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Kurzfassung

Exceptional points (EPs) bezeichnen Entartungen, die im Spektrum von nicht-

hermiteschen Hamilton Operatoren auftreten und die in letzter Zeit für einiges

an Aufsehen gesorgt haben, da sie für viele faszinierende und kontraintuitive

Phänomene verantwortlich sind.

Einer der wohl verblüffendsten Effekte in diesem Zusammenhang tritt auf,

wenn ein EP mittels einer zeitlichen Variation der Systemparameter dynamisch

umrundet wird. Dies führt zu einem chiralen Verhalten, bei dem der Endzu-

stand nur durch die Umrundungsrichtung um den EP bestimmt wird. Trotz

erheblichem Forschungsaufwand und einer Vielzahl an praktischen Anwen-

dungsmöglichkeiten konnte solch ein Protokoll jedoch noch nicht erfolgreich in

einem Experiment umgesetzt werden, da die experimentelle Implementierung

sehr anspruchsvoll ist.

In der vorliegenden Arbeit wird beschrieben, wie die dynamische Umrun-

dung eines EPs auf die Transmission zweier Moden in einem randmodulier-

ten Mikrowellen Wellenleiter übertragen werden kann, in dem sich ein räum-

lich variierender Absorber befindet. Dadurch erhält man einen asymmetrischen

Modenselektor, der eine spezifische transversale Wellenleiter-Mode rein basie-

rend auf der Seite auswählt, von der aus die Wellen in den Wellenleiter einge-

speist werden. Die obige Vorgehensweise ermöglicht uns, in Zusammenarbeit

mit Kollegen der Universität Nizza, nicht nur die erste experimentelle Realisie-

rung einer dynamischen EP Umrundung, sondern dient auch als Machbarkeits-

nachweis für spezifische Anwendungen, wie zum Beispiel der Verallgemeine-

rung der weit verbreiteten "Rapid Adiabatic Passage" Technik.
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Weiters zeigen wir mit numerischen Simulationen und mit analytischen Mit-

teln, wie neuartige Reflexionsresonanzen den Transport in Wellenleitern mit

Oberflächenrauhigkeit entscheidend beeinflussen können. Diese Resonanzen

führen zu einer um Größenordnungen verstärkten Rückstreuung und sind des-

halb von besonderem Interesse, um Wellenleiter mit spezifischen Transportei-

genschaften zu konstruieren.



Abstract

Exceptional points (EPs), degeneracies arising in the spectrum of non-Hermitian

Hamiltonians, have attracted considerable attention in the physics community

since they are the source of many fascinating and counter-intuitive phenomena.

One of the most intriguing effects inherent to EPs is predicted when such a

degeneracy is dynamically encircled by way of a smooth temporal variation of

the system’s parameters, leading to a chiral behavior for which the final state

is solely determined by the direction one chooses for the round-trip. However,

despite a substantial research effort and the prospect for interesting practical ap-

plications, an experiment implementing this protocol was not yet realized due

to the challenging experimental requirements that are involved in a successful

demonstration of this effect.

In this thesis, we describe how to map the temporal dynamics in the en-

circling of an EP onto the transmission of two modes in a boundary modu-

lated microwave waveguide featuring a spatially varying absorber. We thereby

obtain an asymmetric mode-switching device that selects a specific transverse

waveguide mode based on the direction in which the waves are injected into

this waveguide. In collaboration with our colleagues from Nice University, our

research not only lead to the first experimental realization of a dynamical EP

encircling, but also provides proof of our concept’s potential for applications,

and may be seen as a generalization of already existing switching protocols like

the rapid adiabatic passage technique.

Furthermore, we provide numerical as well as analytical evidence for novel

reflection resonances occurring in surface-corrugated waveguides. These res-

iv
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onances lead to an order-of-magnitude enhancement of the waveguide’s re-

flectance and are of special interest for imprinting specific transport properties

onto a waveguide.
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CHAPTER 1
Introduction

In the analysis of states in closed systems, the corresponding real eigenfrequen-

cies and orthogonal eigenmodes are determined from a Hermitian operator or

matrix. More realistic descriptions, in which the coupling to additional degrees

of freedom is effectively taken into account by employing the concepts of gain

and/or loss, however, render the system non-Hermitian: As a consequence, the

eigenfrequencies are now complex such that they obtain a finite width, and the

corresponding modes cease to be orthogonal [1–4].

Especially intriguing in this context are so-called exceptional points (EPs),

which are singularities in the system’s complex eigenvalue spectrum where

two eigenvalues and their corresponding eigenvectors coalesce, and which are

directly related the system’s non-Hermiticity. At or close to an EP, several inter-

esting phenomena have been identified that are contrary to physical intuition,

like, e.g., lasers that are switched off even though the system is pumped more

strongly [5, 6], loss-induced transparency in coupled waveguides [7] or the re-

alization of unidirectional invisibility in gratings with gain and loss [8]. It thus

comes as no surprise that EPs have attracted much attention in the physics com-

munity (see, e.g., Refs. [4, 9–11] and references therein).

In this thesis we study an effect which is closely related to the specific topo-

logical structure near the exceptional point, realized by a self-intersecting Rie-

1



CHAPTER 1. INTRODUCTION 2

mann sheet. Reasoning based on the adiabatic theorem [12] would suggest a

symmetric switching behavior upon a parametrical round-trip around an EP,

i.e., if encircled slowly enough, a state-exchange would occur provided the adi-

abatic theorem were true also in the presence of loss and gain, which would

have many applications ranging from switching to vibrational cooling [13–15].

As it turns out, however, the non-Hermiticity defies the quantum adiabatic the-

orem and prohibits the usage of many tools that are conventionally used in con-

servative systems [16–21]. As a result, one observes chiral behavior, in the sense

that the encircling-direction alone specifies in which state the system arrives at

the end of the evolution. While such an effect offers broad applicability, e.g., for

generalized switching protocols like the rapid adiabatic passage, an experiment

that dynamically cycles an EP has not yet been put forward, despite considerable

research effort [22, 23]

In the main part of this thesis, we derive how this peculiar dynamical feature

can be transferred onto wave transport in dissipative two-mode waveguides

featuring modulated boundaries. Although the hypothesized (adiabatic) state-

exchange is not realized due to non-adiabatic transitions inherent to open sys-

tems, we exploit the EP encircling such as to obtain a chiral behavior that allows

a mode selection based on the direction of the incident wave. More precisely,

dependent on which end of the waveguide the system is excited, either one or

the other of two propagating modes in the system is strongly suppressed, lead-

ing to an asymmetric mode-switch with considerable potential for very practical

applications.

In the second part of this thesis, we show that the current state-of-the-art

scattering theory for boundary-modulated waveguides fails to provide an ac-

curate picture even for simpler, Hermitian systems: In particular, one might

expect that the problem of surface scattering in boundary-modulated waveg-

uides is already thoroughly understood. Most surprisingly, however, we show

that already existing techniques do not correctly describe wave transport even

in this context. To illustrate the deficiency of presently established techniques,
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we investigate the transmission of waves through surface-disordered waveg-

uides with a step-like surface profile - a situation that is well studied in the

literature [24–27]. Using numerical as well as analytical techniques, we observe

resonant enhancements of the reflection in this system, which are due to higher-

order effects in the disorder that were previously neglected in earlier studies of

the same setup. These reflection resonances, which are very robust and pro-

nounced in their amplitudes, thus provide clear evidence for the incomplete-

ness of conventional techniques and a test case for extending these techniques

to include the missing higher-order terms. For the systems at hand we man-

age to provide these terms fully analytically, such that we can also formulate a

condition for the resonances to appear. With these expressions we find quanti-

tative agreement between numerical and analytical results, thereby laying the

groundwork for a comprehensive understanding of wave transmission through

waveguides with surface disorder [28].

Our results are of particular importance for the engineering of waveguides

with predetermined transmission characteristics based on the design of their

surface profiles [29]. Ultimately, our approach may provide essential corrections

to all the many different scenarios in which surface scattering plays a key role.



CHAPTER 2
Exceptional points

Exceptional points (EPs), also termed non-Hermitian degeneracies or branch

points, have recently attracted considerable attention. This is because these

singular points have turned out to be at the origin of many counter-intuitive

phenomena appearing in physical systems that experience gain or loss [4, 9–11,

30, 31]. Such external influences on a system require a non-Hermitian descrip-

tion that incorporates non-conservation of energy resulting from this external

in- or output. Rather than being merely a perturbative correction, gain and

loss can entirely turn the behavior of a system upside down when approach-

ing an EP. Consider here, e.g., the recent demonstrations of unidirectional in-

visibility [8, 32–34], loss-induced suppression and revival of lasing [6, 35], and

single-mode lasers with gain and loss [36, 37], all of which were realized at or

close to an EP. While these studies already nicely demonstrate the potential of

EPs for novel effects and devices, their full capability can be brought to bear

when the EP is not just approached or swept across, but parametrically encir-

cled [14, 15]. Originally, it was believed that a slow encircling of an EP would

result in an adiabatic evolution of states and a corresponding state flip [13], but

more recent work has rigorously shown that the very same non-Hermitian com-

ponents necessary for the observation of an EP actually prevent an application

of the adiabatic theorem [17–19, 21, 38–42]. Instead, as we show below, the non-

4
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adiabatic terms lead to a chiral behavior, in the sense that encircling an EP in a

clockwise and a counter-clockwise direction results in different final states [19].

2.1 Hamiltonian

An EP arises when an open system described by a Schrödinger-type equation

i∂tψ = Hψ features two resonant modes that coalesce. Such a scenario can

conveniently be captured already by the following non-Hermitian 2× 2 Hamil-

tonian,

H =
δ − iγ1/2 g

g −iγ2/2

 (2.1)

where g denotes the coupling and δ the detuning between the two modes,

γ1 and γ2 are the respective loss rates. Evidently, the above operator is non-

Hermitian, i.e., H 6= H†, and the eigenvalue spectrum E1,2 is thus not guaran-

teed to be real,

E1,2 = δ

2 − i
γ1 + γ2

4 ± 1
2
√

∆ , ∆ ≡
(
δ − iγ1 − γ2

2

)2
+ 4g2 . (2.2)

Additionally, we have for the eigenvectors

Φ1 =
cos θ

2

sin θ
2

 , Φ2 =
− sin θ

2

cos θ
2

 , (2.3)

tan θ2 = g

E1 + iγ2/2
, (2.4)

satisfying the corresponding eigenvalue equation HΦ1,2 = E1,2Φ1,2. This allows

us to diagonalize the Hamiltonian, H = XDX−1, with D = diag(E1, E2) and

X = (Φ1,Φ2).

An exceptional point is characterized by the vanishing of the discriminant

∆, i.e., both the real and imaginary part of ∆ have to simultaneously satisfy

Re∆ = 0 and Im∆ = 0 , (2.5)
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yielding the EP at the specific parameter configuration

gEP = ±|γ1 − γ2|
4

δEP = 0 . (2.6)

If γ1 6= γ2, there is then a single eigenvalueEEP = −iγ1+γ2
2 and eigenvector ΦEP =

(1,±i)T . Thus, both the eigenvalues E1,2 and the eigenvectors Φ1,2 coalesce and

render the Hamiltonian (2.1) defective, which property is the hallmark of the

EP (note that the sign ± stems from the fact that the Hamiltonian (2.1) supports

two parameter configurations directly at which an EP emerges).

We might add that, although the specific nomenclature ”exceptional point”

was coined in the 1960s by T. Kato [43], the non-diagonalizability of a ma-

trix has been known already for a very long time and is not specific to non-

Hermitian systems. Whereas directly at the EP, H becomes defective and does

no longer support diagonalization, it is still possible to express H by a (Jordan)

block-diagonal matrix J via the similarity transformation H = PJP−1 [44, 45],

with P = (ΦEP, hEP) being composed of the eigenvector ΦEP and the generalized

eigenvector hEP, and the block-diagonal matrix

J =
EEP 1

0 EEP

 . (2.7)

In Fig. 2.1 we show the eigenvalue spectrum ReE1,2 and ImE1,2 as a function

of the two parameters g and δ, producing the intricate topology of a square-root

branch point in the center of each figure [11]. Physically, the self-intersecting

Riemann surface corresponds to an avoided or anti-crossing of the energies

ReE1,2 for values g > gEP, and a crossing for g < gEP, if δ = δEP . Remarkably,

the widths ImE1,2 show the exact opposite behavior: Here, we find a crossing of

widths for g > gEP, and an anti-crossing for g < gEP, if δ is fixed to δEP. For com-

pleteness we note that in the context of parity-time (PT ) symmetry, the EP rep-

resents the point which separates the PT -broken and unbroken phases [11, 30].
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Figure 2.1: Parameter-dependent eigenvalue spectrum obtained in the vicinity
of an exceptional point (indicated by white arrows). Both the real and imaginary
part is shown in panels a and b, respectively. The coloring is chosen such that
red (blue) corresponds to an eigenvalue with relative gain (loss).

2.2 Eigenvector flip

It is the specific topological structure of the eigenvalue surfaces shown above

that allows one to encircle the EP such that the two eigenvectors interchange:

For such a state-flip two system parameters need to be changed in time t (e.g.,

the coupling g = g(t) and the detuning δ = δ(t)) along a closed loop in param-

eter space around the EP. This system evolution is described by the now time-

dependent Hamiltonian (2.1) in the corresponding Schrödinger-type equation

i∂tψ(t) = H(t)ψ(t).

To illustrate such a state-flip, we parametrize g and δ as follows to encircle

the EP:

g(t) = gEP + r cosφ(t)

δ(t) = 2r sinφ(t) , (2.8)

with φ(t) ∈ [0, 2π), resulting for small radii in

E1,2 ≈ r sinφ(t)− iγ1 + γ2

4 ± i

2
√
rgEPe

iφ(t)/2 . (2.9)

Due to the exp (iφ(t)/2) term we have a switching of eigenvalues E1,2 → E2,1 for

phase transformations originating from a full EP encircling

φ(t)→ φ(t)± 2π , (2.10)
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where the sign ± corresponds to the encircling direction. For the tangent of the

mixing-angle (2.4) we obtain

tan θ2 ≈ −i+ 2
√

2r√
γ2 − γ1

eiφ(t)/2 , (2.11)

such that we finally have [46]

Re θ2 ≈
π

4 −
φ(t)

4 . (2.12)

An EP round-trip φ→ φ± 2π for encircling directions 	 and � therefore yields

θ

2 →
θ

2 ∓
π

2 . (2.13)

Consequently, the eigenvectors Φi show a more intricate behavior while travers-

ing the loop due to the appearance of a geometric phase of π [47] ,

	:
Φ1

Φ2

→
 Φ2

−Φ1

 , �:
Φ1

Φ2

→
−Φ2

Φ1

 . (2.14)

Only after 4 consecutive loops around the EP the original order of eigenvectors

is restored [22, 46, 47]:Φ1

Φ2

 	
 Φ2

−Φ1

 	
−Φ1

−Φ2

 	
−Φ2

Φ1

 	
Φ1

Φ2

 , (2.15)

and Φ1

Φ2

 �
−Φ2

Φ1

 �
−Φ1

−Φ2

 �
 Φ2

−Φ1

 �
Φ1

Φ2

 , (2.16)

where we have used the shorthand notation

a 	
�
b ≡ 	

�
: a→ b (2.17)

that was introduced in Ref. [22] for brevity.
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Figure 2.2: To demonstrate the non-adiabatic nature of dynamically encircling
an EP degeneracy, we show trajectories with different encircling directions,
starting on opposing parts of the self-intersecting Riemann sheet (shown as red
and blue surfaces). The results for the state evolution of the Schrödinger-type
equation i∂xψ(x) = H(x)ψ(x), projected onto their respective Riemann sheets
are shown as black lines: the larger the contribution of an eigenvector, the closer
it follows the corresponding eigensheet. a, The dynamics of two states with
starting points on different sheets during a counter-clockwise loop around the
EP (as seen from the top). b, Same as in a for a clockwise loop. In both a and b
the end points of the loops depend only on the encircling direction, not on their
starting point.

2.3 Asymmetric mode-switching

Thus, if the system dynamics is fully adiabatic, a flip between the two states is

realized upon encircling the EP such that the lower state becomes the upper one

(Fig. 2.2a left).

As was found only recently [17], however, contributions due to the break-

down of adiabaticity in non-Hermitian systems always enter dominantly when-

ever both encircling directions are considered: In the case above, traversing the

same parameter loop in the opposite direction thus leads to the situation that

the lower state returns to itself rather than to the upper state (Fig. 2.2b left).

This enforces an overall asymmetric behavior such that the state that is selected

at the end of a loop depends only on the loop’s encircling direction, but not

on its starting point - compare here Fig. 2.2a and 2.2b for a counter-clockwise

and clockwise encircling, respectively. This opens the door to engineer a de-

vice which yields a specific system state, depending only on the direction in
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which the EP is encircled (see section 3.2.2 for a more elaborate treatment of the

difference between parametrical and dynamical encircling).

2.4 Quasi-adiabatic dynamics and stability-loss

delay

On a very fundamental level, the above features are connected to deep-rooted

mathematical concepts: One is the Stokes phenomenon of asymptotics [39, 40]

and, as we showed in a joint work with Thomas J. Milburn and Peter Rabl, as

well as Stefano Portolan and Catherine A. Holmes, another one is the theory of

singular perturbations [41]. For the results presented therein, I have contributed

numerical simulations and participated in the discussion of both the theoretical

and the numerical data.

To review the main points of this joint work, I will give here a very basic

introduction to the concept of stability loss delay that allows an intuitive under-

standing of the chiral behavior found in EP encirclings. For details and in-depth

derivations, see Ref. [41].

A convenient starting point is to transform the Schrödinger equation i∂tψ(t) =
H(t)ψ(t), with the Hamiltonian Eq. (2.1), using ψ → Ũ ψ̃, with

Ũ = e−i
∫ t

0 trH(t′)/2 dt′ , trH(t′) = δ(t′)− i

2 (γ1 + γ2) , (2.18)

such that we arrive at the following dynamical equation with the traceless Hamil-

tonian H̃ ,

i∂tψ̃ = H̃ψ̃ , H̃ =
δ̃ + iγ̃/2 g

g −δ̃ − iγ̃/2

 , (2.19)

which will be more convenient in the following. Here, we have introduced

δ̃ = δ/2 and γ̃ = (γ1 − γ2)/2, and ψ̃ = (c̃1, c̃2)T corresponds to the amplitudes.

For the sake of simplicity, and for complying with the notation introduced in

Ref. [41], we will from here on remove the tilde from the variable names. Thus,

the eigenvalues are given by λ± = ±λ = ±
√

(δ + iγ/2)2 + g2. We continue by
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transforming into the respective eigenbasis of H , and investigate the equation

of motion for the evolution operator U , defined by ψ(t) = U(t)ψ(0),

U̇(t) = −i
−λ(t) f(t)
f(t) λ(t)

U(t) , U =
U−,− U−,+

U+,− U+,+

 , (2.20)

with U(0) = 1. This representation allows us to conveniently read off the non-

adiabatic contributions to the system’s evolution, f(t), given by

f(t) =
g(t)

(
δ̇(t) + iγ̇(t)/2

)
−
(
δ(t) + iγ(t)/2

)
ġ(t)

2iλ2(t) . (2.21)

From Eq. (2.20) one might argue that for

ε := |f(t)/2λ(t)| � 1 , (2.22)

achievable by increasing the duration of the evolution T , i.e., f ∝ 1/T , the

off-diagonals can be neglected and the evolution operator becomes diagonal,

yielding the adiabatic solution

U ad(t) =

ei
∫ t

0 λ(t′)dt′ 0
0 e−i

∫ t
0 λ(t′)dt′

 . (2.23)

The above adiabatic dynamics are however only realized if f(t) = 0. For finite,

yet small, non-adiabatic contributions the full dynamics cannot be obtained by

means of a perturbative correction to U ad, since the problem is singularly per-

turbed [48]. Due to this property, it is more appropriate to call ε � 1 the quasi-

adiabatic condition.

