–H2

The system CH4–CO–H2 is predicted not well by ELM and IAST. Figure 4.13 shows a
comparison between measurement, ELM and IAST. The pressure ranges between 11 bar
to 26 bar, with eight data sets available. Figures 4.14 and 4.15 show the errors for mole
fraction and adsorbed amount at equilibrium, respectively.
ELM predicts the mole fractions of the adsorbed phase with a mean absolute error
of 8.5 %mol for CH4, 15.0 %mol for CO and 6.9 %mol for H2, respectively. They have
a maximum error of 12.9 %mol, 20.3 %mol and 11.3 %mol and a standard deviation of
3.4 %mol, 3.9 %mol and 3.1 %mol, respectively. The adsorbed amount at equilibrium is
calculated resulting in a mean absolute error of 4.8Ncm3 g−1 for CH4, 12.1Ncm3 g−1

for CO and 4.3Ncm3 g−1 for H2, respectively. The maximum errors are 8.4Ncm3 g−1,
16.6Ncm3 g−1 and 7.8Ncm3 g−1 and the standard deviations are for each component
2.1Ncm3 g−1, 2.9Ncm3 g−1 and 2.1Ncm3 g−1, respectively.
The calculations using IAST show a mean absolute error of predicted mole fraction of
8.2 %mol for CH4, 14.2 %mol for CO and 6.6 %mol for H2, respectively. The maximum error
is 12.5 %mol, 19.7 %mol and 11.0 %mol, and the standard deviation is 3.3 %mol, 3.9 %mol

and 3.1 %mol, respectively. The adsorbed amount is calculated resulting in a mean
absolute error of 4.7Ncm3 g−1 for CH4, 11.6Ncm3 g−1 for CO and 4.1Ncm3 g−1 for H2,
respectively. The maximum error is 8.0Ncm3 g−1, 15.9Ncm3 g−1 and 7.5Ncm3 g−1, and
the standard deviation is 1.9Ncm3 g−1, 2.8Ncm3 g−1 and 2.1Ncm3 g−1, respectively.

CH4–CO2–H2

Like some systems before, the system CH4–CO2–H2 is predicted better by IAST than
by ELM. Here, the pressure range is 15bar to 24 bar, with five data sets. Figure 4.16
shows a comparison between measurement, ELM and IAST. Figures 4.17 and 4.18 show
the errors for mole fraction and adsorbed amount at equilibrium, respectively.

32

4. Validation and Results in Octave

10 15 20 25 30
0

20

40

60

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CH4,meas

CH4,elm

CH4,iast

(a) CH4.

10 15 20 25 30
0

10

20

30

40

50

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

COmeas

COelm

COiast

(b) CO.

10 15 20 25 30
0

2

4

6

8

10

12

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

H2,meas

H2,elm

H2,iast

(c) H2.

Figure 4.13.: Comparison of measurement and model of adsorbed amount for the system
CH4–CO–H2.

10 15 20 25 30
−20

−10

0

10

20

30

pressure in bar

a
b
so

lu
te

er
ro

r
in

%
m

o
l

CH4

CO

H2

(a) ELM.

10 15 20 25 30
−20

−10

0

10

20

30

pressure in bar

a
b
so

lu
te

er
ro

r
in

%
m

o
l

CH4

CO

H2

(b) IAST.

Figure 4.14.: absolute error of the mole fraction for the system CH4–CO–H2.

33

4. Validation and Results in Octave

10 15 20 25 30
−20

−10

0

10

20

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CH4

CO

H2

(a) ELM.

10 15 20 25 30
−20

−10

0

10

20

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CH4

CO

H2

(b) IAST.

Figure 4.15.: absolute error of the adsorbed amount for the system CH4–CO–H2.

14 16 18 20 22 24 26
0

20

40

60

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CH4,meas

CH4,elm

CH4,iast

(a) CH4.

14 16 18 20 22 24 26
0

20

40

60

80

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CO2,meas

CO2,elm

CO2,iast

(b) CO2.

14 16 18 20 22 24 26
0

2

4

6

8

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

H2,meas

H2,elm

H2,iast

(c) H2.

Figure 4.16.: Comparison of measurement and model of adsorbed amount for the system
CH4–CO2–H2.

34

4. Validation and Results in Octave

ELM predicts the mole fraction of the adsorbed phase with a mean absolute error of
5.0 %mol for CH4, 5.5 %mol for CO2 and 0.6 %mol for H2, respectively. The results show a
maximum error of 8.0 %mol, 8.0 %mol and 1.2 %mol, and a standard deviation of 2.4 %mol,
2.1 %mol and 0.4 %mol, respectively. The adsorbed amount is calculated with a mean ab-
solute error of 5.6Ncm3 g−1 for CH4, 9.2Ncm3 g−1 for CO2 and 1.0Ncm3 g−1 for H2, re-
spectively. There is a maximum error of 11.5Ncm3 g−1, 12.9Ncm3 g−1 and 2.7Ncm3 g−1

and a standard deviation of 4.0Ncm3 g−1, 3.3Ncm3 g−1 and 1.0Ncm3 g−1, respectively.

14 16 18 20 22 24 26
−10

−5

0

5

10

pressure in bar

a
b
so

lu
te

er
ro

r
in

%
m

o
l

CH4

CO2

H2

(a) ELM.

14 16 18 20 22 24 26
−10

−5

0

5

10

pressure in bar

a
b
so

lu
te

er
ro

r
in

%
m

o
l

CH4

CO2

H2

(b) IAST.

Figure 4.17.: absolute error of the mole fraction for the system CH4–CO2–H2.

The results obtained with IAST have a mean absolute error of the mole fraction of the
adsorbed phase of 1.2 %mol for CH4, 1.0 %mol for CO2 and 0.5 %mol for H2, respectively.
The maximum error is 3.2 %mol, 2.8 %mol and 0.9 %mol, and the standard deviation is
1.2 %mol, 1.0 %mol and 0.3 %mol, respectively. The adsorbed amount at equilibrium is
predicted with a mean absolute error of 3.6Ncm3 g−1 for CH4, 6.0Ncm3 g−1 for CO2 and
0.9Ncm3 g−1 for H2, respectively. The maximum error is 8.1Ncm3 g−1, 17.1Ncm3 g−1

and 2.5Ncm3 g−1, and the standard deviations are for each component 3.5Ncm3 g−1,
6.4Ncm3 g−1 and 0.9Ncm3 g−1, respectively.

14 16 18 20 22 24 26
−20

−10

0

10

20

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CH4

CO2

H2

(a) ELM.

14 16 18 20 22 24 26
−20

−10

0

10

20

pressure in bar

a
b
so

lu
te

er
ro

r
in

N
cm

3
g

-1

CH4

CO2

H2

(b) IAST.

Figure 4.18.: absolute error of the adsorbed amount for the system CH4–CO2–H2.

35

4. Validation and Results in Octave

4.2.3. Comparison between ELM and ELM with IAC

10 15 20 25 30
0

20

40

60

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CH4,meas

CH4,elm

CH4,iac

(a) CH4.

10 15 20 25 30
0

10

20

30

40

50

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

COmeas

COelm

COiac

(b) CO.

10 15 20 25 30
0

2

4

6

8

10

12

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

H2,meas

H2,elm

H2,iac

(c) H2.

Figure 4.19.: Comparison of measurement and model of adsorbed amount for ELM and
ELM with IAC for the system CH4–CO–H2.

As previously stated, the interaction coefficients improve the prediction of equilibria
significantly. The IAC are averaged for one system of species over the entire pressure
range. In order for this approach to work, an over- or under-prediction of one species
should stay constant, meaning it is either over- or under-predicted. This is not the case
for e.g. CH4 in the system CH4–CO–H2, as shown in figure 4.19. The system CO2–CO
meets this condition, and therefore, the IAC improve the prediction noticeable as shown
in figure 4.20.

4.3. Kinetics Models

Since the linear driving force model is already available in adsorpFoam, only the diffu-
sion-based kinetics are implemented in Octave. The results of the implementation in
Octave show an overshoot of the relative uptake of species with low concentration. This
behaviour is also reported in literature [Do, 1998]. The relative uptake is defined as:

36

4. Validation and Results in Octave

5 10 15 20 25
0

50

100

150

200

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CO2,meas

CO2,elm

CO2,iac

(a) CO2.

5 10 15 20 25
0

10

20

30

40

50

pressure in bar

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

COmeas

COelm

COiac

(b) CO.

Figure 4.20.: Comparison of measurement and model of adsorbed amount for ELM and
ELM with IAC for the system CO2–CO.

Θ =
Ci

Ceq,i
. (4.4)

0 50 100 150 200
0

20

40

60

80

100

time in seconds

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CH4

10×H2

CO2

CO

(a) Adsorbed amount. Hydrogen is scaled with a
factor of ten.

0 50 100 150 200
0

0.5

1

1.5

2

time in seconds

re
la

ti
ve

u
p
ta

ke

CH4

H2

CO2

CO

(b) Relative uptake.

Figure 4.21.: Diffusion-based kinetics for the system CH4–H2–CO2–CO.

The simulations are done at a pressure of 100 kPa and a temperature of 298K. The
used equilibrium model is the IAST, and the single-component isotherms are assumed
to be of Langmuir type. The two parameters for this isotherm are taken from [Ritter
and Yang, 1987]. The denominator for the gradient is chosen arbitrarily as 10−4 m2. It
is chosen so, that the rates are in the same magnitude as those of a linear driving force.
This parameter can be adapted later on, using experimental data. The time step is set
at 10−2 s. For all but the last shown system, no initial loading is assumed. The four
systems are chosen arbitrarily and do not match any of the previously discussed systems
for equilibrium comparison.
Following gas mole fractions are used for the four-component system:

• yCH4
= 0.1, yH2

= 0.06, yCO2
= 0.34, yCO = 0.5

37

4. Validation and Results in Octave

The four-component system shows an overshoot for hydrogen. This is acceptable, since
the total adsorbed amount of this species is very low and almost not visible in fig-
ure 4.21(a).

0 50 100 150 200
0

20

40

60

80

time in seconds

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CH4

CO2

CO

(a) Adsorbed amount.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

time in seconds

re
la

ti
ve

u
p
ta

ke

CH4

CO2

CO

(b) Relative uptake.

Figure 4.22.: Diffusion-based kinetics for the system CH4–CO2–CO.

Following gas mole fractions are used for the three-component system:

• yCH4
= 0.2, yCO2

= 0.2, yCO = 0.6

As shown in figure 4.22, the three-component system, containing methane, carbon diox-
ide and carbon monoxide, is an overshoot visible as well, but not as distinct as before.

0 50 100 150 200
0

10

20

30

40

50

time in seconds

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CH4

CO

(a) Adsorbed amount.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

time in seconds

re
la

ti
ve

u
p
ta

ke

CH4

CO

(b) Relative uptake.

Figure 4.23.: Diffusion-based kinetics for the system CH4–CO.

Following gas mole fractions are used for the two-component systems:

• yCH4
= 0.1, yCO = 0.9

The relative uptake of the binary system shows hardly any difference between the two
species as shown in figure 4.20.
To show the effect of the coupling matrix, one component was chosen to be already
present with a loading double of the equilibrium amount. With a linear driving force
model, no inflexion point would be expected. However, with diffusion-based kinetics,
the effect of the coupling matrix is visible in the first 30 s as shown in figure 4.24.

38

4. Validation and Results in Octave

0 50 100 150 200
0

10

20

30

40

50

time in seconds

a
d
so

rb
ed

a
m

o
u
n
t

in
N

cm
3

g
-1

CH4

CO

(a) Adsorbed amount.

0 50 100 150 200
0

0.5

1

1.5

2

time in seconds

re
la

ti
ve

u
p
ta

ke

CH4

CO

(b) Relative uptake.

Figure 4.24.: Diffusion-based kinetics with initial loading for the system CH4–CO.

39

CHAPTER 5

Computational Fluid Dynamics

Computational fluid dynamics CFD “focuses on the construction and solution of the
governing equations for the different categories of fluid dynamics and the study of var-
ious approximations to those equations” (from [Fletcher, 1991]). Since the equations
describing flows are non-linear partial differential equations PDE, there is no general
analytic solution. Therefore, they have to be solved numerically. With increasing com-
puter performance over the last decades, complex CFD simulations become more and
more available to users.
Creating a mathematical model, e.g. a set of PDE which describes a flow, is always the
starting point of CFD. Here, the properties of the flow have to be characterised, and
simplifications can be made, e.g. neglecting viscosity. The next step is discretising the
set of equations in space and time. Depending on the problem, one algorithm might
have advantages over the other, for its better capability of solving a specific problem at
hand. Normally, these methods have already been implemented in a CFD suite. Next,
a grid must be created and the boundary and initial conditions have to be set. Now,
with the use of convergence criteria, the simulation may be started. After finishing the
calculations, the results can be made visible [Ferzinger and Perić, 2002]. Sometimes,
CFD is referred to as ‘Colourful fluid dynamics’, for its colourful pictures of e.g. flows
or pressure drop.

5.1. Mathematical Fundamentals

CFD requires the numerical solution of a PDE. Generally, a linear, second-order, two-
dimensional PDE can be written as [Fletcher, 1991]:

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂u2

∂y2
+ D

∂u

∂x
+ E

∂u

∂y
+ Fu + G = 0, (5.1)

with constants A to G and u = u(x, y). This type of PDE can be classified into three
categories, for their different behaviour of the solutions:

• elliptic PDE with B2 − 4AC < 0,

• parabolic PDE with B2 − 4AC = 0,

• and hyperbolic PDE with B2 − 4AC > 0.

5. Computational Fluid Dynamics

Those types of equations can be solved analytically. However, the equations in CFD are
non-linear and cannot be generally solved analytically.

5.1.1. Discretisation

In order to be able to solve an equation numerically, it has to be discretised. In CFD, all
calculations are done at points, in volumes or on faces of a mesh. Three different types
of grids can be distinguished [Ferzinger and Perić, 2002]:

• Structured or regular grid: this grid type consists of groups of grid lines, and each
line in one group does not cross lines from the same group and crosses all members
of other groups only once. The grid points can be enumerated and there are
efficient algorithms only applicable to structured grids. Consequently, it can only
be used on simple geometries. Structured grids can be divided into grids with and
without constant grid size. Computations on the former type are sometimes more
accurate, since the truncation error made during discretisation and interpolation
can be less on grids with constant grid size. Figure 5.1(a) shows an example of a
structured grid.

• Block-structured grid: this grid type consists of a number of subdomains which in
itself are structured grids. In the interfaces of the subdomains, special care must
be taken during calculations. With this type of grid, refinements for e.g. near-wall
treatment and more complex geometries are possible to mesh. Figure 5.1(b) shows
an example of a block-structured grid.

• Unstructured grid: this grid type does not follow any of the previous rules. There-
fore, it is the most flexible, used in automatic meshing and for complex geometries.
More complex and generalised algorithms are necessary to solve discretised equa-
tions on such grids. Figure 5.1(c) shows an example of an unstructured grid.

With Taylor series expansion, any infinitely differentiable function f(x) can be calculated
in proximity to the point x0:

f(x) =
∞
∑

k=0

(x − x0)k

k!

∂kf(x0)

∂xk
. (5.2)

So, the function f can be expressed in the proximity of x0 as:

f(x0 + ∆x) = f(x0) + ∆x
∂f(x0)

∂x
+

∆x2

2

∂2f(x0)

∂x2
+ O(∆x3). (5.3)

Using Taylor series expansion, the first derivative with respect to x can be discretised
as follows:

∂f

∂x
=

f(x0 + ∆x) − f(x0)

∆x
+ O(∆x), (5.4)

which is a forward-difference scheme of first order, see figure 5.2(a). First order means
that the discretisation error scales linear with the step size ∆x. This derivative can

41

5. Computational Fluid Dynamics

(a) A structured grid. (b) A block-structured grid.

(c) An unstructured grid.

Figure 5.1.: Three different types of grids.

also be discretised using a first-order backward-difference discretisation scheme, see fig-
ure 5.2(b), and reads as follows:

∂f

∂x
=

f(x0) − f(x0 − ∆x)

∆x
+ O(∆x), (5.5)

or, with a second-order central-difference scheme, see figure 5.2(c):

∂f

∂x
=

f(x0 + ∆x) − f(x0 − ∆x)

2∆x
+ O(∆x2). (5.6)

Figure 5.2 shows that the second-order scheme is much better at predicting the actual
derivative, shown in figure 5.2(d), than the two first-order schemes.
Generally, a discretisation of the nth derivative of order m with suitable coefficients ak

can be expressed as follows:

∂nf

∂xn
=

∞
∑

k=−∞

akf(x0 + k∆x) + O(∆xm). (5.7)

Normally, ak takes the following shape, with a rational number a′
k:

ak =
a′

k

∆xn
. (5.8)

42

5. Computational Fluid Dynamics

0
x

f(x)

x0x0 − ∆x x0 + ∆x

(a) Forward-difference scheme, first order.

0
x

f(x)

x0x0 − ∆x x0 + ∆x

(b) Backward-difference scheme, first order.

0
x

f(x)

x0x0 − ∆x x0 + ∆x

(c) Central-difference scheme, second order.

0
x

f(x)

x0x0 − ∆x x0 + ∆x

(d) Actual derivative.

Figure 5.2.: Three different discretisation schemes and the actual first derivative in the
point xo. The straight line in proximity to x0 represents the discretisation
and actual derivative, respectively.

43

5. Computational Fluid Dynamics

For example, the transient, one-dimensional heat conduction in a solid of length l shall
be discretised. It is described by the following equation:

∂T

∂t
− α

∂2T

∂x2
= 0, (5.9)

with the boundary conditions T (0, t) = F1(t), T (l, t) = F2(t) and the initial condition
T (x, 0) = G(x). This is equivalent to applying a differential operator H(∗) to the
function:

H(∗) =
∂(∗)

∂t
− α

∂2(∗)

∂x2
= 0. (5.10)

The operator H(∗) depends on the form of the PDE. Replacing the differential by dif-
ferences using Taylor series expansion yields a discretised equation:

T (x, t + ∆t) − T (x, t)

∆t
− α

T (x − ∆x, t) − 2T (x, t) + T (x + ∆x, t)

∆x2
= 0. (5.11)

The above discretisation is called FTCS scheme which stands for “forward in time,
centred in space” [IITM, 2016]. It is an explicit scheme, meaning that the unknown
values of one time step can be calculated using only already known values from previous
time steps and boundary conditions. In contrast, an implicit scheme implies that the
unknown values are interdependent and have to be calculated solving a linear system of
equations. Implicit schemes are computational more demanding, but generally allow a
bigger time step for their better stability.

Convergence

If the solution of the discretised problem tends to the exact solution with the grid spacing
approaching zero, the numerical method is called convergent. The Lax-Richtmyer equiv-
alence theorem states, that “a consistent finite difference scheme for a [linear] partial
differential equation for which the initial value problem is well-posed is convergent if and
only if it is stable” (from [Strikwerda, 2004], with authors note). Therefore, convergence
for linear problems implies consistency and stability.
Consistency means that the discretisation should become the original equation in the
limit of the discretisation step to zero. Stability implies that a small error, e.g. a
round-off error, should decline and not grow.
There are a number of schemes to show stability [Peiró and Sherwin, 2005]. For fluid
dynamics, the Courant-Friedrichs-Lewy condition must be satisfied in order to have a
stable solution. The so-called Courant number is an indicator of how far a virtual particle
can travel during one time step, in terms of the grid size. It is defined as:

C =
u∆t

∆x
. (5.12)

An explicit scheme for hyperbolic PDE is stable if C ≤ 1 [Fletcher, 1991].

44

5. Computational Fluid Dynamics

Boundedness

Most physical properties are subject to certain restrictions, e.g. the density must never
be negative or the mass fraction of one component cannot exceed a value of one. However,
very few discretisation methods guarantee such a boundedness. Only some first-order
schemes are known to be bounded. All higher-order schemes can produce unbounded
results and numerical diffusion, which occurs mostly on coarse grids. Also, unbounded
algorithms are prone to having stability and convergence problems [Ferzinger and Perić,
2002].

