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Abstract

In magnetoelectric multiferroics the onset of ferroelectricity is coupled to the onset of a mag-
netic structure that breaks the inversion symmetry. The dynamics of such coupled ordering
transition can be probed via the dielectric response of the system. Generally, the question
which type of ferroelectric transition (order-disorder or displacive) applies for multiferroics is
important and DyMnO3 belongs to the most prominent members of this interesting material
class. In the ferroelectric state, the Mn3+- spins form a cycloidal magnetic structure whereas
in the paraelectric state, a collinear sinusoidal modulated spin structure is proposed to exist.
However, the exact role in the formation of multiferroicity of the so-called collinear sinusoidal
magnetic state, preceding the multiferroic state under cooling, is not yet fully clari�ed.

Detailed dielectric studies near the spin-driven ferroelectric phase transition reveals the
indication of an order-disorder type ferroelectric transition with a double well potential. This
potential re�ects a dynamical switching between magnetic cycloids of the opposite chirality
in the vicinity of the ferroelectric phase transition boundary by applying an electric �eld.
Several parameters of the model correlate well with physical properties of DyMnO3. Thus,
the characteristic energies of magnetic ordering and the value of the static electric polarization
are in agreement with known values. Most importantly, the experimental data and the simple
model suggest to explain the paraelectric sinusoidal phase in rare-earth manganate as a dy-
namical equilibrium of cycloids with opposite chiralities. In addition to the dielectric results,
this hypothesis resolve several experimental constraints which contradicted the concept of
static sinusoidally modulated magnetic phase.
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Kurzfassung

Ferroelektrizität in einem magnetoelektrischen Multiferroikum ist verbunden mit der Ent-
stehung von nicht inversionssymmetrischen magnetischen Strukturen. Diese Multiferroika
zeichnen sich dadurch aus, dass sich deren Magnetisierung durch ein elektrisches Feld bzw.
deren elektrische Polarisation durch ein magnetisches Feld beein�ussen lässt. In diesen Ma-
terialien sind die polare und die magnetische Ordnung stark aneinander gekoppelt. Diese
spezielle Eigenschaft erö�net ein ganz neues Feld von Anwendungen in Optik, elektronischer
Schaltungstechnik und elektronischer Speichertechnik.

Die Dynamik solch komplexer Ordnungsstrukturen kann mittels dielektrischer Antwort
untersucht werden. Ein typisches Merkmal ist die Anregung von Elektro-Magnonen mit-
tels eines elektrischen Feldes im THz-Bereich. Zudem können auch dispersive dielektrische
Merkmale im Niederfrequenzbereich (<1MHz) in der Nähe des multiferroischen Phasenüber-
gangs beobachtet werden. Diesbezüglich wurde das Verhalten der dielektrischen Antwort von
DyMnO3 im Frequenzbereich von 10−1-106 Hz in der Nähe des multiferroischen Phasenüber-
gangs untersucht. Die Ursache von Ferroelektrizität in DyMnO3 unterhalb der kritischen
Temperatur liegt in der Bildung einer zykloidalen magnetischen Struktur, wobei oberhalb der
kritischen Temperatur nach bisheriger wohl akzeptierter Meinung eine sinusoidale magneti-
sche Struktur vorliegt.

Die Resultate zeigen eine kritische Verlangsamung der Ordnungsparameterdynamik in der
Nähe des multiferroischen Phasenübergangs. Es kann gezeigt werden, dass diese Verlangsa-
mung als Ursache eines Ordnungs-Unordnungs Phasenüberganges gesehen werden kann, bei
dem sich elektrische Dipole in einem Doppelmuldenpotential unterhalb von TC langreichwei-
tig ordnen. Dies lässt den Schluss zu, dass die paraelektrische sinusoidale magnetische Phase
oberhalb von TC als dynamisches Gleichgewicht von kurzreichweitig geordneten zykloidalen
magnetischen Strukturen mit gegensätzlicher Händigkeit gesehen werden kann. Demzufolge
existiert eine Kopplung zwischen Spin-und Ladungsträgerfreiheitsgraden auch oberhalb der
kritischen Temperatur.
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CHAPTER 1

Introduction

Magnetoelectric multiferroic materials with a coupling of electric and magnetic degrees of
freedom have attracted considerable interest after the discovery of a large magnetoelectric
e�ect (ME) in several compounds [1, 2, 3, 4]. They allow a cross-control of the electric
polarization via a magnetic �eld and the magnetization via an electric �eld and thus in turn
they are currently the subject of intensive study due to fascinating physical properties and
potential for applications as multifunctional devices [1, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25].

The rare-earth RMnO3 manganites (R=Gd, Tb, Dy, Eu/Y) with orthorhombically distorted
perovskite structure have emerged as a new class of multiferroics with strongly coupled
antiferromagnetic and ferroelectric properties [26, 27]. Several rare earth manganites orders
antiferromagnetically below TN ∼ 40K into collinear paraelectric phase [28] with sinusoidal
modulations of the M3+

n - spins. This phase is followed by a cycloidal spin order with nonzero
electric polarization below TC ∼ 20K.

It should be noted that the M3+
n atom is supposed [29] to have a Heisenberg spin with a

�xed length ofS = 2. The purely sinusoidally modulated spin phase contradicts this property.
Model calculations [29] have obtained the sinusoidal order only as a time-space average of the
simulated cluster. Thus, there is a possibility that a short-range dynamic order exists in the
intermediate temperature range TC < T < TN which is responsible for the “hidden” spin.
As the magnetic order at low temperatures is spin cycloid, it is natural to assume that the
dynamic short-range order is also a spin cycloid. This would imply that there are �uctuating
ferroelectric regions in the sinusoidal phase and that the ferroelectric transition is actually of
the order-disorder type. Such transition has been also suggested in Ref. [30] where a c-axis
relaxation typical for the order-disorder type transitions has been investigated. The fact that
the wave vector qMn of the spin wave does not change at the transition temperature TC [31]
is also an indirect evidence that the ferroelectric transition is not of the displacive type.

The data by terahertz spectroscopy [32, 33] evidence the nonzero dielectric contribution of
electromagnon in the sinusoidal phase. According to the commonly accepted mechanism of
the electromagnon [34, 35], the majority of the spectral weight of this mode originates from
exchange striction mechanism and can only exist in magnetic phases with non-collinear spin
arrangement. These facts again favor the hypothesis of dynamical cycloidal spin order in the
sinusoidal phase.

Recent theoretical analysis of the terahertz dynamics in the sinusoidal phase suggested

1



2 CHAPTER 1. INTRODUCTION

an explanation based on anomalous magnetoelectric coupling. Investigations of the collinear
sinusoidal phase in the diluted compounds TbMn1−xAlxO3 [36] and the observation of the
memory e�ect in the low temperature sinusoidal phase in the multiferroic MnWO4[37] have
suggested the presence of the nanosize ferroelectric domains and support relaxor order-
disorder type transition.

In this work we present the analysis of the critical behavior of the low-frequency relaxation
in DyMnO3. The observed critical behavior con�rms that the sinusoidal to cycloidal phase
transition is of the order-disorder type. The model suggests the presence of the short-range
cycloidal order in the collinear spin phase.



CHAPTER 2

Fundamental properties of
magnetoelectrics

2.1 Thermodynamic potential in electromagnetism and the
magnetoelectric e�ect

Landau and Lifshitz �rst predicted the linear magnetoelectric e�ect published in the famous
book “Electrodynamics of continuous media” [38]. It describes the in�uence of a magnetic
�eld on the electric polarization and - vice versa - the in�uence of an electric �eld on the
magnetization of a material. This phenomenon was �st observed by Astrov [39] and Folen et
al. [40] in Cr2O3.

The electric polarization and magnetization of a material is described within the frame-
work of thermodynamics with the basic principle of energy conservation - the �rst law of
thermodynamic. It is given by,

dU = dQ− dW + µ̄dN (2.1)

Where U is the internal energy, Q is the heat energy, W is the work, µ̄ is the chemical po-
tential, andN is the particle number. Nota bene there exists di�erent sign conventions. Here,
the elementary work (di�erential form of work), dW , is the work exerted to the environment
by the system. In this case, positive work means loss of energy by the system. In general, the
expression of the di�erential form of work is

dWmech =
∑
i

fidXi (2.2)

where fi are the coordinates of the generalized force andXi the coordinates of the general-
ized displacement. Neglecting the work related to the surface energy and elastic deformation,
only the work related to the change of the volume and the change of the electromagnetic
energy must be accounted in Eq. (2.1). The conservation of energy in electrodynamics is
given by [41],

dWmech

dt
= −

dEfield
dt

−
˛

S

S · da (2.3)

The �eld energy is given by, Efield = 1
2

´
V (E ·D + B ·H) dτ where D is the displace-

3



4 CHAPTER 2. FUNDAMENTAL PROPERTIES OF MAGNETOELECTRICS

ment �eld, B is the induction �eld,E is the electric �eld and H is the magnetic �eld. S denotes
the pointing vector with S = 1

µ0
(E×B). For uniform �elds, the energy �ux in and out of

V across the bounding surface (=material surface) are balanced, thus
¸
S S · da = 0. Hence,

dWmech

dt
= −

dEfield
dt

⇒ dWmech = −dEfield (2.4)

The change of the �eld energy is given by,

dEfield =
1

2

ˆ

V

(E · dD + dE ·D + B · dH + dB ·H) dτ (2.5)

With the de�nition of the dielectric displacement �eld,

D = ε0E + P (E,H) (2.6)

where P is the polarization dependent on E and H and the magnetic induction,

B = µ0 [H + M (H,E)] (2.7)

where M is the magnetization dependent on E and H and with the de�nitions of the
electric and magnetic susceptibilities as, χE = 1

ε0
dP
dE , χM = dM

dH where the double bar
denotes a second rank tensor, the change of the displacement �eld with respect to a change
of the electric �eld becomes,

dD

dE
= ε0 +

dP (E,H)

dE

= ε0

(
1 + χE

)
= ε

(2.8)

Thus, dD = εdE and D = εE . The change of the induction �eld with respect to a change
of the magnetic �eld becomes,

dB

dH
= µ0 + µ0

dM (E,H)

dH

= µ0

(
1 + χM

)
= µ

(2.9)

Hence, dB = µdH and B = µH. Consequently, Eq. (2.5) becomes,

dEfield =

ˆ

V

(E · dD + H · dB) dτ (2.10)

Thus,

dWmech = −
ˆ

V

(E · dD + H · dB) dτ (2.11)

Equation (2.11) can be interpreted as the work carried out by the system which is equival-
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ent to the decrease of the �eld energy. With Eq. (2.11), the energy conservation principle (Eq.
2.1), becomes,

dU (S,N, V,D,B) = TdS − pdV + µ̄dN +

ˆ

V

(E · dD + H · dB) dτ (2.12)

Where S is the entropy, T is the temperature, p is the pressure and V is the volume. In
this description, the natural variable of the system are given by the entropy, S, the particle
number, N , the volume, V , the dielectric displacement �eld, D, and the magnetic induction
�eld, B. Material parameters like the permittivity, ε, and the permeability, µ, contained in
the electric and magnetic �eld must be expressed as functions of the natural variables.

In more detail, this implies that ε and µ must be expressed as functions of the entropy.
However, this is very inconvenient since the temperature is the choice as a natural variable in
the experiment in contrast to the entropy –it is much easier to control the temperature instead
of the entropy. Thus, the free energy becomes the thermodynamic potential to describe
a material in a certain thermodynamic state. The free energy is obtained by a Legrende-
Transformation of the internal energy. It is de�ned as,

F (T,N, V,D,B) = U − ∂U

∂S
S = U − TS (2.13)

Thus, with Eq. (2.12), the di�erential of the free energy, F , becomes,

dF = −SdT − pdV + µ̄dN +

ˆ

V

(E · dD + H · dB) dτ (2.14)

Here ε and µ are functions of temperature. Since free charges are sources of the electric
displacement, D, and the vector potential, A, is the source of the magnetic induction, B, the
free energy given by Eq. (2.14) is the choice for problems with �xed free charges of conductors
and �xed vector potential.

For other cases, at which the natural variables T , E and H are the choice for describing the
state of the problem, a new potential should be formed by a suitable Legendre-Transformation,

F (T,N, V,E,H) = U − ∂U

∂S
S − ∂U

∂D
D− ∂U

∂B
B

= U − TS −
ˆ

V

(E ·D + H ·B) dτ
(2.15)

Thus,

dF = −SdT − pdV + µ̄dN −
ˆ

V

(D · dE + B · dH) dτ (2.16)

Hence, this potential obtains extremum with constant electric �eld, E, and magnetic �eld,
H. Hence, Eq. (2.16) is suitable for cases with �xed electric potential and �xed currents.
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2.1.1 Material equation for magnetoelectric media

With the de�nition of the dielectric displacement �eld Eq. (2.6), and the magnetic induction,
Eq. (2.7), the change of the free energy of the medium, Eq. (2.16), becomes at constant
temperature, volume and particle number,

dFEM = −
ˆ

V

(ε0E · dE + P · dE + µ0H · dH + µ0M · dH) dτ (2.17)

Equation (2.17) includes also the contribution of the free space to the change of the elec-
tromagnetic free energy, dFEM . For further calculations, it is convenient to exclude the free
space contribution to the total electromagnetic free energy. That means of course, only con-
tributions arising from material properties will be considered to derive the material equations.
Thus the change of the electromagnetic free energy considering only material properties
becomes,

dFEM = dFEM +

ˆ

V

(ε0E · dE + µ0H · dH) dτ

= −
ˆ

V

(P · dE + µ0M · dH) dτ

(2.18)

The material equations for a magnetoelectric media are derived by expanding Eq. (2.18)
into a Taylor series with respect to E and H. Using Einstein summation convention and
considering only linear terms, the free energy, FEM , is given by,

FEM (E,H) = F0 +

ˆ

V

(
∂FEM
∂Hi

∣∣∣∣
Hi=0

Hi +
1

2

∂2FEM
∂Hj∂Hi

∣∣∣∣
Hi=Hj=0

HiHj

)
dτ

+

ˆ

V

(
∂FEM
∂Ei

∣∣∣∣
Ei=0

Ei +
1

2

∂2FEM
∂Ej∂Ei

∣∣∣∣
Ei=Ej=0

EiEj

)
dτ

+
1

2

ˆ

V

(
∂2FEM
∂Ej∂Hi

∣∣∣∣
Ej=Hi=0

HiEj +
∂2FEM
∂Hj∂Ei

∣∣∣∣
Hj=Ei=0

EiHj

)
dτ

(2.19)
The last term in Eq. (2.19) becomes,

1

2

ˆ

V

(
∂ (µ0Mi)

∂Ej

∣∣∣∣
Ej=Hi=0

HiEj +
∂Pi
∂Hj

∣∣∣∣
Hj=Ei=0

EiHj

)
dτ (2.20)

With the classic linear material equations for the electric polarization and magnetization,
dMS

i
dHj

= χMij , dP
S
i

dEj
= ε0χ

E
ij , where −MS

i = ∂FEM
∂Hi

∣∣∣
Hi=0

and −PSi = ∂FEM
∂Ei

∣∣∣
Ei=0

, and the

de�nition of the linear magnetoelectric susceptibilities, ∂Mi
∂Ej

= αij , ∂Pi
∂Hj

= µ0βij , Eq. (2.19)
becomes,
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FEM (E,H) = F0 −
ˆ

V

(
µ0M

S
i Hi +

1

2
µ0χ

M
ij HiHj

)
dτ

−
ˆ

V

(
PSi Ei +

1

2
ε0χ

E
ijEiEj

)
dτ

− 1

2

ˆ

V

(µ0αijHiEj + µ0βijEiHj) dτ

(2.21)

WhereF0 represents all �eld independent contribution to the free energy, and χEij and χMij
are the electric and magnetic susceptibilities respectively. The magnetoelectric susceptibilit-
ies, αij and βij correspond to the induction of polarization by a magnetic �eld respectively,
to the induction of magnetization by an electric �eld.

With the de�nition of the electrical polarization and magnetization, Eq. (2.18),
ˆ

V

Pidτ = −∂FEM
∂Ei

ˆ

V

Midτ = − 1

µ0

∂FEM
∂Hi

(2.22)

the material equations for a magnetoelectric media are given by,

ˆ

V

Pidτ = − ∂

∂Ei

ˆ

V

(
−PSl El −

1

2
ε0χ

E
lmElEm −

1

2
µ0αlmHlEm −

1

2
µ0βlmElHm

)
dτ

=

ˆ

V

(
PSl δli +

1

2
ε0δli

(
χElm + χEml

)
Em +

1

2
µ0αlmHlδmi +

1

2
µ0βlmHmδli

)
dτ

=

ˆ

V

(
PSi +

1

2
ε0

(
χEij + χEji

)
Ej +

1

2
µ0 (αji + βij)Hj

)
dτ

(2.23)

ˆ

V

Midτ = − 1

µ0

∂

∂Hi

ˆ

V

µ0

(
−MS

l Hl −
1

2
χMlmHlHm −

1

2
αlmHlEm −

1

2
βlmElHm

)
dτ

=

ˆ

V

(
MS
l δli +

1

2
δli
(
χMlm + χMml

)
Hm +

1

2
αlmEmδli +

1

2
βlmElδmi

)
dτ

=

ˆ

V

(
MS
i +

1

2

(
χMij + χMji

)
Hj +

1

2
(αij + βji)Ej

)
dτ

(2.24)
with,

δij =

1 i = j

0 i 6= j
(2.25)

where PSi and MS
i denote the spontaneous polarization and magnetization respectively.

For isotropic material the electric polarization is always parallel to the electric �eld (P||E)
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as well as the magnetization is always parallel to the magnetic �eld (M||H). Therefore,
χEij = χEji, χMij = χMji , αij = αji, βij = βji. The free energy in Eq. (2.21) is twice
di�erentiable anywhere with respect to the �elds. Hence, Young’s theorem holds and αij =

βij . Consequently, the induction of polarization by a magnetic �eld and the induction of
magnetization by an electric �eld is symmetric. The �nal material equations become,

Pi = PSi + ε0χ
E
ijEj + µ0γijHj + . . .

Mi = MS
i + χMij Hj + γijEj + . . .

(2.26)

where γij is the linear magnetoelectric susceptibility.

2.1.2 Upper bound of the linear magnetoelectric susceptibility

From thermodynamic considerations a fundamental property of the linear magnetoelectric
susceptibility can be obtained which is given by an upper bound of attainable values. Al-
though the assumption of an anisotropic behaviour of the media leads to a more accurate and
complete relation for this boundary, an isotropic media is assumed to simplify the consid-
erations. This simpli�cation transfers tensor properties to scalar properties but it does not
change the characteristic of that boundary.

With χE =
(
ε
ε0
− 1
)

, Eq. (2.18) and Eq. (2.21), the electromagnetic free energy including
the free space contribution becomes with negligible static electric and magnetic polarization,
PS = MS = 0,

FEM = FEM −
ˆ

V

(
1

2
ε0E

2 +
1

2
µ0H

2

)
dτ

= −
ˆ

V

(
1

2
εE2 +

1

2
µH2 + γHE

)
dτ

(2.27)

In equilibrium the electromagnetic free energy extremizes. Thus the Hessians given by,

H1 =

(
∂2FEM
∂E2

∂2FEM
∂E∂H

∂2FEM
∂H∂E

∂2FEM
∂H2

)
=

(
−ε −γ
−γ −µ

)
(2.28)

H2 =

(
∂2FEM
∂H2

∂2FEM
∂E∂H

∂2FEM
∂H∂E

∂2FEM
∂E2

)
=

(
−µ −γ
−γ −ε

)
(2.29)

of the electromagnetic free energy must be positive or negative de�nite. In case that H1

and H2 are positive de�nite, hence the electromagnetic free energy minimizes, the principal
minors of the Hessian,

det (Hk) > 0 ∀k Hk =


h11 · · · h1k

... . . . ...
hk1 · · · hkk

 (2.30)

must be positive. Hence,
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−ε > 0 (2.31)

εµ− γ2 > 0 (2.32)

−µ > 0 (2.33)

If the electromagnetic free energy maximizes, the Hessians are negative de�nite and the
odd and even principal minors of the Hessian are negative and positive. Thus,

(−1)kdet (Hk) > 0 ∀k (2.34)

Hence,

ε > 0 (2.35)

εµ− γ2 > 0 (2.36)

µ > 0 (2.37)

Equation (2.31) and (2.33) implicate a negative permittivity and permeability. Therefore,
for materials with negative refraction (e.g. metamaterials) the electromagnetic free energy
minimizes. For conventional materials (positive refraction) the electromagnetic free energy
maximizes.

A fundamental relation for magnetoelectric media is given by Eq. (2.32) and (2.36) which
limits the magnetoelectric susceptibility,

γ <
√
εµ (2.38)

For an anisotropic medium the theoretical limit to the linear magnetoelectric coupling is
governed by the appropriate diagonal elements of the permittivity and the permeability, [1],

γij <
√
εiiµjj (2.39)

In fact, assuming free localized magnetic moments in the medium, the diamagnetic con-
tribution to the magnetic susceptibility can be neglected, a more rigorous constraint for the
linear magnetoelectric susceptibility can be obtained [42]

γij <
√
χEiiχ

M
jj (2.40)

Therefore, to obtain large linear magnetoelectric e�ect, systems with large permittivity
and large permeability are required. Hence for materials being ferroelectric and ferromag-
netic simultaneously (materials showing a ferroelectric, ferromagnetic or multiferroic phase
transition), a large linear magnetoelectric coupling might be expected.

Examples of large linear magnetoelectric coupling are RFe3 (BO3)4, RAl3 (BO3)4 with
R = Sm,Ho [18, 43, 44]. They posess colossal magnetic-�eld-induced changes in the dielec-



10 CHAPTER 2. FUNDAMENTAL PROPERTIES OF MAGNETOELECTRICS

tric constant [45, 46] caused by a large electromagnon in the gigahertz frequency range [47].

2.2 Symmetry considerations of linear magnetoelectric coup-
ling and the magnetodielectric e�ect

The absence or presence of the linear magnetoelectric e�ect is on an phenomenological level a
symmetry property of the system and hence can be solely determined by symmetry arguments
regarding the invariance of time and space inversion of the free energy of the system.

The electromagnetic free energy given by Eq. (2.18) is rather inconvenient for symmetry
analysis since its natural variables are E and H . Usually, for phase transition studies the
free energy of the system is expanded into a power series of P and M . Accordingly, the free
energy of choice is obtained by a Legrende-Transformation of Eq. (2.18) and becomes,

FEM (P,M) = FEM (E,H)− ∂FEM (E,H)

∂E
E−∂FEM (E,H)

∂H
H

= FEM (E,H) +

ˆ

V

(P ·E + µ0M ·H) dτ
(2.41)

Thus,

dFEM (P,M) = dFEM (E,H) +

ˆ

V

(E · dP + P · dE + µ0H · dM + µ0M · dH) dτ

= −
ˆ

V

(P · dE + µ0M · dH) dτ

+

ˆ

V

(E · dP + P · dE + µ0H · dM + µ0M · dH) dτ

=

ˆ

V

(E · dP + µ0H · dM) dτ

(2.42)
Expanding Eq. (2.42) into a Taylor series with respect to P and M and assuming isotropic

behaviour, the free energy, FEM (P,M), is given by,
For linear magnetoelectric media, the lowest term in the the free energy depends on the

bi-linear term, F ∝ −γEH , (Eq. 2.27). Assuming scalar properties and negligible static
polarization and magnetization the material equations are given by,

FEM (P,M) = F0 +

ˆ

V

(
∂FEM
∂M

M +
∂2FEM
∂2M

M2 + . . .

)
dτ

+

ˆ

V

(
∂FEM
∂P

P +
∂2FEM
∂2P

P 2 + . . .

)
dτ

+
1

2

ˆ

V

(
∂2FEM
∂P∂M

PM +
∂2FEM
∂M∂P

MP + . . .

)
dτ

(2.43)



2.2 Symmetry considerations of linear magnetoelectric coupling and the magnetodielectric e�ect 11

With Eq. (2.42) follows,

FEM (P,M) = F0 +

ˆ

V

(
µ0HM + µ0

dH

dM
M2 + . . .

)
dτ

+

ˆ

V

(
EP +

dE

dP
P 2 + . . .

)
dτ

+
1

2

ˆ

V

(
∂

∂P
(µ0H)PM +

∂E

∂M
MP + . . .

)
dτ

(2.44)

From Eq. (2.26) follows with negligible static electric polarization and magnetization,

P = ε0χEE + µ0γH

M = χMH + γE
(2.45)

Thus,

E =
χMP − µ0γM

ε0χEχM − µ0γ2

H =
ε0χEM − γP
ε0χEχM − µ0γ2

(2.46)

Hence,

∂H

∂P
=

−γ
ε0χEχM − µ0γ2

∂E

∂M
=

−µ0γ

ε0χEχM − µ0γ2

∂H

∂M
=

ε0χE
ε0χEχM − µ0γ2

∂E

∂P
=

χM
ε0χEχM − µ0γ2

(2.47)

Consequently, Eq. (2.44) becomes with Eq. (2.47),

FEM (P,M) = F0 +

ˆ

V

(
µ0HM +

µ0ε0χE
ε0χEχM − µ0γ2

M2 + . . .

)
dτ

+

ˆ

V

(
EP +

χM
ε0χEχM − µ0γ2

P 2 + . . .

)
dτ

+

ˆ

V

(
−µ0γ

ε0χEχM − µ0γ2
PM + . . .

)
dτ

(2.48)

Thus the magnetoelectric free energy considering only the lowest order coupling between
P and M is given by,

FME = −
ˆ

dτV
µ0γ

ε0χEχM − µ0γ2
PM (2.49)

For simplicity, it is assumed that γ2 � χEχM . Accordingly, Eq. (2.49) becomes,

FME = −
ˆ

dτV
µ0

ε0χEχM
γPM (2.50)
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Due to the de�nition of the electric dipole moment, d = qr, and magnetic moment,
µ = qvA, where q is the charge, v is the velocity, r is the distance between the positive and
negative charge and A is the enclosed area of the moving charge and by the conservation of
charge during space and time inversion, the elementary electric dipole reverses, d (−r) →
−d (r) under space inversion while the space inversion does not change the direction of
currents, thus µ (−r) → µ (r). On the contrary, time inversion will reverse the sign of the
magnetic moment, µ (−t)→ −µ (t), while the sign of the electric dipole remains una�ected,
d (−t)→ d (t). The given arguments are summarized in Fig. (2.1).