We continue by building the non-adiabatic transition amplitudes

R−(t) := U+,−(t)
U−,−(t) , R+(t) := U−,+(t)

U+,+(t) , (2.24)

which contain the information about how much of an eigenvector’s population

has leaked into the other one during the course of the evolution. In an adiabatic

system, such transitions can be neglected, andR±(t)� 1. In contrast, dominant
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non-adiabatic contributions, lead to values R±(t) � 1. An important insight is

that the dynamical variable R±(t) itself satisfies the Ricatti equation

Ṙ±(t) = ±2iλ(t)R±(t)± if(t)
(
1 +R2

±(t)
)
, (2.25)

with R±(0) = 0. Without loss of generality and to keep our notation simple in

the following, we can set R(t) := R−(t). All the essential dynamical features of

quasi-adiabatic evolution can be inferred from Eq. (2.25) in the quasi-adiabatic

limit ε→ 0.

Looking at the dynamics of R(t) in Fig. 2.3a obtained numerically for multi-

ple consecutive encircling loops, one observes a square-wave that follows two

quasi-stationary values, interrupted by rapid transitions in between. This be-

havior can be attributed to two time scales that are inherent to the problem: For

short times both the non-adiabatic contributions f and the eigenvalues λ are

slowly varying and can be assumed to be approximately constant, such that R

evolves towards the two fixed points that are obtained by assuming a vanishing

time derivative Ṙ = 0 and solving for R,

Rad ≈ − f

2λ , (2.26)

Rnad ≈ −2λ
f
. (2.27)

These fixed points correspond to the two quasi-stationary values observed in

Fig. 2.3a. It is an interesting question to ask whether these two fixed points are

stable or not: Depending on the sign of λ, the adiabatic fixed point Rad is stable

for Imλ < 0, while the non-adiabatic fixed point Rnad is stable for Imλ > 0. For

long times, however, the parameters λ(t) and f(t) may change considerably,

such that the fixed points may change their stability. This happens exactly at

critical times t∗, where the stability of the two fixed points swaps and a dynam-

ical bifurcation occurs (see Fig. 2.3b).

Before a critical time t∗, the adiabatic solution is attracting, the non-adiabatic

one is repelling; at a time t∗, we are passing a bifurcation where Rad is a center

and neither attracting nor repelling. For times t > t∗, the stability is swapped
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Figure 2.3: (a) Plot of =λ(t) (upper panel), and a typical solution for R ≡ R−
(lower panel). The solid curve is the analytic solution from Refs. [39, 40], and
the squares are the numerical solution. The arrows denote delay times. The
lower and upper dashed grid lines denote |Rad(t)| and |Rnad(t)|, respectively.
The shaded area is one standard deviation about the mean of R− obtained from
10,000 stochastic numerical integrations of c− and c+ in the presence of noise
(see Ref. [41] for more details). (b) Cartoons of the phase portraits of the equa-
tion of motion for R near t∗. Arrows denote the direction of time-evolution
along an integral curve. The fixed point near the origin corresponds to Rad(t),
and the fixed point far from the origin corresponds to Rnad(t). This figure and
caption was taken from Ref. [41].

compared to the time t < t∗, even though one would expect that, as soon as the

stability changes, R(t) would make an immediate transition. Surprisingly, this

is not the case. Instead, there is a persistence in following of fixed points which

are in the meantime not attracting anymore, i.e., the loss of stability is delayed by
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the stability-loss delay time t+. Such a delay time is a common phenomenon in

singularly perturbed systems that feature dynamical bifurcations [49], and may

be intuitively understood from the phase portraits in Fig. 2.3b: If the solution

tracks a stable fixed point, and suddenly the stability is lost, it takes a finite time

to spiral away from the now unstable fixed point.

The above framework now allows us to naturally explain the breakdown of

adiabaticity: In Hermitian systems, the eigenvalues λ are strictly real, such that

the fixed point’s stability is not subject to changes. Within the realm of non-

Hermitian physics, this restriction is however lifted. Following a path around

the EP, we may cross the line Imλ = 0 at which the stability changes, leading

to a decisive change in the dynamics after a delay-time t+. The exact value for

this time depends on the exact path one chooses to encircle the EP, and may be

calculated (see Refs. [41, 49] for details). If one prepares the system such that a

state with Imλ > 0 is populated initially, the system starts close to the adiabatic

(unstable) fixed point. Thus, after a delay, the system switches to tracking the

non-adiabatic fixed point that is stable under these conditions.



CHAPTER 3
Dynamically encircling EPs in

waveguides

Figure 3.1: Schematic of an asymmetric mode-switch that projects the EP-
encircling shown in Fig. 2.2 to a waveguide that strongly attenuates one of its
two transverse modes depending on the injection direction. The parameter-
space trajectories describing counter-clockwise and clockwise loops around the
EP shown in panels a and b of Fig. 2.2 correspond to left and right injection
shown here at the top and bottom, respectively.

While the fascinating features of non-adiabatic, chiral behavior has great po-

tential for quantum control and switching protocols, it has so far defied any

experimental realization. This is because to observe the non-adiabatic contri-

butions requires a fully dynamical encircling of the EP that goes beyond the

quasi-static experiments reported so far [23, 50, 51]. A dynamically resolved ex-

periment is, however, extremely challenging, because of the required precise

15
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control of exponentially amplified or damped resonant modes which meet at

the EP, which, in addition, must be decoupled from all other modes present in

a system.

Proposals to these problems have meanwhile been put forward, such as to

map the dynamical encircling of an EP to the polarization evolution in a strat-

ified non-transparent medium [39], but the involved implementation require-

ments have so far prevented an experimental realization. Here, we overcome

such difficulties by demonstrating that waveguides with two transverse modes

can be suitably engineered such that the transmission through them is equiva-

lent to a slow dynamical encircling of an EP (as sketched in Fig. 3.1, where the

working principle of an asymmetric switch is shown). In this way we make

the recently discussed dynamical features of EPs directly accessible through es-

tablished waveguide technology as used for the transmission of sound, light,

micro- and matter waves.

This work was executed in terms of a collaboration with Alexei A. Maily-

baev, Julian Böhm, Ulrich Kuhl, Adrian Girschik, Florian Libisch, Thomas J.

Milburn, Peter Rabl and Nimrod Moiseyev [52]. My contribution to this project

was to develop the theoretical framework, to perform all numerical simulations,

to assist with the design of the experiment and, in addition to the analysis,

interpretation and discussion of the experimental and numerical findings, to

co-write the manuscript and the accompanying supplemental material. Corre-

spondingly, this chapter largely follows the manuscript in which these results

are reported [52].

3.1 Model

To observe an asymmetric mode-switch in a realistic environment, we now

map the Hamiltonian in Eq. (2.1) onto the problem of microwave transmission

through a smoothly deformed metallic waveguide in the presence of absorption

(see Fig. 3.1). The waveguide is extended along the x-axis and we restrict the
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following discussion to a single transverse dimension y. Within this framework,

the parametric encircling of the EP from the 2×2 model shown above translates

to a slow variation of a periodic boundary modulation along the waveguide.

Directly at the EP, both the Bloch wavenumber K and the Bloch modes Λ of the

electric field distribution φ(x, y) = Λ(x, y)eiKx coalesce. More specifically, the

harmonic solutions Φ(x, yt) = φ(x, y)e−iωt for fields oscillating with frequency

ω obey the Helmholtz equation

∆φ(x, y) + V (x, y)φ(x, y) = 0 , (3.1)

where ∆ is the Laplace operator in 2D, V (x, y) = ε(x, y) ω2/c2 is a complex po-

tential proportional to the dielectric constant ε and c is the speed of light. For

a straight rectangular waveguide with a fixed width W in y-direction the solu-

tions of Eq. (2) in the absence of losses are φn(x, y) = un(y)eiknx with transverse

mode functions un(y) = sin (nπy/W ) and wavevectors kn =
√
ω2/c2 − n2π2/W 2.

3.2 2× 2 model

By choosing an appropriate input frequency ω, the transmission problem can

naturally be reduced to only two propagating modes n = 1, 2. To implement a

controlled coupling between these modes, we consider a waveguide subject to

a boundary modulation ξ(x) = σ sin kbx, as shown in Fig. 3.1. By choosing the

boundary wavenumber kb = k1−k2 +δ, where |δ| � kb, near resonant scattering

between the otherwise very different modes φ1 and φ2 occurs. The full solution

for the propagating field can be written in the form

φ(x, y) = c1(x)√
k1

sin π

W
y + c2(x)√

k2
sin 2π

W
ye−ikbx . (3.2)

Employing a Floquet-Bloch ansatz, we obtain a Schrödinger-type equation for

the slowly varying modal amplitudes ψ(x) = (c1(x), c2(x))T ,

i∂x

c1(x)
c2(x)

 =
δ(x)− iγ1/2 g(x)

g(x) −iγ2/2

c1(x)
c2(x)

 , (3.3)
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where we present a more detailed derivation in appendix A – note that we have

not made use of the paraxial approximation in our derivation since the present

system defies this ansatz. The slow variation of δ = δ(x) and g = g(x) ∝ σ(x)
in Hamiltonian (2.1) is then directly implemented in the waveguide through

a smooth variation of the modulation potential, which leaves the validity of

Eqs. (3.2) and (3.3) intact. Finally, due to the even and odd symmetry of u1(y)
and u2(y), an absorbing material placed close to the center of the waveguide

gives rise to the required losses γ1 � γ2. With the above, all parameters in the

non-Hermitian Hamiltonian H in Eq. (3.1) are determined. However, instead

of governing the temporal dynamics (in time), H determines here the mode

propagation in the longitudinal direction x. Correspondingly, the requirement

of encircling the EP slowly (in time t) is transferred here to a slow variation

of the boundary parameters along the propagation direction x (see Fig. 3.1).

Quite remarkably, a right and left injection into the waveguide corresponds to

a clockwise and counter-clockwise encircling direction of the EP, respectively,

yielding a specific and different output mode depending only on the side from

which the signal is injected.

3.2.1 Loop parametrization

Using the model (3.3), we now investigate the scattering in a waveguide for

which the boundary modulation and the loss parameter change slowly along

the propagation-axis x. Specifically, we choose a parametrization for the pa-

rameter evolution that conveniently ensures flat boundaries at the waveguide

entrance and exit, allowing us to extend the applicability of our protocol to finite

waveguides (see, e.g., the insets in Fig. 3.4),

σ(x) = σ0

2

(
1− cos 2π

L
x
)
,

δ(x) = δ0

(
2x
L
− 1

)
+ ρ ,

η(x) = η0

4

(
1− cos 2π

L
x
)2

, (3.4)
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where 0 ≤ x ≤ L, with the waveguide length L � `. We emphasize that

with this choice of parametrization our waveguide is not infinitely extended

anymore (as assumed in the Bloch-picture employed in the derivation of the ef-

fective 2×2 model above), but rather of finite length. This procedure is well jus-

tified if the parameter variations over a distance `� L are small. The constants

σ0 and δ0 determine the amplitude and detuning strength of the boundary ξ(x),

respectively, η0 denotes the dissipation strength and ρ corresponds to a constant

detuning offset.

Note that the effective model has been derived with respect to a (locally)

constant boundary frequency Ω, giving rise to the boundary ξ(x) = σ sin (Ωx).

If allowing for a spatially varying frequency Ω(x), the boundary phase ϕ(x) ≡
Ω(x)x has to be linearized in order to be translated into a periodic system that

corresponds to the instantaneous and fixed oscillation frequency at a specific

point x0 [53]. Thus, instead of naively using ξ(x) = σ sin (Ω(x0)x), one has to

employ ξ(x) = σ sin
(
ϕlin(x)

)
, with ϕlin(x) = Ωlinx = d

dx
(ϕ(x)) |x=x0x. This phase

transformation also enables us to convert the frequency parametrization of the

full 2D system Eq. (3.4) into the effective model picture.

Values of the boundary parameters used in the simulations are given in the

captions of Figs. 3.3 and 3.5. The above is not, however, the only path in (δ, σ)-

space suitable for an EP-encircling. In fact, quite general parameter trajectories

for which the boundary amplitude σ is switched on and off smoothly and for

which the detuning is swept through δ = 0 are valid candidates for this task (a

popular choice is, e.g., the Allen-Eberly scheme [53]). We refer to section 3.3.4.2

for a (hindsight) justification of our particular parametrization choice.

We emphasize that the systems realized at positions x = 0 and x = L are

identical, since both correspond to a uniform waveguide without absorption. A

waveguide with parameters (3.4) therefore emulates a closed loop in parameter

space and we will show that this loop encircles an EP degeneracy. To facilitate

this, let us consider the plane (δ, σ), where the parameters (3.4) are presented

in Fig. 3.2 by a solid black curve. The two black dots mark the start and end
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Figure 3.2: Path (3.4) in parameter space (δ, σ). The EP is indicated by an orange
point. Black dots denote the start and end points of the trajectory, corresponding
to identical uniform waveguides. The respective lines where ReE1 = ReE2 and
ImE1 = ImE2 are shown by dashed and dotted lines, respectively.

points. For arbitrary δ and σ, we choose the Hamiltonian (A.24) with the damp-

ing parameter

η = η0

4

1 + cos
(
π

(δ − ρ)
δ0

)2

, (3.5)

providing an extension from the loop (3.4) to the whole (δ, σ)-plane. Using

Eq. (A.33) with g = Bσ and γi = ηk/ki, one finds that there is a single EP

degeneracy corresponding to

δEP = 0 , σEP = |γ1 − γ2|
4B = η0

16B

1 + cos
(
π
ρ

δ0

)2 ∣∣∣∣∣ kk1
− k

k2

∣∣∣∣∣ , (3.6)

shown by an orange dot in Fig. 3.2. There are two lines at which either the real

or the imaginary part of the energies E1,2 coincide, starting at the EP in opposite

directions: the one corresponding to equal energies ReE1 = ReE2 is shown by

a dashed line, while the other, given by equal widths, i.e., ImE1 = ImE2, is

indicated by a dotted line.

To assure ourselves that the loop indeed encircles the EP degeneracy (the

orange dot), we note that since an EP represents a codimension-2 degeneracy

in parameter space, it is a point for two-parameter systems (a curve for three-

parameter systems, etc.) [54]. Thus, any closed loop in parameter space either

has the topological property of encircling the EP, or it does not have this prop-
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erty. A loop is closed if its initial and final states describe identical physical

systems, as considered in our work, even if the corresponding points on the pa-

rameter plane are different (marked by black dots in Fig. 3.2). In the present case

this translates into curves that either go above the EP (encircling it), or curves

that stay below the EP (not encircling it). As a result, the loop passing above

the EP realizes the state-switch characteristic for an EP encircling (see the next

section for more details).

3.2.2 Parametrical vs. dynamical encircling

A central theme of our work is that one must distinguish between a parametrical

and a dynamical encircling of an EP. In the former case, we follow the change of

eigenstates continuously along the loop, while in the latter case the parameters

change slowly in time (here, in longitudinal direction x), and we follow the true

solution of the time-dependent Schrödinger equation (3.3).

The instantaneous eigenvalues Ei(x) and the (right) eigenvectors Φi(x) sat-

isfy

H(x)Φi(x) = Ei(x)Φi(x) , i = 1, 2 , (3.7)

and we impose the normalization condition |Φi(x)|2 = Φ†i (x)Φi(x) = 1. Here,

the time (or position) x plays the role of a parameter. The fact that the EP is

encircled parametrically by the loop leads to a state-flip if the eigenvectors Φi(x)
are defined continuously dependent on x:

mode 1 = Φ1(0) = Φ2(L) ,

mode 2 = Φ2(0) = Φ1(L) . (3.8)

Within the above framework, a parametrical encircling around the EP (travers-

ing the loop in Fig. 3.2 from left to right) turns one instantaneous eigenvector

continuously into the other, i.e.,

�: Φ1(0)→ Φ1(L) = Φ2(0) , (3.9)

�: Φ2(0)→ Φ2(L) = Φ1(0) . (3.10)
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Figure 3.3: a, Real part of the parameter-dependent eigenvalue spectrum
E1,2(x) Eq. (A.32) in the presence of bulk absorption, parametrized according
to Eq. (3.4) (shown by solid lines). The coloring is such that red (blue) corre-
sponds to the eigenvalue of the first (second) eigenstate at the beginning of the
evolution at x = 0. b, Imaginary part of the spectrum. Here we employ a loss
potential which is uniform in y-, and slowly varying in x-direction. In both
panels the dashed lines indicate that the spectrum at the loop endpoints x = 0
and x = L differs only by integer multiples of kb(0) and kb(L) in the employed
Floquet-Bloch picture (we refer to the text for more details). In the above plots,
the following set of values has been used to determine the waveguide param-
eters through Eq. (3.4): L/W = 100, kW/π = 2.05, σ0/W = 0.1, δ0W = 0.85,
ρW = 0.3, η0W = 0.6.

The same happens when traversing the loop in the opposite direction (from

right to left):

	: Φ1(0)→ Φ1(L) = Φ2(0) , (3.11)

	: Φ2(0)→ Φ2(L) = Φ1(0) , (3.12)

realizing a symmetric switch of the initial states Φ1,2(0) and final states Φ1,2(L).

Note that we ignore here the additional geometric phase factor since it is of no

relevance for the present work.

The corresponding parameter-dependent eigenvalues Ei(x) are shown in

Fig. 3.3.

Note that at the endpoints x = 0 and x = L, the eigenvalues Ei are brought

together again, i.e., E1(0) = E2(L) and E1(L) = E2(0), if we recall from Eq. (A.4)
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that K, and thus the eigenvalue E, is only determined mod kb. Here we take

into account that kb has an x-dependence as well, kb(x) = kr+δ(x), see Eq. (A.5).

Directly at the loop endpoints, both the boundary modulation strength σ(x) and

dissipation η(x) vanish, with the eigenvaluesEi(x) then being given by δ(x) and

0. Thus, E2(0)−E1(L) = 0 and E2(L)−E1(0) = δ(L)− δ(0) = kb(L)− kb(0), i.e.,

the respective eigenvalues coincide at x = 0 and x = L due to the underlying

Floquet-Bloch picture (see the dashed lines and the arrow in Fig. 3.3).

