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Abstract

In this thesis, new Orlicz–Brunn–Minkowski inequalities are established for rigid motion
compatible Minkowski valuations of arbitrary degree. These extend classical log-concavity
properties of intrinsic volumes and generalize seminal results of Lutwak and others. Two
different approaches which refine previously employed techniques are explored. It is
shown that both lead to the same class of Minkowski valuations for which these inequalities
hold. This is a joint work with Lukas Parapatits, Franz Schuster and Manuel Weberndorfer.

The second focus of this thesis lies on the generalization of Lutwak’s volume inequalities
for polar projection bodies of all orders to polarizations of Minkowski valuations generated
by 𝑜-symmetric zonoids of revolution. This is based on generalizations of the notions of
centroid bodies and mixed projection bodies to such Minkowski valuations. A new integral
representation is used to single out Lutwak’s inequalities as the strongest among these
families of inequalities, which in turn are related to a conjecture on affine quermassintegrals.
In the dual setting, a generalization of Leng and Lu’s volume inequalities for intersection
bodies of all orders is proved. These results are related to Grinberg’s inequalities for dual
affine quermassintegrals.
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Kurzfassung

In dieser Arbeit werden neue Orlicz-Brunn-Minkowski-Ungleichungen für Minkowski-
Bewertungen beliebigen Grades, die mit Bewegungen verträglich sind, bewiesen. Diese
Ungleichungen erweitern die klassische Log-Konkavität der intrinsischen Volumina auf
allgemeinere Funktionale und verallgemeinern grundlegende Resultate von Lutwak und
anderen. Zwei verschiedene Zugänge, die zuvor bekannte Techniken verfeinern, werden
untersucht. Es wird gezeigt, dass beide auf dieselbe Klasse von Minkowski-Bewertungen
führen, für welche diese Ungleichungen gelten. Dies sind Resultate aus einer gemeinsamen
Arbeit mit Lukas Parapatits, Franz Schuster und Manuel Weberndorfer.

Der zweite Fokus dieser Arbeit liegt auf der Verallgemeinerung von Lutwaks Volumsun-
gleichungen für polare Projektionenkörper beliebiger Ordnung auf Minkowski-Bewertungen,
die von 𝑜-symmetrischen Rotationszonoiden erzeugt werden. Hierzu werden die Begriffe
des Schwerpunktkörpers und der gemischten Projektionenkörper auf solche Minkowski-
Bewertungen erweitert. Eine neue Integraldarstellung wird verwendet, um zu zeigen, dass
unter diesen Ungleichungen Lutwaks Resultate die stärksten Ungleichungen darstellen.
Diese Ungleichungen werden wiederum mit einer Vermutung über affine Quermaßintegrale
in Beziehung gesetzt. In der dualen Theorie wird eine Verallgemeinerung von Lengs und
Lus Ungleichungen für Schnittkörper beliebiger Ordnung bewiesen. Diese Resultate werden
in Beziehung zu Grinbergs Ungleichungen für duale affine Quermaßintegrale gesetzt.
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Introduction

The problem of finding sharp bounds for the volume of projection bodies, given the volume
of the original body, is a central quest in convex geometric analysis. In [Pet71], Petty
conjectured a lower bound for the volume of the projection body. This problem is still
unsolved but has sparked discoveries in neighboring areas. Among many other results, it
has led to investigations of log-concavity properties of the volume of projection bodies and
to the investigation of volume bounds for polar projection bodies.

The most famous log-concave functional in geometry is the volume on convex bodies,
where the log-concavity is expressed by the classical Brunn-Minkowski inequality. This
fact lies at the very heart of the Brunn–Minkowski theory and has sparked interest in
the investigation of a variety of log-concave geometric functionals. In [Lut93a], Lutwak
investigated log-concavity of a different family of functionals and established not only
Brunn–Minkowski type inequalities for the volume of projection bodies, but for all the
intrinsic volumes of projection bodies of arbitrary order.

In a different line of research, Lutwak [Lut84] discovered that an affine isoperimetric
inequality of Petty [Pet71] for polar projection bodies is not only significantly stronger
than the Euclidean isoperimetric inequality, but in fact an optimal version of this classical
inequality. For the tremendous impact of Petty’s inequality and its generalizations see,
e.g., [Hab09b; Lut00b; Lut10b; Wan12; Zha99]. In [Lut85], Lutwak established a version of
this inequality for projection bodies of all orders, the Lutwak–Petty projection inequalities.
While all of these projection bodies are SO(𝑛)-equivariant, the projection body has a special
place in affine geometry: Ludwig [Lud02; Lud05] characterized this operator as the unique
continuous Minkowski valuation which is translation-invariant and GL(𝑛)-contravariant
(see [Hab12; Lud03; Lud10a; Par14a; Par14b; Sch12a; Wan11] for related results).

Recently, translation-invariant and SO(𝑛)-equivariant Minkowski valuations have been
investigated by a number of authors ([Kid06], [Sch07], [Sch10], [Sch15]). This has led to
a number of new discoveries, extending previously known results for projection bodies.
Various generalizations of the polar Petty projection inequality have since been obtained
(see [Bör13; Hab09b; Lut00b; Lut10a] for extensions to the 𝐿𝑝 and the Orlicz–Brunn–
Minkowski theories and [Wan12] for the extension to sets of finite perimeter) and also
Lutwak’s Brunn–Minkowski type inequalities have been generalized in various directions
[Par12; Sch06; Sch10]).

A theory for star bodies, dual to the Brunn–Minkowski theory for convex bodies, also has
its origin in the work of Lutwak [Lut88a]. One of its central inequalities is the Busemann
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2 Contents

intersection inequality [Bus53], which relates the volume of a star body to the volume of
its intersection body. The intersection body was first introduced by Lutwak in [Lut88b]
and ever since a number of authors has contributed to the research on the duality between
projection and intersection bodies (confer [Sch14] and [Gar95] for more details). Recently it
was shown by Leng and Lu [Lu08] that inequalities analogous to the Busemann intersection
inequality hold also for intersection bodies of all orders.

The aim of this thesis is to find a common generalization of all the previously known
log-concavity properties of intrinsic volumes of Minkowski valuations, to extend the Lutwak–
Petty projection inequalities to a certain class of Minkowski valuations and to extend Leng
and Lu’s result to a subclass of radial Minkowski valuations.

The thesis is structured as follows:
In Chapter 1, we recall the basic definitions from convex geometry and harmonic analysis,

including the Radon transform and convolution on the sphere.
In Chapter 2, valuations, in particular Minkowski and radial Minkowski valuations, are

defined. The most important examples, the projection and intersection bodies of all orders,
are generalized.

In Chapter 3 we collect known results on log-concavity of Minkowski valuations. We
show that a new integration operator on Minkowski valuations [Ale04a; Ber07a; Sch15] on
one hand and a recent representation theorem for Minkowski valuations [Sch; Sch15] on
the other hand lead to a natural class of Minkowski valuations which exhibit log-concavity
properties. This is a joint work with Lukas Parapatits, Franz Schuster and Manuel
Weberndorfer [Berb]. All the Brunn–Minkowski inequalities for Minkowski valuations
established before turn out to be special cases of our new results. From new monotonicity
properties of these Minkowski valuations, we are able to deduce a complete characterization
of equality cases without any smoothness assumptions that were required before.

Moreover, all previously obtained and new Brunn–Minkowski inequalities for Minkowski
valuations are shown to not only hold for Minkowski addition but for all commutative
Orlicz–Minkowski additions (introduced in [Gar14]) of convex bodies. This includes, in
particular, all 𝐿𝑝 Minkowski additions.

In Chapter 4 we recall the Lutwak–Petty projection inequalities and Leng and Lu’s
intersection inequalities and establish generalizations to certain classes of Minkowski
valuations and radial Minkowski valuations, respectively. To this end, we generalize notions
and techniques of Lutwak [Lut85] and Haberl and Schuster [Hab]. These results will appear
in [Bera].



CHAPTER 1
Background from convex geometry

1.1 Background material on convex bodies
We collect in this section some basic facts from convex geometry, in particular, on additions
of convex bodies, inequalities for mixed volumes and their duals, and affine variants. As
general reference for this material we recommend the book by Schneider [Sch14] and the
article [Gar14].

Let K𝑛 denote the space of convex bodies in R𝑛 endowed with the Hausdorff metric and
let K𝑛

𝑛 denote the space of full-dimensional convex bodies. We will assume that 𝑛 ≥ 3
unless otherwise specified. By K𝑛

𝑜 we denote the set of convex bodies containing the origin
and by K𝑛

(𝑜) the subset of all 𝐾 ∈ K𝑛 containing the origin in their interiors. For a convex
body 𝐾 ∈ K𝑛, the support function at a point 𝑢 ∈ 𝑆𝑛−1 is defined by

ℎ(𝐾,𝑢) = max{𝑥 · 𝑢 : 𝑥 ∈ 𝐾}.

This definition implies that ℎ(𝜗𝐾,𝑢) = ℎ(𝐾,𝜗−1𝑢) for every 𝑢 ∈ 𝑆𝑛−1 and 𝜗 ∈ SO(𝑛).
Since every twice continuously differentiable function on 𝑆𝑛−1 is a difference of support
functions (see, e.g., [Sch14, p. 49]), the subspace spanned by differences of support functions
{ℎ(𝐾,·) − ℎ(𝐿,·) : 𝐾,𝐿 ∈ K𝑛} is dense in 𝐶(𝑆𝑛−1). The Steiner point 𝑠(𝐾) of 𝐾 ∈ K𝑛 is
defined by

𝑠(𝐾) = 1
𝜅𝑛

ˆ
𝑆𝑛−1

ℎ(𝐾,𝑢)𝑢 𝑑𝑢.

Here and in the following we use 𝑑𝑢 to denote integration with respect to spherical Lebesgue
measure and 𝜅𝑚 for the 𝑚-dimensional volume of the unit ball in R𝑚.

For 𝐾,𝐿 ∈ K𝑛 and 𝑠, 𝑡 ≥ 0, the support function of the Minkowski combination

𝑠𝐾 + 𝑡 𝐿 = {𝑠𝑎+ 𝑡𝑏 : 𝑎 ∈ 𝐾, 𝑏 ∈ 𝐿}

is given by
ℎ(𝑠𝐾 + 𝑡 𝐿,·) = 𝑠 ℎ(𝐾,·) + 𝑡 ℎ(𝐿,·).

By a classical result of Minkowski, the volume of a Minkowski linear combination
𝜆1𝐾1 + · · · + 𝜆𝑚𝐾𝑚, where 𝐾1, . . . ,𝐾𝑚 ∈ K𝑛 and 𝜆1, . . . , 𝜆𝑚 ≥ 0, can be expressed as a
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4 1 Background from convex geometry

homogeneous polynomial of degree 𝑛,

𝑉𝑛(𝜆1𝐾1 + · · · + 𝜆𝑚𝐾𝑚) =
𝑚∑︁

𝑗1,...,𝑗𝑛=1
𝑉 (𝐾𝑗1 , . . . ,𝐾𝑗𝑛)𝜆𝑗1 · · ·𝜆𝑗𝑛 , (1.1)

where the coefficients 𝑉 (𝐾𝑗1 , . . . ,𝐾𝑗𝑛), called mixed volumes of 𝐾𝑗1 , . . . ,𝐾𝑗𝑛 , depend only
on 𝐾𝑗1 , . . . ,𝐾𝑗𝑛 and are symmetric in their arguments. For 𝐾,𝐿 ∈ K𝑛 and for 0 ≤ 𝑖 ≤ 𝑛,
we denote the mixed volume with 𝑖 copies of 𝐾 and 𝑛−𝑖 copies of 𝐿 by 𝑉 (𝐾[𝑖],𝐿[𝑛−𝑖]). By
𝑊𝑚(𝐾,𝐿) we denote the mixed volume 𝑉 (𝐾[𝑛−𝑚−1],𝐵[𝑚],𝐿) with 𝑛−𝑚−1 copies of 𝐾
and 𝑚 copies of the Euclidean unit ball 𝐵. For 𝐾,𝐾1, . . . ,𝐾𝑖 ∈ K𝑛 and C = (𝐾1, . . . ,𝐾𝑖),
we write 𝑉𝑖(𝐾,C) instead of 𝑉 (𝐾, . . . ,𝐾,𝐾1, . . . ,𝐾𝑖). The mixed volume with 𝑖 copies of
𝐾 and 𝑛− 𝑖 copies of 𝐵 will be abbreviated by 𝑊𝑛−𝑖(𝐾) = 𝑉 (𝐾[𝑖], 𝐵[𝑛− 𝑖]) and is called
the quermassintegral of order 𝑛− 𝑖 . Sometimes a different normalization is used, namely
the 𝑖th intrinsic volume 𝑉𝑖(𝐾) of 𝐾 defined by

𝜅𝑛−𝑖𝑉𝑖(𝐾) =
(︂
𝑛

𝑖

)︂
𝑊𝑛−𝑖(𝐾).

A special case of (1.1) is the classical Steiner formula for the volume of the parallel set of
𝐾 at distance 𝑟 > 0,

𝑉 (𝐾 + 𝑟𝐵) =
𝑛∑︁
𝑖=0

𝑟𝑖
(︂
𝑛

𝑖

)︂
𝑊𝑖(𝐾) =

𝑛∑︁
𝑖=0

𝑟𝑛−𝑖𝜅𝑛−𝑖𝑉𝑖(𝐾).

For 𝐾1, . . . ,𝐾𝑛−1 ∈ K𝑛, there is a uniquely determined finite Borel measure on 𝑆𝑛−1,
the mixed area measure 𝑆(𝐾1, . . . ,𝐾𝑛−1, ·), such that for every 𝐾 ∈ K𝑛,

𝑉 (𝐾1, . . . ,𝐾𝑛−1,𝐾) = 1
𝑛

ˆ
𝑆𝑛−1

ℎ(𝐾,𝑢)𝑑𝑆(𝐾1, . . . ,𝐾𝑛−1, 𝑢).

In the following, 𝑆(·) := 𝑆(𝐵[𝑛−1], ·) will again denote the spherical Lebesgue measure.
Associated with a convex body 𝐾 ∈ K𝑛 is a family of Borel measures, denoted by
𝑆𝑖(𝐾,·) := 𝑆(𝐾[𝑖], 𝐵[𝑛−𝑖−1], 𝑢), 0 ≤ 𝑖 ≤ 𝑛− 1, on 𝑆𝑛−1, called the area measures of order
𝑖 of 𝐾. They are uniquely determined by the property that

𝑊𝑛−1−𝑖(𝐾,𝐿) = 1
𝑛

ˆ
𝑆𝑛−1

ℎ(𝐿,𝑢) 𝑑𝑆𝑖(𝐾,𝑢) (1.2)

for all 𝐿 ∈ K𝑛. If 𝐾 ∈ K𝑛
𝑛, then, by a theorem of Aleksandrov–Fenchel–Jessen (see,

e.g., [Sch14, p. 449]), each of the measures 𝑆𝑖(𝐾,·), 1 ≤ 𝑖 ≤ 𝑛 − 1, determines 𝐾 up to
translations. For 1 ≤ 𝑗 ≤ 𝑛 − 1 and 𝑟 > 0, the area measures of lower order satisfy a
Steiner type formula

𝑆𝑗(𝐾 + 𝑟𝐵,·) =
𝑗∑︁
𝑖=0

𝑟𝑗−𝑖
(︂
𝑗

𝑖

)︂
𝑆𝑖(𝐾,·).



1.1 Background material on convex bodies 5

A body 𝐾 ∈ K𝑛 is of class 𝐶2
+ if the boundary of 𝐾 is a 𝐶2 submanifold of R𝑛 with

everywhere positive curvature. In this case, each measure 𝑆𝑖(𝐾,·), 0 ≤ 𝑖 ≤ 𝑛 − 1, is
absolutely continuous with respect to spherical Lebesgue measure and its density is (up
to a constant) given by the 𝑖th elementary symmetric function of the principal radii of
curvature of 𝐾.

The center of mass (centroid) of every area measure of a convex body is at the origin,
that is, for every 𝐾 ∈ K𝑛 and all 𝑖 ∈ {0, . . . , 𝑛− 1}, we have

ˆ
𝑆𝑛−1

𝑢 𝑑𝑆𝑖(𝐾,𝑢) = 𝑜.

The set S𝑖 of all area measures of order 𝑖 of convex bodies in K𝑛 is dense in the set of all
non-negative finite Borel measures on 𝑆𝑛−1 with centroid at the origin, endowed with the
weak topology, if and only if 𝑖 = 𝑛− 1. However, S𝑖 − S𝑖, 1 ≤ 𝑖 ≤ 𝑛− 1, is dense in the set
Mo(𝑆𝑛−1) of all signed finite Borel measures on 𝑆𝑛−1 with centroid at the origin (see, e.g.,
[Sch14, p. 477]).

The Minkowski problem poses the question, which Borel measures on 𝑆𝑛−1 can appear
as area measures of order 𝑛− 1 of a convex body with non-empty interior. The solution is
given by Minkowski’s existence theorem. It states that a Borel measure on 𝑆𝑛−1 is the
surface area of convex body with non-empty interior, which is unique up to translation,
if and only if the measure has centroid at the origin and is not concentrated on any
great subsphere of 𝑆𝑛−1. Since the mixed area measure 𝑆(𝐾1, . . . ,𝐾𝑛−1, ·) satisfies the
assumptions of Minkowski’s existence theorem, one can define for 𝐾1, . . . ,𝐾𝑛−1 ∈ K𝑛

𝑛 the
associated mixed body [𝐾1, . . . ,𝐾𝑛−1] by

𝑆𝑛−1([𝐾1, . . . ,𝐾𝑛−1] , ·) := 𝑆(𝐾1, . . . ,𝐾𝑛−1, ·). (1.3)

The convex body [𝐾1, . . . ,𝐾𝑛−1] is uniquely determined up to translations. It was first
introduced by Firey [Fir67] and later studied by Lutwak [Lut86b]. In the following we will
abbreviate [𝐾]𝑖 := [𝐾[𝑖], 𝐵[𝑛−1−𝑖]], for 0 ≤ 𝑖 ≤ 𝑛− 1. These bodies satisfy the following
inequality.
Lemma 1.1 [Lut86b] For 𝐾 ∈ K𝑛

𝑛 and 0 ≤ 𝑖 ≤ 𝑛− 1,

𝑉 ([𝐾]𝑖)
𝑛−1 ≥ 𝑉 (𝐵)𝑛−𝑖−1𝑉 (𝐾)𝑖,

with equality if and only if 𝐾 is a ball.
An important inequality for the volume of a convex body 𝐾 ∈ K𝑛

𝑛 is the Blaschke–Santaló
inequality. It states that

𝑉 (𝐾)𝑉 (𝐾*) ≤ 𝜅2
𝑛 (1.4)

with equality if and only if 𝐾 is an ellipsoid. Here 𝜅𝑛 denotes the volume of 𝐵 in R𝑛.
While the volume of a convex body is given by the integral representation

𝑉 (𝐾) = 1
𝑛

ˆ
𝑆𝑛−1

ℎ(𝐾,𝑢)𝑑𝑆𝑛−1(𝐾,𝑢),
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there is a different and sometimes more convenient way to write it by introducing polar
coordinates on the sphere, namely

𝑉 (𝐾) = 1
𝑛

ˆ
𝑆𝑛−1

𝜌(𝐾,𝑢)𝑛𝑑𝑆(𝑢). (1.5)

For mixed volumes and quermassintegrals respectively, there are two well-known inequalities
which will be needed later on. Mixed volumes can be compared to the volume of the convex
bodies by

𝑉 (𝐾1) · · ·𝑉 (𝐾𝑛) ≤ 𝑉 𝑛(𝐾1, . . . ,𝐾𝑛), (1.6)

where equality holds for 𝐾1, . . . ,𝐾𝑛 ∈ K𝑛
𝑛 if and only if they are pairwise homothetic

(see e.g. [Sch14] or [Ale99]). For 0 ≤ 𝑖 < 𝑗 ≤ 𝑛 − 1, the following inequality between
quermassintegrals of different degree holds:

𝑊𝑗(𝐾)𝑛−𝑖 ≥ 𝜅𝑗−𝑖𝑛 𝑊𝑖(𝐾)𝑛−𝑗 . (1.7)

A fundamental inequality for mixed volumes is the general Minkowski inequality (see
[Sch14, p. 427]): If 2 ≤ 𝑖 ≤ 𝑛 and 𝐾,𝐿 ∈ K𝑛 have dimension at least 𝑖, then

𝑊𝑛−𝑖(𝐾,𝐿)𝑖 ≥ 𝑊𝑛−𝑖(𝐾)𝑖−1𝑊𝑛−𝑖(𝐿), (1.8)

with equality if and only if 𝐾 and 𝐿 are homothetic.
There are also affine invariant analogs to quermassintegrals. For 0 < 𝑘 < 𝑛 and 𝐾 ∈ K𝑛

𝑛,
the affine quermassintegral is defined by

𝐴𝑛−𝑘(𝐾) := 𝜅𝑛
𝜅𝑘

(︃ˆ
𝐺(𝑛,𝑘)

𝑉𝑘(𝐾|𝐸)−𝑛𝑑𝜈𝑘(𝐸)
)︃−1/𝑛

.

We also set 𝐴0(𝐾) := 𝑉 (𝐾) and 𝐴𝑛(𝐾) = 𝜅𝑛. The affine quermassintegrals were first
defined by Lutwak in [Lut84]. They are 𝑆𝐿(𝑛) invariant, translation invariant (affine
invariant) and satisfy Brunn–Minkowski type inequalities. Lutwak also conjectured in
[Lut88a] a volume bound for these expressions:
Conjecture 1.2 [Lut88a] For 0 ≤ 𝑖<𝑛 and 𝐾 ∈ 𝐾𝑛

𝑛 ,

𝜅𝑖𝑛𝑉 (𝐾)𝑛−𝑖 ≤ 𝐴𝑖(𝐾)𝑛.

Of these inequalities, only the cases 𝑖 = 𝑛− 1 and 𝑖 = 1 are known to be true; they follow
from the Blaschke–Santaló inequality and the Petty projection inequality, respectively.

Another affine invariant functional that we will be concerned with is the affine surface
area. For 𝐾 ∈ K𝑛

𝑛 with positive continuous curvature function 𝑓(𝐾, ·), it is defined by

𝛺(𝐾) =
ˆ
𝑆𝑛−1

𝑓(𝐾,𝑢)
𝑛

𝑛+1𝑑𝑆(𝑢).
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The affine surface area satisfies the affine isoperimetric inequality, namely

𝛺(𝐾)𝑛+1 ≤ 𝑛𝑛+1𝜅2
𝑛𝑉 (𝐾)𝑛−1,

with equality if and only if 𝐾 is an ellipsoid (cf. [Sch14] for further references).

1.2 Background material on star bodies
A star body is a compact star-shaped set (with respect to the origin) with positive continuous
radial function. The set of all star bodies in R𝑛 is denoted by S𝑛𝑜 , and we endow this space
with the radial metric. The radial function of 𝐾 ∈ S𝑛𝑜 is defined by

𝜌(𝐾,𝑢) = max{𝜆 > 0: 𝜆𝑢 ∈ 𝐾}, 𝑢 ∈ 𝑆𝑛−1.

The 𝑖-radial combination of two star bodies 𝐾,𝐿 ∈ S𝑛𝑜 for 𝑖 = 1, . . . , 𝑛− 1 is the star body
whose radial function satisfies

𝜌𝑖(𝐾+̃𝑖𝐿,·) = 𝜌𝑖(𝐾,·) + 𝜌𝑖(𝐿,·),

where +̃1 is called radial addition and +̃𝑛−1 is called radial Blaschke addition. For
𝐾1, . . .𝐾𝑚 ∈ S𝑛𝑜 and 𝜆1, . . . , 𝜆𝑚 ≥ 0, the radial combination 𝜆1𝐾1+̃ · · · +̃𝜆𝑚𝐾𝑚 is defined
by

𝜌(𝜆1𝐾1+̃ · · · +̃𝜆𝑚𝐾𝑚, ·) = 𝜆1𝜌(𝐾1, ·) + · · ·𝜆𝑚𝜌(𝐾𝑚, ·). (1.9)

There is again a polynomial expansion

𝑉 (𝜆1𝐾1+̃ · · · +̃𝜆𝑚𝐾𝑚) =
𝑚∑︁

𝑖1,...,𝑖𝑛=1
𝜆𝑖1 . . . 𝜆𝑖𝑛𝑉 (𝐾𝑖1 , . . . ,𝐾𝑖𝑛),

where the function 𝑉 : (S𝑛𝑜 )𝑛 → R is the dual mixed volume given explicitely by

𝑉 (𝐾1, . . . ,𝐾𝑛) = 1
𝑛

ˆ
𝑆𝑛−1

𝜌(𝐾1, 𝑢) · · · 𝜌(𝐾𝑛,𝑢)𝑑𝑢.

We will abbreviate 𝑉𝑖(𝐾,𝐿) = 𝑉 (𝐾[𝑛 − 𝑖], 𝐿[𝑖]). The special case 𝑊̃𝑖(𝐾) = 𝑉𝑖(𝐾,𝐵) is
called the 𝑖th dual quermassintegral. As was shown by Lutwak [Lut79], these quantities
satisfy the integral representation

𝑊̃𝑛−𝑘(𝐾) = 𝜅𝑛
𝜅𝑘

ˆ
𝐺(𝑛,𝑘)

𝑉𝑘(𝐾 ∩ 𝐸)𝑑𝜈𝑘(𝐸).

We will also write 𝑣 and 𝑤̃ for the corresponding functionals on R𝑛−1.
The dual affine quermassintegrals are defined for 𝐾 ∈ S𝑛𝑜 and 0 < 𝑘 < 𝑛 by

𝐴𝑛−𝑘(𝐾) := 𝜅𝑛
𝜅𝑘

(︃ˆ
𝐺(𝑛,𝑘)

𝑉𝑘(𝐾 ∩ 𝐸)𝑛𝑑𝜈𝑘(𝐸)
)︃ 1

𝑛

.
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We also set 𝐴0(𝐾) = 𝑉 (𝐾) and 𝐴𝑛(𝐾) = 𝜅𝑛. They were first proposed by Lutwak for
full-dimensional convex bodies and later extended by Gardner to bounded Borel sets
[Gar07]. We will in the following only be concerned with star bodies. From Jensen’s
inequality it follows that

𝑊̃𝑖(𝐾) ≤ 𝐴𝑖(𝐾).

The dual affine quermassintegrals also satisfy

𝜅𝑖−1
𝑛 𝐴𝑛−𝑖(𝐾)𝑛 ≤ 𝜅𝑛−1

𝑛 𝑉 (𝐾)𝑖 (1.10)

for 1 < 𝑖 < 𝑛. This was shown by Busemann and Straus in [Bus60] and independently by
Grinberg in [Gri91] for 𝐾 ∈ K𝑛

𝑛 and was later extended by Gardner [Gar07]. Grinberg also
proved that these functionals are invariant under volume-preserving linear transformations.
The special case for 𝑖 = 𝑛− 1 of this inequality is the Busemann intersection inequality (cf.
Section 4.2).