Figure 2.1: Space and time inversion symmetries of elementary magnetic and
electric dipoles. a) An electric dipole changes sign under space
inversion but is not a�ected by time inversion. b) A magnetic dipole
is generated by a circular current. By applying time inversion the
sense of rotation of the charge reverses and thus in turn the magnetic
dipole reverses too.

According to the arguments above, the ferroelectric chain breaks the space inversion sym-
metry, i.e. the macroscopic electric polarization changes sign under space inversion, but keeps
the time inversion symmetry, P (−r, t) = −P (r, t), P (−t, r) = P (t, r) (Fig. 2.2).

Vice versa, the ferromagnetic chain breaks time inversion symmetry but keeps space in-
version symmetry, M (−r, t) = M (r, t), M (−t, r) = −M (t, r). For an antiferromagnetic
chain the order parameter is given by the staggered magnetization which is de�ned as, L =
1
2 (MA −MB), where MA and MB is the magnetization of the both sublattices. Just like the
ferromagnetic chain it keeps space inversion symmetry but breaks time inversion symmetry,
L (−r, t) = L (r, t), L (−t, r) = −L (t, r).

According to Eq. (2.50) the magnetoelectric contribution to the free energy is, FME ∝
−γPM . It is evident, that the magnetoelectric free energy changes sign under space and
time inversion, F (−r, t) = −F (r, t) and F (r,−t) = −F (r, t). The Neumann’s principle
states that if a crystal is invariant with respect to certain symmetry operations, any of its
physical properties must also be invariant with respect to the same symmetry operations,
or otherwise stated, the symmetry operations of any physical property of a crystal must
include the symmetry operations of the point group of the crystal [48] . Accordingly, the
symmetry operations of the free energy is inevitably connected to the symmetry operations
of the crystal. Consequently, the crystal must break both symmetries in order to allow for
the linear magnetoelectric e�ect. Since magnetic order always breaks the time inversion
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Figure 2.2: Space and time inversion symmetry for a chain of elementary magnetic
and electric dipoles. a) A ferroelectric chain of elementary electric
dipoles breaks only space inversion symmetry b) A ferromagnetic
chain of elementary magnetic dipoles breaks only time inversion
symmetry. c) An antiferromagnetic chain of elementary magnetic
dipoles behaves in exactly the same way as a ferromagnetic chain.

symmetry the crystal must belong to a space group where the space inversion symmetry
is broken. For a centro-symmetric crystal structure, the space inversion symmetry is not
broken and thus in turn the magnetic order must break the space inversion as well as the
time inversion symmetry for allowing the linear magnetoelectric e�ect. Hence, the linear
magnetoelectric coupling is not allowed in ferromagnets and most antiferromagnets with
a centro-symmetric crystal structure since the magnitization in these systems is invariant
under space inversion. Additionally, if the crystal is centro-symmetric in the disordered state
(unpolarized state), space inversion is always ful�lled and odd powers of P are not allowed.
Furthermore, the paramagnetic phase is time-reversal invariant [49]. Thus odd powers of
M are not allowed in the non-ordered state. Hence, the bilinear coupling of P with M

is not allowed in the free energy expansion above the transition temperature. Therefore,
γ = 0 for T > TC . Consequently, for simplicity it is assumed that the linear magnetoelectric
susceptibility behaves as γ → γΘ (TC − T ) where Θ (TC − T ) is the heaviside step function.

Nota bene, nonlinear magnetoelectric contributions like κPM2or ζP 2M2 which is gen-
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erally allowed by symmetry, may still be presents, but they are typically rather weak [50, 51].
These higher order couplings between electric polarization and magnetization are summar-
ized under the term “magnetodielectric e�ect” whereas the term “magnetoelectric e�ect” should
be reserved for special symmetries where a free energy invariant proportional to, F ∝ γPM ,
is allowed [52].

The terminology “magnetodielectric e�ect” is used for systems that are not known to be
linear magnetoelectrics by symmetry but though display a change in the dielectric constant
at magnetic ordering temperatures, or show �nite magnetocapacitance such as EuTiO3[51],
TmFeO3[53], MnF2[54], MnO[55], Mn3O4[56], Tb3Fe5O12[57], Dy2Ti2O7[58], Tb2Ti2O7

[59], and ZnFe2O4[60]. Of course, the ful�lment of the symmetry requirements alone does
not guarantee the existence of the linear magnetoelectric e�ect in magnetoelectrics, but the
converse is always true that is, that the existence of the linear magnetoelectric e�ect requires
broken space and time inversion symmetry of the crystal. For centro-symmetric crystals
structures, the linear magnetoelectric e�ect requires the existence of broken space inversion
symmetry in the magnetic point group (nota bene: the linear magnetoelectric e�ect can only
occur in magnetic point groups since it vanishes for all symmetry groups containing time
reversal symmetry [61]).



CHAPTER 3

Spin-La�ice coupling: Ferroelectricity
induced by magnetic order

3.1 Spin frustration as an origin of linear magnetic ferroelec-
trics

As seen in Sec.(2.2) the linear magnetoelectric e�ect is only allowed in centro-symmetric sys-
tems in which the magnetic structure breaks the spatial inversion symmetry. Consequently,
spatial variation of the magnetization must exist in the system.

This is where spin frustration comes into play. In some lattices it is not possible to satisfy
all exchange interactions and energy can not be minimized (Fig. 3.1). On the square lattice it

Figure 3.1: Geometrically frustration of spins. On a rectangular la�ice an anti-
ferromagnetic order of the spins does not lead to spin frustration
whereas on a triangular la�ice neighbouring spins are frustrated for
an antiferromagnetic exchange interaction.

is possible to satisfy the requirement of antiparallel ordering. However, on a triangular lattice
things are not so straightforward. If two neighbouring spins are placed antiparallel, the third
spin is faced with a dilemma. In any case the one of two neighbours will not have their energy
minimized.

As a result the system is frustrated and tends to release this frustration by forming unusual
magnetic order where magnetization is inhomogeneous in space. This order is developed
usually at very low temperatures and entails simultaneously the onset of electric polarization.

Such magnetoelectric materials belong to the class of Type-II or joint-order-parameter
multiferroics. In this class of materials, ferroelectricity is directly caused by magnetic order

15
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whereas in Type-I or split-order-parameter multiferroics magnetic and electric order are not
inherently related to each other (Fig. 3.2)

Figure 3.2: Type-I and Type-II Multiferroics. (a) Magnetic and electric order
are not directly related to each other in Type-I magnetoelectric
multiferroics. They set in at di�erent temperatures and do not
allow the linear magnetoelectric coupling. Hence, both orders are
usually weak coupled. (b) Magnetic and electric order have a
common cause in Type-II magnetoelectric multiferroics. Thus they
appear simultaneously and allow the linear magnetoelectric e�ect.
Therefore they exhibit a strong magnetoelectric coupling.

3.2 Ferroelectricity in cycloidal magnets

As mentioned in the previous section, competing interactions between spins would lead to
highly frustrated magnetic structures and in order to “release” this frustration, speci�c kind
of magnetic order is developed in frustrated magnets.

For example, the one-dimensional Heisenberg spin chain given by,

H = −J1

∑
i

Si · Si+1 (3.1)

with a ferromagnetic interaction J1 > 0 between neighbouring spins has a uniform ground
state with all spins parallel. An additional antiferromagnetic next-nearest-neighbour interac-
tion J2 < 0,

H = −J1

∑
i

Si · Si+1 − J2

∑
i

Si · Si+2 (3.2)

frustrates this simple ordering, and when su�ciently strong, |J2| > J1
4 [4], it stabilizes a

cycloidal magnetic state (Fig. 3.3). This can be seen as follows: The energy of the system only
depends on the relative angle between neighbouring moments and in the ordered ground
state the Hamiltonian per site in Eq. (3.2) can be written as,

Hi ∝ −J1 cos (ϕi,i+1)− J2 cos (2ϕi,i+1) (3.3)
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The ground state is given by ∂Hi
∂ϕi,i+1

= 0, thus1

J1 sin (ϕi,i+1)

[
1 +

4J2

J1
cos (ϕi,i+1)

]
= 0⇒ cos (ϕi,i+1) = − J1

4J2
(3.4)

In order to obtain a solution, J1
4J2
≤ 1.

Figure 3.3: Frustrated Heisenberg spin chain. (a) Ferromagnetic nearest neigh-
bour and antiferromagnetic next nearest neighbour interaction frus-
trates the Heisenberg spin chain. (b) The system tends to minimize
the energy and thus develops a cycloidal spin structure.

Like any other antiferromagnetic order, the cycloidal magnetic structure breaks time re-
versal symmetry. In addition it breaks space inversion symmetry, because the change of
the sign of all coordinates inverts the direction of the rotation of spins, clockwise (CW)
respectively counter-clockwise (CCW), in the cycloid and thus the cycloidal structure is a
chiral object, i.e. the CW cycloid cannot be mapped to its inverted (mirror) image by rotations
and translations (Fig. 3.4). Hence, the symmetry of the cycloidal state allows for a linear
magnetoelectric coupling.

In general, such magnetic structure can be described for CW and CCW cycloidal order by,

Mn = M

e1 cos (−Qxn) + e2 sin (−Qxn) CW

e1 cos (Qxn) + e2 sin (Qxn) CCW
(3.5)

where e1 and e2 are versors of the corresponding euclidean space, xn is the coordinate
vector of the spins,M is the absolute value of the magnetic moment and Q is the wave vector
of the cycloid. The period of the spin-cycloid depends on strengths of competing interactions
and is often incommensurate (out of proportion) with the period of the crystal lattice. With
xn = na and Q = 2π

ma where a is the distance between two neighbouring spins, n is a
integer number de�ning the site of the spin, and m is a multiple of the distance between two

1sin (2ϕ) = 2 sinϕ cosϕ
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Figure 3.4: Broken space inversion symmetry of cycloidal magnetic structure. (a)
Clockwise (CW) rotation of the spins. (b) Space inversion leads to a
counter-clockwise rotation (CCW) of the spins and thus to a broken
space inversion symmetry.

neighbouring spins de�ning the wave length2 as λ = ma. Thus the product Qxn in Eq. (3.5)
is, Qxn = qn with q = 2π

m . The parameter m is given by, m = 2π
ϕi,i+1

, thus ϕi,i+1 = q.
Consequently, for the wave vector follows according to Eq. (3.4),

cos (q) = − J1

4J2
(3.6)

From a phenomenological point of view, the inhomogeneous magnetic structure given
by a cycloidal distribution of spins can induce electric polarization via a Lifshitz term,
(M · ∇)M −M (∇ ·M), in the free energy [62] . Mostovoy [63] proposed a free energy
term which describes the linear coupling between electric polarization and non-uniform
distribution of magnetization in a cubic environment as,

FP =
P2

2χE
+ λP [M (∇ ·M)− (M · ∇)M] (3.7)

with M (∇ ·M) = Mi∂jMj and (M · ∇)M = Mj∂jMi. The induced electric polariza-
tion is found by ∂FP

∂P = 0, which is,

P = χEλ [(M · ∇)M−M (∇ ·M)] (3.8)

Substituting Eq. (3.5) into Eq. (3.8) the cycloidal spin distribution gives rise to electric
polarization by (Appendix A.1),

2Nota bene, by describing phonons the smallest wave length is equal to λ = m · 2a with m = 1. Thus,
the wave vector is Q = 2π

m·2a = π
ma

. For describing magnetic structures the smallest wave length is equal to
λ = m · a with m = 1. This can be understood by considering a ferromagnetic spin chain. In that case the spins
can be described by Mn = M cos

(
2π
a
na
)

= M cos (2πn) = M
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P = χEλM 2

− (e3 ×Q) CW

(e3 ×Q) CCW
(3.9)

The versors e1 and e2 de�ne the cycloidal plane and e3 is the spin rotation axis. Thus the
induced electric polarization is orthogonal to the propagation vector and lies in the cycloidal
plane. Furthermore it is obvious, that the helicity3 of the cycloidal structure de�nes the
direction of the electric polarization vector.

This speci�c type of magnetic structure and consequently a ferroelectric behaviour is
found in systems like TbMnO3[64], Ni3V2O8[65] and MnWO4 [66, 67, 68], in multiferroic
pyroxenes [69] and in some other systems.

3.2.1 Microscopic mechanism of electric polarization in cycloidal spin mag-
nets

Microscopically, two possible mechanisms have been proposed to explain the coupling
between spin and charge degrees of freedom and thus in turn the appearance of a spontaneous
electric polarization induced by a cycloidal magnetic order:

3.2.1.1 Spin-Current mechanism

A spin current is a quantum mechanical e�ect that arises from virtual hopping of electrons,
e.g. across a Mn–O–Mn bond and taking into account the spin of the electrons [70, 71, 72] .
In that sense it is the spin-polarized equivalent of double-exchange or superexchange.

In that model, a spin current arises between two neighbouring coupled non-collinear spins,
JSi,i+1 ∝ Si×Si+1. A unique feature of a spin current is given by the fact, that in contrast to
a charge current, it is time symmetric, JSi,i+1 (−t) = +JSi,i+1 (t), since the spin polarization
is also reversed together with the direction. Thus, from the symmetry point of view, the spin
current belongs to the same class as the electric polarization and hence it is natural to expect
the linear coupling between these two.

Indeed, a spontaneous electric polarization is induced that is proportional to the vector
product of spin current and the unit vector, ei,i+1, that connect the two neighbouring spins,

Pi,i+1 ∝
(
ei,i+1 × JSi,i+1

)
(3.10)

It is worth mentioning, that since this e�ect is based on virtual hopping of electrons, the
ferroelectric polarization result purely from a shift of electrons [73] and the ions remain �xed.

3.2.1.2 Inverse Dzyaloshinskii-Moriya interaction

A second possible mechanism for the generation of an electric polarization induced by a cyc-
loidal spin structure is based on the Dzyaloshinskii-Moriya (DM) interaction [74, 75, 76, 77].

3often described as chirality
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It describes a relativistic correction to the superexchange which accounts for the spin-orbit
coupling.

In non-relativistic quantum mechanics the Heisenberg superexchange interaction is due to
the second order virtual hopping of the electrons, and the spin of every electron is conserved
during the hopping. However, in relativistic quantum mechanics, the z-component of spin,
ms, is no longer a good quantum number and thus it is not conserved: it may �ip once during
the second order virtual hopping.

These virtual hopping with one time spin �ip will lead to the DM interaction in the same
way as non-relativistic hopping lead to the Heisenberg interaction. The DM interaction is a
antisymmetric superexchange interaction that appears in addition to the symmetric Heisen-
berg exchange, HHeis = −Jij

∑
ij Si · Sj , and is given by,

HDM =
∑
ij

Di,j · (Si × Sj) (3.11)

Here Di,j ∝ λ∆xi,j × ri,j is the so-called Dzyaloshinskii-vector, where ri,j is the unit
vector connecting the magnetic ions i and j, xi,j is the distance between the ligand (mostly
oxygen) mediating the superexchange and the line ri,j , and λ is the spin-orbit coupling con-
stant. Since the DM interaction is proportional to the vector product of spins, it favours
non-collinear spin ordering with an angle between neighbouring spins given by,

dH

dϕ
=

d (HHeis +HDM )

dϕ
= JijSiSj sinϕij + λ∆xijrij sinβijSiSj cosϕij = 0

tanϕij = −λ∆xijrij
1︷︸︸︷

sinβ

Jij
= −λ∆xijrij

Jij

(3.12)

where ϕ is the angle between two neighbouring spins and β is the angle between ∆xi,j

and ri,j . By de�nition, the vectors ∆xi,j and ri,j are orthogonal thus sinβ = 1. The spin-
spin interaction, determined by J , depends upon the bond angle, α, between the magnetic
ions and the ligand according to the Goodenough-Kanamori-Anderson (GKA) rules [78]4. In
turn, the bond angle is determined by the position of the ligand ion (Fig. 3.5). Consequently,
the spin-spin interaction depends on ∆xij . Therefore, for a �xed distance between magnetic
ions, r = R, the angle between neighbouring spins is solely dependent on the position of the
ligand ion as,

ϕij (∆xij) = arctan

[
−λR ∆xij

Jij (∆xij)

]
(3.13)

For a given bond angle, α, the position of the ligand ion can be ±X . Thus Jij (+X) =

Jij (−X). Therefore, according to Eq. (3.13) the angle between two neighbouring spins
changes sign for opposite ligand positions as, ϕij (+X) < 0 and ϕij (−X) > 0. This

4If the bond angle is 180°, an antiferromagnetic alignment is preferred. Thus J > 0. In contrast, a bond angle
of 90° leads to a ferromagnetic alligment, thus J < 0
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Figure 3.5: Microscopic mechanism of the Spin-La�ice coupling due to
Dzyaloshinskii-Moriya interaction. The angle, ϕ, between the
neighbouring spins is governed by spin-spin interaction and
depends on the bond angle, α, between the magnetic ions (B) and
the ligand ion (L). Thus in turn, it depends on the position, ∆x, of
the ligand ion. (a) If ∆x > 0, the angle between two neighbouring
spins is negative thus the spin rotates clockwise. (b) If ∆x < 0,
the angle between two neighbouring spins is positive thus the spin
rotates counter-clockwise. Charge and spin degrees of freedom
are coupled, if the magnetic ions and the ligand ion are oppositely
charged.

peculiar behaviour of the angle between neighbouring spins can lead to weak ferromagnetism
in canted antiferromagnets, although the DM interaction is rather weak.

This can be explained as follows. A chain of magnetic ions with nearest-neighbour inter-
action arising from superexchange via intermediate ligand ions and if the ligand ions are
distorted from the plane formed by the magnetic ions in a zig-zag pattern, results in an
alternating Dzyaloshinskii-vector (Fig. 3.6).

Figure 3.6: Weak magnetism in canted antiferromagnets. Alternating
Dzyaloshinskii-vector leads to alternating helicity of neighbouring
spins and thus to a weak ferromagnetism in canted
antiferromagnets.

Consequently, for a alternating Dzyaloshinskii-vector, the helicity (direction of rotation
from spin to spin) changes. This behaviour leads to a weak ferromagnetism in canted antifer-
romagnets, e.g in La2CuO4 [79].

Magnetically induced ferroelectricity in cycloidal ordered spins works exactly the other
way round. It is therefore also called the inverse Dzyaloshinskii-Moriya interaction (IDM)
[74]. That means, that the displacement, ∆x, of the ligand ions becomes a function of the
angle, ϕ, between the spins. Therefore, with Eq. (3.4), Eq. (3.12) must be interpreted as,
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∆xij =
Jij tanϕij

λrij
=
J1 tan

[
arccos

(
− J1

4J2

)]
λrij

(3.14)

If a cycloidal order is present, the angle between the spins is equal for each pair of spins.
Thus the IDM interaction pushes the ligand ions in one common direction transverse to the
chain of magnetic ions. If the magnetic ions are charged, e.g. positive and the ligand ions are
charged negative, an electric polarization is induced (Fig. 3.7).

Figure 3.7: Inverse Dzyaloshinskii-Moriya interaction. In a cycloidal spin order,
the IDM interaction leads to a displacement of the ligand ions (blue)
in the same direction due to same helicity between neighbouring
spins. If the magnetic (green) and ligand ions are charged oppositely,
a macroscopic electric polarization (red arrow) is induced leading to
a linear magneto electric e�ect.

The electric polarization is proportional to the displacement of the ligand ions given by Eq.
(3.14). With sinϕ = (SiSj)

−1 (Si × Sj), cosϕ = (SiSj)
−1 Si ·Sj and xr sinβ = ∆xi,j×ri,j

follows,

∆xi,j × ri,j = −Jij
λ

Si × Sj
Si · Sj

(3.15)

Thus, the displacement becomes,

− Jij
λSi · Sj

eri,j × (Si × Sj) = eri,j × (∆xi,j × ri,j)

= ∆xi,j

(
eri,j · ri,j

)
− ri,j

eri,j ·∆xi,j︸ ︷︷ ︸
0


= ∆xi,jri,j

⇒ ∆xi,j = − Jij
ri,jλSi · Sj

eri,j × (Si × Sj)

(3.16)

where eri,j denotes the unit vector connecting the spins Si and Sj . Therefore, the electric
polarization is given by,

P =
∑
i,j

Ai,jeri,j × (Si × Sj) (3.17)

with Ai,j = − qJij
ri,jλSi·Sj where q is the charge of the ligand ion.

Equation (3.17) shows the direct one-to-one correlation between the polarization direction
and the helicity of the spin cycloid. Furthermore, according to Eq. (3.17) the absolut value of
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the displacement depends on the angle between two spins (Fig. 3.8).

Figure 3.8: Displacement as a function of spin angle. The size of the displacement
of the ligand ion depends on the size of the spin angle. For collinear
spins the displacement vanishes whereas for π

2 the displacement is
maximal.

The physical interpretation of the IDM interaction is that the relativistic correction can
be expressed by a spin-orbital interaction, which will try to rotate the atomic orbitals in
order to align with the spins. This rotation of the atomic orbitals will repulse the ligand
ion between the two magnetic ions via Coulomb force. Thus, the IDM interaction leads to an
ionic polarization in contrast to the spin-current which generates an electric polarization.

From an experimental point of view the prove of which mechanism leads to the induced
electric polarization in cycloidal spin structures is a non-trivial process because only small
electric polarization of ≈ 100nC/cm2 corresponds to an ionic shift of approximately 1 pm.
This is at the resolution limit of methods that can measure the crystal structure, like neutron
scattering and X-ray di�raction. Often, it is unclear whether the ions or the electrons induces
the polarization [80, 81, 82].

Both e�ects are supported by theoretical calculations and they may even be present simul-
taneously [73, 83]. Nevertheless, the IDM interaction and its related ionic displacement is the
mechanism that explains the emergence of a net electric polarization in TbMnO3[84, 85, 86]
Dynamic magnetoelectric switching processes may clarify this question since electronic and
ionic systems can have di�erent dynamic properties.

3.3 Ferroelectricity in charge ordered collinear magnets

A second mechanism called exchange striction, explains the linear coupling between electric
and magnetic degrees of freedom and thus in turn the emergence of electric polarization due
to magnetic order in collinear magnetic structures.

It does not require the presence of spin-orbit coupling and is based on magnetostriction.
For the magnetostriction to give magneto electric behaviour the presence of inequivalent
magnetic ions with di�erent charges is essential. These in turn may be either just di�erent
ions, or the same element in di�erent valence states.
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3.3.1 Electric polarization due to magnetostriction for a straight charged
ordered chain

A simple model that describes the emergence of ferroelectricity in charge ordered collinear
magnets is the Ising model with both nearest-neighbour and next-nearest-neighbour interac-
tion,

H = −J1

∑
i

σiσi+1 − J2

∑
i

σiσi+2 (3.18)

where J1 ≶ 0 and J2 < 0 are the ferromagnetic and antiferromagnetic exchange con-
stant respectively, and σi = ±1 represents the Ising spin at site i. If the antiferromagnetic
exchange constant is su�ciently large, |J2| > |J1|

2 , the magnetic ordering will be of the
up–up–down–down type [87].

This speci�c type of magnetic order is space inversion symmetric and thus is not able to
lead to a linear magneto electric e�ect in principle (Fig. 3.9).

Figure 3.9: Up-up-down-down spin structure. The up-up-down-down spin struc-
ture does not break the space inversion symmetry.

Also the bare charged ordered chain without accounting the spin order does not break the
space inversion symmetry (Fig. 3.10).

However, taking both charge and magnetic structure together, the system loses space
inversion symmetry (Fig. 3.11) and in turn can lead to the linear magneto electric e�ect.

The exchange striction shifts neighbouring ions in a way that optimizes the spin-exchange
energy since in general the exchange constant is a function of the distance between these
spins, J = f (r). Thus depending on the sign of J1, the bond with parallel spins (for J1 > 0)
will shorten and with antiparallel spins will stretch, respectively the bond with antiparallel
spins (for J1 < 0) will shorten and parallel spins will stretch, increasing the magnetic energy
gain on the corresponding bond (Fig. 3.12).

In both cases this will lead to a induced electric polarization. An almost ideal realization
of this scenario seems to have been found in Ca3CoMnO6 [88]. In this system with a quasi-
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Figure 3.10: Charged ordered chain. The charged ordered chain does not break
space inversion symmetry.

Figure 3.11: Charged ordered chain with spin structure. A chain with alternating
charges and with the spin structure up-up-down-down breaks
the space inversion symmetry and thus allows in principle the
emergence of the linear magneto electric e�ect.

onedimensional structure the ions Co2+ and Mn4+ alternate along the chain, and magnetic
structure is of the up–up–down–down type. Indeed, below TN = 16 K, Choi et al. [88] ob-
serve an electric polarization in this system. In addition the coexistence of site-centred charge
ordering and spin ordering of the up-up-down-down type has been observed in RNiO3[89].
Furthermore, this example is closely related to the origin of ferroelectricity in orthorhombic
RMn2O5 (R = rare-earth). In this family of multiferroics the strongly interacting Mn3+ and
Mn4+ spins form a �ve-fold loop of antiferromagnetic bonds, which leads to frustration [80].