The above symmetric switching between states Φ1,2 is, however, not what

happens when encircling an EP dynamically. Upon a numeric integration of

Eq. (A.24) following the path defined in Eq. (3.4), we expand the solution vector

in the instantaneous eigenbasis Eq. (3.7) as

ψ(x) ≡
c1(x)
c2(x)

 = b1(x)Φ1(x) + b2(x)Φ2(x) . (3.13)

Despite the flip of the instantaneous eigenvectors, the solution ψ(x) initialized

in one of the eigenmodes Φi generally follows the adiabatic prediction bad
i (x) ∼

exp (−i
∫ x

0 Ei(x′)dx′) only for one specific encircling direction if transported truly

dynamically around the EP. The condition for this to happen (given in Ref. [19])

requires the non-adiabatic contribution to be small, and it is satisfied if the loop

remains most of the time on the energy sheet of the longest lived state (see, also,

Fig. 2.2a,b). For the other eigenmode, strong non-adiabatic effects appear, such

that the state does not follow the instantaneous eigenvector but rather returns to

itself, apart from some prefactor (see, e.g., Ref. [17]). If the encircling direction

is reversed, the inverse behavior is found: the eigenstate that evolved adiabati-

cally before now undergoes non-adiabatic transitions due to the system’s non-

Hermiticity, while the other eigenmode follows the adiabatic prediction (see the

right column of Fig. 3.4). This means that, depending on the input direction, a

specific dominating mode is obtained, realizing an asymmetric switch between

the eigenmodes.
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Figure 3.4: Counter-clockwise loops correspond to injection from the left (start-
ing at x = 0, left column), clockwise loops correspond to injection from the
right (starting at x = L, right column), see also the insets at the top. a, Position-
dependent eigenvalue spectrum E1,2(x) (shown by black lines, corresponding
to the data shown in Fig. 3.3), as well as P (x), the real eigenvalue spectrum
weighted by the respective eigenvector populations |bi(x)|2, shown in dashed
colored lines. The coloring of P (x) corresponds to the initial condition: Red
(blue) corresponds to the state being injected in the first (second) eigenmode, for
injection from the right the coloring is reversed since the instantaneous eigen-
modes are flipped. The x position at which non-adiabatic transitions occur is
located approximately at x = L/2, where P (x) departs from the eigenvalue sur-
face it initially follows. b, The norm |b1(x)|2 + |b2(x)|2, showing the magnitude
of the overall decay for trajectories of the same color as in panel a. The corre-
sponding model parameters can be found in the caption of Fig. 3.3.
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3.2.3 Bulk absorption

In Fig. 3.4a we show the real eigenvalues Ei(x) weighted by the respective

eigenvector populations |bi(x)|2,

P (x) ≡ ReE1(x)|b1(x)|2 + ReE2(x)|b2(x)|2
|b1(x)|2 + |b2(x)|2 , (3.14)

for different initial conditions and encircling directions. When describing a loop

around the EP in a counter-clockwise direction (which we identify with injec-

tion in the waveguide from the left), states initialized in either the first mode

(red dashed line in Fig. 3.4a) or in the second mode (blue dashed line Fig. 3.4a)

result in a population |b2(L)|2 that is much larger than the corresponding pop-

ulation |b1(L)|2, such that P (x) from Eq. (3.14) follows closely the upper (ReE2)

eigensheet. This corresponds to the first mode being dominant at the end of the

waveguide at x = L for both initial conditions:

�: ψ(0) = b1(0)Φ1(0)→ b2(L)Φ2(L) = b2(L)Φ1(0) ,

�: ψ(0) = b2(0)Φ2(0)→ b2(L)Φ2(L) = b2(L)Φ1(0) . (3.15)

Upon reversing the encircling direction (trajectories now start at x = L = 100
and propagate leftwards to the final position x = 0, see the right column of

Fig. 3.4), both initial states yield a much higher population for the other coeffi-

cient |b1(0)|2, which becomes much larger than |b2(0)|2:

	: ψ(L) = b1(L)Φ1(L)→ b1(0)Φ1(0) = b1(0)Φ2(L) ,

	: ψ(L) = b2(L)Φ2(L)→ b1(0)Φ1(0) = b1(0)Φ2(L) . (3.16)

Thus, the system ends in a different final state Φ2 as compared to Eqs. (3.15).

Furthermore, we want to emphasize that with a dissipation like in Eq. (3.5),

both eigenstates experience equal dissipation at the start and end of the parame-

ter trajectory, i.e., with ImE1 = ImE2 (see Figs. 3.3b and 3.7a). In this way a loop

is realized that avoids multiple non-adiabatic flips during the evolution. See,
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e.g., Refs. [39–41] for a study on the consequences of different starting points in

parameter space on the dynamics.

With this example we have already demonstrated the basic principle of our

asymmetric switching device: suppose that a superposition of two modes is

injected from the left and from the right. Due to the EP encircling induced by

the spatial variation of the boundary amplitude and frequency (in the presence

of loss), the initial state will result in different dominating pure modes at the

end of the loop, depending only on the encircling direction. In the waveguide

setup, this leads to a mode-selection depending on the direction from which the

state is injected. With the boundary parametrization Eq. (3.4), our concept can

be readily applied to the actual waveguide system (see section 3.3).

3.2.4 Position dependent absorption

It is evident from Fig. 3.4b, where we plot the norm of the propagating state

ψ, that the device quality is strongly limited by the large absorption both prop-

agating modes suffer from, leading to a decay by many orders of magnitude.

For uniform absorption, this behavior is impossible to overcome: To induce a

non-adiabatic transition during an EP encircling, the system size L and/or the

absorption strength η have to be large. A reduction of either of the two quan-

tities inevitably reduces the quality of the whole mode-selection scheme. Also,

the relative dissipation strength of both modes, |γ1−γ2|, is largest directly at the

mode-opening k ≈ 2π/W , where the wavenumber k2 is much smaller than k1

(see Eq. (A.3)). As shown in section A.5, these problems can be conveniently

solved by introducing non-uniform absorption in the waveguide, which re-

moves the absorption of one eigenmode and simultaneously increases the losses

for the second considerably.

The non-uniform absorption is facilitated by identifying the nodes of the

wavefunction φ(x, y) in Eq. (3.2) obtained for a system with no absorption, η0 =
0, and placing absorbers at the node positions, yielding the loss distribution

η̃(x, y) which in turn determines Γnm in Eq. (A.28).
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Wavefunction nodes In a first approximation we use the nodes of the unper-

turbed Bloch modes to determine the damping positions. We thus search for

points where |φ(x, y)| = 0, i.e., where both the imaginary and the real part van-

ish simultaneously,

Re φ(x, y) = 0 and Im φ(x, y) = 0. (3.17)

If the components of the jth eigenvector, (Φj1,Φj2)T = Φj , are non-zero for

η = 0, the node positions in the unit cell restricted by xk ∈ [0, `0] and yk ∈ [0,W ]
are given by

xk = − i

kb
ln
(
±

Φj1Φ∗j2
|Φj1||Φj2|

)
, and (3.18)

yk = W

π
arccos

±1
2

√
k2

k1

∣∣∣∣∣Φj1

Φj2

∣∣∣∣∣
. (3.19)

For σ 6= 0 and θ = 0, the equation for the x-coordinates can be further simplified

by inserting the corresponding expressions for the eigenvector Φj , the purely

real Φj1 = g = σB and the purely real Φj2 = Ej , such that we obtain

xk = − i

kb
log (±i)

= ± 1
kb

(
π

2 + 2πn
)
, n = 0, 1, . . .

= ± 1
kb

π

2 ± `0n, n = 0, 1, . . . (3.20)

Thus, the x-coordinates are independent of the configuration (σ, δ). The y-

coordinates, however, are still variable. Also, since we have ` = 2π
kb+δ

, the unit

cell size is variable with detuning δ.

Loss integrals Choosing a Gaussian shape to model an absorbing element at

a position (xk, yk), with the standard deviation σ̃, we have

η̃(x, y) =
∑
k

f(x, xk, σ̃x)f(y, yk, σ̃y), f(z, µ, σ̃) = 1√
2πσ̃

e−
(z−µ))2

2σ̃2 , (3.21)
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where the index k runs over all wavefunction nodes in the unit cell. To obtain

the loss-matrix elements Γnm (A.28), we have to evaluate integrals of the form

Γnm = 1
πW

kkb√
knkm

∫ `0

0

∫ W

0
η̃(x, y) sin

(
nπ

W
y
)

sin
(
mπ

W
y
)
e−i(kn−km)xdxdy . (3.22)

Since η̃(x, y) can be separated into an x- and y-dependent part, we have

Γnm = 1
πW

kkb√
knkm

∑
k

∫ `0

0
f(x, xk, σ̃x)e−i(kn−km)xdx︸ ︷︷ ︸

Ix(xk,σ̃x)

×

∫ W

0
f(y, yk, σ̃y) sin

(
nπ

W
y
)

sin
(
mπ

W
y
)

dy︸ ︷︷ ︸
Iy(yk,σ̃y)

,

(3.23)

These integrals can be evaluated analytically, but due to the rapid vanishing of

the Gaussian function f(z, µ, σ̃) for z → ∞, we can simplify the resulting ex-

pressions by integrating over the whole R2, yielding the analytical expressions

Ix(xn, σ̃x) = e
1
2 (km−kn)(σ̃2

x(kn−km)+2ixn),

Iy(yn, σ̃y) = −1
4e
−

(m+n)π(2iWyn+(m+n)πσ̃2
y)

2W2 ×1 + e
2πi(m+n)yn

W − e
2πn(iWyn+mπσ̃2

y)
W2 − e

2πm(iWyn+nπσ̃2
y)

W2

 ,

(3.24)

with which we obtain an analytical expression also for the loss-matrix Γnm in

Eq. (3.23).

Results In Fig. 3.5 we plot the spectrum corresponding to the placement of

loss as described by Eq. (3.23), where the imaginary part ImEi now differs de-

cisively from the system shown in Fig. 3.3: Now, the imaginary eigenvalue is

close to zero for one mode, while the other mode exhibits a very large absorp-

tion.

One can immediately appreciate the benefit of the above strategy by compar-

ing the results in Fig. 3.6 with Fig. 3.4: Injected from the left, one mode propa-

gates adiabatically and approximately undamped, the other mode however is
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Figure 3.5: Here we show the same as in Fig. 3.3, with the difference that we are
now employing position dependent absorption in the waveguide setup. Note
that the respective imaginary part of the eigenvalue, Im En, is almost zero for
one mode, while it is very large for the other. The following set of values has
been used to determine the waveguide parameters through Eq. (3.4): L/W =
100, kW/π = 2.05, σ0/W = 0.1, δ0W = 0.85, ρW = 0.0, η0W = 1.0.

strongly dissipated while traversing the undulated waveguide and undergoes

the non-adiabatic transition to the first mode. By way of this, we have realized

a high-quality asymmetric switch that is based on the injection direction.

Furthermore, the designed absorber placement makes it possible to greatly

reduce the device dimensions to lengths considerably smaller than a length-to-

width ratio of L/W = 100, up to the limit at which additional non-adiabatic

contributions inevitably set in due to the fast evolution.

To obtain the EP position, it is here also necessary to extend the Hamilto-

nian from the parameter trajectory to the inside of the loop, i.e., to extend the

spectrum from the path (δ(x), σ(x)) to all other points in the (δ, σ)-plane, and

to show that the EP is encircled in the process. To extend the Hamiltonian, we

choose

H(σ, δ) = H0 − i
η0

2 Γ̃(σ, δ) , (3.25)
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Figure 3.6: Here we show the same as in Fig. 3.4, with the difference that we are
now employing position dependent absorption in the waveguide setup. The
corresponding model parameters can be found in the caption of Fig. 3.5.

with

H0 ≡

 δ Bσ

Bσ 0

 , Γ̃(σ, δ) ≡
 k
k1

0
0 k

k2

∆σ + (1−∆σ)
(
σ

σ0

)2
Γ (f(δ), δ) ,

(3.26)

f(δ) ≡ 1
4

1 + cos
(
π

(δ − ρ)
δ0

)2

, ∆σ ≡ f(δ)−
(
σ

σ0

)2
, (3.27)

which interpolates between position dependent absorption at the parameter

loop and a uniform dissipation at σ = 0. Here, the function Γ(σ, δ) denotes

the matrix Γnm which is based on the node positions of Eq. (A.22), which in

turn depends on H0 = H0(σ, δ) (i.e., the waveguide system in the absence of

dissipation, η0 = 0). In the above extension of the Hamiltonian, Γ depends only

on δ, Γ = Γ(f(δ), δ). The procedure to show that an EP is encircled is analo-
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Figure 3.7: Paths in parameter space taken in Figs. 3.4 and 3.6 (solid white lines
in panels a and b, respectively), on top of heatmaps of the eigenvalue sheets
showing |ReE1 − ReE2| (left column) and |ImE1 − ImE2| (right column). Start
and end points of the trajectories, as well as the EP, are indicated by white dots.
The corresponding minima are highlighted by dashed white lines.

gous to the uniform absorption case, we thus refer here to section 3.2.1 for this

argument. Here, we resort to obtaining the EP position numerically, since the

analytic expressions are cumbersome and do not offer any additional insight

(see Fig. 3.7b).
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3.3 2D waveguide simulations

In the 2×2 model derived in section A.4 and employed in the previous chapter,

we have introduced the parametrization Eq. (3.4) to describe the closed curve

around the EP, and have shown that the desired asymmetric switch can be ob-

served within the 2× 2 model dynamics. Here, we go an important step further

by numerically simulating the EP encircling in the full 2D geometry. Note that

the 2D model we introduce here is readily applicable to 3D waveguides that

feature a rectangular cross section (like, e.g., the experimental setup described

in section 3.4) if the system resides in the lowest quantized mode between the

top and bottom plates. As a consequence, the z-axis pointing out of the xy-plane

can be neglected, justifying a 2D description (see Fig. A.1).

3.3.1 Backscattering resonances

As opposed to the 2 × 2 model, the full 2D waveguide system now supports 4

scattering channels instead of 2: In addition to 2 forward moving modes, the

incoming flux may also be coupled to 2 backward moving channels. Thus, par-

ticular care has to be taken such that the injected intensity is not reduced by any

resonant backscattering events. Although one might still accomplish a mode-

filter by depopulating a given mode through reflection resonances, backscatter-

ing is detrimental to our aim of building a device that does not leak any flux

in the backward direction, while simultaneously blocking a specific mode from

moving forward.

For completeness, we note that the frequency-dependence of the resonances

can be described by way of so-called amplitude-gradient scattering contribu-

tions induced by the waveguide boundary ξ(x), originating from a surface-

scattering theory that will be introduced in more detail in section 4. Here, we

simply state that the mechanisms which attenuate the wave inside the waveg-

uide can be understood via the mode-dependent attenuation length Lnm, which

depends on the boundary profile’s power spectrum W (kx) (see Eq. (4.3) in sec-
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tion 4). The quantity 1/Lnm may quantify the scattering in the waveguide: the

larger (smaller) 1/Lnm, the more (less) probable a specific event from mode n

into mode m (and, simultaneously, from mode m into mode n). Neglecting a

variation of σ and δ and assuming an infinite waveguide length L, the Fourier

transform of

ξ(x) = σ sin
(
(kr + δ)x

)
(3.28)

yields two delta functions peaked at kx = kr+δ and kx = −(kr+δ), respectively.

For systems that possess a finite extent, the resonances acquire a finite width

that is approximately given by 1/L.

The mode’s attenuation length Lnm is approximately given by

1
L
b/f
nm

∝ W (kn ± km), (3.29)

with kn being the longitudinal wavenumber of the nth mode. The plus sign

corresponds to backscattering (b) from mode n to mode m, whereas the minus

sign denotes forward scattering (f); thus, Eq. (3.29) allows us to qualitatively

relate the δ dependence of the reflection probabilities |rnm|2 with the respective

maxima of the inverse attenuation lengths.

Since forward scattering n→ n does not attenuate the mode, we identify the

following mechanisms to be responsible for a mode’s depopulation:

W (2k1) ↔ |r11|2 (3.30)

W (2k2) ↔ |r22|2 (3.31)

W (k1 + k2) ↔ |r12|2 (3.32)

W (k1 − k2) ↔ |t12|2 (3.33)

It is therefore crucial to choose the wavenumber k such that at δ = 0, where we

wish to resonantly couple both modes in forward direction, no other resonances

in backward direction are located.

As mentioned in section 3.2.4, directly at the mode-opening k1 and k2 differ

greatly, leading to large relative dissipation rates since, γi = ηk/ki. If the input
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wavenumber k is however chosen to be close to k2, we have k1 + k2 ≈ |k1 − k2|,
i.e., the backward scattering resonance 1 ↔ 2 is close to the corresponding for-

ward scattering resonance on which our parametrization builds upon. Thus,

for bulk dissipation in a 2D waveguide, the frequency at which an asymmetric

switch can be conveniently operated with respect to its modal losses is unfavor-

able due to strong resonant backscattering. To counteract this limitation, we will

introduce below a sophisticated absorber design which completely removes the

necessity to use frequencies close to the mode-opening.

3.3.2 Rapid adiabatic passage

Before we investigate dissipative systems, however, we will analyze the trans-

port properties of a system with vanishing dissipation, η → 0. In this limit, the

Hamiltonian is Hermitian, H = H†, and the adiabatic theorem applies: Assum-

ing the parameters to be varied sufficiently slowly, a state follows the instanta-

neous eigenstate given that the eigenvalues are ensured to be non-degenerate

[12]. Among the many applications of the above theorem, the rapid adiabatic

passage (RAP) technique is particularly noteworthy, since it allows to robustly

transfer the whole population of one eigenstate into another by adiabatically

changing the system’s parameters (see, e.g., Refs. [53,55,56]). For completeness,

we mention that if the loss is removed, the two exceptional points collapse into

a diabolical point (DP) [57] located at the parameter configuration σDP = 0 and

δDP = 0 (which can be seen from Eq. (2.6) by taking the limit η ∝ γ1,2 → 0).

As will become clear below, the adiabatic passage is the cornerstone of the

implementation of our direction dependent asymmetric switch that is based on

the path defined in Eq. (3.4) (for which the detuning is swept through resonance,

δ = 0, while the coupling σ is switched on and off simultaneously). These are

already two of the three quintessential ingredients to accomplish adiabatic pas-

sage. An additional crucial point is that the Hermitian system is in the adiabatic

limit, i.e., that the two-mode system investigated here shows the characteristic

symmetric switching behavior 1 ↔ 2 and 2 ↔ 1 for injection from each side,
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prior to the application of any dissipation. This is readily accomplished at a

critical waveguide length L∗, which value strongly depends on the channel pa-

rameters. It is thus the quantity L∗ which will be the target of optimization

procedures (see below).

We add that, if a loop is parametrized differently to achieve an EP-encircling

(like, e.g., by a circle that directly starts and ends at σ = 0 and δ = 0), the

removal of absorption will in general not lead to a successful RAP scheme.

For the above mentioned circular path, this is a direct consequence of the non-

degeneracy requirement that is violated in this case.

3.3.3 Method

In our numerical simulations we solve the Helmholtz equation Eq. (3.1) on

a finite-difference grid by means of the modular recursive Green’s function

method (MRGM) [58,59]. The transmission (reflection) amplitudes from mode n

into mode m, tnm (rnm), are then determined by projecting the system’s Green’s

function onto the flux-carrying modes in the semi-infinite leads which are at-

tached to the scattering geometry. The corresponding modal intensities are

given by Tnm = |tnm|2 and Rnm = |rnm|2, respectively. We choose the real part of

the potential V (x, y) to be finite (infinite) inside (outside) the cavity, correspond-

ing to Dirichlet boundary conditions, and the imaginary part of the potential is

determined such as to satisfy the protocol described in later sections.

3.3.4 Results

3.3.4.1 Unoptimized waveguide

First numerical results are shown in Fig. 3.8, where we implement the RAP pro-

tocol Eq. (3.4) on the basis of an example system with a length-to-width ratio

of L/W = 100. The perfect switch is easily observed in the modal pattern for

injections from either side of the waveguide (see Fig. 3.8a,b for left-, and pan-



CHAPTER 3. DYNAMICALLY ENCIRCLING EPS IN WAVEGUIDES 36

Figure 3.8: Numerically simulated modal wavefunction intensities |φn(x, y)|2
for a waveguide well in the adiabatic limit L� L∗, with a length-to-width ratio
of L/W = 100 and with vanishing dissipation, η = 0 (the depicted dimensions
are not to scale). Shown are results for different input modes and injection direc-
tions, corresponding to the encircling directions presented in Fig. 2.2. Arrows
indicate the side from which the waveguide is excited, the first mode is injected
in panels a and c, the second mode in b and d, respectively. In both cases we ob-
tain a perfect switch, as can be seen from the transmission probabilities Tnm de-
scribing the transmission from mode n into modem: T21 ≈ T12 > 0.9997 and Tnn
on the order of 10−5. The following parameters have been used: kW/π = 2.05,
σ0/W = 0.07, δ0W = 0.5 and ρW = −0.5.

Figure 3.9: Same as shown in Fig. 3.8, except that here we allow for bulk ab-
sorption, with η 6= 0. Note that we employ a logarithmic scale for the respective
intensities since the overall dissipation is very strong. This is evident from the
corresponding transmission probabilities Tnm: T11 = 2.5 · 10−11, T21 = 8.9 · 10−7,
T12 = 7.0 · 10−14 and T22 = 8.4 · 10−12. The normalized mode profiles at the
waveguide exit are shown in Fig. 3.10. e, Plot of the absorption strength that is
gradually switched on and off according to η(x) in Eq. (3.4) with η0W = 0.9/kW ,
but otherwise uniform in transverse direction. The parameters used to describe
a loop around the EP determine the waveguide boundary modulation: Its am-
plitude σ is proportional to the coupling g, the oscillation frequency kb in turn
is controlled by the detuning δ (see Fig. 3.13 for an example that displays the
actual L/W dimensions and where the change in detuning is readily visible).
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Figure 3.10: Numerically simulated modal wavefunction intensities |φn(x, y)|2
for a waveguide with a length-to-width ratio L/W = 100, obtained at the
waveguide exit x = L (x = 0) for injection from the left (right). This plot com-
plements the data shown in Fig. 3.9 (with a-d corresponding to the panels with
matching labels in Fig. 3.9). It is evident that we obtain close to pure modes at
the device exits.

els c,d for rightwards injection). However, if one wishes to obtain a direction-

dependent transmission characteristic, this symmetry has to be broken.