1.3 Radon transforms and convolutions
We recall basic facts about Radon transforms on Grassmannians and convolutions of
functions on 𝑆𝑛−1, where we mainly follow [Sch15] and [Sch07].

In the following, 𝐺(𝑛,𝑖) will denote the manifold of 𝑖-dimensional subspaces of R𝑛, the
𝑖-Grassmannian. For 1 ≤ 𝑖 ̸= 𝑗 ≤ 𝑛 − 1 and 𝐹 ∈ 𝐺(𝑛,𝑗), we denote by 𝐺(𝑛,𝑖)𝐹 the
submanifold of 𝐺(𝑛,𝑖) consisting of all 𝐸 ∈ 𝐺(𝑛,𝑖) that contain (respectively are contained
in, depending on 𝑖 and 𝑗) 𝐹 . The Radon transform 𝑅𝑖,𝑗 : 𝐿2(𝐺(𝑛,𝑖)) → 𝐿2(𝐺(𝑛,𝑗)) is
defined by

(𝑅𝑖,𝑗𝑓)(𝐹 ) =
ˆ
𝐺(𝑛,𝑖)𝐹

𝑓(𝐸)𝑑𝜈𝐹𝑖 (𝐸),

where 𝜈𝐹𝑖 is the unique invariant probability measure on 𝐺(𝑛,𝑖)𝐹 . The Radon transform is
a continuous linear operator and 𝑅𝑖,𝑗 is the adjoint of 𝑅𝑗,𝑖, in the sense that

ˆ
𝐺𝑟(𝑛,𝑗)

(𝑅𝑖,𝑗𝑓)(𝐹 )𝑔(𝐹 )𝑑𝜈𝑗(𝐹 ) =
ˆ
𝐺𝑟(𝑛,𝑖)

𝑓(𝐸)(𝑅𝑗,𝑖𝑔)(𝐸)𝑑𝜈𝑖(𝐸) (1.11)

for 𝑓 ∈ 𝐿2(𝐺(𝑛,𝑖)) and 𝑔 ∈ 𝐿2(𝐺(𝑛,𝑗)). For 𝑓 ∈ 𝐿2(𝐺(𝑛,𝑖)), we write 𝑓⊥ for the function
given by 𝑓⊥(𝐸) = 𝑓(𝐸⊥). With this notation, we have

(𝑅𝑖,𝑗𝑓)⊥ = 𝑅𝑛−𝑖,𝑛−𝑗𝑓
⊥. (1.12)

For 1 ≤ 𝑖 < 𝑗 < 𝑘 ≤ 𝑛− 1 we also have that

𝑅𝑖,𝑘 = 𝑅𝑗,𝑘 ∘𝑅𝑖,𝑗 and 𝑅𝑘,𝑖 = 𝑅𝑗,𝑖 ∘𝑅𝑘,𝑗 .

Next we recall the definition of the convolution of functions in 𝐶(𝑆𝑛−1). Let M(𝑆𝑛−1)
denote the space of signed Borel measures on the sphere and M+(𝑆𝑛−1) the subset of
non-negative measures. We will be particularly interested in SO(𝑛− 1)-invariant measures,
where SO(𝑛− 1) is the subgroup of SO(𝑛) stabilizing an arbitrary but fixed pole 𝑒 ∈ 𝑆𝑛−1.
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We call 𝜇 ∈ M(𝑆𝑛−1) zonal if 𝜃𝜇 := 𝜇 ∘ 𝜃−1 = 𝜇 for every 𝜃 ∈ SO(𝑛 − 1). The set
of zonal measures will be denoted by M(𝑆𝑛−1, 𝑒). Since 𝑆𝑛−1 is diffeomorphic to the
homogeneous space SO(𝑛)/SO(𝑛− 1), there is a natural identification between 𝐶(𝑆𝑛−1)
and right-SO(𝑛− 1)-invariant functions in 𝐶(SO(𝑛)), by setting

𝑓(𝜃) = 𝑓(𝜃𝑒), 𝑓 ∈ 𝐶(𝑆𝑛−1).

Conversely, it is possible to define for 𝑓 ∈ 𝐶(SO(𝑛)) a continuous function “𝑓 on 𝑆𝑛−1 by

“𝑓(𝜂𝑒) =
ˆ

SO(𝑛−1)
𝑓(𝜂𝜃)𝑑𝜃.

A zonal function 𝑓 ∈ 𝐶(SO(𝑛)) satisfies that 𝑓 = “̆𝑓 . There is also an identification between
M(𝑆𝑛−1) and right-SO(𝑛− 1)-invariant measures in M(SO(𝑛)), by setting

⟨𝜇̆, 𝑓⟩ = ⟨𝜇, “𝑓⟩.

Since SO(𝑛) is a compact Lie group, the convolution 𝜎 * 𝜏 of signed measures 𝜎, 𝜏 on SO(𝑛)
can be defined by

ˆ
SO(𝑛)

𝑓(𝜗) 𝑑(𝜎 * 𝜏)(𝜗) =
ˆ

SO(𝑛)

ˆ
SO(𝑛)

𝑓(𝜂𝜃) 𝑑𝜎(𝜂) 𝑑𝜏(𝜃), 𝑓 ∈ 𝐶(SO(𝑛)).

For 𝑓 ∈ 𝐶(SO(𝑛)) and 𝜇 ∈ M(SO(𝑛)), the convolutions 𝑓 * 𝜇 and 𝜇 * 𝑓 are defined by

(𝑓 * 𝜇)(𝜂) =
ˆ

SO(𝑛)
𝑓(𝜂𝜗−1)𝑑𝜇(𝜗), (𝜇 * 𝑓)(𝜂) =

ˆ
SO(𝑛)

𝜗𝑓(𝜂)𝑑𝜇(𝜗).

Using the identification of 𝐶(𝑆𝑛−1) and M(𝑆𝑛−1) with right-SO(𝑛−1)-invariant functions
and measures on SO(𝑛), respectively, the convolution of measures on SO(𝑛) induces a
convolution product of functions and measures on 𝑆𝑛−1. We denote the set of continuous
zonal functions on 𝑆𝑛−1 by 𝐶(𝑆𝑛−1,𝑒). Clearly, zonal functions depend only on the value of
𝑢 · 𝑒. The convolution of 𝑓 ∈ 𝐶(𝑆𝑛−1) and 𝜇 ∈ M(𝑆𝑛−1) is then defined via the convolution
of 𝑓 and 𝜇̆ on SO(𝑛) by

(𝑓 * 𝜇)(𝜂𝑒) =
ˆ

SO(𝑛)
𝑓(𝜂𝜃−1𝑒)𝑑𝜇̆(𝜃).

For 𝜇 ∈ M(𝑆𝑛−1) and 𝑓 ∈ 𝐶(𝑆𝑛−1), we introduce the canonical pairing by

⟨𝜇, 𝑓⟩ =
ˆ
𝑆𝑛−1

𝑓(𝑣)𝑑𝜇(𝑣).

There is a simpler form of the spherical convolution of zonal measures. If we write a point
𝑢 ∈ 𝑆𝑛−1 in the form 𝑢 = 𝜂𝑒 for some 𝜂 ∈ SO(𝑛), then for 𝑓 ∈ 𝐶(𝑆𝑛−1) and 𝜇 ∈ M(𝑆𝑛−1, 𝑒)
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the convolution is given by

(𝑓 * 𝜇)(𝜂𝑒) =
ˆ
𝑆𝑛−1

𝑓(𝜂𝑣)𝑑𝜇(𝑣),

where 𝑓 *𝜇 is again a function on the sphere. This definition is independent of the choice of
𝜂. For 𝑓 ∈ 𝐶(𝑆𝑛−1) and 𝜇 ∈ M(𝑆𝑛−1, 𝑒), the convolution on the sphere induces an SO(𝑛)-
equivariant operation, that is

(𝜃𝑓) * 𝜇 = 𝜃(𝑓 * 𝜇). (1.13)

For 𝜎 ∈ M(𝑆𝑛−1), 𝑓 ∈ 𝐶(𝑆𝑛−1,𝑒), and 𝜂 ∈ SO(𝑛), it is easy to check that

(𝜎 * 𝑓)(𝜂𝑒) =
ˆ
𝑆𝑛−1

𝑓(𝜂−1𝑢) 𝑑𝜎(𝑢). (1.14)

By (1.14), we have for every 𝜗 ∈ SO(𝑛), that

(𝜗𝜎) * 𝑓 = 𝜗(𝜎 * 𝑓),

where 𝜗𝜎 is the image measure of 𝜎 under the rotation 𝜗 ∈ SO(𝑛). It is also not difficult
to check from (1.14) that the convolution of zonal functions and measures is Abelian.

The convolution of two measures 𝜇, 𝜈 ∈ M(𝑆𝑛−1) is determined by (see, e.g., [Sch07])

⟨𝜇 * 𝜈, 𝑓⟩ = ⟨𝜇, 𝑓 * 𝜈⟩.

It is a commutative operation for 𝜇, 𝜈 ∈ M(𝑆𝑛−1, 𝑒). We will in the following make use of
the fact that convolution on M(𝑆𝑛−1) is associative, in particular

(𝑓 * 𝜇) * 𝜈 = 𝑓 * (𝜇 * 𝜈). (1.15)

Another property of spherical convolution which is going to be critical for us is the fact
that the convolution is self-adjoint; in particular, we have for all 𝜎, 𝜏 ∈ M(𝑆𝑛−1) and every
𝑓 ∈ 𝐶(𝑆𝑛−1,𝑒) ˆ

𝑆𝑛−1
(𝜎 * 𝑓)(𝑢) 𝑑𝜏(𝑢) =

ˆ
𝑆𝑛−1

(𝜏 * 𝑓)(𝑢) 𝑑𝜎(𝑢). (1.16)

There is a connection between the Radon transform and convolution on the sphere. For
𝑓 ∈ 𝐶(𝑆𝑛−1), the spherical Radon transform 𝑅𝑓 ∈ 𝐶(𝑆𝑛−1) is defined by

(𝑅𝑓)(𝑢) = 1
𝑛− 1

ˆ
𝑓(𝑣)𝑑𝜆𝑆𝑛−1∩𝑒⊥(𝑣),

where 𝜆𝑆𝑛−1∩𝑒⊥ denotes the invariant measure concentrated on 𝑆𝑛−1 ∩ 𝑒⊥ with total mass
𝜅𝑛−1. With the help of the convolution above, this can be written as

𝑅𝑓 = 1
𝑛− 1𝑓 * 𝜆𝑆𝑛−1∩𝑒⊥ .
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1.4 Spherical harmonics and distributions
In this section we collect facts about spherical harmonics, in particular on the series
expansion of distributions on the sphere. We also recall C. Berg’s functions used in his
solution of the Christoffel problem, since they are closely related to the action of the Hard
Lefschetz integration operator on Minkowski valuations. In the final part of this section, we
give a new proof of the bijectivity of integral transforms involving C. Berg’s functions. For
the background material we refer the reader to [Sch14, Chapter 8.3], [Gro96], and [Mor98].

We write 𝛥𝑆 for the Laplacian (or Laplace–Beltrami operator) on 𝑆𝑛−1. For functions
𝑓, 𝑔 ∈ 𝐶2(𝑆𝑛−1), we have

ˆ
𝑆𝑛−1

𝑓(𝑢)𝛥𝑆𝑔(𝑢) 𝑑𝑢 =
ˆ
𝑆𝑛−1

𝑔(𝑢)𝛥𝑆𝑓(𝑢) 𝑑𝑢.

The finite-dimensional vector space of spherical harmonics of dimension 𝑛 and degree 𝑘
will be denoted by H𝑛

𝑘 and we write 𝑁(𝑛,𝑘) for its dimension. Spherical harmonics are
eigenfunctions of 𝛥𝑆 , more precisely, for 𝑌𝑘 ∈ H𝑛

𝑘 ,

𝛥𝑆𝑌𝑘 = −𝑘(𝑘 + 𝑛− 2)𝑌𝑘. (1.17)

Let 𝐿2(𝑆𝑛−1) denote the Hilbert space of square-integrable functions on 𝑆𝑛−1 with the
usual inner product ( · , · ). The spaces H𝑛

𝑘 are pairwise orthogonal with respect to this
inner product. If {𝑌𝑘,1, . . . , 𝑌𝑘,𝑁(𝑛,𝑘)} is an orthonormal basis of H𝑛

𝑘 , then the collection
{𝑌𝑘,1, . . . , 𝑌𝑘,𝑁(𝑛,𝑘) : 𝑘 ∈ N} is a complete orthogonal system in 𝐿2(𝑆𝑛−1), that is, the
Fourier series

𝑓 ∼
∞∑︁
𝑘=0

𝜋𝑘𝑓 (1.18)

converges to 𝑓 in the 𝐿2 norm for every 𝑓 ∈ 𝐿2(𝑆𝑛−1). Here, we use 𝜋𝑘 : 𝐿2(𝑆𝑛−1) → H𝑛
𝑘

to denote the orthogonal projection. Since the Legendre polynomial 𝑃𝑛𝑘 ∈ 𝐶([−1,1]) of
dimension 𝑛 and degree 𝑘 satisfies

𝑁(𝑛,𝑘)∑︁
𝑖=1

𝑌𝑘,𝑖(𝑢)𝑌𝑘,𝑖(𝑣) = 𝑁(𝑛,𝑘)
𝜔𝑛

𝑃𝑛𝑘 (𝑢 · 𝑣),

where 𝜔𝑚 denotes the surface area of the 𝑚-dimensional unit ball, we have

(𝜋𝑘𝑓)(𝑣) =
𝑁(𝑛,𝑘)∑︁
𝑖=1

(𝑓,𝑌𝑘,𝑖)𝑌𝑘,𝑖(𝑣) = 𝑁(𝑛,𝑘)
𝜔𝑛

ˆ
𝑆𝑛−1

𝑓(𝑢)𝑃𝑛𝑘 (𝑢 · 𝑣) 𝑑𝑢. (1.19)

The subspace of zonal functions in H𝑛
𝑘 is 1-dimensional for every 𝑘 ∈ N and spanned by

the function 𝑢 ↦→ 𝑃𝑛𝑘 (𝑢 · 𝑒). Since the spaces H𝑛
𝑘 are invariant under the natural action

of SO(𝑛), the functions 𝑢 ↦→ 𝑃𝑛𝑘 (𝑢 · 𝑣), for fixed 𝑣 ∈ 𝑆𝑛−1, are elements of H𝑛
𝑘 . The

orthogonality of the spaces H𝑛
𝑘 is reflected by the fact that the Legendre polynomials 𝑃𝑛𝑘

form a complete orthogonal system with respect to the inner product [·, ·]𝑛 on 𝐶([−1,1])
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defined by

[𝑝,𝑞]𝑛 =
ˆ 1

−1
𝑝(𝑡) 𝑞(𝑡) (1 − 𝑡2)

𝑛−3
2 𝑑𝑡.

From the orthogonality property of the Legendre polynomials and (1.19), it is not difficult
to show that any function 𝜑 ∈ 𝐿2([−1,1]) (or, equivalently, any zonal 𝑔 ∈ 𝐿2(𝑆𝑛−1)) admits
a series expansion

𝜑 ∼
∞∑︁
𝑘=0

𝑁(𝑛,𝑘)
𝜔𝑛

𝑎𝑛𝑘 [𝜑]𝑃𝑛𝑘 , (1.20)

where
𝑎𝑛𝑘 [𝜑] = 𝜔𝑛−1

ˆ 1

−1
𝜑(𝑡)𝑃𝑛𝑘 (𝑡) (1 − 𝑡2)

𝑛−3
2 𝑑𝑡 = 𝜔𝑛−1 [𝑃𝑛𝑘 ,𝜑]𝑛 . (1.21)

For the explicit calculation of integrals of the form (1.21), the following formula of
Rodrigues for the Legendre polynomials is often very useful:

𝑃𝑛𝑘 (𝑡) = (−1)𝑘

2𝑘
(︀
𝑛−1

2
)︀
𝑘

(1 − 𝑡2)− 𝑛−3
2
𝑑𝑘

𝑑𝑡𝑘
(1 − 𝑡2)

𝑛−3
2 +𝑘, (1.22)

where, for 𝛼 ∈ R and 𝑘 ∈ N, (𝛼)𝑘 abbreviates the product 𝛼(𝛼+ 1) · · · (𝛼+ 𝑘 − 1). Using
(1.22) one can show that the derivatives of Legendre polynomials are again Legendre
polynomials. For 𝑙 ≥ 𝑘, we have

𝑑𝑘

𝑑𝑡𝑘
𝑃𝑛𝑙 (𝑡) = 2𝑘

(︁𝑛
2

)︁
𝑘

𝑁(𝑛+ 2𝑘,𝑙 − 𝑘)
𝑁(𝑛,𝑙) 𝑃𝑛+2𝑘

𝑙−𝑘 . (1.23)

Next we recall the Gegenbauer polynomials , which can be defined for 𝛼 > 0 by means of
the generating function

1
(1 + 𝑟2 − 2𝑟𝑡)𝛼 =

∞∑︁
𝑘=0

𝐶𝛼𝑘 (𝑡) 𝑟𝑛.

For 𝑛 ≥ 3, their relation to Legendre polynomials can be expressed by

𝐶
(𝑛−2)/2
𝑘 =

(︂
𝑛+ 𝑘 − 3
𝑛− 3

)︂
𝑃𝑛𝑘 . (1.24)

For the following well-known auxiliary result about the spherical harmonic expansion of
smooth functions, see, e.g., [Mor98, p. 36].

Lemma 1.3. If 𝑓 ∈ 𝐶∞(𝑆𝑛−1), then the sequence ‖𝜋𝑘𝑓‖∞, 𝑘 ∈ N, is rapidly decreasing;
that is, for any 𝑚 ∈ N, we have sup{𝑘𝑚‖𝜋𝑘𝑓‖∞ : 𝑘 ∈ N} < ∞. Conversely, if 𝑌𝑘 ∈ H𝑛

𝑘 ,
𝑘 ∈ N, is a sequence of spherical harmonics such that ‖𝑌𝑘‖∞ is rapidly decreasing, then
the function

𝑓(𝑢) =
∞∑︁
𝑘=0

𝑌𝑘(𝑢), 𝑢 ∈ 𝑆𝑛−1,

is 𝐶∞ and 𝜋𝑘𝑓 = 𝑌𝑘 for every 𝑘 ∈ N.
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For 𝑓 ∈ 𝐶∞(𝑆𝑛−1) and 𝑚 ∈ N, define

(−𝛥𝑆)
𝑚
2 𝑓 =

∞∑︁
𝑘=0

(𝑘(𝑘 + 𝑛− 2))
𝑚
2 𝜋𝑘𝑓.

Note that, by Lemma 1.3, (−𝛥𝑆)
𝑚
2 𝑓 ∈ 𝐶∞(𝑆𝑛−1).

If we endow the vector space 𝐶∞(𝑆𝑛−1) with the topology defined by the family of
seminorms ‖(−𝛥𝑆)

𝑚
2 𝑓‖∞, 𝑚 ∈ N, then 𝐶∞(𝑆𝑛−1) becomes a Fréchet space. Moreover, the

spherical harmonic expansion (1.18) of any 𝑓 ∈ 𝐶∞(𝑆𝑛−1) converges to 𝑓 in this topology.
A distribution on 𝑆𝑛−1 is a continuous linear functional on 𝐶∞(𝑆𝑛−1). We write

𝐶−∞(𝑆𝑛−1) for the space of distributions on 𝑆𝑛−1 equipped with the topology of weak con-
vergence and use ⟨ · , · ⟩ to denote the canonical bilinear pairing on 𝐶∞(𝑆𝑛−1)×𝐶−∞(𝑆𝑛−1).

A (signed) measure 𝜎 on 𝑆𝑛−1 defines a distribution 𝑇𝜎 by

⟨𝑓, 𝑇𝜎⟩ =
ˆ
𝑆𝑛−1

𝑓(𝑢) 𝑑𝜎(𝑢), 𝑓 ∈ 𝐶∞(𝑆𝑛−1).

Using the continuous linear injection 𝜎 ↦→ 𝑇𝜎, we can regard M(𝑆𝑛−1) as a subspace
of 𝐶−∞(𝑆𝑛−1). In the same way, the spaces 𝐶∞(𝑆𝑛−1), 𝐶(𝑆𝑛−1), and 𝐿2(𝑆𝑛−1) can be
viewed as subspaces of 𝐶−∞(𝑆𝑛−1), and we have

𝐶∞(𝑆𝑛−1) ⊆ 𝐶(𝑆𝑛−1) ⊆ 𝐿2(𝑆𝑛−1) ⊆ M(𝑆𝑛−1) ⊆ 𝐶−∞(𝑆𝑛−1). (1.25)

Since 𝜋𝑘 : 𝐿2(𝑆𝑛−1) → H𝑛
𝑘 is self-adjoint, that is, (𝜋𝑘𝑓,𝑔) = (𝑓,𝜋𝑘𝑔) for all 𝑓, 𝑔 ∈

𝐿2(𝑆𝑛−1) and 𝑘 ∈ N, it is consistent to define the 𝑘-spherical harmonic component 𝜋𝑘𝑇 of
𝑇 ∈ 𝐶−∞(𝑆𝑛−1) as the distribution given by

⟨𝑓, 𝜋𝑘𝑇 ⟩ = ⟨𝜋𝑘𝑓, 𝑇 ⟩, 𝑓 ∈ 𝐶∞(𝑆𝑛−1).

Lemma 1.4 [Mor98, p. 38] If 𝑇 ∈ 𝐶−∞(𝑆𝑛−1), then 𝜋𝑘𝑇 ∈ H𝑛
𝑘 for every 𝑘 ∈ N and the

sequence ‖𝜋𝑘𝑇‖∞, 𝑘 ∈ N, is slowly increasing, that is, there exist 𝐶 > 0 and 𝑗 ∈ N such
that ‖𝜋𝑘𝑇‖∞ ≤ 𝐶(1 + 𝑘𝑗) for every 𝑘 ∈ N.
Conversely, if 𝑌𝑘 ∈ H𝑛

𝑘 , 𝑘 ∈ N, is a sequence of spherical harmonics such that ‖𝑌𝑘‖∞ is
slowly increasing, then

⟨𝑔, 𝑇 ⟩ =
∞∑︁
𝑘=0

ˆ
𝑆𝑛−1

𝑔(𝑢)𝑌𝑘(𝑢) 𝑑𝑢, 𝑔 ∈ 𝐶∞(𝑆𝑛−1),

defines a distribution 𝑇 ∈ 𝐶−∞(𝑆𝑛−1) for which 𝜋𝑘𝑇 = 𝑌𝑘 for every 𝑘 ∈ N.
We can also extend the Laplacian to distributions 𝑇 ∈ 𝐶−∞(𝑆𝑛−1), by defining 𝛥𝑆𝑇 as

the distribution given by

⟨𝑓,𝛥𝑆𝑇 ⟩ = ⟨𝛥𝑆𝑓, 𝑇 ⟩, 𝑓 ∈ 𝐶∞(𝑆𝑛−1).

Note that, by (1.25), 𝛥𝑆 can now also act on continuous functions on 𝑆𝑛−1. This is of
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particular importance for us, since the support function ℎ(𝐾,·) and the first-order area
measure 𝑆1(𝐾,·) of a convex body 𝐾 ∈ K𝑛 are related by

�𝑛ℎ(𝐾,·) = 𝑆1(𝐾,·), (1.26)

where �𝑛 is the differential operator given by

�𝑛ℎ = ℎ+ 1
𝑛− 1𝛥𝑆ℎ.

From the definition of �𝑛 and (1.17), we see that for 𝑓 ∈ 𝐶∞(𝑆𝑛−1) the spherical
harmonic expansion of �𝑛𝑓 is given by

�𝑛𝑓 ∼
∞∑︁
𝑘=0

(1 − 𝑘)(𝑘 + 𝑛− 1)
𝑛− 1 𝜋𝑘𝑓. (1.27)

Thus, the kernel of the linear operator �𝑛 : 𝐶∞(𝑆𝑛−1) → 𝐶∞(𝑆𝑛−1) is given by H𝑛
1 and

consists precisely of the restrictions of linear functions on R𝑛 to 𝑆𝑛−1. Let 𝐶∞
o (𝑆𝑛−1)

denote the Fréchet subspace of 𝐶∞(𝑆𝑛−1) given by

𝐶∞
o (𝑆𝑛−1) = {𝑓 ∈ 𝐶∞(𝑆𝑛−1) : 𝜋1𝑓 = 0}

and define 𝐶−∞
o (𝑆𝑛−1) analogously.

Since the linear operator �𝑛 : 𝐶∞
o (𝑆𝑛−1) → 𝐶∞

o (𝑆𝑛−1) is an isomorphism, it is a natural
problem to find an (explicit) inversion formula. This was accomplished by C. Berg [Ber69]
in the late 1960s and, due to (1.26), is closely related to his solution of the classical
Christoffel problem which consists in finding necessary and sufficient conditions for a Borel
measure on 𝑆𝑛−1 to be the first-order area measure of a convex body.

In order to describe C. Berg’s inversion formula for �𝑛, let us recall the Funk–Hecke
theorem: If 𝜑 ∈ 𝐶([−1,1]) and F𝜑 is the integral transform on M(𝑆𝑛−1) defined by

(F𝜑𝜎)(𝑢) =
ˆ
𝑆𝑛−1

𝜑(𝑢 · 𝑣) 𝑑𝜎(𝑣), 𝑢 ∈ 𝑆𝑛−1,

then the spherical harmonic expansion of F𝜑𝜎 ∈ 𝐶(𝑆𝑛−1) is given by

F𝜑𝜎 ∼
∞∑︁
𝑘=0

𝑎𝑛𝑘 [𝜑]𝜋𝑘𝜎, (1.28)

where the numbers 𝑎𝑛𝑘 [𝜑] are given by (1.21) and are called the multipliers of F𝜑. From the
obvious identification of zonal functions on 𝑆𝑛−1 with functions on [−1,1], (1.14), and the
Funk–Hecke theorem, it follows that for 𝑓 ∈ 𝐶(𝑆𝑛−1, 𝑒), there are 𝑎𝑛𝑘 [𝑓 ] ∈ R such that the
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spherical harmonic expansion of 𝜎 * 𝑓 ∈ 𝐶(𝑆𝑛−1) is given by

𝜎 * 𝑓 ∼
∞∑︁
𝑘=0

𝑎𝑛𝑘 [𝑓 ]𝜋𝑘𝜎.