3.3.2 Electric polarization due to exchange striction for a zig-zag charged
ordered chain

In zig-zag charged ordered chains the most important in�uence to the spatially dependent ex-
change constant comes not directly from the relative position of the ions itself, but indirectly
from the change of the bond angle caused by the change of the relative position. If x is the
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Figure 3.12: E�ect of Magnetostriction. Shortening (in this example) the ferro-
magnetic bonds, produces a electric polarization, indicated by the
red arrow.

distance of the ligand ion to the line connecting the magnetic ions, then to �rst order in x the
exchange interaction has the form (∇ = d

dx ),

J (x, y, z) = J (x0, y0, z0) +
∂J

∂α

∣∣∣∣
α0

∇α|x0
· (x− x0) (3.19)

where α is the bond angle and x0 is the equilibrium position. The exchange constant J is
maximal for α = π, ∂J

∂α

∣∣
π

= 0 , and decreases with decreasing angle as it follows from the
Goodenough-Kanamori-Anderson rules. The Heisenberg exchange interaction then has the
form,

Hi,i+1 =

[
J (xi0 , yi0 , zi0) +

∂Ji
∂αi

∣∣∣∣
αi0

∇αi|xi0 · (xi − xi0)

]
Si · Si+1 (3.20)

If the bond angle in equilibrium position substantially di�ers from π, the �rst derivative
∂Ji
∂αi

∣∣∣
α0

6= 0 exists and is the same for all bonds. In a zig-zag chain the derivative of the bond

angle with respect to the position of the ligand ion alternates, ∇αi|xi0 ∼ (−1)i, in the same
manner as the scalar product of two neighbouring spins alternates, Si · Si+1 ∼ (−1)i. In
equilibrium, the gain of the Heisenberg exchange energy becomes maximized. Therefore all
∆xi = xi − xi0 < 0 and thus in turn pushes all ligand ions in the same direction away from
the equilibrium position. This displacement generates an electric polarization accordingly if
the ligand and magnetic ions are di�erently charged (Fig. 3.13).

Figure 3.13: Zig-Zag charge ordered chain with up-up-down-down spin structure.
Electric polarization is induced in a charged ordered zig-zag chain
with up-up-down-down spin structure.

Nota bene, in zig-zag chains with a cycloidal spin arrangement and a Heisenberg interac-
tion, the scalar product of two neighbouring spins is constant and always positive, Si ·Si+1 >
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0. Hence the displacement of the ligand ion alternates,∆xi = xi−xi0 ∼ (−1)i and no electric
polarization (static property) is induced (Fig.3.14).

Figure 3.14: Zig-Zag charge ordered chain with cycloidal spin structure. The
cycloidal spin order in a zig-zag charged ordered chain causes a
shi� of the ligand ions in opposite directions. Thus no electric
polarization is generated..

However, the exchange striction is most likely the driving mechanism of the existence of
novel coupled magnon-phonon excitations called electromagnons (dynamic property) [90, 91]
in charged ordered zig-zag chains with a cycloidal spin order.

It was found out, that these excitations does not depend on direction of the spins and
thus in turn do not obey the selection rule of the IDM interaction namely that the elec-
tric component of the excitation �eld should be in-plane with the spin cycloid, E ‖ P ∝
eij × (Si × Sj)[90, 92, 93, 94, 95, 96, 97]. Therefore the violation of the this selection rule
implies that a di�erent dynamical megnetoelectric coupling is responsible for the appearance
of electromagnons in cycloidal ordered magnets.





CHAPTER 4

Theory of ferroelectric phase transition

4.1 Static critical phenomena

The thermodynamic properties of a system in equilibrium can be analysed by considering
its thermodynamic potential expressed in terms of natural variables. The potential which is
commonly used in describing phase transitions is the free energy, F = U − TS 1(Eq. 2.13).

The fundamental concept on which all thermodynamic theories of ferroelectric phase
transitions are based on is that the phase transition can be described in terms of an order
parameter, Ω, whose appearance at the phase transition temperature, TC , breaks the sym-
metry of the system. Hence Ω vanishes above TC and is non-zero below TC .

The order parameter thus measures the extent to which the atomic con�guration in the
less symmetrical phase departs from the con�guration of the more symmetrical phase [98].
Therefore, for studying phase transitions it is essential to know the free energy of the system.

The procedure to calculate the free energy is linked to the problem to �nd the partition
function for system composed by N particles,

F = −kBT lnZ (4.1)

where Z is the partition function given by2

Z =

+∞ˆ

−∞

e−(kBT )−1H(pn,rn)
∏
n

dpndrn (4.2)

where kB is the Boltzmann’s constant, T is the temperature and H is the Hamiltonian of
the system given by,

H (pn, rn) =

N∑
n=1

p2
n

2m
+ V (r1, ..., rN ) (4.3)

1The free energy is a function of temperature and volume,F = f (T, V ). Thus thermodynamic equilibrium
is given by dT = 0 and dV = 0. Processes with dV = 0 are di�cult to realize experimentally. Therefore it is
convenient to consider the Gibbs free energy which is a function of temperature and pressure,G (T, p) = F+pV .
Hence, dF = dG − V dp − pdV . For in isobaric process follows, dF = dG − pdV . In solid state physics dV is
usually very small and hence negligible. Thus in turn dF ≈ dG.

2Here it is assumed that the system can be considered classically. For quantum mechanical systems Z =

Tr
[
exp

(
− H
kBT

)]
.

29
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with the total kinetic energy,
∑N

n=1
p2
n

2m , and the total interaction energy, V (r1, ..., rN ) ,

where pn and rn are the momentum and position of the nth particle, respectively. The
partition function and thus in turn the free energy of a system can only be evaluated if the
multiple integral can be split into the product of singular integrals.

If the interaction energy between the particles has to be accounted, it is no longer possible
to break up the integral into the product of singular integrals and usually perturbation theory
with respect to the interaction energy has to be applied [99].

There exists one ideal case where, in spite of interaction between the particles, the multiple
integral splits into the product of simple integrals. This is the case for a so called harmonic

crystal. The potential energy for such a crystal is a quadratic function of the atomic displace-
ments. In that case, it is possible to pass over from spatial coordinates, ri, to the normal
coordinates uq of which the function V (r1, ..., rN ) becomes V = 1

2

∑N
q=0 vqu

2
q where vq are

certain coe�cients [99].
In the harmonic approximation on the other hand the breaking of symmetry at ferroelec-

tric phase transitions can not be described. Anharmonic e�ects must be considered such as
the dependence of the potential energy on higher order atomic displacements [99, 100]. This
in turn entails that the transition to the normal coordinates does not allow to split the integrals
in Eq. (4.2) and perturbation theory must be applied.

In doing so, one assumes small anharmonic corrections, but in the vicinity of the phase
transition, i.e. in the anomalous region of the response function (electric susceptibility) an-
harmonic e�ects cannot be considered to be small. Thus, the problem of calculating anomalies
in the region of phase transitions or thermodynamic potentials within the framework of
statistical physics is extremely complicated [99].

As a matter of fact, phase transitions are usually investigated within the framework of
Ginzburg-Landau theory as a �rst stage.

4.1.1 Thermodynamics and Ginzburg-Landau Hamiltonian

In practice, the expression in Eq. (4.2) is not of much use, since the microscopic Hamiltonian,
and the degrees of freedom, are too much complicated to make a calculation possible in most
cases [101].

On the contrary, near the phase transition temperature, the degrees of freedom which
controls the phase transition are long wavelength collective excitations of electric dipoles.
Thus it is possible to introduce a coarse-grained electric polarization �eld [101, 102], π (r)

which represents the average of the elemental electric dipoles in the vicinity of a point r.
That means, that the volume is divided into small cells where each cell is small enough to be

represented by a di�erential volume element d3r but large enough to include many electric
dipoles in it. It is important to emphasize that while r is treated as a continuous variable,
the function π (r) does not exhibit any variations at distances of the order of the volume
dimensions. That is that the Fourier transform involves only wave vectors with magnitude
less than some upper cut-o� |q|max ∼ 1

d where d is of the order of the volume dimension.
By focusing only on the coarse-grained electric polarization �eld, the original problem
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given by Eq. (4.1) is simpli�ed since the partition function can be written as [101, 102],

Z =

ˆ
Dπ (r) e−(kBT )−1H[π(r)] (4.4)

Hence, in thermal equilibrium the probability to �nd a speci�c con�guration of the order
parameter �eld is given by,

P [π (ri)] =
1

Z
e−(kBT )−1H[π(ri)] (4.5)

The functional integration
´
Dπ (r) is an integral over all possible values of π (r) at all

positions r. That is a sum over all possible macrostates (di�erent con�gurations of the or-
der parameter �eld) in which the Boltzmann factor determines the probability for a given
macrostate. It is a shorthand notation which reads [102],

ˆ
Dπ (r) =

ˆ ∏
i

dπ (ri) (4.6)

The coarse-grained Hamiltonian H [π (r)] is the so called Ginzburg-Landau Hamiltonian
and can be constructed by appropriate assumptions which are [101]: The crystal energy may
be represented as a sum over all volume energies and energies of interactions between them.
The energy of interaction can be expressed through gradient expansions. In a continuum
representation the sum goes over to an integral.

Furthermore, H [π (r) ,∇π (r) , · · · ] must have the symmetry of the paraelectric phase
which is invariant under space inversion and in an isotropic system the derivatives must be
invariant under spatial rotations. Thus the Ginzburg-Landau Hamiltonian including the in-
teraction energy with an external electric �eld,E (r), su�ciently describing phase transitions
in most cases is given by [101],

H =

ˆ {
aπ2 (r) + bπ4 (r) + cπ6 (r) + . . .+K [∇π (r)]2 − gE (r)π (r)

}
dV (4.7)

The phenomenological parameters a, b, c,K, g3 are non-universal functions of micro-
scopic interactions as well as external parameters such as temperature and pressure.

The term K [∇π (r)]2 represents the increase of the energy density due to spatial �uc-
tuations of the order parameter4. A positive K leads to ∇π (r) = 0 in equilibrium and
consequently to a spatially homogeneous system, whereas for K < 0, ∇π (r) 6= 0 and a

3In Kadar’s textbook, g is set to one, g = 1. Since the Hamiltonian in Eq.(4.7) represents a series expansion
of the actual total energy, the parameter g is not necessarily one, but can be also a function of temperature and
microscopic parameters.

4This particular form of interaction energy can be understood on the basis of an Ising type interaction.
Suppose that the interaction energy can be written as HINT = J

∑
i SiSi+1, where J is a exchange constant

and Si is a spin like entity. For a coarse-grained order parameter �eld, this relation can be written as HINT =∑
l πlπl+1 where πl is the coarse grained order parameter at position l which is πl =

∑(l+1)a
i=la Si where a is

the region size. The interaction energy can be rewritten to HINT = 1
2
J
∑
l (πl − πl+1)2 − J

∑
l π

2
l . Thus

HINT ∝ a
∑
l

(
πl−πl+1

a

)2

a ≈ a
´ (π(r+dr)−π(r)

dr

)2

dr = K
´

[∇π (r)]2 dr
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spatially inhomogeneous system is favoured in equilibrium. Thus the gradient term accounts
the energy stored in domain walls [103].

4.1.2 Saddle point approximation and Landau’s theory

Although by the transformation from the original degrees of freedom, Eq. (4.2), to a �eld
representation, π (r), and consequently evaluating the partition function in Eq. (4.4) over all
possible con�gurations of the order parameter �eld, Eq. (4.6), it is still challenging to calculate
the partition function in Eq. (4.4). As a �rst step the order parameter �eld is replaced by
the mean value, π (r) → 〈π (r)〉 = π̄ thus the term considering spatial �uctuations in Eq.
(4.7) vanishes, ∇π (r) → ∇π̄ = 0 and the integral in Eq. (4.4) simpli�es to

´
Dπ (r) =´ ∏

i dπ (ri)→
´

dπ̄.
Therefore, the partition function in Eq. (4.4) withH (π̄) = aπ̄2 + bπ̄4 + cπ̄6 + . . .− gE0π̄

becomes,

Z =

+∞ˆ

−∞

dπ̄e−(kBT )−1VH(π̄) (4.8)

ExpandingH (π̄) around its minimum, π̄S , and considering that the �rst-order term van-
ishes at the minimum π̄S (equilibrium), Eq. (4.8) becomes,

Z ≈
+∞ˆ

−∞

dπ̄e−(kBT )−1V [H(π̄S)+ 1
2

(π̄−π̄S)2H′′(π̄S)] (4.9)

Thus,

Z ≈ e−(kBT )−1VH(π̄S)

+∞ˆ

−∞

dπ̄e−(kBT )−1V [ 1
2

(π̄−π̄S)2H′′(π̄S)]

≈ e−(kBT )−1VH(π̄S)

√
2πkBT

VH′′ (π̄S)

(4.10)

According to Eq. (4.1) the free energy becomes,

F = VH (π̄S) +
kBT

2

{
ln
[
VH′′ (π̄S)

]
− ln [2πkBT ]

}
(4.11)

In the limit of V →∞, the free energy is given by,

F = VH (π̄S) = V
(
aπ̄2

S + bπ̄4
S + cπ̄6

S + . . .− gE0π̄S
)

(4.12)

Nota bene, since the Ginzburg-Landau Hamiltonian has a minimum for π̄ = π̄S , π̄S
corresponds to the most probable mean value of the order parameter density according to Eq.
(4.5). Additionally, since H (π̄S) = min, F → min as well, according to Eq. (4.12). Bearing
in mind that in thermal equilibrium the free energy becomes minimized, π̄S corresponds to
the mean value of the order parameter density in thermal equilibrium which can be obtained
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by the minimum condition dF
dπ̄S

= 0. This is in accordance with Landau’s phase transition
theory.

The essential idea in the framework of Landau’s theory of phase transitions relies on the
fact that the free energy density can be expanded in a power series with respect to the order
parameter near the critical temperature (phase transition temperature) due to a small order
parameter near TC [104]. It was �rst applied to the case of ferroelectrics by Devonshire [105,
106, 107] to describe the ferroelectric phase transition in uniaxial ferroelectric materials.

4.1.3 Fluctuations, Correlations & Susceptibility

According to Eq. (4.5), the most probable order parameter con�guration, πM (r), is given
by P [πM (r)] = max. Thus πM (r) corresponds to the order parameter density in thermal
equilibrium. Therefore the Ginzburg-Landau Hamiltonian must be minimal, H [πM (r)] =

min, i.e. the variation ofHmust be zero5, δH = 0. Thus π (r) must satisfy the Euler-Lagrange
equation,

∂I

∂π (r)

∣∣∣∣
πM (r)

− ∇ · ∂I

∂ [∇π (r)]

∣∣∣∣
πMo(r)

= 0 (4.13)

where I is the integrand of Eq. (4.7). For second order phase transitions (continuous order
parameter at T = TC ) it is su�cient to include only a few terms up to the quartic term [108].
Thus Eq. (4.13) becomes,

2aπM (r) + 4bπ3
M (r)− gE (r)− 2K4πM (r) = 0 (4.14)

where4 is the Laplacian with4πM (r) = ∂2πM (r)
∂x2 + ∂2πM (r)

∂y2 + ∂2πM (r)
∂z2 . Because of the

non linear term, 4bπ3
M (r), it is not possible to integrate this equation exactly. However,

assuming a perturbing �eld of the form E (r) = δEeiq·r, the solution is then given of
the form πM (r) = π̄S + δπeiq·r where π̄S is the average electric polarization density in
thermal equilibrium in zero electric �eld [109]. Therefore with considering only �rst order of
smallness6 , δπ, Eq. (4.14) becomes,

2aπ̄S + 4bπ̄3
S︸ ︷︷ ︸

=0

+
[
2Kq2 + 2a+ 12bπ̄2

S

]
δπeiq·r − gδEeiq·r = 0 (4.15)

The susceptibility is given by χ = 1
ε0

δπ
δE , thus,

χq =
1

ε0

g

2Kq2 + 2a+ 12bπ̄2
S

=
1

ε0

χ0

1 + q2ξ2
(4.16)

where χ0 is the susceptibility in case of the mean value of the electric polarization �eld in
thermal equilibrium (π (r) = π̄S) and ξ is the correlation length7.

5This is equivalent to the question which π (r) minimizes the integral
6Thermodynamic equilibrium requires dF

dπ̄S
= 0 thus 2aπ̄S + 4bπ̄3

S = 0

7χ0 =

{
1

2A(T−TC)
T > TC

1
4A(TC−T )

T < TC
ξ2 =

{
K

A(T−TC)
T > TC

1
2A(TC−T )

T < TC
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A fundamental property of phase transitions can be obtained by studying the range of
spatial �uctuations. For instance, an interesting situation arises when the system is locally
perturbed by an electric �eld, E (r) = E0δ (r), and one would like to know how far away the
e�ects of this perturbation can be seen. In that case the �uctuations of the electric polarization
�eld become8,

δπ (r) =
χ0E0

(2π)3

ˆ
1

1 + q2ξ2
eiq·rd3q =

χ0E0

32π4ξ2

1

|r|
e
− |r|

ξ (4.17)

Equation (4.17) contains the Ornstein-Zernike correlation function for r′ = 0 in the three
dimensional case (d = 3) which is given by [110],

G
(
r, r′

)
=

〈
δπ (r) δπ

(
r′
)〉

=
〈
[π (r)− 〈π (r)〉]

[
π
(
r′
)
−
〈
π
(
r′
)〉]〉

=
〈
π (r)π

(
r′
)〉
− 〈π (r)〉

〈
π
(
r′
)〉

∝ 1

(|r− r′|)
d−1

2

e
−|r−r′|

ξ

(4.18)

The correlation function describes the relation between �uctuation of the electric polariz-
ation �eld9 at points r and r′. For the in�nite large, translational and rotationally invariant
system, it is shown [110] that10,

χ = (kBT )−1
ˆ
G (r) d3r ∝ ξ2 (4.19)

Thus the spatial �uctuations of the electric polarization �eld in Eq. (4.17) becomes,

δπ (r) =
E0

32π4

1

|r|
e
− |r|

ξ (4.20)

In the vicinity of TC , χq becomes very large and thus in turn even a small perturbing �eld
can cause considerable �uctuations.

As a result, this spatial �uctuations are not only excited by a external perturbing �eld but
also by thermal �uctuation of the electric polarization �eld itself. The correlation length thus
plays the role of the characteristic size of thermal �uctuations.

8δπ (r) =
´
δπ (q) eiq·rd3q. With δπ (q) = ε0χ (q) δE (q) follows, δπ (r) =

´
ε0χ (q) δE (q) eiq·rd3q.

With δE (r) = E0δ (r) follows δE (q) =
´
E0δ (r) eiq·rd3q = E0. Thus δπ (r) =

E0

´
ε0χ (q) eiq·rd3q. With Eq. (4.16) the �uctuation becomes δπ (r) = χ0E0

´
1

1+q2ξ2
eiq·rd3q =

χ0E0

˝
1

1+q2ξ2
eiqr cosϑq2 sinϑdϑdϕdq.

9That means, that G (r, r′) describes the correlation of �uctuations at point r and r′

10With H = H0 −
´
π (r)E (r), F = −kBT lnZ and Z =

´
Dπ (r) e−(kBT )−1H[π(r)]a generalized

susceptibility is given by χ (r, r′) = − ∂2F
∂E(r)∂E(r′) where the susceptibility χ (r, r′) is the response function

which describes the response of the electric polarization at point r when an electric �eld is applied at
point r′, P (r, r′) = χ (r, r′)E (r′). Thus χ (r, r′) = (kBT )−1

(
1
Z

∂2Z
∂E(r)∂E(r′) −

1
Z

∂Z
∂E(r)

· 1
Z

∂Z
∂E(r′)

)
=

(kBT )−1 [〈π (r)π (r′)〉 − 〈π (r)〉 〈π (r′)〉] = (kBT )−1 G (r, r′). Hence for a translational and rotationally
system, G (r, r′) = G (|r− r′|). Therefore the macroscopic susceptibility is χ =

´
χ (|r− r′|) dV =

4π (kBT )−1 ´ |r− r′|2 1

(|r−r′|)
d−1
2

e
−
|r−r′|
ξ d (|r− r′|). Thus for d = 3, χ ∝

´∞
0
Re
−R
ξ dR ∝ ξ2



4.1 Static critical phenomena 35

If at a certain point, as a result of thermal �uctuation, there will arise a value of the
electric polarization (density) which is substantially di�erent from the equilibrium value, it
will change the values of the electric polarization (density) at other positions. Thus, thermal
�uctuations of the electric polarization (density) do not occur independently at various points
of the crystal, but instead, they are intercorrelated at distances of the order of ξ, i.e. it gives
the distance over which perturbations have a noticeable e�ect.

At T = TC the correlation of �uctuations decays as 1
r . Thus at the critical temperature

any small change in the electrical polarization at one point will be noticeable over all length
scales (in�nite range). This long range correlated �uctuations are the reason of the inherent
instability of the system at T = TC . Of course for a real system, �uctuations of the electric
polarization will be noticeable only all over the sample11.

These conclusions lead to a very interesting consequence for the dynamics near second
order phase transitions. As the correlation length increases on approaching TC , it will ne-
cessarily become much longer than the characteristic length (unit cell, for example) of the
system. As a consequence, the behaviour of the system in the vicinity of the phase transition
will not depend on the nature of microscopic interactions which drive the transition, but will
exhibit a universal behaviour, that is determined by the dimensionality of the system.12

Since thermodynamic quantities which characterize a macroscopic system are average val-
ues, an interesting property of phase transition can be deduced by considering the �uctuations
of the most probable mean value of the order parameter, ∆ (V π̄S) = V π̄S−〈V π̄S〉. ∆ (V π̄S)

de�nes the stochastic process of �uctuations of (V π̄S) and since for a stationary process
the averaged value 〈∆ (V π̄S)〉 vanishes, the mean quadratic �uctuations,

〈
[∆ (V π̄S)]2

〉
, is

di�erent from zero and thus a proper measure of �uctuations in a system. It becomes,〈
[∆ (V π̄S)]2

〉
= 〈(V π̄S − 〈V π̄S〉) (V π̄S − 〈V π̄S〉)〉

=
〈

(V π̄S)2 − 2V π̄S 〈V π̄S〉+ 〈V π̄S〉2
〉

=
〈
V π̄2

S

〉
− 2 〈V π̄S〉 〈V π̄S〉+ 〈V π̄S〉2

=
〈

(V π̄S)2
〉
− 〈V π̄S〉2 = Var(V π̄S)

(4.21)

Hence for a con�dence interval of 1σ, where σ is the standard deviation, σ =
√

Var(V π̄S)

the order parameter is given by ,

V π̄S = 〈V π̄S〉 ±
√〈

(V π̄S)2
〉
− 〈V π̄S〉2 (4.22)

11This actually causes a limited susceptibility instead of an in�nitely value at T = TC . This singularity
argument in turn is only valid for a in�nite large system which implies V →∞, N →∞ such N

V
is �nite

12To understand that fact, consider an Ising model with next nearest neighbour ineraction only. For example,
if the spin at position r �ips, the spin at r+L may also �ip for T ≈ TC . Here L = (n1a, n2b, n3c)with a,b, c as
unit vectors describing the lattice and ni are integer numbers determining the correlation length ξ =

√∑3
i=1 n

2
i .

Although only next nearest neighbour interaction is considered, the spin at position r+L is a�ected by a spin at
position r.
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The expectation value of the most probable mean value of the order parameter13 is calcu-
lated with Eq. (4.8) and Eq. (4.12) by,

〈V π̄S〉 =
1

Z

+∞ˆ

−∞

d (V π̄S) (V π̄S) e−(kBT )−1H(V π̄S) (4.23)

withH (V π̄S) = VH (π̄S). The susceptibility becomes,

χ =
∂ 〈V π̄S〉
∂E0

=

+∞ˆ

−∞

d (V π̄S) (V π̄S) e−(kBT )−1H(V π̄S) ∂

∂E0

(
1

Z

)

+
1

Z
∂

∂E0

+∞ˆ

−∞

d (V π̄S) (V π̄S) e−(kBT )−1H(V π̄S)

=− 1

kBT

(
1

Z2

) +∞ˆ

−∞

d (V π̄S) (V π̄S) e−(kBT )−1H(V π̄S)

2

+
1

kBT

1

Z

+∞ˆ

−∞

d (V π̄S) (V π̄S)2 e−(kBT )−1H(V π̄S)

=
1

kBT

[〈
(V π̄S)2

〉
− 〈V π̄S〉2

]
= Var (V π̄S)

(4.24)

With Eq.(4.19) the mean quadratic �uctuations of the most probable mean value of the
order parameter is proportional to the correlation length of spatial �uctuations as,

〈
(V π̄S)2

〉
− 〈V π̄S〉2 ∝ ξ2 (4.25)

As the correlation length approaches in�nity, ξ → ∞, the �uctuations of the order para-
meter diverges and they are called critical �uctuations. Consequently, according to Eq. (4.22)
the order parameter is not longer well de�ned near TC . This is an example of the inherent
instability of a system at a phase transition.

4.1.4 Microscopic theory and the single ion model

The simplest model for describing ferroelectric phase transitions assumes a diatomic crystal
consisting of ions of species A and B (Fig. 4.1a) [99].

At temperatures well bellow the critical temperature, T � TC , the ions of species A are
collectively displaced along a speci�c direction in the unit cell, whereas species B remain
�xed, and thus generates a macroscopic electric polarization. Therefore, this model concerns
the motion of only one ion A in the unit cell, assuming that the role of the other ions B is
reduced to down to the creation of a potential �eld [99].

13Strictly speaking: The most probable mean value of the order parameter �led density times the system
volume.
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Since for a ferroelectric phase transition a macroscopic electric polarization evolves at the
transition temperature, TC , the potential �eld must cause a force acting on ion A which results
in a displacement from the central position in the unit cell such that a non-symmetric phase
in the equilibrium structure is realized at temperatures T = 0.

If it assumed, for the sake of simplicity, that the ions A can move only along one direction,
e. g. the x-axis, it is assumed that the potential created by these forces must be symmetric in x
with respect to the centre of the unit cell. The simplest version for such a potential describes
a scalar (one-dimensional) displacement of each ion A and possesses two minima at x 6= 0

rendering the case of an electric polarization along x and −x (Fig. 4.1b).