5.1.2. Finite-difference Method

The finite-difference method solves the discretised PDE at points of a mesh. For example,
equation (5.9) can be discretised with the explicit FTCS scheme and rearranged to:

T n+1
j = sT n

j−1 + (1 − 2s) T n
j + sT n

j+1, (5.13)

where s = α∆t∆x−2, the superscript n denotes the discretisation in time and the sub-
script j in space, respectively.

5.1.3. Weighted Residual Methods

Weighted residual methods WRM assume an analytically representable, approximate so-
lution which takes the following form for the one-dimensional heat conduction [Fletcher,
1991]:

T (x, t) =
J
∑

j=0

aj(t)φj(x). (5.14)

J > 0 can be chosen arbitrarily. The higher its value, the more accurate the numerical
solution will be and the more computational effort is required. This is an ansatz for
T (x, t). In an alternate representation and three dimensions, it reads as:

T (x, t) = T0(x, t) +
J
∑

j=1

aj(t)φj(x), (5.15)

where T0 is chosen to satisfy as many boundary and initial conditions as possible.
The functions φj(x) can be chosen at will, e.g. polynomials or trigonometric functions.
Depending on the problem, the testing functions φj can be chosen so that they suit the
problem. The coefficients aj(t) are unknown and will be calculated by solving a system
of equations.
If the differential operator H(∗) is applied on the the exact solution the equation is equal
to zero:

H(Texact) = 0. (5.16)

45

5. Computational Fluid Dynamics

However, doing the same with the numerically obtained solution will yield an error,
called residual R:

H(TAnsatz) = R. (5.17)

Weighting this residual with a function Wm(x) over the computational domain D yields
the WRM [Fletcher, 1991]:

∫∫∫

D
Wm(x)R dV = 0. (5.18)

The weighting function Wm may be chosen freely and some special choices are introduced
in the subsequent sections.

Subdomain Method

Splitting up the domain in M subdomains Dm and choosing the weighting function as

Wm(x) = 1 for x ∈ Dm, (5.19)

Wm(x) = 0 else, (5.20)

yields the subdomain method. This method is similar to the finite-volume method.

Collocation Method

Choosing certain discretisation points xm and the weighting function as

Wm(x) = δ (x − xm) , (5.21)

with the Dirac delta function δ, is called collocation method.

Least-square Method

Choosing the weighting function as

Wm =
∂R

∂am
, (5.22)

yields the least-square method. As the name implies, this is equivalent to minimising

∫∫∫

D
R2 dV . (5.23)

Galerkin Method

Choosing the weighting function the same as the testing functions:

Wm(x) = φm(x), (5.24)

yields the Galerkin method, which is similar to the so-called finite-element method.

46

5. Computational Fluid Dynamics

5.2. Finite-volume Method

cell value

boundary face value

boundary face

control volumecontrol volume

internal face value internal face

vertex value

Figure 5.3.: The finite-volume method on a two-dimensional grid (adapted from [CNR,
2016]).

As previously stated, the finite-volume method FVM is a type of WRM. It is similar to
the subdomain method, differing only in the absence of an introduction of an approxi-
mate solution like equation (5.15). It is chosen for many fluid mechanics problems, since
the conservation properties of a physical quantity are preserved [Fletcher, 1991].
In figure 5.3, a two-dimensional finite volume grid is shown. Normally, values of physical
properties are stored at the cell centre, called cell value. Some quantities, like tempera-
ture, are stored additionally at the boundary faces, called boundary face values.

5.2.1. Interpolation

For being able to do calculations at cell faces or points, the values of any physical quantity
φ defined in the cell centre have to be interpolated. For examples, all surface integrals
require physical quantities at the faces of the cells. In figure 5.4, UU, U and D denote
the second upstream, first upstream and downstream node, respectively.

Upwind Interpolation

As the name implies, this schemes is dependent on the flow direction. It is either a
backward- or forward-difference approximation for the first derivative. It takes the value
for the face from the first cell which is in the direction the flow is coming from. The
reason behind this is that it is assumed that some physical properties travel with the
flow. It is defined as follows [Ferzinger and Perić, 2002]:

φe =

{

φD, if (u · n)e > 0;

φU , if (u · n)e < 0.
(5.25)

47

5. Computational Fluid Dynamics

0
x

φ(x) flow direction

xUU xU xDxe

(a) Upwind interpolation scheme.

0
x

φ(x) flow direction

xUU xU xDxe

(b) Linear interpolation scheme.

0
x

φ(x) flow direction

xUU xU xDxe

(c) QUICK interpolation scheme.

Figure 5.4.: Three different interpolation schemes.

This interpolation scheme does not result in oscillation of the solution and satisfies
boundedness, but is prone to being numerically diffusive. It is of first order. A graphical
representation of this interpolation scheme is shown in figure 5.4(a).

Linear Interpolation

As the name implies, the value for the face is linearly interpolated between the two
nearest nodes:

φe = φU + λe (φD − φU) , (5.26)

with the linear interpolation factor λe being geometrically defined as:

λe =
xe − xU

xD − xU
. (5.27)

This schemes is of second order and may produce oscillatory solutions [Ferzinger and
Perić, 2002]. A graphical representation of this interpolation scheme is shown in fig-
ure 5.4(b).

Quadratic Upwind Interpolation

The quadratic upwind interpolation, also called ‘QUICK’ which stands for ‘quadratic
upstream interpolation for convective kinematics’, approximates the quantity by a pa-
rabola. For a parabola, three points are necessary. Therefore, not only the bordering

48

5. Computational Fluid Dynamics

neighbours are used, but also at least one additional value is needed. Depending on flow
direction, it can be obtained by:

φe = φU + g1(φD − φU) + g2(φU − φUU), (5.28)

where D, U and UU denote the downstream, first upstream and second upstream node,
respectively [Ferzinger and Perić, 2002]. The coefficients are as follows:

g1 =
(xe − xU)(xe − xUU)

(xD − xU)(xD − xUU)
, (5.29)

g2 =
(xe − xU)(xD − xe)

(xU − xUU)(xD − xUU)
. (5.30)

The quadratic upwind interpolation scheme has a truncation error of third order. How-
ever, used together with the mid-point rule for calculating surface integrals, the total
approximation is of second-order accuracy [Ferzinger and Perić, 2002]. A graphical rep-
resentation of this interpolation scheme is shown in figure 5.4(c).

5.3. Conservation Equations

The first law of thermodynamics states, that energy must not be created or destroyed.
Similar rules apply for momentum and mass. Therefore, every flow has to satisfy some
conservation equations.
The change of a physical property E(t) in a material element V (t), i.e. an element which
no material enters or leaves, can be described as follows [Kuhlmann, 2007]:

dE(t)

dt
=

d

dt

∫

V (t)
ǫ(t) dV , (5.31)

with ǫ = E/V . V0 denotes a stationary volume and A0 its boundary. The physical
property can be either a scalar or a vectorial quantity. Using the Leibnitz integral rule
yields the so-called Reynolds transport theorem:

d

dt

∫

V (t)
ǫ(t)dV =

∫

V0

∂ǫ

∂t
dV +

∫

A0

ǫu · dA. (5.32)

If the physical property E meets a conservation condition, equation (5.32) can be written
as

∫

V0

∂ǫ

∂t
dV +

∫

A0

ǫu · dA = S, (5.33)

with a possible source term S.
The first term of equation (5.33) represents the change of the physical property with
time inside V0, the second term describes the change of the physical quantity due to
transport over the boundaries of V0. The latter term is also called convective term.

49

5. Computational Fluid Dynamics

Applying the Gauß’s theorem to equation (5.33) and letting V0 approach zero, the
Reynolds transport theorem can be expressed in differential form:

∂ǫ

∂t
+ ∇ · (ǫu) = s, (5.34)

with s = ρS.
The integral version of a conservation equation is always valid, whereas the differential
version requires the physical property to be continuously differentiable. This condition
is not met for e.g. shock waves.

5.3.1. Total Mass Balance

Setting ǫ = ρ to the density and s = 0 yields the mass balance, often called continuity
equation [Kuhlmann, 2007]:

∂ρ

∂t
+ ∇ · (ρu) = 0. (5.35)

or, with S = 0:

∫

V0

∂ρ

∂t
dV +

∫

A0

ρu · dA = 0, (5.36)

The above equation states, that any mass change inside of the control volume – described
with the first term – has to be caused by convective mass transport over the boundaries
of V0 – described with the second term, with no source term possible.

5.3.2. Partial Mass Balance

Setting ǫ = ρi and s = ∇ · (D∇ρi) + ri, with the diffusion coefficient D and change of
mass ri of component i per volume due to chemical processes, and applying Fick’s Law
for diffusion, the partial mass balance is obtained:

∂ρi

∂t
+ ∇ · (ρiu) = ∇ · (D∇ρi) + ri, (5.37)

or, with S =
∫

A0
D∇ρi · dA + Ri:

∫

V0

∂ρi

∂t
dV +

∫

A0

ρiu · dA =

∫

A0

D∇ρi · dA + Ri. (5.38)

5.3.3. Momentum Balance

Setting ǫ = ρu and s = −∇p + ρf , with all external forces per volume f , e.g. gravity
acceleration, yields the momentum equation of an inviscid fluid [Kuhlmann, 2007]:

∂ρu

∂t
+ ∇ · (ρuu) = −∇p + ρf , (5.39)

50

5. Computational Fluid Dynamics

or, with S = −
∫

A0
p dA + F :

∫

V0

∂ρu

∂t
dV +

∫

A0

ρuu · dA = −

∫

A0

p dA + F , (5.40)

(5.41)

Equation (5.39) can be transformed to the so-called Euler equation for inviscid and
incompressible, i.e. constant density, flow [Kuhlmann, 2007]:

∂u

∂t
+ u · ∇u =

1

ρ
∇p + f . (5.42)

If friction is considered, equation (5.40) can be written as:

∫

V0

∂ρu

∂t
dV +

∫

A0

ρuu · dA =

∫

A0

T · dA + F , (5.43)

with the stress tensor T, which contains the gradient of pressure.
Assuming a linear dependency of shear rate and shear stress, i.e. Newtonian fluid, the
Navier-Stokes equation is obtained, with constant viscosity [Kuhlmann, 2007]:

ρ

(

∂u

∂t
+ u · ∇u

)

= −∇p + µ∇2u +

(

ζ +
µ

3

)

∇ (∇ · u) + ρf , (5.44)

with the bulk viscosity ζ. The left-hand side describes acceleration. The first term
on the right-hand side denotes the change of momentum due to a pressure gradient.
The second term stands for the friction of an incompressible fluid. The third term is an
additional friction term to account for compressibility effects, and the last term describes
all external forces, such as gravity acceleration.

5.3.4. Energy Balance

Setting ǫ = ρu2/2 + ρe + ρgz and s = q̇, the externally supplied power per volume
without the power due to a pressure gradient, and using the definition of enthalpy for
an ideal gas h = e + pρ−1 yields the energy balance equation [Kuhlmann, 2007]:

∂

∂t

[

ρ

(

u2

2
+ e + gz

)]

+ ∇ ·

[

ρu

(

u2

2
+ h + gz

)]

= ρq̇, (5.45)

or, with S = Q̇:

∫

V0

∂

∂t

[

ρ

(

u2

2
+ e + gz

)]

dV +

∫

A0

ρ

(

u2

2
+ h + gz

)

u · dA = Q̇. (5.46)

In CFD, all conservation equations and an equation of state have to be solved. Additional
equations, e.g. considering chemical reactions, can be added and sometimes, the energy
balance is disregarded and the problem is considered to be isotherm.

51

5. Computational Fluid Dynamics

5.4. Pressure-velocity Coupling

The momentum and continuity equations have to be solved for a flow. Both connect
pressure and velocity, making it impossible to solve for one of those two quantities solely.
For the sake of clarity, an incompressible and isotherm flow without any external forces
is assumed. The two governing equations for this problem are the continuity and the
momentum equation [Exeter, 2016]:

∇ · u = 0, (5.47)

∂u

∂t
+ ∇ · (uu) = −

1

ρ
∇p + ν∇2u (5.48)

For calculating p, u has to be known and vice versa. A couple of algorithms have
been developed to solve for both quantities simultaneously or in succession. Here, three
algorithms are presented which are of the latter type and used in OpenFOAM.

5.4.1. PISO Algorithm

The pressure-implicit with splitting of operators PISO algorithm solves for a transient
flow. It takes an initial guess for pressure p and flux ϕ, most times the values from
the previous time step, and calculates the velocity. Then, a new pressure field can be
calculated, using the newly obtained velocity and flux. A flowchart of the algorithm is
shown in figure 5.5.

Previous time step

Initial guess for p and φ

Solve discretised momentum equation for u.

Solve pressure correction equation.

Correct pressure and velocity.

φ converged?Set new estimations for p and φ.

Solve all other discretised transport equations.

Next time step

yes

no

Figure 5.5.: Flowchart of the PISO algorithm (adapted from [Exeter, 2016]).

52

5. Computational Fluid Dynamics

5.4.2. SIMPLE Algorithm

The semi-implicit method for pressure-linked equations SIMPLE algorithm solves for
a steady-state flow. It takes an initial guess for pressure p. With said pressure field,
the velocity field is calculated and a pressure correction can be obtained. Using this
correction to update a new pressure field leads to a new iteration loop [Patankar, 1980].
A flowchart of the algorithm is shown in figure 5.6.

Previous iteration

Initial guess for p

Solve discretised momentum equation for u.

Solve pressure correction equation.

Correct pressure and velocity with under-relaxation.

φ converged?Set new estimations for p.

Solve all other discretised transport equations.

Next iteration

yes

no

Figure 5.6.: Flowchart of the SIMPLE algorithm (adapted from [Exeter, 2016]).

5.4.3. PIMPLE Algorithm

The merged PISO-SIMPLE (PIMPLE) algorithm combines both PISO and SIMPLE
for transient or steady-state flow. It has an outer PISO and an inner SIMPLE loop,
allowing the use of bigger time steps and faster simulations [Jasak, 1996]. A flowchart
of the algorithm is shown in figure 5.7. The convergence criteria for both loops are often
a fixed number of iteration loops.

5.5. Prediction of Material Properties

Since all conservation equations need material properties, they have to be known or
calculated. Most of those quantities are dependent on pressure and temperature, and
knowing the dependency allows for an approximate calculation. Often, the dependency
of pressure is low and can be neglected.

53

5. Computational Fluid Dynamics

Previous time step

Initial guess for p and φ

Solve discretised momentum equation for u.

Solve pressure correction equation.

Correct pressure and velocity.

φ converged?Set new estimations for p.

φ converged?Set new estimations for p and φ.

Solve all other discretised transport equations.

Next time step

yes

yes

no

no

Figure 5.7.: Flowchart of the PIMPLE algorithm [Holzinger, 2014]. Often, the conver-
gence criteria are a fixed number of iteration loops.

54

5. Computational Fluid Dynamics

5.5.1. Diffusion Coefficients in Gas Mixtures

The diffusion in a gas mixture with more than two components can be estimated using
the kinetic theory of gases. First, the diffusion coefficient for a binary mixture can be
obtained as follows [Reid et al., 1987]:

DAB =
3

16

(4πkT/MAB)1/2

nπσ2
ABΩD

fD, (5.49)

k denotes the Boltzmann constant and n the number of moles. The correction term fD

which accounts for different molar masses is usually close to unity and can be neglected.
The averaged characteristic length σAB, the averaged molar mass MAB and the diffusion
collision integral ΩD are calculated using the following relations:

MAB =
2

1/MA + 1/MB
,

σAB =
σA + σB

2
,

ǫAB = (ǫAǫB)1/2 ,

T ∗ =
kT

ǫAB
,

ΩD =
A

(T ∗)B
+

C

exp (DT ∗)
+

E

exp (FT ∗)
+

G

exp (HT ∗)
,

with ǫi being the characteristic energy and σi being the characteristic length of species
i. The assumption of equal binary diffusion coefficients, meaning DAB = DBA, is not
true e.g. in the case of hydrogen, since it is a small molecule. Therefore, it diffuses much
faster than most other gases.
For a mixture of N gases, the diffusion coefficients for each component can be calculated
from the binary coefficients:

Dm,i =









N
∑

j=1
j 6=i

xj

Dij









−1

. (5.50)

55

CHAPTER 6

Introduction to OpenFOAM

OpenFOAM is an open-source software for solving computational fluid dynamics prob-
lems. It is freely available on the Internet under the terms of the GNU General Public
License and consists of many small programs, called solvers, tools and libraries. One
solver typically deals with the solution for e.g. an inviscid flow or scalar transport due
to convection and diffusion. Besides solvers, there are also shared libraries which imple-
ment types of boundary conditions or physical models, e.g. for turbulence modelling or
chemical reactions. This collection of programs is entirely controlled via a command-line
interface, with no default graphical user interface.
Since OpenFOAM is structured using object-oriented programming paradigm, custom
solvers and models can be implemented by taking the solver or model which is most sim-
ilar to the problem at hand, and adapting it. This is also the approach for the work done
in this thesis. The OpenFOAM version used in this thesis is 2.4.0 and all source code files
shown in this chapter are taken from the official OpenFOAM homepage [OpenFOAM,
2016a].

6.1. User Side

An OpenFOAM case is configured with text files called dictionaries and consists of at
least three folders [Greenshields, 2015b]:

• 0: Here, all the initial and boundary conditions are defined. For example, for a
laminar, incompressible and isotherm flow, there would be a p and U file in this
directory. So-called patches represent faces with equal boundary conditions.

• constant: Here, configuration files specific to the flow or species are placed, e.g.
the chosen turbulence model, chemical reactions or material properties. Also, the
mesh is defined in the subdirectory polyMesh.

• system: Here, time and residual controls, algorithm options and discretisation
schemes are specified. Residual and algorithm controls have to be specified in the
fvSolution file. The discretisation schemes are defined in the fvSchemes file.
Time step, write intervals and other important general settings are put into the
controlDict file.

6. Introduction to OpenFOAM

6.1.1. Preprocessing

Before starting the solver, a mesh must be created. OpenFOAM has the ability to
create or import one. Creating a mesh is possible using blockMesh or meshing an
already existing geometry from a file using snappyHexMesh. The use of either of those
commands requires the existence of an appropriate dictionary, and sometimes other files
as well. Additionally, meshes created with other applications can be imported using the
*ToFoam command family.
Initialising physical quantities can either be done by editing the files in the 0 directory
by hand, copying them, or by using the commands setFields or mapFields [Holzinger,
2014].
When running big geometries with millions of cells, it is often required to parallelise
calculations. OpenFOAM provides such a capability by decomposing the computational
domain. This is done using the decomposePar command.

6.1.2. Starting the Simulation

Once the case is set up, the calculations can be started by typing the name of the chosen
solver in the terminal, e.g. reactingFoam. Depending on the size of the mesh and
complexity of the case, the computation may take seconds to weeks. During calculations,
the output is written to time directories as specified in the controlDict dictionary.

6.1.3. Postprocessing

After finishing the calculations postprocessing can begin. If more than one processor
core was used, the mesh has to be reconstructed using the reconstructPar tool. By
creating an empty foam.foam file in the root case directory or converting the results
to the VTK format with the foamToVTK command, the results can be displayed and
analysed using ParaView.
ParaView is the standard tool for graphical postprocessing. It can display geometries,
make physical quantities visible and slice the computational domain to show e.g. pressure
drop along the axis of a pipe or mass fraction distribution over a cross section.

6.2. Programming Side

Developing a new solver takes place at a high level of OpenFOAM. Since it is modular
and class-based, taking an already existing solver that has the most similarities to the
problem at hand is usually the best way to start programming.