Hence, convolution from the right induces a multiplier transformation.
Using the theory of subharmonic functions on 𝑆𝑛−1, C. Berg proved that for every 𝑛 ≥ 2

there exists a uniquely determined 𝐶∞ function 𝑔𝑛 on (−1,1) such that the zonal function
𝑢 ↦→ 𝑔𝑛(𝑢 · 𝑒) is in 𝐿1(𝑆𝑛−1) and

𝑎𝑛1 [𝑔𝑛] = 0, 𝑎𝑛𝑘 [𝑔𝑛] = 𝑛− 1
(1 − 𝑘)(𝑘 + 𝑛− 1) , 𝑘 ̸= 1. (1.29)

For later reference, we just state here that

𝑔2(𝑡) = 1
2𝜋

(︂
(𝜋 − arccos 𝑡)(1 − 𝑡2)

1
2 − 𝑡

2

)︂
(1.30)

and
𝑔3(𝑡) = 1

2𝜋

(︂
1 + 𝑡 ln(1 − 𝑡) +

(︂
4
3 − ln 2

)︂
𝑡

)︂
. (1.31)

We note that, by (1.29), our normalization of the 𝑔𝑛 differs from C. Berg’s original one. It
follows from (1.27), (1.28), and (1.29) that

𝑓(𝑢) =
ˆ
𝑆𝑛−1

𝑔𝑛(𝑢 · 𝑣)(�𝑛𝑓)(𝑣) 𝑑𝑣, 𝑢 ∈ 𝑆𝑛−1,

for every 𝑓 ∈ 𝐶∞
o (𝑆𝑛−1), which is the desired inversion formula. However, for our purposes

we need the following more general fact.

Theorem 1.5. For every 𝑛 ≥ 2 and 2 ≤ 𝑗 ≤ 𝑛, the integral transform F𝑔𝑗 : 𝐶∞
o (𝑆𝑛−1) →

𝐶∞
o (𝑆𝑛−1) given by

(F𝑔𝑗𝑓)(𝑢) =
ˆ
𝑆𝑛−1

𝑔𝑗(𝑢 · 𝑣)𝑓(𝑣) 𝑑𝑣, 𝑢 ∈ 𝑆𝑛−1,

is an isomorphism.

Theorem 1.5 follows, for example, from a recent result of Goodey and Weil [Goo14,
Theorem 4.3]. However, we give a different and more elementary proof below that also
yields additional information required after the proof of Theorem 3.3. For this, note that,
by Lemma 1.3, it is sufficient to show that the multipliers 𝑎𝑛𝑘 [𝑔𝑗 ] are non-zero for 𝑘 ̸= 1
and that they are slowly increasing. Therefore, Theorem 1.5 is a direct consequence of the
following.
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Theorem 1.6. For 𝑛 ≥ 2, 2 ≤ 𝑗 ≤ 𝑛, and 𝑘 ̸= 1, we have

𝑎𝑛𝑘 [𝑔𝑗 ] = −𝜋
𝑛−𝑗

2 (𝑗 − 1)
4

𝛤
(︁
𝑛−𝑗+2

2

)︁
𝛤
(︀
𝑘−1

2
)︀
𝛤
(︁
𝑗+𝑘−1

2

)︁
𝛤
(︁
𝑛−𝑗+𝑘+1

2

)︁
𝛤
(︀
𝑛+𝑘+1

2
)︀ .

Proof. For 𝑛 ≥ 2, 𝑑 ≥ 0, and 𝑘 ̸= 1, by (1.21), we have to determine

𝑎𝑛,𝑑𝑘 := 𝑎𝑛+𝑑
𝑘 [𝑔𝑛] = 𝜔𝑛+𝑑−1

[︁
𝑃𝑛+𝑑
𝑘 ,𝑔𝑛

]︁
𝑛+𝑑

, (1.32)

where we know from (1.29) that

𝑎𝑛,0𝑘 = 𝑛− 1
(1 − 𝑘)(𝑛− 1 + 𝑘) . (1.33)

We start with the case 𝑑 = 1. By (1.20) and (1.29), we have

𝑔𝑛 ∼
∞∑︁
𝑙=0

𝑁(𝑛,𝑙)
𝜔𝑛

𝑎𝑛,0𝑙 𝑃𝑛𝑙 ,

where the sum converges in the topology induced by [ · ,· ]𝑛, which implies convergence in
the topology induced by [ · ,· ]𝑛+1. Consequently,

𝑎𝑛,1𝑘 = 𝜔𝑛
[︀
𝑃𝑛+1
𝑘 , 𝑔𝑛

]︀
𝑛+1 =

∞∑︁
𝑙=0

𝑁(𝑛,𝑙) 𝑎𝑛,0𝑙

[︀
𝑃𝑛+1
𝑘 , 𝑃𝑛𝑙

]︀
𝑛+1 . (1.34)

Since Legendre polynomials of degree 𝑘 are even if 𝑘 is even and odd otherwise, we may
assume that 𝑘 and 𝑙 have the same parity. Since

[︀
𝑃𝑛+1
𝑘 , 𝑃𝑛𝑙

]︀
𝑛+1 vanishes for 𝑙 < 𝑘 (see the

next calculation), let 𝑙 ≥ 𝑘 and put

𝛽 := 𝑛− 2
2 .

If 𝛽 + 𝑘 ≥ 1
2 , that is, (𝑛,𝑘) ̸= (2,0), then it follows from (1.22), integration by parts, (1.23),

and (1.24) that

[︀
𝑃𝑛+1
𝑘 , 𝑃𝑛𝑙

]︀
𝑛+1 = (−1)𝑘

2𝑘(𝛽 + 1)𝑘

ˆ 1

−1

(︂
𝑑𝑘

𝑑𝑡𝑘
(1 − 𝑡2)𝛽+𝑘

)︂
𝑃𝑛𝑙 (𝑡) 𝑑𝑡

= 1
2𝑘(𝛽 + 1)𝑘

ˆ 1

−1
(1 − 𝑡2)𝛽+𝑘

(︂
𝑑𝑘

𝑑𝑡𝑘
𝑃𝑛𝑙 (𝑡)

)︂
𝑑𝑡

= 𝑁(𝑛+ 2𝑘, 𝑙 − 𝑘)
𝑁(𝑛,𝑙)

ˆ 1

−1
(1 − 𝑡2)𝛽+𝑘 𝑃𝑛+2𝑘

𝑙−𝑘 (𝑡) 𝑑𝑡

= 𝛽 + 𝑙

𝑁(𝑛,𝑙)(𝛽 + 𝑘)

ˆ 1

−1
(1 − 𝑡2)𝛽+𝑘 𝐶𝛽+𝑘

𝑙−𝑘 (𝑡) 𝑑𝑡.
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For 𝛼 ∈ 1
2N and even 𝑚, we have (cf. [Goo92, p. 424])

𝑐𝛼𝑚 =
ˆ 1

−1
(1 − 𝑡2)𝛼𝐶𝛼𝑚(𝑡) 𝑑𝑡 = −

𝛼 4𝛼+ 1
2 𝑚!𝛤

(︀
𝑚
2 + 𝛼+ 1

)︀2

(𝑚− 1)
(︀
𝑚
2 + 𝛼

)︀
(𝑚+ 2𝛼+ 1)!𝛤

(︀
𝑚
2 + 1

)︀2 .

Plugging this into (1.34) and changing the summation index yields

𝑎𝑛,1𝑘 =
∞∑︁
𝑙=0

𝛽 + 𝑘 + 2𝑙
𝛽 + 𝑘

𝑎𝑛,0𝑘+2𝑙 𝑐
𝛽+𝑘
2𝑙 =

(︂
𝛽 + 1

2

)︂
4𝛽+𝑘+1

∞∑︁
𝑙=0

𝑞(𝛽, 𝑘, 𝑙),

where

𝑞(𝛽, 𝑘, 𝑙) = 2𝑙 (2𝑙−2)! (𝛽+𝑘+2𝑙)𝛤 (𝛽+𝑘+𝑙+1)2

(𝑘+2𝑙−1) (2𝛽+𝑘+2𝑙+1) (𝛽+𝑘+𝑙) (2𝛽+2𝑘+2𝑙+1)!𝛤 (𝑙+1)2 .

Using Zeilberger’s algorithm (see, e.g., [Pet96]), we find that 𝑞 satisfies the following
recurrence relation:

𝐴(𝛽, 𝑘)𝑞(𝛽 + 1, 𝑘, 𝑙) +𝐵(𝛽, 𝑘)𝑞(𝛽, 𝑘, 𝑙) = 𝑞(𝛽, 𝑘, 𝑙 + 1)𝐶(𝛽, 𝑘, 𝑙 + 1) − 𝑞(𝛽, 𝑘, 𝑙)𝐶(𝛽, 𝑘, 𝑙),

where

𝐴(𝛽, 𝑘) = 4(2𝛽+𝑘+4), 𝐵(𝛽,𝑘) = −(2𝛽+𝑘+1), 𝐶(𝛽, 𝑘, 𝑙) = − 𝑙(𝑘+2𝑙−1)
𝛽+𝑘+2𝑙 .

If we let 𝑄(𝛽, 𝑘) =
∑︀∞

𝑙=0 𝑞(𝛽, 𝑘,𝑙), then we obtain

𝑄(𝛽 + 1, 𝑘) = 2𝛽 + 𝑘 + 1
4(2𝛽 + 𝑘 + 4) 𝑄(𝛽, 𝑘)

or, in terms of the multipliers,

𝑎𝑛+2,1
𝑘 = (𝑛+ 1) (𝑛+ 𝑘 − 1)

(𝑛− 1) (𝑛+ 𝑘 + 2) 𝑎
𝑛,1
𝑘 . (1.35)

The function 𝑞 also satisfies the recurrence relation

𝐷(𝛽, 𝑘)𝑞(𝛽, 𝑘 + 2, 𝑙) + 𝐸(𝛽, 𝑘)𝑞(𝛽, 𝑘, 𝑙) = 𝑞(𝛽, 𝑘, 𝑙 + 1)𝐹 (𝛽, 𝑘, 𝑙 + 1) − 𝑞(𝛽, 𝑘, 𝑙)𝐹 (𝛽, 𝑘, 𝑙),

where
𝐷(𝛽, 𝑘) = 16(𝑘 + 2)(2𝛽 + 𝑘 + 4), 𝐸(𝛽, 𝑘) = −(𝑘 − 1)(2𝛽 + 𝑘 + 1)

and

𝐹 (𝛽, 𝑘,𝑙) = − 1
(𝛽 + 𝑘 + 2𝑙)(2𝛽 + 2𝑘 + 2𝑙 + 3)

3∑︁
𝑖=1

𝑙𝑖 𝑝𝑖(𝛽,𝑘),
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with polynomials 𝑝1, 𝑝2, 𝑝3 given by

𝑝1(𝛽,𝑘) = 8𝛽3 + 16𝑘𝛽2 + 20𝛽2 + 12𝑘2𝛽 + 26𝑘𝛽 + 10𝛽 + 4𝑘3 + 9𝑘2 + 4𝑘 + 3,
𝑝2(𝛽,𝑘) = 16𝛽2 + 24𝑘𝛽 + 32𝛽 + 12𝑘2 + 24𝑘 + 4,
𝑝3(𝛽,𝑘) = 8𝛽 + 8𝑘 + 12.

Summing again over all 𝑙, we arrive at

𝑄(𝛽,𝑘 + 2) = (𝑘 − 1) (2𝛽 + 𝑘 + 1)
16(𝑘 + 2) (2𝛽 + 𝑘 + 4) 𝑄(𝛽, 𝑘).

In terms of the multipliers, this means

𝑎𝑛,1𝑘+2 = (𝑘 − 1) (𝑛+ 𝑘 − 1)
(𝑘 + 2) (𝑛+ 𝑘 + 2) 𝑎

𝑛,1
𝑘 . (1.36)

In order to solve (1.35) and (1.36), we need four initial values of 𝑎𝑛,1𝑘 . We also have to
calculate 𝑎2,1

0 , which was not covered by the above arguments. Using (1.30), (1.31), and
(1.32), elementary integration yields

𝑎2,1
0 = 𝜋2

4 , 𝑎2,1
2 = −𝜋2

32 , 𝑎2,1
3 = − 4

45 , 𝑎3,1
0 = 2𝜋

3 , 𝑎3,1
3 = − 𝜋

24 . (1.37)

This leads to the sequence

𝑎𝑛,1𝑘 = −𝜋

8 (𝑛− 1)
𝛤
(︀
𝑘−1

2
)︀
𝛤
(︀
𝑛+𝑘−1

2
)︀

𝛤
(︀
𝑘+2

2
)︀
𝛤
(︀
𝑛+𝑘+2

2
)︀ , (1.38)

which satisfies (1.35), (1.36), and has the initial values (1.37).
Now let 𝑑 ≥ 0 be arbitrary. For 𝑙 ≥ 2, the Legendre polynomials satisfy the recurrence

relation (see, e.g., [Gro96, Lemma 3.3.10])

(𝑛+ 𝑑+ 2𝑙− 2)(𝑛+ 𝑑− 1)𝑃𝑛+𝑑
𝑙 = (𝑛+ 𝑑+ 𝑙− 2)(𝑛+ 𝑑+ 𝑙− 1)𝑃𝑛+𝑑+2

𝑙 − (𝑙− 1)𝑙𝑃𝑛+𝑑+2
𝑙−2 .

From this and the fact that for all 𝑚 ≥ 1 𝑃𝑚0 (𝑡) = 1 and 𝑃𝑚1 (𝑡) = 𝑡, we obtain

𝑎𝑛,𝑑+2
𝑘 = 𝜔𝑛+𝑑+1

[︁
𝑃𝑛+𝑑+2
𝑘 ,𝑔𝑛

]︁
𝑛+𝑑+2

= 𝜔𝑛+𝑑+1

∞∑︁
𝑙=0

𝑁(𝑛+ 𝑑,𝑙)
𝜔𝑛+𝑑

𝑎𝑛,𝑑𝑙

[︁
𝑃𝑛+𝑑+2
𝑘 ,𝑃𝑛+𝑑

𝑙

]︁
𝑛+𝑑+2

= 2𝜋
𝑛+ 𝑑+ 2𝑘

(︁
𝑎𝑛,𝑑𝑘 − 𝑎𝑛,𝑑𝑘+2

)︁
.

Finally, the sequence which solves this recurrence relation and has the initial values (1.33)
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and (1.38) is given by

𝑎𝑛,𝑑𝑘 = −𝜋
𝑑
2 (𝑛− 1)

4
𝛤
(︀
𝑑+2

2
)︀
𝛤
(︀
𝑘−1

2
)︀
𝛤
(︀
𝑛+𝑘−1

2
)︀

𝛤
(︀
𝑑+𝑘+1

2
)︀
𝛤
(︀
𝑛+𝑑+𝑘+1

2
)︀ , 𝑘 ̸= 1.

We end this section with the following important definition, given rise to by Theorem
1.5.

Definition 1.7. For 2 ≤ 𝑗 ≤ 𝑛, let �𝑗 : 𝐶∞
o (𝑆𝑛−1) → 𝐶∞

o (𝑆𝑛−1) denote the linear
operator which is inverse to the integral transform F𝑔𝑗 .

1.5 𝐿𝑝 and Orlicz addition
On the set K𝑛

o of convex bodies containing the origin, Firey [Fir62] introduced in the 1960s
a more general way of combining convex sets. For 𝐾,𝐿 ∈ K𝑛

o , 𝑠,𝑡 ≥ 0, and 1 ≤ 𝑝 < ∞, the
𝐿𝑝 Minkowski combination 𝑠 ·𝐾 +𝑝 𝑡 · 𝐿 is defined by

ℎ(𝑠 ·𝐾 +𝑝 𝑡 · 𝐿,·)𝑝 = 𝑠 ℎ(𝐾,·)𝑝 + 𝑡 ℎ(𝐿,·)𝑝.

Initiated by Lutwak [Lut93b; Lut96], in the last two decades an entire 𝐿𝑝 theory
of convex bodies was developed which represents a powerful extension of the classical
Brunn–Minkowski theory (see, e.g., [Hab09b; Lut00a; Lut00b; Par14a; Par14b; Sch12b;
Web13]).

In [Lut93b], Lutwak introduced the 𝐿𝑝 mixed volume 𝑉𝑝(𝐾,𝐿) for 𝐾,𝐿 ∈ K𝑛
(𝑜) by

𝑛

𝑝
𝑉𝑝(𝐾,𝐿) = lim

𝑟→0+

𝑉 (𝐾 +𝑝 𝑟 ·𝑝 𝐿) − 𝑉 (𝐾)
𝑟

.

Moreover, Lutwak proved that there exists for each 𝐾 ∈ K𝑛
(𝑜) a positive Borel measure

𝑆p(𝐾, ·) on 𝑆𝑛−1, the 𝐿𝑝 surface area measure , such that

𝑉𝑝(𝐾,𝐿) = 1
𝑛

ˆ
𝑆𝑛−1

ℎ(𝐿,𝑢)𝑝𝑑𝑆p(𝐾,𝑢) (1.39)

for each 𝑄 ∈ K𝑛
(𝑜). We note that 𝑆1(𝐾, ·) is just the surface area measure 𝑆𝑛−1(𝐾,·).

In [Lut93b], it was shown that there is an 𝐿𝑝 analog of the classical Brunn–Minkowski
inequality, stating that for 𝐾, 𝐿 ∈ K𝑛

(𝑜),

𝑉𝑝(𝐾,𝐿) ≥ 𝑉 (𝐾)(𝑛−𝑝)/𝑛𝑉 (𝐿)𝑝/𝑛,

with equality if and only if 𝐾 and 𝐿 are dilates.
We recall the definition of the 𝐿𝑝 dual mixed volume 𝑉−𝑝(𝐾,𝐿) by using its integral

representation
𝑉−𝑝(𝐾,𝐿) = 1

𝑛

ˆ
𝑆𝑛−1

𝜌(𝐾,𝑢)𝑛+𝑝𝜌−𝑝
𝐿 𝑑𝑆(𝑢). (1.40)



20 1 Background from convex geometry

This 𝐿𝑝 dual mixed volume satisfies the inequality

𝑉−𝑝(𝐾,𝐿) ≥ 𝑉 (𝐾)(𝑛+𝑝)/𝑛𝑉 (𝐿)−𝑝/𝑛, (1.41)

with equality if and only if 𝐾 and 𝐿 are dilates. For further information on 𝑉𝑝 and 𝑉−𝑝,
confer [Lut00b].

A still more recent extension of the Brunn–Minkowski theory goes back to two articles of
Lutwak, Yang, and Zhang [Lut10a; Lut10b] and Haberl, Lutwak, Yang, and Zhang [Hab10].
While these articles form the starting point of an emerging Orlicz–Brunn–Minkowski
theory that generalizes the 𝐿𝑝 theory of convex bodies in the same way that Orlicz spaces
generalize 𝐿𝑝 spaces, the fundamental notion of an Orlicz Minkowski combination of convex
bodies was introduced later by Gardner, Hug, and Weil [Gar14].

Let 𝛩1 be the set of convex functions 𝜙 : [0,∞) → [0,∞) satisfying 𝜙(0) = 0 and 𝜙(1) = 1.
For 𝐾,𝐿 ∈ K𝑛

o , 𝑠, 𝑡 ≥ 0, and 𝜙,𝜓 ∈ 𝛩1, the Orlicz Minkowski combination +𝜙,𝜓(𝐾,𝐿,𝑠,𝑡)
is defined by

ℎ(+𝜙,𝜓(𝐾,𝐿,𝑠,𝑡),𝑢) = inf
{︂
𝛼 > 0 : 𝑠𝜙

(︂
ℎ(𝐾,𝑢)
𝛼

)︂
+ 𝑡 𝜓

(︂
ℎ(𝐿,𝑢)
𝛼

)︂
≤ 1
}︂

for 𝑢 ∈ 𝑆𝑛−1. The notation +𝜙,𝜓(𝐾,𝐿,𝑠,𝑡) is necessitated by the fact that it is not possible in
general to isolate an Orlicz scalar multiplication. We note that for 𝜙(𝑡) = 𝜓(𝑡) = 𝑡𝑝, 𝑝 ≥ 1,
the Orlicz Minkowski combination +𝜙,𝜓(𝐾,𝐿,𝑠,𝑡) equals the 𝐿𝑝 Minkowski combination
𝑠 ·𝐾 +𝑝 𝑡 · 𝐿.

For 𝑠 = 𝑡 = 1, we write 𝐾 +𝜙,𝜓 𝐿 instead of +𝜙,𝜓(𝐾,𝐿,1,1) and call this the Orlicz
Minkowski sum of 𝐾 and 𝐿. In fact, Gardner, Hug, and Weil defined a more general Orlicz
addition but proved (see [Gar14, Theorem 5.5]) that their definition leads (essentially) to
the Orlicz Minkowski addition as defined here and the 𝐿∞ Minkowski addition obtained
as the Hausdorff limit of the 𝐿𝑝 Minkowski addition, that is, for 𝐾,𝐿 ∈ K𝑛

o ,

𝐾 +∞ 𝐿 = lim
𝑝→∞

𝐾 +𝑝 𝐿 = conv(𝐾 ∪ 𝐿).

While all 𝐿𝑝 Minkowski additions are commutative, in general, the Orlicz Minkowski
addition of convex bodies is not. A classification of those Orlicz additions which are
commutative was obtained by Gardner, Hug, and Weil.
Theorem 1.8 [Gar14] Let 𝜙,𝜓 ∈ 𝛩1. The addition +𝜙,𝜓 : K𝑛

o ×K𝑛
o → K𝑛

o is commutative
if and only if there exists 𝜑 ∈ 𝛩1 such that +𝜙,𝜓 = +𝜑,𝜑.

In the following, we will only be interested in commutative Orlicz additions. For
𝐾,𝐿 ∈ K𝑛

o , 𝜙 ∈ 𝛩1, and 𝜆 ∈ (0,1) we use 𝐾 +𝜙,𝜆 𝐿 to denote the Orlicz Minkowski convex
combination +𝜙,𝜙(𝐾,𝐿,(1 − 𝜆),𝜆). More explicitly,

ℎ(𝐾+𝜙,𝜆𝐿,𝑢) = inf
{︂
𝛼 > 0: (1 − 𝜆)𝜙

(︂
ℎ(𝐾,𝑢)
𝛼

)︂
+ 𝜆𝜙

(︂
ℎ(𝐿,𝑢)
𝛼

)︂
≤ 1
}︂

for 𝑢 ∈ 𝑆𝑛−1. For the proof of Theorem 3.6, we need the following simple fact.
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Lemma 1.9. If 𝜙 ∈ 𝛩1 and 𝐾,𝐿 ∈ K𝑛
o , then for all 𝜆 ∈ (0,1),

𝐾 +𝜙,𝜆 𝐿 ⊇ (1 − 𝜆)𝐾 + 𝜆𝐿. (1.42)

Proof. For 𝑢 ∈ 𝑆𝑛−1 choose 𝑡 > ℎ(𝐾 +𝜙,𝜆 𝐿,𝑢). Then, by the convexity of 𝜙 and the
definition of 𝐾 +𝜙,𝜆 𝐿, we have

𝜙

(︂
(1 − 𝜆)ℎ(𝐾,𝑢) + 𝜆ℎ(𝐿,𝑢)

𝑡

)︂
≤ (1 − 𝜆)𝜙

(︂
ℎ(𝐾,𝑢)

𝑡

)︂
+ 𝜆𝜙

(︂
ℎ(𝐿,𝑢)
𝑡

)︂
≤ 1.

Since every 𝜙 ∈ 𝛩1 is increasing and satisfies 𝜙(1) = 1, we conclude that

(1 − 𝜆)ℎ(𝐾,𝑢) + 𝜆ℎ(𝐿,𝑢) ≤ 𝑡.

Now, letting 𝑡 approach ℎ(𝐾 +𝜙,𝜆 𝐿,𝑢), we obtain the desired inclusion (1.42).





CHAPTER 2
Minkowski valuations and their generalizations

2.1 Scalar-valued valuations and generalized valuations
In the following, we recall several results on translation-invariant (scalar- and convex-body-
valued) valuations, in particular, the product structure on smooth valuations and the
Alesker–Poincaré duality. We also discuss basic properties of the Hard Lefschetz operators
and a new isomorphism between generalized valuations of degree 1 and generalized functions
on the sphere. At the end of this section, we state a recent representation theorem for
Minkowski valuations intertwining rigid motions and define the class of Minkowski valuations
for which we can establish log-concavity properties.

A map 𝜇 defined on convex bodies in R𝑛 and taking values in an Abelian semigroup 𝐴
is called a valuation or additive if

𝜇(𝐾) + 𝜇(𝐿) = 𝜇(𝐾 ∪ 𝐿) + 𝜇(𝐾 ∩ 𝐿)

whenever 𝐾 ∪𝐿 is convex. If 𝐺 is a group of affine transformations on R𝑛, a valuation 𝜇 is
called 𝐺-invariant if 𝜇(𝑔𝐾) = 𝜇(𝐾) for all 𝐾 ∈ K𝑛 and 𝑔 ∈ 𝐺.

The theory of scalar-valued valuations has long played a prominent role in convex
geometry (see, e.g., [Had57; Kla97] for the history of scalar valuations and [Ale01; Ber11;
Fu06; Hab14; Lud10b; Par13; Wan14] for more recent results), but other semigroups have
also been considered. For vector-valued valuations, there is a well-lnown result that the
Steiner point map is the unique vector-valued, rigid-motion-equivariant and continuous
valuation on K𝑛 (see e.g., [Sch14, p. 363]).

Let Val denote the vector space of continuous translation-invariant scalar-valued valua-
tions. The structure theory of translation-invariant valuations has its starting point in a
classical result of McMullen [McM77], who showed that

Val =
⨁︁

0≤𝑖≤𝑛
Val+𝑖 ⊕ Val−𝑖 , (2.1)

where Val+𝑖 ⊆ Val denotes the subspace of even valuations (homogeneous) of degree 𝑖,
and Val−𝑖 denotes the subspace of odd valuations of degree 𝑖. The space Val becomes a

23
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Banach space when endowed with the norm

‖𝜇‖ = sup{|𝜇(𝐾)| : 𝐾 ⊆ 𝐵}.

The general linear group GL(𝑛) acts on the Banach space Val in a natural way: For every
𝐴 ∈ GL(𝑛) and 𝜇 ∈ Val,

(𝐴 · 𝜇)(𝐾) = 𝜇(𝐴−1𝐾), 𝐾 ∈ K𝑛.

Note that the subspaces Val±𝑖 are invariant under this GL(𝑛)-action. In fact, a deep result
of Alesker [Ale01], known as the Irreducibility Theorem, states that these subspaces are
also irreducible:

Theorem 2.1. (Alesker [Ale01]) The natural representation of GL(𝑛) on Val±𝑖 is irre-
ducible for any 𝑖 ∈ {0, . . . , 𝑛}.

It follows from Theorem 2.1 that any GL(𝑛)-invariant subspace of translation-invariant
continuous valuations (of a given degree 𝑖 and parity) is already dense in Val±𝑖 .

Definition 2.2. A valuation 𝜇 ∈ Val is called smooth if the map GL(𝑛) → Val defined
by 𝐴 ↦→ 𝐴 · 𝜇 is infinitely differentiable.