The desired asymmetric switching of modes in the above waveguide is real-

ized by way of uniform (bulk) loss in transverse direction: Either mode entering

from the left (Fig. 3.9a,b) is scattered into the first mode at the right exit lead.

By contrast, any mode injected from the right side of the waveguide yields the

second mode at the left exit lead (Fig. 3.9c,d; see, also, the wavefunction inten-

sities directly at the waveguide exits, shown in Fig. 3.10). On the downside,

however, the quality of this switching mechanism is extremely low, due to the

large overall losses both states have to acquire in order to manifest this asymme-

try. Additionally, the requirement of slow encircling translates into a long and

bulky device with many boundary oscillations. To overcome both of the above

obstacles, we devised the following two strategies to optimize the waveguide

setup.
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Figure 3.11: The transmission probabilities T11 (red) and T21 (blue) as a function
of the relative system length L/W , where W denotes the waveguide width. For
the employed optimized waveguide boundary the adiabatic limit is reached for
lengths larger than a critical value of L∗ = 12.5W , for which the transmission
probability exceeds 99.5% (indicated by a vertical dotted line). The correspond-
ing values of T12 and T22 have been omitted since they almost exactly coincide
with the plotted values of T21 and T11, respectively. To obtain the data points we
have used kW/π = 2.6, the adiabatic threshold length L∗/W thus corresponds
to 16.25λ, with the wavelength λ = 2π/k. In the inset we show the path taken
in parameter space spanned by the oscillation amplitude σ and the detuning δ.
Note that the δ value has been linearized to translate it into a system with fixed
frequency (see 3.2.1).

3.3.4.2 Length optimization

Firstly, to optimize the waveguide dimensions, the figure of merit is the criti-

cal length-to-width ratio L∗/W from which value onward the system displays

a close to perfect transmission probability from mode n into mode m, Tn 6=m ≈ 1
(corresponding to a succesful RAP). For the actual optimization procedure to

find the different optimal values δ0, σ0 and ρ (or, alternatively, different optimal

boundary parametrizations), we have followed many approaches, ranging from

employing different parametrization schemes [53, 55], basic gradient-based op-

timization algorithms or global optimizers such as the differential-evolution

techniques [60] to brute force scans over a grid of geometry parameters.

The characteristic curve for the (at the time of writing) optimal waveguide
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geometry can be seen in Fig. 3.11, in which we plot the length dependence of

the transmission probability Tnm against the reduced waveguide length L/W .

The adiabatic limit is reached at a threshold value L∗ = 12.5W , after which the

intermode transmission probabilities Tn 6=m exceed 99.5%. For lengths smaller

than this critical value a perfect mode switch is not realized, consequently ren-

dering such waveguides unsuitable for a device that operates as an asymmetric

mode-switch if losses are added.

The system employed in Fig. 3.11 corresponds to the smallest L∗/W value

obtained as of yet through optimization techniques – it may, however, still be

possible to obtain systems for which the threshold is even smaller. Candidates

for this may be found using the transitionless quantum-driving (TQD) technique

put forward by M. V. Berry in Ref. [61], which theoretically removes any non-

adiabatic contribution in the dynamics of Hermitian systems and which should

allow a perfect mode-switch at arbitrary device lengths [62, 63].

We have investitated if transitionless quantum driving can lead to an in-

creased performance with respect to the system length (see appendix B for a

derivation in terms of our effective model). Unfortunately, a system which ac-

complishes the RAP for even smaller system sizes has not been found by means

of this method. We speculate that the reasons for this are twofold: Firstly, em-

ploying Berry’s technique leads to waveguides with large boundary amplitudes

that are out of phase with respect to each other, resulting in the unphysical situ-

ation that the waveguide walls start to overlap at some point. This results in the

entrance and exit leads to be separated by an infinitely high potential wall, triv-

ially leading to the absence of any transmitted flux (the smaller the system size,

the larger the boundary amplitudes are becoming if using the TQD technique).

For system sizes that are smaller than the best current value of L∗/W = 12.5,

this basically results in a closed channel. Secondly, one has to keep in mind that

the effective model derived in section A is a perturbatively obtained result for

which the boundary amplitude σ and the detunings δ and ρ are assumed to be

small. The present system with the best length-to-width ratio L∗/W however



CHAPTER 3. DYNAMICALLY ENCIRCLING EPS IN WAVEGUIDES 40

features values for these quantities which are not at all negligible. Therefore,

any optimization procedure based on the first-order 2×2 model can be expected

to fail for the full 2D system. Deriving the corresponding 2× 2 model to higher

orders in the waveguide parameters however may allow TQD to be applicable.

Bearing an experimental realization in mind, we will not make use of the

smallest L/W ratio permitted by the waveguide parameters found above (for

which L∗/W ≈ 12.5). The reason is that the implementation of dissipation is

much more difficult in an experimental setting than in a corresponding nu-

merical simulation: Instead of tuning a single numerical parameter, different

absorber materials have to be identified that provide the necessary damping,

while simultaneously dissipating only in a narrow frequency interval. For the

present case, the potential absorbers fit for the task were limited to only three

potential candidates (two solid absorbers of type UD-12300 and DD-10017, re-

spectively, and a foam absorber of type LS-10211, all from ARC technologies).

Additionally, we speculate that if the waveguide would have been built at a

length of L/W = 12.5, the total cumulative dissipation would have been too

small to produce an asymmetric switch. We thus rely on a waveguide channel

with a length-to-width ratio L/W = 25 in the following, while emphasizing

that the waveguide presented in Fig. 3.12 readily accomplishes the same RAP

quality as the waveguide shown in Fig. 3.8 at only a quarter of the length.

3.3.4.3 Absorber optimization

As shown in section 3.2.4, uniform dissipation may only lead to the breakdown

of adiabaticity if η is sufficiently strong (or, alternatively, that the length L is

sufficiently large, i.e., we demand ηL � 1). Thus, short waveguides would re-

quire large losses that inevitably reduce the wave intensity at the device exits.

We thus designed the absorption in the waveguide to follow a spatial pattern

that minimizes (maximizes) the dissipation for the mode featuring the adiabatic

(non-adiabatic) transition. In practice, we numerically extracted the coordinates

of the modal intensity nodes that can, after a smoothing procedure, be directly
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Figure 3.12: Modal wavefunction intensities |φn(x, y)|2 obtained numerically for
injection from left (a) and right (b) for a system length L = 25W = 32.5λ and
vanishing dissipation, η = 0. In both cases we obtain a perfect switch, i.e., T21 ≈
T12 > 0.997 and Tii on the order of 10−3. Note that the plots are to scale, i.e.,
the ratio of length L to width W reflects the actual waveguide dimensions. The
following parameters have been used: kW/π = 2.6, σ0/W = 0.16, δ0W = 1.25
and ρW = −1.8.

Figure 3.13: Numerically simulated modal wavefunction intensities |φn(x, y)|2
for a waveguide with a length-to-width ratio L/W = 25 (depicted dimensions
are to scale). Shown are results for different input modes and injection direc-
tions, corresponding to different encircling directions. Arrows indicate the side
from which the waveguide is excited, the first mode is injected in panels a and
c, the second mode in b and d, respectively. e, Plot of the dissipation inten-
sity η̃(x, y). Since the respective reflection intensities Rnm are not accessible in
the experiment, we have explicitly checked numerically that backscattering is
negligible compared to the forward scattering contributions (see the text for de-
tails).
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used as the absorbing element. As a consequence, the mode taking part in the

transition 1↔ 2 is strongly damped, while the corresponding mode in the tran-

sition 2 ↔ 1 is left unperturbed and ideally transmits close to 100%. Note that

this position-dependent loss in the waveguide leaves the topology of the loop

around the EP intact (see section 3.2.4); additionally, the reciprocity principle

ensures that our design principle works for both transmission directions equiv-

alently.

For the system in Fig. 3.12, the absorber that is non-uniformly distributed in

both the x- and y-direction is shown in Fig. 3.13e. The efficiency of the device

is reflected in the transmission intensity T21 = T ′12 = 0.66, where primed quan-

tities correspond to injection from the right side of the waveguide. To ensure

that the asymmetry observed in Tnm indeed stems from an effective EP encir-

cling, we have explicitly checked numerically that backscattering is negligible

compared to the forward scattering contributions. This fact is evident from the

respective ratios of the dominant transmission intensity T21 = T ′12 vs. all reflec-

tion intensities Rnm, R
′
nm, i.e., T21/Rnm, T ′12/R

′
nm, which are well above a value

of 103.

Note that we choose a line-absorber as shown in Fig. 3.13e, where we exploit

the fact that one has ample freedom in choosing the absorber position while still

retaining the asymmetric switching effect. The most effective strategy relies on

placing the absorbers directly at the modal node positions, as used for the ef-

fective model calculations shown in section 3.2.4. As found numerically in the

corresponding 2D simulations, however, such a loss placement would result in

undesirably large back-reflections in the experimental realization of the waveg-

uide. To mitigate this shortcoming, we thus rely on a continuous stripe-absorber

to obtain the decay necessary to encircle the EP, although it comes at the expense

of an additional parasitic absorption for the other, previously undamped, mode.

However, as we show in the Figs. 3.13 and 3.14, this alternative absorber design

still readily allows to build an asymmetric switching device that qualitatively

follows the predictions made with the help of the effective model presented in



CHAPTER 3. DYNAMICALLY ENCIRCLING EPS IN WAVEGUIDES 43

Figure 3.14: a, Photograph of the optimized waveguide channel used in the ex-
periment, with a surface modulated region of length L = 1.25m and width
W = 5cm. Within this setup, input and output antennas are placed 1.5m
apart (shown on the top plate). Black foam is used both as an absorber in the
center of the waveguide (magnified in panel b) and to mitigate the reflection
into entrance and exit leads. The setup is engineered for a target frequency of
ν = 7.8GHz (shown by a dashed vertical line in c), however, the design ensures
applicability over a broad frequency interval. c, Measured frequency depen-
dent transmission intensities Tnm (T ′nm) from mode n into mode m for injection
from left (right) are shown by solid (dashed) lines.

Eq. (A.29).

3.4 Microwave experiment

To demonstrate its potential for real-world applications, the first experimental

realization of a dynamical EP-encircling has been implemented by Julian Böhm

and Ulrich Kuhl of Nice University in a surface-modulated microwave setup

following the proposed efficient design of Fig. 3.13 (the experiment is shown in

Fig. 3.14a,b).
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3.4.1 Setup

The experimental device itself is an aluminium waveguide with dimensions

L×W ×H = 2.38m×5cm×8mm. Fig. 3.14a shows the surface modulation that

steers the modes around the EP. The microwave experiment allows to define the

corresponding boundary conditions very accurately and to place the magne-

tized absorbing foam material (W ×H = 1.2mm ×5mm) with sub-wavelength

(< 0.5mm) precision. Additional absorbers (W × L = 5cm ×17.5cm) are em-

ployed at the waveguide entrance and exit to mimic semi-infinite leads.

In order to probe the sinusoidal modes formed by the z-component of the

electric field Ez [29, 64], two microwave antennas 1.5m apart from each other

are used. The antennas are fixed onto motor-controlled, moveable slides and

measure the complex transmission signal outside of the modulated surface area

at 2×2 points along the y-axis of the antennas. For the measurements we employ

microwaves with a frequency around ν = 7.8GHz, which is well below the

cutoff frequency for TM0 modes (νc = c/2H = 18.75GHz), such that only the

first two sinusoidal TM0 modes contribute to the transport.

3.4.2 Results

Measuring the modal transmission intensities Tnm from mode n into mode m as

a function of the input signal frequency, we unambiguously confirm the asym-

metric switching effect (see Fig. 3.14c): An arbitrary combination of modes in-

jected from the left side of the waveguide is transmitted into the first mode

when arriving at the exit lead on the right (T11 and T21 dominate the trans-

mission of the first and second mode, respectively, with transmission inten-

sity ratios T11/T12 = 20.6 and T21/T22 = 23.0). At the same time, the second

mode is produced on the left for injection from the right (T ′12 and T ′22 domi-

nate the respective modal transmission, where the primed quantities are those

for injection from the right, with ratios T ′12/T
′
11 = 463.4 ≈ T21/T11 = 488.6

and T ′22/T
′
21 = 425.9 ≈ T22/T12 = 438.4). Note that the slight violation of the
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reciprocity property T ′nm = Tmn observed in the experiment (see Fig. 3.14c)

is due to the magnetized absorber material (see the setup details above) that

is needed to obtain a sufficiently strong absorption in the corresponding fre-

quency range (without the absorber, the experiment is fully reciprocal). This

small non-reciprocity is, however, not essential for the operation of our device,

since the respective intensity ratios are approximately the same for both injec-

tion directions. Most importantly, the experimental data proves the very strong

robustness of these transmission values with respect to variations of the input

frequency - a broad-band feature that is a direct consequence of our design prin-

ciple, which ensures operability also in the presence of small variations of the

waveguide parameters. The shortened device for which the length-to-width ra-

tio is now L/W = 25 also vastly outperforms the longer device in Fig. 3.9 (for

which L/W = 100), not only in terms of length-to-width ratio, but also in terms

of the output intensity which is here increased by six orders of magnitude.

3.5 Breaking of reciprocity?

A word of caution is required here, since the (alleged) breaking of reciprocity

in modal transport has been a frequent source of confusion in the literature. In

a prominent example, Feng et al. [65] claimed that non-reciprocal light trans-

port had been achieved in a silicon photonic circuit, basing their reasoning on

the modal intensity patterns at the waveguide exits that were asymmetric with

respect to the injection direction. This conclusion was met with harsh criti-

cism [66–68] which culminated in a comment [69] on the original work and a

separate dedicated paper on the issue of optical isolation that appeared in Na-

ture Photonics [70]. The main culprit was identified to be the unjustified rea-

soning that an asymmetric modal transport is sufficient for non-reciprocity. As

has been thoroughly discussed in the above references, non-reciprocity requires

the system to possess non-linearities, a time-dependence in its refractive indices

or a breaking of time-reversal symmetry (as in the presence of a magnetic field).
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All of the above mechanisms were not present in the our numerics – in the ex-

periment, even though the magnetic absorber material induces a slight breaking

of time-reversal symmetry, the quality of the asymmetric mode conversion we

observe is not influenced by this small non-reciprocity.

We emphasize that the device we put forward and discuss here is thus not

to be confused with a non-reciprocal one, since this would require, in its strict

sense, an S-matrix which is not transposition symmetric, i.e., ST 6= S [70]. In-

stead, we study linear, time-independent systems which preserve (Lorentz-)

reciprocity. The direction-dependent effect, i.e., the asymmetric mode-switch,

we investigate here must therefore not be mistaken with optical isolation. In-

deed, throughout all of our numerical simulations we always have S = ST .

Nonetheless, we are able to put forward a design for which we demonstrate

high performance asymmetric switches for which the relative population of the

damped mode compared to the dominating one is less than 5%.

3.6 Rabi oscillations

For completeness, we also mention that our scheme which relies on a clever ab-

sorber placement is not restricted to systems in the adiabatic limit. A similar

effect can be achieved by a boundary featuring no frequency sweep, δ = 0, and

a constant boundary amplitude, σ = σ0, for which we expect Rabi oscillations

such that the mode’s populations alternate periodically (note that this is in com-

plete analogy to a two level atom that is driven resonantly by a light field [53]).

In our waveguide system, however, it is the boundary modulation σ that is re-

sponsible for the coupling of the two levels. Thus, we obtain transmission peaks

at periodic intervals of the reduced length

Ln/W = π

2gW (1 + 2n) , n ∈ N0 , (3.34)

where the quantity g = σB plays here the role of the Rabi frequency. An exam-

ple of these oscillations is shown in Fig. 3.15, where transmission peaks close to
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Figure 3.15: a, The transmission probabilities T12 (red) and T21 (blue) as a func-
tion of the relative system length L/W , where W denotes the waveguide width.
Note that the transmission peak positions (with T peak

n6=m ≈ 97%) are very well de-
scribed by the effective model predictions (the Ln values found in Eq. (3.34)
are indicated by vertical dotted lines). The following waveguide parameters
have been used in the numerical simulations to parametrize the boundary
ξ(x) = σ sin (krx): kW = 2.5π and σ/W = 0.12225. b, Modal wavefunction
intensities in a waveguide of length L/W = L2/W = 5π/2gW . The periodic
intervals Eq. (3.34) at which the whole population of one mode has completely
switched to the other mode are clearly visible.

100% are clearly visible. We note that each of the waveguide systems of length

Ln, at which we obtain these peak values, may be used to build an asymmetric

switch (necessitating, however, the addition of tailored absorbers to induce the

asymmetry in the transport).

The obvious advantage of Rabi oscillations is that the system size can be

shortened radically, the oscillation frequency only depending on the product of

the parameter B and oscillation amplitude σ. On the other hand, however, we

are less robust against perturbations in the wave frequency, a feature reserved

for systems in the adiabatic limit. Moreover, the transmission Tn6=m is not as

large as in the RAP case where the boundary amplitude is switched on and off

smoothly, and any absorption has to be applied in a very short length inter-
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val (rendering the specific implementation details very challenging even in the

numerics).

Lastly, it is doubtful that the EP is actually encircled if any losses are in-

troduced. Note that while in this case the exceptional point is definitely not

encircled adiabatically, the non-crossing model might correspond to a discrete

”loop” around the singularity: since the boundary modulation is switched on

and off abruptly, the parameter configuration may represent a jump from (0, 0)
to (0, σ) and back to (0, 0) in parameter space space. We close this section by

speculating that this could be the situation realized in the controversal paper

mentioned already above [65].



CHAPTER 4
Reflection resonances in

surface-disordered waveguides

Complementary to the previous chapters in which we have realized a direction-

dependent asymmetric mode switch by way of exploiting exceptional points in

boundary modulated waveguides, we focus here on a different aspect of surface

scattering, namely the scattering due to higher-order effects of the disorder. This

work was done in collaboration with José A. Méndez-Bermúdez, Johannes Feist,

Otto Dietz, Dmitry O. Krimer, Nykolay M. Makarov, and Felix M. Izrailev [28].

My contribution to this project was to perform all numerical calculations, to ex-

tend the analytical framework originally developed by Nykolay M. Makarov

and Felix M. Izrailev, and to analyze the analytical results as well as the numer-

ical data. Finally, I have co-authored the manuscript which this chapter is based

on [28].

4.1 Introduction

The problem of scattering off a rough surface is by itself a central topic in

physics which occurs for many different types of waves and on considerably

different length scales [71–74]. Phenomena induced by surface corrugations

49
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Figure 4.1: Illustration of the considered surface-disordered waveguide of
length L attached to semi-infinite collinear leads of width d. The step-like
surface disorder is characterized by a constant step width ∆ and a maximum
disorder-strength δ, respectively (see text for details). Flux is injected from the
left. An example of an antisymmetric geometry is shown in which the upper and
the lower surface disorder are identical.

play a major role in the study of acoustic, electromagnetic and matter waves

alike and appear in macroscopic domains such as acoustic oceanography and

atmospheric sciences [75, 76], but also emerge on much smaller length scales,

e.g., for photonic crystals [77,78], optical fibers and waveguides [79–82], surface

plasmon polaritons [83], metamaterials [84], thin metallic films [85–88], layered

structures [89], graphene nanoribbons [59, 90], nanowires [24, 91–93] and con-

fined quantum systems [94,95]. While having a detrimental effect on the perfor-

mance of many of the above systems, surface roughness can also be put to use,

e.g., for the fabrication of high-performance thermoelectric devices [96, 97] and

for light trapping in silicon solar cells [98]; rough surfaces also cause anoma-

lously large persistent currents in metallic rings [25] and provide the necessary

scattering potential to manipulate ultra-cold neutrons which are bound by the

earth’s gravity potential [99].