Figure 4.1: Diatomic crystal and the single ion model. (a) Unit cell of a diatomic
crystal consisting of ions A and B. According to the single ion model,
the ions A can move whereas the ions B remain immovable. (b)
Potential energy of ion A in the field of ion B. A�er [99]

However, the forces caused by ion B acting on ion A is not su�cient to describe a ferro-
electric phase transition since the ions A are independent from each other in that case, and a
phase transition to a ferroelectric state will never occur [99].

Thus it is immediately clear that the introduction of an interaction between various ions A
is necessary for rendering ferroelectric phase transitions because the evolvement of a spon-
taneous electric polarization is linked to a cooperative displacement of ions A. The unidimen-
sional analogue of that system can be represented as an array of ions A aligned on a straight
line and connected by springs, whereas each of the ion A is moving it its local double well
potential. This model is called in literature the φ4 single ion model [111, 112, 113, 114, 115]
(Fig. 4.2).

The Hamiltonian in the three-dimensional case, assuming that the interaction of ions A
with other ions A is described by the potential of the elastic spring, is given by,
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Figure 4.2: φ4 single ion model . The model contains an one-dimensional array
of ions linked by harmonic forces with one ion in each unit cell. Each
ion “sees” a local double well potential which is assumed to represent
the rest of the crystal. The double well potential provides the driving
force for the phase ferroelectric phase transition. A�er [99, 100, 116]

H =
1

2

∑
R

m

(
dxR
dt

)2

︸ ︷︷ ︸
I

+
∑
R

(
−ηx2

R + ϑx4
R

)
︸ ︷︷ ︸

II

+
1

2

∑
R,R′ 6=R

JR,R′ (xR − xR′)2

2︸ ︷︷ ︸
III

(4.26)

The I-Term describes the kinetic energy with each atom has massm , the II-Term de�nes
the double-well potential V (xR) = −ηx2

R + ϑx4
R, i.e. this term describes an assembly of

N uncoupled oscillators (ions A) moving in an anharmonic potential. The III-Term con-
siders the interaction of ions A among each other. Since the energy of a given spring will
appear twice if the sum

∑
R,R′ 6=R

JR,R′ (xR−xR′ )
2

2 is performed for each atom the factor 1
2 is

necessary for the correct value of the total energy. Here η, ϑ are positive constants de�ning
the shape of the double-well potential, xR is the displacement along the x-direction of ion A
present in the unit cell, the centre of which has a coordinate given by, R = n1a+n2b+n3c,
where a,b, c are the vectors of unit translation and JR,R′ determines the interaction of ions
A arranged at points with the radius-vector R and R′. Rearrangement of Eq. (4.26) leads to14,

H =
1

2

∑
R

m

(
dxR
dt

)2

+
∑
R

[(
−η +

J0

2

)
x2
R + ϑx4

R

]
− 1

2

∑
R,R′

JR,R′xRxR′ (4.27)

where J0 =
∑

R′ JR,R′ which represents the constant that characterizes the interaction
of a ion A at an arbitrary position R with all other ions A being located within the interaction
radius. It characterizes the total number of ions A, whose position is still in�uenced by the

14

H =
1

2

∑
R

m

(
dxR
dt

)2

+
∑
R

(
−ηx2

R + ϑx4
R

)
+

1

4


∑
R,R′

JR,R′x
2
R +

∑
R,R′

JR,R′x
2
R′︸ ︷︷ ︸

2
∑

R,R′ JR,R′x
2
R


−1

2

∑
R,R′

JR,R′xRxR′

Thus, with 1
2

∑
R,R′ JR,R′x

2
R = 1

2

∑
R x

2
R

∑
R′ JR,R′ and with J0 =

∑
R′ JR,R′ the Hamiltonian becomes

H = 1
2

∑
Rm

(
dxR
dt

)2

+
∑

R

(
−ηx2

R + ϑx4
R

)
+ 1

2

∑
R J0x

2
R − 1

2

∑
R,R′ JR,R′xRxR′
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movement of one ion A arranged at point R. The last term in Eq. (4.27) is bilinear in dis-
placements of ions A at R and R′and therefore it corresponds to a dipole-dipole interaction.
Hence15,

JR,R′ = − q2

4πε0

[
cos
(
ϕR,R′

)
− 3 cos

(
ϕ(R−R′),R

)
cos
(
ϕ(R−R′),R′

)]
|R−R′|3

(4.28)

Thus,

J0 = − q2

4πε0

∑
R′

[
cos
(
ϕR,R′

)
− 3 cos

(
ϕ(R−R′),R

)
cos
(
ϕ(R−R′),R′

)]
|R−R′|3

(4.29)

Hence, for the simple dipole con�gurations follows (arrows illustrate the arrangement and
direction of the dipole moment),

↓↓ JR,R′ = − q2

4πε0 |R−R′|3

↓↑ JR,R′ = +
q2

4πε0 |R−R′|3

→→ JR,R′ = − q2

2πε0 |R−R′|3

→← JR,R′ = +
q2

2πε0 |R−R′|3

↑→ JR,R′ = 0

(4.30)

Basically, the model de�ned by Eq. (4.26) has two important quantities. The �rst is the
depth of the potential well, V0, respectively the hight of the energy barrier, EA = |V0| (Fig.
4.1). The minima of V (x) occur at x = ±∆x, so that distance between two local equilibrium
positions is 2∆x. Thus with dV

dx

∣∣
∆x

:= 0 follows,

I)
η

2ϑ
= (∆x)2

II) V0 = − 1

2
η (∆x)2

(4.31)

With the set of equations in Eq. (4.31) the shape parameters of the double-well potential
can be determined by fundamental properties, i.e. the hight of the energy barrier and the
half-distance between two local equilibrium positions as,

15The energy between two electric dipoles are given by [41] E = 1
4πε0

D2pR·pR′−3(D·pR)(D·pR′)
D5

where D is the distance between the dipoles. With pR = qxR and pR′ = qxR′ the
energy becomes E = 1

4πε0

D2q2xRxR′ cos(ϕR,R′)−3D2q2xRxR′ cos(ϕD,R) cos(ϕD,R′)
D5 ⇒ E =

1
4πε0

q2xRxR′ [cos(ϕRR′)−3 cos(ϕDR) cos(ϕDR′)]
D3 .
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η = 2
EA

(∆x)2

ϑ =
EA

(∆x)4

(4.32)

The second important quantity is the interaction energy, W , of one ion A arranged at
point R with all other ions A being located within the interaction radius. With the maximum
displacement of±∆x of ion A present in the unit cell, the maximal interaction energy of one
ion A arranged at point R becomes16,

W =
∑

R′ 6=R

1

2
JR,R′ (xR − xR′)2

︸ ︷︷ ︸
=

∑
R′ 6=R

1

2
JR,R′ (2∆x)2

= 2 (∆x)2
∑

R′ 6=R

JR,R′

= 2 (∆x)2 J0

(4.33)

The ratio of these two quantities,

s =
EA
W

=
EA

2 (∆x)2 J0

(4.34)

gives the relative strengths of the local double-well potential and the energy of interaction
of an ion with its neighbours [117]. Depending on the value of that ratio, two limiting cases
can be distinguished.

4.1.4.1 Order-Disorder limit

The case s � 1 corresponds to the order-disorder limit [116, 100]. In this case the potential
barrier between the two wells is much higher than the interaction between neighbouring ions
A. Even at a temperature well above the transition temperature, T � TC with J0 ≤ kBT ≤
EA, the ions will reside in one or other of the two wells, albeit with a random occupancy thus
in turn no macroscopic electric polarization is generated, π̄S = 0 (Fig. 4.3).

On cooling toward the transition temperature, T > TC , the e�ects of interactions become
more signi�cant and a degree of short-range order is established, i.e. on a mesoscopic scale
a electric polarization exists but still on a macroscopic scale π̄S = 0. However, the spatial
range of this short-range order grows on cooling toward TC .

Below the transition temperature, T < TC , the probability is greater that one side of the
double-well potential (in this case the left-hand side) will be occupied. A long-range order is
established and accordingly a macroscopic electric polarization appears, π̄S 6= 0. But, there is
also a signi�cant probability that some atoms will occupy the alternative potential well [116].

16Energy stored in one spring at maximal compression
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At very low temperatures, T � TC , most of the ions A occupy the same side of the
double-well potential. Thus the electric polarization reaches its maximum, π̄S = π̄S,max.

Figure 4.3: Sequence showing the ordering of atoms in the order-disorder limit.
At high temperatures (T � TC) the positions of neighbouring
ions are not correlated in any significant way (magenta and yellow
balls indicate ions in the le� or in the right state of the double-well
potential). Near the transition temperature a degree of short-range
order is established. Below the transition temperature one side of
the double-well potential is favoured and a long-range order appears.
Well below the transition temperature each ion occupies the same
side of the double-well potential.

Because in this limit the displacements are all xR ≈ ±∆x for most temperatures, the
entropy is purely con�gurational. In that case, the transition temperature can be readily
estimated by the equilibrium condition of the free energy. With Eqs. (2.12,2.13, 2.14), the
equilibrium condition is given by,

dF = dU − SdT = 0 (4.35)

If a completely chaotic position of ions A at T ≥ TC is assumed, half of the springs appear
to be deformed. The energy of the system in the order-disorder limit is solely determined by
these deformation of the springs (no kinetic energy exists) so that the energy of the system
increases as compared with the energy at T = 0 whereas the interaction energy Eq. (4.33)
becomes W = 0,

dU ∼ U(TC)− U(T = 0) = W
N

2
= N (∆x)2 J0 (4.36)

The entropy, S, is a logarithmic measure of the number of possible microstates, Ω, for a
given energy and is de�ned as,

S = kB ln Ω (4.37)

The number of possible microstates is given by the binomial coe�cient since there are
N !

k!(N−k)! possibilities of k deformed springs of N total springs in the system. At TC , k = N/2
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thus with Eq. (4.35) in equilibrium follows,

N (∆x)2 J0 = kBTC ln
N ![(
N
2 !
)]2 (4.38)

With Stirling’s formula, lnN ! ≈ N lnN −N for large N , the transition temperature can
be determined from Eq. (4.38) as,

kBTC =
J0 (∆x)2

ln 2
(4.39)

Thus with Eq. (4.34) follows,

s =
EA

kBTC ln 4
� 1 (4.40)

A more thorough analysis with a nearest-neighbour coupling of the ions A leads to [111],

kBTC = 2dkdJ
η

ϑ
= 4dkdJ (∆x)2 (4.41)

where J is the nearest neighbour coupling constant, d is the dimension of the system and
kd is a constant with kd=2 = 0.5673 and kd=3 = 0.76. Thus on a cubic lattice the transition
temperature is calculated as,

kBTC = 9.12J (∆x)2 (4.42)

Hence with Eq. (4.34) for an order-disorder phase transition follows,

s = 4.56
EA
kBTC

� 1 (4.43)

4.1.4.2 Displacive limit

Here the forces between ions are much larger than the forces due to the local potential. Unlike
in the order-disorder limit, at high temperatures the local potential does not force ions to stay
on one or the other side of the origin because kBTC � EA thus π̄S = 0 (Fig. 4.4).

Instead the ions vibrate about the origin, and the shape of the double-well potential has
only a small e�ect to modify the phonon frequencies [116, 100].

Below the transition temperature the mean positions of all the ions are displaced by the
same small amount to one side of the origin, thus π̄S 6= 0 , and the size of this displacement
increases on further cooling. Hence at T = 0, π̄S = π̄S,max. Displacive phase transitions
have been understood in terms of the soft-mode theory [98, 118, 119, 117, 120, 121].

The central idea of the soft mode theory is that in the high-temperature phase a lattice
vibration (normal mode) exists with a critical wave vector for which the frequency falls to
zero on cooling toward the transition temperature [98]. It is given by,

ω2 (q) = K (T − TC) +A2 (q− qC)2 (4.44)
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Figure 4.4: Sequence showing the ordering of atoms in the displacive limit. At
high temperatures (T � TC) ions vibrate about the origin. Below
the transition temperature the ions vibrate about the their new
equilibrium positions which are equally displaced from the origin.

where q and qC are the wave vector respectively the critical wave vector which measures
the phase di�erence among the atomic displacements from one unit cell to the other. K and
A are constants. The derivation of Eq. (4.44) is given in section (4.5). A vanishing frequency
implies a vanishing restoring force against the corresponding deformation, i.e. one of the
elementary excitations (phonon) becomes unstable as T → TC which is the reason that it is
called soft mode. The atomic displacements associated with the soft mode are the same as the
deformation of the structure in the low-temperature phase.

For a ferroelectric phase transition the critical wave vector is zero, qC = 0, hence the
displacements are identical for all unit cells. The instability occurs at the centre of the Brillouin
zone and there is no change in the number of atoms per unit cell (Fig. 4.5) [100].

Figure 4.5: Schematic representations of a ferroelectric so� mode behaviour. a)
behaviour of the phonon dispersion curves; b) atomic distortions.
A�er [100]

For an antiferroelectric phase transition, qC 6= 0, and the magnitude and direction of qC

determine the size of the new unit cell. For a zone boundary soft mode (Fig. 4.6) the unit cell
of the low temperature phase is doubled in one or more directions.
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Figure 4.6: Schematic representations of an antiferroelectric so� mode behaviour.
a) zone boundary so� optic mode, and b) atomic displacements
showing doubling of the unit cell and the cancelling induced dipole
moments. A�er [100].

In the displacive case the energy di�erence between the symmetric, T > TC , and non-
symmetric phase, T < TC , contains important contribution from changes in the vibrational
energy and the entropy is determined by vibrational contribution rather than from any con�g-
urational term. Thus the estimation of the transition temperature based on rough calculations
as in chapter 4.1.4.1 is not possible. However, with a nearest-neighbour coupling of the ions
A follows [117],

kBTC =
2

3w3
J
η

ϑ
=

4

3w3
J (∆x)2 (4.45)

where w3 = 0.5054. Thus,

kBTC = 2.64J (∆x)2 (4.46)

Hence for an displacive phase transition follows with Eq. (4.34),

s = 1.32
EA
kBTC

� 1 (4.47)

4.2 Dynamic critical phenomena

The dynamic behaviour of a medium i.e. the relaxation from non-equilibrium back to equi-
librium exhibits also anomalous characteristics near the critical temperature, TC . Essentially,
the theory of dynamic critical phenomena for a multivariable system can be formulated as a
generalization of the single particle Langevin equation. The equation of motion for the time-
dependent local con�guration of the order parameter �eld is most conveniently given by the
time-dependent Ginzburg-Landau equation [110, 101, 122] given by,
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∂π (r,t)

∂t
= −Γ

δH [π (r,t)]

δπ (r,t)
+ ζ (r,t) (4.48)

where δH[π(r,t)]
δπ(r,t) is the functional derivative of H [π (r,t)]. Here, Γ is a dissipation para-

meter, and ζ (r,t) is a random noise simulating the e�ect of thermal excitation of the order
parameter.

In order to guarantee that the system reaches the canonical equilibrium probability dis-
tribution at long times, ζ (r,t) is a random Gaussian variable satisfying 〈ζ (r,t)〉 = 0 and
〈ζ (r′,t) ζ (r,t ′)〉 = 2DkBTδ (r− r′) δ(t − t′) [123], where D is the di�usion coe�cient.
With Eq. (4.7), Eq. (4.13) and with E (r) = 0, Eq. (4.48) becomes,

1

Γ

∂π (r,t)

∂t
= −

[
2aπ (r) + 4bπ3 (r) + 6cπ5 (r) . . .− 2K∇2π (r)

]
+ ζ (r,t) (4.49)

Because of the non-linear terms in Eq. (4.49), it is not possible to integrate this equation.
However, if only the high temperature phase is considered, the Gaussian model can be applied
[101, 110] and Eq. (4.49) reduces to,

∂π (r,t)

∂t
= −Γ

[
2aπ (r)− 2K∇2π (r)

]
+ ζ (r,t) (4.50)

Transforming Eq. (4.50) into Fourier space17 leads to,

∂π (q,t)

∂t
= −2Γ

[
a+Kq2

]
π (q,t) + ζ (q,t) (4.51)

The average of π (q,t) satis�es with 〈ζ (q,t)〉 = 0,

∂ 〈π (q,t)〉
∂t

= −2Γ
[
a+Kq2

]
〈π (q,t)〉 (4.52)

Thus, 〈π (q,t)〉 decay rapidly as exp (−t/τ) with following relaxation time,

τ =
1

2Γ [a+Kq2]
(4.53)

As a consequence, each Fourier component of the order parameter behaves as an inde-
pendent particle connected to a spring [101] and the �uctuations in each mode decay with a
di�erent relaxation time. Additionally, at the critical temperature, T = TC , a = 0 [104] and
the relaxation time diverges in the long wave length limit (q = 0). Accordingly, at the phase
transition temperature, the system does not relax but follows any perturbation without any
drag.

In case when E (r) depends on time, Eq. (4.48) becomes in Fourier space18 with applying
Gaussian approximation,

− iωπ (q,ω) = −2Γ
[
a+Kq2

]
π (q,ω) + ζ (q,ω) + ΓgE (q,ω) (4.54)

17π (r,t) = C
´
π (q,t) exp (iqr) dr

18π (r,t) = C
´
π (q,ω) exp (i (qr− ωt)) drdt
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From Eq. (4.54), the susceptibility is given with χ (q,ω) = 1
ε0

dπ(q,ω)
dE(q,ω) ,

χ (q,ω) =
1

ε0

gΓ

2Γ [a+Kq2]− iω
=

1

ε0

gΓ

τ−1 − iω
(4.55)

Two important properties of the susceptibility exist. First, in the static limit, ω → 0,
χ (q,0) = ε−1

0 gΓτ , and second, the susceptibility is purely imaginary, χ (0,ω) = igΓω ε
−1
0 in

the long wave length limit and at the critical temperature.
For an averaged order parameter �eld, i.e. homogeneous order parameter, Eq. (4.48)

reduces to the Landau-Khalatnikov equation [98, 124, 125, 126, 127, 128, 129, 130] and becomes
with Eq. (4.12)19,

dπ̄S
dt

= −Γ
dH (π̄S)

dπ̄S
= −ΓV −1 dF (π̄S)

dπ̄S
(4.56)

According to Eq. (4.12) the relaxation dynamic of the order parameter is given by,

dπ̄S
dt

= −Γ
(
2aπ̄S + 4bπ̄3

S + 6cπ̄5
S + . . .− gE0

)
(4.57)

Considering only second order phase transitions (c = 0), and substituting E0(t) =

δE exp(−iωt) and π̄S(t) = π̄staticS + δπ̄S exp(−iωt) [119], Eq. (4.57) becomes,

−iωδπ̄S exp(−iωt) = − Γ

[
2aδπ̄S exp(−iωt) + 4bδπ̄3

S exp(−3iωt)

+ 12bδπ̄2
S π̄

static
S exp(−2iωt) + 12bδπ̄S

(
π̄staticS

)2
exp(−iωt)

+ −δEg exp(−iωt) + 2aπ̄staticS + 4b
(
π̄staticS

)3]
(4.58)

From the stability condition ( dF
dπ̄S

∣∣∣
E=0

= 0) follows,

2aπ̄staticS + 4b
(
π̄staticS

)3
= 0 (4.59)

It is assumed that δπ̄S is very small. Thus only �rst order of smallness will be regarded and
higher order of smallness is assumed to be negligible (δπ̄2

S ≈ 0, δπ̄3
S ≈ 0). Hence, Eq.(4.58)

becomes,

δπ̄S =
gΓ

Γ
[
2a+ 12b

(
π̄staticS

)2]− iω δE (4.60)

Comparing Eq. (4.60) with Eq. (4.55) the relaxation time in Eq. (4.60) is given by,

τ−1 = Γ
[
2a+ 12b

(
π̄staticS

)2] (4.61)

and the electric susceptibility
(
χ = 1

ε0
δπ̄S
δE

)
by,

19If a kinetic energy term ( d2π̄S
dt2

) is added to the equation of motion, resonance phenomena can be described
in addition to relaxation phenomena.
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χ (ω) =
ε−1

0 gΓτ

1− iτω
(4.62)

where the static susceptibility is given by,

χ (ω = 0) = χstatic = ε−1
0 gΓτ (4.63)

With Eq.(4.59) the order parameter above and below the phase transition temperature is
given by,

π̄staticS =

0 T > TC√
−1

2
a
b T < TC

(4.64)

Thus, the relaxation time and static susceptibility are given by,

τ−1 =

2aΓ T > TC

−4aΓ T < TC
(4.65)

χ−1
static =

2ag ε0 T > TC

−4ag ε0 T < TC
(4.66)

which are in accordance to Lines and Glass [119], Mason [131], Blinc [98] and Nishimori
[110]. With, a (T = TC) = 0, a (T > TC) > 0 and a (T < TC) < 0.

According to Eq. (5.24) the permittivity becomes with Eq. (4.62) and Eq. (4.63),

ε (ω)

ε0
= 1 +

χstatic
1− iτω︸ ︷︷ ︸

phase transition

+
N−1∑
i

χi (ω) (4.67)

With

ε
(
ω � τ−1

)
= ε (∞) = ε0

[
1 +

N−1∑
i

χi (ω)

]

ε
(
ω � τ−1

)
= ε (0) = ε0

[
1 + χstatic +

N−1∑
i

χi (ω)

] (4.68)

the permittivity is given by,

ε (ω) = ε (∞) +
∆εr

1− iτω︸ ︷︷ ︸
phase transition

(4.69)

with ∆ε = ε0χstatic. Therefore, the relaxation strength of a relaxation mode governed by
a phase transition process is given by,



48 CHAPTER 4. THEORY OF FERROELECTRIC PHASE TRANSITION

(
∆ε

ε0

)−1

= ∆ε−1
r = χ−1

static =

2ag ε0 T > TC

−4ag ε0 T < TC
(4.70)

In order to determine the temperature dependence of the relaxation time and the suscept-
ibility near the phase transition temperature, the parameters a, g, and Γ must be speci�ed.
This can be achieved either by applying statistical theories of ferroelectric phase transitions
leading to an expression of the free energy or by applying microscopic theories of dynamic
processes.

4.3 Statistical theory of order-disorder phase transition: The
pseudo spin model

In the order disorder limit each ion is well localized in one of the two bottoms of its double
well as long the thermal energy is small compared to the energy-barrier separating the two
energy wells. Accordingly, all xR ≈ ∆xσR for all temperatures, where σR = ±1 depending
on the sign of xR . In an external electric �eld, an additional force with F = qE is acting on
each ion A where q is the charge of ion A. Hence, the additional energy, UR = −qxRE, has
to be considered. The total energy in the order-disorder limit is then given by (Eq. 4.27),

H =
1

2

∑
R

m∆x

dσR
dt︸︷︷︸
0


2

+
∑
R

[
(∆x)2

(
−η +

J0

2

)
σ2
R + (∆x)4 ϑσ4

R

]
︸ ︷︷ ︸

C

− 1

2
(∆x)2

∑
R,R′

JR,R′σRσR′ − q∆xE
∑
R

σR

(4.71)

Because in that limit, the kinetic energy vanishes and the double-well energy contribution
is just a constant with C = N

[
(∆x)2 (−η + J0

2

)
+ (∆x)4 ϑ

]
where N is the total number

of ions A, the φ4 single ion model represents an array of spins with a spin pointing left or
right (σR = ±1). Since these spins are not magnetic spins, they are called “pseudo spins” and
the total energy is represented as,

H ∝ −1

2
(∆x)2

∑
R,R′

JR,R′σRσR′ − q∆xE
∑
R

σR (4.72)

Equation 4.72 describes the famous Ising model which is probably the best-studied model
of a phase transition [132, 133]. With the identity transformation, σR′ = 〈σR〉+(σR′ − 〈σR〉)
and σR = 〈σR〉+ (σR − 〈σR〉) , where 〈σR〉 is the statistical mean value of the spin variable
which is, 〈σR〉 = N+−N−

N++N−
where N+ and N− being the occupation number of ions A in +1

and -1 state respectively, Eq. (4.72) becomes,
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H ∝ − 1

2
(∆x)2

∑
R,R′

JR,R′ [〈σR〉+ (σR − 〈σR〉)] [〈σR〉+ (σR′ − 〈σR〉)]

− q∆xE
∑
R

σR

= +
1

2
(∆x)2 〈σR〉2 J0

∑
R

− (∆x)2 〈σR〉 J0

∑
R

σR

− 1

2
(∆x)2

∑
R,R′

JR,R′ (σR − 〈σR〉) (σR′ − 〈σR〉)− q∆xE
∑
R

σR

(4.73)

The term
∑

R,R′ JR,R′ (σR − 〈σR〉) (σR′ − 〈σR〉) describes the interaction energy of
�uctuations of the pseudo spin variable at di�erent point R and R′. Assuming mean-
molecular-�eld approximation by neglecting this contribution to the total energy, Eq. (4.73)
becomes with N =

∑
R,

H ∝ 1

2
(∆x)2 〈σR〉2 J0N −

∆x 〈σR〉 J0

q
+ E︸ ︷︷ ︸

EMMF

 q∆x
∑
R

σR (4.74)

where EMMF is the mean-molecular �eld action on ion A. The partition function be-
comes20,

Z =
∑

σR1
=±1

. . .
∑

σRN=±1

exp

−
[

1
2 (∆x)2 〈σR〉2 J0N − q∆xEMMF

∑
R σR

]
kBT


= exp

[
−(∆x)2 〈σR〉2 J0N

2kBT

]
︸ ︷︷ ︸

A

∑
σR1=±1

. . .
∑

σRN=±1

∏
R

exp

(
q∆xEMMF

kBT
σR

)

=

A∑
σR1

exp

(
q∆xEMMF

kBT
σR1

)
. . .

∑
σRN−1

exp

(
q∆xEMMF

kBT
σRN−1

)
×

∑
σRN=±1

exp

(
q∆xEMMF

kBT
σRN

)
(4.75)

Thus,

20Carrying out the sum over σRN �rst leads to,
Z =

[
A
∑
σR1

exp (BσR1) . . .
∑
σRN−1

exp
(
BσRN−1

)]∑
σRN=±1

exp (BσRN) with B = q∆xEMMF
kBT

.
The sum over σRN is given by,

∑
σRN=±1

exp (BσRN) = 2 cosh (B). Successive evaluating of the sums leads
to Z = 2A cosh (B)N
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Z =

A∑
σR1

exp

(
q∆xEMMF

kBT
σR1

)
. . .