The subspace of smooth translation-invariant valuations is denoted by Val∞, and we write
Val±,∞𝑖 for smooth valuations in Val±𝑖 . It is well known (cf. [Wal88, p. 32]) that Val±,∞𝑖 is
a dense GL(𝑛)-invariant subspace of Val±𝑖 . Moreover, Val∞ carries a natural Fréchet space
topology, called Gårding topology (see [Wal88, p. 33]), which is stronger than the topology
induced from Val. Finally, we note that the representation of GL(𝑛) on Val∞ is continuous.

Examples:

(a) If 𝐿 ∈ K𝑛 is strictly convex with smooth boundary, then

𝜇𝐿 : K𝑛 → R, 𝜇𝐿(𝐾) = 𝑉𝑛(𝐾 + 𝐿),

is a smooth valuation.
(b) If 𝑓 ∈ 𝐶∞

o (𝑆𝑛−1) and 0 ≤ 𝑖 ≤ 𝑛− 1, then 𝜈𝑖,𝑓 : K𝑛 → R, defined by

𝜈𝑖,𝑓 (𝐾) =
ˆ
𝑆𝑛−1

𝑓(𝑢) 𝑑𝑆𝑖(𝐾,𝑢), (2.2)

is a smooth valuation in Val∞𝑖 .

Before we turn to generalized valuations, we recall the definition of the Alesker product
of smooth translation-invariant valuations.
Theorem 2.3 [Ale04b] There exists a bilinear product

Val∞ × Val∞ → Val∞, (𝜇,𝜈) ↦→ 𝜇 · 𝜈,

which is uniquely determined by the following two properties:
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(i) The product is continuous in the Gårding topology.
(ii) If 𝐿1, 𝐿2 ∈ K𝑛 are strictly convex and smooth, then

(𝜇𝐿1 · 𝜇𝐿2)(𝐾) = 𝑉2𝑛(𝜄(𝐾) + 𝐿1 × 𝐿2),

where 𝜄 : R𝑛 → R𝑛 × R𝑛 is defined by 𝜄(𝑥) = (𝑥,𝑥).

Endowed with this multiplicative structure, Val∞ becomes an associative and commutative
algebra which is graded by the degree of homogeneity and with unit given by the Euler
characteristic.

The next example was computed in [Ale04b].

Example:
Let 𝐿1, . . . , 𝐿𝑛−𝑖 ∈ K𝑛 and 𝑀1, . . . ,𝑀𝑖 ∈ K𝑛 be strictly convex and smooth. If 𝜇 ∈ Val∞𝑖
and 𝜈 ∈ Val∞𝑛−𝑖 are defined by

𝜇(𝐾) = 𝑉 (𝐾[𝑖],𝐿1, . . . ,𝐿𝑛−𝑖) and 𝜈(𝐾) = 𝑉 (𝐾[𝑛− 𝑖],𝑀1, . . . ,𝑀𝑖),

then

(𝜇 · 𝜈)(𝐾) =
(︂
𝑛

𝑖

)︂−1
𝑉 (−𝐿1, . . . ,− 𝐿𝑛−𝑖,𝑀1, . . . ,𝑀𝑖)𝑉𝑛(𝐾). (2.3)

The above example is just a special case of the more general fact that the Alesker product
gives rise to a non-degenerate bilinear pairing between smooth valuations of complementary
degree.
Theorem 2.4 [Ale04b] For every 0 ≤ 𝑖 ≤ 𝑛, the continuous bilinear pairing

< · ,·> : Val∞𝑖 × Val∞𝑛−𝑖 → Val𝑛, (𝜇,𝜈) ↦→ 𝜇 · 𝜈,

is non-degenerate. In particular, the induced Poincaré duality map

Val∞𝑖 →
(︀
Val∞𝑛−𝑖

)︀* ⊗ Val𝑛, 𝜇 ↦→<𝜇,· >,

is continuous, injective and has dense image with respect to the weak topology.
Here and in the following, for a Fréchet space 𝑋, we denote by 𝑋* its topological dual

endowed with the weak topology.
Motivated by Theorem 2.4, the notion of generalized valuations was introduced recently

in [Ale14]. Before we state the definition, recall that by a classical theorem of Hadwiger
[Had57, p. 79] the space Val𝑛 is spanned by the ordinary volume 𝑉𝑛. In other words, if
we do not refer to any Euclidean structure, then Val𝑛 ∼= D(𝑉 ), where D(𝑉 ) denotes the
vector space of all densities on an 𝑛-dimensional vector space 𝑉 . We refer to the appendix
of [Berb] for details on these notions.

Definition 2.5. The space of generalized valuations is defined by

Val−∞ = (Val∞)* ⊗ D(𝑉 )
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and we define the space of generalized valuations of degree 𝑖 ∈ {0, . . . , 𝑛} by

Val−∞
𝑖 =

(︀
Val∞𝑛−𝑖

)︀* ⊗ D(𝑉 ).

By Theorem 2.4, we have a canonical embedding with dense image

Val∞ →˓ Val−∞.

Thus, Val−∞ can be seen as a completion of Val∞ in the weak topology.
In order to establish Theorem 3.3, we need the following new classification of generalized

valuations of degree 1. A proof of this theorem was given by Semyon Alesker and is included
in the appendix of [Berb].

Theorem 2.6. The map

𝐶∞
o (𝑆𝑛−1) → Val∞1 , 𝑓 ↦→

(︂
𝐾 ↦→

ˆ
𝑆𝑛−1

𝑓(𝑢)ℎ(𝐾,𝑢) 𝑑𝑢
)︂
,

is an isomorphism of Fréchet spaces which extends uniquely by continuity in the weak
topologies to an isomorphism

𝐶−∞
o (𝑆𝑛−1) → Val−∞

1 .

Note that, by Theorem 2.6, if 𝛾 ∈ Val−∞
1 and 𝑇𝛾 ∈ 𝐶−∞

o (𝑆𝑛−1) is the corresponding
distribution, then we can evaluate 𝛾 on convex bodies 𝐾 ∈ K𝑛 with smooth support
function by

𝛾(𝐾) := ⟨ℎ(𝐾,·), 𝑇𝛾⟩.

Next we briefly recall the Hard Lefschetz operators on smooth translation-invariant
scalar-valued valuations. It is well known that McMullen’s decomposition (2.1) of the space
Val implies a general Steiner type formula for continuous translation-invariant valuations
which, in turn, gives rise to a derivation operator 𝛬 : Val → Val defined by

(𝛬𝜇)(𝐾) = 𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

𝜇(𝐾 + 𝑡𝐵).

Note that 𝛬 commutes with the action of O(𝑛) and that it preserves parity. Moreover, if
𝜇 ∈ Val𝑖, then 𝛬𝜇 ∈ Val𝑖−1.

The importance of the operator 𝛬 became evident from a Hard Lefschetz type theorem
established by Alesker [Ale03] for even valuations and by Bernig and Bröcker [Ber07b] for
general valuations. More recently, a dual version of this fundamental result was established
in [Ale04a; Ale11a]. There, the derivation operator 𝛬 is replaced by an integration operator
L : Val → Val defined by

(L𝜇)(𝐾) = (𝑉1 · 𝜇)(𝐾) =
ˆ
𝐴(𝑛,𝑛−1)

𝜇(𝐾 ∩ 𝐸) 𝑑𝐸, (2.4)
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where here and in the following, 𝐴(𝑛,𝑘) denotes the affine Grassmannian of 𝑘-planes in
R𝑛 and integration is with respect to a (suitably normalized) invariant measure. The
original definition of L corresponds to the first equality in (2.4) and it was proved by Bernig
[Ber07a] that the second equality holds. We also note that L commutes with the action of
O(𝑛) and that it preserves parity. Moreover, if 𝜇 ∈ Val𝑖, then L𝜇 ∈ Val𝑖+1.

2.2 Minkowski valuations
A map 𝛷 : K𝑛 → K𝑛 is called a Minkowski valuation if

𝛷𝐾 + 𝛷𝐿 = 𝛷(𝐾 ∪ 𝐿) + 𝛷(𝐾 ∩ 𝐿)

whenever 𝐾∪𝐿 ∈ K𝑛 and addition on K𝑛 is Minkowski addition. Systematic investigations
of Minkowski valuations have only been initiated about a decade ago by Ludwig [Lud02;
Lud03; Lud05]. These valuations arise naturally from data about projections and sections
of convex bodies and form an integral part of geometric tomography. As first examples we
mention here the projection body maps 𝛱𝑖 : K𝑛 → K𝑛 of order 𝑖 ∈ {1, . . . , 𝑛− 1}, defined
by

ℎ(𝛱𝑖𝐾,𝑢) = 𝑉𝑖(𝐾|𝑢⊥), 𝑢 ∈ 𝑆𝑛−1.

We refer to Section 2.3 for further details on projection bodies.
While the entire family 𝛱𝑖 is translation-invariant and SO(𝑛)-equivariant,

the classic projection body map 𝛱𝑛−1 is the only one among them which intertwines
linear transformations (see [Lud02]). In fact, there is only a small number of Minkowski
valuations which are compatible with affine transformations (see [Aba12; Aba11; Hab12;
Lud05; Sch12a; Wan11] for their classification).

The trivial Minkowski valuation maps every convex body to the set containing only the
origin. For 0 ≤ 𝑗 ≤ 𝑛, we denote by MVal𝑗 the set of all continuous, translation-invariant
and SO(𝑛)-equivariant Minkowski valuations of degree 𝑗. In the next lemma, we state
basic properties of such Minkowski valuations which are well known (cf. [Ale11b; Par12;
Sch10]) and are needed in what follows.

Lemma 2.7. If 𝛷𝑗 ∈ MVal𝑗, 0 ≤ 𝑗 ≤ 𝑛, then the following statements hold:

(a) The Steiner point of 𝛷𝑗𝐾 is at the origin, that is, 𝑠(𝛷𝑗𝐾) = 𝑜 for every 𝐾 ∈ K𝑛.
(b) There exists 𝑟𝛷𝑗 ≥ 0 such that

𝑊𝑛−1(𝛷𝑗𝐾) = 𝑟𝛷𝑗 𝑊𝑛−𝑗(𝐾)

for every 𝐾 ∈ K𝑛. If 𝛷𝑗 is non-trivial, then 𝑟𝛷𝑗 > 0.
(c) The SO(𝑛− 1)-invariant valuation 𝜈𝑗 ∈ Val𝑗 defined by

𝜈𝑗(𝐾) = ℎ(𝛷𝑗𝐾,𝑒)

uniquely determines 𝛷𝑗 and is called the associated real-valued valuation of the
Minkowski valuation 𝛷𝑗 ∈ MVal𝑗.
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Lemma 2.7 (c) motivated the following definition which first appeared in [Sch10].

Definition 2.8. A Minkowski valuation 𝛷𝑗 ∈ MVal𝑗, 0 ≤ 𝑗 ≤ 𝑛, is called smooth if its
associated real-valued valuation 𝜈𝑗 is smooth.

By MVal∞𝑗 we will denote the set of translation-invariant and SO(𝑛)-equivariant smooth
Minkowski valuations. Recall that smooth translation-invariant scalar-valued valuations
are dense in all continuous translation-invariant scalar-valued valuations. However, this
does not directly imply the same for Minkowski valuations; instead, additional arguments
were needed for the proof which was given in [Sch10] for even and in [Sch] for general
Minkowski valuations.

We are now in a position to state a recent Hadwiger type theorem for smooth Minkowski
valuations which is the key to the proof of Theorem 3.3.
Theorem 2.9 [Sch] If 𝛷𝑗 ∈ MVal∞𝑗 , 𝑗 ∈ {1, . . . , 𝑛 − 1}, then there exists a unique
𝑓 ∈ 𝐶∞

o (𝑆𝑛−1,𝑒), called the generating function of 𝛷𝑗, such that for every 𝐾 ∈ K𝑛,

ℎ(𝛷𝑗𝐾,·) = 𝑆𝑗(𝐾,·) * 𝑓. (2.5)

In fact, a more general version of Theorem 2.9 for merely continuous Minkowski valua-
tions in MVal𝑗 was also established in [Sch], which are generated by 𝑆𝑂(𝑛− 1)-invariant
measures. At the time of the preparation of the article [Berb], this result was not yet
available. Therefore Theorem 2.9 is used in [Berb] and in this thesis.

Examples:

(a) Kiderlen [Kid06] proved (in a slightly different form) that if 𝛷1 ∈ MVal∞1 , then there
exists a unique 𝑔 ∈ 𝐶∞

o (𝑆𝑛−1,𝑒) such that for every 𝐾 ∈ K𝑛,

ℎ(𝛷1𝐾,·) = ℎ(𝐾,·) * 𝑔. (2.6)

In order to see how (2.6) is related to Theorem 2.9, we use (1.26) and the fact that
�𝑛 : 𝐶∞

o (𝑆𝑛−1) → 𝐶∞
o (𝑆𝑛−1) is a bijective multiplier transformation to obtain a

function 𝑓 ∈ 𝐶∞(𝑆𝑛−1,𝑒) with �𝑛𝑓 = 𝑔 and conclude that

ℎ(𝛷1𝐾,·) = ℎ(𝐾,·) * 𝑔 = ℎ(𝐾,·) * �𝑛𝑓 = �𝑛ℎ(𝐾,·) * 𝑓 = 𝑆1(𝐾,·) * 𝑓.

(b) The case 𝑗 = 𝑛 − 1 of Theorem 2.9 was first proved (in a more general form) in
[Sch07]. Moreover, it was also shown there that 𝛷𝑛−1 ∈ MVal∞𝑛−1 is even if and
only if there exists an 𝑜-symmetric body of revolution 𝐿 ∈ K𝑛 with smooth support
function such that for every 𝐾 ∈ K𝑛,

ℎ(𝛷𝑛−1𝐾,·) = 𝑆𝑛−1(𝐾,·) * ℎ(𝐿,·).

(c) For 𝑖 ∈ {1, . . . , 𝑛− 1}, the support function of the projection body map of order 𝑖
(cf. also Section 2.3), 𝛱𝑖 ∈ MVal𝑖, is given by
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ℎ(𝛱𝑖𝐾,𝑢) = 𝑉𝑖(𝐾|𝑢⊥) = 1
2

ˆ
𝑆𝑛−1

|𝑢 · 𝑣| 𝑑𝑆𝑖(𝐾,𝑣), 𝑢 ∈ 𝑆𝑛−1.

Note that 𝛱𝑖 is continuous but not smooth. Its (merely) continuous generating
function is given by 𝑓(𝑢) = 1

2 |𝑢 · 𝑒|, 𝑢 ∈ 𝑆𝑛−1.
(d) For 𝑖 ∈ {2, . . . , 𝑛}, the (normalized) mean section operator of order 𝑖, denoted by

M𝑖 ∈ MVal𝑛+1−𝑖, was first defined in [Goo92] by

ℎ(M𝑖𝐾,·) =
ˆ
𝐴(𝑛,𝑖)

ℎ(J(𝐾 ∩ 𝐸),·) 𝑑𝐸.

Here, J ∈ MVal1 is defined by J𝐾 = 𝐾 − 𝑠(𝐾), where 𝑠 : K𝑛 → R𝑛
is the Steiner point map. Recently, Goodey and Weil [Goo14] proved that the
generating functions of the mean section operators are (up to normalization) the
zonal functions 𝑔𝑖 ∈ 𝐿1(𝑆𝑛−1,𝑒) determined by C. Berg’s functions 𝑔𝑖 on [−1,1]. More
precisely,

ℎ(M𝑖𝐾,·) = 𝑝𝑛,𝑖 𝑆𝑛+1−𝑖(𝐾,·) * 𝑔𝑖, (2.7)

with constants 𝑝𝑛,𝑖 which were explicitly determined in [Goo14].

The integration operator L on translation-invariant scalar-valued valuations can be
extended to Minkowski valuations by extending the identity (2.4). For 𝛷 ∈ MVal𝑗 , there
exists L𝛷 ∈ MVal𝑗+1 such that

ℎ((L𝛷)(𝐾),·) =
ˆ
𝐴(𝑛,𝑛−1)

ℎ(𝛷(𝐾 ∩ 𝐸),·) 𝑑𝐸. (2.8)

where 𝐴(𝑛,𝑛 − 1) denotes the affine Grassmannian of 𝑛 − 1 planes in R𝑛 and where we
integrate with respect to the suitably normalized invariant measure on 𝐴(𝑛,𝑛− 1). For
scalar-valued valuations the operator L was first defined in [Ale04a] and used to deduce
results for valuations of degree 𝑖 from those for valuations of some degree 𝑗 < 𝑖. As an
operator on Minkowski valuations, L was first considered in [Sch15].

It was proved in [Par12] that the derivation operator 𝛬 can be extended to continuous
translation-invariant Minkowski valuations, as well:

ℎ((𝛬𝛷)(𝐾),·) = 𝑑

𝑑𝑡

⃒⃒⃒⃒
𝑡=0

ℎ(𝛷(𝐾 + 𝑡𝐵),·). (2.9)

Note that in this case it is not trivial that the right-hand side actually defines the support
function of a convex body; this was proved in [Par12].

If 𝛷𝑗 ∈ MVal∞𝑗 , 1 ≤ 𝑗 ≤ 𝑛− 1, with associated real-valued valuation 𝜈𝑗 ∈ Val∞𝑗 , then
the associated real-valued valuations of L𝛷𝑗 and 𝛬𝛷𝑗 are given by L𝜈𝑗 ∈ Val∞𝑗+1 and
𝛬𝜈𝑗 ∈ Val∞𝑗+1, respectively. In particular, we have L𝛷𝑗 ∈ MVal∞𝑗+1 and 𝛬𝛷𝑗 ∈ MVal∞𝑗−1.

In view of Theorem 2.9, it is a natural problem to determine the induced action of the
SO(𝑛)-equivariant operators 𝛬 and L on the generating functions of smooth Minkowski
valuations. This was done in [Sch15] and is the content of the following theorem.



30 2 Minkowski valuations and their generalizations

Theorem 2.10 [Sch15] Suppose that 𝛷𝑗 ∈ MVal∞𝑗 and let 𝑓 ∈ 𝐶∞
o (𝑆𝑛−1,𝑒) be the

generating function of 𝛷𝑗.

(a) If 2 ≤ 𝑗 ≤ 𝑛− 1, then the generating function of 𝛬𝛷𝑗 is given by 𝑗𝑓 .
(b) If 1 ≤ 𝑗 ≤ 𝑛 − 2, then there exists a constant 𝑐𝑛,𝑗 > 0 such that the generating

function of L𝛷𝑗 is given by 𝑐𝑛,𝑗 �𝑛−𝑗+1𝑓 * 𝑔𝑛−𝑗.

In particular, the map 𝛬 : MVal∞𝑗 → MVal∞𝑗−1 is injective for all 2 ≤ 𝑗 ≤ 𝑛 − 1 and
L : MVal∞𝑗 → MVal∞𝑗+1 is injective for all 1 ≤ 𝑗 ≤ 𝑛− 2.

The constants 𝑐𝑛,𝑗 from Theorem 2.10 (b) were explicitly determined in [Sch15]. We will
now give the definition of an important subclass of Minkowski valuations, that inhabits
log-concavity properties (cf. Section 3.2).

Definition 2.11. For 1 ≤ 𝑖,𝑗 ≤ 𝑛− 1, let MVal∞𝑗,𝑖 ⊆ MVal∞𝑗 be defined by

MVal∞𝑗,𝑖 =
{︂
𝛬𝑖−𝑗(MVal∞𝑖 ) if 𝑖 > 𝑗,
MVal∞𝑗 if 𝑖 ≤ 𝑗.

We write MVal𝑗,𝑖 for the closure of MVal∞𝑗,𝑖 in the topology of uniform convergence on
compact subsets.

By Theorem 2.10 the map 𝛬 : MVal∞𝑗 → MVal∞𝑗−1 is injective for
2 ≤ 𝑗 ≤ 𝑛. Thus, for 𝑖 > 𝑗, the inverse map (𝛬𝑖−𝑗)−1 : MVal∞𝑗,𝑖 → MVal∞𝑖 is well-
defined and will be denoted by 𝛬𝑗−𝑖. From Theorem 2.10 (a) and Examples (a) and (b)
above, we can also deduce more information about the classes MVal∞𝑗,𝑖.

Corollary 2.12.

(a) Suppose that 1 ≤ 𝑖,𝑗 ≤ 𝑛−1, 𝛷𝑗 ∈ MVal∞𝑗 , and let 𝑓 ∈ 𝐶∞
o (𝑆𝑛−1,𝑒) be the generating

function of 𝛷𝑗. Then 𝛷𝑗 ∈ MVal∞𝑗,𝑖 if and only if 𝑆𝑖(𝐾,·) * 𝑓 is a support function
for every 𝐾 ∈ K𝑛.

(b) MVal∞1,𝑛−1  MVal∞1 .

Proof. Statement (a) is a direct consequence of the definition of MVal∞𝑗,𝑖
and Theorem 2.10 (a).

In order to prove (b), let 𝛷1 ∈ MVal∞1 be even and let 𝑓 ∈ 𝐶∞
o (𝑆𝑛−1,𝑒) be the generating

function of 𝛷1. Then, by (a) and Example (b) from above, 𝛷1 ∈ MVal∞1,𝑛−1 if and only if
𝑓 = ℎ(𝐿,·) for some 𝑜-symmetric body of revolution 𝐿 ∈ K𝑛. In this case, we have

ℎ(𝛷1𝐾,·) = 𝑆1(𝐾,·) * ℎ(𝐿,·) = �𝑛ℎ(𝐾,·) * ℎ(𝐿,·) = ℎ(𝐾,·) * 𝑠1(𝐿,·),

where 𝑠1(𝐿,·) = �𝑛ℎ(𝐿,·) is the smooth density of 𝑆1(𝐿,·). It was proved by Kiderlen
[Kid06] that for any (even) non-negative 𝑔 ∈ 𝐶∞

o (𝑆𝑛−1,𝑒), (2.6) defines an (even) Minkowski
valuation in MVal∞1 . Since the set of area measures of order 1 is nowhere dense in Mo,
this proves the claim.
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Note that, by Corollary 2.12 (b), in general MVal∞𝑗,𝑖  MVal∞𝑗 for 𝑖 > 𝑗. Explicit
examples of Minkowski valuations in MVal𝑗 with generating functions which do not
generate a Minkowski valuation in MVal𝑛−1 are provided by the mean section operators.
This follows from (2.7) and the case 𝑖 = 𝑛− 1 of Theorem 2.9 for continuous Minkowski
valuations established in [Sch07], where it was proved that 𝛷𝑛−1 ∈ MVal𝑛−1 is generated by
a continuous function 𝑓 ∈ 𝐶o(𝑆𝑛−1,𝑒). However, C. Berg’s functions 𝑔𝑖 are not continuous
on [−1,1] for 𝑖 ≥ 5.

We end this section with another remark concerning Corollary 2.12 (a): Generating
functions or earlier versions of Theorem 2.9, respectively, were the critical tool used in
the proofs of the first Brunn–Minkowski type inequalities for Minkowski valuations. We
will see in Section 3.2 that the Hard Lefschetz operators on Minkowski valuations (which
were introduced only recently) and Theorem 2.9 both naturally lead to the same classes
MVal𝑗,𝑖 for which we can establish such inequalities.

2.3 Generalized projection and centroid bodies
In this section we recall the definition of the projection body maps of order 𝑖 and of the
centroid body and generalize these notions to Minkowski valuations generated by zonoids
of revolution, where we follow the approach of [Hab].

The projection body maps of order 𝑖 ∈ 1, . . . , 𝑛− 1 are the Minkowski valuations given
by

ℎ(𝛱𝑖𝐾, ·) = 𝑉𝑖(𝐾|𝑢⊥) = 1
2

ˆ
𝑆𝑛−1

|𝑢 · 𝑣|𝑑𝑆𝑖(𝐾,𝑣), 𝑢 ∈ 𝑆𝑛−1.

These maps 𝛱𝑖 : K𝑛 → K𝑛 are translation-invariant, 𝑖-homogeneous and 𝑆𝑂(𝑛)-equivariant.
The map 𝛱 = 𝛱𝑛−1 is 𝑆𝐿(𝑛)-contravariant, that is, 𝛱𝛷𝐾 = 𝛷−⊤𝛱𝐾 for 𝛷 ∈ 𝑆𝐿(𝑛). The
projection body operator has been investigated extensively (for example in [Aba11; Lut00b;
Lut10a]) and generalizations in various settings have also been defined.

It is possible (cf. [Goo92]) to write the support function of 𝛱𝑖𝐾 in a way that will prove
useful later on as

ℎ(𝛱𝑖𝐾,·) = 𝜅𝑛−1
𝜅𝑛

𝑅𝑛−𝑖,1vol𝑖(𝐾|·⊥). (2.10)

Considering identity (1.3), there is also another way (cf. [Lut86b]) to write the 𝑖-th
projection body as

𝛱 [𝐾]𝑖 = 𝛱𝑖𝐾.

The projection body map 𝛱 = 𝛱𝑛−1 has been generalized by Haberl and Schuster [Hab]
to Minkowski valuations generated by zonoids of revolution. We will in the following recall
their results, starting with a well-known characterization of zonoids.