6.2.1. General Structure of a Solver

Taking a very simple application like laplacianFoam, the general structure of a solver
becomes clear. The source code for the main function can be read in listing 6.1. Before
the main functions, some basic header files are included in lines 32 and 33 which provide
the fundamental CFD and FVM capabilities of OpenFOAM. The main function starts
in line 37.

57

6. Introduction to OpenFOAM

Listing 6.1: structure of laplacianFoam.C

32 # include " fvCFD .H"

33 # include " simpleControl .H"

34

35 // * //

36

37 int main(int argc , char * argv [])

38 {

39 # include " setRootCase .H"

40

41 # include " createTime .H"

42 # include " createMesh .H"

43 # include " createFields .H"

44

45 simpleControl simple (mesh);

46

47 // * //

48

49 Info << "\ nCalculating temperature distribution \n" << endl;

50

51 while (simple .loop ())

52 {

53 Info << "Time = " << runTime . timeName () << nl << endl;

54

55 while (simple . correctNonOrthogonal ())

56 {

57 solve

58 (

59 fvm :: ddt(T) - fvm :: laplacian (DT , T)

60);

61 }

62

63 # include " write .H"

64

65 Info << " ExecutionTime = " << runTime . elapsedCpuTime () << " s"

66 << " ClockTime = " << runTime . elapsedClockTime () << " s"

67 << nl << endl;

68 }

69

70 Info << "End\n" << endl;

71

72 return 0;

73 }

Mesh and time are created in lines 39 to 42 and input and configuration files, the
dictionaries, are read in line 43. Next, the time loop is started (line 51), and the diffusive
transport equation of the scalar T is solved using the SIMPLE algorithm in line 59. For
non-orthogonal meshes, the PDE can be solved multiple times as shown in line 55, for
a better outcome. Afterwards, the results can be written to file, and if the end time
is not reached, the next time loop starts. A general overview of the structure of an
OpenFOAM solver for transient flow is shown in figure 6.1. If the flow is assumed to be
steady-state, the criterion for ending the simulation is whether it is converged, and the
time step is replaced by an iteration step.

6.2.2. File Input and Output

OpenFOAM writes the results of flow properties to files in time directories. For example,
if a writeInterval of 2 was specified in the controlDict, then there would be folders
named 2, 4 and so on, in the root folder. Inside each time directory, every property will
be written in a file. Subsequently, if there are pressure and velocity to write at each time
step, there will be those two files called p and U in each time directory.

58

6. Introduction to OpenFOAM

Start

Include basic header files.

Start main program.

Create case and read configuration files. Configuration files

Start time loop.

Solve conservation equations.

Write results to files.

End time reached?Advance time step.

End

yes

no

Figure 6.1.: Flowchart of a generic OpenFOAM solver.

59

6. Introduction to OpenFOAM

Creating field variables and defining which will be printed to file is normally done in
the createFields.H source file. It is specific to each solver and specifies type and
file input/output properties for each necessary field. Taking a look at listing 6.2, the
initialisation becomes clear. First, a volScalarField which is a type definition for
volField<scalar>, called T is created in lines 3 to 14. Line 8 specifies that this variable
has to be read or written to the already mentioned time folders. On lines 10 and 11, the
input and output options are specified, respectively. The following statements are valid:

• MUST_READ: this file must be present in the time, constant or system folder.

• NO_READ: this file will not be read, and has to be initialised by the program.

• READ_IF_PRESENT: if present, this field will be read, otherwise it has to be initialised
by the program.

• MUST_READ_IF_MODIFIED: if the field has been modified since the last time it was
read, it has to be read again. Otherwise, the old values are used.

• AUTO_WRITE: this file will be written to file in each time folder.

• NO_WRITE: this file will not be written to file and therefore discarded.

Listing 6.2: structure of createFields.H for laplacianFoam

1 Info << " Reading field T\n" << endl;

2

3 volScalarField T

4 (

5 IOobject

6 (

7 "T",

8 runTime . timeName () ,

9 mesh ,

10 IOobject :: MUST_READ ,

11 IOobject :: AUTO_WRITE

12),

13 mesh

14);

15

16 Info << " Reading transportProperties \n" << endl;

17

18 IOdictionary transportProperties

19 (

20 IOobject

21 (

22 " transportProperties ",

23 runTime . constant () ,

24 mesh ,

25 IOobject :: MUST_READ_IF_MODIFIED ,

26 IOobject :: NO_WRITE

27)

28);

29

30 Info << " Reading diffusivity DT\n" << endl;

31

32 dimensionedScalar DT

33 (

34 transportProperties . lookup ("DT")

35);

In lines 18 to 28, a new IOdictionary is created. As stated previously, dictionaries
are used for configuration and setting variables and are usually read from the constant

60

6. Introduction to OpenFOAM

folder, as seen in line 8. Here, the diffusion DT is read from the transportProperties

dictionary in lines 32 to 35.

6.2.3. Data Types

Although the standard C++ data types are available, its use is discouraged. OpenFOAM
redefines all variable types for easier changes in future release. Furthermore, the use of
arrays is also abstracted.
The datatype label is used to store integer data, such as counters and indices of arrays.
Dependent whether the program runs on a 32- or 64-bit architecture, it can store a max-
imum value of either 2 × 109 or 9 × 1018, respectively [OpenFOAM, 2016b]. A scalar

is used to store a single floating point number, whereas a dimensionedScalar is used
for floats with a physical dimension. A word is used for storing strings.
Arrays in OpenFOAM are handled with so-called List<Type> or PtrList<Type>, to
store a multitude of variables of a generic type. Properties that are defined in the
centre of each cell are stored in a volField<Type>. Most physical properties, such as
temperature, pressure and mass fraction, are stored in such a field. It is defined in the
centres of a cell as shown in figure 6.2(a). Properties that are defined in the centre
of each face are stored in a surfField<Type>. Therefore, it is defined on cell faces as
shown in figure 6.2(b) and is mostly used for intermediate storage of values to evaluate
surface integrals. Properties that are defined at points of the mesh are stored in a
pointField<Type>. Incidentally, it is defined on cell vertices, as shown figure 6.2(c).
Additionally, every field contains the values of the boundary faces, as shown in figure 6.2.
OpenFOAM uses C++ type definitions to abbreviate variable declaration. Amongst
many others, a volField<scalar> and volScalarField are the same. This makes
programming easier and the code is better readable.

6.2.4. Partial Differential Equations

Thanks to object-oriented programming and high abstraction, the formulation of a PDE
in OpenFOAM is simple and straightforward. For example, the transient diffusion of a
scalar T (Fick’s second law) can be expressed by the following PDE, which is also put
in code in listing 6.1 on line 59:

∂T

∂t
− Dt

∂2T

∂x2
= 0. (6.1)

6.2.5. Turbulence Modelling

Turbulence modelling is done in a very abstract way, meaning that at the time where
the solver was written it is not necessary to know whether and what turbulence model
shall be used for the simulation. Also, there is a turbulence model called ‘laminar’ which
disables turbulence modelling.

6.3. Solver for Flows with Chemical Reactions

A standard solver for flows with chemical reactions is called reactingFoam. According
to the official OpenFOAM user guide, reactingFoam is a “solver for combustion with

61

6. Introduction to OpenFOAM

(a) Data points of a volField<Type>

field.
(b) Data points of a surfField<Type>

field.

internal field

boundary field

boundary

(c) Data points of a pointField<Type> field.

Figure 6.2.: Two-dimensional representation of data points for different field variable
types in OpenFOAM (adapted from [Greenshields, 2015a]).

chemical reactions” [Greenshields, 2015b]. Turbulence modelling is supported. This
solver is also used as basis for adsorpFoam [Haddadi et al., 2014] and its extension
to multicomponent adsorption generalMultiAdsorpFoam. It is capable of solving all
conservation equations numerically and can additionally solve for a chemical reaction
taking place in the computational domain.
The following files are necessary for running a case with reactingFoam:

• 0 directory:

– The files p, T and U set boundary and initial conditions for pressure, temper-
ature and velocity, respectively.

– If turbulence modelling is chosen, the appropriate files have to be present.

– For each species, one file has to be present, e.g. CH4 and CO.

• constant directory:

– The file chemistryProperties defines the settings for the chemistry solver.

– In the file combustionProperties, the properties for the combustion model
are set.

– In the file g, the gravity acceleration is specified.

– In the file reactions, the names of all species are set and the reactions taking
place are defined.

– In the file thermo.compressibleGas, the molar mass, coefficients for calcu-
lating the specific heat capacity and transport parameters are put.

62

6. Introduction to OpenFOAM

– In the file thermophysicalProperties, the thermodynamic models are cho-
sen. Also, the inert species is specified here.

– In the file turbulenceProperties, the chosen turbulence model is put. Ad-
ditional files are necessary unless ‘laminar’ is chosen.

• system directory:

– In the files controlDict, fvSchemes and fvSolution general solver settings,
like convergence criteria or start and end time, are specified.

6.4. Solver for Flows with Single-component Henry Adsorption

A solver for single-component Henry adsorption called adsorpFoam, version 1.3.2, was
already developed in the research group [Haddadi et al., 2014]. It has the capability of
adsorbing one species. Three additional header files, called createAdsorptionFields.H,
adsorption.H and adsorptionHeat.H were written. In the first file, the additional nec-
essary fields and parameters to account for adsorption are created and read, if applicable.
In the second file, the actual adsorption equilibrium is calculated. In the third file, the
released heat of adsorption and the enthalpy change due to the removal or addition of
mass from an adsorbing face into the bordering cell is modelled.
In this version, and also in the multicomponent implementation described later, only
adsorption on the surface is considered, without actually modelling the surface in detail
with pores or regarding diffusion inside the solid. The height of the layer of the adsorbate
is not considered in the mesh, but modelled with a virtual height specified by the user
and only relevant for calculating the wall temperature.

6.4.1. Adaptation of Conservation Equations

The actual adsorption calculations are done inside the time loop and before the con-
servation equations are solved. The results of these calculations, like adsorbed amount,
enthalpy change and released heat of adsorption, are introduced to the conservation
equations as sink or source terms and therefore, the conservation equations are adapted
In the total mass balance, the removal or addition of mass due to adsorption and des-
orption, respectively, has to be considered. This is done by introducing a term on the
right-hand side, as shown in line 7 of listing 6.3.

Listing 6.3: Adapted total mass balance.

1 fvScalarMatrix rhoEqn

2 (

3 fvm :: ddt(rho)

4 + fvc :: div(phi)

5 ==

6 fvOptions (rho)

7 + volAdsorption

8);

In the momentum equation, the removed mass due to adsorption is introduced as an im-
plicit source term with Foam::Sp [Greenshields, 2015a], as seen in line 8 of of listing 6.4.

Listing 6.4: Adapted momentum equation.

1 fvVectorMatrix UEqn

2 (

63

6. Introduction to OpenFOAM

3 fvm :: ddt(rho , U)

4 + fvm :: div(phi , U)

5 + turbulence -> divDevRhoReff (U)

6 ==

7 rho*g

8 + fvm :: Sp(volAdsorption , U)

9 + fvOptions (rho , U)

10);

The partial mass balance is solved N − 1 times, where N is the total number of species.
The N th species is the so-called inert species and is calculated indirectly by using the con-
dition that the sum of all mass fractions has to be unity. In this version of adsorpFoam,
only one species is adsorbing. Its partial mass balance is adapted by introducing the
removed mass due to adsorption, as shown in line 15 of listing 6.5. Therefore, the
adsorbing species must not be set as the inert species.

Listing 6.5: Adapted partial mass balance.

1 fvScalarMatrix YiEqn

2 (

3 fvm :: ddt(rho , Yi)

4 + mvConvection -> fvmDiv (phi , Yi)

5 - fvm :: laplacian (turbulence -> muEff () , Yi)

6 ==

7 reaction ->R(Yi)

8 + fvOptions (rho , Yi)

9);

10

11 if (Y[i]. name () == adsorpSpecie)

12 {

13 solve

14 (

15 YiEqn == volAdsorption ,

16 mesh. solver ("Yi")

17);

18 }

19 else // other species

20 {

21 solve

22 (

23 YiEqn ,

24 mesh. solver ("Yi")

25);

26 }

The energy balance has to account for the enthalpy loss due to the removal of mass.
This is done in line 18 of listing 6.6. The energy balance can either be expressed in
terms of enthalpy or internal energy as seen in line 6. The user can select which will be
used, and this can remedy some stability problems in certain cases.

Listing 6.6: Adapted energy balance.

1 fvScalarMatrix EEqn

2 (

3 fvm :: ddt(rho , he) + mvConvection -> fvmDiv (phi , he)

4 + fvc :: ddt(rho , K) + fvc :: div(phi , K)

5 + (

6 he.name () == "e"

7 ? fvc :: div

8 (

9 fvc :: absolute (phi/fvc :: interpolate (rho), U),

10 p,

11 "div(phiv ,p)"

12)

13 : -dpdt

14)

64

6. Introduction to OpenFOAM

15 - fvm :: laplacian (turbulence -> alphaEff () , he)

16 ==

17 reaction ->Sh ()

18 + adsorptionEnthalpyChange

19 + fvOptions (rho , he)

20);

The PIMPLE algorithm is used to solve the pressure-velocity coupling. To account for
pressure changes due to removal of mass, a sink term is introduced, as shown in line 8
of listing 6.7.

Listing 6.7: Adapted pressure equation for the PIMPLE algorithm.

1 fvScalarMatrix pEqn

2 (

3 fvm :: ddt(psi , p)

4 + fvc :: div(phiHbyA)

5 - fvm :: laplacian (rho *rAU , p)

6 ==

7 fvOptions (psi , p, rho.name ())

8 + volAdsorption

9);

6.4.2. Temperature and Species Boundary and Initial Conditions

For declaring a wall as adsorbing, the keyword adsorpWall has to be set as boundary
condition in the species files. The file adsorption_* must be present in the appropriate
time directory because it will be read. If there is a loading set, it will be used as initial
condition.

65

CHAPTER 7

Implementation in OpenFOAM

Based on adsorpFoam version 1.3.2, which was introduced in section 6.4, a multicom-
ponent solver is developed. This version of adsorpFoam can only account for the Henry
adsorption of one single species. The new solver is called generalMultiAdsorpFoam.
‘general’ indicates that more than one model is available, whereas ‘multi’ implies the
capability of adsorbing multiple species at different boundaries. The coefficients for
each species can be defined per boundary patch. The boundary condition files remain
unchanged, the file adsorptionHeat.H was changed slightly and optimised. The file
createAdsorptionFields.H was greatly extended.
The implementation of the adsorption model can be structured in two parts: reading
the additional parameters as described in the next section, and calculating equilibrium
loading and rate of adsorption. In the general structure of an OpenFOAM solver, the
adsorption calculations take place at the beginning of each time step. After the rate of
adsorption is calculated, it may be introduced to the conservation equations.

7.1. Reading Input Parameters

In order to account for more than one species, the file createAdsorptionFields.H is
adapted. The coefficients and some fields are stored in arrays, called PtrList<Type>.
The following arrays for storing coefficients are created and read from the dictionary
adsorptionProperties:

• adsorptionType and kineticsType are of type word and store the names of the
used equilibrium and kinetics model, respectively.

• Ke is the Henry coefficient, b0, T0, Cm0 and Cm1 are coefficients for calculating the
temperature-dependent Langmuir parameter. All of these variables store values for
each species and adsorbing patch and are of type PtrList<dimensionedScalar>.

• iac is of type scalarList and stores the interaction coefficients for ELM per
species and adsorbing patch. This parameter is optional; if not present, it will be
set to unity, which simply disables IAC.

• K1, K2 and K3 are the coefficients for the linear driving force model for adsorption
kinetics. They are of type PtrList<dimensionedScalar> and store values for each
species and each adsorbing patch.

7. Implementation in OpenFOAM

• sigma, epsilon and diffusionDeltaZ are used for the diffusion-based adsorption
kinetics model. The first two are of type PtrList<dimensionedScalar> and store
values for each species, the latter is of type dimensionedScalar.

• adsorptionDeltaH is of type PtrList<dimensionedScalar> and specifies the
heat of adsorption. It stores values for each species and each adsorbing patch.
adsorbentCp is the specific heat capacity at constant pressure of the adsorbent
and adsorbentDensity is the density of the solid adsorbent. adsorbentLayerH is
the virtual height of the adsorbed layer. All three are of type dimensionedScalar.
With this parameters, the temperature of the adsorbing walls is calculated.

The following variables are fields and store calculated adsorption values:

• adsorption stores the currently adsorbed amount per species. It is not reset at
the beginning of adsorption.H. eqAdsorption is used to store the equilibrium
loading of each species. surfAdsorption is used to store the adsorption rate per
species. All those variables are of type PtrList<volScalarField> and the values
are defined at the middle of each adsorbing patch face.

• volAdsorption is used to store the adsorption rate per volume per species. The
field cellAdsorption is used to store the adsorbed amount during one time step
in the volume per species. Both are defined in the centre of each cell bordering an
adsorbing patch and are of type PtrList<volScalarField>.

• adsorptionEnthalpy is used to store the released heat of adsorption per time and
volume for all species. removalEnthalpy stores the change of enthalpy due to the
removal or addition of mass. Both are of type PtrList<volScalarField> and
the first is defined in the centre of each adsorbing face, the latter is defined in the
centre of each cell bordering an adsorbing patch.

• totVolAdsorption and totRemovalEnthalpy are of type volScalarField and
store the total adsorption rate per volume and the total enthalpy change due to
removal of mass per volume, respectively. The values stored are defined in the cell
centre at each cell which borders an adsorbing patch.

adsorpPatches and adsorpPatchesLabels are helper variables to store the names of
the adsorbing patches and their number in the list of all patches, respectively. They
are of type wordList and labelList, respectively. The only adsorption fields written
to file are adsorption and eqAdsorption. All other fields are only used internally for
calculations.

7.2. Adsorption Calculations

The file adsorption.H serves as interface for the equilibrium and kinetics calculation
files and handles initialisation and applies limiters. Its flowchart is shown in figure 7.1.

7.2.1. Preparations

First, the mole fractions of the gas phase are calculated in all cells bordering an adsorbing
patch. If the ELM or IAST with Langmuir type as single-component isotherm is selected,

67

7. Implementation in OpenFOAM

the parameters for b and Cm
m according to equations (2.16) and (2.17) are calculated on

all adsorbing patch faces.

7.2.2. Calculating the Adsorption Equilibrium

For flexibility, each algorithm for calculating adsorption equilibria is implemented in a
separate file. This makes it possible to easily add a new model later on. After the
calculations of the adsorption equilibria are done, the field variable eqAdsorption has
to be set for all species to the absolute adsorbed amount in kg. Dividing by area will be
done before calculating the released heat of adsorption, for this greatly simplifies some
calculations and checks.

Henry Adsorption

If selected, the equilibrium according to Henry is calculated. The algorithm is imple-
mented in the file henry.H. It first loops over all species, and then over all faces of all
adsorbing patches. The Henry isotherm was kept from the original implementation and
this implementation remains in the code for historical purposes.

Langmuir Adsorption

It would be possible to implement single-component Langmuir adsorption for all species,
meaning no coupling between the isotherms of the species. Since the ELM is available,
this implementation was not done in the frame of this thesis.

Extended Langmuir Model

If selected, the equilibrium according to the extended Langmuir model is calculated.
The algorithm is implemented in the file elm.H. It first loops over all species, and then
over all faces of all adsorbing patches.

Ideal Adsorbed Solution Theory

If selected, the equilibrium according to the ideal adsorbed solution theory is calculated.
The algorithm is implemented in the file iast-langmuir.H. As the name of the file
implies, the single-component isotherm used is of Langmuir type. The parameter Cm

m

is converted to be mole-based. It first loops over all faces of all adsorbing patches, and
then over all species, because this simplifies the implementation of the algorithm. The
resulting mole-based equilibria are converted to mass-based ones.