∑
σRN−1

exp

(
q∆xEMMF

kBT
σRN−1

)
× cosh

(
q∆xEMMF

kBT

)
= 2 exp

[
−(∆x)2 〈σR〉2 J0N

2kBT

]
cosh

(
q∆xEMMF

kBT

)N
(4.76)

Substituting 〈σR〉 = P
nq∆x where P is the electric polarization and q is the charge of the

ion A, the free energy per volume with n = N/V is given by,

F

V
= − 1

V
kBT lnZ

=
J0

2nq2
P 2 − nkBT ln

[
2 cosh

(
∆xJ0
nq P + q∆xE

kBT

)] (4.77)

Expanding Eq. (4.77) into a Taylor series with respect to P and E and considering only
even powers in P and bilinear coupling of P with E leads to,

F

V
=

(
J0

2nq2
− (∆x)2 J2

0

2nq2kBT

)
P 2 +

(∆x)4 J4
0

12n3q4k3
BT

3
P 4 − (∆x)2 J0

kBT
EP (4.78)

Hence,

dF

V dP
= 2

(
J0

2nq2
− (∆x)2 J2

0

2nq2kBT

)
P +

(∆x)4 J4
0

3n3q4k3
BT

3
P 3 − (∆x)2 J0

kBT
E (4.79)

With Eq. (4.56) and Eq. (4.57) it follows that a =
(

J0
2nq2 −

(∆x)2J2
0

2nq2kBT

)
, b =

(∆x)4J4
0

12n3q4k3
BT

3 , and

g = (∆x)2J0

kBT
. At T = TC , a = 0 thus,

a =
J0

2nq2

(
T − TC
T

)
TC =

(∆x)2 J0

kB

(4.80)

and,

a

g
=

kB

2nq2 (∆x)2 (T − TC) (4.81)

The equation of motion of the order parameter becomes (Eq. 4.56),

1

Γ

dP

dt
= −

[
J0

nq2

(
T − TC
T

)
P +

(∆x)4 J4
0

3n3q4k3
BT

3
P 3 − (∆x)2 J0

kBT
E

]
(4.82)

Therefore, the relaxation time and relaxation strength of the order parameter dynamic
becomes (Eq. 4.65, 4.70)
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τ−1 =


J0
nq2 Γ

(
T−TC
T

)
T > TC

2 J0
nq2 Γ

(
TC−T
T

)
T < TC

(4.83)

∆ε−1
r =


kBε0

nq2(∆x)2 (T − TC) T > TC

2 kBε0
nq2(∆x)2 (TC − T ) T < TC

(4.84)

The relaxation strength exhibits a Curie-Weiss behaviour where the slope is governed by
the density, charge and displacement of the ions A. The dissipation parameter can not be
determined within the statistical approach. Accordingly, the exact temperature dependence
of the relaxation time in the order-disorder limit can only be determined by a microscopic
theory of the order parameter dynamics. However, with the phase transition temperature
given in Eq.(4.80) the s-parameter (Eq.4.34) becomes,

s =
1

2

EA
kBTC

� 1→ EA
kBTC

� 2 (4.85)

4.4 Microscopic theory of the order parameter dynamics in
order-disorder transitions

In order to describe the order parameter dynamics by considering a microscopic approach
when a medium undergoes a phase transition from the high temperature phase to the low
temperature phase, it is essential to determine the potential in which the ion A is moving. For
one speci�c ion A, the Hamiltonian in Eq. (4.27) is given by,

H =
1

2
m

(
dxR
dt

)2

+

(
−η +

J0

2

)
x2
R + ϑx4

R −
1

2
xR
∑
R′

JR,R′xR′ (4.86)

The last term in Eq. (4.86) can be replaced by the average coupling energy21 and Eq.(4.86)
becomes,

H =
1

2
m

(
dxR
dt

)2

+

(
−η +

J0

2

)
x2
R + ϑx4

R −
1

2
xRN

〈
JR,R′xR′

〉
(4.87)

In the high temperature phase no order exists (the order parameter is equal to zero) and
hence coupling forces along +x and −x are balanced (high symmetric state). Opposing
coupling forces cancel each other and thus in turn the averaged interaction energy of one
ion A with all other ions A vanishes. Thus,

〈
JR,R′xR′

〉
= 0 and the total energy of one ion

A for T > TC is given by,

H =
1

2
m

(
dxR
dt

)2

+

(
−η +

J0

2

)
x2
R + ϑx4

R (4.88)

In the order-disorder limit the forces between ions A are much smaller than the forces

21 1
2
xR
∑

R′ JR,R′xR′ = 1
2
xR
∑

R′
JR,R′xR′

N
N = 1

2
xRN 〈JR,R′xR′〉
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due to the local potential. Accordingly, with Eq.(4.32) and Eq.(4.34) it follows that J0 �
1
4η. Thus in turn,

(
−η + J0

2

)
< 0 and the ions A move in an e�ective potential with two

minima. Consequently, the sign of
(
−η + J0

2

)
determines the nature of the phase transition.(

−η + J0
2

)
> 0 implies a displacive type phase transition and

(
−η + J0

2

)
< 0 a order-

disorder type phase transition.
It is evident that the thermal motion of an ion A is the vibration near one of the minima

interrupted by relatively rare jumps to another well. From the viewpoint of the order para-
meter dynamics such jumps between the minima of the potential wells are of great interest
since this motion of ions A implicates �ipping of pseudo-spins. Assuming N ions A present
in double-minima potentials, the rate equations for the change of the number of left and right
displaced ions A are given by [99],

I)
dN+

dt
= ν0 (−w+−N+ + w−+N−)

II)
dN−
dt

= ν0 (+w+−N+ − w−+N−)

(4.89)

where ν0 is the attempt frequency for a jump and wij is the probability for a jump from
state i to state j. Here it is assumed, that the attempt frequency does not depend on the
direction of the jump.

Subtracting equation II from equation I, and adding “0” byw+−N−−w+−N−+w−+N+−
w−+N+ leads to,

dN+

dt
− dN−

dt
= − (N+ −N−) (w+− + w−+) + (N+ +N−) (w−+ − w+−) (4.90)

with 〈σR〉 = N+−N−
N++N−

= P
nq∆x

22 Eq. (4.90) becomes,

dP

dt
= −P (w+− + w−+) + nq∆x (w−+ − w+−) (4.91)

Only the high-energy ions, whose kinetic energy appears to be higher than the barrier
can jump. Hence, the product wijNi is the number of ions A with kinetic energy higher than
that barrier. Accordingly, wij is given by the Boltzmann factor. Each ion A is acted on by a
local �eld which is assumed to be the mean molecular �eld (Eq. 4.74). Therefore, one well is
lowered where as the other is raised by the interaction energy of one ion A with the mean
molecular �eld. Hence, the probabilities are given by,

w+− = exp

−EA +
(
J0
nq2P + E

)
q∆x

kBT


w+− = exp

−EA −
(
J0
nq2P + E

)
q∆x

kBT


(4.92)

22P = P+ − P− = 1
V
N+q∆x− 1 1

V
N−q∆x =

N++N−
V

N+−N−
N++N−

q∆x = n 〈σR〉 q∆x
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The electric �eld is assumed to be very small as well as the electric polarization near TC .
Thus the probabilities in Eq.(4.92) are expanded with respect to P and E up to the �rst order.
Hence Eq. (4.91) becomes,

dP

dt
= −ν0 exp

(
− EA
kBT

)[
2

(
T − TC
T

)
P +

J0 (∆x)2

nk2
BT

2
EP 2 − 2nq2 (∆x)2

kBT
E

]
(4.93)

Neglecting the term with EP 2 since EP 2 � P ∧ EP 2 � E and multiplying Eq. (4.93)
with 2nq2

J0

J0
2nq2 leads to,

1

ν0
2nq2

J0
exp

(
− EA
kBT

) dP

dt
= −

[
J0

nq2

(
T − TC
T

)
P − J0 (∆x)2

kBT
E

]
(4.94)

In linear approximation, Eq. (4.94) is equal to Eq. (4.82) and thus the dissipation parameter
becomes,

Γ = ν0
2nq2

J0
exp

(
− EA
kBT

)
(4.95)

Hence, the relaxation time and strength of the order parameter dynamics in the order-
disorder limit are given by,

τ−1 =

2ν0

(
T−TC
T

)
exp

(
− EA
kBT

)
T > TC

4ν0

(
TC−T
T

)
exp

(
− EA
kBT

)
T < TC

(4.96)

∆ε−1
r =


kBε0

nq2(∆x)2 (T − TC) T > TC

2 kBε0
nq2(∆x)2 (TC − T ) T < TC

(4.97)

The temperature behaviour of the relaxation time is governed by a superposition of two
processes: (i) Activated behaviour with a characteristic energy and (ii) Critical slowing down
of the relaxation time caused by a critical behaviour of the pre-exponential factor in the
vicinity of TC . This observation is typical for order-disorder phase transitions involving
shallow double well potentials [119, 134, 135].

The temperature activated behaviour, expressed by the pre-exponential factor in Eq.(4.96),
prevails for temperatures far from TC and, therefore, causes an overall decrease of the relax-
ation time for decreasing temperature.

4.5 Microscopic theory of the order parameter dynamics in
displacive transitions: The so� mode concept

The characteristic of displacive type phase transition rely on the fact that forces between the
ions A are much larger than the forces due to the local potential. Accordingly, J0 > 2η,
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and the ions A move in an e�ective potential with a single minimum23. Applying weak-
anharmonicity approximation

(
−η + J0

2

)
� ϑ leads to,

H =
1

2
m

(
dxR
dt

)2

+

(
−η +

J0

2

)
x2
R (4.98)

and the equation of motion for one ion A is given by,

m
d2xR
dt2

+ ρ
dxR
dt

= −2

(
−η +

J0

2

)
xR + qEeff (4.99)

where m is the mass of ion A, ρ is the damping constant, q is the charge of ion A and
Eeff is the e�ective electric �eld acting on ion A. A damping term is added to the equation of
motion since lattice vibrations are expected to be damped. For a ferroelectric phase transition
the critical wave vector is zero (zone centre phonon) (Fig. 4.5) and therefore the displacements
of ions A are identical for all unit cells, xR → x. With P = nqx, Eq.(4.99) becomes,

m

nq

d2P

dt2
+

ρ

nq

dP

dt
= − 2

nq

(
−η +

J0

2

)
P + qEeff (4.100)

where P is the electric polarization and n is the density of ions A. Since, if an electric
�eld24 is applied , each ion develops an individual dipole moment, which in turn sets up a
dipolar electric �eld which is 1

ε0
P [136]. Thus the e�ective �eld acting on ion A is given by

Eeff = E + 1
ε0
P and Eq. (4.100) becomes,

d2P

dt2
+
ρ

m

dP

dt
= − 2

m

(
−η +

J0

2
− nq2

2ε0

)
︸ ︷︷ ︸

ω2

P +
nq2

m
E (4.101)

For a over-damped dynamic behaviour, the second derivative can be neglected and the
equation of motion of the order parameter becomes,

ρ

m

dP

dt
= − 2

m

(
−η +

J0

2
− nq2

2ε0

)
︸ ︷︷ ︸

ω2

P +
nq2

m
E (4.102)

Comparing Eq. (4.102) with Eq. (4.57) whereas π̄S = P and bearing in mind that in the
high temperature phase only the quadratic term is relevant (Gaussian approximation) leads
to Γ = ρ

m , a = 1
2ω and g = nq2

m . Hence the relaxation time and susceptibility becomes,

τ−1 =

ω2 ρ
m T > TC

−2ω2 ρ
m T < TC

(4.103)

23From Eq.(4.32) and Eq.(4.34) follows that J0 � η
4

. This constraint is not su�cient for a single minimum
potential.

24Nota bene, the electric �eld is equal to the macroscopic electric �eld inside the medium which is E =
1
ε0

(D − P ) where D is the dielectric displacement which is equal to the macroscopic vacuum �eld produced by
free charges.
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χ−1
static =

ω2 m
nq2 T > TC

−2ω2 m
nq2 T < TC

(4.104)

Temperature never enters these considerations because everything was done in the har-
monic approximation and a phase transitions never happens. Indeed, anharmonicity is re-
quired for a phase transition and it is possible to account for that by assuming a temperature
dependent volume of the medium. Again, anharmonicity causes thermal expansion of a
medium. In �rst order of temperature, the volume can be expressed as V = V0 (1 + ζT )

where ζ is the volume coe�cient of expansion. Thus n = N
V = N

V0+∆V with ∆V = V0ζT .
Since ∆V � V0 leads to n ≈ N

V0
− N

V0

∆V
V0

. Hence n = n0 (1− ζT ). Thus ω2 becomes with
∆n = n0ζT and ∆n� n0

ω2 =
2

m

(
−η +

J0

2
− (n0 −∆n) q2

2ε0

)
=

q2n0ζ

mε0
(T − TC)

TC =
ε0

q2n0ζ

(
2η +

q2n0

ε0
− J0

) (4.105)

and ω2

n ,

ω2

n
=

2

m (n0 −∆n)

(
−η +

J0

2
− (n0 −∆n) q2

2ε0

)
=

(J0 − 2η) ζ

mε0
(T − T ∗C)

T ∗C =
1

ζ (J0 − 2η)

(
2η +

q2n0

ε0
− J0

) (4.106)

Thus the relaxation time and relaxation strength for displacive phase transition exhibits a
Curie Weiss behaviour given by,

τ−1 =


q2n0ζρ
m2ε0

(T − TC) T > TC

2 q
2n0ζρ
m2ε0

(TC − T ) T < TC
(4.107)

∆ε−1
r =


(J0−2η)ζ
q2ε0

(T − T ∗C) T > TC

2 (J0−2η)ζ
q2ε0

(T ∗C − T ) T < TC
(4.108)

Both phase transition temperatures, TC and T ∗C are not equal. This discrepancy is a con-
sequence of the quasi harmonic approximation in addition with considering anharmonicity
e�ects by thermal expansion behaviour. In order to resolve this dilemma, the shape parameter
η must ful�ll η = 1

2

(
J0 − q2n0

ε0

)
. Equation (4.105) reveals that the frequency of the zone

centre phonon during a ferroelectric phase transition decreases (the phonon “softens”) and
vanishes at the critical temperature. This is the reason why the corresponding mode is called
“soft mode”. The softening of a mode is caused by the fact that its restoring force becomes
very small and the crystal becomes unstable to such a motion, i.e. it is no longer dynamical
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but is transformed into a static displacement.
Nota bene. The classical Curie-Weiss behaviour of the soft mode rely only on the as-

sumption that the temperature dependence of the volume is linear with temperature and
the coe�cient of expansion is constant. Generally, the coe�cient of expansion is de�ned as
ζ = 1

V
dV
dT leading to lnV =

´
ζdT + C . Only for constant ζ the volume becomes V =

V0 exp (ζT ) ≈ V0 (1 + ζT ). Indeed, Kozlov et al. [137, 138] found a temperature behaviour
of the relaxation time of a over damped soft mode in Rochelle salt as (2πτ)−1 ∝ (TC − T )3

in the low temperature phase. They showed that this is caused by a temperature dependent
coe�cient of expansion given by ζ = −0.0647 + 11.744t2− 14.814t3− 45.536t4 and by the
absent of the linear term where t = (T − TC) /T .

However, in the case of a displacive phase transition the corresponding relaxation of the
order parameter slows down when the system approaches TC and accelerates afterwards
continuously.



CHAPTER 5

Dielectric Spectroscopy and analysis of
permi�ivity spectra

5.1 Low frequency dielectric measurement

Measurements of the dielectric constant by the dielectric response, χ = 1
ε0

dP
dE = (ε− 1) give

valuable information about the ferroelectric phase transition phenomenon of that material.
This can be done, e.g. by measuring the change of electric polarization upon the application
of an electric �eld at di�erent temperatures, χstatic (T ) = 1

ε0
dP
dE

∣∣
T

. However, measuring the
change of electric polarization at several temperatures with respect to the change of electric
�eld is rather inconvenient since, apart from di�culties of measuring electric polarization, it
will take a long time to study the ferroelectric phase transition behaviour. Alternatively, a
fast and reliable method to measure the dielectric constant of an material is by measuring its
impedance.

Accordingly, a time-varying electric �eld must be applied so that instead of a static re-
sponse the dynamic dielectric response is measured. In addition, measuring the dynamic
response provides much more information about the dielectric behaviour, e.g. the relaxation
time of the order parameter, when a material undergoes a ferroelectric phase transition. To
measure the dynamic response either the frequency domain or the time domain approach
can be used. In the frequency domain approach the dielectric constant is measured at various
frequencies of alternating excitation �elds, whereas in the time domain approach a Fourier
transform would be necessary to obtain the frequency dependent dielectric constant. Time
domain spectroscopy is less time consuming than measurements in the frequency domain at
very low frequencies (<10mHz) but has reduced accuracy.

For low frequency impedance measurements (<1MHz), the principle of dielectric meas-
urement in the frequency domain is shown in Fig. 5.1. The sample is mounted between
two electrodes (conveniently made of silver paste) forming a sample capacitor. In order to
minimize the e�ects of fringing �eld, the thickness of this capacitor should be much less than
the electrode size. A voltage with a constant amplitude and a certain frequency is applied
to the sample. The applied voltage causes a current in the sample which will have the same
frequency in the linear case. In addition, there will generally be a phase shift between the
current and the voltage described by a phase angle (Fig.5.2).

The ratio between the peak value of the voltage, U0, and the peak value of the current, I0,
and the phase angle, ϕ are determined by electric properties (permittivity and conductivity)

57
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Figure 5.1: Principle of dielectric measurement. A four wire configuration is
commonly used for measuring the sample impedance in order to
eliminate additionally cable impedance contributions.

0

I(t)

U(t)

I0

I(t
), 

U
(t)

Time

U0

Figure 5.2: Time dependent current and voltage signal. Amplitude and phase
relations between voltage (blue solid line) and current (red dashed
line) of a sample at a given frequency.

of the material and by the sample geometry. In complex notation, the impedance is de�ned
as the ratio between the time dependent voltage and the time dependent current as,

Z∗ (ω) =
U0 (ω) exp [i (ωt+ ϕU )]

I0 (ω) exp [i (ωt+ ϕI)]
=
U0 (ω)

I0 (ω)
exp (iϕ) = Z ′ + iZ ′′ (5.1)

with ϕ = ϕU − ϕI . The capacity of the sample material is given by1,

1

iωC
= Z∗ (5.2)

The relative permittivity is related to the capacity by C = εrε0
A
d where A is the surface

area of the electrodes and d is the thickness of the sample material. The vacuum permittivity is

1U = Q
C
⇒ dU

dt
= 1

C
dQ
dt
⇒ dU

dt
= 1

C
I . With U = U0 exp (iωt) follows, I = iωCU0 exp (iωt). Thus,

Z∗ = U
I

= 1
iωC
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given by ε0 and the relative permittivity by εr . Thus withC0 = ε0
A
d the complex permittivity

of the sample material is given by2,

ε∗ = ε′ − iε′′ = 1

C0

1

iωZ∗
(5.3)

The real part, ε′, describes the in phase response with the electric �eld, while the imaginary
part, ε′′, describes the out-of-phase response. For a pure ohmic resistor Z∗ = R = % dA and
with Eq. (5.3) the permittivity becomes,

ε∗ = ε′ − iε′′ = −i
(

1

ε0ω%

)
= −i

(
σ

ε0ω

)
(5.4)

where % is the resistivity and σ is the conductivity. The permittivity is purely imaginary
in that case. That means, that the imaginary part of the complex permittivity is a�ected by
the movement of free charges3. In general, at AC �elds, free charges do not move arbitrarily
far, but oscillate back and forth with the frequency of the �eld, whereas the bound charges4

no longer come to rest at new equilibrium positions, but also oscillate at the �eld frequency
determining the frequency behaviour of ε′. Thus both types of charges will contribute to an
overall AC current and the distinction between free and bound charges blurs and is entirely
a conventional one.

Hence, it is convenient to de�ne a complex conductivity, σ∗ = σ′ − iσ′′ in analogy to
the complex permittivity. Therefore, with Eq. (5.4) the transformation rule between the
permittivity and conductivity notation is given by σ∗ = iε0ωε

∗ with σ′ = ε0ωε
′′ and σ′′ =

ε0ωε
′. Both notation are just alternative representations of the dielectric properties of a

material.

5.1.1 Interfacial e�ect: contact polarization

While the sample capacitor method in low frequency dielectric measurements and the un-
derlying theory is rather simple, the analysis of a measured frequency dependent dielectric
constant can be very complicated. In general, in addition to intrinsic phenomena also extrinsic
e�ect can add up to the total permittivity.

In the low frequency regime it may be important (depending on the conductivity of the
material under investigation) to consider interfacial polarization e�ects which originate from:
i) the presence of electrons trapped with a �nite lifetime in localized states near the interface
[139], ii) space charge polarization e�ects due to the presence of mobile ions in the material
which are virtually always present [140, 141, 142] iii) blocking layer with di�erent density of
charge carriers owing to band bending near the electrode-dielectric interfaces, causing charge
injection from the electrode into the dielectric or vice versa charge depletion due to di�erent

2Nota bene, ε∗ has to be considered as the relative permittivity. According to literature the subscript r is
omitted.

3Those that can move freely over arbitrary distances in respond to the DC �eld
4Those that are bound to equilibrium positions and only stretched to new equilibrium positions by the DC

�eld
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work functions of electrode and the dielectric material.
All these phenomena are summarized under the term “Maxwell-Wagner polarization” and

can be basically modelled by a leaky capacitor in series with the bulk sample impedance [143]
(Fig. 5.3).

Figure 5.3: Interfacial e�ects. (a) Due to interfacial e�ects a double layer is
formed near the two electrodes. (b) The double layer provokes a
additionally capacitance and a resistance at the interface (green-
beige) in series with the bulk impedance (beige)

The total impedance for such a con�guration is given by,

Z∗T =
RK

1 + i (RKCK)ω︸ ︷︷ ︸
ZK

+ZB (5.5)

where ZB is the sample bulk impedance and ZK is the contribution from the interface.
With ω � (τK)−1 and τK = RKCK where τK is the relaxation time, the impedance arising
from the contacts vanishes and the measured impedance is equal to the sample impedance.
On the other hand, if ω � (τK)−1, then ZK = RK and the total impedance is predominately
governed by the interface resistance sinceRK can take huge values. Hence, depending on τK
intrinsic e�ects my be masked by interfacial e�ects. As it is evident, for very low conductive
materials, interfacial polarization e�ects only arises at very low frequencies.

5.2 Linear response and dielectric relaxation

The time dependent response of an isotropic system following a disturbance with considering
causality, locality and superposition principle can be described as,



5.2 Linear response and dielectric relaxation 61

R (t) =

tˆ

−∞

dt′χ
(
t− t′

)
F
(
t′
)

(5.6)

where R (t) is the response at time t, F (t′) is the disturbance at time t′ and χ (t− t′) is
the response function dependent on the age, t− t′. Equation (5.6) means that the response at
time t is the sum of all disturbances in the past multiplied with the response function at t− t′.
Thus χ (t− t′) is a measure of how strong the disturbance at time t′ contributes to the total
response of the system at time t.

Basically, the response function decays exponentially with (t− t′) so that a disturbance
long time ago does not in�uence the present state of the system e�ectively.

With t′′ = t− t′ Eq. (5.6) becomes,

R (t) =

∞̂

0

dt′′χ
(
t′′
)
F
(
t− t′′

)
(5.7)

In Fourier space Eq. (5.7) becomes,

+∞ˆ

−∞

dω exp (−iωt)R (ω)

︸ ︷︷ ︸
R(t)

=

∞̂

0

dt′′χ
(
t′′
) +∞ˆ

−∞

dω exp
[
−iω

(
t− t′′

)]
F (ω)

︸ ︷︷ ︸
F (t−t′′)

=

∞̂

0

dt′′χ
(
t′′
)

exp
(
iωt′′

) +∞ˆ

−∞

dω exp (−iωt)F (ω)

=

+∞ˆ

−∞

dωχ (ω)F (ω) exp (−iωt)

(5.8)

Thus in frequency space the response to a disturbance becomes,

R (ω) = χ (ω)F (ω) (5.9)

with the frequency dependent response function given by the Laplace transformed re-
sponse function with imaginary argument as,

χ (ω) =

∞̂

0

dtχ (t) exp (iωt) (5.10)

A very important case study is the response to a heaviside step function since an arbitrary
disturbance can be approximated by a series of successive elementary steps (Fig. 5.4.

For a steady input that is abruptly turned o� (↓) or on (↑) at t′ = 0, the disturbance is
given by F (t′) = F0Θ (−t′) respectively F (t′) = F0Θ (t′) where Θ (t) is the heaviside step
function and F0 is the amplitude. Hence the response becomes,
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Figure 5.4: Approximation of arbitrary disturbance. A time-dependent disturb-
ance can be build up from a succession of elementary steps. In
the time interval [ai, bi] the disturbance is monotonically increasing
necessitating a monotonically increasing of the amplitude of the
elementary steps (yellow) whereas it is contrary in the time interval
[ki, li] (black)

RΘ (t) =


F0

∞̂

0

dt′′χ
(
t′′
)

Θ
(
t′′ − t

)
= F0

∞̂

t

dt′′χ
(
t′′
)
↓

F0

∞̂

0

dt′′χ
(
t′′
)

Θ
(
t− t′′

)
= F0

tˆ

0

dt′′χ
(
t′′
)
↑

(5.11)

Thus the response function for a heaviside step input is given by,

χΘ (t) =
1

F0


−dRΘ (t)

dt
↓

+
dRΘ (t)

dt
↑

(5.12)

Therefore with Eq. (5.7) the general response of a system to a general disturbance is given
by,

R (t) =

∞̂

0

dt′′χΘ

(
t′′
)
F
(
t− t′′

)
=

1

F0

∑
i



−
biˆ

ai

dt′′
dRΘ (t′′)

dt
F
(
t− t′′

)
↓

+

liˆ

ki

dt′′
dRΘ (t′′)

dt
F
(
t− t′′

)
↑

(5.13)

where in the time interval [ai, bi] and [ki, li] the disturbance is monotonically decreasing
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respectively increasing.
In dielectrics the disturbance is the time dependent electric �eld, F (t) = E(t) and the

response of the system is the electric polarization, R(t) = P (t).