Proposition 2.13 (see, e.g., [Sch14, Theorem 3.5.3]). A convex body 𝐾 ∈ K𝑛 is a zonoid
with center at 𝑜 if and only if its support function can be represented in the form

ℎ(𝐾,𝑢) =
ˆ
𝑆𝑛−1

|𝑢 · 𝑣|𝑑𝜇(𝑣), 𝑢 ∈ 𝑆𝑛−1

with some uniquely determined even non-negative measure 𝜇 on 𝑆𝑛−1.
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For a non-trivial, 𝑜-symmetric zonoid of revolution 𝑍(𝑒) with axis of revolution 𝑒 (a
fixed pole on the sphere), we thus have

ℎ(𝑍(𝑒),𝑢) =
ˆ
𝑆𝑛−1

|𝑢 · 𝑤|𝑑𝜇(𝑤) =
ˆ
𝑆𝑂(𝑛)

|𝑢 · 𝜑𝑒|𝑑𝜇̆(𝜑), (2.11)

where 𝜇̆ is the measure introduced in Section 1.3. If 𝑍(𝑒) is rotated such that 𝑣 ∈ 𝑆𝑛−1

becomes the new axis, we abbreviate 𝑍(𝑣) := 𝜃𝑣𝑍(𝑒), where 𝑣 = 𝜃𝑣𝑒 with 𝜃𝑣 ∈ 𝑆𝑂(𝑛). The
support function of this new zonoid 𝑍(𝑣) is then given by

ℎ(𝑍(𝑣),𝑢) =
ˆ
𝑆𝑂(𝑛)

|𝑢 · 𝜑𝑣|𝑑𝜇̆𝑣(𝜑), (2.12)

since we can compute

ℎ(𝑍(𝑣),𝑢) = ℎ(𝑍(𝑒𝑛), 𝜗−1
𝑣 𝑣) =

ˆ
𝑆𝑂(𝑛)

|𝑢 · 𝜗𝑣𝜑𝜗−1
𝑣 𝑣|𝑑𝜇̆(𝜑) =

ˆ
𝑆𝑂(𝑛)

|𝑢 · 𝜑𝑣|𝑑𝜇̆𝑣(𝜑),

where 𝜇̆𝑣 = 𝑡𝑣#𝜇̆ with 𝑡𝑣(𝜑) = 𝜗𝑣𝜑𝜗
−1
𝑣 . In particular, we note that

ℎ(𝑍(𝑣),𝑢) = ℎ(𝑍(𝑢),𝑣), 𝑢,𝑣 ∈ 𝑆𝑛−1. (2.13)

In [Hab], Haberl and Schuster investigated the Minkowski valuations 𝛷𝑍 : K𝑛 → K𝑛

generated by an 𝑜-symmetric zonoid of revolution 𝑍 with rotation axis 𝑒, by

ℎ(𝛷𝑍𝐾,𝑢) = 1
2

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑣),𝑢)𝑑𝑆𝑛−1(𝐾,𝑣), (2.14)

which for 𝑍 = [−𝑒,𝑒] is just the projection body. With the help of the spherical convolution,
this can also be written in the form

ℎ(𝛷𝑍𝐾, ·) = 1
2𝑆𝑛−1(𝐾, ·) * ℎ(𝑍(𝑒), ·). (2.15)

We are going to extend this definition to include the projection bodies of order 𝑖. For 𝛷𝑍
as defined above, by the definition of the mixed area measure, there exists a continuous
operator

𝛷𝑍 :
𝑛−1⏞  ⏟  

K𝑛 × · · · × K𝑛 → K𝑛,

symmetric in its arguments such that for 𝐾1, . . . ,𝐾𝑚 ∈ K𝑛 and 𝜆1, . . . 𝜆𝑚 ≥ 0

𝛷𝑍(𝜆1𝐾1 + . . .+ 𝜆𝑚𝐾𝑚) =
∑︁

𝑖1,...,𝑖𝑛−1

𝜆𝑖1 · · ·𝜆𝑖𝑛−1𝛷𝑍(𝐾𝑖1 , . . . ,𝐾𝑖𝑛−1),

where the coefficients are explicitely given by the formula

ℎ(𝛷𝑍(𝐾1, . . . ,𝐾𝑛−1), 𝑢) = 1
2

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑣),𝑢)𝑑𝑆𝑛−1(𝐾1, . . . ,𝐾𝑛−1,𝑣).
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We will also use the abbreviation

ℎ(𝛷𝑍,𝑖𝐾,𝑢) = 1
2

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑣),𝑢)𝑑𝑆𝑖(𝐾,𝑣), (2.16)

where again 𝑍 = [−𝑒,𝑒] gives just the projection body of order 𝑖. We recall the integral
representation of 𝛷𝑍 by Haberl and Schuster, which is essential to their proof of Theorem
4.1.
Lemma 2.14 [Hab] For 𝐾 ∈ K𝑛 and 𝑍 as above, the support function of 𝛷𝑍𝐾 has the
representation

ℎ(𝛷𝑍𝐾,𝑢) =
ˆ
𝑆𝑂(𝑛)

ℎ(𝛱𝐾,𝜑𝑢)𝑑𝜇̆𝑢(𝜑), 𝑢 ∈ 𝑆𝑛−1. (2.17)

We are now able to prove an analogous representation for 𝛷𝑍,𝑖𝐾.

Lemma 2.15. For 𝐾 ∈ K𝑛, 𝑍 as above and for 0 < 𝑖 < 𝑛 − 1, the support function of
𝛷𝑍,𝑖𝐾 has the representation

ℎ(𝛷𝑍,𝑖𝐾,𝑢) =
ˆ
𝑆𝑂(𝑛)

ℎ(𝛱𝑖𝐾,𝜑𝑢)𝑑𝜇̆𝑢(𝜑). (2.18)

Proof. By (2.16), (2.12), and by using Fubini’s theorem, we have

ℎ(𝛷𝑍,𝑖𝐾,𝑢) = 1
2

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑣),𝑢)𝑑𝑆𝑖(𝐾,𝑣)

= 1
2

ˆ
𝑆𝑛−1

ˆ
𝑆𝑂(𝑛)

|𝑣 · 𝜑𝑢|𝑑𝜇̆𝑢(𝜑)𝑑𝑆𝑖(𝐾,𝑣)

=
ˆ
𝑆𝑂(𝑛)

ℎ(𝛱𝑖𝐾,𝜑𝑢)𝑑𝜇̆𝑢(𝜑).

In the same way projection bodies can be generalized to Minkowski valuations generated
by 𝑍, we will now generalize the centroid body map. For 𝐾 ∈ K𝑛

(𝑜) the centroid body is
given by

ℎ(𝛤𝐾, 𝑢) = 1
𝑉 (𝐾)

ˆ
𝐾

|𝑢 · 𝑥|𝑑𝑥.

This can be rewritten by using polar coordinates to

ℎ(𝛤𝐾, 𝑢) = 1
(𝑛+ 1)𝑉 (𝐾)

ˆ
𝑆𝑛−1

|𝑢 · 𝑣|𝜌(𝐾,𝑣)𝑛+1𝑑𝑆(𝑣).

The famous Busemann–Petty centroid inequality then compares the volume of the centroid
body to the volume of a convex body 𝐾 ∈ K𝑛

(𝑜) by

𝑉 (𝐾)𝑉 (𝛤𝐾)−1 ≤ 𝑉 (𝐵)𝑉 (𝛤𝐵)−1. (2.19)
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This inequality has been proved by Petty [Pet61], and was extended to the 𝐿𝑝 setting by
Lutwak, Yang, and Zhang [Lut00b], Campi and Gronchi [Cam02] and Haberl and Schuster
[Hab09b].

In [Sch06], a generalized centroid body depending on 𝑍 as above analogous to the
generalization of the projection body was introduced.

Definition 2.16. For 𝐾 ∈ K𝑛
(𝑜), the centroid body 𝛤𝑍𝐾 generated by 𝑍 is defined by

ℎ(𝛤𝑍𝐾,𝑢) = 1
𝑉 (𝐾)

ˆ
𝐾
ℎ(𝑍(𝑥),𝑢)𝑑𝑥, (2.20)

where we write 𝑍(𝑥) = ‖𝑥‖𝑍(𝑢) for 𝑥 = ‖𝑥‖𝑢, 𝑢 ∈ 𝑆𝑛−1.

This can again be rewritten to

ℎ(𝛤𝑍𝐾, 𝑣) = 1
(𝑛+ 1)𝑉 (𝐾)

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑣),𝑢)𝜌(𝐾,𝑢)𝑛+1𝑑𝑆(𝑢), 𝑣 ∈ 𝑆𝑛−1. (2.21)

Using this identity, an alternative integral representation of the support function of the
generalized centroid body can be computed.

Lemma 2.17. If 𝐾 ∈ K𝑛
(𝑜) and 𝑍 defined as above, then

ℎ(𝛤𝑍𝐾, 𝑣) =
ˆ
𝑆𝑂(𝑛)

ℎ(𝛤𝐾, 𝜑𝑣)𝑑𝜇̆𝑣(𝜑). (2.22)

Proof. By (2.21),(2.12), and Fubini’s theorem, we have

ℎ(𝛤𝑍𝐾, 𝑣) = 1
(𝑛+ 1)𝑉 (𝐾)

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑣),𝑢)𝜌(𝐾,𝑢)𝑛+1𝑑𝑆(𝑢)

= 1
(𝑛+ 1)𝑉 (𝐾)

ˆ
𝑆𝑛−1

ˆ
𝑆𝑂(𝑛)

|𝑢 · 𝜑𝑣|𝑑𝜇̆𝑣(𝜑)𝜌(𝐾,𝑢)𝑛+1𝑑𝑆(𝑢)

= 1
(𝑛+ 1)𝑉 (𝐾)

ˆ
𝑆𝑂(𝑛)

ˆ
𝑆𝑛−1

|𝑢 · 𝜑𝑣|𝜌(𝐾,𝑢)𝑛+1𝑑𝑆(𝑢)𝑑𝜇̆𝑣(𝜑)

=
ˆ
𝑆𝑂(𝑛)

ℎ(𝛤𝐾, 𝜑𝑣)𝑑𝜇̆𝑣(𝜑).

2.4 𝐿𝑝 Minkowski valuations
For 𝑝 > 1, an operator 𝛷 : K𝑛

𝑜 → K𝑛
𝑜 is called an 𝐿𝑝 Minkowski valuation if

𝛷(𝐾 ∪ 𝐿) +𝑝 𝛷(𝐾 ∩ 𝐿) = 𝛷(𝐾) +𝑝 𝛷(𝐿)

whenever 𝐾,𝐿,𝐾 ∪ 𝐿 ∈ K𝑛
𝑜 . 𝐿𝑝 Minkowski valuations were first investigated by Ludwig

[Lud05].
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For 𝐾 ∈ K𝑛
(𝑜) and 𝑝 ≥ 1, Lutwak, Yang, and Zhang introduced the 𝐿𝑝 projection body in

[Lut00b]. With a slightly different normalization, we will write

ℎ(𝛱p𝐾,𝑢)𝑝 = 1
2

ˆ
𝑆𝑛−1

|𝑢 · 𝑣|𝑝𝑑𝑆p(𝐾,𝑣).

We note that with this normalization, 𝛱1𝐾 is just the classical projection body 𝛱𝑛−1𝐾
and therefore 𝛱1𝐵 = 𝜅𝑛−1𝐵.

The 𝐿𝑝 projection body was generalized by Haberl and Schuster to 𝑆𝑂(𝑛)-equivariant
𝐿𝑝 Minkowski valuations. For 1 ≤ 𝑝 < ∞, a convex body 𝐾 ∈ K𝑛

𝑛 is called an 𝐿𝑝 zonoid,
if its support function can be represented in the form

ℎ(𝐾,𝑢)𝑝 =
ˆ
𝑆𝑛−1

|𝑢 · 𝑣|𝑝𝑑𝜇(𝑣), 𝑢 ∈ 𝑆𝑛−1,

with some even finite Borel measure 𝜇 on 𝑆𝑛−1 which is uniquely determined if 𝑝 is not
an even integer. In the following, we will denote by 𝑍(𝑒) an 𝑜-symmetric 𝐿𝑝 zonoid of
revolution with revolution axis 𝑒. For 𝐾 ∈ K𝑛

(𝑜), Haberl and Schuster defined the 𝐿𝑝
Minkowski valuations generated by an 𝐿𝑝 zonoid 𝑍 by

ℎ(𝛷𝑍,p𝐾,𝑢)𝑝 = 1
2

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑢),𝑣)𝑝𝑑𝑆p(𝐾,𝑣).

We refer to Section 4.1 for important volume inequalities by Lutwak, Yang, and Zhang for
the operator 𝛱p and generalizations of these inequalities by Haberl and Schuster for 𝛷𝑍,p.

The 𝐿𝑝 centroid body of a star body 𝐾 is defined by

ℎ(𝛤p𝐾,𝑢)𝑝 = 1
𝑉 (𝐾)

ˆ
𝐾

|𝑢 · 𝑥|𝑝𝑑𝑥

and can also be generalized to the 𝐿𝑝 centroid body generated by 𝑍, given by

ℎ(𝛤𝑍,p𝐾,𝑢)𝑝 = 1
𝑉 (𝐾)

ˆ
𝐾
ℎ(𝑍(𝑢),𝑥)𝑝𝑑𝑥. (2.23)

We remark that this new definition again includes the generalized centroid body 𝛤𝑍𝐾 as a
special case, since ℎ(𝛤𝑍,1𝐾,𝑢) = ℎ(𝛤𝑍𝐾,𝑢) is the classical centroid body. By using polar
coordinates, this can be written as

ℎ(𝛤𝑍,p𝐾,𝑢)𝑝 = 1
(𝑛+ 𝑝)𝑉 (𝐾)

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑢),𝑣)𝑝𝜌(𝐾,𝑣)𝑛+𝑝𝑑𝑆(𝑣). (2.24)

For further results on these operators, we refer the reader to Section 4.1.
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2.5 Generalized intersection bodies
In this section we recall the definition of intersection bodies of order 𝑖 for 0 < 𝑖 ≤ 𝑛− 1
and generalize this notion to a subclass of radial Minkowski valuations.

A radial Minkowski valuation is a map 𝛹 : S𝑛𝑜 → S𝑛𝑜 satisfying

𝛹𝐾+̃1𝛹𝐿 = 𝛹(𝐾 ∪ 𝐿)+̃1𝛹(𝐾 ∩ 𝐿).

These maps have been investigated in [Hab09a; Lud06; Sch06]. An important example of a
radial Minkowski valuation is the intersection body. For 𝐾 ∈ S𝑛𝑜 , the intersection body is
the unique star body I𝐾 defined by

𝜌(I𝐾,𝑢) = 𝑉𝑛−1(𝐾 ∩ 𝑢⊥), 𝑢 ∈ 𝑆𝑛−1.

It was first explicitly defined by Lutwak in [Lut88b] but has appeared earlier in [Bus49].
Lutwak also showed in [Lut91] that the intersection body operator satisfies I𝜑𝐾 = 𝜑−⊤I𝐾
for 𝜑 ∈ 𝑆𝐿(𝑛). Dual to the projection body, Ludwig [Lud06] characterized the intersection
body as the only 𝑆𝐿(𝑛) compatible radial Minkowski valuation. By equation (1.5), the
radial function of the intersection body can also be written for 𝑢 ∈ 𝑆𝑛−1 as

𝜌(I𝐾,𝑢) = (𝑅𝜌(𝐾,·)𝑛−1)(𝑢) = 1
𝑛− 1

ˆ
𝑆𝑛−1∩𝑢⊥

𝜌(𝐾,𝑣)𝑛−1𝑑𝜆𝑆𝑛−1∩𝑢⊥(𝑣), (2.25)

where 𝜆𝑆𝑛−1∩𝑒⊥ denotes the invariant measure concentrated on 𝑆𝑛−1 ∩ 𝑒⊥ with total mass
𝜅𝑛−1 and * is the convolution on the sphere (confer Section 1.3 for details).

For 𝐾1, . . . ,𝐾𝑛−1 ∈ S𝑛𝑜 , mixed intersection bodies were introduced in [Lei98] by

𝜌(I(𝐾1, . . . ,𝐾𝑛−1), 𝑢) = 𝑣(𝐾1 ∩ 𝑢⊥, . . . ,𝐾𝑛−1 ∩ 𝑢⊥),

where 𝑣(𝐾1 ∩ 𝑢⊥, . . . ,𝐾𝑛−1 ∩ 𝑢⊥) denotes the (𝑛 − 1)-dimensional mixed volume of the
star bodies 𝐾1 ∩ 𝑢⊥, . . . ,𝐾𝑛−1 ∩ 𝑢⊥ in 𝑢⊥. This can be rewritten in terms of the integral
representation

𝜌(I(𝐾1, . . . ,𝐾𝑛−1), 𝑢) = 1
𝑛− 1

ˆ
𝑆𝑛−1∩𝑢⊥

𝜌(𝐾1,𝑣) · · · 𝜌(𝐾𝑛−1,𝑣)𝑑𝜆𝑆𝑛−1∩𝑢⊥(𝑣).

If 𝐾1 = · · · = 𝐾𝑖 = 𝐾 and 𝐾𝑖+1 = · · · = 𝐾𝑛−1 = 𝐵, then we introduce the intersection
body maps of order 𝑖 by

𝜌(I𝑖𝐾,𝑢) := 𝜌(I(𝐾[𝑖], 𝐵[𝑛− 𝑖− 1]), 𝑢) = 𝑣(𝐾 ∩ 𝑢⊥[𝑖], 𝐵 ∩ 𝑢⊥[𝑛− 1 − 𝑖]).

They were first defined by Zhang in [Zha94], where he also showed that

𝜌(I𝑖𝐾,𝑢) = 𝜅𝑛−1
𝜅𝑖

[︁
𝑅𝑛−𝑖,1𝑣𝑜𝑙

⊥
𝑖 (𝐾 ∩ ·)

]︁
(𝑢̄).

It is easy to see from (1.13) that the operators 𝐼𝑖 are 𝑆𝑂(𝑛)-equivariant. For 𝐾 ∈ S𝑛𝑜 and
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0 < 𝑖 < 𝑛− 1, the 𝑖-th intersection bodies also satisfy a Steiner type formula

I(𝐾+̃1𝑟𝐵) =
𝑛−1∑︁
𝑖=0

(︂
𝑛− 1
𝑖

)︂
𝑟𝑛−1−𝑖I𝑖𝐾.

In analogy to Proposition 2.13, the class of intersection bodies is given by those 𝐿 ∈ S𝑛𝑜
such that there is a finite non-negative Borel measure 𝜈 on 𝑆𝑛−1 with 𝜌(𝐿,·) = 𝑅𝜈, in the
sense that ˆ

𝑆𝑛−1
𝜌(𝐿, 𝑢)𝑓(𝑢)𝑑𝑢 =

ˆ
𝑆𝑛−1

𝑅𝑓(𝑢)𝑑𝜈(𝑢)

for every 𝑓 ∈ 𝐶(𝑆𝑛−1). By (2.25), the intersection body of a star body is an example of a
body from the class of intersection bodies. We define the operators 𝛹𝜈 for 𝜈 ∈ M+(𝑆𝑛−1, 𝑒)
by

𝜌(𝛹𝜈𝐾, ·) := 𝜌𝑛−1(𝐾, ·) *𝑅𝜈 = 𝜌𝑛−1(𝐾, ·) * (𝜈 * 𝜆𝑆𝑛−1∩𝑒⊥). (2.26)

In analogy to definition (2.15), for an intersection body 𝐿 with 𝜌(𝐿,·) = 𝑅𝜈 this just
becomes

𝜌(𝛹𝐿𝐾, ·) := 𝜌𝑛−1(𝐾, ·) * 𝜌(𝐿,·).

These radial valuations satisfy a Steiner type formula by (1.9). We introduce the corre-
sponding generalizations for the 𝑖-th intersection bodies by

𝛹𝜈(𝐾+̃𝑟𝐵) =
𝑛−1∑︁
𝑖=0

(︂
𝑛− 1
𝑖

)︂
𝑟𝑛−1−𝑖𝛹𝜈,𝑖𝐾.

They can be written in the form

𝜌(𝛹𝜈,𝑖𝐾, ·) := 𝑅𝜌𝑖(𝐾, ·). (2.27)

By identity (1.13), the operators 𝛹𝜈,𝑖 are SO(𝑛)-equivariant. In analogy to Lemma 2.15, it
is now possible to get a corresponding integral representation also for the 𝛹𝜈,𝑖.

Lemma 2.18. For 𝐾 ∈ S𝑛𝑜 and 𝜈 ∈ M+(𝑆𝑛−1, 𝑒), the radial function of 𝛹𝜈,𝑖𝐾, 1 ≤ 𝑖 ≤ 𝑛−1
has the representation

𝜌(𝛹𝜈,𝑖𝐾, 𝜂𝑒) = (𝜌(I𝑖𝐾, ·) * 𝜈) (𝜂𝑒) =
ˆ

SO(𝑛)
𝜌(I𝑖𝐾,𝜑𝜂)𝑑𝜇𝜂(𝜑),

where 𝜇𝜂 := ℎ𝜂#𝜈.

Proof. The first equation follows from the commutativity of the spherical convolution of
zonal measures and the associativity of convolution (1.15), since

𝜌(𝛹𝜈,𝑖𝐾, ·) = 𝜌𝑖(𝐾, ·) * (𝜈 * 𝜆𝑆𝑛−1∩𝑒⊥)
= (𝜌𝑖(𝐾, ·) * 𝜆𝑆𝑛−1∩𝑒⊥) * 𝜈
= 𝜌(I𝑖𝐾, ·) * 𝜈.
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The normalization 𝜈(𝑆𝑛−1) = 𝑛𝜅𝑛 corresponds to 𝜌(𝛹𝜈𝐵, ·) = 1 or 𝜈(𝑂(𝑛)) = 1. If we
rewrite this with the corresponding measure on 𝑂(𝑛), we obtain

𝜌(𝛹𝜈,𝑖𝐾, 𝜂𝑒) =
ˆ

SO(𝑛)
𝜌(I𝑖𝐾, 𝜂𝜙−1)𝑑𝜈(𝜙).

Setting ℎ𝜂(𝜙) := 𝜂𝜙−1𝜂−1 and using the change of variables formula yields
ˆ

SO(𝑛)
𝜌(I𝑖𝐾, 𝜂𝜙−1)𝑑𝜈(𝜙) =

ˆ
SO(𝑛)

𝜌(I𝑖𝐾,ℎ𝜂(𝜙)𝜂)𝑑𝜈(𝜙) =
ˆ

SO(𝑛)
𝜌(I𝑖𝐾,𝜑𝜂)𝑑(ℎ𝜂#𝜈)(𝜑).

With 𝜇𝜂 := ℎ𝜂#𝜈 we therefore obtain the desired representation

𝜌(𝛹𝜈,𝑖𝐾, ·) =
ˆ

SO(𝑛)
𝜌(I𝑖𝐾,𝜑𝜂)𝑑𝜇𝜂(𝜑).



CHAPTER 3
Log-concavity properties of Minkowski valuations

3.1 Log-concavity properties of classical functionals
The fundamental log-concavity property of the volume functional is
expressed by the multiplicative form of the Brunn–Minkowski inequality:

𝑉𝑛((1 − 𝜆)𝐾 + 𝜆𝐿) ≥ 𝑉𝑛(𝐾)1−𝜆𝑉𝑛(𝐿)𝜆, (3.1)

where 𝐾 and 𝐿 are convex bodies (non-empty compact convex sets) in R𝑛 with non-empty
interiors, 0 < 𝜆 < 1, and + denotes Minkowski addition. Equality holds in (3.1) if and only
if 𝐾 and 𝐿 are translates of each other. The excellent survey of Gardner [Gar02] gives a
comprehensive overview of different aspects and consequences of the Brunn–Minkowski
inequality.

A consequence of the Minkowski inequality (1.8) and the homogeneity of quermassinte-
grals is the (multiplicative) Brunn–Minkowski inequality for quermassintegrals: If 2 ≤ 𝑖 ≤ 𝑛
and 𝐾,𝐿 ∈ K𝑛 have dimension at least 𝑖, then for all 𝜆 ∈ (0,1),

𝑊𝑛−𝑖((1 − 𝜆)𝐾 + 𝜆𝐿) ≥ 𝑊𝑛−𝑖(𝐾)1−𝜆𝑊𝑛−𝑖(𝐿)𝜆, (3.2)

with equality if and only if 𝐾 and 𝐿 are translates of each other.
A further generalization of inequality (3.2) (where the equality conditions are not yet

known) is the following (see [Sch14, p. 406]): If 0 ≤ 𝑖 ≤ 𝑛− 2, 𝐾,𝐿,𝐾1, . . . ,𝐾𝑖 ∈ K𝑛 and
C = (𝐾1,...,𝐾𝑖), then for all 𝜆 ∈ (0,1),

𝑉𝑖((1 − 𝜆)𝐾 + 𝜆𝐿,C) ≥ 𝑉𝑖(𝐾,C)1−𝜆𝑉𝑖(𝐿,C)𝜆. (3.3)

The problem of finding sharp bounds for the volume of projection bodies, given the volume
of the original body, has sparked the investigation of log-concavity properties of another
class of geometric functionals associated with a convex body. In 1993, Lutwak [Lut93a]
established not only Brunn–Minkowski type inequalities for the volume of projection bodies,
but for all the intrinsic volumes of projection bodies of arbitrary order. In an equivalent
multiplicative form, his result states the following: If 𝐾,𝐿 ∈ K𝑛 have non-empty interiors,
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1 ≤ 𝑖 ≤ 𝑛, and 2 ≤ 𝑗 ≤ 𝑛− 1, then for all 𝜆 ∈ (0,1),

𝑉𝑖(𝛱𝑗((1 − 𝜆)𝐾 + 𝜆𝐿)) ≥ 𝑉𝑖(𝛱𝑗𝐾)1−𝜆𝑉𝑖(𝛱𝑗𝐿)𝜆, (3.4)

with equality if and only if 𝐾 and 𝐿 are translates of each other. In the next section, we
will discuss various generalizations of these results.

3.2 Extensions of the classical results
Inequalities (3.4) have been generalized in different directions; Abardia and Bernig [Aba11],
for example, extended (3.4) to the entire class of complex projection bodies.

In this thesis we investigate a common generalization of Lutwak’s Brunn–Minkowski
inequalities for projection bodies and inequality (3.1), more specifically, its version for all
the intrinsic volumes. To be more precise, we establish new log-concavity properties of
intrinsic volumes of convex-body-valued valuations which intertwine rigid motions.

In recent years, it has become apparent that several geometric inequalities for projection
bodies and, more general, valuations intertwining the group of affine transformations,
in fact, hold for much larger classes of valuations intertwining merely rigid motions.
First such results were obtained in [Sch06], where the Brunn–Minkowski inequalities for
projection bodies of Lutwak were generalized to translation-invariant and SO(𝑛)-equivariant
Minkowski valuations of degree 𝑛− 1 and then in [Sch10] for even valuations in MVal𝑗
in the case 𝑖 = 𝑗 + 1. The assumption on the parity could later be omitted in [Ale11b].
Although considerable efforts have been invested ever since to show that these log-concavity
properties extend to Minkowski valuations of arbitrary degree (see [Ale11b; Par12; Sch10]),
the conjectured complete family of inequalities has only partially been obtained.

In the Euclidean setting, the most general result to date can be stated (in multiplicative
form) as follows:
Theorem 3.1 [Par12] Let 𝛷𝑗 ∈ MVal𝑗, 2 ≤ 𝑗 ≤ 𝑛− 1, be non-trivial. If 𝐾,𝐿 ∈ K𝑛 and
1 ≤ 𝑖 ≤ 𝑗 + 1, then for all 𝜆 ∈ (0,1),

𝑉𝑖(𝛷𝑗((1 − 𝜆)𝐾 + 𝜆𝐿)) ≥ 𝑉𝑖(𝛷𝑗𝐾)1−𝜆𝑉𝑖(𝛷𝑗𝐿)𝜆. (3.5)

If 𝐾 and 𝐿 are of class 𝐶2
+, then equality holds if and only if 𝐾 and 𝐿 are translates of

each other.
Note that Theorem 3.1 establishes (3.5) only for 1 ≤ 𝑖 ≤ 𝑗+1, while in Lutwak’s family of

inequalities (3.4) the range of 𝑖 does not depend on 𝑗. For the inequalities established so far,
two different approaches were used. While in [Sch06] and [Sch10] integral representations
of (even) Minkowski valuations which are translation-invariant and SO(𝑛)-equivariant were
crucial, in [Par12] the Hard Lefschetz derivation operator on Minkowski valuations from
(2.9), together with a symmetry property of bivaluations [Ale11b], were crucial. The key
to the proof of Theorem 3.1 was the following generalization of a symmetry property of
bivaluations obtained in [Ale11b].
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Theorem 3.2 ([Par12]). Let 𝛷𝑗 ∈ MVal𝑗, 2 ≤ 𝑗 ≤ 𝑛− 1. If 1 ≤ 𝑖 ≤ 𝑗 + 1, then

𝑊𝑛−𝑖(𝐾,𝛷𝑗𝐿) = (𝑖− 1)!
𝑗! 𝑊𝑛−𝑗−1(𝐿,(𝛬𝑗+1−𝑖𝛷𝑗)(𝐾)) (3.6)

for every 𝐾,𝐿 ∈ K𝑛.