7.2.3. Calculating the Rate of Adsorption

Again, each algorithm for calculating the rate of adsorption is implemented in a separate
file. The appropriate file is selected by specifying a model. After the calculations are
done, the field variables surfAdsorption and cellAdsorption have to be set for all
species in kg s−1 and kg, respectively. The stored values are not divided by volume yet,
which will be done later.

68

7. Implementation in OpenFOAM

Linear Driving Force Kinetics

In the file ldf.H, the algorithm to calculate the adsorption rate using the linear driving
force kinetics model is implemented. First, it loops over all species, then over all faces
of all adsorbing patches.

Diffusion-base Kinetics

In the file diffusion.H, the algorithm to calculate the adsorption rate according to the
diffusion-based kinetics model is implemented. It is described in section 3.5. First,
the diffusivity of each species in the mixture is computed in a separate file called
calcDiffusivity.H. Next, it loops over all faces of all adsorbing patches, then over
all species.

7.2.4. Applying Limiters

After the rate of adsorption is calculated, two circumstances may occur which have to
be avoided. To remedy this problem, limiters have to be applied and the time step has
to be reduced manually in order to get physically correct results. The possible cases are:

• Too high rate of adsorption: if the amount adsorbed during one time step exceeds
the available mass in the cell bordering the adsorption faces in question, a so-called
positive adsorption limiter has to be applied. The amount adsorbed on the faces
in this time step is set to the available mass inside the cell, and a warning is issued.

• Too high rate of desorption: if the currently adsorbed amount exceeds the equi-
librium loading, desorption takes place. It may occur that the amount desorbing
tops the available mass on the adsorbing faces. In that case, a so-called negative
adsorption limiter is applied and the desorbed amount is reduced to the maximum
available. Then, a warning is issued.

Ignoring these warnings will generate physically incorrect results.

7.2.5. Division by Area

To finalise results, the field variables are divided by area, since the adsorbed amount is
stored as value relative to the surface and not absolute value. Not diving by area during
the equilibrium calculations allows to add the absolute values.

7.2.6. Adsorption Enthalpy

The next step is to calculated the released heat of adsorption, the change of temperature
of the faces of adsorbing patches and the heat flux from the wall to the fluid. All
those calculations are done in the file adsorptionHeat.H. First, the released adsorption
enthalpy is calculated and stored per species in the field variable adsorptionEnthalpy.
Next, the heat flux from the wall to the volume due to a possible temperature gradient is
computed. This is necessary for the following step in which the temperature of the faces
of adsorbing patches is updated. Last, the enthalpy change due to removal or addition
of mass is calculated and stored in the field variable totRemovalEnthalpy.

69

7. Implementation in OpenFOAM

Beginning of time loop

Calculate mole fractions of the gas phase and adsorption parameters.

Reset values from previous time step to zero or multiply by area.

Calculate equilibrium for each species in kg.

Calculate rate of adsorption for each species in kg s-1

Check if limiters have to be applied.

Divide variables by area.

Calculate heat of adsorption and wall temperature.

Solve conservation equations

Figure 7.1.: Flowchart of the adsorption implementation.

7.2.7. Pitfalls

Some pitfalls have to be considered during programming and using the solver. Those
are:

• Different face sizes of adsorbing patches: the calculations of equilibrium are all
done in absolute values. The reason for this is, that loadings cannot be added if
the face sizes vary in area. This makes the calculations of equilibrium less error-
prone since the division by area is done after the equilibrium and rate of adsorption
calculations.

• One cell with more than one adsorbing face: to decide whether to apply a limiter
or not, the total adsorbed amount per species is needed for each cell bordering an
adsorbing face. Since the rate of adsorption computations are done by looping over
faces, the check whether to apply a limiter has to be done after the calculation of
the rate of adsorption in an extra loop and cannot be merged.

• User input check: if the user input is not correct, e.g. setting some coefficients
to zero, there will be a warning issued and variables that would cause a crash,
e.g. dividing by zero, are ignored and set to default values. However, disabling
adsorption for one species can be done safely by setting all of its equilibrium
parameters to zero. In that case, no warning will be issued.

• Disabling one species: if one species should not be adsorbing on one patch, but on
all other adsorbing patches, it does not suffice to disable kinetics. The equilibrium
of said species would have an impact on the other species which is probably not

70

7. Implementation in OpenFOAM

wanted in most cases. Therefore, the equilibrium parameters have to be set to zero
if a species should not adsorb on a specific patch. For ELM, it does not suffice
setting the monomolecular layer capacity to zero. The ratio of adsorption and
desorption parameter has to be zero as well.

• Setting diffusion-based kinetics in combination with Henry adsorption does not
make sense and is not allowed. This is because there is no interdependence between
the species with Henry adsorption, which would mean that diffusion-based kinetics
would degenerate to linear driving force kinetics. Therefore, only a linear driving
force model can be selected.

• The temperature change between two time steps is considered very small and
negligible. Therefore, this allows the use of isotherms and simplifies the governing
equations for the diffusion-based kinetics. But this implies that the time step is
sufficiently low.

7.3. Adaptation of Conservation Equations

The conservation equations are adapted in a similar way as described in section 6.4, with
some minor differences. First, not only the adsorbed mass of one, but all components
is used. Second, all partial mass balances are adapted with the loss of mass due to
adsorption of the according single species, as shown in listing 7.1.

Listing 7.1: Adapted partial mass balance.

1 fvScalarMatrix YiEqn

2 (

3 fvm :: ddt(rho , Yi)

4 + mvConvection -> fvmDiv (phi , Yi)

5 - fvm :: laplacian (turbulence -> muEff () , Yi)

6 ==

7 reaction ->R(Yi)

8 + volAdsorption [i]

9 + fvOptions (rho , Yi)

10);

7.4. Information Output

At the end of each time step, a summary of the adsorption properties is printed to stan-
dard output. An example is shown in listing 7.2. This is done in the adsorptionInfo.H

file. The following information is shown:

• Each adsorbing patch with number and name. For each patch, the following patch-
averaged data for all species are shown:

– The name of the single species.

– The rate of adsorption per single species in kg s−1 m−2.

– The current adsorption loading per single species in kgm−2.

– The equilibrium adsorption loading per single species in kgm−2.

– The released heat of adsorption per single species in Wm−2.

71

7. Implementation in OpenFOAM

Listing 7.2: An example clipping of a log output.

1 Patch 1 (adsDown)

2 Component CH4

3 Adsorption rate = 2.93139e -05 kg /(s*m2)

4 Adsorption loading = 9.27656e -07 kg/m2

5 Equilibrium adsorption loading = 0.00663936 kg/m2

6 Adsorption enthalpy = 29.3139 W/m2

7

8 Component CO

9 Adsorption rate = 1.02823e -05 kg /(s*m2)

10 Adsorption loading = 3.2539e -07 kg/m2

11 Equilibrium adsorption loading = 0.00393219 kg/m2

12 Adsorption enthalpy = 10.2823 W/m2

For more detailed information, the files in the time directories have to be regarded.

7.5. Boundary Conditions

The same boundary conditions for temperature and species as for adsorpFoam have to
be set, see section 6.4. Now, all species have to be set adsorbing by specifying the
boundary condition as adsorpWall for the adsorbing patches. Furthermore, the files
adsorption_* do not have to be present in the appropriate time directory. However,
it is possible to specify loadings in those files, and the solver will use them as initial
conditions.

7.6. Example Case Setup

Here, only the main differences to setting up a case for reactingFoam are pointed out.
To setup an example case for generalMultiAdsorpFoam, the following files have to be
present in the directories:

• 0: the boundary conditions for the species and temperature have to be changed
for each adsorbing patch to adsorpWall and adsorpAdiabaticWall, respectively.
Valid choices for the first are henry, elm and iast-langmuir and for the latter
ldf and diffusion, respectively.

• constant: additionally to the dictionaries necessary for running reactingFoam,
the adsorptionProperties dictionary has to be present.

• system: no changes to a normal reactingFoam case setup are necessary.

The boundary conditions for the species and temperature have to me modified. All
patches that are adsorbing have to be of type adsorpWall in all species files, and of type
adsorpAdiabaticWall for the temperature.

7.6.1. The adsorptionProperties Dictionary

In the adsorptionProperties dictionary, the following parameters have to be defined:

• adsorptionType and kineticsType have to be set to the name of the appropriate
equilibrium and kinetics model, respectively. Valid options for the former are
henry, elm and iast-langmuir. Available kinetics models are ldf and diffusion.

72

7. Implementation in OpenFOAM

• adsorbentCp, adsorbentDensity and adsorbentLayerH have to be set as dimen-
sionful quantities.

• If the diffusion-based kinetics model is selected, diffusionDeltaZ has to be spec-
ified as dimensionful quantity.

• For each species, the following parameters have to be set:

– If the diffusion-based kinetics model is selected, the parameters sigma and
epsilon have to be set. They are dimensionful quantities.

– For all adsorbing patches, the following parameters have to be specified:

∗ If ELM or IAST with Langmuir type single-component isotherm is se-
lected, the parameters Cm0, Cm1, b0 and T0 have to be set as dimensionful
quantities.

∗ If Henry adsorption is selected, the Henry coefficient Ke has to be specified
as dimensionful quantity.

∗ If the linear driving force kinetics model is selected, the kinetic parameters
K1 to K3 have to be set as dimensionful quantities.

∗ If the ELM is chosen, the interaction coefficients can be set per species
and adsorbing patch by specifying iac in the dictionary. If not present
or set to zero, they will be ignored.

An example dictionary with two adsorbing patches called adsUp and adsDown, two
species and IAST and diffusion-based kinetics is shown in listing 7.3. A full set of
working configuration files can be found in appendix B.

Listing 7.3: An example clipping of an adsorptionProperties dictionary.

1 adsorptionType iast - langmuir ;

2 kineticsType diffusion ;

3

4 adsorbentCp adsorbentCp [0 2 -2 -1 0 0 0] 1e3;

5 adsorbentDensity adsorbentDensity [1 -3 0 0 0 0 0] 1e3;

6 adsorbentLayerH adsorbentLayerH [0 1 0 0 0 0 0] 1e -3;

7 diffusionDeltaZ diffusionDeltaZ [0 1 0 0 0 0 0] 1e -2;

8

9 CH4

10 {

11 adsUp

12 {

13 Cm0 Cm0 [1 -2 0 0 0 0 0] 0.15259;

14 Cm1 Cm1 [1 -2 0 -1 0 0 0] -1.9851e -4;

15 b0 b0 [-1 1 2 0 0 0 0] 5.5259e -9;

16 T0 T0 [0 0 0 1 0 0 0] 1730.0;

17

18 adsorptionDeltaH adsorptionDeltaH [0 2 -2 0 0 0 0] 1e6;

19 }

20

21 adsDown

22 {

23 Cm0 Cm0 [1 -2 0 0 0 0 0] 0.15259;

24 Cm1 Cm1 [1 -2 0 -1 0 0 0] -1.9851e -4;

25 b0 b0 [-1 1 2 0 0 0 0] 5.5259e -9;

26 T0 T0 [0 0 0 1 0 0 0] 1730.0;

27

28 adsorptionDeltaH adsorptionDeltaH [0 2 -2 0 0 0 0] 1e6;

29 }

30

31 sigma sigma [0 1 0 0 0 0 0] 3.758e -10;

73

7. Implementation in OpenFOAM

32 epsilon epsilon [0 0 0 1 0 0 0] 148.6;

33 }

74

CHAPTER 8

Validation and Results in OpenFOAM

The results and models implemented in Octave serve as a validation case for Open-
FOAM. However, the calculations in the latter consider flow and temperature change,
and therefore, the results of these two implementations will diverge with increasing time.
Here, the validation case and two more complex cases are shown.

8.1. Validation

In order to test the implementation, a simple three-cell geometry with a total of five
adsorbing faces is created. This allows for easier debugging, since all values can be
printed to standard output without clogging the log. Furthermore, taking a look at the
output files in the time directory is also feasible, since there are only five adsorbing faces
in total.

inlet

outlet

Figure 8.1.: Test and validation case with three cells.

Figure 8.1 shows the geometry of the test case. The three faces at the bottom are
adsorbing and belong to the patch adsDown, the two faces at the top are also adsorbing
and belong to the patch adsUp. The cell at the bottom borders two adsorbing faces
with different size, and the cell near the outlet has two adsorbing faces which belong
to different patches. Those are two special circumstances which were debugged and
validated thoroughly.

8. Validation and Results in OpenFOAM

With this geometry, many test cases showed bugs and incorrect behaviour, and new
features like per-patch definition of adsorption parameters were implemented. As seen
in listing 8.1, the adsorbed amount can easily be monitored with only five faces. In
line 37 and 42, the relevant information can be read. This output was then compared
to the results obtained with the implementation in Octave.

Listing 8.1: Adsorbed amount of CH4 after 0.2 s.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class volScalarField ;

13 location "0.2";

14 object adsorption_CH4 ;

15 }

16 // * //

17

18 dimensions [1 -2 0 0 0 0 0];

19

20 internalField uniform 0;

21

22 boundaryField

23 {

24 inlet

25 {

26 type calculated ;

27 value uniform 0;

28 }

29 outlet

30 {

31 type calculated ;

32 value uniform 0;

33 }

34 wall

35 {

36 type calculated ;

37 value nonuniform List <scalar > 2(5.07276801924e -06

→֒ 5.07095057904e -06);

38 }

39 adsorptwall

40 {

41 type calculated ;

42 value nonuniform List <scalar > 3(5.07216439916e -06

→֒ 5.07216425826e -06 5.07095057904e -06);

43 }

44 frontAndBack

45 {

46 type calculated ;

47 value uniform 0;

48 }

49 }

50

51

52 // *** //

Furthermore, the parameters from [Ritter and Yang, 1987] are adapted, since they are
volume- and mole-based, respectively, and OpenFOAM uses mass-based values.

76

8. Validation and Results in OpenFOAM

8.2. Test Cases

Here, the results of two test cases are shown. The first, a simple cuboid, demonstrates
the capability of CFD coupled with adsorption. Also, the computational effort of the
different models is compared and the dynamic behaviour is outlined. The second case,
a packed bed, shows the possibility to calculate breakthrough curves and temperature
distribution in a more complex geometry.

8.2.1. Cuboid

A square tunnel with 10 cm side length and a total length of 50 cm is used to show a
gradient in concentration. In total, the grid consists of 5000 cells. Inlet and outlet have
a fixed velocity with a magnitude of 5 × 10−3 ms−1. This yields a Reynolds number
of less than 100, which satisfies the condition for laminar flow. The input velocity is
5 × 10−3 ms−1 and the mass fractions of the gas phase at the inlet are wCH4

= 0.3,
wCO2

= 0.3 and wCO = 0.4, respectively. The adsorption parameters are shown in
listing B.7 in appendix B, as well as all other configuration files for setting up this case.

Figure 8.2.: Outline of the square tunnel with the concentration profile of CO.

Computational Effort

As expected, the IAST and diffusion-based kinetics model are computational more de-
manding than the ELM and linear driving force kinetics model, respectively. The fol-
lowing executing times are measured when running the above case for 400 s of simulated
time:

• ELM with linear driving force model: 248 s.

• ELM with diffusion-based model: 262 s.

• IAST with linear driving force model: 270 s.

• IAST with diffusion-based model: 285 s.

77

8. Validation and Results in OpenFOAM

Dynamic Behaviour

The dynamic behaviour of the linear driving force model and the diffusion-based model
differ. The latter shows a slight overshoot, as reported before, for CO as seen in fig-
ures 8.3(b) and 8.4(b). The data used to plot figures 8.3 and 8.4 are patch-averaged.

0 100 200 300 400
0

0.5

1

1.5

2
·10

−2

time in s

lo
a
d
in

g
in

k
g

m
-2

CH4

CO

CO2

(a) Linear driving force kinetics model.

0 100 200 300 400
0

0.5

1

1.5

2
·10

−2

time in s
lo

a
d
in

g
in

k
g

m
-2

CH4

CO

CO2

(b) Diffusion-based kinetics model.

Figure 8.3.: Dynamic behaviour of the square tunnel simulation with ELM.

0 100 200 300 400
0

0.5

1

1.5

2
·10

−2

time in s

lo
a
d
in

g
in

k
g

m
-2

CH4

CO

CO2

(a) Linear driving force kinetics model.

0 100 200 300 400
0

0.5

1

1.5

2
·10

−2

time in s

lo
a
d
in

g
in

k
g

m
-2

CH4

CO

CO2

(b) Diffusion-based kinetics model.

Figure 8.4.: Dynamic behaviour of the square tunnel simulation with IAST.

The other species are adsorbed rather similar, and the differences between ELM and
IAST are negligible. Since OpenFOAM considers energy transfer, the temperature of
the adsorbing faces is changing, and therefore, the equilibrium loading changes as well.

8.2.2. Packed Bed

A cylindrical packed bed with a height of 13 cm and a diameter of 3.2 cm is simulated
as shown in figure 8.5. The mesh was provided by the research group [Haddadi et al.,
2016], and not created by the author. It is an unstructured grid with about 1.3 × 106

cells. The geometry is shown in figure 8.5. The packing has a total adsorbing surface of
6.34 × 10−2 m2.

78

8. Validation and Results in OpenFOAM

Figure 8.5.: Geometry of the packed bed.

The simulation was done in two steps: First, a steady-state solution with one component
and without adsorption was obtained. Then, the adsorption was simulated. A velocity
of 0.1ms−1 in the positive z direction was set as boundary condition at the inlet. All
species are set to be adsorbing on the packing. The pressure at the outlet was set to
100 kPa. Table 8.1 provides a comprehensive list of the used boundary conditions for
the adsorption simulation.

Steady-state Solution

The program rhoSimpleFoam was used to obtain a steady-state pressure and velocity
field. According to the OpenFOAM user guide, this solver is for steady-state, laminar
or turbulent RANS flow with one single species [Greenshields, 2015b]. The convergence
criteria for the residuals were set at 10−6 for pressure and velocity, respectively, and
10−5 for the enthalpy. Figure 8.6 shows the pressure and velocity magnitude field,
respectively. As illustrated, the pressure drop over the column is about 11Pa, and the
maximum velocity reported is as 1.85ms−1. The temperature profile did not change
and therefore, it was uniform at 300K.

Adsorption Simulation

The steady-state fields for pressure and velocity were used as initial conditions for the
next part of the simulation. In this step, adsorption was simulated using the solver
generalMultiAdsorpFoam. For this, a mixture of hydrogen, methane, carbon monoxide
and carbon dioxide is set at the inlet. The mass fraction of hydrogen is 0.1 corresponding
to a mole fraction of 0.58, whereas all other components have a mass fraction of 0.3 at the

79

8. Validation and Results in OpenFOAM

T
ab

le
8.