In view of this sizeable research effort it might come as a surprise that even

quite fundamental effects emerging in surface disordered systems are still not

fully understood. Consider here, in particular, the problem of wave trans-

mission through a surface-corrugated guiding system which we will study in

the following. As demonstrated in detail below, even a very elementary and
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well-studied model system, consisting of a two-dimensional (2D) waveguide

with a step-like surface disorder on either boundary (see Fig. 4.1), can only

be inadequately described with conventional techniques. The reason why the

knowledge on surface-disordered waveguides is still far behind the state-of-the-

art for bulk-disordered systems is mainly due to the difficulties arising from

the non-homogeneous character of transport via different propagating modes

(channels). As was numerically shown in [100, 101], the transmission through

multi-mode waveguides depends on many characteristic length scales which

are specific for each mode. As a result, one can observe a coexistence of ballistic,

diffusive, and localized regimes in the same waveguide when exploring mode-

dependent transport coefficients (see, also, the related work in [102] where sim-

ilar behavior has been observed in three-dimensional structures). Such effects

lead to non-homogeneous scattering matrices which prevents the application of

well developed analytical tools such as Random Matrix Theory [103,104] or the

Ballistic Sigma Model [105, 106]. Additionally, the prospect of engineering the

transmission through a waveguide by imprinting a specific surface profile [29]

requires a theory which is not based on some general assumptions on random-

ness in the surface disorder, but one which relates an arbitrary but given surface

profile to the transmission of each transporting channel.

An analytical surface scattering theory developed in [107,108] is a promising

candidate to fulfil this task. According to this theory the transmission through

waveguides with a weak surface corrugation is determined by two principally

different correlators embedded in the surface profile, where the W-correlator

typically gives the main contribution to scattering which also appears in con-

ventional approaches. This standard binary correlator measures the correla-

tions between the profile amplitudes at the points x and x′. The S-correlator,

on the other hand, is due to the correlations between the squares of the slopes

(squares of the derivatives) of the profiles at the points x and x′. In most the-

oretical studies, this S-correlator is, however, neglected since it constitutes a

higher-order term in the weak disorder expansion where the disorder ampli-



CHAPTER 4. REFLECTION RESONANCES IN SURFACE-DISORDERED
WAVEGUIDES 52

tude is the relevant expansion parameter. In this work, we will provide conclu-

sive evidence that this term, although being of higher-order, can dominate the

transmission through a surface-disordered waveguide and that it needs to be

taken into account in a comprehensive description.

First numerical and experimental indications that the S-correlator plays, in-

deed, an important role have been put forward in a recent experimental study,

where a specific waveguide geometry was designed such as to highlight the

presence of this new term [29]. This joint work will be reviewed in section 5.

Here we build upon this result to demonstrate that the influence of this correla-

tor shows up not just for carefully chosen waveguide geometries, but in a quite

general class of waveguides.

In particular, we will show that waveguides with a step-like surface disor-

der which have been well-studied by the community yield unambiguous and

very pronounced signatures for the influence of the S-correlator which, to the

best of our knowledge, have so far been overlooked. In these waveguides (see

Fig. 4.1), the surface disorder features steps of random height (in the direction

transverse to propagation) and of constant width (in longitudinal direction).

Such waveguides have been considered in quite a few recent studies [24–27], as

they are attractive model systems both for an experimental implementation as

well as for a numerical computation. This is because waveguides with the above

specifics can be easily built up by combining a series of rectangular waveguide

stubs, each of which has no surface disorder but a randomly chosen height. Our

analysis will show that in these concatenated systems the S-correlator gives rise

to well-defined resonances in the reflection coefficients which are perfectly re-

produced in a corresponding numerical study. At these resonant values the S-

correlator may strongly dominate over the lower-orderW-correlator such that

a conventional description breaks down.

To show this not just by numerical evidence, but also by the corresponding

analytical expressions, we significantly expand the existing theoretical frame-

work presented in [107, 108]. This is necessary because the surface derivatives
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which enter the S-correlator diverge at the steps in the surface profile and thus

require a special treatment. Another important extension of the theory which

we take into account is due to multiple scattering events between the propa-

gating modes in the waveguide which yield a significant contribution beyond

the single-scattering terms that have been considered so far. In this sense, our

combined analytical-numerical study not only reveals a new effect, but also con-

tributes to an extension of the underlying theory to the point where the analyt-

ical formulas which we derive provide predictions which quantitatively match

with the numerical calculations that we perform independently.

4.2 Model

We consider a simple, however, non-trivial model consisting of a quasi-1D cor-

rugated waveguide (or conducting wire) with discrete steps in the surface pro-

file. This rough waveguide of length L and average width d� L is attached to

infinite leads of width d on the left and right (see Fig. 4.1). Flux is injected from

the left and propagates through Nd open channels. The upper and lower sur-

faces of the rough waveguide are given by the functions y↑ = d/2 + σξ↑(x) and

y↓ = −d/2 + σξ↓(x), respectively. The random functions ξi(x) (i = ↑, ↓) describe

the roughness of the surfaces and are assumed to be statistically homogeneous

and isotropic, featuring zero mean, 〈ξi(x)〉 = 0, and equal variances, 〈ξ2
i (x)〉 = 1.

Altogether three different cases will be considered in terms of the symmetries

of the boundary profiles with respect to the horizontal center axis at y = 0:

i. symmetric boundaries,

ξ↑(x) = −ξ↓(x) , (4.1)

ii. antisymmetric boundaries,

ξ↑(x) = ξ↓(x) , (4.2)
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iii. nonsymmetric boundaries,

ξ↑(x) 6= ξ↓(x) . (4.3)

Following the assumptions adopted in a few recent papers [24–27], the func-

tions σξi(x) are chosen as sequences of horizontal steps of constant width ∆ and

random heights, uniformly distributed in an interval [−δ/2, δ/2] around the up-

per (lower) boundary of the attached leads. In our numerical analysis we set

d = 1 and δ = 0.04, resulting in a variance of the disorder, σ2 = δ2/12, which is

small compared to the width of the waveguide, σ � d.

Note that we have realized, in the above way, a scattering system which is

truly random yet features very strong spatial correlations in its surface disorder

since the waveguide exhibits a potential step at each integer multiple of the

step-width ∆.

4.3 Analytical method

According to the theory developed in [107, 108], the correlations in the surface

disorder enter the scattering properties of the system through two independent

correlators. The first one is the binary correlator of the surface profile,

W(x− x′) = 〈ξ(x)ξ(x′)〉 , (4.4)

which contains contributions only from the amplitude ξ(x) and the derivative of

the surface profile ξ′(x). Correspondingly, the scattering mechanism that this

correlator gives rise to is referred to as the amplitude-gradient-scattering (AGS)

mechanism.

The other correlator contains scattering contributions which are indepen-

dent of those in Eq. (4.4) and which are related to the square of the profile’s

derivative, ξ′2(x), in an effective potential description (see details in [107, 108]),

2 S(x− x′) = 〈V(x)V(x′)〉

= 〈ξ′2(x)ξ′2(x′)〉 − 〈ξ′2(x)〉2 , (4.5)
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with V(x) = ξ′2(x) − 〈ξ′2(x)〉. The corresponding scattering process is thus re-

ferred to as the square-gradient-scattering (SGS) mechanism. We emphasize here

that the validity of the identity 〈V(x)V(x′)〉/2 = W ′′2(x − x′) used in different

contexts (see, e.g., [29, 107, 108]) is restricted to Gaussian random processes and

cannot be applied for the present step-like surface profiles. Indeed, as we will

see below, this simplification would lead to a severe underestimation of the SGS

mechanism in the present context.

In our further analysis it will not be binary correlators themselves which will

be the key quantities, but rather their Fourier transforms W (kx) and S(kx),

W (kx) =
∫ ∞
−∞
W(x) e−ikxx dx , (4.6)

S(kx) =
∫ ∞
−∞
S(x) e−ikxx dx , (4.7)

which denote the roughness-height power spectrum and the roughness-square-

gradient power spectrum, respectively. Here kx is the longitudinal wavenumber

which is determined by the transverse quantization condition

kn =
√
k2 − (nπ/d)2 . (4.8)

The index n stands for a specific open propagation channel with n = 1, 2, . . . , Nd,

where the total number of open modes is given by Nd = bkd/πc and k denotes

the scattering wavenumber.

For the scattering system in Fig. 4.1 theW-correlator can be obtained analyt-

ically,

W(x− x′) =
(

1− |x− x
′|

∆

)
Θ(∆− |x− x′|) , (4.9)

which is strongly peaked for surface points x and x′ which are closer to each

other than the step width in the disorder, |x − x′| < ∆, but zero for all larger

distances, |x− x′| > ∆.

For completeness and since it is a key parameter in [107, 108], we want to

stress the fact that, if defining the correlation length R as the variance of the

binary correlator W(x − x′), the step width ∆ and correlation length R are di-

rectly linked with each other, R = ∆/
√

6. For the sake of simplicity we will use
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the step width ∆ in all expressions in the following since it represents the quan-

tity which we tune in our simulations and which is therefore the more natural

parameter in our system.

The Fourier transform ofW(x− x′) then yields the analytical expression for

the roughness-height power spectrum W (kx),

W (kx) = ∆ sin2 (kx∆/2)
(kx∆/2)2 . (4.10)

An important point to mention here is the following: Eqs. (4.9) and (4.10) im-

plicitly assume that the rectangular steps in the profile boundary can be per-

fectly resolved by the scattering wave. However, due to the finite wavelength

at which the scattering process takes place, also the resolution of the surface

profile will always be finite. To accommodate this limited resolution, we in-

troduce an effective smearing of the step profiles based on a Fermi-function

1/[1 + exp(x/ρ)] (see appendix C for more details). The smoothness of this func-

tion is governed by the parameter ρ which leads to a smearing of a step profile

over a region ∆x ≈ 12ρ (see Fig. C.1 in the appendix for a corresponding il-

lustration). If we now estimate that a scattering wave with a wavelength λ is

associated with a resolution of ∆x ≈ λ/2, we obtain for the smearing parameter

ρ ≈ λ
24 ≈ 0.03. Employing this value for all further calculations, a comparison

with the numerical data suggests that this simple estimate already captures our

simulations remarkably well. Only in symmetric waveguides a reduced value

of ρ = 0.01 yields better agreement.

Here we want to emphasize that, due to the limited resolution of waves at

a finite wavelength, the propagating wave cannot distinguish between a (dis-

continuous) step-boundary and a smoothed version of the same profile (if the

smoothing is on or below the same scale as the wavelength). We thus expect that

our approach describes waveguides with a profile composed of equally spaced

functions like, e.g., Gaussian ridges, equally well.

When incorporating the smoothness of the steps into the roughness-height

power spectrum (4.10), we can again obtain a simple analytical expression which
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takes the following form (see appendix C for details),

W (kx) = 1
∆

4π2ρ2

sinh2(πkxρ)
sin2(kx∆/2) . (4.11)

For small values of ρ a Taylor series expansion is justified,

1
sinh2(πkxρ)

≈ 1
π2k2

xρ
2 , (4.12)

yielding the result already obtained for infinitely sharp steps, Eq. (4.10).

The above approach involving a smearing of the step-disorder turns out

to be essential when considering the roughness-square-gradient power spectrum

S(kx). This is because, without the smearing, the corresponding expressions

would diverge, as can easily be understood from the fact that the gradient turns

into a delta function at the position of a step when an infinite resolution is as-

sumed. This divergence is, however, conveniently tamed through the above

procedure involving the Fermi-function, yielding the following analytical ex-

pression for S(kx) (see appendix C),

S(kx) = 1
∆
k2
xπ

2

72
(1 + k2

xρ
2)2

sinh2(πkxρ)

4
5

(
1 + 1

2Neff

)(
7 + 2 cos(kx∆)

)

+2
(

1 + cos(kx∆)
)

1
2Neff

sin2 [(Neff + 1/2) kx∆]
sin2(kx∆/2)

 . (4.13)

In addition to the smearing parameter ρ, the above expression contains also

the integer number Neff which determines the number of steps 2Neff that are ef-

fectively involved in the scattering process. The notion of an effective number

has been introduced here to take into account that the total number of steps

in the waveguide, 2N = L/∆, is typically significantly larger than the value

2Neff which we find to reproduce our data. This difference, Neff � N , can be

attributed to the finite penetration depth of the propagating wave as a result

of which the effective longitudinal dimension of the waveguide is greatly re-

duced. We shall thus determine the quantity Neff through a direct comparison

with the numerical data to be presented below. Note also that we have used
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ensemble averaging for the derivation of the above formulas (4.11) and (4.13)

(to ensure convergence of Eq. (C.3) in the appendix) [109]. Recent work demon-

strates, however, that an application of the predictions following from the two

different correlators above yields good quantitative agreement also for individ-

ual disorder realizations as in single disordered waveguides [29].

A direct comparison of the expressions for the two correlators in (4.11) and

(4.13) provides the insight that the SGS term S(kx) becomes large at exactly the

same points at which the AGS term W (kx) vanishes. At these points, where

kx∆ = 2πM with M integer, the SGS term will thus dominate over the AGS

term. As we will demonstrate below, this fact provides the key element for

the occurrence of the pronounced resonances in reflection that we observe, and

we will discuss how this resonance condition is realized for different symmetry

classes. Note that these dominant SGS contributions in

sin
[
(Neff + 1/2)kx∆

]
sin (kx∆/2) (4.14)

would be suppressed if we applied the customary approximation (used, e.g.,

in [29, 107, 108]) that the defining expression for the SGS term, 〈V(x)V(x′)〉, can

be replaced by the simplified term 2W ′′2(x− x′).

With the above expressions (4.11) and (4.13) we now have the key quantities

at hand for the perturbation theory analysis of scattering in surface-disordered

waveguides. For this analysis to be applicable, the perturbation induced by the

surface disorder has to be weak, resulting in the following independent require-

ments,

σ � d , R� 2Ln , Λn = knd/(πn/d)� 2Ln . (4.15)

Here, Ln is the partial attenuation length of the nth incoming mode (from the left)

which takes into account both the scattering in forward direction (to the right) and

in backward direction (to the left). The cycle length Λn is the distance between two

successive reflections of the nth mode from the unperturbed surfaces. Under

conditions (4.15) the waves are weakly attenuated over the correlation length

R, the step width ∆ and over the cycle length Λn. Clearly, the correlation length
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symmetric antisymmetric nonsymmetric

(
A11 A12
A21 A22

)
=

(
4π4 0
0 64π4

) (
0 16π4

16π4 0

) (
2π4 8π4

8π4 32π4

)
(
B11 B12
B21 B22

)
=

( (3+π2)2

18 0
0 (3+4π2)2

18

) (
π4/2 0

0 8π4

) ( (9+6π2+10π4)
72π4 20
20 (9+24π2+160π4)

72π4

)

Table 4.1: Matrices of constants Ann′ and Bnn′ for the symmetric, antisymmetric
and nonsymmetric waveguides considered in the text.

must be smaller than the waveguide length, R � L. When applying, in the

above limit of weak disorder, the perturbative treatment following [107, 108],

we obtain the mode-specific inverse attenuation lengths for scattering from any

incoming mode n into any mode n′ [108],

1
Lnn′

= 1
L

(b,AGS)
nn′

+ 1
L

(f,AGS)
nn′

+ 1
L

(b,SGS)
nn′

+ 1
L

(f,SGS)
nn′

. (4.16)

All Lnn′ can be decomposed into backward (b) and forward (f) scattering con-

tributions as well as into terms which are associated with the AGS and SGS

mechanism of surface scattering. In their full, detailed form we thus obtain for

the terms in Eq. (4.16),

1
L

(b,AGS)
nn′

+ 1
L

(f,AGS)
nn′

= σ2

d6
Ann′

knkn′

[
W (kn + kn′) +W (kn − kn′)

]
, (4.17)

1
L

(b,SGS)
nn′

+ 1
L

(f,SGS)
nn′

= σ4

d4
Bnn′

knkn′

[
S(kn + kn′) + S(kn − kn′)

]
. (4.18)

Here the factors Ann′ and Bnn′ depend on the symmetry between the two pro-

files ξ↑(x) and ξ↓(x) (see table 4.1), and the terms depending on kn + kn′ con-

tribute to backward scattering whereas those depending on kn − kn′ result in for-

ward scattering. The overall attenuation length of mode n can be obtained by

means of the sum over all corresponding partial inverse mode-specific lengths

1/Lnn′ , 1/Ln = ∑Nd
n′=1 1/Lnn′ .
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As one can see from Eqs. (4.17) and (4.18), the mode attenuation lengths

Ln essentially depend on the distinct correlators W(x) and S(x) through their

Fourier transforms W (kx) and S(kx) derived above. The important point in this

context is that W (kx) and S(kx) depend differently on the external parameters,

in particular, on the wavenumber kx and on the module width ∆. We may thus

arrive at the situation that at specific values of the wavenumber the SGS-term

in Eq. (4.18) (∝ σ4) can be comparable to (or even larger than) the AGS-term

in (4.17) (∝ σ2). In particular, the points discussed above, where a peak value

in S(kx) coincides with a zero of W (kx), can be expected to lead to interesting

transmission characteristics.

To test this scenario explicitly, we performed extensive numerical simula-

tions on transport through surface-disordered waveguides of all three symme-

try classes.

4.4 Numerical method

Similar to the methods mentioned in section 3.3.3, we again employ the efficient

“modular recursive Green’s function method” (MRGM) [58, 59, 110] to numeri-

call solve the Schrödinger equation for the Hamiltonian (in atomic units),

Ĥ = −1
2

(
∂2

∂x2 + ∂2

∂y2

)
+ V (x, y) , (4.19)

on a discretized grid. The potential term V defines the surface potential which

is infinite outside the waveguide and flat (V = 0) inside, corresponding to hard-

wall boundary conditions. Since the scattering problem (4.19) is equivalent to

the Helmholtz equation, our approach is not only suitable for electronic systems

but can, e.g., also be applied to microwave systems as in [29, 111, 112], or quite

generally to systems which satisfy a Helmholtz-like equation.

The MRGM is particularly advantageous for the present setup since the ver-

tical steps in the disorder profile allow us to assemble the waveguide by con-

necting a large number of rectangular elements, which will be referred to as
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“modules”. These modules are chosen to have equal width ∆, but different

heights. The computation is based on a finite-difference approximation of the

Laplacian and proceeds such that we first calculate the Green’s functions for

a number of modules with different heights. These Green’s functions are then

connected to each other by way of a matrix Dyson equation [59]. It is the differ-

ent heights of the modules and additionally introduced random vertical shifts

between them that give rise to the desired random sequence of vertical steps in

the surface profile. To satisfy the additional symmetry imposed on the waveg-

uide we arrange the modules such as to respect this specific symmetry.

The key element of our numerical approach is an “exponentiation” algo-

rithm [24] which allows us to simulate transport through extremely long waveg-

uides at moderate numerical costs. Rather than connecting individual modules

with each other until the length of the waveguide is reached, we first connect

several sequences of randomly assembled modules. In a subsequent step these

“supermodules” are then randomly permuted and connected to each other to

form a next generation of supermodules. Continuing this iterative procedure

allows us to obtain the Green’s functions of waveguides with a length that

increases exponentially with the number of generations. For waveguides of

moderate lengths we tested this supermodule technique against the conven-

tional approach where the modules are assembled one after the other. We found

that the disorder-averaged Green’s functions obtained in these two ways do not

show any noticeable difference from each other [24].