We will see that Theorem 3.2 follows directly from a recently obtained integral represen-
tation of Minkowski valuations intertwining rigid motions.

An obvious idea for a proof of (3.5) for the remaining cases 𝑗 + 2 ≤ 𝑖 ≤ 𝑛 is to establish
a counterpart of Theorem 3.2 for the Hard Lefschetz integration operator given by (2.8).
However, the situation is more delicate in this case and we will see that a full analog of
(3.6) only holds for a subclass of Minkowski valuations, namely the class given by Definition
2.11. Our counterpart of Theorem 3.2 can be stated as follows:

Theorem 3.3. Let 𝛷𝑗 ∈ MVal∞𝑗 , 2 ≤ 𝑗 ≤ 𝑛 − 1. For 𝑗 + 2 ≤ 𝑖 ≤ 𝑛 and every convex
body 𝐿 ∈ K𝑛, there exists a generalized valuation 𝛾𝑖,𝑗(𝐿,·) ∈ Val−∞

1 such that

𝑊𝑛−𝑖(𝐾,𝛷𝑗𝐿) = 𝛾𝑖,𝑗(𝐿,(L𝑖−𝑗−1𝛷𝑗)(𝐾))

for every 𝐾 ∈ K𝑛. Moreover, if 𝛷𝑗 ∈ MVal∞𝑗,𝑖−1, then

𝛾𝑖,𝑗(𝐿,(L𝑖−𝑗−1𝛷𝑗)(𝐾)) = (𝑖− 1)!
𝑗! 𝑊𝑛−1−𝑗(𝐿,(𝛬𝑗+1−𝑖𝛷𝑗)(𝐾)).

Proof. First define an isomorphism 𝛩𝑗 : 𝐶∞
o (𝑆𝑛−1) → 𝐶∞

o (𝑆𝑛−1) by

𝛩𝑗𝜁 = 𝑐𝑛,𝑗�𝑛−𝑗+1𝜁 * 𝑔𝑛−𝑗 = 𝑐𝑛,𝑗 𝜁 * �𝑛−𝑗+1𝑔𝑛−𝑗 ,

where the constant 𝑐𝑛,𝑗 > 0 is as in Theorem 2.10 (b). Here, the second equality follows from
the fact that multiplier transformations commute and �𝑛−𝑗+1𝑔𝑛−𝑗 is to be understood in
the sense of distributions, where we use the canonical extension of the self-adjoint operator
�𝑛−𝑗+1 to 𝐶−∞

o (𝑆𝑛−1).
Let 𝜏𝑒 = 𝛿𝑒 − 𝜋1𝛿𝑒 ∈ Mo(𝑆𝑛−1), where 𝛿𝑒 is the Dirac measure supported in 𝑒 ∈ 𝑆𝑛−1.

Then, by (1.14), 𝜁 * 𝜏𝑒 = 𝜁 for every 𝜁 ∈ 𝐶∞
o (𝑆𝑛−1). Now, since �𝑘𝑔𝑘 = 𝜏𝑒, it follows

from Theorem 2.10 (b) that if 𝑓 ∈ 𝐶∞
o (𝑆𝑛−1,𝑒) is the generating function of 𝛷𝑗 , then

L𝑖−𝑗−1𝛷𝑗 ∈ MVal∞𝑖−1 is generated by

𝛩𝑖−2𝛩𝑖−1 · · ·𝛩𝑗+1𝛩𝑗𝑓 = 𝑞𝑛,𝑖,𝑗�𝑛−𝑗+1𝑓 * 𝑔𝑛−𝑖+2, (3.7)

where 𝑞𝑛,𝑖,𝑗 =
∏︀𝑖−2
𝑚=𝑗 𝑐𝑛,𝑚 > 0. Note that the inverse of the isomorphism (3.7) is, for

𝜁 ∈ 𝐶∞
o (𝑆𝑛−1), given by

𝑞−1
𝑛,𝑖,𝑗�𝑛−𝑖+2𝜁 * 𝑔𝑛−𝑗+1.

For every 𝐿 ∈ K𝑛 we define a distribution 𝑇𝑖,𝑗(𝐿) ∈ 𝐶−∞
o (𝑆𝑛−1) by

⟨𝜁, 𝑇𝑖,𝑗(𝐿)⟩ = 𝑞−1
𝑛,𝑖,𝑗

ˆ
𝑆𝑛−1

(�𝑛−𝑖+2𝜁 * 𝑔𝑛−𝑗+1)(𝑢) 𝑑𝑆𝑗(𝐿,𝑢)
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for 𝜁 ∈ 𝐶∞
o (𝑆𝑛−1). Let 𝛾𝑖,𝑗(𝐿,·) ∈ Val−∞

1 be the generalized valuation corresponding to
𝑇𝑖,𝑗(𝐿) determined by Theorem 2.6.

Since L𝑖−𝑗−1𝛷𝑗 is smooth, it follows that ℎ((L𝑖−𝑗−1𝛷𝑗)(𝐾),·) is smooth for every 𝐾 ∈ K𝑛.
Hence, we can evaluate 𝛾𝑖,𝑗(𝐿,·) on (L𝑖−𝑗−1𝛷𝑗)(𝐾). Using that

ℎ((L𝑖−𝑗−1𝛷𝑗)(𝐾),·) = 𝑞𝑛,𝑖,𝑗 𝑆𝑖−1(𝐾,·) * (�𝑛−𝑗+1𝑓 * 𝑔𝑛−𝑖+2),

we obtain

𝛾𝑖,𝑗(𝐿,(L𝑖−𝑗−1𝛷𝑗)(𝐾)) = ⟨ℎ((L𝑖−𝑗−1𝛷𝑗)(𝐾),·), 𝑇𝑖,𝑗(𝐿)⟩

=
ˆ
𝑆𝑛−1

(𝑆𝑖−1(𝐾,·) * 𝑓)(𝑢) 𝑑𝑆𝑗(𝐿,𝑢).

Now on the one hand it follows from (1.16), that

𝛾𝑖,𝑗(𝐿,(L𝑖−𝑗−1𝛷𝑗)(𝐾)) =
ˆ
𝑆𝑛−1

(𝑆𝑗(𝐿,·) *𝑓)(𝑢) 𝑑𝑆𝑖−1(𝐾,𝑢) = 𝑊𝑛−𝑖(𝐾,𝛷𝑗𝐿).

On the other hand, if 𝛷𝑗 ∈ MVal∞𝑗,𝑖−1, then, by Theorem 2.10 (a),

𝑆𝑖−1(𝐾,·) * 𝑓 = (𝑖− 1)!
𝑗! ℎ((𝛬𝑗+1−𝑖𝛷𝑗)(𝐾),·)

and, thus,
𝛾𝑖,𝑗(𝐿,(L𝑖−𝑗−1𝛷𝑗)(𝐾)) = (𝑖− 1)!

𝑗! 𝑊𝑛−1−𝑗(𝐿,(𝛬𝑗+1−𝑖𝛷𝑗)(𝐾))

which completes the proof.

Note that, by Theorem 1.6 and Lemma 1.4, �𝑛−𝑖+2𝑔𝑛−𝑗+1 ∈ 𝐶−∞
o (𝑆𝑛−1) and that if

𝑓 ∈ 𝐶o(𝑆𝑛−1), then also

𝑓 * �𝑛−𝑖+2𝑔𝑛−𝑗+1 = �𝑛−𝑖+2𝑓 * 𝑔𝑛−𝑗+1 ∈ 𝐶−∞
o (𝑆𝑛−1). (3.8)

However, in general (3.8) does not define a continuous function on 𝑆𝑛−1 if 𝑓 is merely
continuous.

Next, we note that using Theorem 2.9 we can also give a new and short proof of
Theorem 3.2: If 𝛷𝑗 ∈ MVal∞𝑗 , 2 ≤ 𝑗 ≤ 𝑛− 1, has generating function 𝑓 ∈ 𝐶∞

o (𝑆𝑛−1) and
1 ≤ 𝑖 ≤ 𝑗 + 1, then, by (1.16) and Theorem 2.10 (a),

𝑊𝑛−𝑖(𝐾,𝛷𝑗𝐿) =
ˆ
𝑆𝑛−1

(𝑆𝑖−1(𝐾,·) * 𝑓)(𝑢) 𝑑𝑆𝑗(𝐿,𝑢)

= (𝑖− 1)!
𝑗! 𝑊𝑛−𝑗−1(𝐿,(𝛬𝑗+1−𝑖𝛷𝑗)(𝐾))

for every 𝐾,𝐿 ∈ K𝑛.
Putting together Theorem 3.2 and Theorem 3.3, we obtain the following.
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Corollary 3.4. For 1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤ 𝑛− 1, and 𝛷𝑗 ∈ MVal∞𝑗,𝑖−1, we have

𝑊𝑛−𝑖(𝐾,𝛷𝑗𝐿) = (𝑖− 1)!
𝑗! 𝑊𝑛−1−𝑗(𝐿,(𝛬𝑗+1−𝑖𝛷𝑗)(𝐾)) (3.9)

for every 𝐾,𝐿 ∈ K𝑛.

Using Theorem 3.3, we establish the following result.

Theorem 3.5. Let 1 ≤ 𝑖 ≤ 𝑛 and let 𝛷𝑗 ∈ MVal𝑗,𝑖−1, 2 ≤ 𝑗 ≤ 𝑛 − 1, be non-trivial. If
𝐾,𝐿 ∈ K𝑛 have non-empty interiors, then for all 𝜆 ∈ (0,1),

𝑊𝑛−𝑖(𝛷𝑗((1 − 𝜆)𝐾 + 𝜆𝐿)) ≥ 𝑊𝑛−𝑖(𝛷𝑗𝐾)1−𝜆𝑊𝑛−𝑖(𝛷𝑗𝐿)𝜆, (3.10)

with equality if and only if 𝐾 and 𝐿 are translates of each other.

Since MVal𝑗,𝑖−1 = MVal𝑗 for 𝑖 ≤ 𝑗 + 1, Theorem 3.5 includes both
Lutwak’s inequalities (3.4) and Theorem 3.1 as special cases. Also note that the smoothness
assumption for the bodies 𝐾 and 𝐿 in the equality conditions of (3.5) is no longer required.
This follows from new monotonicity properties of the Minkowski valuations in MVal𝑗,𝑖−1
(confer Lemma 3.7).

We also show that our proof of Theorem 3.5 can be modified to yield an even stronger
result. More precisely, we show that (3.10) not only holds for the usual Minkowski addition
but, in fact, for all commutative Orlicz Minkowski additions introduced by Gardner, Hug,
and Weil [Gar14]. In particular, this includes all the 𝐿𝑝 Minkowski additions. We first
state the result.

Theorem 3.6. Let 𝜙 ∈ 𝛩1, 1 ≤ 𝑖 ≤ 𝑛, and let 𝛷𝑗 ∈ MVal𝑗,𝑖−1, 2 ≤ 𝑗 ≤ 𝑛 − 1, be
non-trivial. If 𝐾,𝐿 ∈ K𝑛 contain the origin, then for all 𝜆 ∈ (0,1),

𝑊𝑛−𝑖(𝛷𝑗(𝐾 +𝜙,𝜆 𝐿)) ≥ 𝑊𝑛−𝑖(𝛷𝑗𝐾)1−𝜆𝑊𝑛−𝑖(𝛷𝑗𝐿)𝜆. (3.11)

When 𝜙 is strictly convex and 𝐾 and 𝐿 have non-empty interiors, equality holds if and
only if 𝐾 = 𝐿.

For the proof of Theorem 3.6 and in order to establish the equality cases in Theorem
3.5, we need the following monotonicity property of Minkowski valuations:

Lemma 3.7. Suppose that 1 ≤ 𝑖 ≤ 𝑛, 2 ≤ 𝑗 ≤ 𝑛−1, and let 𝛷𝑗 ∈ MVal𝑗,𝑖−1 be non-trivial.
If 𝐾,𝐿 ∈ K𝑛 have non-empty interiors, then 𝐾 ⊆ 𝐿 implies that

𝑊𝑛−𝑖(𝛷𝑗𝐾) ≤ 𝑊𝑛−𝑖(𝛷𝑗𝐿), (3.12)

with equality if and only if 𝐾 = 𝐿. In particular, 𝑊𝑛−𝑖(𝛷𝑗𝐾) > 0 for every 𝐾 ∈ K𝑛 with
non-empty interior.

Proof. We first assume that 𝑖 ≥ 2, that 𝛷𝑗 is smooth and that 𝐾 and 𝐿 are of class 𝐶2
+. In

this case, it was proved in [Par12, p. 992] that 𝛷𝑗𝐾 and 𝛷𝑗𝐿 also have non-empty interiors.
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Moreover, by (3.9) and the monotonicity of mixed volumes, we have for every 𝑄 ∈ K𝑛,

𝑊𝑛−𝑖(𝑄,𝛷𝑗𝐿) = (𝑖− 1)!
𝑗! 𝑊𝑛−1−𝑗(𝐿,(𝛬𝑗+1−𝑖𝛷𝑗)(𝑄))

≥ (𝑖− 1)!
𝑗! 𝑊𝑛−1−𝑗(𝐾,(𝛬𝑗+1−𝑖𝛷𝑗)(𝑄)) = 𝑊𝑛−𝑖(𝑄,𝛷𝑗𝐾).

Thus, taking 𝑄 = 𝛷𝑗𝐿 and using inequality (1.8), yields

𝑊𝑛−𝑖(𝛷𝑗𝐿)𝑖 ≥ 𝑊𝑛−𝑖(𝛷𝑗𝐿,𝛷𝑗𝐾)𝑖 ≥ 𝑊𝑛−𝑖(𝛷𝑗𝐿)𝑖−1𝑊𝑛−𝑖(𝛷𝑗𝐾)

which implies (3.12) since 𝑊𝑛−𝑖(𝛷𝑗𝐿) > 0. If 𝛷𝑗 ∈ MVal𝑗,𝑖−1 is not smooth and 𝐾 and 𝐿
are arbitrary, (3.12) follows by approximation.

In order to establish the equality conditions first note that, by the SO(𝑛)-equivariance of
𝛷𝑗 , the convex body 𝛷𝑗𝐵 must be an 𝑜-symmetric ball. Moreover, from Lemma 2.7 (b), it
follows that 𝛷𝑗𝐵 = 𝑟𝛷𝑗𝐵, where 𝑟𝛷𝑗 > 0. Thus, since 𝐾 and 𝐿 have non-empty interiors,
we conclude from (3.12) that 𝑊𝑛−𝑖(𝛷𝑗𝐾),𝑊𝑛−𝑖(𝛷𝑗𝐿) > 0 or, equivalently, that 𝛷𝑗𝐾 and
𝛷𝑗𝐿 have dimension at least 𝑖 holds for all 𝐾,𝐿 ∈ K𝑛 with non-empty interiors.

Assume now that equality holds in (3.12). Then, by the equality conditions of (1.8) and
Lemma 2.7 (a), there exists an 𝛼 > 0 such that 𝛷𝑗𝐾 = 𝛼𝛷𝑗𝐿. It follows from equality in
(3.12) that 𝛼 = 1. Thus, by Lemma 2.7 (b), we have

𝑊𝑛−𝑗(𝐾) = 𝑟−1
𝛷𝑗
𝑊𝑛−1(𝛷𝑗𝐾) = 𝑟−1

𝛷𝑗
𝑊𝑛−1(𝛷𝑗𝐿) = 𝑊𝑛−𝑗(𝐿). (3.13)

Using again the monotonicity of mixed volumes and (1.8), we obtain

𝑊𝑛−𝑗(𝐿)𝑗 = 𝑊𝑛−𝑗(𝐿,𝐿)𝑗 ≥ 𝑊𝑛−𝑗(𝐿,𝐾)𝑗 ≥ 𝑊𝑛−𝑗(𝐿)𝑗−1𝑊𝑛−𝑗(𝐾).

From (3.13) and the equality conditions of inequality (1.8), we conclude that 𝐾 is a
translate of 𝐿. But since 𝐾 ⊆ 𝐿, we must have 𝐾 = 𝐿.

Inequality (3.12) for 𝑖 = 1 follows directly from Lemma 2.7 (b) and the monotonicity of
quermassintegrals. If equality holds in (3.12) for 𝑖 = 1, then we have (3.13) and therefore,
as before, obtain that 𝐾 = 𝐿.

In contrast to Lemma 3.7, we note that not every Minkowski valuation 𝛷𝑗 ∈ MVal𝑗,𝑖−1
is monotone with respect to set inclusion (cf. [Kid06]). However, all known examples of
Minkowski valuations 𝛷𝑗 ∈ MVal𝑗 , 1 ≤ 𝑗 ≤ 𝑛− 1 are weakly monotone , that is, for every
pair of convex bodies 𝐾,𝐿 ∈ K𝑛 such that 𝐾 ⊆ 𝐿, there exists a vector 𝑥(𝐾,𝐿) ∈ R𝑛 such
that

𝛷𝑗𝐾 ⊆ 𝛷𝑗𝐿+ 𝑥(𝐾,𝐿).

It is an open problem whether all translation-invariant and SO(𝑛)-equivariant Minkowski
valuations are weakly monotone. Using arguments as in the proof of Lemma 3.7, we can
show the following.
Proposition 3.8. Suppose that 2 ≤ 𝑗 ≤ 𝑛 − 1. If 𝛷𝑗 ∈ MVal𝑗,𝑛−1, then 𝛷𝑗 is weakly
monotone.
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Proof. Without loss of generality we may assume that 𝛷𝑗 is smooth. If 𝐾,𝐿 ∈ K𝑛 such
that 𝐾 ⊆ 𝐿, then, as in Lemma 3.7, it follows from (3.9) and the monotonicity of mixed
volumes that for every 𝑄 ∈ K𝑛,

𝑊0(𝑄,𝛷𝑗𝐿) = (𝑛− 1)!
𝑗! 𝑊𝑛−1−𝑗(𝐿,(𝛬𝑗+1−𝑛𝛷𝑗)(𝑄))

≥ (𝑛− 1)!
𝑗! 𝑊𝑛−1−𝑗(𝐾,(𝛬𝑗+1−𝑛𝛷𝑗)(𝑄)) = 𝑊0(𝑄,𝛷𝑗𝐾).

But it is well known (cf. [Sch07, Corollary 4.3]) that 𝑊0(𝑄,𝛷𝑗𝐾) ≤ 𝑊0(𝑄,𝛷𝑗𝐿) for every
𝑄 ∈ K𝑛 implies 𝛷𝑗𝐾 ⊆ 𝛷𝑗𝐿+ 𝑥 for some 𝑥 ∈ R𝑛.

We return now to the proof of Theorem 3.5.

Proof of Theorem 3.5. First we assume that 𝑖 ≥ 2 and that 𝛷𝑗 is smooth. We also use the
abbreviations 𝐾𝜆 = (1 − 𝜆)𝐾 + 𝜆𝐿 and 𝑄 = 𝛷𝑗𝐾𝜆. Then, by (3.9),

𝑊𝑛−𝑖(𝛷𝑗𝐾𝜆) = 𝑊𝑛−𝑖(𝑄,𝛷𝑗𝐾𝜆) = (𝑖− 1)!
𝑗! 𝑊𝑛−1−𝑗(𝐾𝜆,(𝛬𝑗+1−𝑖𝛷𝑗)(𝑄)).

From an application of inequality (3.3), we therefore obtain

𝑊𝑛−𝑖(𝛷𝑗𝐾𝜆)≥(𝑖−1)!
𝑗! 𝑊𝑛-1-𝑗(𝐾,(𝛬𝑗+1−𝑖𝛷𝑗)(𝑄))1−𝜆𝑊𝑛-1-𝑗(𝐿,(𝛬𝑗+1−𝑖𝛷𝑗)(𝑄))𝜆.

Thus, using (3.9) again, we obtain

𝑊𝑛−𝑖(𝛷𝑗𝐾𝜆)𝑖 ≥ 𝑊𝑛−𝑖(𝑄,𝛷𝑗𝐾)𝑖(1−𝜆)𝑊𝑛−𝑖(𝑄,𝛷𝑗𝐿)𝑖𝜆.

Now, if 𝛷𝑗 ∈ MVal𝑗,𝑖−1 is not smooth, then this inequality still follows by approximation.
Hence, using (1.8) and the fact that, by Lemma 3.7, 𝑊𝑛−𝑖(𝑄) > 0, we arrive at

𝑊𝑛−𝑖(𝛷𝑗𝐾𝜆)𝑖 ≥ 𝑊𝑛−𝑖(𝑄)𝑖−1𝑊𝑛−𝑖(𝛷𝑗𝐾)1−𝜆𝑊𝑛−𝑖(𝛷𝑗𝐿)𝜆,

which, by the definitions of 𝛷𝑗𝐾𝜆 and 𝑄, is the desired inequality (3.10).
In order to establish the equality conditions, first note that by Lemma 3.7, 𝛷𝑗𝐾, 𝛷𝑗𝐿

and 𝛷𝑗𝐾𝜆 all have dimension at least 𝑖. Therefore, the equality conditions of inequality
(1.8) imply that 𝛷𝑗𝐾 is homothetic to 𝛷𝑗𝐾𝜆, which is in turn homothetic to 𝛷𝑗𝐿. In fact,
by Lemma 2.7 (a), they have to be dilates of one another, that is, there exist 𝑡1, 𝑡2 > 0
such that

𝑡1𝛷𝑗𝐾 = 𝛷𝑗𝐾𝜆 = 𝑡2𝛷𝑗𝐿,

where 1 = 𝑡1−𝜆
1 𝑡𝜆2 , by the equality in (3.10). Moreover, an application of Lemma 2.7 (b)

yields 𝑡1𝑊𝑛−𝑗(𝐾) = 𝑊𝑛−𝑗(𝐾𝜆) = 𝑡2𝑊𝑛−𝑗(𝐿). Consequently, we have

𝑊𝑛−𝑗(𝐾𝜆) = 𝑊𝑛−𝑗(𝐾)1−𝜆𝑊𝑛−𝑗(𝐿)𝜆.

By the equality conditions of inequality (3.2), this is possible only if 𝐾 and 𝐿 are translates.
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This completes the proof for 𝑖 ≥ 2. If 𝑖 = 1, then the statement is an immediate consequence
of Lemma 2.7 (b) and (3.2).

It remains to complete the proof of Theorem 3.6.

Proof of Theorem 3.6. First note that inequality (3.11) follows from Lemma 1.9, Lemma
3.7, and Theorem 3.5. In order to establish the equality conditions, let 𝜙 be strictly convex
and let 𝐾 and 𝐿 have non-empty interiors. It follows from the equality conditions of
Lemma 3.7 that

𝐾 +𝜙,𝜆 𝐿 = (1 − 𝜆)𝐾 + 𝜆𝐿. (3.14)

We want to show that this is possible only if 𝐾 = 𝐿 or, equivalently, if ℎ(𝐾,𝑢) = ℎ(𝐿,𝑢) for
all 𝑢 ∈ 𝑆𝑛−1. If ℎ(𝐾,𝑢) = ℎ(𝐿,𝑢) = 0, then there is nothing to prove. Therefore, we may
assume that ℎ(𝐾 +𝜙,𝜆 𝐿,𝑢) > 0. Now from the definition of the Orlicz convex combination
and (3.14), together with the convexity of 𝜙 and our assumption that 𝜙(1) = 1, we obtain

𝜙

(︂
(1 − 𝜆)ℎ(𝐾,𝑢) + 𝜆ℎ(𝐿,𝑢)

ℎ(𝐾 +𝜙,𝜆 𝐿,𝑢)

)︂
= 1.

But since we have assumed that 𝜙 is strictly convex, this implies that ℎ(𝐾,𝑢) = ℎ(𝐿,𝑢).

Like the classical inequality (3.2), Theorem 3.5 as well as Theorem 3.6 in case of a
homogeneous addition are equivalent to corresponding additive versions. Here we state
one such additive version for 𝐿𝑝 Minkowski addition.

Corollary 3.9. Let 𝑝 > 1, 1 ≤ 𝑖 ≤ 𝑛, and let 𝛷𝑗 ∈ MVal𝑗,𝑖−1, 2 ≤ 𝑗 ≤ 𝑛 − 1, be
non-trivial. If 𝐾,𝐿 ∈ K𝑛 contain the origin in their interiors, then

𝑉𝑖(𝛷𝑗((1 − 𝜆) ·𝐾 +𝑝 𝜆 · 𝐿))
𝑝
𝑖𝑗 ≥ (1 − 𝜆)𝑉𝑖(𝛷𝑗𝐾)

𝑝
𝑖𝑗 + 𝜆𝑉𝑖(𝛷𝑗𝐿)

𝑝
𝑖𝑗 ,

with equality if and only if 𝐾 and 𝐿 are dilates of each other.

We finally remark that the special case 𝑗 = 𝑛− 1 of Corollary 3.9 was recently obtained
by Wang [Wan13].



CHAPTER 4
Lutwak–Petty projection inequalities for Minkowski valuations and their
duals

4.1 Petty projection inequality and generalizations
The polar Petty projection inequality [Pet71] states that for the operator 𝛱 = 𝛱𝑛−1, the
inequality

𝑉 (𝐾)𝑛−1𝑉 (𝛱*𝐾) ≤ 𝑉 (𝐵)𝑛−1𝑉 (𝛱*𝐵)

holds for all 𝐾 ∈ K𝑛
𝑛, with equality if and only if 𝐾 is an ellipsoid. This now classical result

is considerably stronger than the Euclidean isoperimetric inequality and still has significant
impact on current research. Although the projection body map was already introduced by
Minkowski at the turn of the previous century, its fundamental role in convex geometry
only became apparent through the work of Petty [Pet61; Pet67], Schneider [Sch67] and
Bolker [Bol69]. Various generalizations of the polar Petty projection inequality have been
obtained in recent years (see [Bör13; Hab09b; Lut00b; Lut10a] for extensions to the 𝐿𝑝
and the Orlicz–Brunn–Minkowski theories and [Wan12] for the extension to sets of finite
perimeter). In [Lut85], Lutwak established a version of this inequality for projection bodies
of all orders, the Lutwak–Petty projection inequalities. His result states that for 𝐾 ∈ K𝑛

𝑛

and 0 < 𝑖 < 𝑛− 1,
𝑉 (𝐾)𝑖𝑉 (𝛱*

𝑖𝐾) ≤ 𝑉 (𝐵)𝑖𝑉 (𝛱*
𝑖 𝐵), (4.1)

with equality if and only if 𝐾 is a ball. The inequalities (4.1) strengthen the classical
inequalities between volume and quermassintegrals, since

𝜅𝑛−𝑖
𝑛 𝑉 (𝐾)𝑖 ≤ 𝜅−𝑛

𝑛−1𝜅
𝑛+1
𝑛 𝑉 −1(𝛱*

𝑖𝐾) ≤ 𝑊𝑛
𝑛−𝑖(𝐾).