1
.:

B
ou

n
d
a
ry

co
n
d
it

io
n
s

fo
r

th
e

p
ac

k
ed

b
ed

si
m

u
la

ti
on

.

p
ro

p
er

ty
n
am

e
p
a
tc

h
n
am

e
in

le
t

ou
tl

et
w

a
ll
s

p
ac

k
in

g

C
H
4

f
i
x
e
d
V
a
l
u
e
:

0
.
3

z
e
r
o
G
r
a
d
i
e
n
t

z
e
r
o
G
r
a
d
i
e
n
t

a
d
s
o
r
p
W
a
l
l

C
O

f
i
x
e
d
V
a
l
u
e
:

0
.
3

z
e
r
o
G
r
a
d
i
e
n
t

z
e
r
o
G
r
a
d
i
e
n
t

a
d
s
o
r
p
W
a
l
l

C
O
2

f
i
x
e
d
V
a
l
u
e
:

0
.
3

z
e
r
o
G
r
a
d
i
e
n
t

z
e
r
o
G
r
a
d
i
e
n
t

a
d
s
o
r
p
W
a
l
l

H
2

f
i
x
e
d
V
a
l
u
e
:

0
.
1

z
e
r
o
G
r
a
d
i
e
n
t

z
e
r
o
G
r
a
d
i
e
n
t

a
d
s
o
r
p
W
a
l
l

p
z
e
r
o
G
r
a
d
i
e
n
t

f
i
x
e
d
V
a
l
u
e
:

1
e
5

z
e
r
o
G
r
a
d
i
e
n
t

z
e
r
o
G
r
a
d
i
e
n
t

T
f
i
x
e
d
V
a
l
u
e
:

3
0
0

z
e
r
o
G
r
a
d
i
e
n
t

z
e
r
o
G
r
a
d
i
e
n
t

a
d
s
o
r
p
A
d
i
a
b
a
t
i
c
W
a
l
l
:

3
0
0

U
f
i
x
e
d
V
a
l
u
e
:

(
0

0
0
.
1
)

z
e
r
o
G
r
a
d
i
e
n
t

f
i
x
e
d
V
a
l
u
e
:

(
0

0
0
)

f
i
x
e
d
V
a
l
u
e
:

(
0

0
0
)

80

8. Validation and Results in OpenFOAM

(a) (b)

Figure 8.6.: Results for (a) pressure and (b) velocity magnitude of the steady-state cal-
culation.

inlet. This yields 0.22, 0.12 and 0.08 for the mole fractions of methane, carbon monoxide
and carbone dioxide, respectively. Initially, the column is filled with hydrogen which is
assumed to be non-adsorbing. Therefore, all equilibrium parameters for hydrogen are
set to zero. The simulated time was 10 s and the simulation took a little over seven days
to complete. The simulation was run in parallel with 24 cores used.
The ELM was used for equilibrium calculations with diffusion-based kinetics. The pa-
rameter in the kinetics model was chosen arbitrarily as 10−5 m2, since no experimental
data were available. The equilibrium parameters used for the three adsorbing species
were taken from [Ritter and Yang, 1987] and can be viewed in listing B.7 in the appendix.
As expected, carbon monoxide is the component to break through first, as shown in
figure 8.7. This is due to the fact that its equilibrium loading of 2.5 × 10−3 kgm−2 is
about 75 % of that of methane, and about 30 % of that of carbon dioxide.
The next component to break through after carbon monoxide is methane. Its equilibrium
loading of 3.3 × 10−3 kgm−2 is about 40 % of that of carbon dioxide as illustrated in
figure 8.8. Note that the simulated time of 10 s was too short to actually show any
breakthrough of methane.
The last component to break through is carbon monoxide, with an equilibrium loading
of 8.8 × 10−3 kgm−2. As with methane, the actual breakthrough was not simulated due
to the too short simulated time, as shown in figure 8.9.
To show the effect of the breakthrough of one component, the mass fraction distribution
of hydrogen is shown in figure 8.10. After 7 s of simulated time, its mass fraction decreases
in the outlet section. This indicates that the adsorber is not separating the inlet gas
anymore. This indicates that the packed bed has to be recuperated by decreasing the
pressure or increasing the temperature.

81

8. Validation and Results in OpenFOAM

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.7.: Distribution of the gas mass fraction of carbon monoxide in the packed bed
for different simulation times.

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.8.: Distribution of the gas mass fraction of methane in the packed bed for
different simulation times.

82

8. Validation and Results in OpenFOAM

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.9.: Distribution of the gas mass fraction of carbon dioxide in the packed bed
for different simulation times.

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.10.: Distribution of the gas mass fraction of hydrogen in the packed bed for
different simulation times.

83

8. Validation and Results in OpenFOAM

Since adsorption is taking place, the velocity magnitude will be lower than that of the
steady-state solution. This effect is illustrated in figure 8.11. As a consequence, the
pressure drop decreases as well as shown in figures 8.12 and 8.13. Only integer values
are shown in the pressure drop plot. In case of laminar flow, pressure drop and velocity
show a linear dependence. With increasing time, the velocity magnitude and pressure
drop increased as well. This is due to the fact that no mass is adsorbed anymore in the
lower section of the packed bed.

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.11.: Velocity magnitude profile of the packed bed for different simulation times.

Adsorption is an exothermic process, i.e. heat is released. This also implies that the
temperature will increase with time, which is shown in figure 8.14 for the flow and
figure 8.15 for the packing, respectively. As an effect of the temperature increase, the
equilibrium loading will decrease as shown later.
The loading of carbon monoxide in the packed bed demonstrates the temperature-de-
pendence of the equilibrium. As shown in figure 8.17, the equilibrium loading is lower in
the first third of the column. This corresponds to the temperature distribution showed
before. Additionally, carbon dioxide and methane are replacing carbon monoxide. The
difference between current loading and equilibrium loading is not visible to the eye in
figures 8.16 and 8.17. Therefore, only the current loading will be shown for the other
two components. As expected, methane and carbon dioxide did not adsorb in the upper
part of the packed bed, as shown in figures 8.18 and 8.19.
Figure 8.20 illustrates the adsorbed mass for each species at equilibrium and currently
adsorbed. A linear increase of both quantities with time is expected, until the component
breaks through. Here, this behaviour is observed: Methane and carbon dioxide show
a linear slope, since both did not reach the top of the column yet. Carbon monoxide
already broke through before 10 s of simulated time. This explains the decreasing slope.
Interestingly, the adsorbed mass per single species does not vary much until carbon

84

8. Validation and Results in OpenFOAM

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.12.: Distribution of the pressure inside the packed bed for different simulation
times.

0 2 4 6 8 10
6

8

10

12

time in s

p
re

ss
u
re

d
ro

p
in

P
a

Figure 8.13.: Pressure drop in the packed bed for different simulation times. The pressure
drop at 0 s represents the steady-state solution.

85

8. Validation and Results in OpenFOAM

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.14.: Temperature distribution in the packed bed for different simulation times.

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.15.: Distribution of the temperature inside the packed bed for different simula-
tion times.

86

8. Validation and Results in OpenFOAM

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.16.: Distribution of the adsorbed amount of carbon monoxide in the packed bed
for different simulation times.

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.17.: Distribution of the adsorbed amount at equilibrium of carbon monoxide in
the packed bed for different simulation times.

87

8. Validation and Results in OpenFOAM

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.18.: Distribution of the adsorbed amount of methane in the packed bed for
different simulation times.

(a) 1 s. (b) 3 s. (c) 5 s. (d) 7 s. (e) 9 s.

Figure 8.19.: Distribution of the adsorbed amount of carbon dioxide in the packed bed
for different simulation times.

88

8. Validation and Results in OpenFOAM

monoxide breaks through. The very small difference between actual adsorbed amount
and amount at equilibrium can be explained by the arbitrarily chosen paramter of the
diffusion-based kinetics.
If the simulation was run until the bed is saturated, the total adsorbed mass would
be 1.6 × 10−4 kg for carbon monoxide, 2.1 × 10−4 kg for methane and 5.6 × 10−4 kg for
carbon dioxide, respectively. This would yield an adsorbed volume of 0.13Ndm3 for
carbon monoxide, 0.3Ndm3 for methane and 0.29Ndm3 for carbon dioxide, respectively.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2
·10

−4

time in s

to
ta

l
a
d
so

rb
ed

a
m

o
u
n
t

in
k
g

CH4,ads

CH4,eq

(a) CH4.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2
·10

−4

time in s

to
ta

l
a
d
so

rb
ed

a
m

o
u
n
t

in
k
g

COads

COeq

(b) CO.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2
·10

−4

time in s

to
ta

l
a
d
so

rb
ed

a
m

o
u
n
t

in
k
g

CO2,ads

CO2,eq

(c) CO2.

Figure 8.20.: Adsorbed amount of the three components in the packed bed.

To show the physical correctness of the simulation results, the mass balance errors are
regarded. In this case, an unsteady and compressible continuity equation has to be
formulated:

ṁin = ṁout + ∆ṁ + ṁads. (8.1)

The above equation states that the mass flow inside the control volume ṁin has to be
equal to the sum of the mass flow out of the control volume ṁout, the change of mass in
the control volume due to compressibility effects ∆ṁ and the adsorbed mass flow ṁads.
If the regarded time step is low enough, above equation can be integrated by multiplying
it with said time step. This yields:

min = mout + ∆m + mads. (8.2)

89

8. Validation and Results in OpenFOAM

The post-processing of the packed bed adsorption simulation showed that the unsteady
mass balance cannot be solved manually. This is due to a couple of reasons. The
major reason is assumed to be lack of data. The results were written to file every 0.2 s,
which proved to be too big to be able to integrate as explained above. Furthermore, no
monitors were set at the outlet. This yields an uncertainty of the mass flow out of the
column. However, OpenFOAM calculates so-called time step continuity errors, which
can be regarded to show that the mass balance is solved correctly. They are relative to
the total mass inside the computational domain. In this simulation, they are acceptably
low in the order of magnitude of 10−10, as illustrated in figure 8.20.

0 2 4 6 8 10
1

2

3

4
·10

−10

time in s

re
la

ti
ve

to
ta

l
co

n
ti

n
u
it

y
er

ro
rs

Figure 8.21.: Relative total continuity errors for the packed bed simulation.

90

CHAPTER 9

Summary, Discussion and Outlook

In this thesis, the implementation of multicomponent adsorption models in the custom
OpenFOAM solver adsorpFoam in a new solver, called generalMultiAdsopFoam, was
shown. The used models for equilibrium, extended Langmuir model ELM and ideal ad-
sorbed solution theory, solely depend on single-component adsorption isotherms. First,
the models were implemented in Octave, later in OpenFOAM. The deviations are ac-
ceptable for most systems, as shown in chapter 4.
The validation of the implementation in OpenFOAM was done by comparing the results
of the adsorption calculations of a simple, three cell geometry test case with those of the
implementation in Octave.
This is the first implementation of multicomponent adsorption in CFD in the research
group. Therefore, it is subject to further improvement. The standard models in Open-
FOAM are implemented making use of object-oriented programming paradigm. This
was not done in the frame of this thesis, and further abstraction can be done in the
future.
Optimisation and reducing the computational effort were not the main focus of the cur-
rent implementation. Therefore, future releases of generalMultiAdsopFoam will most
likely perform better and take less memory.
In this thesis, the adsorbed mass is divided by area before written to file. This made
it easier to compare results with the Octave model and integrate the loading over the
patch area. However, this approach might not be useful in the future. Therefore, this
approach might be changed.
Another area for improvement is the choice of time step. OpenFOAM offers the capabil-
ity to dynamically adapt the time step by setting a maximum allowed Courant number.
Additionally, a reference time for adsorption can be defined using the adsorption lim-
iters. In case of a positive limiter, an equivalent Courant number of adsorption for each
single species could be defined. It is the fraction of (theoretically) adsorbed mass of said
species divided by available mass of said species in all cells bordering an adsorbing patch.
As with the traditional Courant number, each cell bordering an adsorbing face would
have its own number. Additionally, all species would have their own adsorption Courant
number. An adsorption Courant number of zero would mean that no adsorption is tak-
ing place. If the adsorption Courant number is close to unity, almost all mass in the
cell will be adsorbed, and if it is over one, a positive limiter has to be applied. Similar
considerations are valid for desorption. This would allow for dynamic adaptation of the
time step.
Currently, the surface of the adsorbing patches is modelled as flat and without pores.

9. Summary, Discussion and Outlook

Furthermore, heat conduction in the solid particles of a packed bed is not considered at
this point. This leaves room for further improvement.
Some assumptions of the used models have to be questioned critically: The necessity of
the same monomolecular layer capacity for all species in the extended Langmuir model
is rarely met. However, this model is the most common used in literature. The main
reason for this is its simplicity.
Furhtermore, the binary diffusion coefficients are assumed to be equal. However, if the
molecular size differs greatly, this assumption may not be valid anymore. Ideal behaviour
assumed in the ideal adsorbed solution theory may be valid at low pressure and for some
species.
In all presented models, the formation of multimolecular layers and capillary condensa-
tion are not considered.
As the name implies, the ideal adsorbed solution theory assumes ideal behaviour. This is
not always the case, and can be extended with activity and fugacity coefficients [Sochard
et al., 2010].
The goals aet at the beginning of this thesis are met: There is a first implementation
of multicomponent adsorption available to the research group. In the future, this solver
will serve as foundation for complex simulations and further mass transport phenomena
solvers. As illustrated in chapter 8, the breakthrough curves, mass transfer zone MTZ
and length of unused bed LUB can be estimated. The capability of setting multiple,
different adsorbing patches with different parameters makes it possible to simulate mix-
tures of different adsorbents. Breakthrough curves, MTZ and LUB could be calculated
and displayed automatically in future releases. Furthermore, channelling effects can be
made visible and avoided.
For setting up a simulation, the following procedure has proven to work well: First, a
steady-state solution of velocity and pressure field should be calculated. Then, said fields
serve as initial condition for the adsorption simulation. Another point worth mentioning
is the initial condition for the loading: Either the species which is initially present in the
computational domain is assumed to be non-adsorbing, or its initial loading is set to its
equilibrium loading. Failing to do so will result in high velocity magnitudes in proximity
to the adsorbing patch at the beginning of the simulation and a possibly diverging
simulation. Monitoring the outlet mass flow for all species is also recommended, so that
the unsteady mass balance can be evaluated manually.
The simulations presented in chapter 8.2.2 rely solely on equilibrium parameters from
literature and an arbitrarily chosen parameter for the diffusion-based kinetics model. For
future simulations, data for the used adsorbents should be available, and the parameter
in the diffusion-based kinetics can be estimated by conducting experiments.

92

Bibliography

[Aspen, 2016] Aspen (2016). Swing Adsorption Modeling – Aspen Adsorption. http://

www.aspentech.com/products/engineering/aspen-adsorption/. Accessed on 15th

February 2016.

[Bai and Yang, 2001] Bai, R. and Yang, R. T. (2001). A thermodynamically consistent
langmuir model for mixed gas adsorption. Journal of Colloid and Interface Science,
239(2):296 – 302.

[CNR, 2016] CNR (2016). Finite Volume Methods (using vertex reconstructions
and DDFV). http://arturo.imati.cnr.it/~marco/Research/Finite_Volumes/

index.html. Accessed on 8th February 2016.

[Do, 1998] Do, D. D. (1998). Adsorption Analysis: Equilibria and Kinetics, volume 2.
World Scientific.

[Exeter, 2016] Exeter (2016). CFD solution algorithms. http://projects.exeter.ac.

uk/fluidflow/ComputationalFluidDynamics/notes3web/notes3se1.html. Ac-
cessed on 5th February 2016.

[Ferzinger and Perić, 2002] Ferzinger, J. H. and Perić, M. (2002). Computational Meth-

ods for Fluid Dynamics. Springer-Verlag, third edition.

[Fletcher, 1991] Fletcher, C. (1991). Computational Techniques for Fluid Dynamics

1. Fundamental and General Techniques. Springer series in computational physics.
Springer-Verlag, second edition.

[Greenshields, 2015a] Greenshields, C. J. (2015a). OpenFOAM. The Open Source CFD

Toolbox: Programmer’s Guide. CFD Direct Ltd.

[Greenshields, 2015b] Greenshields, C. J. (2015b). OpenFOAM. The Open Source CFD

Toolbox: User Guide. CFD Direct Ltd.

[Haddadi et al., 2015a] Haddadi, B., Jordan, C., and Harasek, M. (2015a). Numerical
simulation of adsorption phenomena using multi-region approach. In VSS VIENNA

young SCIENTISTS SYMPOSIUM, pages 26–27. Vortrag: Vienna Young Scientists
Symposium 2015, Wien; 2015-06-25.

[Haddadi et al., 2015b] Haddadi, B., Jordan, C., and Harasek, M. (2015b). Numerische
Simulation des Konzentrations- und Strömungsprofiles in einem Festbettadsorber.
Chemie Ingenieur Technik, 87(8):1040.

[Haddadi et al., 2016] Haddadi, B., Jordan, C., and Harasek, M. (2016). Mesh of a
Packed Bed Adsorber. Not published yet. Internal project.

http://www.aspentech.com/products/engineering/aspen-adsorption/
http://www.aspentech.com/products/engineering/aspen-adsorption/
http://arturo.imati.cnr.it/~marco/Research/Finite_Volumes/index.html
http://arturo.imati.cnr.it/~marco/Research/Finite_Volumes/index.html
http://projects.exeter.ac.uk/fluidflow/ComputationalFluidDynamics/notes3web/notes3se1.html
http://projects.exeter.ac.uk/fluidflow/ComputationalFluidDynamics/notes3web/notes3se1.html

Bibliography

[Haddadi et al., 2014] Haddadi, B., Martinetz, M., Jordan, C., and Harasek, M. (2014).
Numerical simulation of adsorption phenomena. In Proceedings, pages 78–81. Vortrag:
10. Minisymposium Verfahrenstechnik, Wien; 2014-06-17 – 2014-06-18.

[Holzinger, 2014] Holzinger, G. (2014). OpenFOAM. A little User-Manual. CD-
Laboratory – Particulate Flow Modelling.

[IITM, 2016] IITM (2016). Parabolic partial differential equations. https://mat.iitm.

ac.in/home/sryedida/public_html/caimna/pde/forth/forth.html. Accessed on
8th March 2016.

[Jasak, 1996] Jasak, H. (1996). Error Analysis and Estimation for the Finite Volume

Method with Applications to Fluid Flows. PhD thesis, University of London.

[Kuhlmann, 2007] Kuhlmann, H. C. (2007). Strömungsmechanik. Pearson Studium.

[Langmuir, 1918] Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass,
mica and platinum. Journal of the American Chemical Society, 40(9):1361–1403.

[Myers and Prausnitz, 1965] Myers, A. L. and Prausnitz, J. M. (1965). Thermodynamics
of mixed-gas adsorption. AIChE Journal, 11(1):121–127.

[OpenFOAM, 2016a] OpenFOAM (2016a). OpenFOAM – Open Source CFD. http:

//www.openfoam.org/archive/2.4.0/download/. Accessed on 7th February 2016.

[OpenFOAM, 2016b] OpenFOAM (2016b). Openfoam-2.4.x/label.h at master.
https://github.com/OpenFOAM/OpenFOAM-2.4.x/blob/master/src/OpenFOAM/

primitives/ints/label/label.H/. Accessed on 8th February 2016.

[OSI, 2016] OSI (2016). Open Source Initiative: The MIT License. https://

opensource.org/licenses/MIT. Accessed on 9th February 2016.

[Patankar, 1980] Patankar, S. V. (1980). Numerical Heat Transfer and Fluid Flow.
Series in Computational Methods in Mechanics and Thermal Science. Hemisphere
Publishing Corporation.

[Peiró and Sherwin, 2005] Peiró, J. and Sherwin, S. (2005). Finite difference, finite el-
ement and finite volume methods for partial differential equations. In Handbook of

materials modeling, pages 2415–2446. Springer-Verlag.

[Reid et al., 1987] Reid, R. C., Prausnitz, J. M., and Poling, B. E. (1987). The properties

of gases and liquids. McGraw Hill Book Co., New York, fourth edition.

[Ritter, 1985] Ritter, J. A. (1985). Investiagtion on the adsorption of methane, carbon
monoxide, carbon dioxide, hydrogen, hydrogen sulfide and their mixtures on activated
carbon. Master’s thesis, State University of New York and Buffalo.

[Ritter and Yang, 1987] Ritter, J. A. and Yang, R. T. (1987). Equilibrium Adsorption
of Multicomponent Gas Mixtures at Elevated Pressures. Industrial & Engineering

Chemistry Research, 26(8):1679–1686.

[Ruthven, 1984] Ruthven, D. M. (1984). Principles of adsorption and adsorption pro-

cesses. John Wiley & Sons.