5.2.1 Debye function

In principle the total electric polarization is composed of polarization processes occurring on
short and long time scales. On the one hand, processes taking place on short time scales can be
considered to follow instantaneously an excitation �eld without any time lag, whereas on the
other hand, a certain time exists to respond to an excitation �elds for polarization processes
taking place on long time scales. Hence the total electric polarization is given by,

P (t) = PO (t) + P∞ (t) (5.14)

where PO (t) and P∞ (t) are the long and short time scale electric polarization contribu-
tions. Hence, with Eq. (5.7) the total electric polarization is given by,

P (t) =

∞̂

0

dt′′χO
(
t′′
)
E
(
t− t′′

)
︸ ︷︷ ︸

PO(t)

+

∞̂

0

dt′′χ∞
(
t′′
)
E
(
t− t′′

)
︸ ︷︷ ︸

P∞(t)

(5.15)

The most simple assumption for the long time scale electric polarization is that the change
of the electric polarization is proportional to its actual value after the removal of the excitation
�eld [144, 145]. Consequently,

dPO
dt

= −1

τ
PO (5.16)

where τ is the characteristic relaxation time. With PO (t = 0) = PO0 = (PEqu − P∞),
Eq. (5.16) leads to an exponential decay for PO as,

PO (t) = (PEqu − P∞) exp

(
− t
τ

)
(5.17)

where PEqu is the equilibrium electric polarization. Since P∞ (t) follows immediately an
excitation �eld, the short scale polarization processes for an abruptly turned o� excitation
�eld are given by,

P∞ (t) = P∞Θ (−t) (5.18)

For an abruptly turned on excitation �eld, the di�erent polarization contribution are given
by,

PO (t) = PEqu − (PEqu − P∞) exp

(
− t
τ

)
P∞ (t) = P∞Θ (t)

(5.19)
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with PEqu = ε0 (εEqu − 1)E0 and P∞ = ε0 (ε∞ − 1)E0 where E0 is the excitation �eld,
εEqu is the relative equilibrium permittivity and ε∞ is the relative permittivity from high
frequency contributions, the response function becomes (Eq. 5.12),

χO (t) =


ε0 (εEqu − ε∞)

1

τ
exp

(
− t
τ

)
↓

ε0 (εEqu − ε∞)
1

τ
exp

(
− t
τ

)
↑

(5.20)

χ∞ (t) =

{
ε0 (ε∞ − 1) δ (t) ↓

ε0 (ε∞ − 1) δ (t) ↑
(5.21)

where δ (t) = dΘ(t)
dt is the delta function and considering the identity δ (−t) = δ (t).

Obviously, in both cases the response function is equal and thus it is not necessary to dis-
tinguish between increasing and decreasing excitation �eld. Thus the integrals in Eq. (5.15)
can be readily evaluated. Consequently, knowing the response function of a heaviside step
excitation, the respond to any arbitrary excitation �eld can be calculated. Particularly, the
respond of the electric polarization for an harmonic excitation �eld, E (t) = E0 cos (ωt) =

< [E0 exp (iωt)] becomes,

P (t) = <


∞̂

0

dt′′ε0 (εEqu − ε∞)
1

τ
exp

(
− t
′′

τ

)
E0 exp

[
iω
(
t− t′′

)]
+ <


∞̂

0

dt′′ε0 (ε∞ − 1) δ
(
t′′
)
E0 exp

[
iω
(
t− t′′

)]
= <

E0e
iωt

ε0 (εEqu − ε∞)
1

τ

∞̂

0

dt′′ exp

[
−
(

1

τ
+ iω

)
t′′
]

+ ε0 (ε∞ − 1)


= <

ε0

[
(εEqu − ε∞)

1 + iτω
+ (ε∞ − 1)

]
︸ ︷︷ ︸

χ

E0 exp (iωt)︸ ︷︷ ︸
E(t)


(5.22)

Thus with εr = 1 + χ the frequency dependent complex permittivity for a relaxation
process becomes,

ε∗r = ε∞ +
(εEqu − ε∞)

1 + iτω
= ε∞ +

∆ε

1 + iτω
(5.23)

where ∆ε = (εEqu − ε∞). Nota bene, for harmonic excitation �elds, the classi�cation of
the polarization mechanism into slow and fast processes depends on the measuring frequency.
Thus in the case where the medium has several polarization mechanisms coexisting and not
signi�cantly interacting among themselves, the permittivity can be expressed as the sum of
the contributions of the individual mechanisms as (5.24)[146, 147],
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ε (ω) = ε0

[
1 +

N∑
l

χl (ω)

]
(5.24)

In case of considering only relaxation processes, Eq. (5.24) can be written as,

ε (ω) = ε0

[
ε∞ +

N∑
l

∆εl
1 + iτlω

]
(5.25)

where all high frequency contributions (resonance phenomena) are combined in ε∞. With
exp (iωt) = cos (ωt) + i sin (ωt), the electric polarization (Eq. 5.22) is given by,

P (t) =


ε′︷ ︸︸ ︷(

∆ε

1 + (τω)2 + ε∞

)
−1

 ε0E0

︸ ︷︷ ︸
In phase with applied electric �eld

cos (ωt) +


ε′′︷ ︸︸ ︷

∆ετω

1 + (τω)2

 ε0E0

︸ ︷︷ ︸
Lag by π/2

sin (ωt)

= ε0E0

√
(ε′ − 1)2 + (ε′′)2 cos (ωt− ϕ)

(5.26)

where ε∗r = ε′−iε′′ andϕ is the loss angle given by tanϕ = ε′′

ε′−1 . The component in phase
with the applied �eld is the lossless component, while the component with π

2 out of phase is
the loss component which represents the dielectric losses in the form of energy absorption.
Dielectric losses show a maximum at ω = τ−1. It is obvious that for ω � τ−1 the electric
polarization can not follow the �eld variation and the electric polarization is governed solely
by high frequency contributions, (ε∞ − 1), which is in phase with the applied �eld (Fig. 5.5).

A Debye dielectric material, i.e. the time dependent polarization obeys the Debye equation
(Eq. 5.16), can be modelled by an electric circuit [148] (Fig.5.6) with the impedance given by,

1

Z∗B
= iω

(
C1 +

C2

1 + iRC2ω

)
(5.27)

With Eq. (5.3) the permittivity is given by,

ε∗ =
C1

C0
+

C2
C0

1 + iRC2ω
(5.28)

With C1
C0

= ε∞, C2
C0

= ∆ε and RC2 = τ , Eq. (5.28) is identical with Eq. (5.23).
Hence, with Eq. (5.3) and Eq. (5.5) the total permittivity is given by,
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Figure 5.5: Frequency dependent permi�ivity for a Debye relaxation process. At
low frequencies of the excitation field (ω � τ−1) the long time
scale processes (e.g. orientation of dipoles) leading to an electric
polarization can follow the excitation field without any time lag and
the permi�ivity is equal to εEqu. By increasing the excitation fre-
quency, the electric polarization can not longer follow the excitation
immediately but with a certain time lag. Consequently, the electric
polarization loses on strenght and energy dissipation takes place.
This behaviour is characterized by a step-like decrease of the real
part of the permi�ivity and an increase of the imaginary part. At
frequencies ω � τ−1 the long time scale processes fail to follow the
excitation field and the permi�ivity is solely governed by the short
time scale processes, ε∞ .

Figure 5.6: Equivalent circuit for a Debye dielectric. Nota bene, according to
[149, 150], the problem of modelling the behaviour of an dielectric
material by an electric circuit does not have a unique solution.
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ε∗ =
1

iωC0

1

Z∗

=
1

iωC0

1

(ZK + ZB)

=
1

iωC0

1(
ZK + 1

iωC0

1
ε∗Mat

)
=

1

iωC0ZK + 1
ε∗Mat

(5.29)

where ε∗Mat is the complex permittivity of the material. Usually, for the permittivity of
the material, model functions are applied (discussed below) which describes the frequency
behaviour of ε∗Mat accurately.

5.2.1.1 Deviations from Debye behaviour

The Debye equation describes an ideal relaxation process of the electric polarization with one
characteristic relaxation time. Generally, this is rarely the case and deviations from the Debye
spectral shape are commonly observed and ascribed to a distribution of relaxation times. In
fact, according to Eq. (4.53) each mode of the Fourier transformed order parameter �eld decays
with a di�erent relaxation time.

Consequently, the deviation of the Debye spectral shape is caused by �uctuations of the
order parameter near the phase transition temperature (Fig. 5.7).

At temperatures well above the critical temperature, T > TC , �uctuations of the electric
polarization are only playing a minor role and in ideal consideration as depicted in Fig. 5.7.
The average value of the coarse-grained electric polarization is equal to the total average
value of the electric polarization, P (xi) = P (x) ∀xi. Thus, only the zero wavelength Fourier
component (q = 0) exists in the Fourier transformed spectrum of the electric polarization
�eld,P (q) ∝

´
P (x) exp (iqx) dx. Hence, only the relaxation time with q = 0 exists and no

relaxation time distribution is present.
In the close vicinity to the phase transition temperature, critical �uctuations arises. Here

P (xi) 6= P (x) ∀xi and thus in turn the Fourier transformed spectrum of P (x) consists of
many di�erent wave vectors leading to a distribution of relaxation times. Accordingly, this
causes a deviation from the Debye spectral shape of a single relaxation process.

At very low temperatures, the average value of the coarse-grained electric polarization is
again equal to the non zero total average value and thus in turn only the zero wavelength
Fourier component exists in the Fourier transformed spectrum of P (x) again.

Compared to a single Debye process, a distribution of relaxation times leads to a broaden-
ing of the dielectric function (Fig. 5.8).

Generally, a broadened relaxation processes can be described by a superposition of Debye-
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Figure 5.7: Coarse-grained order parameter field in the pseudo-spin approxima-
tion. a) Electric polarization field at T > TC . No fluctuation of the
electric polarization is present. The inset depicts the corresponding
pseudo spin distribution. b) Near the phase transition temperature
critical fluctuation arises. c) At temperatures below the phase
transition temperature the mean electric polarization is non-zero
and no fluctuation of the electric polarization exists.

functions with di�erent relaxation times [145, 151, 144, 148] as,5

ε′ − iε′′ = ε∞ + ∆ε

ˆ
f (τ)

1 + iωτ
dτ (5.30)

where f (τ) is the relaxation time distribution function with
´∞

0 f (τ) dτ = 1.

5Assuming that ∆ε (τl) is the relaxation strength of one particular Debye process with a relaxation time, τl,
contribution to the overall non Debye relaxation process (Fig. 5.8). Then the discrete relaxation time distribution
function is de�ned as f (τl) ∆τ = ∆ε(τl)

∆ε
where ∆ε =

∑
l ∆ε (τl). Thus, a relaxation process governed by a

superposition of Debye-functions is given by ε′ + ε′′ = ε∞ +
∑
τl

∆ε(τl)
1+iωτl

= ε∞ + ∆ε
∑
τl

f(τl)∆τ
1+iωτl

. In the
continuum limit it follows that ε′ + ε′′ = ε∞ + ∆ε

´ f(τ)
1+iωτ

dτ
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Figure 5.8: Distribution of relaxation times. A schematic representation of the
significance of the existence of a distribution of relaxation times in
the application to the interpretation of a non Debye loss peak in a
dielectric material a�er Jonscher [146].

5.2.2 Model function for the analysis of dielectric spectra

Calculation of the relaxation time spectra from the experimentally-determined frequency
dependent permittivity requires the inversion of Eq. (5.30). However, from a mathematical
point of view this is an ill-conditioned problem, i.e. that small errors in the dielectric data
result in much larger errors in the relaxation time distribution and special methods must be
applied to solve this problem numerically [152, 153, 154, 155, 156].

More convenient, empirically model function have been developed to describe broadened
and /or asymmetric loss peaks (ε′′) . The most general model function was introduced by
Havriliak and Negami [157, 158] as,

ε∗HN = ε∞ +
∆ε[

1 + (iωτ)1−α
]β (5.31)

Here ∆ε is the relaxation strength, ε∞ is the high frequency limit of the dielectric constant,
τ is the characteristic relaxation time, α and β are the width and asymmetry parameters, re-
spectively (Fig. 5.9). The dispersion and absorption spectra for the Havriliak-Negami function
are [151],

ε′HN = ε∞ +

∆ε cos

(
β arctan

[
sin((1−α)π

2 )
(ωτ)α−1+cos((1−α)π

2 )

])
[
1 + 2 (ωτ)1−α cos

(
(1− α) π2

)
+ (ωτ)2(1−α)

]β
2

(5.32)

ε′′HN =

∆ε sin

(
β arctan

[
sin((1−α)π

2 )
(ωτ)α−1+cos((1−α)π

2 )

])
[
1 + 2 (ωτ)1−α cos

(
(1− α) π2

)
+ (ωτ)2(1−α)

]β
2

(5.33)

The characteristic relaxation time of the asymmetric Havriliak-Negami model function
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does not coincide with the relaxation time which is related to the position of the maximal loss
(τ = ω−1

max) (Fig. 5.10) , but depends on the parameters α and β as [159, 160, 161],

τ =
1

ωmax


[
sin
(

(1−α)π
2(1+β)

)]
[
sin
(

(1−α)βπ
2(1+β)

)]


1
1−α

(5.34)

whereas for the symmetric Havriliak-Negami model function τ = ω−1
max holds (Fig. 5.9).

10-2 10-1 100 101 102

',
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 =1, =0.3
 =1, =0.5

Figure 5.9: Symmetric Havriliak-Negami model function for the complex permit-
tivity. The parameter α accounts for a symmetric broadening of the
loss peak. For β = 1 the Havriliak-Negami model function is equal
to the Cole-Cole model function.

The shape parameters, α and β, accounts for a broadened asymmetric loss peak (Fig. 5.9,
5.10) with power law characteristics for the low- and high-frequency asymptotic behaviour
as ω1−α and ω−(1−α)β whereas the boundary conditions for the shape parameters are 0 ≤
α < 1 and 0 < β ≤ (1 − α)−1 respectively6. A simple Debye behaviour in Eq. (5.31) would
corresponds to α = 0 and β = 1.

The mean logarithmic relaxation time is related to the characteristic relaxation time by
[162],

〈ln τHN 〉 = ln τ +
ψ(β) + Eu

1− α
(5.35)

where ψ(β) is the digamma function and Eu ≈ 0.577 is the Euler constant. The width of

6Since the loss peak is broader for the Havriliak-Negami function than the Debye peak, the asymptotic
behaviour for ω → 0 in both cases must ful�l: ω1−α ≤ ω1. Thus α ≥ 0. With dε′′

dω

∣∣∣
ω→0

> 0 follows that
α < 1. Hence, 0 ≤ α < 1.

For ω →∞follows, ω−β(1−α) ≤ ω−1. Thus β ≤ (1− α)−1. With dε′′

dω

∣∣∣
ω→∞

< 0 follows that β > 0. Hence,
0 < β ≤ (1− α)−1.
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Figure 5.10: Asymmetric Havriliak-Negami model function for the complex per-
mi�ivity. The parameter β accounts for an asymmetric broadening
of the loss peak

a non-Debye relaxation is de�ned as the variance of the distribution of logarithmic relaxation
times. For a Havriliak-Negami model function the width is given by [162],

σ2 = 〈(ln τHN )2〉 − 〈ln τHN 〉2

=
ψ′ (β)

(1− α)2 +
π2

6 (1− α)2 −
π2

3

(5.36)

where ψ′ (β) is the trigamma function. There are some other macroscopic models pro-
posed and used widely for data processing, e.g. Cole-Cole [163], Cole-Davidson [164, 165],
Fuoss-Kirkwood [145, 166], Jonscher [146, 167] and so on.





CHAPTER 6

Magnetoelectric phase transition in
DyMnO3

In rare-earth manganites (RMnO3) a non-collinear long range cycloidal spin order of the
Mn-spins is present in the ferroelectric phase. Above the magnetoelectric phase transition
temperature a collinear sinusoidally-modulated spin order is proposed. Based on results by
magneto-capacitance and by dielectric spectroscopy, an experimental evidence is provided
that the magnetoelectric phase transition in DyMnO3 follows an order-disorder scenario and
that a coupling between spin and charge degrees of freedom exists well above the magneto-
electric phase transition. These results suggest the interpretation of the paraelectric sinusoidal
phase in manganites as a dynamical equilibrium of magnetic cycloids with opposite chiralities.
Additionally a free-energy model is provided describing the magnetoelectric phase transition
of cycloidal magnetoelectric multiferroics. The model is based on the assumption of a double-
well potential and it includes the symmetry-allowed terms up to the second order.

6.1 Magnetic and dielectric phases of DyMnO3

DyMnO3 single crystals were used in this work grown in Ar �ow by a �oating-zone method
with radiation heating [168, 169]. Terahertz properties of the samples from the same batch
have been presented previously [170, 171]. The complex dielectric constant was measured
for electric �eld along the crystallographic a-axis at a constant frequency of 10 Hz (quasi
static) using a frequency response analyzer in several magnetic �elds between 0T and 14T
and with B‖b-axis. An anomaly of the real dielectric constant is observed shifting to higher
temperatures with increasing magnetic �eld. For magnetic �eld B > 6T the anomaly shifts
back to lower temperatures (Fig. 6.1).

The shape of that anomaly is depicted in more detail in Fig. 6.2.
Here at low magnetic �elds the peak structure shows a well distinct asymmetric divergency

behaviour with a jump-like decrease of the quasi static permittivity at TC . This is a hallmark
feature of a �rst order phase transition where the order parameter (electric polarization)
exhibits a step like change1 at TC [136]. Indeed it has been shown, that for B < 4T a step

1The free energy near TC is given by, F = F0 + C
2

(T − TC)P 2 + D
4
P 4 + . . . .Thus ε ∝ χ−1 = ∂2F

∂P2 =
C (T − TC) + 3DP 2 + . . .. Let assume P 2 = AΘ (TC − T ) +B (TC − T ) where Θ (TC − T ) is the heaviside
function.Thus for T > TC , χ−1 = C (T − TC) and for T < TC , χ−1 = −C (TC − T ) + 3DB (TC − T ) +
3AΘ (TC − T ) = (3DB − C) (TC − T )+3A. Therefore,χT>TC (T = TC) =∞ andχT<TC (T = TC) = 1

3A

73



74 CHAPTER 6. MAGNETOELECTRIC PHASE TRANSITION IN DYMNO3

0 2 4 6 8 10 12 14 16 18 20 22 24

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

1T

2T

14T

0T

a (
10

H
z)

 B
||b

Temperature (K)

12T

B

Figure 6.1: Dielectric constant of DyMnO3. Grey dashed line indicates the tra-
jectory of the dielectric constant anomaly as a function of magnetic
field and temperature.
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Figure 6.2: Temperature profile of the dielectric constant. With increasing mag-
netic fields the peak of the anomaly is shi�ing towards higher
temperatures (grey dashed line). Additionally, the peak shape is
asymmetric at low magnetic fields probably indicating a first-order
ferroelectric phase transition
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like increase of the electric polarization along the a-axis exists accompanied with a step like
decrease of the electric polarization along c-axis at TC [26, 64, 172, 173]. Consequently, a
magnetic �eld B‖b induces an electric polarization �op from P‖c to P‖a. This behaviour is
attributed to the �op of the spin cycloidal basal plane from bc to ab. At higher magnetic �elds,
B = 4T, the shape of the peak becomes more symmetric and no jump like change of the quasi
static permittivity is observed below TC . This is a hallmark feature for a second order phase
transition, where the order parameter increases continuously below TC . Consequently, at
B ≈ 4T a tricritical point exist where a phase boundary line of �rst order transition intersect
a phase boundary line of second order phase transition.

Additionally, the magnitude of the peak increases with increasing magnetic �eld and for
B ' 6T it decreases again. Thus, it might be that the correlation length changes correspond-
ingly (Eq. 4.19). Furthermore, the kink in εa at low magnetic �elds is observed denoted by
an arrow around 17K in Fig. (6.2). This feature re�ects the ordering process along the c-axis.
This kink is attributed to a misalignment of the crystal.

As a summary of dielectric experiments, �gure 6.3 depicts the dielectric phase diagram of
DyMnO3 in magnetic �led along the b-axis.

Figure 6.3: Dielectric phase diagram of DyMnO3. At higher magnetic fields and
low temperatures a ferroelectric state with an electric polarization
pointing along the a-axis exists (P‖a). At lower magnetic fields the
electric polarization points along the c-axis (P‖c). The transition
from the paraelectric to the P‖a state is of second order whereas the
transition from the P‖c to P‖a state is of first order. Additionally
due to misalignment, the phase boundary between the paraelectric
and ferroelectric P‖c state is also observed.

The divergent behaviour of the dielectric constant at certain temperatures and magnetic
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�elds indicates a phase transition from one dielectric phase to another. According to Kimura et
al. [26] three regions of dielectric phases exists, (i) a paraelectric phase in the range TC < T <

TN where TC denotes the ferroelectric transition temperature and TN is the Neel temperature
at which an antiferromagnetic order emerges, (ii) a ferroelectric phase with a static electric
polarization along the crystallographic c-axis below TC , and (iii) a ferroelectric phase with
a static electric polarization along the crystallographic a-axis. Since DyMnO3 belongs to
the material class of multiferroic rare-earth manganites RMnO3 (R=Gd, Tb, Dy, Eu/Y) with
orthorhombically distorted perovskite structure and with strongly coupled antiferromagnetic
and ferroelectric properties, the magnetic phases are of great signi�cance.

In TbMnO3 Kenzelmann et al. [28] have analysed more than 900 �rst-order magnetic
Bragg re�ections obtained by neutron di�raction experiments.It has been proposed that in the
paraelectric phase the magnetization, M, of the Mn-sublattice can be re�ned as a longitudinal
sinusoidal modulation of the form shown in (Fig. 6.4) and repectively by,

Ma = 0

Mb = Mb,0 cos (kMnx)

Mc = 0

(6.1)

Here Mb,0 = 2.9µB and kMn||b is the magnetic modulation vector. Additionally, this
assumption is con�rmed by Mannix et al. [174] and Wilkins et al. [175] by x-ray scattering
experiments on TbMnO3. However, both x-ray experiments show a small component of the
magnetic moment aligned with the c-axis.

Within the ferroelectric phase with P||c the Mn-spin order changes. One observes a
cycloidal structure with the magnetic moments con�ned to the bc-plane and rotating around
the a-axis which may be described as,

Ma = 0

Mb = Mb,0 cos (kMnx)

Mc = Mc,0 sin (kMnx)

(6.2)

where Mb,0 = 3.9µB and Mc,0 = 2.8µB , i.e. an elliptical spiral with the long axis of the
ellipse close to the b-axis. In the ferroelectric phase with P||a the basal plane of the spin
cycloid is rotated by 90° around the b-axis, i.e.

Ma = Ma,0 sin (kMnx)

Mb = Mb,0 cos (kMnx)

Mc = 0

(6.3)

Neutron di�raction experiments clarifying the magnetic structure of the Mn-spins in
DyMnO3 are very di�cult to carry out due to a high absorption of neutrons and currently
no publications are available addressing that issue.

Since similar phase diagrams have been reported for the closely related rare-earth mangan-
ates RMnO3 (R=Gd, Tb, Dy, Eu/Y) [26, 176], it may be expected that the magnetic structure
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Figure 6.4: Magnetic phase diagram of DyMnO3. In the paraelectric state the
Mn-spins (yellow arrows) are sinusoidal modulated along the b-axis
generating a spin density wave. In the P||a region the Mn-spins
are cycloidal ordered in the ab-plane whereas in theP||c state the
Mn-spins are cycloidal ordered in the bc-plane.

in DyMnO3 is identical to that of TbMnO3 in the paraelectric state as well as in the ferro-
electric phase and the unique cycloidal magnetic ordering in the ferroelectric phase in any
RMnO3 (R=Gd, Tb, Dy, Eu/Y) is assigned to the Mn-3d spins [26, 28, 64, 177, 174, 178, 179].
The cycloidal order is a consequence of spin frustration (discussed in chapter 3) caused by
GdFeO3 − like distortion of the MnO6 octaedra (this will be discussed in chapter 6.1.1).

It is generally accepted that the ferroelectric polarization in DyMnO3 is induced by a
cycloidal magnetic order [28, 31, 180] through the IDM interaction (Eq. 3.14) [4, 63, 70, 74]
and it can be written as (Eq. 3.17),

P =
∑
i,j

Kei,j × (Si × Sj) (6.4)

where ei,j denotes the unit vector connecting the spins Si and Sj , K is a constant repres-
enting the exchange interaction and the spin-orbit interaction. Accordingly, the electric polar-
ization, P , is intimately linked to the chirality of the magnetic cycloid (clockwise respectively
counter-clockwise cycloidal magnetic ordering), that is, changing the direction of +P → −P
implies changing the rotation (chirality) of the magnetic cycloid. This was demonstrated by
the asymmetry in the scattering of left-handed and right-handed circularly-polarized x-rays
by non-resonant magnetic x-ray di�raction for closely similar compound TbMnO3 [181].

In addition, the ordering of the Dy-4f moments in DyMnO3 is also of interest [182].
Although it is the magnetic structure of the Mn subsystem that determines the emergence of
ferroelectricity in rare-earth manganites [183], the mutual coupling of the Mn-3d and Dy-4f
moments and, consequently, the ordering of the 4f moments in DyMnO3 causes a particular
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large polarization observed in this material [184, 185].