To calculate the desired transmission (tnn′) and reflection amplitudes (rnn′)
for incoming flux from the left lead, we project the Green’s function at the scat-

tering wavenumber k onto the flux-carrying lead modes n, n′ ∈ {1, . . . , Nd} in

the left and right lead, respectively. From these amplitudes we obtain the trans-

mission from one mode to the other, Tnn′ = |tnn′|2, as well as the total trans-

mission through one mode, Tn = ∑Nd
n′ |tnn′ |2, and the total transmission of the

whole system, T = ∑Nd
nn′ |tnn′|2.
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4.5 Comparison between analytical and numerical

results

In order to compare the analytical predictions of equations (4.17) and (4.18) for

the attenuation lengths with our numerical results for the waveguide transmis-

sion, we extract the values of the mode attenuation lengths from the numerical

data through an automatized fitting procedure. To obtain accurate fits of the

length dependence of the transmission we evaluate the transmission at up to

250 (symmetric waveguide), 200 (antisymmetric waveguide) and 80 (nonsym-

metric waveguide) different length values in waveguides which reach a max-

imal length Lmax = 2N∆, with N = 1010 (symmetric waveguide), N = 108

(antisymmetric waveguide) and N = 106 (nonsymmetric waveguide), respec-

tively. To suppress effects which are due to individual disorder realizations we

additionally average the transmission over 100 (symmetric and antisymmetric

waveguides) and 50 (nonsymmetric waveguide) different disorder realizations.

Our fits are then performed with the disorder-averaged transmission curves

(details are provided below). To keep the system at a manageable degree of

complexity and to perform a direct comparison with Eqs. (4.17) and (4.18), we

restrict ourselves to the regime of two open waveguide modes, Nd = 2, by

choosing the wavenumber k to be fixed at the value k = 2.55 π/d. By varying

the step width ∆ in the surface disorder incrementally, we numerically scan

through the module width dependence of the transmission (at each value of ∆
an ensemble average over 50-100 waveguide realizations is performed).

We will now discuss the disordered waveguides with different symmetry

separately, as both the predictions from Eqs. (4.17) and (4.18) as well as the

procedure to extract the attenuation lengths are specific for each symmetry.

4.5.1 Symmetric profiles

In symmetric waveguides the up-down symmetry of the entire scattering struc-

ture, ξ↑(x) = −ξ↓(x), results in the fact that modes of different symmetry can-
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not scatter into each other. For the two-mode waveguide considered here this

means that the two modes n=1, 2 scatter fully independently of each other with

only intra-mode scattering (with n = n′) being relevant and inter-mode scattering

(with n 6= n′) being entirely absent. Correspondingly, the only scattering mech-

anism that attenuates an incoming wave in mode n is back-scattering into the

same mode (forward-scattering in the same mode does not attenuate the mode

and inter-mode scattering is forbidden). For our analysis we therefore need to

consider only the intra-mode back-scattering (b) length L(b)
nn which follows from

Eqs. (4.17) and (4.18) [103],

1
L

(b)
11

= 4π4σ
2

d6
W (2k1)
k2

1
+ (3 + π2)2

18
σ4

d4
S(2k1)
k2

1
, (4.20)

1
L

(b)
22

= 64π4σ
2

d6
W (2k2)
k2

2
+ (3 + 4π2)2

18
σ4

d4
S(2k2)
k2

2
, (4.21)

where W (·) and S(·) are defined by Eq. (4.11) and (4.13), respectively. Due to

the decoupling of the two modes we are here in the 1D limit of single-channel

scattering where all modes are localized and diffusion is absent (as in 1D bulk

scattering systems [103]), resulting in an exponential decrease of the transmis-

sion T (L) with waveguide length L,

exp〈ln[T (L)]〉 = exp(−2L/ξ) . (4.22)

For 1D scattering the localization length ξ is related to the mean free path as fol-

lows ξ = 2l [103]. Identifying the mean free path for each mode with the specific

backward scattering lengthL(b)
nn, we obtain the desired relation exp〈ln[Tnn(L)]〉 =

exp(−L/L(b)
nn) which we use to extract the backward scattering length L(b)

nn from

the numerical data. The validity of this procedure is independently confirmed

by the numerically determined length dependence of the transmission which

follows the expected exponential decay very accurately (see Fig. 4.2(a)).

Following this analysis we extract from the disorder-averaged transmission

the numerical values for L(b)
nn through the identity 〈lnTnn〉=−L/L(b)

nn and com-

pare it to the corresponding analytical predictions in Eqs. (4.20) and (4.21). The
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Figure 4.2: Illustration for how we extract the mode-specific attenuation lengths
Ln from the numerical data in the case of (a) symmetric and (b) antisymmet-
ric waveguides (for nonsymmetric waveguides the same procedure as in (b) is
used and therefore not described separately): (a) In the symmetric case where
all modes localize with their own specific localization length, we fit the expres-
sion 〈lnTn〉 = −L/Ln (see black lines) to the mean logarithm of the numerically
obtained transmission 〈lnT1〉 (yellow •) and 〈lnT2〉 (blue �), shown here ver-
sus the reduced length L/∆ (for ∆ = 0.64). (b) In the antisymmetric case we
restrict ourselves to the ballistic regime, where the transmission of each mode
decays along the following expression 〈Tn〉 = 1− L/Ln (see black lines), which
we use as a fitting curve for the mean numerically obtained transmission 〈T1〉
(yellow •) and 〈T2〉 (blue �), shown here versus the reduced length L/∆ (for
∆ = 1.53). An automated fitting procedure yields mode-specific attenuation
lengths Ln which show excellent agreement with our analytical estimates (see
below). In the above figures, σ ≈ 0.01 and k = 2.55/π have been employed,
respectively.

corresponding results for 1/L(b)
nn as a function of ∆ are shown in Fig. 4.3(a). We

also plot the theoretical predictions given by Eqs. (4.20) and (4.21), respectively,

as well as the AGS terms 1/L(b,AGS)
11 and 1/L(b,AGS)

22 alone. The agreement we

find between the AGS terms and the numerical calculations is already remark-

ably good for most of the chosen parameters, such that the SGS contributions

can be easily identified to be dominant at those specific parameter values where

deviations from the AGS predictions occur (see vertical arrows in Fig. 4.3(a)).

In full agreement with our theoretical analysis, we find that the values of the

step width ∆ where this happens are determined by the resonance condition

2kn∆ = 2πM (with M an integer), that we identified already earlier as those

points where the contribution of the AGS terms vanishes while the SGS terms

are maximal. Note that this condition leads to different resonance values for
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Figure 4.3: Inverse partial attenuation length 1/Lnn versus step width ∆, as
obtained numerically for two-mode symmetric waveguides. 1/L11 (yellow •)
and 1/L22 (blue �) are shown. (a) Comparison with the analytical expressions
(4.20) and (4.21) (both dotdashed) including both the AGS and the SGS terms.
Note the very good agreement which we find between the numerical data and
the analytical theory, in particular also for those resonant values 2kn∆ = 2πM
where the SGS contributions dominate (marked by arrows). Panel (b) shows the
AGS predictions alone, i.e., when the SGS mechanism is omitted (both dotted).
For all data shown the following parameter values were used: ρ = 0.01 , Neff =
25, σ ≈ 0.01 and k = 2.55/π .

each of the two modes with n = 1, 2,

∆ = π

kn
M = π√

k2 − (nπ/d)2
M ≈


0.426 M n = 1 ,

0.632 M n = 2 .
(4.23)

At these well-defined values we not only find that the theory solely based on

the AGS terms deviates from the numerics (see Fig. 4.3(b)), but that the addi-

tional SGS terms fill the missing gaps in the theory very well in terms of res-

onant contributions to the inverse attenuation lengths 1/Lnn (see Fig. 4.3(a)).

Since maxima in the inverse attenuation length correspond to maxima in the

reflection (i.e., minima in the transmission) we may thus conclude that the SGS

mechanism leads to reflection resonances in the systems under study. While

these resonances are clearly discernible already in the symmetric waveguides,

we will find that they are even more pronounced in the antisymmetric waveg-

uides that we investigate in the next section.
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4.5.2 Antisymmetric profiles

In the case of antisymmetric waveguide profiles we have ξ↓(x) = ξ↑(x), i.e., the

waveguide width is constant throughout the waveguide (see Fig. 4.1). The sit-

uation is more complicated than in symmetric waveguides as inter-mode scat-

tering is allowed here. A proper description of transmission thus has to incor-

porate both the intra- and the inter-mode scattering contributions. For mode-

specific values of the transmission we again have to ask which scattering events

contribute: consider, e.g., the transmission of a mode into itself, Tnn. In a per-

turbative treatment this quantity is determined by all scattering mechanisms

that scatter the incoming mode n into the other mode or reverse its direction

of propagation. This happens both through forward-scattering from mode n

into the second available mode n′ 6= n as well as through backward scattering

into any of the two modes n′ = 1, 2. The attenuation length extracted from the

transmission Tnn thus has to be compared to the predictions for the attenuation

length Lnn which is given as 1/Lnn = 1/L(f)
n6=n′ + 1/L(b)

nn + 1/L(b)
n6=n′ . To be specific,

we find

1
L11

= 16π4σ
2

d6
1

k1k2

[
W (k1 + k2) +W (k1 − k2)

]
+ π4

2
σ4

d4
1
k2

1
S(2k1) , (4.24)

1
L22

= 16π4σ
2

d6
1

k1k2

[
W (k1 + k2) +W (k1 − k2)

]
+ 8π4σ

4

d4
1
k2

2
S(2k2) . (4.25)

The remaining question at this point is how to extract the attenuation lengths

Lnn from the numerical data for Tnn when modes do not just localize as in the

symmetric case. In the presence of inter-mode scattering, the wave injected

into a disordered waveguide first propagates ballistically, then scatters diffu-

sively and eventually localizes at very long waveguide lengths. For the two-

mode waveguide considered here the diffusive regime is, however, not well-

pronounced such that the crossover region between ballistic scattering and lo-

calization is comparatively narrow. Since, additionally, in the localized regime

always the mode with the higher localization length ξ dominates [24], extracting

mode-specific attenuation lengths is best achieved in the ballistic regime where



CHAPTER 4. REFLECTION RESONANCES IN SURFACE-DISORDERED
WAVEGUIDES 67

the transmission decreases linearly with the system length L, 〈Tnn〉 ≈ 1−L/Lnn.

We will use this relation to extract the attenuation lengthsLnn from the disorder-

averaged numerical transmission values 〈Tnn〉 in the ballistic regime. In prac-

tice, we use the criterion 〈Tnn〉 ∈ [0.9, 1] to ensure that the requirement of ballis-

tic transport is satisfied (see Fig. 4.2(b)).

Fig. 4.4 shows the numerically obtained results for 1/Lnn, including a com-

parison with the predictions from equations (4.24) and (4.25). In panel (a), both

modes are displayed, with yellow full circles corresponding to n = 1 and blue

diamonds to n = 2, respectively. In the case of antisymmetric waveguides a

direct comparison of the numerical results for the two different modes reveals

immediately where the SGS mechanism is at work (see Fig. 4.4(a)): Since the

terms in Eqs. (4.24) and (4.25) associated with the AGS mechanism are identical

for 1/L11 and 1/L22, any difference between the two attenuation lengths can be

expected to be due to the SGS mechanism. The numerical results reveal that

around ∆ ≈ 2.5 an extended region opens up in which the two modes decou-

ple and their attenuation lengths are significantly different. To clarify whether

this decoupling is, indeed, due to the SGS mechanism, we compare the numeri-

cal results with the corresponding analytical predictions in figures 4.4(b,c). The

agreement we obtain is, again, excellent, allowing us to identify the contribu-

tions of the SGS mechanism in detail. First of all, we find that the decoupling

of modes is, indeed, due to the SGS mechanism as it is accurately reproduced

when the SGS terms are included. Secondly, the theoretical analysis also pre-

dicts that the SGS terms should give rise to small resonant enhancements of the

inverse attentuation length at the resonant values 2kn∆ = 2πM (see arrows in

figures 4.4(b,c)). Also these predictions are very well reproduced by the numer-

ical data.

To corroborate the consistency of our above arguments on forward- and

backward-scattering contributions we also investigated the total mode trans-

missions Tn = ∑Nd
n′ |tnn′|2, which are now different from the mode-to-mode

transmissions Tnm due to inter-mode scattering. In the ballistic regime the Tn
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Figure 4.4: (a) Inverse partial attenuation length 1/Lnn versus the step width ∆,
as obtained numerically for two-mode antisymmetric waveguides, with 1/L11
(yellow •) and 1/L22 (blue �). We find very good agreement with the analytical
expressions (4.24) and (4.25) that are included as dotdashed lines in panel (b)
and (c), respectively (with ρ = 0.03, Neff = 25, σ ≈ 0.01 and k = 2.55/π).
Arrows mark resonant values 2kn∆ = 2πM which indicate locally dominating
SGS contributions.

should be determined by backward-scattering alone, since forward-scattering

just redistributes the flux which is incoming in one mode over all available

right-moving modes. Since, however, the right-moving modes are summed

over in the expression for Tn, any influence of forward-scattering drops out

in our perturbative treatment. Only when taking into account higher-order

forward/backward-scattering events (as in the diffusive or localized regime)

the influence of forward-scattering should be noticeable also on the Tn. In

the ballistic regime, however, we should have 〈Tn〉 ≈ 1 − L/Ln, with 1/Ln =
1/L(b)

nn + 1/L(b)
n6=n′ such that the mode-specific attentuation lengths read as fol-

lows,
1
L1

= 16π4σ
2

d6
W (k1 + k2)

k1k2
+ π4

2
σ4

d4
S(2k1)
k2

1
, (4.26)
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Figure 4.5: Inverse partial attenuation length 1/Ln versus step width ∆, as ob-
tained numerically for two-mode antisymmetric waveguides (ρ = 0.03, Neff =
25, σ ≈ 0.01 and k = 2.55/π). Top row: The numerical results for 1/L1 (yel-
low •) are compared in (a) with the AGS (dotted) and SGS (dashed) terms of
Eq. (4.26) plotted separately. In (b) both scattering mechanisms are combined
(dotdashed). Bottom row: Numerical values for 1/L2 (blue �) are compared in
(c) with the AGS (dotted) and SGS (dashed) terms of Eq. (4.27) plotted sepa-
rately. In (d) both scattering mechanisms are combined (dotdashed). We find a
quantitative agreement with the predictions for 1/L2 (panel (d)), while a size-
able discrepancy is observed between numerics and analytical curves for the
first mode in (b).

1
L2

= 16π4σ
2

d6
W (k1 + k2)

k1k2
+ 8π4σ

4

d4
S(2k2)
k2

2
. (4.27)

To extract the corresponding attenuation lengths Ln from our numerics, we use

〈Tn〉 ≈ 1− L/Ln as a prescription to obtain Ln in the ballistic regime, character-

ized by 〈Tn〉 ∈ [0.9, 1]. The agreement which we find between the predictions

for 1/Ln and our numerical results is, in parts, remarkably good (see Fig. 4.5). In

particular, a comparison with the expression for 1/L2 = 1/L(b,AGS)
2 + 1/L(b,SGS)

2

in Fig. 4.5(d) reveals an excellent agreement between theory and simulation.

With the help of Fig. 4.5(c), it can be understood that the SGS mechanism con-
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tributes by way of two distinct effects: most obviously, we obtain peaks indicat-

ing enhanced resonant back-scattering in our system for 2k2∆ = 2πM , with M

integer. Note that these peaks in 1/L2 lead to back-scattering lengths which are

about one order of magnitude larger than the (conventional) AGS background.

The SGS mechanism can, however, also be identified as a finite contribution to

the inverse scattering length at values (k1 + k2)∆ = 2πM ′, exactly where the

AGS term in equation (4.27) vanishes. It is therefore the SGS mechanism which

prevents a perfect transparency of the waveguide.

When comparing, however, the first mode data to Eq. (4.26), we find that

the numerical curve cannot be fully reproduced by the corresponding analyti-

cal expression for 1/L1 (see Fig. 4.5(b)). While the AGS contribution 1/L(b,AGS)
1

is identical to 1/L(b,AGS)
2 in antisymmetric waveguides, the SGS contribution

1/L(b,SGS)
1 is a factor 16 smaller (see Fig. 4.5(a)). How can this be reconciled with

the numerical finding that 1/L1 and 1/L2 are mostly equal?

We suspect higher-order terms in scattering (that should not be confused

with higher orders in the boundary roughness strength σ) to be responsible for

these deviations which go beyond the first order nature of the underlying the-

ory, where the incident wave is assumed to scatter only once before leaving the

scattering region. Our aim in the following will be to include such higher-order

contributions based on the knowledge of the first-order scattering lengths. Con-

sider here, e.g., the scattering length of the first mode, L1, which, as we have as-

sumed so far, is attenuated by back-scattering from the first mode into the first

(L(b)
11 ) and into the second mode (L(b)

12 ), respectively. The next higher order con-

tribution would be given by forward scattering into the second mode (governed

by L(f)
12 ), followed by back-scattering from the second mode into the first (L(b)

21 )

or into the second mode (L(b)
22 ). Based on the magnitude of the involved scat-

tering lengths the forward-scattering 1 ↔ 2 occurs much more frequently than

a back-scattering event, i.e., the propagating wave undergoes forward scatter-

ing multiple times before it is backscattered (see figure 4.6). Consequently, the

modes can be assumed to be almost equally distributed between mode 1 or 2 be-
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Figure 4.6: Illustration of scattering processes of different order. Two processes
are shown that attenuate the forward moving first mode, n = 1. One process
is of first order and consists just of a single back-scattering event from the first
mode into any of the two backward-moving modes. However, since in the case
we consider, forward-scattering 1 ↔ 2 is dominant as compared to backscat-
tering, it is much more likely that the first mode undergoes multiple scattering
events in forward direction before backscattering occurs. Such terms can thus
yield a sizeable contribution although they formally are of higher-order in the
number of scattering events which they undergo.

fore back-scattering occurs. As a result, the back-scattering contribution should

also be composed of both modes in equal shares. Since the forward-scattering

occurs in series, the back-scattering in parallel, this translates into an additional

effective second order term for the inverse scattering length,

1
L(2,eff) = 1

L(f) + 1
1
2

(
1

L
(b)
21

+ 1
L

(b)
22

+ 1
L

(b)
12

+ 1
L

(b)
11

) , (4.28)

with L(f) ≡ L
(f)
12 = L

(f)
21 . Eq. (4.28) represents a simple qualitative estimate of

second order contributions to the inverse scattering lengths, and we expect that

this expression can be made more quantitative by employing a full-fledged di-

agrammatic theory. Note that this correction term does not feature an explicit

mode dependence since the redistribution of the flux is the same for both prop-

agating modes.

Based on the above, the total inverse scattering lengths can be written as the

sum of the following contributions,

1
Ln

= 1
L

(b)
nn

+ 1
L

(b)
nn′ 6=n

+ 1
L

(2,eff) ,

= 1
L

(1)
n

+ 1
L

(2,eff) , (4.29)
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Figure 4.7: Inverse partial attenuation length 1/Ln versus step width ∆, as ob-
tained numerically for two-mode antisymmetric waveguides (ρ = 0.03, Neff =
25, σ ≈ 0.01 and k = 2.55/π ). The inverse attenuation lengths are shown in (a)
for the first mode, 1/L1 (yellow •) and in (b) for the second mode 1/L2 (blue �).
The analytical curves are displayed without (dotdashed) and including (solid)
second order corrections of Eq. (4.28). Note the quantitative agreement that is
achieved through the inclusion of higher-order scattering terms.

where the superscripts (i) denote the order of the contribution. A comparison

of this result with the numerical data is shown in Fig. 4.7, yielding much better

agreement than without the second-order contributions. In particular, we find

(see Fig. 4.7(a)) that incorporating the new effective scattering length 1/L(2,eff)

resolves the discrepancy we found earlier for the inverse attenuation length of

the first mode, 1/L1. This result now also allows us to understand the similarity

between the numerical data for 1/L1 and 1/L2 while the first-order SGS con-

tributions are very different for these two modes: the reason is apparently the

strong intermode coupling induced by efficient forward-scattering L(f) which

lets the inverse attenuation length of the first mode 1/L1 inherit the behavior

of the second mode 1/L2. Correspondingly, the reason for the decoupling be-

tween the modes in Fig. 4.7 at around ∆ ≈ 2.5 can also now be identified: in

this parameter window the intermode scattering strength is strongly reduced,

allowing the different attenuation lengths to maintain their mode-specific val-

ues. Everywhere else (outside this parameter window) the behavior of 1/L1 is

governed by 1/L2.
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4.5.3 Nonsymmetric profiles

Nonsymmetric waveguides represent the most general case for waveguide sym-

metries since, in contrast to the previous sections, both boundaries are not re-

stricted by any symmetry requirement, i.e., we have ξ↑(x) 6= ξ↓(x). Turning at

first to the partial attenuation lengths, table 4.1 and Eqs. (4.17) and (4.18) allow

us to put forward the corresponding expressions for 1/Lnn = 1/L(f)
n 6=n′ + 1/L(b)

nn +
1/L(b)

n6=n′ , which are given by

1
L11

= 2π4σ
2

d6
1
k2

1
W (2k1) + 8π4σ

2

d6
1

k1k2

[
W (k1 + k2) +W (k1 − k2)

]

+20σ
4

d4
1
k2

1
S(2k1) + (9 + 6π2 + 10π4)

72π4
σ2

d6
1

k1k2

[
S(k1 + k2) + S(k1 − k2)

]
,

(4.30)

1
L22

= 32π4σ
2

d6
1
k2

1
W (2k2) + 8π4σ

2

d6
1

k1k2

[
W (k1 + k2) +W (k1 − k2)

]

+20σ
4

d4
1
k2

1
S(2k2) + (9 + 24π2 + 160π4)

72π4
σ2

d6
1

k1k2

[
S(k1 + k2) + S(k1 − k2)

]
.