A generalization of the polar Petty projection inequality to Minkowski valuations has
recently been established by Haberl and Schuster [Hab] for the operators 𝛷𝑍 , whose
definition we recalled in Section 2.3. These Minkowski valuations are homogeneous of
degree 𝑛− 1 and form an infinite-dimensional cone containing the projection body, which
is obtained by just taking 𝑍 = [−𝑒,𝑒]. Using a new integral representation of these
valuations, Haberl and Schuster established a family of inequalities each of which refines
again the relation between volume and surface area expressed by the Euclidean isoperimetric

47



48 4 Lutwak–Petty projection inequalities for Minkowski valuations and their duals

inequality. Their generalization can be stated as follows:
Theorem 4.1 [Hab] Let 𝐾 ∈ K𝑛

𝑛. Then

𝑉 (𝐾)𝑛−1𝑉 (𝛷*
𝑍𝐾) ≤ 𝑉 (𝐵)𝑛−1𝑉 (𝛷*

𝑍𝐵), (4.2)

with equality

• for 𝑍 = [−𝑒,𝑒] if and only if 𝐾 is an ellipsoid and
• for 𝑍 ̸= [−𝑒,𝑒] if and only if 𝐾 is a ball.

Since the article [Hab] is still in preparation, in order for this thesis to be self-contained,
we will state the proof of Theorem 4.1 in dimensions 𝑛 ≥ 3, taken from an early version of
[Hab].

Proof of Theorem 4.1. In order to prove the inequality, we use (2.17) to write

𝑉 (𝛷*
𝑍𝐾) = 1

𝑛

ˆ
𝑆𝑛−1

ℎ(𝛷𝑍𝐾,𝑢)−𝑛𝑑𝑢

= 1
𝑛

ˆ
𝑆𝑛−1

(︃ˆ
SO(𝑛)

ℎ(𝛱𝐾,𝜑𝑢)𝑑𝜇̆𝑢(𝜑)
)︃−𝑛

𝑑𝑢.

Since 𝜇𝑢(SO(𝑛)) = 1, we can use Jensen’s inequality to get

𝑉 (𝛷*
𝑍𝐾) ≤ 1

𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ℎ(𝛱𝐾,𝜑𝑢)−𝑛𝑑𝜇̆𝑢(𝜑)𝑑𝑢. (4.3)

We denote by 𝜎 the right-invariant Haar measure on SO(𝑛). Since 𝛷𝑍 is SO(𝑛)-equivariant,
we obtain

𝑉 (𝛷*
𝑍𝐾) =

ˆ
SO(𝑛)

𝑉 (𝛷*
𝑍(𝜗−1𝐾))𝑑𝜎(𝜗)

≤ 1
𝑛

ˆ
SO(𝑛)

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ℎ(𝛱𝐾,𝜗𝜑𝑢)−𝑛𝑑𝜇̆𝑢(𝜑)𝑑𝑢𝑑𝜎(𝜗)

= 1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ˆ
SO(𝑛)

ℎ(𝛱𝐾,𝜗𝜑𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝜇̆𝑢(𝜑)𝑑𝑢.

By the right-invariance of 𝜎 and again using 𝜇𝑢(SO(𝑛)) = 1, it follows that

1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ˆ
SO(𝑛)

ℎ(𝛱𝐾,𝜗𝜑𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝜇̆𝑢(𝜑)𝑑𝑢

= 1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ˆ
SO(𝑛)

ℎ(𝛱𝐾,𝜗𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝜇̆𝑢(𝜑)𝑑𝑢

= 1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ℎ(𝛱𝐾,𝜗𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝑢.
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Rewriting as before then immediately gives

𝑉 (𝛷*
𝑍𝐾) ≤ 1

𝑛

ˆ
SO(𝑛)

ˆ
𝑆𝑛−1

ℎ(𝛱𝜗−1𝐾,𝑢)−𝑛𝑑𝑢𝑑𝜎(𝜗)

=
ˆ

SO(𝑛)
𝑉 (𝛱*𝜗−1𝐾)𝑑𝜎(𝜗)

= 𝑉 (𝛱*𝐾).

Combining this with the Petty projection inequality, we arrive at (4.2).

To get the equality conditions, we assume that 𝑉 (𝛷*
𝑍𝐾) = 𝑉 (𝛱*𝐾), with 𝛷𝑍 ̸= 𝛱. We

first note that by the definition of 𝜇̆𝑢,
ˆ

SO(𝑛)
ℎ(𝛱𝐾,𝜑𝑢)𝑑𝜇̆𝑢(𝜑) =

ˆ
SO(𝑛)

ℎ(𝛱𝐾,𝜗𝑢𝜑𝜗−1
𝑢 𝑢)𝑑𝜇̆(𝜑) =

ˆ
𝑆𝑛−1

ℎ(𝛱𝐾,𝜗𝑢𝑣)𝑑𝜇(𝑣).

Equality in (4.3) therefore holds if and only if

∀𝑢 ∈ 𝑆𝑛−1 ∀𝜗 ∈ SO(𝑛) with 𝜗𝑒 = 𝑢 : ℎ(𝛱𝐾,𝜗𝑢𝑣) = 𝑐𝜗𝑢

for 𝜇-almost every 𝑣 ∈ 𝑆𝑛−1. This means that equality in (4.3) holds if and only if

∀𝜗 ∈ SO(𝑛) : ℎ(𝛱𝐾,𝜗𝑣) = 𝑐𝜗 (4.4)

for 𝜇-almost every 𝑣 ∈ 𝑆𝑛−1. We want to show that this holds exactly in the case when
ℎ(𝛱𝐾, ·) is constant everywhere on 𝑆𝑛−1. We first give an overview of the main steps of
the proof. We are going to show that there is a circle on 𝑆𝑛−1 such that this condition
holds on the whole circle, i.e.,

∃𝑡 ∈ (−1,1) ∀𝜗 ∈ SO(𝑛) : ℎ(𝛱𝐾,𝜗𝑣) = 𝑐𝜗 ∀𝑣 ∈ 𝑆𝑛−1 ∩𝐻𝑒,𝑡. (4.5)

Assume that this has already been proven, then in particular, ℎ(𝛱𝐾, 𝑣) = 𝑐𝑖𝑑 for 𝑣 ∈
𝐻𝑒,𝑡∩𝑆𝑛−1. For a rotation 𝜗′ ∈ 𝑆𝑛−1, on the rotated circle 𝜗′(𝐻𝑒,𝑡∩𝑆𝑛−1) = 𝐻𝜗′𝑒,𝑡∩𝑆𝑛−1,
the support function satisfies

ℎ(𝛱𝐾,𝑢) = 𝑐𝜗′ , 𝑢 ∈ 𝐻𝜗′𝑒,𝑡 ∩ 𝑆𝑛−1.

Thus, if we choose the rotation 𝜗′ ∈ SO(𝑛) such that these circles intersect, we therefore
get 𝑐𝑖𝑑 = 𝑐𝜗′ . It is possible to reach any point on 𝑆𝑛−1 with a finite number of rotations,
thus ℎ(𝛱𝐾, ·) is constant everywhere on 𝑆𝑛−1.

Since 𝑉 (𝛷*
𝑍𝐾) = 𝑉 (𝛱*𝐾), equality in Theorem 4.1 can only hold if equality in the

Petty projection inequality holds and thus 𝐾 is an ellipsoid. Since the only ellipsoids where
ℎ(𝛱𝐾, ·) is constant are balls, we conclude that in the case 𝛷𝑍 ̸= 𝛱, 𝐾 has to be a ball.

It remains to show (4.5). We first show that

∃𝑡 ∈ (−1,1) ∀𝜀 > 0 ∀𝑥 ∈ 𝐻𝑒,𝑡 ∩ 𝑆𝑛−1 : 𝜇̄(𝐵𝜀(𝑥) ∩ 𝑆𝑛−1) > 0. (4.6)
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Assume that (4.6) does not hold, i.e., that for all 𝑡 ∈ (−1,1) there is an 𝜀𝑡 > 0 and
𝑥𝑡 ∈ 𝐻𝑒,𝑡 ∩ 𝑆𝑛−1 such that 𝜇̄(𝐵𝜀(𝑥𝑡) ∩ 𝑆𝑛−1) = 0. Since 𝜇̄ is SO(𝑛− 1)-invariant, it follows
that 𝜇̄(𝐵𝜀(𝑥) ∩ 𝑆𝑛−1) = 0 for all 𝑥 ∈ 𝐻𝑒,𝑡 ∩ 𝑆𝑛−1. From this, we conclude that for each
𝑡 ∈ (−1,1) there is an 𝛼(𝑡) > 0 such that for the whole closed strip 𝑆𝛼(𝑡),𝑡 = 𝐻+

𝑒,𝑡−𝑎 ∩𝐻−
𝑒,𝑡+𝑎

we get that 𝜇̄(𝑆𝛼(𝑡),𝑡 ∩ 𝑆𝑛−1) = 0 and therefore that 𝜇̄(int(𝑆𝛼(𝑡),𝑡) ∩ 𝑆𝑛−1) = 0. For
𝛽 ∈ (−1,1), we conclude that 𝜇̄(𝑆𝛽,0 ∩ 𝑆𝑛−1) = 0 (since 𝑆𝛽,0 is contained in a countable
union of open strips where, by compactness, a finite subcovering can be chosen). By writing

𝑆𝑛−1 ∖ {±𝑒} =
⋃︁
𝑘∈N

𝑆1−1/𝑘,0 ∩ 𝑆𝑛−1

and since 𝑆1−1/𝑘,0 ↑ 𝑆𝑛−1 ∖ {±𝑒} and 𝜇̄ is continuous from below, we conclude that

𝜇̄(𝑆𝑛−1 ∖ {±𝑒}) = 0.

This would imply
𝜇̄ = 𝑐′(𝛿𝑒 + 𝛿−𝑒) (4.7)

for a 𝑐′ > 0, which is a contradiction to 𝛷𝑍 ≠ 𝛱. By (4.4), we know that there is a set of
measure zero 𝐴𝜗 ⊆ 𝑆𝑛−1 such that

ℎ(𝛱𝐾,𝜗𝑣) = 𝑐𝜗, ∀𝑣 ∈ 𝐴𝑐𝜗.

For 𝜗 ∈ SO(𝑛) and 𝑥 ∈ 𝑆𝑛−1 ∩ 𝐻𝑒,𝑡, this implies that for every 𝜀 > 0, 𝐵𝜀(𝑥) ∩ 𝐴𝑐𝜗 ≠ ∅
(since otherwise there would be an 𝜀 > 0 such that 𝜇̄(𝐵𝜀(𝑥𝑡) ∩ 𝑆𝑛−1) = 0). Thus, there is a
sequence (𝑥𝑘), 𝑥𝑘 ∈ 𝐴𝑐𝜗 with 𝑥𝑘 → 𝑥 and therefore ℎ(𝛱𝐾,𝜗𝑥) = 𝑐𝜗 for 𝑥 ∈ 𝐻𝑒,𝑡 ∩ 𝑆𝑛−1.
This finishes the proof of (4.5) and therefore the proof of the equality conditions of Theorem
4.1.

In 1985, Lutwak [Lut85] showed that the polar Petty projection inequality can be used to
obtain similar volume inequalities for polar projection bodies of all orders which strengthen
the classical inequalities comparing the volume and the intrinsic volumes of a convex body.
Even more general, he proved that an analog of the polar Petty projection inequality holds
for mixed projection bodies. These operators stem from a polarization of the projection
body map of order 𝑛− 1 and were first introduced by Süss [Süs29] and later thoroughly
studied by Lutwak [Lut85; Lut86b; Lut90; Lut93a]. Although such polarizations do
not exist in general for Minkowski valuations, as was shown in [Par13], Schuster [Sch06]
proved the existence for (𝑛 − 1)-homogeneous SO(𝑛)-equivariant translation-invariant
Minkowski valuations. In particular, for 𝛷𝑍 this polarization exists (confer Section 2.3 for
the definition). For 𝑍 = [−𝑒,𝑒], this reduces to the classical mixed projection body. Our
first result is a generalization of Lutwak’s polar projection inequality to the new mixed
operators 𝛷𝑍 .
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Theorem 4.2 (Generalized polar projection inequality). If 𝐾1, . . . ,𝐾𝑛−1 are convex bodies
in K𝑛

𝑛, then

𝑉 (𝐾1) · · ·𝑉 (𝐾𝑛−1)𝑉 (𝛷*
𝑍(𝐾1, . . . ,𝐾𝑛−1)) ≤ 𝑉 (𝛷*

𝑍𝐵)𝑉 (𝐵)𝑛−1, (4.8)

with equality if and only if the 𝐾𝑖 are
• homothetic ellipsoids for 𝑍 = [−𝑒,𝑒],
• homothetic balls for 𝑍 ̸= [−𝑒,𝑒].
When 𝛷𝑍 = 𝛱, Theorem 4.2 reduces to Lutwak’s polar projection inequality [Lut85].

The proof of Theorem 4.2 relies on a connection between Theorem 4.1 and a generalization
of the Busemann–Petty centroid inequality (discovered for 𝛱 by Lutwak [Lut86a]).

The Busemann–Petty centroid inequality was first conjectured by Blaschke and later
proven by Petty [Pet61], who deduced it from a reformulation of the Busemann random
simplex inequality [Bus53]. In [Lut85], Lutwak showed that the Busemann–Petty centroid
inequality can be used to derive a version of the Petty projection inequality for mixed
projection bodies. The approach for proving our new results makes use of Lutwak’s
techniques for generalized centroid bodies 𝛤𝑍 (see Section 2.3 for the definition), which
were introduced in [Sch06]. We establish an analog of inequality (2.19) for these operators:

Theorem 4.3 (Generalized Busemann-Petty centroid inequality). Let 𝐾 ∈ K𝑛
(𝑜). Then

𝑉 (𝐾)𝑉 (𝛤𝑍𝐾)−1 ≤ 𝑉 (𝐵)𝑉 (𝛤𝑍𝐵)−1, (4.9)

with equality
• for 𝑍 = [−𝑒,𝑒] if and only if 𝐾 is an ellipsoid centered at the origin and
• for 𝑍 ̸= [−𝑒,𝑒] if and only if 𝐾 is a ball centered at the origin.
We also show that the Haberl–Schuster inequality from Theorem 4.1 is related to this new

inequality in the same way that the Petty projection inequality relates to the Busemann–
Petty centroid inequality [Lut85] and use Theorem 4.3 to prove the generalized polar
projection inequality from Theorem 4.8.

We begin with the proof of Theorem 4.3. To this end, we use an observation of Lutwak,
who remarked in [Lut85] that a corollary to the polar centroid inequality combined with
the polar Petty projection inequality can be used to obtain the Busemann–Petty centroid
inequality. Our first aim therefore is to establish a generalization of the polar centroid
inequality for the generalized centroid body. In the following, 𝑍 = 𝑍(𝑣) will always be an
𝑜-symmetric zonoid of revolution with axis of revolution 𝑣.

Theorem 4.4 (Generalized polar centroid inequality with equality cases). For 𝐾𝑛 ∈ K𝑛
(𝑜)

and 𝐾1, . . . ,𝐾𝑛−1 ∈ K𝑛,

𝑉 (𝐾𝑛) ≤
(︂
𝑛+ 1

2

)︂𝑛
𝑉 𝑛(𝐾1, . . . ,𝐾𝑛−1, 𝛤𝑍𝐾𝑛)𝑉 (𝛷*

𝑍(𝐾1, . . . ,𝐾𝑛−1)), (4.10)

with equality if and only if 𝐾𝑛 is a dilation of 𝛷*
𝑍(𝐾1, . . . ,𝐾𝑛−1).
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Proof. We will need the representation

𝑉 (𝐾1, . . . ,𝐾𝑛−1, 𝛤𝑍𝐾𝑛) = 1
𝑛

ˆ
𝑆𝑛−1

ℎ(𝛤𝑍𝐾𝑛,𝑣)𝑑𝑆(𝐾1, . . . ,𝐾𝑛−1,𝑣).

Using this, we get by Fubini’s theorem

(𝑛+ 1)𝑉 (𝐾𝑛)𝑉 (𝐾1, . . . ,𝐾𝑛−1, 𝛤𝑍𝐾𝑛)

= 1
𝑛

ˆ
𝑆𝑛−1

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑣),𝑢)𝜌(𝐾𝑛,𝑢)𝑛+1𝑑𝑆(𝑢)𝑑𝑆(𝐾1, . . . ,𝐾𝑛−1,𝑣)

= 1
𝑛

ˆ
𝑆𝑛−1

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑣),𝑢)𝑑𝑆(𝐾1, . . . ,𝐾𝑛−1,𝑣)𝜌(𝐾𝑛,𝑢)𝑛+1𝑑𝑆(𝑢)

= 2
𝑛

ˆ
𝑆𝑛−1

ℎ(𝛷𝑘(𝐾1, . . . ,𝐾𝑛−1),𝑢)𝜌(𝐾𝑛,𝑢)𝑛+1𝑑𝑆(𝑢).

Applying Hölder’s inequality with 𝑝 = (𝑛+ 1)/𝑛, 𝑞 = 𝑛+ 1 and

𝑓(𝑢) = 𝜌(𝐾𝑛,𝑢)𝑛ℎ(𝛷𝑍(𝐾1, . . . ,𝐾𝑛−1),𝑢)
𝑛

𝑛+1 ,

𝑔(𝑢) = ℎ(𝛷𝑍(𝐾1, . . . ,𝐾𝑛−1),𝑢)− 𝑛
𝑛+1

gives(︂ˆ
𝑆𝑛−1

𝜌(𝐾𝑛,𝑢)𝑛𝑑𝑆(𝑢)
)︂𝑛+1

≤
(︂ˆ

𝑆𝑛−1
𝜌(𝐾𝑛,𝑢)𝑛+1ℎ(𝛷𝑍(𝐾1, . . . ,𝐾𝑛−1),𝑢)𝑑𝑆(𝑢)

)︂𝑛
×

ˆ
𝑆𝑛−1

ℎ(𝛷𝑍(𝐾1, . . . ,𝐾𝑛−1),𝑢)−𝑛𝑑𝑆(𝑢).

Simplifying, we arrive at(︂
𝑛𝑉 (𝐾𝑛)

)︂𝑛+1
≤
(︂
𝑛

(𝑛+ 1)
2 𝑉 (𝐾𝑛)𝑉 (𝐾1, . . . ,𝐾𝑛−1, 𝛤𝑍𝐾𝑛)

)︂𝑛
𝑛𝑉 (𝛷*

𝑍(𝐾1, . . . ,𝐾𝑛−1))

and thus at

𝑉 (𝐾𝑛) ≤
(︂
𝑛+ 1

2

)︂𝑛
𝑉 𝑛(𝐾1, . . . ,𝐾𝑛−1, 𝛤𝑍𝐾𝑛)𝑉 (𝛷*

𝑍(𝐾1, . . . ,𝐾𝑛−1)).

For the equality conditions, note that equality in Hölder’s inequality holds if and only if

𝑓(𝑢) = 𝑐
𝑔𝑞(𝑢)
𝑔(𝑢) ,

which for the functions defined above is just

𝜌(𝐾𝑛,𝑢)𝑛ℎ(𝛷𝑍(𝐾1, . . . ,𝐾𝑛−1),𝑢)𝑛 = 𝑐.

This holds if and only if 𝐾𝑛 is a dilation of 𝛷*
𝑍(𝐾1, . . . ,𝐾𝑛−1).
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An easy corollary to the equality cases in Theorem 4.4 which will be needed later is the
following:

Corollary 4.5. If 𝐾1, . . . ,𝐾𝑛−1 are convex bodies in K𝑛
𝑛, then

𝑉 (𝐾1, . . . ,𝐾𝑛−1, 𝛤𝑍𝛷
*
𝑍(𝐾1, . . . ,𝐾𝑛−1)) = 2

(𝑛+ 1) . (4.11)

Proof. Set 𝐾𝑛 = 𝛷*
𝑍(𝐾1, . . . ,𝐾𝑛−1) in inequality (4.4).

In the following, we will be mainly interested in the special case of Theorem 4.4 for
𝐾1, . . . ,𝐾𝑛−1 = 𝛤𝑍𝐾 and 𝐾𝑛 = 𝐾, where 𝐾 contains the origin in the interior:

𝑉 (𝐾) ≤
(︂
𝑛+ 1

2

)︂𝑛
𝑉 𝑛(𝛤𝑍𝐾)𝑉 (𝛷*

𝑍𝛤𝑍𝐾). (4.12)

We are now able to prove the Busemann–Petty centroid inequality for the operator 𝛤𝑍 .

Proof of Theorem 4.3. We combine inequality (4.12) and Theorem 4.1 applied to 𝛤𝑍 to
obtain

𝑉 (𝐾) ≤
(︂
𝑛+ 1

2

)︂𝑛
𝑉 (𝐵)𝑛−1𝑉 (𝛷*

𝑍𝐵)𝑉 (𝛤𝑍𝐾). (4.13)

Since 𝛷𝑍𝐵 is a ball, one easily sees that the constants in (4.9) and (4.13) are the same.
The equality conditions are derived by considering that equality in inequality (4.2)

applied to the convex body 𝛤𝑍 holds for 𝑍 ̸= [−𝑒,𝑒] if and only if 𝛤𝑍𝐾 is a ball. Since by
the equality conditions of (4.10) 𝐾 = 𝑐𝛷*

𝑍(𝛤𝑍𝐾), this is only possible if 𝐾 is a ball.

As an easy corollary of the generalized Busemann–Petty centroid inequality, we note a
version of the general centroid inequality for the generalized centroid body. It can directly
be obtained by using (1.6) with equality conditions.

Corollary 4.6 (Generalized general centroid inequality). Let 𝐾1, . . . ,𝐾𝑛−1 ∈ K𝑛
𝑛 and

𝐾𝑛 ∈ K𝑛
(𝑜). Then

𝑉 (𝐾1) · · ·𝑉 (𝐾𝑛) ≤
(︂
𝑛+ 1

2

)︂𝑛
𝑉 (𝛷*

𝑍𝐵)𝑉 (𝐵)𝑛−1𝑉 𝑛(𝐾1, . . . ,𝐾𝑛−1, 𝛤𝑍𝐾𝑛), (4.14)

with equality if and only if each 𝐾𝑖 is homothetic to 𝐾𝑛 and additionally

• for 𝑍 = [−𝑒,𝑒], 𝐾𝑛 is an ellipsoid centered at the origin and
• for 𝑍 ̸= [−𝑒,𝑒], 𝐾𝑛 is a ball centered at the origin.

The proof of Theorem 4.2 now follows easily:

Proof of 4.2. Combine (4.14) and (4.11) and consider the equality conditions of the polar
projection inequalities for 𝛱* (confer [Lut85]).
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The special case of Theorem 4.2 for 𝐾1, . . . ,𝐾𝑛−1 = 𝐾 is of course the result of Haberl
and Schuster. The special case for 𝐾1, . . . ,𝐾𝑖 = 𝐾 and 𝐾𝑖+1, . . . ,𝐾𝑛−1 = 𝐵 can be written
as

𝑉 (𝐾)𝑖𝑉 (𝛷*
𝑍,𝑖𝐾) ≤ 𝑉 (𝐵)𝑖𝑉 (𝛷*

𝑍,𝑖𝐵) (4.15)

and is a direct extension of the Lutwak–Petty projection inequalities. If we normalize 𝑍
such that 𝛷𝑍𝐵 = 𝛱𝐵, then, by Theorem 4.4, this implies the following inequality between
volume and 𝑊𝑛−𝑖:

𝜅𝑛−𝑖
𝑛 𝑉 (𝐾)𝑖 ≤ 𝜅−𝑛

𝑛−1𝜅
𝑛+1
𝑛 𝑉 −1(𝛷*

𝑍,𝑖𝐾) ≤ 𝑊𝑛
𝑛−𝑖(𝐾).

For 𝑍 = 𝐵, this is the classical inequality between volume and quermassintegral, and for
𝑍 = [−𝑒,𝑒], this is the Lutwak-Petty projection inequality for the projection body of order
𝑖. We remark that the special case (4.15) could also be obtained quite easily by using the
Haberl–Schuster inequality and mixed bodies, since

𝛷𝑍,𝑖𝐾 = 𝛷𝑍 [𝐾]𝑖 .

We use Corollary 1.1 to obtain

𝑉 (𝐾)𝑖𝑉 (𝛷*
𝑍,𝑖𝐾) ≤ 𝑉 ([𝐾]𝑖)

𝑛−1𝑉 (𝛷*
𝑍 [𝐾]𝑖)

1
𝑉 (𝐵)𝑛−𝑖−1

≤ 𝑉 (𝐵)𝑖𝑉 (𝛷*
𝑍,𝑖𝐵).

(4.16)

There is more to be gained by reviewing inequalities (4.15) in yet another light. Haberl
and Schuster proved in [Hab] that the Petty projection inequality is the strongest among
their family of inequalities. More precisely, if 𝛷𝑍𝐵 = 𝛱𝐵, then

𝑉 (𝐾)𝑛−1𝑉 (𝛷*
𝑍𝐾) ≤ 𝑉 (𝐾)𝑛−1𝑉 (𝛱*𝐾) ≤ 𝑉 (𝐵)𝑛−1𝑉 (𝛱*𝐵). (4.17)

The significance of this observation lies in the fact that the whole family of Euclidean
inequalities from Theorem 4.1 is dominated by the only one which is affine in nature. This
follows from a result of Ludwig [Lud05], who first characterized the projection body as the
only continuous translation-invariant 𝑆𝐿(𝑛)-contravariant Minkowski valuation. We will
give another proof of the inequalities (4.16) using techniques of Haberl and Schuster to
identify Lutwak’s results as the strongest members of our family. Although these are not
affine, we will show that the volume of the polar projection body of order 𝑖 is dominated
by a corresponding affine quermassintegral, which is an affine invariant. To this end we
prove the following theorem:

Theorem 4.7. Let 𝐾 ∈ K𝑛
𝑛 and 𝑍(𝑣) as above, normalized such that 𝛷𝑍𝐵 = 𝛱𝐵. Then,

for 1 ≤ 𝑖 ≤ 𝑛− 1,

𝑉 (𝛷*
𝑍,𝑖𝐾) ≤ 𝑉 (𝛱*

𝑖𝐾) ≤ 𝜅𝑛+1
𝑛

𝜅𝑛𝑛−1
𝐴𝑛−𝑖(𝐾)−𝑛. (4.18)
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Proof. In order to prove the inequality on the left-hand side, we use (2.18) to write

𝑉 (𝛷*
𝑍,𝑖𝐾) = 1

𝑛

ˆ
𝑆𝑛−1

ℎ(𝛷𝑍,𝑖𝐾,𝑢)−𝑛𝑑𝑢

= 1
𝑛

ˆ
𝑆𝑛−1

(︃ˆ
SO(𝑛)

ℎ(𝛱𝑖𝐾,𝜑𝑢)𝑑𝜇̆𝑢(𝜑)
)︃−𝑛

𝑑𝑢.