94

https://mat.iitm.ac.in/home/sryedida/public_html/caimna/pde/forth/forth.html
https://mat.iitm.ac.in/home/sryedida/public_html/caimna/pde/forth/forth.html
http://www.openfoam.org/archive/2.4.0/download/
http://www.openfoam.org/archive/2.4.0/download/
https://github.com/OpenFOAM/OpenFOAM-2.4.x/blob/master/src/OpenFOAM/primitives/ints/label/label.H/
https://github.com/OpenFOAM/OpenFOAM-2.4.x/blob/master/src/OpenFOAM/primitives/ints/label/label.H/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT

Bibliography

[Schay, 1956] Schay, G. (1956). Theorie de l’adsorption physique des gaz du type Lang-
muir. Chim. Phys. Hungary, 53:691.

[Sing, 1985] Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with
special reference to the determination of surface area and porosity (recommendations
1984). Pure and applied chemistry, 57(4):603–619.

[Sircar and Hufton, 2000] Sircar, S. and Hufton, J. R. (2000). Why does the linear
driving force model for adsorption kinetics work? Adsorption, 6(2):137–147.

[Sochard et al., 2010] Sochard, S., Fernandes, N., and Reneaume, J.-M. (2010). Mod-
eling of adsorption isotherm of a binary mixture with real adsorbed solution theory
and nonrandom two-liquid model. AIChE Journal, 56(12):3109–3119.

[Stephan and Mayinger, 1999] Stephan, K. and Mayinger, F. (1999). Thermodynamik.

Band 2: Mehrstoffsysteme und chemische Reaktionen. Grundlagen und technische

Anwendungen, volume 2. Springer-Verlag.

[Strikwerda, 2004] Strikwerda, J. C. (2004). Finite difference schemes and partial dif-

ferential equations. Siam.

95

A. Octave

A.1. Implementation Code

Here, the code used for comparing experimental results with simulation calculation is
shown. The file get_data_CH4_CO is one example of the get_data_* files.

Listing A.1: File get_equilibrium_fast.m.

1 %% Copyright (c) 2015 , 2016 C. Goessnitzer <e1126267@student . tuwien .ac.at >

2 %

3 % Permission to use , copy , modify , and distribute this software for any

4 % purpose with or without fee is hereby granted , provided that the above

5 % copyright notice and this permission notice appear in all copies .

6 %

7 % THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

8 % WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

9 % MERCHANTABILITY AND FITNESS . IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

10 % ANY SPECIAL , DIRECT , INDIRECT , OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

11 % WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN AN

12 % ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF

13 % OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .

14

15 function C = get_equilibrium_fast (p, y, eq_model , params)

16 b = params .b;

17 Cm = params .Cm;

18

19 switch (eq_model)

20 case "elm"

21 C = Cm .* b .* y * p / (1 + sum (b .* y * p));

22 case "iast"

23 max_iter = params . max_iter ;

24 tolerance = params . tolerance ;

25 relax = params . relax ;

26 iast_single = params . iast_single ;

27 disp_iter = params . disp_iter ;

28

29 counter = 0;

30 correct = 1;

31

32 switch (iast_single)

33 case " langmuir "

34 zEst = sum (Cm) / length (Cm) * log (1 + sum (b .* y * p));

35 p0 = (exp (zEst ./ Cm) .- 1) ./ b;

36 do

37 if (correct < 10 && correct > 0.1)

38 zEst *= relax * (correct - 1) + 1;

39 else

40 if (correct > 1)

41 zEst *= 8;

42 else

43 zEst /= 8;

44 end

45 end

46

A. Octave

47 p0 = (exp (zEst ./ Cm) .- 1) ./ b;

48 x = p * y ./ p0;

49 correct = sum (x);

50

51 if (++ counter >= max_iter)

52 warning (["no convergence after ", num2str (counter), ...

53 " iterations : ", num2str (abs (sum (x) - 1))]);

54 break ;

55 end

56 until (abs (correct - 1) < tolerance)

57

58 if disp_iter

59 disp ([" number of iterations : ", num2str (counter)]);

60 end

61 otherwise

62 error ([" undefined iast_single model : ", num2str (eq_model)]);

63 end

64

65 C0 = Cm .* b .* p0 ./ (1 .+ b .* p0);

66 Ct = 1 / sum (x ./ C0);

67 C = Ct .* x;

68 otherwise

69 error ([" undefined eq_model : ", num2str (eq_model)]);

70 end

71 end

Listing A.2: File get_pressure_fast.m.

1 %% Copyright (c) 2015 , 2016 C. Goessnitzer <e1126267@student . tuwien .ac.at >

2 %

3 % Permission to use , copy , modify , and distribute this software for any

4 % purpose with or without fee is hereby granted , provided that the above

5 % copyright notice and this permission notice appear in all copies .

6 %

7 % THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

8 % WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

9 % MERCHANTABILITY AND FITNESS . IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

10 % ANY SPECIAL , DIRECT , INDIRECT , OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

11 % WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN AN

12 % ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF

13 % OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .

14

15 function p = get_pressure_fast (Vt , x, Vm , b, eq_model , params)

16 switch (eq_model)

17 case "elm"

18 p = Vt * x ./ (b .* Vm * (1 - sum (Vt .* x ./ Vm)));

19 case "iast"

20 max_iter = params . max_iter ;

21 tolerance = params . tolerance ;

22 relax = params . relax ;

23 iast_single = params . iast_single ;

24 disp_iter = params . disp_iter ;

25

26 z_est = 1;

27 correct = 1;

28 counter = 0;

29

30 switch (iast_single)

31 case " langmuir "

32 do

33 z_est *= correct ;

34 p0_est = 1 ./ b .* (exp (z_est ./ Vm) .- 1);

35 V0_est = Vm .* b .* p0_est ./ (1 .+ b .* p0_est);

36 inv_Vt_est = sum (x ./ V0_est);

37 correct = Vt * inv_Vt_est ;

38

39 if (++ counter >= max_iter)

40 warning (["no convergence after ", num2str (counter), ...

41 " iterations : ", num2str (abs(Vt * inv_Vt_est - 1))]);

ii

A. Octave

42 break ;

43 end

44 until (abs (Vt * inv_Vt_est - 1) < tolerance)

45

46 if disp_iter

47 disp ([" number of iterations : ", num2str (counter)]);

48 end

49 end

50

51 p = p0_est .* x;

52 end

53 end

Listing A.3: File general-equilibrium.m.

1 %% Copyright (c) 2015 , 2016 C. Goessnitzer <e1126267@student . tuwien .ac.at >

2 %

3 % Permission to use , copy , modify , and distribute this software for any

4 % purpose with or without fee is hereby granted , provided that the above

5 % copyright notice and this permission notice appear in all copies .

6 %

7 % THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

8 % WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

9 % MERCHANTABILITY AND FITNESS . IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

10 % ANY SPECIAL , DIRECT , INDIRECT , OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

11 % WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN AN

12 % ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF

13 % OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE

14

15 %clc;

16 clear all;

17 close all;

18

19 print_stdio = 0;

20 plotting = 0;

21 params . paper = 1;

22

23 psi = 1;

24 atm = 0;

25

26 psiToPa = 6894.76;

27 atmToBar = 1.01325;

28

29 % Equilibrium Adsorption of Multicomponent Gas Mixtures at Elevated Pressures

30 %

31 % temperature range : 290 -298 K

32 % pressure range : 7 -28 bar

33

34 % CH4/CO/H2

35 [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CH4_CO_H2 ();

36

37 % CH4/CO

38 % [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CH4_CO ();

39

40 % CH4/CO2/CO/H2/H2S

41 % [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CH4_CO2_CO_H2_H2S ();

42

43 % CH4/CH2/CO/H2S

44 % [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CH4_CO2_CO_H2S ();

45

46 % CH4/CO2/H2

47 % [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CH4_CO2_H2 ();

48

49 % CH4/CO2

50 % [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CH4_CO2 ();

51

52 % CH4/H2/H2S

53 % [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CH4_H2_H2S ();

54

iii

A. Octave

55 % CO/H2

56 % [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CO_H2 ();

57

58 % CO2/CO

59 % [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CO2_CO ();

60

61 % CO2/H2S

62 % [names , p, T, y, xMes , CmMes , etaAvgPaper] = get_data_CO2_H2S ();

63

64

65 p *= psiToPa ; % Pa

66 pBar = 1e -5*p;

67 params = struct ();

68

69 params . iast_single = " langmuir ";

70 params . max_iter = 500;

71 params . tolerance = 1e -10;

72 params . relax = 0.5;

73 params . disp_iter = false ;

74 params . paper = true;

75

76 C_mes = CmMes .* xMes;

77

78 for i = 1: length (p)

79 for j = 1: length (names)

80 params .b(j) = get_b (names {j}, T(i)); % 1 / Pa

81 params .Cm(j) = get_Vm (names {j}, T(i)); % cc(STP) / g

82 end

83

84 params .b = params .b;

85 params .Cm = params .Cm;

86 % pBar = p(i)*1e -5;

87 % TCurr = T(i);

88

89 eq_model = "elm";

90 C_elm (:, end +1) = get_equilibrium_fast (p(i), y(:, i)’, eq_model , params);

91 x_elm (:, end +1) = C_elm (:, end) / sum (C_elm (:, end));

92

93 eq_model = "iast";

94 C_iast (:, end +1) = get_equilibrium_fast (p(i), y(:, i)’, eq_model , params);

95 x_iast (:, end +1) = C_iast (:, end) / sum (C_iast (:, end));

96

97 summe (end +1) = (1 - sum (C_mes (:,i) ./ params .Cm ’));

98 eta (:, end +1) = (1 - sum (C_mes (:,i) ./ params .Cm ’)) * p(i) * y(:,i) .*

→֒ params .b’ .* params .Cm ’ ./ C_mes (:,i);

99 end

100

101 names

102 C_mes_ = C_mes ’;

103 C_elm_ = C_elm ’;

104 C_iast_ = C_iast ’;

105 C__ = [1e -5*p’, C_mes ’, C_elm ’, C_iast ’];

106 eta;

107 C_mes ;

108 summe ;

109 etaAvg = sum (eta ’) / length (eta ’);

110

111 for i = 1: length (p)

112 for j = 1: length (names)

113 params .b(j) = get_b (names {j}, T(i)); % 1 / Pa

114 params .Cm(j) = get_Vm (names {j}, T(i)); % cc(STP) / g

115 end

116

117 C_elmiac (:, end +1) = params .Cm .* params .b ./ etaAvg .* y(:,i)’ * p(i) / ...

118 (1 + sum (params .b ./ etaAvg .* y(:,i)’ * p(i)));

119

120 x_elmiac (:, end +1) = C_elmiac (:, end) / sum (C_elmiac (:, end));

121 end

122

iv

A. Octave

123 C_mes_

124 C_elm_

125 C_iast_

126 return

127 % C_elmiac_ = C_elmiac ’;

128

129 pBar

130 numberOfDataPoints = length (p)

131

132 absErrorX_elm = [1e -5*p’, 100*(x_elm .- xMes)’]

133 absErrorX_elmiac = [1e -5*p’, 100*(x_elmiac .- xMes)’];

134 absErrorX_iast = [1e -5*p’, 100*(x_iast .- xMes)’]

135

136 absErrorV_elm = [1e -5*p’, (C_elm .- C_mes)’]

137 absErrorV_elmiac = [1e -5*p’, (C_elmiac .- C_mes)’];

138 absErrorV_iast = [1e -5*p’, (C_iast .- C_mes)’]

139

140 relErrorX_elm = [1e -5*p’, (100 * (x_elm .- xMes) ./ xMes) ’];

141 relErrorX_elmiac = [1e -5*p’, (100 * (x_elmiac .- xMes) ./ xMes) ’];

142 relErrorX_iast = [1e -5*p’, (100 * (x_iast .- xMes) ./ xMes) ’];

143

144 relErrorV_elm = [1e -5*p’, (100 * (C_elm .- C_mes) ./ C_mes) ’];

145 relErrorV_elmiac = [1e -5*p’, (100 * (C_elmiac .- C_mes) ./ C_mes) ’];

146 relErrorV_iast = [1e -5*p’, (100 * (C_iast .- C_mes) ./ C_mes) ’];

147

148 % return ;

149

150 absMeanX_elm = mean (abs (absErrorX_elm (: ,2: end)))

151 absStdDevX_elm = std (abs (absErrorX_elm (: ,2: end)))

152 absMaxErX_elm = max (absErrorX_elm (: ,2: end))

153 absMinErX_elm = min (absErrorX_elm (: ,2: end))

154 absMeanV_elm = mean (abs (absErrorV_elm (: ,2: end)))

155 absStdDevV_elm = std (abs (absErrorV_elm (: ,2: end)))

156 absMinErV_elm = min (absErrorV_elm (: ,2: end))

157 absMaxErV_elm = max (absErrorV_elm (: ,2: end))

158

159 % absMeanX_elmiac = mean (abs (absErrorX_elmiac (: ,2: end)))

160 % absStdDevX_elmiac = std (abs (absErrorX_elmiac (: ,2: end)))

161 % absMaxErX_elmiac = max (absErrorX_elmiac (: ,2: end))

162 % absMinErX_elmiac = min (absErrorX_elmiac (: ,2: end))

163 % absMeanV_elmiac = mean (abs (absErrorV_elmiac (: ,2: end)))

164 % absStdDevV_elmiac = std (abs (absErrorV_elmiac (: ,2: end)))

165 % absMinErV_elmiac = min (absErrorV_elmiac (: ,2: end))

166 % absMaxErV_elmiac = max (absErrorV_elmiac (: ,2: end))

167

168 absMeanX_iast = mean (abs (absErrorX_iast (: ,2: end)))

169 absStdDevX_iast = std (abs (absErrorX_iast (: ,2: end)))

170 absMinErX_iast = min (absErrorX_iast (: ,2: end))

171 absMaxErX_iast = max (absErrorX_iast (: ,2: end))

172 absMeanV_iast = mean (abs (absErrorV_iast (: ,2: end)))

173 absStdDevV_iast = std (abs (absErrorV_iast (: ,2: end)))

174 absMinErV_iast = min (absErrorV_iast (: ,2: end))

175 absMaxErV_iast = max (absErrorV_iast (: ,2: end))

176

177 % relMeanX_elm = mean (abs (relErrorX_elm (: ,2: end)))

178 % relStdDevX_elm = std (abs (relErrorX_elm (: ,2: end)))

179 % relMeanV_elm = mean (abs (relErrorV_elm (: ,2: end)))

180 % relStdDevV_elm = std (abs (relErrorV_elm (: ,2: end)))

181

182 % relMeanX_elmiac = mean (abs (relErrorX_elmiac (: ,2: end)))

183 % relStdDevX_elmiac = std (abs (relErrorX_elmiac (: ,2: end)))

184 % relMeanV_elmiac = mean (abs (relErrorV_elmiac (: ,2: end)))

185 % relStdDevV_elmiac = std (abs (relErrorV_elmiac (: ,2: end)))

186

187 % relMeanX_iast = mean (abs (relErrorX_iast (: ,2: end)))

188 % relStdDevX_iast = std (abs (relErrorX_iast (: ,2: end)))

189 % relMeanV_iast = mean (abs (relErrorV_iast (: ,2: end)))

190 % relStdDevV_iast = std (abs (relErrorV_iast (: ,2: end)))

191

v

A. Octave

192 if (print_stdio)

193 names

194 pBar

195 T

196 y

197 if (params . paper)

198 xMes

199 end

200 x_elm

201 x_elmiac

202 x_iast

203 if (params . paper)

204 CmMes

205 end

206 C_elm

207 C_elmiac

208 C_iast

209 end

210

211 if (plotting)

212 number = 1: length (p);

213 for i = 1: length (names)

214 names_legend { end +1} = [names {i}, ",elm"];

215 names_legend { end +1} = [names {i}, ",iast"];

216 end

217

218 line_x = [0, (length (p)+2)];

219 line_y = zeros (size (line_x));

220

221 figure (1);

222 for i = 1: length (names)

223 plot (number , 100 .*(x_elm (i, :) .- xMes(i, :)) ./ xMes(i, :) , "x",

→֒ " markersize ", 10);

224 hold all;

225 plot (number , 100 .*(x_iast (i, :) .- xMes(i, :)) ./ xMes(i, :) , "+",

→֒ " markersize ", 13);

226 hold all;

227 end

228

229 plot (line_x , line_y , "k");

230 xlabel (" number of measurement ");

231 ylabel (" relative error in percent ");

232

233 axis ([0 (length (p)+2)]);

234 title (" relative errors of calculated mole fraction ");

235 legend (names_legend);

236

237 figure (2);

238 for i = 1: length (names)

239 plot (number , (x_elm (i, :) .- xMes(i, :)), "x", " markersize ", 10);

240 hold all;

241 plot (number , (x_iast (i, :) .- xMes(i, :)), "+", " markersize ", 13);

242 hold all;

243 end

244

245 plot (line_x , line_y , "k");

246 xlabel (" number of measurement ");

247 ylabel (" absolute error ");

248

249 axis ([0 (length (p)+2)]);

250 title (" absolute errors of calculated mole fraction ");

251 legend (names_legend);

252

253 figure (3);

254 plot (number , 100 .*(C_elm .- C_mes) ./ C_mes , "x", " markersize ", 10);

255 hold all;

256

257 plot (number , 100 .*(C_iast .- C_mes) ./ C_mes , "+", " markersize ", 10);

258 hold all;

vi

A. Octave

259

260 plot (line_x , line_y , "k");

261

262 xlabel (" number of measurement ");

263 ylabel (" relative error in percent ");

264 title (" relative errors of calculated adsorbed amount ");

265 legend ("elm", "iast");

266 end

Listing A.4: File get_data_CH4_CO.m.

1 %% Copyright (c) 2015 C. Goessnitzer <e1126267@student . tuwien .ac.at >

2 %

3 % Permission to use , copy , modify , and distribute this software for any

4 % purpose with or without fee is hereby granted , provided that the above

5 % copyright notice and this permission notice appear in all copies .

6 %

7 % THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

8 % WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

9 % MERCHANTABILITY AND FITNESS . IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

10 % ANY SPECIAL , DIRECT , INDIRECT , OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

11 % WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN AN

12 % ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF

13 % OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .

14

15 % Reference :

16 % Ritter , J. A. and Yang , R.T.: Equilibrium Adsorption of Multicomponent Gas

17 % Mixtures at Elevated Pressures , 1987.

18

19 function [names , P, T, Y, X_mes , V_t_mes , eta_avg] = get_data_CH4_CO ()

20

21 names = { "CH4 - yang87 ", "CO - yang87 " };

22

23 eta_avg = [0.77 , 0.93];

24

25 P (end + 1) = 124.9; % psi

26 T (end + 1) = 293; % K

27 Y (:, end + 1) = [0.506 , 0.494]; % mol / mol

28 X_mes (:, end + 1) = [0.753 , 0.247];

29 V_t_mes (end + 1) = 75.8; % cm3(STP) / g

30

31 P (end + 1) = 183.0; % psi

32 T (end + 1) = 293; % K

33 Y (:, end + 1) = [0.644 , 0.356]; % mol / mol

34 X_mes (:, end + 1) = [0.826 , 0.174];

35 V_t_mes (end + 1) = 90.9; % cm3(STP) / g

36

37 P (end + 1) = 243.1; % psi

38 T (end + 1) = 295; % K

39 Y (:, end + 1) = [0.758 , 0.242]; % mol / mol

40 X_mes (:, end + 1) = [0.896 , 0.104];

41 V_t_mes (end + 1) = 102.4; % cm3(STP) / g

42

43 % problems with calculating eta !!!