(4.31)

We can also immediately write down the corresponding total scattering lengths

1/Ln = 1/L(b)
nn+1/L(b)

n6=n′ , where forward-scattering, i.e.,W (k1−k2) and S(k1−k2),

is not considered since it does not attenuate the total transmission Tn of the

corresponding mode,

1
L1

= 2π4σ
2

d6
1
k2

1
W (2k1) + 8π4σ

2

d6
1

k1k2
W (k1 + k2)

+20σ
4

d4
1
k2

1
S(2k1) + (9 + 6π2 + 10π4)

72π4
σ2

d6
1

k1k2
S(k1 + k2) ,

(4.32)

1
L2

= 32π4σ
2

d6
1
k2

1
W (2k2) + 8π4σ

2

d6
1

k1k2
W (k1 + k2)

+20σ
4

d4
1
k2

1
S(2k2) + (9 + 24π2 + 160π4)

72π4
σ2

d6
1

k1k2
S(k1 + k2) .

(4.33)
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Figure 4.8: Inverse partial attenuation length 1/Lnn versus step width ∆, as
obtained numerically for two-mode nonsymmetric waveguides (ρ = 0.03,
Neff = 25, σ ≈ 0.01 and k = 2.55/π ). Top row: The numerical results for
(a) 1/L11 (yellow •) and (b) 1/L22 (blue �) are shown. The corresponding ana-
lytical expressions (4.30) and (4.31) are shown in black (dotdashed), indicating
very good agreement with the numerical data. Bottom row: Here the numerical
data for (c) 1/L1 (yellow •) and (d) 1/L2 (blue �) are compared with the cor-
responding analytical terms without (dotdashed) and including (solid) second
order corrections. Even though nonsymmetric waveguides represent the most
general of waveguide symmetries, we find a remarkably good agreement with
our numerics.

As can be seen from these equations for 1/Ln and 1/Lnn, intra- and inter-

mode as well as the AGS and the SGS scattering lengths now all contribute

to the scattering process, in contrast to symmetric or antisymmetric waveg-

uides where the coefficient matrices Ann′ and Bnn′ from table 4.1 feature ze-

ros at symmetry-specific entries. This fact underlines the role of nonsymmetric

waveguides as the most general case to study in surface-corrugated systems.

For comparison with the numerical data we determine the quantities 1/Lnn
and 1/Ln by means of a fit to the transmission in the ballistic regime, 〈Tnn〉 ≈
1 − L/Lnn and 〈Tn〉 ≈ 1 − L/Ln, in complete analogy to antisymmetric waveg-
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uides in the preceding section. Fig. 4.8 shows a comparison between numerics

and theory for nonsymmetric two-mode waveguides. Concentrating at first on

1/Lnn (first row in Fig. 4.8), we note that we find very good agreement between

the theoretical and the numerical curves for both the first and the second mode.

Similar to the corresponding results in antisymmetric waveguides, a peak at

∆ ≈ 2.5 is clearly visible for 1/L22 and, more hidden, also in 1/L11. The other

peaks emerging in the analytical expression for 1/L22 can also be found in our

numerical data (Fig. 4.8(b)), albeit slightly more concealed than in the previous

section. The positions of these resonances can again be determined from the

resonance condition in Eq. (4.23).

Turning to the assessment of our results for 1/Ln we can now, with the

knowledge from the last section, also take into account higher-order scatter-

ing contributions given by Eq. (4.28). Figures 4.8(c-d) show a comparison of the

analytical expressions for the attenuation lengths 1/Ln with the numerical data.

Note that here we also include the first order predictions as dotdashed lines.

As found before in antisymmetric two-mode waveguides, 1/L2 is already cap-

tured very well by equation (4.33). The arc-structure driven by the AG scatter-

ing mechanism shows again a remarkable agreement with the numerical curve,

the same is true at resonant points where we find dominating contributions

of the SGS mechanism. As before, a more elaborate argument incorporating

second-order terms in the scattering is needed for explaining the behavior of

1/L1 (Fig. 4.8(c)). Taking only first-order expressions from Eq. (4.32) into ac-

count results in theoretical predictions which deviate from our numerical data

by about one order of magnitude. Moreover, the period of the oscillations in

1/L1 does not seem to coincide with the analytical predictions. Only after al-

lowing for higher-order terms in 1/Ln, i.e., where forward-scattering followed

by back-scattering is taken into account by employing Eq. (4.28), an agreement

can be reestablished (Fig. 4.8(c) solid line).

Note that the reflection resonances which we observe for nonsymmetric and

symmetric waveguides are not as pronounced as in the case of antisymmet-
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ric waveguides. This can be understood by the fact that the cross-section of

an antisymmetric waveguide remains constant throughout the entire waveg-

uide length such that also the wavenumber kx does not change in the course of

propagation. As a consequence, the resonance condition k∆ = 2πM , with M

integer, can be fulfilled very accurately in antisymmetric waveguides, while for

waveguides with different symmetries the resonance condition is fulfilled only

on average.



CHAPTER 5
Surface scattering and band gaps in

rough waveguides

In the previous chapter, we have shown that we could successfully put for-

ward a quantitative theory to describe the transmission properties of a random

yet specific surface profile by extending the surface scattering theory [107], in

full agreement with our numerical simulations. This theory, however, allows

to accomplish much more, namely to turn the problem around and induce de-

sired transmission properties by engineering and designing the boundary ξ(x).

Also, even though we have seen that the surface-scattering theory may be ap-

plied to very long wires, here we may also test if it is fit to describe transport in

very short systems. This challenging task was undertaken in collaboration with

Otto Dietz, Ulrich Kuhl, Hans-Jürgen Stöckmann, Felix M. Izrailev, Nykolay M.

Makarov as well as Florian Libisch [29]. My contribution to this work was to

assist with the interpretation of the experimental data, especially in view of the

analytical scattering theory.

77



CHAPTER 5. SURFACE SCATTERING AND BAND GAPS IN ROUGH
WAVEGUIDES 78

Figure 5.1: Experimental setup with exchangeable rough boundaries. The photo
shows the considered waveguide with the surface disordered region in the cen-
ter and the lifted top plate. Step motors are attached to the top plate to shift
the input and output antenna in z-direction. Absorbers at both ends suppress
reflection (indicated in the sketch below). This figure was taken from Ref. [29].

5.1 Strategy

In this work, the amplitude-scattering term was designed such that one finds a

predetermined transmission gap, corresponding to large values of the attenua-

tion length of the second mode, 1/L2, in a previously defined frequency interval

∆ν. From the specific form of the roughness-height power-spectrum

W (kx) =
∣∣∣∣∫ ∞
−∞

ξ(x)e−ikxxdx
∣∣∣∣2 ≡ FPS [ξ(x)] , (5.1)

the inverse problem of finding the corresponding profile function ξ(x), i.e.,

ξ(x) = F−1
PS [W (kx)] , (5.2)

was solved by means of a convolution method (see Ref. [29]). The profile associ-

ated with the engineered transmission characteristics can be seen Fig. 5.1, which

corresponds to a symmetric waveguide in a sense that the waveguide is sym-

metric with respect to the longitudinal waveguide axis. Note that, in contrast to

the microwave channel in section 3.14, the present waveguide is not adiabatic.

In a two-mode, symmetric waveguide, both modes are not coupled1 and,
1 Consider here, e.g., the effective model in Eqs. (A.24), with the relative boundary phase

in Eq. (A.25) set to ϑ = π. This immediately results in a diagonal Hamiltonian with vanishing
coupling g.
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thus, each mode can be considered isolated; the only mechanism that can de-

populate a given mode is thus by resonant intra-mode backscattering, described

by the modal backscattering lengths

1
Lbn

= 1
Lb,AGS
n

+ 1
Lb,SGS
n

, (5.3)

where the AGS (SGS) term is proportional to W (2kn) (S(2kn)). Thus, since only

two terms contribute, all gaps in the respective transmission spectrum outside

the frequency range ∆ν can be expected to originate from the square-gradient

scattering mechanism for the specific profile (5.2), given by

S(kx) = FPS

[
ξ′2(x)

]
. (5.4)

If, however, square-gradient scattering is to be neglected, we would observe

only the AGS gap in the respective transmission curve. The two terms that

contribute to the attenuation length 1/Lb
2 are plotted in Fig. 5.2. Most notably,

we see that if the wavenumber of the second mode, k2, is approximately equal

to 75 m−1, the AGS mechanism dominates (per construction), while in the small

wavenumber limit, the SGS mechanism prevails.

5.2 Results

Experimental data obtain by the Stöckmann group in Marburg, as well as nu-

merical results can be found in Fig. 5.3. Focussing on the transmission of the sec-

ond mode, T2, we observe the following basic structure: For low and high fre-

quencies a transmission gap is observed, interrupted by a transmission plateau

for intermediate frequencies. Since the profile was designed such that AGS

mainly contributes to backscattering only in a short frequency range, the right-

most gap can be associated with the AGS mechanism (shown in blue color).

Furthermore, we see in yellow a transmission gap that can be unambiguously

attributed to the SGS mechanism – the AGS mechanism alone would only ac-

count for the dotted curve in Fig. 5.3. This data we put forward here provides
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SGS

AGS

Figure 5.2: The inverse backscattering lengths 1/Lb,AGS2 (gray curve) and
1/Lb,SGS2 (black curve) for the second mode, n = 2 are shown. The correspond-
ing power spectra are calculated directly from the rough boundaries shown in
Fig. 5.1. Regions of dominating SGS and AGS mechanisms are shaded. This
figure and caption was taken from Ref. [29].

further unambiguous proof that a theory neglecting the SGS contribution can-

not fully account for all major ingredients in surface scattering.

Finally, one may notice a shift in the wavenumber of the transmission char-

acteristics in Fig. 5.3 between theory (solid black line) and the experiment (grey

line). This shift can be attributed to a value of the surface roughness strength σ

that is too large (here, σ is almost 10% of the wire width). Since the analytical

theory employed here is perturbative in σ, we have numerically recalculated

the transmission curves for a waveguide with a surface roughness strength that

is reduced by 50%. Then, a much better agreement is obtained between the

numerics and analytical predictions (see Ref. [29] for details).
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ab

SGS

AGS

Figure 5.3: Top: Measured transmittance Tn (gray curve), for the second mode
(n = 2). The corresponding theoretical prediction is shown as solid black curve
(see Ref. [29] for details). For the dotted line the SGS is neglected explicitly.
The colored areas indicate the gaps caused by the dominating scattering mech-
anism: in blue (yellow) regions the AGS (SGS) mechanism prevails. Bottom:
comparison between the measured (solid) and numerical (dashed) transmission
intensity. This figure and caption was taken from Ref. [29].



CHAPTER 6
Conclusion and outlook

In summary, we have investigated how waveguides with boundary modula-

tions can be successfully utilized to control wave transmission and reflection by

engineering both their shape and their absorbing potential.

More precisely, we have demonstrated how the encircling of an exceptional

point can be fully realized in two-mode waveguides while staying faithful to the

full dynamical nature of this problem. The emergence of inherent non-adiabatic

contributions allowed us to build an asymmetric mode-switch that has been re-

alized successfully in a corresponding microwave experiment, and that may

be used in real-world applications to obtain direction-dependent modal trans-

port. In this way, we have devised a notably platform-independent approach

to mode switching that is implementable not just for microwaves, but readily

applicable also to light, acoustic or matter waves. In particular, we emphasize

that our strategy provides a general concept for devices such as those reported

recently on photonic mode conversion [65]. Rather than a breaking of reci-

procity [70], we show here that a successful working principle for robust and

efficient mode switching in waveguides is given through an effective encircling

of exceptional points. Future work may focus on the implementation of our con-

cept on the nanoscale, like, e.g., in photonic systems as in Ref. [65] or exciton-

polariton devices as implemented in Ref. [23]. Furthermore, our restrictions to
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two-mode waveguides may be lifted, leading, potentially, to exceptional points

of higher orders [45], and would allow the implementation of generalized tran-

sition schemes like the stimulated Raman adiabatic passage (STIRAP) [18].

In the second part of this thesis, we have investigated dissipationless waveg-

uides that feature a step-like surface disorder supporting two propagating modes

[28]. Our study reveals a resonant enhancement of wave reflection in these sys-

tems, an effect which has, to the best of our knowledge, not yet been observed

earlier, despite the popularity of the employed waveguide model. To mani-

fest this effect we performed extensive numerical calculations using a waveg-

uide model with symmetric, antisymmetric and nonsymmetric random profiles,

respectively. We show that this previously neglected contribution is very ro-

bust and survives ensemble-averaging of the surface roughness. At the reso-

nance conditions, which we obtain fully analytically, we find up to an order-

of-magnitude enhancements of the reflection. Not only do our results consti-

tute the first evidence of these resonances in waveguides, but they also provide

the first unambiguous signatures of the square-gradient scattering mechanism

in waveguides with arbitrary symmetries. The very good agreement which

we find between numerical and analytical results provides a solid basis for a

general understanding of wave transmission through waveguides with surface

roughness. Combined with the joint microwave experiment that showed the

importance of the square-gradient scattering mechanism in symmetric waveg-

uides [29], this knowledge may be particularly important in view of experi-

mental possibilities to engineer the transmission characteristics of waveguides

through their surface profiles [113, 114].



APPENDIX A
Effective 2× 2 model derivation

A.1 Model

Wave propagation with frequency ω in a 2D waveguide is described by the com-

plex scattering state ϕ(x, y, t) = φ(x, y)e−iωt satisfying the Helmholtz equation

∆φ(x, y) + ε(x, y)ω
2

c2 φ(x, y) = 0 , (A.1)

with the speed of light c and the complex dielectric function εwhich is modelled

by 1+ iη/k in the waveguide’s interior. Here, k = ω/c denotes the wavenumber.

The imaginary part of ε with the dissipation coefficient η describes the losses

originating from the interaction with the top and bottom waveguide walls or

an absorbing material in the waveguide itself [115]. We emphasize that the

applicability of Eq. (A.1) is not limited to the electromagnetic domain, but may

also describe the propagation of, e.g., sound or matter waves.

A.2 Floquet-Bloch picture

In the following we will consider a metallic waveguide, which implies Dirichlet

boundary conditions at the waveguide boundary. Considering periodic func-

tions both at the lower and the upper waveguide boundary, at y = ξ↓(x) and
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Figure A.1: A periodic waveguide with width W , boundary wavenumber kb
and undulation amplitude σ. A single unit cell of length ` = 2π/kb is highlighted
by solid lines.

y = ξ↑(x), respectively, these conditions thus become

φ
(
x, ξi(x)

)
= 0 , i =↓, ↑ ,

ξ↓(x) = σ sin kbx and ξ↑(x) = W + σ sin(kbx+ ϑ) , (A.2)

where kb and σ denote the boundary wavenumber and amplitude, respectively;

W is the waveguide width and the constant parameter ϑ ∈ (−π, π] corresponds

to the phase shift between the upper and lower boundary. For example, ϑ = 0
corresponds to a periodic waveguide with constant width W (see Fig. A.1 for

an illustration).

In a uniform waveguide with no losses, i.e., σ = η = 0, the propagating

waves are given by the modes

φn(y) = sin
(
nπ

W
y
)
eiknx, kn =

√
k2 −

(
nπ

W

)2
, n = 1, 2, . . . (A.3)

We assume that there are only two propagating modes with n = 1 and 2, which

determine the wavenumber interval as 2 < kW/π < 3. In a periodic waveguide,

when σ > 0, the propagating modes are described by the Bloch solutions

φ(x, y) = Λ(x, y) eiKx, (A.4)

where Λ(x, y) is an x-periodic function with period ` = 2π/kb, i.e., Λ(x + `, y) =
Λ(x, y). The Bloch wavenumber K is defined up to an integer multiple of the

boundary wavenumber kb, i.e., K (mod kb). In this work, we study effects re-

lated to a degenerate (EP) Bloch wavenumber K, and our first goal is to find

values of the parameters corresponding to the EP degeneracy.
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A.3 Perturbative approach

To accomplish this task we consider the boundary wavenumber equal to

kb = kr + δ , (A.5)

where the resonant wavenumber kr, at which modes 1 and 2 strongly scatter

into each other, is given by

kr = k1 − k2 , (A.6)

and δ is the detuning parameter. When σ = η = δ = 0, we have kb = kr and a

superposition of the two corresponding modes (A.3) propagating in the positive

x-direction can be written as

φ0(x, y) = Λ(0)(x, y)eik1x (A.7)

with

Λ(0)(x, y) = a1 sin
(
π

W
y
)

+ a2 sin
(2π
W
y
)
e−ikrx (A.8)

and arbitrary coefficients a1 and a2. Here, the function Λ(0)(x, y) is x-periodic

with period `0 = 2π/kr. Expression (A.7) can be interpreted as a degenerate

Bloch mode of multiplicity two with the wavenumber k1 = k2 (mod kr). This

is a diabolical point (DP) degeneracy (typical for Hermitian systems) at which

only the Bloch wavenumbers merge, while the mode functions remain different,

see, e.g., Ref. [1].

In this section, we find the first-order approximation for Bloch modes when

the boundary amplitude σ, the detuning parameter δ and the dissipation coef-

ficient η are small quantities of the same order. These Bloch modes are small

perturbations of (A.7) and, thus, can be written in the form (A.4) with

Λ(x, y) = Λ(0)(x, y) + Λ(1)(x, y), K = k1 + s, (A.9)

where Λ(1)(x, y) and s are small corrections of the same order as σ, δ and η, see,

e.g., Ref. [116]. Using Eq. (A.9) in (A.4), we obtain the Bloch mode in the form

φ(x, y) = [Λ(0)(x, y) + Λ(1)(x, y) + isxΛ(0)(x, y)]eik1x, (A.10)
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where the second-order small terms in σ, δ and η and in any of their products

were neglected. Substituting (A.10) into (A.1) and neglecting again all second-

order terms, we get the equation

Λ(1)
xx + 2ik1Λ(1)

x + Λ(1)
yy +

(
π

W

)2
Λ(1) + 2is(Λ(0)

x + ik1Λ(0)) + ikηΛ(0) = 0 , (A.11)

with fn ≡ ∂
∂n
f and fnn ≡ ∂2

∂n2f . Note that zero-order terms are canceled in (A.11)

because Λ(0) is a solution of the unperturbed problem.