6.1.1 GdFeO3-like distortion and magnetic frustration in DyMnO3

DyMnO3 belongs to the crystal class of the Perovskites (ABX3) with Dy3+ on the A-site,
Mn3+ on the B-site and O2− on the X-site. The magnetic frustration phenomenon of the Mn-
3d spins is based on a peculiar arrangement of the O2−-ion in the unit cell caused by a size
mismatch of the ionic radii of the Dy3+-ion and Mn3+-ion. The ideal Perovskite structure
has a cubic unit cell and consist of corner-sharing MnO6 octahedra whereas the R = Dy-ion
occupies the space between these octahedra (Fig. 6.5) . The lattice constant is determined by
the side lenght and thus in turn related to the ionic radii via a = L = 2 (rMn + rO) or via
the diagonal by, a =

(√
2
)−1

D =
(√

2
)−1

2 (rR + rO) respectively. For an ideal Perovskite
structure the Goldschmidt’s tolerance factor [186] given by,

t =
L(√

2
)−1

D
=

(rR + rO)√
2 (rMn + rO)

(6.5)

is equal to t = 1.00. However, the Dy-ion is smaller than the ideal value leading to
t < 1. In that case the MnO6 octahedra tilts around [110] and rotates around [001] of the
cubic Perovskite (Fig. 6.6). Consequently, the cubic symmetry is broken and an orthorhombic
structure with space group Pbnm is obtained (Fig.6.7).

This distortion from the ideal cubic Perovskite structure is called GdFeO3−like distortion.
The orthorhombic unit cell is formed by doubling the c-axis and taking the two diagonals of
the ab-plane as new crystallographic axes. This new unit cell contains 20 atoms (4xDy, 4xMn,
12xO) accordingly where a=5.279Å, b=5.834Å and c=7.378Å [187]. Additionally the MnO6

octahedra is stretched along the a-axis and shortened along b-axis of the cubic unit cell due
to the Jahn-Teller e�ect [188] caused by the interaction of Mn-3d electrons with the crystal
�eld (crystal �eld splitting) of the surrounding oxygen octahedra. Since each oxygen atom is
a shared vertex of two MnO6 octahedra a stretching along the a-axis and shortening along
b-axis of one octahedra leads to a opposite Jahn-Teller distortion i.e. a shortening along the a-
axis and a stretching along the b-axis of the neighbouring octahedra (Fig.6.8). This collective
distortions of the MnO6 octahedra are called cooperative Jahn-Teller e�ect. From neutron
di�raction study the long bond (Mn(4)-O(3)) is equal to 2.22Å and the short bond (Mn(4)-
O(1)) is 1.90Å [187].

Furthermore, due to the crystal-�eld splitting the coupling of the orbital magnetic moment
and the spin is broken up, so that the total magnetic moment is no longer in�uenced by
the total angular momentum. Hence, the magnetic moment of the Mn3+ ions are solely
determined by the spin and the contribution of the orbital motion to the magnetic moment
diminishes (quenching of the orbital momentum).

The Pbnm structure is inversion symmetric with inversion centre at the position of the Mn-
ions in the unit cell [189, 190]. Consequently, the existence of the linear magnetoelectric e�ect
requires the broken space inversion symmetry of the magnetic order. As will be shown below,
due to magnetic frustration a cycloidal magnetic order which breaks the space inversion
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symmetry exists and thus the linear magnetoelectric e�ect is allowed in DyMnO3.

6.1.1.1 Magnetic interactions

Magnetic order in DyMnO3 is determined by super-exchange interactions. In contrast to
direct exchange that arises from the overlap of the electronic orbitals of two adjacent magnetic
ions, super-exchange is an indirect coupling of magnetic moments mediated by a intermediate
diamagnetic ligand ion through virtual electron transfer (hopping) from the ligand to the
magnetic ion. In DyMnO3 the virtual hopping of electrons takes place between Mn-O-Mn
respectively between Mn-O-O-Mn bonds.

Figure 6.5: Ideal Perovskite structure with cubic unit cell. (a) Isometric projection
of the ideal Perovskite structure. The green sphere represents the A-
ion, the blue spheres represent the B-ion and the magenta spheres
represent the X-ion. Corner-sharing MnO6 octahedra and [110] axis
are visible. (b) Top view of the ideal Perovskite structure. Red arrows
represent the cube edge respectively the face diagonal of the cube.

The exchange interaction in the ab-plane between the nearest neighbour (NN) Mn spins
(Mn-O-Mn) is ferromagnetic according to the Goodenough-Kanamori-Anderson rules [78]
since the hopping occures between a �lled and an empty orbital of the Mn ions.

The next nearest neighbour (NNN) exchange interaction between Mn spins (Mn-O-O-
Mn) is antiferromagnetic since it occures between two �lled orbitals of the Mn ions. It is
much weaker than the Mn-O-Mn interaction. Thus, in the ideal perovskite structure, the NN
interaction dominates and a ferromagnetic alignment of the Mn spins exists.

As the GdFeO3 − like distortion of perovskite structure increases, the distance between
one pair of the opposite oxygen atoms in the ab-MnO2 planes decreases (O(2)-O(3)), while
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Figure 6.6: Tilting and rotation of MnO6 octahedra. (a) Tilting of MnO6 octa-
hedra. (b) Rotation of MnO6 octahedra.

Figure 6.7: Orthorhombic Pbnm structure of the unit cell. The tilt and rotation of
the MnO6 octahedra is visible (GdFeO3 − like distortion)
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Figure 6.8: Jahn-Teller distortion of the MnO6 octahedra. The MnO6 octahedra
is stretched respectively shortened an the ab-plane leading to a long
and short Mn-O bond

for the other pair increases (O(1)-O(4)). This leads to a signi�cant AFM NNN exchange
interaction which is much stronger along the b-axis (Mn(1)-O(3)-O(2)-Mn(4)) than along the
a-axis (Mn(2)-O(2)-O(3)-Mn(3)).

Therefore, the magnetic system in RMnO3 is heavily frustrated leading to a cycloidal
magnetic order with a magnetic modulation vector parallel to the b-axis (kMn||b). As a
results of IDM interaction the O2− ions will be displaced along the ∆x-direction.

6.2 Classification of magnetoelectric phase transitions in -
DyMnO3

DyMnO3 is a ferroelectric material with a direct one-to-one correlation between the position
of of the O2− ion and the angle between the neighbouring Mn3+ spins which exists due
to IDM interaction. Consequently, for the two limiting cases (displacive or order-disorder
transitions) the magnetic structure formed by the Mn3+ spins must take a special form and
is not independent from the dielectric state. Thus, the spin degrees of freedom and the
charge degrees of freedom are coupled in this material. Hence, for the magnetoelectric phase
transition following conclusions may be drawn.
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Figure 6.9: Real crystal structure of the orthorhombic rare earth manganite
DyMnO3. (a) bc-plane . Grey dashed lines mark one MnO2

plane. Tilted and rotated MnO6 octahedra are depicted. Red arrows
represent Mn-3d total spins. (b) MnO2 plane. Grey lines mark the
boarder of the unit cell. Jahn-Teller distorted MnO6 octahedra are
visible. Yellow and orange arrows represents (AFM) respectively
(FM) super-exchange interaction between NN and NNN Mn ions.
Black dashed lines represents direction of displaced O-ion due to
IDM. Two neighbouring MnO2 planes di�er in the position of the
oxygen ion along the c-axis and in the direction of the Mn-spins
(180° rotation) leading to the same position of the Mn and O-ions
and the same chirality of the spin cycloide in the ab-plane.
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6.2.1 Displacive-type magnetoelectric phase transition

Above the magnetoelectric transition temperature, the O2− ions are not displaced to one
side of the local double well potential thus in turn no net macroscopic electric polarization is
generated (Fig.6.10).

According to IDM interaction, the neighbouring Mn3+ spins must align collinearly (Si ×
Si+1 = 0). Below the transition temperature the mean positions of all O2−ions are displaced
by the same small amount to one side of the origin, and the magnitude of this displacement
increases on further cooling. Hence, at the transition temperature a macroscopic electric
polarization arises and grows towards its maximum as T → 0.

Again, due to IDM, the spins must not align collinearly in that phase (Si×Si+1 6= 0). Both
spin structures are in agreement with the proposed spin structure in TbMnO3 [28]. Since
DyMnO3 is closely related to TbMnO3, it should show the characteristics of a displacive
phase transition at the magnetoelectric phase transition. Additionally, as T → 0, the angle
between neighbouring spins must increase. Consequently, the magnetic wave vector, kMn,
increases as T → 0.

6.2.2 Order-Disorder type magnetoelectric phase transition

Even at temperatures well above the transition temperature, the O2− ions will reside in one
or other of the two wells, albeit with a random occupancy. Consequently, no macroscopic
electric polarization is generated (Fig.6.11).

Due to IDM interactions, the neighbouring Mn3+ spins are not collinear (Si × Si+1 6= 0)

with a constant rotation angle between the spins, ϕ = ±ϕ0.
On cooling toward the transition temperature, T > TC , the e�ects of interactions become

more signi�cant and a degree of short-range order in both magnetic and dielectric structures
due to IDM interactions is established, i.e. an electric polarization exists on a mesoscopic scale
but still on a macroscopic scale the electric polarization is zero. However, the spatial range of
this short-range order grows on cooling toward TC .

Below the transition temperature, T < TC , the probability is larger that one side of the
double-well potential (in this case the left-hand side) will be occupied. A long-range order
is established (magnetic and dielectric) and, accordingly, a macroscopic electric polarization
appears. However, there is also a signi�cant probability that some atoms will occupy the
alternative potential well.

At very low temperatures, T � TC , most of the O2− ions occupy the same side of the
double-well potential. Thus, the electric polarization reaches its maximum.

Therefore, the electric polarization in the ferroelectric phase in DyMnO3 is proportional to
the di�erence of the number of clockwise and counter-clockwise rotating pair of neighbouring
Mn3+ spins, i.e. it is proportional to the di�erence between opposite chiralities of Mn3+ spin
pairs.
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6.3 Experimental investigation of the magnetoelectric phase
transition in DyMnO3

In recent experimental studies [32, 33] it was found, that a non-zero dielectric contribution
of electromagnon in the longitudinal sinusoidal ordered spin phase of Mn3+ ions exists.
According to the commonly accepted mechanism of the electromagnon [34, 35], the majority
of the spectral weight of this mode originates from exchange striction mechanism and can
only exist in magnetic phases with non-collinear spin arrangement.

Consequently, the collinear sinusoidally-modulated spin phase contradicts this experi-
mental facts.2. As will be shown below, present results support the idea, that the sinusoidal
phase must be represented as a dynamical mixture of cycloidal phases with opposite polarities.

In order to solve that dilemma, the dielectric dynamics near the magnetoelectric phase
transition, i.e. from the paralectric, P = 0, to the ferroelectric, P ‖ a, state were studied by
the dielectric response of DyMnO3 in the broadband radio-wave frequency regime. Complex
dielectric permittivity was measured for electric �eld along the crystallographic a-axis in the
frequency range 0.1Hz-1MHz using a frequency response analyzer in magnetic �elds 0-14 T
and with B‖b-axis.

The spectrum of the dielectric constant at temperatures close to the critical temperature of
the paraelectric-ferroelectric phase transition (white dashed boxes in Fig.6.12) were studied
with an increment of ∆T = 0.1K by using a Physical Property Measurement System (PPMS).
Silver paint contacts were applied to the sample forming a capacitor.

6.3.1 Results

Detailed permittivity measurements in the frequency domain where carried out at magnetic
�elds of 4T,10T and 12T and at several temperatures near the magnetoelectric phase transition
corresponding to the transition from the paraelectric to the P ‖ a-axis ferroelectric phase.

A well pronounced absorption is observed in the vicinity of TC and it is accompanied by
a dispersion of the permittivity revealing a relaxational response to the applied electric �eld
as demonstrated in Fig. 6.13.

The spectra below the megahertz range are dominated by two relaxation processes. Only
a wing of the high-frequency relaxation is seen in the spectra because the characteristic
frequency of this mode is far above 1MHz. According to previous dielectric studies, the high-
frequency mode can be attributed to the relaxation of the domain walls [191, 192] in DyMnO3.

Figure 6.14 shows typical dielectric spectra of DyMnO3 close to the ferroelectric transition
temperature TC ≈ 18K.

In the following we concentrate the analysis on an absorption peak observed for frequen-
cies below 1 kHz. As seen already in the spectra in Fig.6.14, this peak grows in magnitude
with decreasing temperature, reaches a maximum value at TC , and decreases again after

2The sinusoidal modulated spin phase describes only the time averaged value of the spin. Thus, the picture
of a sinusoidal spin structure breaks down on a short time scale.



6.3 Experimental investigation of the magnetoelectric phase transition in DyMnO3 87

Figure 6.12: Phase diagramm with dielectric experimental procedure. The fre-
quency dependent permi�ivity was measured in the close vicinity
of the magnetoelectric phase transition at ,magnetic fields of 4T,
10T and 12T

passing the critical temperature. The observed dielectric relaxation is slightly asymmetrical
with broadening towards low-frequencies.

To obtain quantitative information of the origin of the low-frequency mode the spectra
were �tted to the phenomenological Havriliak-Negami equation3, Eq.(5.31). Since the sym-
metric Cole-Cole function, Eq.(5.31) given by β = 1, is intensively used as a �tting function
to describe permittivity data of conventional materials as well as magnetoelectric materials
[30, 193], it is demonstrated by the dashed line in Fig. (6.14) for the T = 16K data, that the
symmetric Cole-Cole function results in a worse �t to the data compared to the Havriliak-
Negami expression. Therefore, the subsequent analysis within the present work has been
done according to Eq.(5.31). Most probably, a �tting procedure using the Cole-Cole function
would lead to qualitatively similar behaviour of the relaxation time and dielectric strength. In
doing so, one can extract the fundamental properties of the relaxation process as a function
of temperature at several magnetic �elds, i.e. the relaxation time and relaxation strength, and
particularly, the behaviour of that quantities near a phase transition.

3To obey the constraints for the shape parameters during the �tting procedure it is better to use n = 1− α
and m = (1− α)β. Thus the Havriliak-Negami function is given by, ε∗HN = ε∞ + ∆ε

[1+(iωτ)n]
m
n

. Hence, the
boundary conditions are independent from each other and are given by, 0 < n ≤ 1 and 0 < m ≤ 1.



88 CHAPTER 6. MAGNETOELECTRIC PHASE TRANSITION IN DYMNO3

Figure 6.13: Low frequency relaxation at the magnetoelectric phase transition.
Absorption (top) and dispersion (bo�om) phenomena in the vicinity
of the paraelectric to ferroelectric phase transition at a magnetic
field of µ0H = 10T



6.3 Experimental investigation of the magnetoelectric phase transition in DyMnO3 89

10-2

10-1

100

101

10-1 100 101 102 103 104 105 106

40

50

60

80

100
 Cole-Cole
 Havriliak-Negami

 14K
 15K
 16K
 18K
 20K

Im
(

)
B=12T

 

R
e(

)

Frequency [Hz]

Figure 6.14: Spectrum of the dielectric permi�ivity in a magnetic field of µ0H =
12T. Typical frequency dependence of the dielectric constant, Re(ε),
and dielectric loss, Im(ε), at several temperatures above (T = 18K,
T = 20K) and below (T = 14K , T = 15K , T = 16K) the critical
temperature, TC ≈ 17K (at 12T). Black solids lines represents the fit
according to the Havriliak-Negami relaxation function, Eq. (5.31).
The dashed black line shows the fit according to the Cole-Cole
equation, Eq.~(\ref{eqCC}). Dash-do�ed lines with open circles
schematically indicate the position of the spectra with increasing
temperature.
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6.3.1.1 Relaxation time

The inverse relaxation time of the low frequency mode obtained from the spectral analysis of
dielectric permittivity is shown in Fig.6.15.
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Figure 6.15: Inverse relaxation time. Inverse mean relaxation time along the
a-axis of the low frequency mode as a function of temperature
for di�erent magnetic fields B‖b-axis. The yellow symbols are
obtained by the spectral analysis procedure and the red solid line
corresponds to the order-disorder fit function according to Eq.(4.96)

On cooling from the paraelectric phase the inverse relaxation time decreases toward TC ∼
16.5K. Below TC , 1/τ shows a broad characteristic maximum and decreases again for low
temperatures. Qualitatively, the temperature behaviour of the relaxation time can be ex-
plained as a superposition of two processes: (i) Activated behaviour with a characteristic
energy of EA ∼ 100K and (ii) Critical slowing down of the relaxation in the vicinity of TC .
This observation is typical for order-disorder phase transitions involving shallow double well
potentials [119, 134, 135].
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Both processes determining the temperature evolution of the relaxation time are qualitat-
ively well captured within the present simple order-disorder model (Eq.4.96). The temperature
activated behaviour, expressed by the exponential factor in Eq.(4.96), prevails for temperatures
far from TC and, therefore, causes an overall decrease of the relaxation time for decreasing
temperature.

Because of that, the displacive model (Eq.4.107) is not able to describe this behaviour for
T < TC which actually shows a pure Curie-Weiss like behaviour of the relaxation time
without a superimposed temperature activated behaviour. Hence, the observed temperature
activated behaviour is not captured by the displacive limit. Consequently, the magnetoelec-
tric phase transition in DyMnO3 does not belong to the displacive type ferroelectric phase
transition.

Qualitatively similar behaviour of the relaxation time was found [30] for a c-axis relaxation
(E‖c) in DyMnO3 for a transition to a bc-cycloidal magnetic ordering. The P‖c-axis state
is achieved in DyMnO3 for cooling in zero external magnetic �eld. It seem to be plausible
that the c-axis relaxation in multiferroic manganites may be explained by the present order-
disorder model model as well.

In case of inverse relaxation time the suggested model gives a qualitative explanation of the
observed data. Equation (4.96) contains two temperature-dependent factors, Arrhenius term
exp(−EA/(kBT )) and the critical-slowing term ν0(T−TC)/T . These two terms qualitatively
explain the temperature dependence of the relaxation time close to phase transition. In order
to obtain reasonable �ts to the critical behaviour of the relaxation time, di�erent values of
the attempt frequency above and below TC have been used and a temperature independent
constant was added to Eq.(4.96). The distribution of relaxation times may play an role to
explain that feature.

According to Eqs.(4.40),(4.43),(4.85), the ratio of EA/kBTC ∼ 5 is a further evidence
of an order-disorder type phase transition which is totally in contrast to a displacive type
where EA/kBTC � 1 should holds. Furthermore, EA/kB ∼ 100K corresponds well to a
characteristic energy of the magnetic order as determined by Néel temperature of TN ∼ 39K
[194].

Additionally, Fig.(6.16) shows the width of the low-frequency dielectric relaxation in
DyMnO3, obtained via Eq.(5.36). The increase of the characteristic width below TC ∼ 18K
is clearly seen. In the ordered magnetic state, the e�ective length of the elementary cycloids
increases thus leading to broader length distribution. Most probably, this also leads to the
observed broadening of the dielectric relaxation.

In present work the higher-frequency relaxation attributed to the domain wall motions
are not considered. Compared to �uctuations on the atomic level, ferroelectric domains are
typically of µm size and they are responsible for the high-frequency dielectric relaxation [1,
191, 192]. Further two arguments are in favour of nano-size origin of the relaxation discussed
here: (i) the low frequency relaxation (Fig.6.14) is well pronounced below and above TC , and
(ii) no signature of thermally activated creep motion of domain walls is evident in the Cole-
Cole plots (Fig.6.17).
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In the latter case a linear relationship between the imaginary and real part of the permit-
tivity with Im(ε)∝ tan(πβ/2)·Re(ε) and 0 < β < 1 will be expected [195, 196, 197].

6.3.1.2 Relaxation strength

The temperature dependence of the inverse relaxation strength of the low frequency mode is
presented in Fig.(6.18).
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Figure 6.18: Inverse Relaxation Strength. For T < TC , n and q are known thus
in turn the displacement, ∆x, is determined from the fits. For T >
TC , q and ∆x are assumed to be constant thus the dipol density,
n, must change.

Dielectric permittivity diverges as the temperature approaches TC . At the magnetoelectric
transition temperature DyMnO3 undergoes a phase transition accompanied by a minimum
in ∆ε−1

r at TC . As predicted by Eq. (4.97), close to the phase transition, ∆ε−1
r (T ) shows

the regions of linear dependence. In addition, in the close vicinity of TC , ∆ε−1
r (T ) reveals a

distinct deviation from the linear temperature dependence which is associated by considerable
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�uctuations4 of the order parameter (electric polarization) very close to TC . In that narrow
temperature region, ∆ε−1

r (T ) shows a power law behaviour shown in Fig. 6.19. Here, an
analysis using the formalism of critical exponents, ∆ε−1

r ∝ |T − TC |γ was carried out.
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Figure 6.19: Critical exponents close to TC . The inverse of the relaxation strength
of the low frequency mode follows a critical behaviour based on the
formalism of critical exponents.

As a result, the critical exponents are almost equal below and above TC which is in ac-
cordance with the scaling law hypothesis [198] except for the case of B ≈ 4T. This might
be caused by a transition near the tricritical point. As discussed above, the tricritical point is
at ~4T. Additionally, the values of the critical exponents are much larger than 1. Thus critical
�uctuations very close to TC play much more prominent role as for e.g. in itinerant ferro-
magnets, such as Ni, where the critical exponent is equal to 1.32 or in a uni-axial ferroelectric,
such as TGS (triglycine sulphate) where γ = 1 [134]. This might be caused by a coupling of
critical �uctuations of the electric polarization to the critical �uctuations of the magnetization

4usually denoted as “critical �uctuations”
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since charge and spin degrees of freedom are coupled in DyMnO3.
The electric dipole moment is generated by the displacements of theO2− ions and only

the ions labeled as O(1),O(2),O(3),O(4) in Fig. 6.9 generate a static electric polarization along
the a-axis. Therefore, an electric dipole density in DyMnO3 equal to 2/3 of the full density
of O2− ions in the unit cell, nO2− = n0 ∼ 3.5 · 1028m−3, and a charge of q = 2e, where e
is the elementary charge are assumed. According to Eq. (4.97), the slope of ∆ε−1

r is inversely
proportional to n(q∆x)2 = 2P 2

s /n with static electric polarization along the a-axis, Ps =

nq∆x/
√

2. The factor
√

2 appears due to 45º degree misalignment between the oxygen
displacement and the a-axis (Fig. 6.9). Hence, from the slopes of ∆ε−1

r for T < TC , the static
electric polarization is directly estimated. The microscopic parameters of the model, ∆x and
J0 are obtained from the values of the static polarization and from J0 = kBTC/(∆x)2 (Eq.
4.80). These parameters are given in Fig. (6.18). Taking into account the simplicity of the
model, the obtained values of the electric polarization agree reasonably well with directly
measured data [26] where P ∼ 2000µC/m2. In addition, the obtained coupling constant
coincide with the classical electric dipole energy in the Mn-O-Mn chains along the b-axis
J0 ∼ (q2/2πε0)/(l2 + s2)3/2 ∼ 70J/m2 (Fig. 6.9) with l and s being the long and short bond
distances.

Near TC the high frequency contributions, ε∞, exhibits also a critical behaviour (Fig. 6.20).

16 17 18 19

0.010

0.015

0.020

Temperature [K]

 12T
 10T
 4T

Figure 6.20: Temperature characteristics of the high frequency contribution. A
Curie-Weiss behaviour of the high frequency contributions is ob-
served at the magnetoelectric phase transition.

Thus high frequency contributions near the phase transition from the paraelectric to the
ferroelectric P ‖ a state play also an important role.
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6.3.2 Discussion

In magnetoelectric materials the electric polarization is directly linked to the magnetic struc-
ture. In order to describe this phenomenon, Smolenskii [199] introduced a bi-quadratic term
(F ∝ γP 2M2, magnetodielectric e�ect) into the free energy which accounts for the coupling
between magnetization and electric polarization.

Bi-quadratic terms are invariant to all symmetry operations and thus they are allowed in
any material with coupled spin and charge degrees of freedom. Since the dielectric suscept-
ibility is determined by taking the second derivative of the free energy with respect to the
polarization, the dielectric constant will be proportional to the square of the order parameter,
ε ∝M2 [200]].

Describing the magnetodielectric e�ects in antiferromagnetic materials, the expression
F ∝ γP 2M2 is not su�cient since the magnetization, M , remains zero in the ordered phase.
In such a case, M is replaced by the antiferromagnetic vector, L = M1 −M2. Here M1 and
M2 are the magnetizations of two antiferromagnetic subsystems.

Within a more general model, Lawes et al. [52, 201] proposed the coupling of the po-
larization to the q-dependent magnetic correlation function 〈MqM−q〉. This coupling leads
to a magnetodielectric term in the free energy F ∝

∑
q g(q)P 2〈MqM−q〉, where g(q) is a q-

dependent coupling constant. The q-dependence of the free energy via a spin-spin correlation
function enables to apply it to very general forms of magnetic order, including ferromagnetic
(FM) and antiferromagnetic (AFM) transitions. In order to obtain a microscopic theory for
g(q) in systems with a strong spin-lattice interaction, the coupling between the polarization
and the spin correlations arises from the coupling of magnetic �uctuations to the optical
phonons. That is, the spin correlations perturb the optical phonon frequencies which in
turn shift the dielectric constant through the spectral weight transfer and the Lyddane-Sachs-
Teller relation. The model determines the coupling g(q) by expanding the exchange integral
of neighbouring spins in terms of the normal coordinates for the phonons. Physically, this
procedure corresponds to a coupling between the magnetic correlation function and atomic
displacements.

In multiferroic rare earth manganites, RMnO3, the electric polarization is directly linked
to the chirality of the magnetic cycloid [4, 63]. Based on this fact, it is proposed that the
polarization in the ferroelectric phase in DyMnO3 is proportional to the di�erence of opposite
chiralities of Mn3+magnetic cycloids. Here an order-disorder type phase transition between
paraelectric and ferroelectric states is proposed. Similarly, it is demonstrated that in the
triangular lattice antiferromagnet RbFe(MoO4) a proportionality between polarization in
the multiferroic phase and the chirality di�erence of the magnetic structure exists. [202].
Hence, the electric polarization is nonzero as long as the net chirality is nonzero.