44 %P (end + 1) = 310.0; % psi

45 %T (end + 1) = 294; % K

46 %Y (:, end + 1) = [0.802 , 0.198]; % mol / mol

47 % X_mes (:, end + 1) = [0.923 , 0.077];

48 % V_t_mes (end + 1) = 133.6; % cm3(STP) / g

49

50 P (end + 1) = 364.3; % psi

51 T (end + 1) = 294; % K

52 Y (:, end + 1) = [0.696 , 0.304]; % mol / mol

53 X_mes (:, end + 1) = [0.867 , 0.133];

54 V_t_mes (end + 1) = 114.1; % cm3(STP) / g

55

56 P (end + 1) = 391.1; % psi

57 T (end + 1) = 295; % K

58 Y (:, end + 1) = [0.880 , 0.120]; % mol / mol

vii

A. Octave

59 X_mes (:, end + 1) = [0.952 , 0.048];

60 V_t_mes (end + 1) = 117.4; % cm3(STP) / g

61

62 end

Listing A.5: File get_Vm.m.

1 %% Copyright (c) 2015 C. Goessnitzer <e1126267@student . tuwien .ac.at >

2 %

3 % Permission to use , copy , modify , and distribute this software for any

4 % purpose with or without fee is hereby granted , provided that the above

5 % copyright notice and this permission notice appear in all copies .

6 %

7 % THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

8 % WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

9 % MERCHANTABILITY AND FITNESS . IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

10 % ANY SPECIAL , DIRECT , INDIRECT , OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

11 % WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN AN

12 % ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF

13 % OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .

14

15 % Reference :

16 % Ritter , J. A. and Yang , R.T.: Equilibrium Adsorption of Multicomponent Gas

17 % Mixtures at Elevated Pressures , 1987.

18

19 function Vm = get_Vm (name , temperature)

20 R = 8.3144598; % J / mol K

21 T = 273.15; % K

22 p = 1e5; % Pa

23

24 % Reference :

25 % Ritter , J.A. and Yang , R.T.: Equilibrium Adsorption of Multicomponent Gas

26 % Mixtures at Elevated Pressures , 1987.

27 A_CH4 = -0.281; % Vm3(STP) / (g K)

28 A_CO = -0.299;

29 A_CO2 = -0.557;

30 A_H2 = -0.433;

31 A_H2S = -0.599;

32

33 B_CH4 = 216; % Vm3 (STP) / g

34 B_CO = 214;

35 B_CO2 = 378;

36 B_H2 = 283;

37 B_H2S = 420;

38

39 switch (name)

40 case "CH4 - yang87 "

41 Vm = B_CH4 + A_CH4 * temperature ; % cc(STP) / g

42 case "CO - yang87 "

43 Vm = B_CO + A_CO * temperature ;

44 case "CO2 - yang87 "

45 Vm = B_CO2 + A_CO2 * temperature ;

46 case "H2 - yang87 "

47 Vm = B_H2 + A_H2 * temperature ;

48 case "H2S - yang87 "

49 Vm = B_H2S + A_H2S * temperature ;

50 end

51 end

Listing A.6: File get_b.m.

1 %% Copyright (c) 2015 C. Goessnitzer <e1126267@student . tuwien .ac.at >

2 %

3 % Permission to use , copy , modify , and distribute this software for any

4 % purpose with or without fee is hereby granted , provided that the above

5 % copyright notice and this permission notice appear in all copies .

6 %

7 % THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES

8 % WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF

viii

A. Octave

9 % MERCHANTABILITY AND FITNESS . IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR

10 % ANY SPECIAL , DIRECT , INDIRECT , OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES

11 % WHATSOEVER RESULTING FROM LOSS OF USE , DATA OR PROFITS , WHETHER IN AN

12 % ACTION OF CONTRACT , NEGLIGENCE OR OTHER TORTIOUS ACTION , ARISING OUT OF

13 % OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE .

14

15 function b_i = get_b (name , temperature)

16 psiToPa = 6894.76;

17 atmToPa = 101325;

18

19 % Reference :

20 % Ritter , J.A. and Yang , R.T.: Equilibrium Adsorption of Multicomponent Gas

21 % Mixtures at Elevated Pressures , 1987.

22 b0_CH4 = 3.81e -5; % 1 / psi

23 b0_CO = 8.42e -5;

24 b0_CO2 = 3.73e -5;

25 b0_H2 = 1.47e -5;

26 b0_H2S = 11.6e -5;

27

28 e0_CH4 = 1730; % K

29 e0_CO = 1266;

30 e0_CO2 = 1885;

31 e0_H2 = 918.1;

32 e0_H2S = 1723;

33

34 switch (name)

35 case "CH4 - yang87 "

36 b_i = b0_CH4 * exp(e0_CH4 / temperature) / psiToPa ; % 1 / bar

37 case "CO - yang87 "

38 b_i = b0_CO * exp(e0_CO / temperature) / psiToPa ;

39 case "CO2 - yang87 "

40 b_i = b0_CO2 * exp(e0_CO2 / temperature) / psiToPa ;

41 case "H2 - yang87 "

42 b_i = b0_H2 * exp(e0_H2 / temperature) / psiToPa ;

43 case "H2S - yang87 "

44 b_i = b0_H2S * exp(e0_H2S / temperature) / psiToPa ;

45 end

46 end

A.2. Results of Implementation in Octave

In this section, all results used for plotting in chapter 4. The unit of pressure is bar and
the unit of adsorbed amount is standard volume per gram adsorbent (Ncm3 g−1).

ix

A. Octave

T
ab

le
A

.1
.:

A
d
so

rb
ed

a
m

ou
n
t

ac
co

rd
in

g
to

ex
p

er
im

en
t,

E
L

M
,

IA
S
T

a
n
d

E
L

M
IA

C
fo

r
th

e
sy

st
em

C
H

4
–C

O
.

p
re

ss
u
re

M
ea

su
rm

en
t

E
L

M
IA

S
T

E
L

M
IA

C
C

H
4

C
O

C
H

4
C

O
C

H
4

C
O

C
H

4
C

O

8.
61

16
57

.0
7
74

18
.7

22
6

5
1.

9
0
04

2
1
.7

3
0
8

52
.3

08
7

21
.3

30
6

63
.6

60
6

22
.2

59
7

12
.6

17
4

75
.0

8
34

15
.8

16
6

7
1.

9
3
66

1
7
.0

5
4
7

72
.4

61
7

16
.5

43
0

83
.5

00
3

16
.5

32
0

16
.7

61
2

91
.7

5
04

10
.6

49
6

8
5.

8
3
54

1
1
.8

7
3
4

86
.3

34
1

11
.3

89
6

96
.2

58
3

11
.1

19
6

21
.3

73
8

12
3.

3
12

8
10

.2
87

2
9
4.

8
4
60

1
0
.0

9
4
0

95
.3

66
1

9.
59

11
10

3.
93

82
9.

23
77

25
.1

17
6

98
.9

2
47

15
.1

75
3

8
9.

6
8
80

1
6
.8

8
7
0

90
.5

42
3

16
.0

61
7

98
.6

61
6

15
.5

13
5

26
.9

65
4

11
1.

7
64

8
5.

6
3
52

1
04

.0
69

6
6
.1

4
8
7

10
4
.4

5
6
4

5.
77

59
11

1.
69

22
5.

51
10

x

A. Octave

T
ab

le
A

.2
.:

A
d
so

rb
ed

a
m

ou
n
t

ac
co

rd
in

g
to

ex
p

er
im

en
t,

E
L

M
,

IA
S
T

an
d

E
L

M
IA

C
fo

r
th

e
sy

st
em

C
H

4
–C

O
2
.

p
re

ss
u
re

M
ea

su
rm

en
t

E
L

M
IA

S
T

E
L

M
IA

C
C

H
4

C
O

2
C

H
4

C
O

2
C

H
4

C
O

2
C

H
4

C
O

2

8.
07

38
40

.5
1
62

69
.2

83
8

4
9.

3
2
55

5
9
.3

2
0
3

42
.1

91
3

6
8.

0
87

0
37

.2
27

0
74

.3
47

4
9.

94
22

48
.9

6
32

68
.7

36
8

5
5.

5
3
71

5
8
.4

1
9
0

47
.1

04
3

6
8.

9
60

1
42

.5
55

0
74

.3
35

8
12

.5
00

2
43

.4
4
84

90
.6

51
6

5
4.

0
7
66

7
3
.0

5
9
8

42
.8

88
5

8
7.

5
29

5
40

.7
41

2
91

.4
06

9
15

.9
33

8
32

.8
4
83

10
3
.4

51
7

5
0.

0
3
08

8
9
.9

1
8
4

36
.2

02
0

1
08

.4
22

4
36

.7
89

9
10

9.
80

36
16

.9
61

1
31

.7
6
00

12
7
.0

40
0

4
6.

8
6
98

9
8
.9

0
6
3

32
.2

61
2

1
18

.7
26

3
33

.9
56

1
11

8.
99

41
22

.6
28

6
23

.8
0
50

14
8
.6

95
0

4
0.

1
7
84

1
1
7
.2

9
5
7

24
.2

06
2

1
39

.6
67

8
28

.2
37

6
13

6.
89

72

xi

A. Octave

T
ab

le
A

.3
.:

A
d
so

rb
ed

am
o
u
n
t

a
cc

o
rd

in
g

to
ex

p
er

im
en

t,
E

L
M

,
IA

S
T

a
n
d

E
L

M
IA

C
fo

r
th

e
sy

st
em

C
O

–H
2
.

p
re

ss
u
re

M
ea

su
rm

en
t

E
L

M
IA

S
T

E
L

M
IA

C
C

O
H

2
C

O
H

2
C

O
H

2
C

O
H

2

11
.3

90
1

31
.9

54
8

5.
2
45

2
4
0
.4

9
4
4

2
.9

9
0
7

40
.3

77
7

3
.1

1
19

35
.8

44
5

3.
92

00
16

.1
40

6
42

.4
88

0
4.

5
12

0
4
3
.3

1
5
0

4
.6

4
3
1

43
.1

14
9

4
.8

5
17

38
.3

76
7

6.
09

15
16

.4
85

4
45

.9
11

8
4.

9
88

2
5
6
.8

8
5
6

3
.2

8
1
9

56
.6

82
8

3
.4

9
62

51
.3

75
8

4.
38

90
17

.9
33

3
39

.7
46

0
7.

8
54

0
3
7
.7

9
0
2

6
.4

1
5
5

37
.5

56
3

6
.6

5
85

33
.1

43
4

8.
33

18

xii

A. Octave

T
ab

le
A

.4
.:

A
d
so

rb
ed

a
m

ou
n
t

ac
co

rd
in

g
to

ex
p

er
im

en
t,

E
L

M
,

IA
S
T

a
n
d

E
L

M
IA

C
fo

r
th

e
sy

st
em

C
O

2
–C

O
.

p
re

ss
u
re

M
ea

su
rm

en
t

E
L

M
IA

S
T

E
L

M
IA

C
C

O
2

C
O

C
O

2
C

O
C

O
2

C
O

C
O

2
C

O

8.
07

38
40

.5
1
62

69
.2

83
8

4
9.

3
2
55

5
9
.3

2
0
3

42
.1

91
3

6
8.

0
87

0
37

.2
27

0
74

.3
47

4
9.

94
22

48
.9

6
32

68
.7

36
8

5
5.

5
3
71

5
8
.4

1
9
0

47
.1

04
3

6
8.

9
60

1
42

.5
55

0
74

.3
35

8
12

.5
00

2
43

.4
4
84

90
.6

51
6

5
4.

0
7
66

7
3
.0

5
9
8

42
.8

88
5

8
7.

5
29

5
40

.7
41

2
91

.4
06

9
15

.9
33

8
32

.8
4
83

10
3
.4

51
7

5
0.

0
3
08

8
9
.9

1
8
4

36
.2

02
0

1
08

.4
22

4
36

.7
89

9
10

9.
80

36
16

.9
61

1
31

.7
6
00

12
7
.0

40
0

4
6.

8
6
98

9
8
.9

0
6
3

32
.2

61
2

1
18

.7
26

3
33

.9
56

1
11

8.
99

41
22

.6
28

6
23

.8
0
50

14
8
.6

95
0

4
0.

1
7
84

1
1
7
.2

9
5
7

24
.2

06
2

1
39

.6
67

8
28

.2
37

6
13

6.
89

72

xiii

A. Octave

T
ab

le
A

.5
.:

A
d
so

rb
ed

am
o
u
n
t

a
cc

o
rd

in
g

to
ex

p
er

im
en

t,
E

L
M

,
IA

S
T

a
n
d

E
L

M
IA

C
fo

r
th

e
sy

st
em

C
H

4
–C

O
–H

2
.

p
re

ss
u
re

M
ea

su
rm

en
t

E
L

M
IA

S
T

E
L

M
IA

C
C

H
4

C
O

H
2

C
H

4
C

O
H

2
C

H
4

C
O

H
2

C
H

4
C

O
H

2

10
.5

97
2

2
1.

19
26

2
1.

93
36

6.
2
73

8
2
5.

4
9
85

2
9
.6

9
2
4

1.
8
7
58

2
5
.6

9
8
8

2
9.

4
00

4
1.

97
54

27
.8

02
6

18
.4

81
3

4.
56

38
12

.0
10

7
2
2.

94
74

2
3.

93
16

4.
9
21

0
1
9.

8
6
16

3
4
.2

3
0
3

2.
3
7
62

2
0
.0

3
7
7

3
3.

9
36

0
2.

50
33

21
.9

30
0

21
.5

75
0

5.
85

44
14

.5
61

7
3
0.

67
47

1
8.

59
76

7.
4
27

7
2
5.

8
6
56

3
2
.6

5
3
0

3.
0
0
13

2
6
.0

7
8
6

3
2.

2
76

3
3.

17
81

28
.2

44
8

20
.3

54
3

7.
31

29
16

.8
37

0
3
9.

35
14

2
5.

16
58

3.
6
82

8
3
0.

9
2
00

3
5
.7

4
5
6

2.
3
9
67

3
1
.2

5
5
8

3
5.

2
54

5
2.

56
95

34
.3

86
4

22
.6

92
7

5.
94

75
19

.5
88

0
5
1.

87
56

1
4.

59
24

9.
9
32

0
4
6.

1
8
25

2
8
.6

7
9
3

3.
1
4
65

4
6
.5

4
2
7

2
8.

0
83

9
3.

40
85

49
.6

55
6

17
.6

02
6

7.
54

89
22

.3
73

5
4
6.

48
89

1
4.

74
92

11
.0

6
1
9

4
7.

6
0
46

3
1
.3

7
5
1

3.
2
6
21

4
8
.0

3
8
8

3
0.

6
71

8
3.

56
50

51
.6

50
3

19
.4

32
4

7.
89

76
23

.6
55

9
3
5.

74
59

2
9.

97
10

7.
3
83

1
3
0.

4
2
35

4
3
.1

6
9
5

3.
1
7
23

3
0
.8

4
8
8

4
2.

4
94

0
3.

45
22

34
.5

88
1

28
.0

16
4

8.
04

76
26

.1
38

0
4
3.

40
70

3
2.

59
62

5.
8
96

8
3
7.

4
4
68

4
2
.9

6
2
0

2.
6
6
44

3
8
.0

3
0
9

4
2.

1
41

5
2.

93
71

42
.7

63
0

28
.0

06
3

6.
78

93

xiv

A. Octave

T
a
b
le

A
.6

.:
A

d
so

rb
ed

a
m

ou
n
t

ac
co

rd
in

g
to

ex
p

er
im

en
t,

E
L

M
,

IA
S
T

a
n
d

E
L

M
IA

C
fo

r
th

e
sy

st
em

C
H

4
–C

O
2
–H

2
.

p
re

ss
u
re

M
ea

su
rm

en
t

E
L

M
IA

S
T

E
L

M
IA

C
C

H
4

C
O

2
H

2
C

H
4

C
O

2
H

2
C

H
4

C
O

2
H

2
C

H
4

C
O

2
H

2

14
.8

23
7

30
.1

27
0

26
.9

86
1

6
.9

86
9

29
.7

49
9

2
0
.9

1
2
3

5
.9

7
8
5

28
.5

04
6

2
2.

29
11

5.
96

63
25

.5
15

5
22

.4
25

4
5.

14
47

20
.0

50
0

41
.6

62
5

33
.6

60
0

7
.1

77
5

37
.3

10
5

2
7
.2

5
3
0

6
.8

1
9
1

35
.1

29
8

2
9.

74
28

6.
79

43
32

.3
56

3
29

.5
50

3
5.

93
35

21
.7

53
0

19
.0

94
4

38
.3

72
4

3
.7

33
2

30
.5

76
2

5
1
.2

5
2
0

6
.4

7
6
6

27
.1

80
1

5
5.

50
45

6.
21

13
26

.1
76

5
54

.8
60

3
5.

56
32

23
.1

31
9

38
.2

88
5

62
.7

30
2

3
.8

81
3

44
.0

49
1

5
4
.5

0
7
0

4
.5

1
8
6

38
.2

43
2

6
1.

73
80

4.
34

40
38

.3
49

7
59

.3
33

0
3.

94
72

24
.3

45
4

49
.9

90
4

62
.9

55
2

3
.7

37
6

55
.9

38
3

5
0
.4

5
5
6

3
.6

4
6
6

48
.5

24
3

5
9.

73
13

3.
56

73
49

.5
08

9
55

.8
34

6
3.

23
82

xv

B. Example Case Setup in OpenFOAM

All necessary files for setting up a case for generalMultiAdsorpFoam are shown in this
section.