In the first-order approximation, we can transfer the boundary conditions

(A.2) to y = 0 and y = W by expanding φ in Taylor series as

0 = φ+ φyσ sin krx+O(σ2) at y = 0 ,

0 = φ+ φyσ sin(krx+ ϑ) +O(σ2) at y = W . (A.12)

Using Eq. (A.10) in (A.12), and taking into account that Λ(0) = 0 at y = 0 and W ,

we obtain

Λ(1) = −σΛ(0)
y sin krx at y = 0,

Λ(1) = −σΛ(0)
y sin(krx+ ϑ) at y = W , (A.13)

where second-order terms were neglected. The function Λ(x, y) must be x-

periodic with period

` = 2π
kb

= `0 + `1δ +O(δ2), `0 = 2π
kr
, `1 = −2π

k2
r

. (A.14)

Using Eq. (A.9), the first-order periodicity condition for Λ(x, y) yields

(
Λ(1)

)
x=0

=
(
Λ(0)
x `1δ + Λ(1)

)
x=`0

, (A.15)

where we used Λ(0)(x = 0, y) = Λ(0)(x = `0, y). Similarly, the periodicity condi-

tion for the derivative Λx yields

(
Λ(1)
x

)
x=0

=
(
Λ(0)
xx `1δ + Λ(1)

x

)
x=`0

. (A.16)
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The linearized equation (A.11) can now be solved for s and Λ0. For this

purpose, we multiply it with sin
(
π
W
y
)

and integrate with respect to x and y,

∫ W

0

∫ `0

0

[
Λ(1)
xx + 2ik1Λ(1)

x + Λ(1)
yy +

(
π

W

)2
Λ(1)

+ 2is(Λ(0)
x + ik1Λ(0)) + ikηΛ(0)

]
sin

(
π

W
y
)

dxdy = 0 .
(A.17)

The first three terms should be integrated using (A.13), (A.15) and (A.16) to

get rid of the derivatives of the unknown function Λ(1). The resulting terms

containing Λ(1) cancel out, yielding the equation

0 =
∫ W

0

∫ `0

0

[
2is

(
Λ(0)
x + ik1Λ(0)

)
+ iηkbΛ(0)

]
sin

(
π

W
y
)

dxdy

− `1δ
∫ W

0

[
Λ(0)
xx (`0, y) + 2ik1Λ(0)

x (`0, y)
]

sin
(
π

W
y
)

dy

− σ π
W

∫ `0

0

[
Λ(0)
y (x,W ) sin (krx+ ϑ) + Λ(0)

y (x, 0) sin (krx)
]

sin
(
π

W
y
)

dx .

(A.18)

Then, using the explicit form of Λ(0) from (A.8) and of `0 and `1 from (A.14)

yields, dropping a common factor of kr/ (2πWk1),(
iη

2
k

k1
− s

)
a1 + i

σ

k1
(eiϑ + 1) π

2

W 3 a2 = 0 . (A.19)

A similar integration using the factor sin
(

2π
W
y
)
eikrx instead of sin

(
π
W
y
)

in Eq. (A.17),

yields

− i σ
k2

(e−iϑ + 1) π
2

W 3 a1 +
(
δ + i

η

2
k

k2
− s

)
a2 = 0 . (A.20)

A nontrivial solution (a1, a2) of system (A.19) and (A.20) exists if and only if

the determinant vanishes, i.e.,(
s− iη2

k

k1

)(
s− δ − iη2

k

k2

)
− 2π4

W 6
σ2

k1k2
(1 + cosϑ) = 0 . (A.21)

The roots s of this equation and the corresponding solution (a1, a2) determine

the corrections to the Bloch modes in Eqs. (A.4), (A.8) and (A.9). Note that,

in the absence of dissipation, η = 0, our analysis fully reproduces the results

obtained in Ref. [117].
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A.4 Effective 2× 2 model

In the next step, we derive the effective two-level Schrödinger equation corre-

sponding to the propagation of the two nearly resonant Bloch modes. For this

purpose, we write the solution (A.4) given by (A.8) and (A.9) as

φ(x, y) ≈
(
a1 sin

(
π

W
y
)

+ a2 sin
(2π
W
y
)
e−ikrx

)
ei(k1+s)x

= c1(x)√
k1

sin
(
π

W
y
)

+ c2(x)√
k2

sin
(2π
W
y
)
e−ikrx , (A.22)

where

c1(x) = a1

√
k1e
−i(π−ϑ)/4e−i(δ−s)x ,

c2(x) = a2

√
k2e

i(π−ϑ)/4e−i(δ−s)x , (A.23)

satisfy the Schrödinger equation

i
∂

∂x

c1

c2

 = H

c1

c2

 , H =
δ − iη2 k

k1
Bσ

Bσ −iη2
k
k2

 , (A.24)

with

B =
√

2 (1 + cosϑ) π
2

W 3
1√
k1k2

. (A.25)

The eigenvalueE of the Hamiltonian (A.24) is related to the Bloch wavenumber

K via Eq. (A.23) and Eqs. (A.5), (A.6) and (A.9) as

E = δ − s = δ + k1 −K = kb + k2 −K . (A.26)

A.5 Non-uniform absorption

So far, we have considered a uniform dissipation with a constant parameter η.

To engineer the waveguide’s mode-dependent transmission such that one mode

suffers large loss, while the other mode propagates (approximately) undamped,

we now extend the model to allow absorption that is distributed non-uniformly

along the waveguide.
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Manipulating loss in a waveguide design implies, however, that the loss

parameter is position-dependent, η = η(x, y). In order to keep the Floquet-Bloch

formalism valid, we consider periodic losses with the period of the boundary

modulation ` = 2π/kb, i.e.,

η = η0η̃(x, y), η̃(x+ `, y) = η̃(x, y) , (A.27)

where η̃(x, y) is a given function describing the loss distribution and the real pa-

rameter η0 controls the loss intensity. Performing the derivation as for uniform

absorption, integrals of the form

Γnm = 1
πW

kkb√
knkm

∫ `

0

∫ W

0
η̃(x, y) sin

(
nπ

W
y
)

sin
(
mπ

W
y
)
e−i(kn−km)xdxdy (A.28)

now appear, leading to the Hamiltonian

H =
 δ Bσ

Bσ 0

− iη0

2

Γ11 Γ12

Γ∗12 Γ22

 . (A.29)

Note that we have changed the integration limit from `0 to ` and kr to kb in

Eq. (A.28), which is justified within a first order perturbation approach, taking

into account the exact period of the boundary modulation. In case of constant

losses, i.e., η̃(x, y) = 1, we obtain Γn6=m = 0 and Γnn = k
kn

, returning to Eq. (A.24).

A very efficient way to engineer the mode-specific absorption is to choose

its spatial distribution according to the Hermitian dyadic product v2v
†
2. Here, v2

is one of the two eigenvectors of the system in the absence of absorption, with

eigenvalue E2, i.e.,

H0v2 = E2v2 , H0 =
 δ Bσ

Bσ 0

 . (A.30)

Introducing the composite Hamiltonian,

H = H0 − i
η

2v2v
†
2 , (A.31)

with the anti-Hermitian dissipative term −iη2v2v
†
2, one can see that the first

eigenstate v1 does not dissipate at all due to the orthogonality condition v†2v1 =
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0, in contrast to the second eigenstate v2 leading to a decay rate∝ exp
(
−η

2x
)
. In

fact, this procedure is the optimal way in which a dissipation asymmetry for a

2-mode system can be introduced.

While the dyadic form of Γnm for the losses in the effective 2× 2 description

is very efficient, the practical demands of the experiment (like a finite extent of

the absorber elements) require the use of Eq. (A.28) for the description of this

scenario. To achieve a similar efficiency in the case of these finite absorbers, the

elements are concentrated directlyj at the nodes of the second mode. A modified

version of this approach is also implemented in the experimental microwave

setup (see Fig. 3a,b in the main text and section 3.2.4 below).

A.6 EP structure

The Hamiltonian in Eq. (2.1) presented in the main text is obtained from Eq. (A.24)

by identifying g = Bσ and γn = ηk/kn, n = 1, 2. In terms of η, k and kn, it pos-

sesses the eigenvalue spectrum

E1,2 = δ

2 − i
η

4

(
k

k1
+ k

k2

)
± 1

2
√

∆ , ∆ ≡
(
δ − iη2

(
k

k1
− k

k2

))2

+ 4g2 . (A.32)

The degenerate state E1 = E2 appears when both the real and imaginary part of

∆ vanish simultaneously, yielding

gEP = ±η4

∣∣∣∣∣ kk1
− k

k2

∣∣∣∣∣ , δEP = 0 . (A.33)

Therefore, in the first approximation, the EP degeneracy appears for the waveg-

uide with periodic boundary of amplitude σ = gEP/B and resonant wavenum-

ber kb = kr.



APPENDIX B
Transitionless quantum driving

B.1 Effective model

We start with the effective Schrödinger equation

iψ̇ = H0ψ , ˙≡ ∂x , (B.1)

H0 =
 δ e−iφ(ϑ)|B(ϑ)|σ(x)
eiφ(ϑ)|B(ϑ)|σ(x) 0

 , (B.2)

with |B(α)| =
√

2 (1 + cosϑ) π2

W 3
1√
k1k2

and φ(α) = Arg(B) = (ϑ− π) /2. For rea-

sons that will become clearer later, we allow the off-diagonal entries to be com-

plex numbers. In the following we will omit function arguments and include

them only if necessary. Also, we choose the angle ϑ to be independent of x.

With the eigenvalues given by

λ± = 1
2 (δ ∓∆) , with ∆ ≡

√
δ2 + 4|B|2σ2 , (B.3)

we proceed by transforming into the (instantaneous) eigenbasis U , ψ → Uψ̃,

given by

U =
cos θ/2 e−iφ − sin θ/2 e−iφ

sin θ/2 cos θ/2

 , with tan θ = 2|B|σ
δ
. (B.4)
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In this basis, the Schrödinger equation (B.1) reads

i ˙̃ψ =
(
U †H0U − iU †U̇

)
ψ̃ , U †H0U =

λ+ 0
0 λ−

 , (B.5)

describing the dynamics in the eigenframe. For the system to evolve adiabati-

cally, the non-adiabatic contributions −iU †U̇ have to by much smaller than the

eigenvalues, U †H0U .

B.2 Transitionless quantum driving

Employing the strategy of Berry [61,62], this non-adiabatic term can be removed

completely by changing the initial Hamiltonian H0,

U †H0U → U †H0U + iU †U̇ , i.e. , (B.6)

H0 → H0 +H1 , (B.7)

with

H1 ≡ iU̇U † = i
θ̇

2

 0 −e−iφ

eiφ 0

 , θ̇ = 2|B|

(
δσ̇ − δ̇σ

)
(δ2 + 4|B|2σ2) . (B.8)

Substituting H0 with expression Eqn. (B.7), we have in the original basis

iψ̇ =
 −k1 e−iφ

(
|B|σ − iθ̇/2

)
eiφ

(
|B|σ + iθ̇/2

)
−k1 − δ

ψ, (B.9)

yielding the exact adiabatic dynamics in the eigenbasis U ,

i ˙̃ψ = U †H0Uψ̃ =
λ+ 0

0 λ−

 ψ̃ . (B.10)

B.3 Implementation

The question now is if the resulting Hamiltonian H = H0 + H1 is physical and

can be realized in the waveguide system considered in this thesis. We thus have
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to incorporate additional terms into the off-diagonals, and have to compare this

to a Hamiltonian with unknown parameters, i.e., the oscillation amplitude σ′,

detuning δ′ and boundary phase shift ϑ′: δ |B(ϑ)|σ − i θ̇2
|B(ϑ)|σ + i θ̇2 0

 !=
 δ′ e−iφ(ϑ′)|B(ϑ′)|σ′

eiφ(ϑ′)|B(ϑ′)|σ′ 0

 , (B.11)

i.e., we require |B(ϑ′)|σ′+ i θ̇2
!= eiφ(ϑ)|B(ϑ)|σ. Note that here we have transferred

the phase of the off-diagonals on the right hand side into the state ψ (see section

A.4). This equation can readily be solved for the unknown quantities σ′, δ′ and

ϑ′, yielding

ϑ′ = arctan
(

θ̇

2|B(ϑ)|σ

)
,

δ′ = δ ,

σ′ =

√
4|B(ϑ)|2σ2 + θ̇2

2|B(ϑ′)| . (B.12)

Since both σ′ and ϑ′ depend on σ = σ(x) and δ = δ(x) through θ̇ = θ̇ (σ(x), δ(x)),

now not only the oscillation amplitude, but also the relative boundary phase

varies with x.



APPENDIX C
Square-gradient scattering from step

boundaries

C.1 Step-profile ξ(x)

In order to describe an effective smoothing of a step-like waveguide boundary

due to a finite resolution capacity of the propagating wave, we consider a profile

ξ(x) which consists of 2N + 1 steps of width ∆ and random heights αn that

feature zero mean and unit variance,

ξ(x) =
N∑

n=−N
αn Πρ(x− n∆) . (C.1)

The smoothing of the steps is modelled by assuming Πρ(x) to be the sum of two

Fermi-functions Fρ(x),

Πρ(x) = Fρ(x−∆)− Fρ(x) = 1
1 + e(x−∆)/ρ −

1
1 + ex/ρ

, (C.2)

with the parameter ρ controlling the smearing of the steps, corresponding to

the finite resolution of the propagating wave. In the limit of ρ → 0, i.e., if we

assume perfect resolution, the unit box function Θ(x) − Θ(x − ∆) is obtained

(see figure C.1).
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Figure C.1: Plot of the smoothed step-function Πρ(x) which represents the
building block for the waveguide boundaries employed in the present paper.
A comparison of Πρ=0.05(x) (yellow solid line) and Πρ=0(x) (blue dashed line) is
shown, with step-width ∆ = 1. The smeared out region ∆x ∼ 12ρ used in the
estimate in section 4.3 is indicated by grey vertical lines, as determined by the
condition |Πρ(∆± 6ρ)− Π0(∆± 6ρ)| ∼ 2.5× 10−3.

C.2 Roughness-height power spectrum W (k)

To calculate W (k) =
∫∞
−∞ exp (−ikx′)〈ξ(x)ξ(x + x′)〉dx′, we employ the Wiener-

Khinchin theorem [109],∫ ∞
−∞

e−ikx
′〈f(x)f(x+ x′)〉dx′ = lim

L→∞

1
L

〈∣∣∣f̃L/2(k)
∣∣∣2〉 , (C.3)

where f̃L/2(k) denotes the truncated Fourier transform,

f̃L/2(k) ≡
∫ L/2

−L/2
e−ikxf(x)dx , (C.4)

which in the limit ofL→∞ becomes the Fourier transform f̃(k) ≡
∫∞
−∞ exp (−ikx)f(x)dx.

The angular brackets 〈· · · 〉 denote ensemble averaging. For our step-profile ξ(x)
we obtain the following expressions,

ξ̃L/2(k) =
N∑

n=−N
αn

∫ L/2

−L/2
Πρ(x− n∆)e−ikxdx

=
N∑

n=−N
αne

−ikn∆
∫ L/2−n∆

−L/2−n∆
Πρ(x)e−ikxdx . (C.5)

In our numerics we employ a constant number of modules but allow for a vary-

ing module width ∆, the waveguide length L is thus given by L = 2N∆. Equa-
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tion (C.5) therefore reads

ξ̃L/2(k) =
N∑

n=−N
αne

−ikn∆
∫ (N−n)∆

−(N+n)∆
Πρ(x)e−ikxdx (C.6)

≈
N∑

n=−N
αne

−ikn∆
∫ ∞
−∞

Πρ(x)e−ikxdx︸ ︷︷ ︸
Π̃ρ(k)

= Π̃ρ(k)
N∑

n=−N
αne

−ikn∆ . (C.7)

Here, we approximate the truncated Fourier transform in equation (C.6) with

Π̃ρ(k), such that it is independent of the summation index n and can thus be

pulled it in front of the summation. For the parameters employed in the present

paper this step is very well justified and only leads to a vanishingly small error.

The roughness-height power spectrum W (k) = limL→∞
1
L
〈|ξ̃L/2(k)|2〉 conse-

quently becomes

W (k) = lim
N→∞

1
2N∆

〈∣∣∣∣∣∣Π̃ρ(k)
N∑

n=−N
αne

−ikn∆

∣∣∣∣∣∣
2〉

= |Π̃ρ(k)|2
∆ lim

N→∞

1
2N

N∑
n=−N

N∑
m=−N

〈αnαm〉︸ ︷︷ ︸
α2
nδnm

e−ik(n−m)∆

= |Π̃ρ(k)|2
∆ lim

N→∞

1
2N

N∑
n=−N

α2
n = 1

∆ |Π̃ρ(k)|2. (C.8)

Note that we assume here that the random heights are uncorrelated, i.e., the

products 〈αnαm〉 vanish for n 6= m. The expression Π̃ρ(k) can be calculated

analytically,

Π̃ρ(k) =
∫ ∞
−∞

e−ikx (Fρ (x−∆)− Fρ (x)) dx

= F̃ρ(k)︸ ︷︷ ︸
(i πρ

sinh (πkρ) +πδ(k))

· (e−ik∆ − 1)︸ ︷︷ ︸
(−2ie−ik∆/2 sin (k∆/2))

. (C.9)

Since we evaluate W (k) at finite k values we omit the delta function δ(k) in the

following, yielding finally

W (k) = 1
∆

4π2ρ2

sinh2 (πkρ)
sin2 (k∆/2) . (C.10)
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C.3 Square-gradient power spectrum S(k)

For the squared gradient of ξ(x) we have

ξ′(x)2 =
N∑

n=−N

N∑
m=−N

αnαmΠ′ρ(x− n∆)Π′ρ(x−m∆) . (C.11)

Under the assumption that the smearing parameter ρ fulfils the relation ρ .

∆/12, the product Π′ρ(x− n∆)Π′ρ(x−m∆) is only finite if n = m, n = m+ 1 and

n = m− 1, respectively, i.e.,

Π′ρ(x− n∆)Π′ρ(x−m∆) ≈ δn,mF
′
ρ

(
x− (n+ 1)∆

)
F ′ρ
(
x− (m+ 1)∆

)
+ δn,mF

′
ρ

(
x− n∆

)
F ′ρ
(
x−m∆

)
−δn−1,mF

′
ρ (x− n∆)F ′ρ

(
x− (m+ 1)∆

)
−δn+1,mF

′
ρ

(
x− (n+ 1)∆

)
F ′ρ (x−m∆) ,

(C.12)

resulting in

ξ′(x)2 ≈
N∑

n=−N
α2
n

[
F ′2ρ (x− (n+ 1)∆) + F ′2ρ (x− n∆)

]
−αnαn+1F

′2
ρ (x− (n+ 1)∆)− αnαn−1F

′2
ρ (x− n∆) . (C.13)

To calculate the square-gradient power spectrum S(k) we have, with V (x) =
ξ′2(x)− 〈ξ′2(x)〉,

S(k) = 1
2

∫ ∞
−∞

e−ikx
′〈V (x)V (x+ x′)〉dx′

= 1
2

∫ ∞
−∞

e−ikx
′〈ξ′2(x)ξ′2(x+ x′)〉dx′ − π〈ξ′2(x)〉2δ(k) , (C.14)

where we again employ the Wiener-Khinchin theorem equation (C.3). Identify-

ing ξ′2(x) with f(x), we have

f̃(k) =
∫ ∞
−∞

e−ikxξ′2(x)dx

=
∫ ∞
−∞

e−ikxF ′2ρ (x)dx︸ ︷︷ ︸
1
6kπ

(1+k2ρ2)
sinh (πkρ)

N∑
n=−N

e−ikn∆

α2
n

(
1 + e−ik∆

)
− αnαn+1e

−ik∆ − αnαn−1



(C.15)
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In analogy to the reasoning for equation (C.10), we neglect the additional contri-

bution at k = 0. The square-gradient roughness spectrum S(k) = limL→∞
1
L
〈|f̃L/2(k)|2〉

thus becomes

S(k) = 1
∆
k2π2

72
(1 + k2ρ2)2

sinh2 (πkρ)
Ω(k∆) , (C.16)

with the auxiliary function Ω(x),

Ω(x) = lim
N→∞

1
2N

〈∣∣∣∣∣∣
N∑

n=−N
e−inx

[
α2
n

(
1 + e−ix

)
− αnαn+1e

−ix − αnαn−1

]∣∣∣∣∣∣
2〉

= lim
N→∞

4
5

(
1 + 1

2N

)(
7 + 2 cos (x)

)
+ 2

(
1 + cos (x)

)
1

2N
sin2

[
(N + 1

2)x
]

sin2 (x/2)

 .

(C.17)
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