Thus, the following assumptions for the magnetoelectric phase transition in DyMnO3 are
imposed (Fig.6.21).

(i) A disorder between clockwise and counter-clockwise ab-cycloidal order of the Mn3+

magnetic moments is assumed.
(ii) The electric dipole moments are associated with the displacement of the O2− ions due
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Figure 6.21: Order-Disorder Model. (a) Short range cycloidal order of the
Mn3+magnetic moments for T > TC . (b) According to the
IDM interaction, electric dipoles associated with theO2−ions are
generated by the canting of neighbouring spins leading to a meso-
scopic electric polarization (red and green zones). However, the
macroscopic electric polarization is zero for T > TC . Each electric
dipole interacts with neighbouring electric dipoles. (c) Ising type
pseudo spins in local double-well potential separating energetically
the clockwise ab-cycloidal and the counter-clockwise ab-cycloidal
order of theMn3+magnetic moments. Each pseudo spin is in a
local double-well potential and interacts with neighbouring pseudo
spins by harmonic forces, represented as springs. Each pseudo spin
generates a electric dipole moment of µR = σRq∆x. Although the
microscopic mechanism of the magnetoelectric coupling is more
complex, within present simple model it is represented as an in-
teraction between neighbouring pseudo spins via harmonic forces.
(d) Long range cycloidal order of the Mn3+magnetic moments for
T � TC and leading to (e) non-zero macroscopic polarization. (f)
At low temperatures most of the pseudo spins occupy the same side
of the double-well potential.
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to inverse DM interaction [4, 63].
(iii) The direction of the electric dipoles depend on the chirality of the magnetic order.
(iv) Two possible direction of the electric dipoles are energetically separated by an energy

barrier.
(v) Similar to Lawes et al. [52, 201] a coupling of the magnetic correlation function and

the correlation of O2−atomic displacements is proposed. Thus it is assume that the ordering
of the magnetic sublattice can be described by the ordering process of the O2−ions.

6.3.2.1 Model deviations

The present simple order-disorder model qualitatively resembles the temperature evolution
of the relaxation strenght and particularly the relaxation time very well. The temperature
activated behaviour as predicted by the model and expressed by the exponential factor is well
observed in the experimental obtained relaxation time temperature pro�le.

However, it is evident that the temperature dependence of the inverse relaxation strength
becomes steeper in the paraelectric phase, T > TC , although the model predicts an opposite
behaviour if constant values of the microscopic parameters q,∆x and n are assumed. Two
possible explanations for this behaviour are suggested and they are discussed below.

6.3.2.1.1 Non-constant electric dipole density

From Fig. 6.14 it is evident, that a second relaxation follows after the low frequency mode
with increasing frequency. It was shown that this mode arises at the phase transition from the
P ‖ c to P ‖ a ferroelectric state and is associated with multiferroic domain wall relaxation
between P ‖ c and P ‖ a domains [191].

This mode is clearly observed far away from the phase boundary between P = 0 to P ‖ a
(Fig.6.13), well pronounced in the vicinity of the phase transition boundary line, and increases
in magnitude when approaching TC (Fig. 6.20). Therefore, it is suggested, that this mode is
associated with an ordering process between bc-cycloidal and ab-cycloidal short range order
of the Mn3+ magnetic moments, insted of multiferroic domain wall relaxational motion.

This provokes an ordering process due to IDM between p||a and p||c local electric dipoles
and thus in turn causes the divergency like decrease of ε−1

∞ in (Fig. 6.20) since the correlation
length of �uctuations between bc-cycloidal and ab-cycloidal short range order of the Mn3+

magnetic moments increases towards TC (Eq. 4.19). Hence, the electric dipole density will
increase by approaching TC (Fig. 6.22).

Accordingly, a more complicated potential in the single ion ϕ4 model must be introduced
similar to Mexican hat potential with four minima in the energy instead of a double well
potential (Fig.6.23).

It is evident that the energy barrier between next neighbouring equilibria, EB , is always
smaller than between next nearest neighbouring equilibria,EA, in such a potential landscape.
Since the frequency of occurrence of a �ip of the local electric dipol between p||a+ ↔
p||a−, p||c+ ↔ p||c−and p||a± ↔ p||c± is temperature activated, the relaxation dynamics
between p||a± ↔ p||c± is faster than between p||a+ ↔ p||a− and p||c+ ↔ p||c−
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Figure 6.23: Mexican hat potential with 4 minima. Local electric dipoles can flip
between four di�erent states separated by a characteristic energy
barrier.

However, to obtain reasonable �ts to the critical behaviour of the relaxation time and the
relaxation strength, di�erent values of the attempt frequency respectively the dipol density
above and below TC must be assumed. To explain this behaviour, solely changes in the
e�ective dipole density at the phase transition is not su�cient. Evidently, the variation of
the attempt frequency across the transition cannot be explained.

6.3.2.1.2 Free Energy near TC including magnetoelectric coupling

The double-well model may be improved including additional terms to the free energy. In
fact this approach is even more general, as it includes all symmetry-allowed coupling terms
between the dielectric and magnetic order parameters.

Accounting free energy contributions arising from the linear (Eq. 2.50) and non-linear
(FDE =

∑
i=2

∑j<2i
j=1 ηiP

jM (2i−j)) magnetoelectric coupling, following elementary free
energy expansion near TC is proposed,
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F ∗ =
∑
i

aiP
2i − gEP︸ ︷︷ ︸
FP

+
µ0

ε0χEχM
γPM︸ ︷︷ ︸

FME

+
∑
i=2

j<2i∑
j=1

ηijP
jM (2i−j)

︸ ︷︷ ︸
FMDE

+
∑
i

AiM
2i

︸ ︷︷ ︸
FM

(6.6)

whereFP is the pure free energy contribution originating from the ferroelectric subsystem
(energy associated with electric dipole-dipole interaction and dipole-�eld interaction), FME

is the free energy associated with the linear magnetoelectric e�ect, FMDE is the non-linear
magnetoelectric free energy caused by magnetodielectric e�ects and FM is the pure magnetic
free energy originating from spin interaction energy. M has to be understood as the amplitude
of the transverse component of the spin-cycloidal, S = (0,M cos qy,M sin qy). Only even
powers in the non linear magnetoelectric free energy contribution are always allowed by
symmetry. However, the bilinear term and terms with odd powers in P or M are only
allowed in systems in which the magnetic structure breaks the spatial inversion symmetry.
Due to the one to one relationship between displacement of charge and angle between two
neighbouring spins caused by IDM, distinguishing whetherM is the primary order parameter
and P emerges as a secondary one (due to order in magnetic subsystem) or P is the primary
order parameter and M emerges as a secondary one (due to order in dielectric subsystem), is
not possible. Thus again, according to assumption (v) of the magnetoelectric phase transition,
P is the primary order parameter and M emerges as a secondary one. This is con�rmed by
the fact, that the static electric polarization follows a power law as, P ∝ (TC − T )

1/2 [26].
According to Strukov and Levanyuk [203] this temperature dependence is in accordance with
the temperature behaviour of the order parameter of a proper ferroelectric phase transition
where P is the order parameter5.

The strength of the bilinear coupling between P and M depends not only on the magne-
toelectric susceptibility, but also on the inverse of the electric and magnetic susceptibilities
given by χE ∝

(
d2F
dP 2

)−1
and χM ∝

(
d2F
dM2

)−1
. Additionally, the coe�cient determining the

strength of the bilinear coupling is not constant but depends on temperature and vanishes
when the material becomes ferroelectric since χEχM →∞ if T → TC .

Thus, to study the e�ect on magnetoelectric coupling on the temperature behaviour of the
electric susceptibility further simpli�cation is made. Hence, the free energy may be written
as,

F ∗ =
∑
i

aiP
2i − gEP︸ ︷︷ ︸
FP

− γ̃PM︸ ︷︷ ︸
FME

+
∑
i=2

j<2i∑
j=1

ηijP
jM (2i−j)

︸ ︷︷ ︸
FMDE

+
∑
i

AiM
2i

︸ ︷︷ ︸
FM

(6.7)

where γ̃ is a constant. To simplicity further, only such terms should be introduced in
the free energy which are essential to explain the temperature dependence of the electric
susceptibility in case of a magnetoelectric phase transition. From the stability criteria (∂F ∗∂P =

5For improper ferroelectric phase transitions where P emerges as a secondary order parameter, the electric
polarization shows a unusual temperature dependence di�ering from P ∝ (TC − T )

1/2
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0 ∧ ∂F ∗

∂M = 0) it follows that (E = 0),

I)
∑
i

2iaiP
(2i−1) − γ̃M +

∑
i=2

j<2i∑
j=1

ηijjP
(j−1)M (2i−j) = 0

II)− γ̃P +
∑
i=2

j<2i∑
j=1

ηij (2i− j)P jM (2i−j−1) +
∑
i

2iAiM
(2i−1) = 0

(6.8)

The electric susceptibility becomes with
(
χE
)−1

= ε0
1
g
∂2F ∗

∂P 2 ,

(
χE
)−1

= ε0
1

g

∑
i

2i (2i− 1) aiP
(2i−2) +

∑
i=2

j<2i∑
j=1

ηijj (j − 1)P (j−2)M (2i−j)

 (6.9)

Nota bene, the linear magnetoelectric coupling does not contribute to the electric suscept-
ibility at all. Consequently, if it is necessary to account for the magnetoelectric properties of
a system, then it is essential to consider non-linear coupling between P andM . Furthermore,
for simplicity, only the bi-quadratic contribution of the non-linear magnetoelectric free en-
ergy is considered since (i) it is always allowed by symmetry and (ii) higher order non-linear
coupling is supposed to be much weaker than the bi-quadratic contribution. Additionally,
since M emerges as a secondary order parameter, it is su�cient to consider only the �rst
term in the magnetic free energy contribution6. Thus the simplest total free energy for a
megnetoelectric medium is proposed to be,

F ∗ = aP 2 + bP 4 − gEP︸ ︷︷ ︸
FP

− γ̃PM︸ ︷︷ ︸
FME

+ ηP 2M2︸ ︷︷ ︸
FMDE

+AM2︸ ︷︷ ︸
FM

(6.10)

where η > 0 and A > 0. According to symmetry arguments, γ is zero above TC and
otherwise γ > 0. In case of a order-disorder transition a = J0

2nq2

(
T−TC
T

)
, b =

(∆x)4J4
0

12n3q4k3
BT

3 ,

g = (∆x)2J0

kBT
.

The stability criteria becomes,

I) 2aP0 + 4bP 3
0 + 2ηP0M

2
0 − γ̃M0 = 0

II) 2AM0 + 2ηP 2
0M0 − γ̃P0 = 0

(6.11)

From the second equation in Eq. (6.11) it follows that M0 = γ̃P0

2ηP 2
0 +2A

. Near TC , P0 → 0

(additionally, it is also reasonable to assume η � γ̃) thus the magnetic order parameter is
given by,

M0 ≈
γ̃

2A
P0 (6.12)

The electric susceptibility becomes with Eq. (6.12),

6The M4 term which is usually needed to describe second order magnetic phase transition is not necessary
here since M is triggered by the onset of P
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(
χE
)−1

= ε0
1

g

(
2a+ 12bP 2

0 +
γ̃2η

2A2
P 2

0

)
(6.13)

From the �rst equation in Eq. (6.11) and with Eq. (6.12) the polarization for T < TC is
given by,

P 2
0 =

−4a+ γ̃2

A

8b+ γ̃2η
A2

(6.14)

Hence, the electric susceptibility for T < TC becomes7 with Eq. (6.14)

(
χE
)−1

= ε0

[
−4

a

g
Λ +

γ̃2

2gA
(1 + 2Λ)

]
(6.15)

with,

Λ =
1

1 + γ̃2η
8A2b

(6.16)

If γ̃2 � 2gA the static electric susceptibility becomes,

(
χE
)−1

=

2ag ε0 T > TC

−4ag ε0Λ T < TC
(6.17)

and the relaxation time becomes with Eq. (4.63),

τ−1 =

2aΓ T > TC

−4aΓΛ T < TC
(6.18)

Hence, the ratio of slopes is not necessarily 2 as predicted in Eq. (4.66) but depends on
the parameter Λ. Since the variables a, g, and Γ characterize the order parameter dynamics
in case of a proper ferroelectric phase transition (no coupling of P with a secondary order
parameter) , they can be easily determined (see chapters 4.3, 4.4 and 4.5)

Thus, with Eq. (4.96)and Eq. (4.97), in case of an order-disorder type magnetoelectric phase
transition, the relaxation strength and relaxation time becomes,

∆ε−1
r =

{
ε0kB

nq2(∆x)2 (T − TC) T > TC

2Λ ε0kB
nq2(∆x)2 (TC − T ) T < TC

(6.19)

7Inserting Eq. (6.14) into Eq. (6.13) leads to,(
χE
)−1

= ε0

(
−4a

g
A3b

A3b+ 1
8
Aγ̃2η

+ 3
2g

A2bγ̃2

A3b+ 1
8
Aγ̃2η

+ 1
16g

γ̃4η

A3b+ 1
8
Aγ̃2η

)
. With Λ = A3b

A3b+ 1
8
Aγ̃2η

= 1

1+ 1
8
γ̃2η

A2b

follows,(
χE
)−1

= ε0

(
−4a

g
Λ + 3

2g
Λ γ̃2

A
+ 1

16g
Λ γ̃4η
A3b

= −4a
g

Λ + 3
2g

Λ γ̃2

A
+ 1

16g
Λ γ̃2η
A2

γ2

Ab

)
.Now,

Λ = 1

1+ 1
8
γ̃2η

A2b

⇒Λ + Λ 1
8
γ̃2η
A2b

= 1⇒ γ̃2η
A2 = 8b

(
1
Λ
− 1
)
. Hence,(

χE
)−1

= ε0

(
−4a

g
Λ + 3

2g
Λ γ̃2

A
+ 1

16g
Λ8b

(
1
Λ
− 1
)
γ̃2

Ab

)
.⇒
(
χE
)−1

=

ε0

(
−4a

g
Λ + 3

2g
Λ γ̃2

A
+ 1

2g
(1− Λ) γ

2

A

)
⇒
(
χE
)−1

= ε0

(
−4a

g
Λ + γ̃2

2gA
(3Λ + 1− Λ)

)
=

ε0

(
−4a

g
Λ + γ̃2

2gA
(2Λ + 1)

)
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(2πτ)−1 =


[
ν0
π

(
T−TC
T

)
exp

(
− EA
kBT

)]
T > TC

2Λ
[
ν0
π

(
TC−T
T

)
exp

(
− EA
kBT

)]
T < TC

(6.20)

It is clear, that adding explicitly the magnetoelectric terms into the free energy leads to a
slope correction of the relaxation strength and of the relaxation time below the phase trans-
ition. Therefore, no changes in the e�ective dipole density and in the attempt frequency across
the transition is necessary. However, �tting the relaxation time and the relaxation strength
with the same slope correction factor, Λ, does not lead to satisfactory �ts. Consequently, a
variation of the dipole density is still assumed whereas the attempt frequency is held constant.

Accordingly, the new values for the displacement of O2−in the low temperature phase,
the dipole density in the high temperature phase and the static electric polarization becomes,
∆xME = ∆x

√
Λ, nME = nΛ−1 and PME = P

√
Λ. With Λν0 = ν∗0 where ν∗0 is equal to

the attempt frequency below TC and ν0 is the high temperature attempt frequency obtained
by the �t of the relaxation time without considering magnetoelectric coupling explicitly in
the free energy, the new values becomes with Λ =

ν∗0
ν0

for B = 10T : ∆xME = 0.58pm,
nME = 9E27, PME = 4640µC/m2 and for B = 12T : ∆xME = 0.58pm, nME = 9.1E27,
PME = 4660µC/m2.

Nevertheless both approaches leads to a perfect agreement of the observed temperature
characteristics of the relaxation time and of the dielectric strength in the vicinity of the
magnetoelectric phase transition.

6.4 Magnetocapacitance

In a magnetoelectric multiferroic material, magnetic order is coupled to polarization and thus
to the dielectric constant as well. Since magnetic �eld a�ects the magnetic ordering, the �eld
also indirectly alters the dielectric constant of magnetoelectric multiferroics. In other words,
perturbation of the magnetic structure due to magnetic �eld couples to the dielectric constant.
This is the so called magnetodielectric or magnetocapacitance e�ect, which has been reported
for a wide range of materials[200, 204, 205, 206, 207, 208, 209]. The magnetocapacitance has
been measured at several temperatures aboveTC as a function of magnetic �eld (often referred
as magnetocapacitance, [ε (H)− ε (H = 0)] /ε (H = 0)) (Fig. 6.24).

A clear dependence of the dielectric constant on magnetic �eld is observed well above TC
(Fig. 6.24). Even at T = 50K, the relationship between the dielectric constant and magnetic
�eld is well pronounced. Therefore, it is evident, that a coupling between spin and charge
degrees of freedom is present not only in the low temperature but also in the high temperature
phase. The coupling phenomenon can be derived by considering the electromagnetic free
energy.

According to Eq.(2.27),the electromagnetic free energy including the free space contribu-
tion is given by,
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Figure 6.24: Magnetocapacitance in DyMnO3 at 10Hz. For temperatures between
2K and 50K the dielectric constant measured at 10Hz exhibits a
significant dependence on a magnetic field. Even well above the
ferroelectric phase transition temperature the dielectric constant
shows an excellent agreement with Eq. (6.23) .

FEM = −
ˆ

V

(
1

2
εE2 +

1

2
µH2 + γHE + . . .

)
dτ (6.21)

In order to consider magnetodielectric e�ects, higher order coupling terms have to be
introduced in Eq. (6.21). Since the permittivity is given by ε = d2FEM

dE2 , only coupling terms
proportional to E2 contributes to the permittivity. Furthermore, coupling terms with even
powers are always allowed apart from symmetry considerations. Therefore, the electromag-
netic free energy for a magnetoelectric material may be written as,
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FEM = −
ˆ

V

(
1

2
εE2 +

1

2
µH2 + γHE +

1

2
κH2E2 + . . .

)
dτ

= −
ˆ

V

1

2


ε+ κH2︸ ︷︷ ︸

εT

E2 + µH2 + 2γHE + . . .

dτ

(6.22)

where κ is the magnetodielectric parameter. With εT = −∂2FEM
∂E2 the total permittivity is

given by,

εT = ε+ κH2 ⇒ εT
ε0

=
ε

ε0
+
κ

ε0
H2 (6.23)

In order to obtain quantitative information of the temperature dependence of the mag-
netodielectric parameter, the measured permittivity as a function of magnetic �eld at several
temperatures above TC was �tted to the Eq. (6.23) (Fig. 6.25). A good agreement between
Eq.(6.23) and the measured isothermal dielectric constant is obtained. However, notable devi-
ations at higher �elds are observed (Fig. 6.24). From that, it is evident that at higher magnetic
�elds, higher order non-linear coupling terms must considered in the free energy.

The magnetodielectric parameter as a function of temperature obtained from magnetic
�eld analysis is shown in Fig. (6.26). On cooling from the paraelectric state the magnetodielec-
tric parameter increases toward TC revealing a divergent behaviour at T = TC .

On a semi-logarithmic scale the temperature characteristic of κ−1 reveals a exponential
temperature dependent behaviour at higher temperatures (well above the phase transition
temperature) whereas on a double-logarithmic scale, the inverse magnetodielectric parameter
exhibits a power law behaviour at temperatures close to TC , κ−1 ∝ (T − TC)α with α ≈ 2.2

Fig. (6.27).
Catalan et al.[210] has shown, that magnetocapacitance phenomenon can exist in materials

that are not necessarily multiferroic. As it is shown in chapter 5, usually the material under
investigation is placed in between two sample electrodes forming a sample capacitor in order
to measure the dielectric response in the radio wave frequency regime. As a result, a layer near
the electrode interface exist with a di�erent density of charge carriers and hence with di�erent
resistivity than that of the core leading to interfacial polarization e�ects. This e�ect has been
documented in several oxide materials, including manganites [211, 209, 212], and may happen
not only at dielectric electrode interfaces but also at grain boundaries in ceramics [213] and
interslab interfaces in superlattices [214, 210] leading to a MW-relaxation contribution at low
frequencies.

If the resistance of the interfacial layer,Ri, is changed by a magnetic �eld, so will the meas-
ured permittivity (Fig. 6.28). Magnetoresistance MR combined with the Maxwell-Wagner
e�ect thus provides a mechanism for magnetocapacitance in materials that are not necessarily
multiferroic.

In order to verify the nature of the magnetodielectric e�ect in DyMnO3 the isothermal
dielectric constant as a function of magnetic �eld was measured at 100kHz (Fig. 6.29).

Basically, MW relaxation plays only an important role at low frequencies. Thus, if mag-
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Figure 6.25: Magnetic field dependent permi�ivity for T > TC . Typical magnetic
field dependence of the dielectric constant at several temperatures
above the critical temperature. Red solid lines represents the fit
according to Eq. (6.23)
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Figure 6.26: Critical behaviour of the magnetodielectric parameter. The yellow
are obtained by a fit procedure of the magnetic field dependent
dielectric constant according to Eq. (6.23).

netodielectric phenomenon due to MW relaxation exists, the magnetodielectric e�ect should
vanish at high frequencys. However, Fig.6.29 depicts a dependence of the dielectric constant
on magnetic �eld, even at at frequency of 100kHz above and below TC . Hence, it is suggested,
that the magnetodielectric phenomenon in DyMnO3 is intrinsic and caused by coupling of
spin and charge degrees of freedom.
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Figure 6.28: Magneto-sensitive interfacial e�ects. If the resistance of the inter-
facial layer changes with magnetic field, the intrinsic magnetoca-
pacitance behaviour may be masked by the extrinsic magnetores-
istance e�ect at low frequencies.
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CHAPTER 7

Conclusion

This work presents the results of the dielectric study of single crystal DyMnO3 with or-
thorhombically distorted perovskite structure. Electric �eld was applied along the crystallo-
graphic a-axis with magnetic �eld applied along the b-axis. The dielectric constant exhibits
a distinct magnetic �eld dependent anomalous behaviour at the ferroelectric phase transition
caused by a coupling between spin and charge degrees of freedom. In the vicinity at the trans-
ition from the non-polarized to the polarized state, i.e. from P = 0 to P||a, a low-frequency
relaxation mode is observed in dielectric properties and it reveals critical behaviour at the
ferroelectric transition temperature, TC ∼ 18K. Accordingly, this low frequency relaxation
can be associated with the order parameter dynamics at the ferroelectric phase transition in
DyMnO3.

The analysis of the low-frequency dielectric relaxation demonstrates an overlap of two
processes: critical dynamics close to TC and activation behaviour in the broader frequency
range. This observation may be reasonably explained using a simple model of an order-
disorder phase transition with a double well potential.

This potential re�ects a dynamical switching between cycloids of the opposite chirality and
correlates well with known physical properties of DyMnO3. Thus, the characteristic energies
of magnetic ordering and the value of the static electric polarization are in agreement with
known values.

Combining present results with several other experiments on multiferroics the paramag-
netic sinusoidal phase should be explained as a dynamical equilibrium between the clockwise
and counterclockwise cycloidal magnetic orders. The short range order in the paraelectric
phase is transformed to a long-range cycloid at the ferroelectric transition temperature. In
addition to the dielectric results, this hypothesis resolve several experimental constraints
which contradicted the concept of static sinusoidally modulated magnetic phase.

Furthermore, accounting free energy contributions caused by magnetoelectric coupling
between the dielectric and magnetic sub-system, it can be shown, that the slope ratio of the
electric susceptibility does not necessarily follow Landau behaviour. Nevertheless, the results
suggest a variation of the dipole density during the magnetoelectric phase transition. This
assumption is con�rmed by the fact, that a second relaxation process appears revealing a
divergency like behaviour near TC . This can be associated with an ordering process between
bc-cycloidal and ab-cycloidal short range order of the Mn3+ magnetic moments.
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APPENDIX A

Electric Polarization in cycloidal spin
magnets

A.1 Phenomenological Description

For the sake of simplicity it is assumed, that the propagation vector,Q, of the spin cycloid lies
parallel to one of the principal planes (xy-plane,xz-plane, yz-plane), i.e. the rotation axis of
the spins is perpenticular to one of the prinicpal planes. Thus for CCW rotation,

Plane : xy Rotation axis : z Mxy =

 M cos (Qxx+Qyy)

M sin (Qxx+Qyy)

0

 (A.1)

Plane : zx Rotation axis : y Mzx =

 M sin (Qxx+Qzz)

0

M cos (Qxx+Qzz)

 (A.2)

Plane : yz Rotation axis : x Myz =

 0

M cos (Qyy +Qzz)

M sin (Qyy +Qzz)

 (A.3)

The electric polarization is given by P = χEλ [(M · ∇)M−M (∇ ·M)]. Therefore,

P = χEλ

 �����Mx∂xMx +My∂yMx +Mz∂zMx −�����Mx∂xMx −Mx∂yMy −Mx∂zMz

Mx∂xMy +�����My∂yMy +Mz∂zMy −My∂xMx −�����My∂yMy −My∂zMz

Mx∂xMz +My∂yMz +�����Mz∂zMz −Mz∂xMx −Mz∂yMy −�����Mz∂zMz


(A.4)
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Plane : xy Rotation axis : z

Pxy = χEλ
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0



= χEλ
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= χEλM2
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(A.5)

Plane : zx Rotation axis : y

Pzx = χEλ

 Mz∂zMx −Mx∂zMz

0

Mx∂xMz −Mz∂xMx



= χEλ

 +M2Qz sin2 (Qxx+Qzz) +M2Qz cos2 (Qxx+Qzz)

0

−M2Qx cos2 (Qxx+Qzz)−M2Qx sin2 (Qxx+Qzz)



= χEλM2

 +Qz

0

−Qx



= χEλM2

 0

1

0

×
 Qx

Qy

Qz


= χEλM2 (ey ×Q)

(A.6)
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Plane : yz Rotation axis : x
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