B.1. 0 directory

Listing B.1: File CH4.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class volScalarField ;

13 location "0";

14 object CH4;

15 }

16 // * //

17

18 dimensions [0 0 0 0 0 0 0];

19

20 internalField uniform 0.3;

21

22 boundaryField

23 {

24 inlet

25 {

26 type fixedValue ;

27 value uniform 0.3;

28 }

29 outlet

30 {

31 type inletOutlet ;

32 inletValue uniform 0.3;

33 value uniform 0.3;

34 }

35 adsorptwall

36 {

37 type adsorpWall ;

38 }

39 wall

40 {

41 type zeroGradient ;

42 }

43 frontAndBack

44 {

B. Example Case Setup in OpenFOAM

45 type zeroGradient ;

46 }

47 }

48

49 // *** //

Listing B.2: File CO2.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class volScalarField ;

13 location "0";

14 object CO2;

15 }

16 // * //

17

18 dimensions [0 0 0 0 0 0 0];

19

20 internalField uniform 0.3;

21

22 boundaryField

23 {

24 inlet

25 {

26 type fixedValue ;

27 value uniform 0.3;

28 }

29 outlet

30 {

31 type inletOutlet ;

32 inletValue uniform 0.3;

33 value uniform 0.3;

34 }

35 adsorptwall

36 {

37 type adsorpWall ;

38 }

39 wall

40 {

41 type zeroGradient ;

42 }

43 frontAndBack

44 {

45 type zeroGradient ;

46 }

47 }

48

49 // *** //

Listing B.3: File CO.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

xvii

B. Example Case Setup in OpenFOAM

10 version 2.0;

11 format ascii ;

12 class volScalarField ;

13 location "0";

14 object CO2;

15 }

16 // * //

17

18 dimensions [0 0 0 0 0 0 0];

19

20 internalField uniform 0.4;

21

22 boundaryField

23 {

24 inlet

25 {

26 type fixedValue ;

27 value uniform 0.4;

28 }

29 outlet

30 {

31 type inletOutlet ;

32 inletValue uniform 0.4;

33 value uniform 0.4;

34 }

35 adsorptwall

36 {

37 type adsorpWall ;

38 }

39 wall

40 {

41 type zeroGradient ;

42 }

43 frontAndBack

44 {

45 type zeroGradient ;

46 }

47 }

48

49 // *** //

Listing B.4: File p.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class volScalarField ;

13 location "0";

14 object p;

15 }

16 // * //

17

18

19 dimensions [1 -1 -2 0 0 0 0];

20

21 internalField uniform 1e5;

22

23 boundaryField

24 {

25 inlet

26 {

xviii

B. Example Case Setup in OpenFOAM

27 type zeroGradient ;

28 }

29 outlet

30 {

31 type fixedValue ;

32 value uniform 1e5;

33 }

34 adsorptwall

35 {

36 type zeroGradient ;

37 }

38 wall

39 {

40 type zeroGradient ;

41 }

42 frontAndBack

43 {

44 type zeroGradient ;

45 }

46 }

47

48 // *** //

Listing B.5: File T.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class volScalarField ;

13 location "0";

14 object T;

15 }

16 // * //

17

18 dimensions [0 0 0 1 0 0 0];

19

20 internalField uniform 300;

21

22 boundaryField

23 {

24 inlet

25 {

26 type fixedValue ;

27 value uniform 300;

28 }

29 outlet

30 {

31 type inletOutlet ;

32 inletValue uniform 300;

33 value uniform 300;

34 }

35 adsorptwall

36 {

37 type adsorpAdiabaticWall ;

38 value uniform 300;

39 }

40 wall

41 {

42 type zeroGradient ;

43 }

44 frontAndBack

xix

B. Example Case Setup in OpenFOAM

45 {

46 type zeroGradient ;

47 }

48 }

49

50 // *** //

Listing B.6: File U.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class volVectorField ;

13 location "0";

14 object U;

15 }

16 // * //

17

18 dimensions [0 1 -1 0 0 0 0];

19

20 internalField uniform (0.005 0 0);

21

22 boundaryField

23 {

24 inlet

25 {

26 type fixedValue ;

27 value uniform (0.005 0 0);

28 }

29 outlet

30 {

31 type zeroGradient ;

32 }

33 adsorptwall

34 {

35 type fixedValue ;

36 value uniform (0 0 0);

37 }

38 wall

39 {

40 type fixedValue ;

41 value uniform (0 0 0);

42 }

43 frontAndBack

44 {

45 type fixedValue ;

46 value uniform (0 0 0);

47 }

48 }

49

50 // *** //

B.2. constant directory

Listing B.7: File adsorptionProperties.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

xx

B. Example Case Setup in OpenFOAM

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 location " constant ";

14 object adsorptionProperties ;

15 }

16 // * //

17

18 // adsorptionType iast - langmuir ;

19 adsorptionType elm;

20 // adsorptionType henry ;

21

22 kineticsType ldf;

23 // kineticsType diffusion ;

24

25 adsorbentCp adsorbentCp [0 2 -2 -1 0 0 0] 1e3;

26 adsorbentDensity adsorbentDensity [1 -3 0 0 0 0 0] 1e3;

27 adsorbentLayerH adsorbentLayerH [0 1 0 0 0 0 0] 1e -3;

28 diffusionDeltaZ diffusionDeltaZ [0 1 0 0 0 0 0] 1e -3;

29

30 CH4

31 {

32 adsorptwall

33 {

34 iac 1;

35

36 Cm0 Cm0 [1 -2 0 0 0 0 0] 0.15259;

37 Cm1 Cm1 [1 -2 0 -1 0 0 0] -1.9851e -4;

38 b0 b0 [-1 1 2 0 0 0 0] 5.5259e -9;

39 T0 T0 [0 0 0 1 0 0 0] 1730.0;

40

41 K1 K1 [0 0 -1 0 0 0 0] 0.02;

42 K2 K2 [-1 2 -1 0 0 0 0] 0.01;

43 K3 K3 [-2 4 -1 0 0 0 0] 0.001;

44

45 Ke Ke [0 -1 2 0 0 0 0] 3e -8;

46

47 adsorptionDeltaH adsorptionDeltaH [0 2 -2 0 0 0 0] 1e6;

48 }

49

50 sigma sigma [0 1 0 0 0 0 0] 3.758e -10;

51 epsilon epsilon [0 0 0 1 0 0 0] 148.6;

52 }

53

54 CO

55 {

56 adsorptwall

57 {

58 iac 1;

59

60 Cm0 Cm0 [1 -2 0 0 0 0 0] 0.26395;

61 Cm1 Cm1 [1 -2 0 -1 0 0 0] -3.6878e -4;

62 b0 b0 [-1 1 2 0 0 0 0] 1.2212e -8;

63 T0 T0 [0 0 0 1 0 0 0] 1266;

64

65 K1 K1 [0 0 -1 0 0 0 0] 0.02;

66 K2 K2 [-1 2 -1 0 0 0 0] 0.01;

67 K3 K3 [-2 4 -1 0 0 0 0] 0.001;

68

69 Ke Ke [0 -1 2 0 0 0 0] 3e -6;

70

71 adsorptionDeltaH adsorptionDeltaH [0 2 -2 0 0 0 0] 1e6;

72 }

xxi

B. Example Case Setup in OpenFOAM

73

74 sigma sigma [0 1 0 0 0 0 0] 3.69e -10;

75 epsilon epsilon [0 0 0 1 0 0 0] 91.7;

76 }

77

78 CO2

79 {

80 adsorptwall

81 {

82 iac 1;

83

84 Cm0 Cm0 [1 -2 0 0 0 0 0] 0.73254;

85 Cm1 Cm1 [1 -2 0 -1 0 0 0] -1.0794e -3;

86 b0 b0 [-1 1 2 0 0 0 0] 5.4099e -9;

87 T0 T0 [0 0 0 1 0 0 0] 1885;

88

89 Ke Ke [0 -1 2 0 0 0 0] 3e -6;

90

91 K1 K1 [0 0 -1 0 0 0 0] 0.02;

92 K2 K2 [-1 2 -1 0 0 0 0] 0.01;

93 K3 K3 [-2 4 -1 0 0 0 0] 0.001;

94

95 adsorptionDeltaH adsorptionDeltaH [0 2 -2 0 0 0 0] 1e6;

96 }

97

98 sigma sigma [0 1 0 0 0 0 0] 3.941e -10;

99 epsilon epsilon [0 0 0 1 0 0 0] 195.2;

100 }

101

102 // *** //

Listing B.8: File chemistryProperties.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 location " constant ";

14 object chemistryProperties ;

15 }

16 // * //

17

18 chemistryType

19 {

20 chemistrySolver ode;

21 chemistryThermo psi;

22 }

23

24 chemistry off;

25

26 initialChemicalTimeStep 1e -07;

27

28 sequentialCoeffs

29 {

30 cTauChem 0.001;

31 }

32

33 EulerImplicitCoeffs

34 {

35 cTauChem 0.05;

36 equilibriumRateLimiter off;

xxii

B. Example Case Setup in OpenFOAM

37 }

38

39 odeCoeffs

40 {

41 solver SIBS;

42 eps 0.05;

43 scale 1;

44 }

45

46 // *** //

Listing B.9: File combustionProperties.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 location " constant ";

14 object combustionProperties ;

15 }

16 // * //

17 combustionModel laminar < psiChemistryCombustion >;

18

19 active true;

20

21 laminarCoeffs

22 {

23 }

24 // *** //

Listing B.10: File g.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class uniformDimensionedVectorField ;

13 location " constant ";

14 object g;

15 }

16 // * //

17

18 dimensions [0 1 -2 0 0 0 0];

19 value (0 0 0);

20

21

22 // *** //

Listing B.11: File blockMeshDict.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

xxiii

B. Example Case Setup in OpenFOAM

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 object blockMeshDict ;

14 }

15 // * //

16

17 convertToMeters 0.1;

18

19 vertices

20 (

21 (0 0 0) //0

22 (5 0 0) //1

23 (5 1 0) //2

24 (0 1 0) //3

25 (0 0 1) //4

26 (5 0 1) //5

27 (5 1 1) //6

28 (0 1 1) //7

29);

30

31 blocks

32 (

33 hex (0 1 2 3 4 5 6 7) (50 10 10) simpleGrading (1 1 1)

34);

35

36 edges

37 (

38);

39

40 boundary

41 (

42 inlet

43 {

44 type patch ;

45 faces

46 (

47 (0 3 7 4)

48);

49 }

50 outlet

51 {

52 type patch ;

53 faces

54 (

55 (5 6 2 1)

56);

57 }

58 wall

59 {

60 type wall;

61 faces

62 (

63 (4 5 1 0)

64 (0 1 2 3)

65 (4 7 6 5)

66);

67 }

68 adsorptwall

69 {

70 type wall;

71 faces

72 (

xxiv

B. Example Case Setup in OpenFOAM

73 (6 7 3 2)

74);

75 }

76);

77

78 mergePatchPairs

79 (

80);

81

82 // *** //

Listing B.12: File reactions.

1 species

2 (

3 CH4

4 CO

5 CO2

6);

7

8 reactions

9 {}

Listing B.13: File thermo.compressibleGas.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 location " constant ";

14 object thermo . compressibleGas ;

15 }

16 // * //

17

18 CO2

19 {

20 specie

21 {

22 nMoles 1;

23 molWeight 44.01;

24 }

25 thermodynamics

26 {

27 Tlow 200;

28 Thigh 5000;

29 Tcommon 1000;

30 highCpCoeffs (4.45362 0.00314017 -1.27841e -06 2.394e -10 -1.66903e -14

→֒ -48967 -0.955396);

31 lowCpCoeffs (2.27572 0.00992207 -1.04091e -05 6.86669e -09

→֒ -2.11728e -12 -48373.1 10.1885);

32 }

33 transport

34 {

35 As 1.67212e -06;

36 Ts 170.672;

37 }

38 }

39

40 CH4

41 {

42 specie

xxv

B. Example Case Setup in OpenFOAM

43 {

44 nMoles 1;

45 molWeight 16.043;

46 }

47 thermodynamics

48 {

49 Tlow 200;

50 Thigh 6000;

51 Tcommon 1000;

52 highCpCoeffs (1.91179 0.00960268 -3.38388e -06 5.38797e -10

→֒ -3.19307e -14 -10099.2 8.48242);

53 lowCpCoeffs (5.14826 -0.0137002 4.93749e -05 -4.91952e -08 1.70097e -11

→֒ -10245.3 -4.63323);

54 }

55 transport

56 {

57 As 1.67212e -06;

58 Ts 170.672;

59 }

60 }

61

62 CO

63 {

64 specie

65 {

66 nMoles 1;

67 molWeight 28.0106;

68 }

69 thermodynamics

70 {

71 Tlow 200;

72 Thigh 6000;

73 Tcommon 1000;

74 highCpCoeffs (3.04849 0.00135173 -4.85794e -07 7.88536e -11

→֒ -4.69807e -15 -14266.1 6.0171);

75 lowCpCoeffs (3.57953 -0.000610354 1.01681e -06 9.07006e -10

→֒ -9.04424e -13 -14344.1 3.50841);

76 }

77 transport

78 {

79 As 1.67212e -06;

80 Ts 170.672;

81 }

82 }

83

84 // *** //

Listing B.14: File thermophysicalProperties.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 location " constant ";

14 object thermophysicalProperties ;

15 }

16 // * //

17

18 thermoType

19 {

20 type hePsiThermo ;

xxvi

B. Example Case Setup in OpenFOAM

21 mixture reactingMixture ;

22 transport sutherland ;

23 thermo janaf ;

24 energy sensibleEnthalpy ;

25 equationOfState perfectGas ;

26 specie specie ;

27 }

28

29 inertSpecie CO2;

30

31 chemistryReader foamChemistryReader ;

32

33 foamChemistryFile " $FOAM_CASE / constant / reactions ";

34

35 foamChemistryThermoFile " $FOAM_CASE / constant / thermo . compressibleGas ";

36

37 // *** //

Listing B.15: File turbulenceProperties.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 location " constant ";

14 object turbulenceProperties ;

15 }

16 // * //

17

18 simulationType laminar ;

19

20

21 // *** //

B.3. system directory

Listing B.16: File controlDict.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 location " system ";

14 object controlDict ;

15 }

16 // * //

17

18 application generalMultiAdsorpFoam ;

19

20 startFrom startTime ;

21

xxvii

B. Example Case Setup in OpenFOAM

22 startTime 0;

23

24 stopAt endTime ;

25

26 endTime 400;

27

28 deltaT 1e -1;

29

30 writeControl adjustableRunTime ;

31

32 writeInterval 1;

33

34 purgeWrite 0;

35

36 writeFormat ascii ;

37

38 writePrecision 6;

39

40 writeCompression off;

41

42 timeFormat general ;

43

44 timePrecision 6;

45

46 runTimeModifiable true;

47

48 adjustTimeStep true;

49

50 maxCo 0.5;

51

52 libs (" libAdsorptionBoundaryConditions .so");

53 // *** //

Listing B.17: File fvSchemes.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 location " system ";

14 object fvSchemes ;

15 }

16 // * //

17

18 ddtSchemes

19 {

20 default Euler ;

21 }

22

23 gradSchemes

24 {

25 default Gauss linear ;

26 grad(p) Gauss linear ;

27 }

28

29 divSchemes

30 {

31 default none;

32

33 div(phi ,U) Gauss limitedLinearV 1;

34 div(phi ,Yi_h) Gauss limitedLinear01 1;

xxviii

B. Example Case Setup in OpenFOAM

35 div(phi ,h) Gauss limitedLinear 1;

36 div(phi ,K) Gauss limitedLinear 1;

37 div(phid ,p) Gauss limitedLinear 1;

38 div(phi , epsilon) Gauss limitedLinear 1;

39 div(phi ,k) Gauss limitedLinear 1;

40 div ((muEff * dev2(T(grad(U))))) Gauss linear ;

41 }

42

43 laplacianSchemes

44 {

45 default Gauss linear uncorrected ;

46 laplacian (muEff ,U) Gauss linear uncorrected ;

47 laplacian (mut ,U) Gauss linear uncorrected ;

48 laplacian (DkEff ,k) Gauss linear uncorrected ;

49 laplacian (DepsilonEff , epsilon) Gauss linear uncorrected ;

50 laplacian ((rho *(1|A(U))),p) Gauss linear uncorrected ;

51 laplacian (alphaEff ,h) Gauss linear uncorrected ;

52 }

53

54 interpolationSchemes

55 {

56 default linear ;

57 }

58

59 snGradSchemes

60 {

61 default uncorrected ;

62 }

63

64 fluxRequired

65 {

66 default no;

67 p;

68 }

69

70

71 // *** //

Listing B.18: File fvSolution.

1 /* --------------------------------*- C++ -* ----------------------------------*\

2 | ========= | |

3 | \\ / F ield | OpenFOAM : The Open Source CFD Toolbox |

4 | \\ / O peration | Version : 2.4.0 |

5 | \\ / A nd | Web: www. OpenFOAM .org |

6 | \\/ M anipulation | |

7 * ---*/

8 FoamFile

9 {

10 version 2.0;

11 format ascii ;

12 class dictionary ;

13 location " system ";

14 object fvSolution ;

15 }

16 // * //

17

18 solvers

19 {

20 rho

21 {

22 solver PCG;

23 preconditioner DIC;

24 tolerance 1e -06;

25 relTol 0;

26 }

27

28 rhoFinal

29 {

xxix

B. Example Case Setup in OpenFOAM

30 $rho;

31 tolerance 1e -06;

32 relTol 0;

33 }

34

35 p

36 {

37 solver PCG;

38 preconditioner DIC;

39 tolerance 1e -6;

40 relTol 0;

41 }

42

43 pFinal

44 {

45 $p;

46 tolerance 1e -6;

47 relTol 0;

48 }

49

50 "(U|h|k| epsilon)"

51 {

52 solver PBiCG ;

53 preconditioner DILU;

54 tolerance 1e -06;

55 relTol 0;

56 }

57

58 "(U|h|k| epsilon) Final "

59 {

60 solver PBiCG ;

61 preconditioner DILU;

62 tolerance 1e -06;

63 relTol 0;

64 }

65

66 Yi

67 {

68 $hFinal ;

69 }

70 }

71

72 PIMPLE

73 {

74 momentumPredictor yes;

75 nOuterCorrectors 1;

76 nCorrectors 1;

77 nNonOrthogonalCorrectors 0;

78 }

79

80

81 // *** //

xxx

Index

activity, 15
adsorption, 7

isotherms, 7
kinetics, 17

diffusion-based, 18
linear driving force, 18

multicomponent, 13
extended Langmuir model, 13
extended Langmuir model with

interaction coefficients, 14
ideal adsorbed solution theory, 15

single-component, 11
Freundlich, 11
Freundlich-Langmuir, 13
Henry, 11
Langmuir, 11

types of, 7

conservation equations, 48
consistency, 43
continuity equation, 49
convergence, 43
Courant number, 43
Courant-Friedrichs-Lewy condition, 43

diffusion coefficient, 52
discretisation, 40

energy balance, 50
Euler equation, 49

finite-difference method, 44
finite-volume method, 46
fugacity, 15

Gibbs equation for a plane surface, 10
Gibbs free enthalpy, 15
grid, 40

block-structured, 40
structured, 40

unstructured, 40

Helmholtz free energy, 9
Henry’s Law, 7

International Union of Pure and Applied
Chemistry, 7

mass balance
partial, 49
total, 49

material property, 52
momentum balance, 49

Navier-Stokes equation, 50

OpenFOAM, 55
adsorpFoam, 62
boundary condition, 55

adsorpAdiabaticWall, 71
adsorpWall, 71

diffusion.H, 68
file input and output, 57
generalMultiAdsorpFoam, 65

adsorptionProperties, 65
createAdsorptionFields.H, 65
elm.H, 67
henry.H, 67
iast-langmuir.H, 67
ldf.H, 68
limiters, 68

reactingFoam, 60

partial differential equation, 39
pressure-velocity coupling, 50

PIMPLE algorithm, 52
PISO algorithm, 51
SIMPLE algorithm, 51

residual, 44
Reynolds number, 76

Index

Reynolds transport theorem, 48

stability, 43

Taylor series expansion, 40

weighted residual method, 44

collocation method, 45

Galerkin method, 45

least-square method, 45

subdomain method, 45

xxxii

	Abstract
	Kurzfassung
	Danksagung
	Introduction
	Thermodynamics of Adsorption
	Adsorption Equilibrium
	Single-component Adsorption
	Multicomponent Adsorption

	Adsorption Kinetics
	Linear Driving Force
	Diffusion-based Kinetics

	Implementation in Octave
	Calculation of Adsorption Coefficients
	Extended Langmuir Model
	Extended Langmuir Model with Interaction Coefficients
	Ideal Adsorbed Solution Theory
	Diffusion Kinetics

	Validation and Results in Octave
	Validation
	Equilibrium Models
	Binary Systems
	Ternary Systems
	Comparison between ELM and ELM with IAC

	Kinetics Models

	Computational Fluid Dynamics
	Mathematical Fundamentals
	Discretisation
	Finite-difference Method
	Weighted Residual Methods

	Finite-volume Method
	Interpolation

	Conservation Equations
	Total Mass Balance
	Partial Mass Balance
	Momentum Balance
	Energy Balance

	Pressure-velocity Coupling
	PISO Algorithm
	SIMPLE Algorithm
	PIMPLE Algorithm

	Prediction of Material Properties
	Diffusion Coefficients in Gas Mixtures

	Introduction to OpenFOAM
	User Side
	Preprocessing
	Starting the Simulation
	Postprocessing

	Programming Side
	General Structure of a Solver
	File Input and Output
	Data Types
	Partial Differential Equations
	Turbulence Modelling

	Solver for Flows with Chemical Reactions
	Solver for Flows with Single-component Henry Adsorption
	Adaptation of Conservation Equations
	Temperature and Species Boundary and Initial Conditions

	Implementation in OpenFOAM
	Reading Input Parameters
	Adsorption Calculations
	Preparations
	Calculating the Adsorption Equilibrium
	Calculating the Rate of Adsorption
	Applying Limiters
	Division by Area
	Adsorption Enthalpy
	Pitfalls

	Adaptation of Conservation Equations
	Information Output
	Boundary Conditions
	Example Case Setup
	The adsorptionProperties Dictionary

	Validation and Results in OpenFOAM
	Validation
	Test Cases
	Cuboid
	Packed Bed

	Summary, Discussion and Outlook
	Bibliography
	Octave
	Implementation Code
	Results of Implementation in Octave

	Example Case Setup in OpenFOAM
	0 directory
	constant directory
	system directory

	Index