Since 𝜇𝑢(SO(𝑛)) = 1, we can use Jensen’s inequality to get

𝑉 (𝛷*
𝑍,𝑖𝐾) ≤ 1

𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ℎ(𝛱𝑖𝐾,𝜑𝑢)−𝑛𝑑𝜇̆𝑢(𝜑)𝑑𝑢.

We denote by 𝜎 the right-invariant Haar measure on SO(𝑛). Since 𝛷𝑍,𝑖 is SO(𝑛)-equivariant,
we obtain

𝑉 (𝛷*
𝑍,𝑖𝐾) =

ˆ
SO(𝑛)

𝑉 (𝛷*
𝑍,𝑖(𝜗−1𝐾))𝑑𝜎(𝜗)

≤ 1
𝑛

ˆ
SO(𝑛)

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ℎ(𝛱𝑖𝐾,𝜗𝜑𝑢)−𝑛𝑑𝜇̆𝑢(𝜑)𝑑𝑢𝑑𝜎(𝜗)

= 1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ˆ
SO(𝑛)

ℎ(𝛱𝑖𝐾,𝜗𝜑𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝜇̆𝑢(𝜑)𝑑𝑢.

By the right-invariance of 𝜎 and again using 𝜇𝑢(SO(𝑛)) = 1, it follows that

1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ˆ
SO(𝑛)

ℎ(𝛱𝑖𝐾,𝜗𝜑𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝜇̆𝑢(𝜑)𝑑𝑢

= 1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ˆ
SO(𝑛)

ℎ(𝛱𝑖𝐾,𝜗𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝜇̆𝑢(𝜑)𝑑𝑢

= 1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ℎ(𝛱𝑖𝐾,𝜗𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝑢.

Rewriting as before then immediately gives

𝑉 (𝛷*
𝑍,𝑖𝐾) ≤ 1

𝑛

ˆ
SO(𝑛)

ˆ
𝑆𝑛−1

ℎ(𝛱𝑖𝜗
−1𝐾,𝑢)−𝑛𝑑𝑢𝑑𝜎(𝜗)

=
ˆ

SO(𝑛)
𝑉 (𝛱*

𝑖 𝜗
−1𝐾)𝑑𝜎(𝜗)

= 𝑉 (𝛱*
𝑖𝐾).

For the right-hand side of (4.18), we first recall the fact that
ˆ
𝑆𝑛−1

𝑓(𝑢⊥)𝑑𝑢 = 𝑛𝜅𝑛

ˆ
𝐺(𝑛,𝑛−1)

𝑓(𝐿)𝑑𝐿 = 𝑛𝜅𝑛

ˆ
𝐺(𝑛,1)

𝑓(𝑢̄⊥)𝑑𝑢̄,
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for 𝑓 ∈ 𝐶(𝐺(𝑛,𝑛− 1)). We use (2.10) and identity (1.12) to get

𝑉 (𝛱*
𝑖𝐾) = 1

𝑛

ˆ
𝑆𝑛−1

ℎ(𝛱𝑖𝐾,𝑢)−𝑛𝑑𝑢

= 1
𝑛

𝜅𝑛𝑖
𝜅𝑛𝑛−1

𝑛𝜅𝑛

ˆ
𝐺(𝑛,1)

[︁
𝑅𝑛−𝑖,1𝑣𝑜𝑙𝑖(𝐾|·⊥)

]︁−𝑛
(𝑢̄)𝑑𝜈1(𝑢̄)

= 1
𝑛

𝜅𝑛𝑖
𝜅𝑛𝑛−1

𝑛𝜅𝑛

ˆ
𝐺(𝑛,1)

[︀
(𝑅𝑖,𝑛−1𝑣𝑜𝑙𝑖(𝐾|·))−𝑛]︀⊥ (𝑢̄)𝑑𝜈1(𝑢̄).

By Jensen’s inequality and the normalization of the measure on 𝐺(𝑛,𝑖)𝐿, it follows that

(𝑅𝑖,𝑛−1𝑣𝑜𝑙𝑖(𝐾|·))−𝑛(𝐿) ≤ (𝑅𝑖,𝑛−1𝑣𝑜𝑙
−𝑛
𝑖 (𝐾|·))(𝐿).

Thus, we obtain

𝑉 (𝛱*
𝑖𝐾) ≤ 1

𝑛

𝜅𝑛𝑖
𝜅𝑛𝑛−1

𝑛𝜅𝑛

ˆ
𝐺(𝑛,1)

[︀
𝑅𝑖,𝑛−1𝑣𝑜𝑙

−𝑛
𝑖 (𝐾|·)

]︀⊥ (𝑢̄)𝑑𝜈1(𝑢̄)

= 1
𝑛

𝜅𝑛𝑖
𝜅𝑛𝑛−1

𝑛𝜅𝑛

ˆ
𝐺(𝑛,1)

ˆ
𝐺(𝑛,𝑖)𝑢⊥

𝑣𝑜𝑙−𝑛𝑖 (𝐾|𝐸)𝑑𝜈𝑢⊥
𝑖 (𝐸)𝑑𝜈1(𝑢̄)

= 1
𝑛

𝜅𝑛𝑖
𝜅𝑛𝑛−1

𝑛𝜅𝑛

ˆ
𝐺(𝑛,𝑛−1)

ˆ
𝐺(𝑛,𝑖)𝐿

𝑣𝑜𝑙−𝑛𝑖 (𝐾|𝐸)𝑑𝜈𝐿𝑖 (𝐸)𝑑𝜈𝑛−1(𝐿).

Since, by (1.11), we have
ˆ
𝐺(𝑛,𝑛−1)

[︀
𝑅𝑖,𝑛−1𝑣𝑜𝑙

−𝑛
𝑖 (𝐾|·)

]︀
(𝐿)𝑑𝜈𝑛−1(𝐿) =

ˆ
𝐺(𝑛,𝑖)

𝑣𝑜𝑙−𝑛𝑖 (𝐾|𝐸)𝑅𝑛−1,𝑖(1)𝑑𝜈𝑖(𝐸),

we finally conclude that

𝑉 (𝛱*
𝑖𝐾) ≤ 1

𝑛

𝜅𝑛𝑖
𝜅𝑛𝑛−1

𝑛𝜅𝑛

ˆ
𝐺(𝑛,𝑖)

𝑣𝑜𝑙−𝑛𝑖 (𝐾|𝐸)𝑅𝑛−1,𝑖(1)𝑑𝜈𝑖(𝐸)

= 𝜅𝑛+1
𝑛

𝜅𝑛𝑛−1
𝐴𝑛−𝑖(𝐾)−𝑛.

Using Theorem 4.7 and combining it with Conjecture 1.2, we would get

𝑉 (𝐾)𝑖𝑉 (𝛷*
𝑍,𝑖𝐾) ≤ 𝑉 (𝐾)𝑖𝑉 (𝛱*

𝑖𝐾) ≤ 𝜅𝑛+1
𝑛

𝜅𝑛𝑛−1
𝑉 (𝐾)𝑖𝐴𝑛−𝑖(𝐾)−𝑛 ≤ 𝜅𝑖+1

𝑛

𝜅𝑛𝑛−1
.

Theorem 4.7 therefore allows us to recover inequality (4.16) from inequality (4.1) in the
form

𝑉 (𝐾)𝑖𝑉 (𝛷*
𝑍,𝑖𝐾) ≤ 𝑉 (𝐾)𝑖𝑉 (𝛱*

𝑖𝐾) ≤ 𝜅𝑖+1
𝑛

𝜅𝑛𝑛−1
,
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and to relate our results to an important conjecture by Lutwak on the relation between
affine quermassintegrals and volume [Lut88a] (cf. Section 1.1).

Applying the techniques used in the proof of Theorem 4.7 to the operator 𝛤 *
𝑍 , we can

also relate the volume of the polar generalized centroid body to the volume of the convex
body. This inequality is again strengthened by its classical counterpart.

Theorem 4.8. Let 𝐾 ∈ K𝑛
(𝑜) and 𝑍 ̸= [−𝑒,𝑒] as above, normalized such that 𝛷𝑍𝐵 = 𝛱𝐵.

Then
𝑉 (𝛤 *

𝑍𝐾)𝑉 (𝐾) ≤ 𝑉 (𝛤 *𝐾)𝑉 (𝐾) ≤ 𝑉 (𝛤 *𝐵)𝑉 (𝐵), (4.19)

with equality if and only if 𝐾 is a ball centered at the origin.

Proof. The equation on the right-hand side is a well known fact, derived by combining
inequality (1.4) with inequality (2.19) and rewriting the constants afterwards. To prove
the inequality on the left-hand side, we use (2.22) to write

𝑉 (𝛤𝑍𝐾) = 1
𝑛

ˆ
𝑆𝑛−1

ℎ(𝛤𝑍𝐾,𝑢)−𝑛𝑑𝑢

= 1
𝑛

ˆ
𝑆𝑛−1

(︃ˆ
SO(𝑛)

ℎ(𝛤𝐾, 𝜑𝑢)𝑑𝜇̆𝑢(𝜑)
)︃−𝑛

𝑑𝑢.

Since 𝜇𝑢(SO(𝑛)) = 1, we can use Jensen’s inequality to get

𝑉 (𝛷*
𝑍,𝑖𝐾) ≤ 1

𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ℎ(𝛤𝐾, 𝜑𝑢)−𝑛𝑑𝜇̆𝑢(𝜑)𝑑𝑢.

Since 𝛤𝑍 is SO(𝑛)-equivariant, by the same methods as in the proof of Theorem 4.7 we
obtain

𝑉 (𝛤𝑍𝐾) ≤ 1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ˆ
SO(𝑛)

ℎ(𝛤𝐾, 𝜗𝜑𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝜇̆𝑢(𝜑)𝑑𝑢.

By the right-invariance of 𝜎 and again using 𝜇𝑢(SO(𝑛)) = 1, it follows that

1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ˆ
SO(𝑛)

ℎ(𝛤𝐾, 𝜗𝜑𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝜇̆𝑢(𝜑)𝑑𝑢

= 1
𝑛

ˆ
𝑆𝑛−1

ˆ
SO(𝑛)

ℎ(𝛤𝐾, 𝜗𝑢)−𝑛𝑑𝜎(𝜗)𝑑𝑢.

Rewriting as before then immediately gives

𝑉 (𝛤𝑍𝐾) ≤ 1
𝑛

ˆ
SO(𝑛)

ˆ
𝑆𝑛−1

ℎ(𝛤𝜗−1𝐾,𝑢)−𝑛𝑑𝑢𝑑𝜎(𝜗)

=
ˆ

SO(𝑛)
𝑉 (𝛤𝜗−1𝐾)𝑑𝜎(𝜗)

= 𝑉 (𝛤𝐾).
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By the equality conditions of Theorem 4.3, 𝐾 has to be a ball centered at the origin.

We remark that the inequality

𝑉 (𝛤 *
𝑍𝐾)𝑉 (𝐾) ≤ 𝑉 (𝛤 *𝐵)𝑉 (𝐵)

does hold also without the assumption on the normalization of 𝑍. This can be shown as
before using Blaschke–Santaló and the generalized centroid inequality. The case 𝑍 = 𝐵
then gives the inequality

𝑉 (𝐾)− (2𝑛+1)
𝑛 𝐼1(𝐾) ≥ 𝑉 (𝐵)− (2𝑛+1)

𝑛 𝐼1(𝐵),

where 𝐼1(𝐾) =
´
𝐾 ||𝑥||𝑑𝑥 is the first moment of the convex body 𝐾.

Next, we are going to show that the volume of 𝛷*
𝑍𝐾 can be compared to the affine surface

area. Let 𝐾 ∈ K𝑛
𝑛 have a continuous positive curvature function 𝑓(𝐾, ·) : 𝑆𝑛−1 → (0,∞)

and let 𝑀 be the star body defined by 𝜌(𝑀,𝑢) = 𝑓(𝐾,𝑢)1/(𝑛+1). Then

ℎ(𝛤𝑍𝑀, 𝑣) = 1
(𝑛+ 1)𝑉 (𝑀)

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑣),𝑢)𝜌(𝑀,𝑢)𝑛+1𝑑𝑆(𝑢)

= 2
(𝑛+ 1)𝑉 (𝑀)ℎ(𝛷𝑍𝐾, 𝑣).

Therefore,
(𝑛+ 1)𝑉 (𝑀)𝛤𝑍𝑀 = 2𝛷𝑍𝐾

and thus, by Theorem 4.3, we can compare the volume of 𝛷𝑍𝐾 to the affine surface area:

𝑛𝑛+1𝑉 (𝐵)𝑛−1𝑉 (𝛷*
𝑍𝐵)𝑉 (𝛷𝑍𝐾) ≥ 𝛺(𝐾)𝑛+1. (4.20)

We briefly remark that combining inequality (4.20) with the conjectured Petty projection
inequality [Pet71] for 𝛷𝑍𝐾 would allow a connection to the affine isoperimetric inequality

𝑛𝑛+1𝑉 (𝐵)2𝑉 (𝐾)𝑛−1 ≥ 𝛺(𝐾)𝑛+1.

In the 𝐿𝑝 setting, an analog of the Petty projection inequality was proven by Lutwak,
Yang, and Zhang. Their result can be stated as follows:
Theorem 4.9 [Lut00b] For 𝐾 ∈ K𝑛

(𝑜) and 1 < 𝑝 < ∞,

𝑉 (𝐾)𝑛−𝑝𝑉 (𝛱*
p𝐾)𝑝 ≤ 𝑉 (𝐵)𝑛−𝑝𝑉 (𝛱*

p𝐵)𝑝,

with equality if and only if 𝐾 is an ellipsoid centered at the origin.
There is connection between this inequality and the 𝐿𝑝 centroid body, analog to the

Minkowski setting. In [Lut00b], Lutwak, Yang, and Zhang proved an 𝐿𝑝 version of the
Busemann–Petty centroid where they showed that the 𝐿𝑝 centroid body 𝛤𝑝𝐾 of a star
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body 𝐾 satisfies for 1 ≤ 𝑝 < ∞

𝑉 (𝐵)𝑉 (𝛤p𝐵)−1 ≥ 𝑉 (𝐾)𝑉 (𝛤p𝐾)−1, (4.21)

with equality if and only if 𝐾 is an ellipsoid centered at the origin.
In [Hab], Haberl and Schuster also investigated the generalization of Theorem 4.1 to

the 𝐿𝑝 setting, generalizing therefore the 𝐿𝑝 Petty projection inequality of Lutwak, Yang,
and Zhang. They showed that the operators 𝛷𝑍,p satisfy again 𝐿𝑝 versions of the Petty
projection inequality:
Theorem 4.10 [Hab] For 𝐾 ∈ K𝑛

(𝑜) and 1 < 𝑝 < ∞,

𝑉 (𝐾)𝑛−𝑝𝑉 (𝛷*
𝑍,p𝐾)𝑝 ≤ 𝑉 (𝐵)𝑛−𝑝𝑉 (𝛷*

𝑍,p𝐵)𝑝,

with equality

• for 𝑍 = [−𝑒,𝑒] if and only if 𝐾 is an ellipsoid centered at the origin,
• for 𝑍 ̸= [−𝑒,𝑒] if and only if 𝐾 is a ball centered at the origin.

One aim of this thesis is to establish a connection between Theorem 4.10 and the newly
defined generalized 𝐿𝑝 centroid body maps introduced in Section 2.4 and to proof an analog
of inequality (4.21) for the operators 𝛷𝑍,p, where we will follow the approach of [Lut00b].
In the following, we will always assume 1 < 𝑝 < ∞. We start with a lemma.

Lemma 4.11. For 𝐾,𝐿 ∈ K𝑛
(𝑜), we have

𝑉𝑝(𝐿, 𝛤𝑍,p𝐾) = 2
(𝑛+ 𝑝)𝑉 (𝐾)𝑉−𝑝(𝐾,𝛷*

𝑍,p𝐿). (4.22)

Proof. By (1.39), (2.23) and (2.24), we get

𝑉𝑝(𝐿;𝛤𝑍,p𝐾) = 1
𝑛

ˆ
𝑆𝑛−1

ℎ(𝛤𝑍,p𝐾,𝑢)𝑝𝑑𝑆p(𝐿,𝑢)

= 1
𝑛𝑉 (𝐾)

ˆ
𝑆𝑛−1

ˆ
𝐾
ℎ(𝑍(𝑢),𝑥)𝑝𝑑𝑥 𝑑𝑆p(𝐿,𝑢)

= 1
𝑛(𝑛+ 𝑝)𝑉 (𝐾)

ˆ
𝑆𝑛−1

ˆ
𝑆𝑛−1

ℎ(𝑍(𝑢),𝑣)𝑝𝜌(𝐾,𝑣)𝑛+𝑝𝑑𝑆(𝑣)𝑑𝑆p(𝐿,𝑢).

Applying Fubini’s theorem and the definition of 𝛷𝑍,p gives

𝑉𝑝(𝐿;𝛤𝑍,p𝐾) = 2
𝑛(𝑛+ 𝑝)𝑉 (𝐾)

ˆ
𝑆𝑛−1

ℎ(𝛷𝑍,p𝐿,𝑣)𝑝𝜌(𝐾,𝑣)𝑛+𝑝𝑑𝑆(𝑣).

Finally, by (1.40), we obtain (4.22).

If we set 𝐿 = 𝛤𝑍,p𝐾 or 𝐾 = 𝛷*
𝑍,p𝐿 in (4.22), respectively, we immediately obtain:
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Lemma 4.12. Let 𝐾 ∈ K𝑛
(𝑜). Then

𝑉 (𝛤𝑍,p𝐾) = 2
(𝑛+ 𝑝)𝑉 (𝐾)𝑉−𝑝(𝐾,𝛷*

𝑍,p𝛤𝑍,p𝐾). (4.23)

Let 𝐿 ∈ K𝑛
(𝑜). Then

𝑉𝑝(𝐿, 𝛤𝑍,p𝛷*
𝑍,p𝐿) = 2

(𝑛+ 𝑝) . (4.24)

We are now finally able to prove the 𝐿𝑝 version of the generalized centroid inequality.

Theorem 4.13. Let 𝐾 ∈ K𝑛
(𝑜). Then

𝑉 (𝐵)𝑉 (𝛤𝑍,p𝐵)−1 ≥ 𝑉 (𝐾)𝑉 (𝛤𝑍,p𝐾)−1,

with equality

• for 𝑍 = [−𝑒,𝑒] if and only if 𝐾 is an ellipsoid centered at the origin,
• for 𝑍 ̸= [−𝑒,𝑒] if and only if 𝐾 is a ball centered at the origin.

Proof. We use (4.23) and (1.41) to obtain

𝑉 (𝛤𝑍,p𝐾) ≥ 2
(𝑛+ 𝑝)𝑉 (𝐾)

𝑝
𝑛 𝑉 (𝛷*

𝑍,p𝛤𝑍,p𝐾)− 𝑝
𝑛 .

Applying Theorem 4.10 yields

𝑉 (𝛤𝑍,p𝐾)𝑉 (𝐵)
𝑛−𝑝

𝑝 𝑉 (𝛷*
𝑍,p𝐵) ≥ 𝑉 (𝛤𝑍,p𝐾)

𝑛
𝑝 𝑉 (𝛷*

𝑍,p𝛤𝑍,p𝐾) ≥
(︂

2
𝑛+ 𝑝

)︂𝑛
𝑝

𝑉 (𝐾).

The constants can easily be rewritten to get the formulation of the theorem.
For the equality cases in the case 𝑍 ̸= [−𝑒,𝑒], we combine the equality cases of (1.41) and
Theorem 4.10. The case 𝑍 = [−𝑒,𝑒] is inequality (4.21).

We remark that it is easy to recover Theorem 4.10 by using (4.24) and Theorem 4.13.

4.2 Busemann intersection inequality and generalizations
One of the most important inequalities of the dual Brunn–Minkowski theory concerns
the relation between the volume of a star body and its intersection body. The Busemann
intersection inequality states that for 𝐾 ∈ S𝑛𝑜 ,

𝑉 (𝐼𝐾) ≤
𝜅𝑛𝑛−1
𝜅𝑛−1
𝑛

𝑉 (𝐾)𝑛−1, (4.25)

with equality if and only if 𝐾 is an ellipsoid centered at the origin. This inequality was
obtained by Busemann for convex bodies [Bus53], who derived it by using the Busemann
random simplex inequality. Later, Petty [Pet61] observed that it also holds for star bodies.
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A quite recent result on intersection bodies is a generalization of inequality (4.25) by
Leng and Lu [Lu08] to 𝑖-intersection bodies. For these operators, it follows from their
results (combine Lemma 3.2, Lemma 3.3 from [Lu08] and inequality (3.9)) that for 𝐾 ∈ S𝑛𝑜
and 0 < 𝑖 < 𝑛− 1,

𝑉 (I𝑖𝐾) ≤
𝜅𝑛𝑛−1

𝜅𝑖−1
𝑛

𝑉 (𝐾)𝑖, (4.26)

with equality if and only if 𝐾 is a ball centered at the origin.
We are now going to prove that there is also an extension of (4.25) and (4.26) for radial

Minkowski valuations parametrized by positive zonal measures on 𝑆𝑛−1, similar to the
generalization of the projection inequalities. Dual to 𝛷𝑍 , we introduced the operators 𝛹𝜈
in Section 2.5. These operators are (𝑛−1)-homogeneous, SO(𝑛)-equivariant and satisfy the
valuation property with respect to radial addition. Our analogue of Theorem 4.7 for these
radial valuations 𝛹𝜈 can be stated as follows:

Theorem 4.14. Let 𝐾 ∈ S𝑛𝑜 and 0 < 𝑖 ≤ 𝑛− 1. Using the normalization 𝜈(𝑆𝑛−1) = 𝑛𝜅𝑛,
the following chain of inequalities holds:

𝑉 (𝛹𝜈,𝑖𝐾) ≤ 𝑉 (𝐼𝑖𝐾) ≤
𝜅𝑛𝑛−1
𝜅𝑛−1
𝑛

𝐴𝑛−𝑖(𝐾)𝑛 ≤
𝜅𝑛𝑛−1

𝜅𝑖−1
𝑛

𝑉 (𝐾)𝑖. (4.27)

Proof. Using the representation from Lemma 2.18, we get

𝑉 (𝛹𝜈,𝑖𝐾) = 1
𝑛

ˆ
𝑆𝑛−1

𝜌(𝛷𝜈,𝑖𝐾,𝑢)𝑛𝑑𝑢

= 𝜅𝑛

ˆ
SO(𝑛)

𝜌(𝛷𝜈,𝑖𝐾, 𝜂𝑒𝑛)𝑛𝑑𝜂

= 𝜅𝑛

ˆ
SO(𝑛)

(︃ˆ
SO(𝑛)

𝜌(I𝑖𝐾,𝜑𝜂𝑒𝑛)𝑑𝜇𝜂(𝜑)
)︃𝑛

𝑑𝜂.

By Jensen’s inequality and using 𝜇𝜂(SO(𝑛)) = 𝜈(SO(𝑛)) = 1, we obtain

𝑉 (𝛹𝜈,𝑖𝐾) ≤ 𝜅𝑛

ˆ
SO(𝑛)

ˆ
SO(𝑛)

𝜌𝑛(I𝑖𝐾,𝜑𝜂𝑒𝑛)𝑑𝜇𝜂(𝜑)𝑑𝜂. (4.28)

The SO(𝑛)-equivariance of 𝛹𝜈,𝑖 allows us to write

𝑉 (𝛹𝜈,𝑖𝐾) =
ˆ
𝑂(𝑛)

𝑉 (𝛹𝜈,𝑖(𝜗−1𝐾))𝑑𝜎(𝜗).

By using (4.28), the right-invariance of 𝜎 and 𝜇𝜂(SO(𝑛)) = 1, we get

𝑉 (𝛹𝜈,𝑖𝐾) ≤ 𝜅𝑛

ˆ
SO(𝑛)

ˆ
SO(𝑛)

𝜌𝑛(I𝑖𝐾,𝜗𝜂𝑒𝑛)𝑑𝜎(𝜗)𝑑𝜂.

Rewriting this gives
𝑉 (𝛹𝜈,𝑖𝐾) ≤ 𝑉 (I𝑖𝐾).
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For the second inequality, we use the same techniques as in the proof of Theorem 4.7 to get

𝑉 (I𝑖𝐾) ≤ 1
𝑛

𝜅𝑛𝑛−1
𝜅𝑛𝑖

𝑛𝜅𝑛

ˆ
𝐺𝑟(𝑛,𝑖)

𝑣𝑜𝑙𝑛𝑖 (𝐾 ∩ 𝐸)𝑅𝑛−1,𝑖(1)𝑑𝜈𝑖(𝐸)

=
𝜅𝑛𝑛−1
𝜅𝑛−1
𝑛

𝐴𝑛−𝑖(𝐾)𝑛,

where we used inequality (1.10) in the last step. This concludes the proof.

The equality conditions in (4.27) follow immediately from the equality conditions in
(4.26). Using Theorem 4.14, we therefore immediately see that

𝑉 (𝛹𝜈,𝑖𝐾)𝑉 (𝐾)−𝑖 ≤ 𝑉 (𝐼𝑖𝐾)𝑉 (𝐾)−𝑖 ≤
𝜅𝑛𝑛−1
𝜅𝑛−1
𝑛

𝐴𝑛−𝑖(𝐾)𝑛𝑉 (𝐾)−𝑖 ≤
𝜅𝑛𝑛−1

𝜅𝑖−1
𝑛

, (4.29)

with equality in the outermost inequality if and only if 𝐾 is a ball centered at the origin.
Theorem 4.14 now identifies the strongest among this new family of inequalities general-

izing Leng and Lu’s inequalities, and at the same time compares the results to Grinberg’s
[Gri91] 𝑆𝐿(𝑛)-invariant inequality for dual affine quermassintegrals

𝑉 (𝐾)−𝑖𝑉 (𝛹𝜈,𝑖𝐾) ≤ 𝑉 (𝐾)−𝑖𝑉 (𝐼𝑖𝐾) ≤
𝜅𝑛𝑛−1
𝜅𝑛−1
𝑛

𝑉 (𝐾)−𝑖𝐴𝑛−𝑖(𝐾)𝑛 ≤
𝜅𝑛𝑛−1

𝜅𝑖−1
𝑛

.
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