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A B S T R A C T

Statistics is the science of learning from data. Data are frequently
presented in the form of numbers, vectors, or functions, gener-
ally containing measurements of some phenomena. During this
process of data collection measurements are recorded as precise
numbers, and countless techniques are available to model or to
draw inference from these measurements.

But in practical situations especially dealing with continuous
variables there are two types of uncertainty in daily life data, one
is variation among the observations and another is imprecision
of single observations. Keep in mind that variation among
observations is different from imprecision, which is also called
fuzziness.

Classical statistical tools are based on precise observations
and do nothing with fuzziness. By ignoring fuzziness of the ob-
servations we may lose information and get misleading results.

Therefore, fuzziness of the single observations should be
considered and modeled by fuzzy numbers.

To consider fuzziness of the single observations in drawing
inference the idea of fuzzy sets was first introduced by Zadeh in
1965. According to him in the physical world many quantities
do not have precise values but are more or less fuzzy.

Also if we consider some examples in linguistic description
like, a class of good or bad teachers, class of good-looking
women, high or low temperature, in all these situations one
cannot characterize it in classical mathematical set notation. In
the same way there are a lot of situations for which we cannot
define precise criteria for the membership to a set.

The analysis techniques of life time data can be traced
back centuries but the prompt development started about few
decades ago, and since then a significant number of books and
research papers has been published. Most of these publications
are based on precise life time observations.

It has already been shown that life time observations are not
precise numbers but more or less fuzzy. Therefore, the analysis
techniques need to be generalized in such a way that in addition
to the stochastic variation, fuzziness of the observations are also
integrated.

Some work has been done dealing with fuzzy life time data,
but still in most of the situations it is ignored.

In this study some popular approaches of survival analysis
are generalized in such a way that fuzziness of the observations
is also considered for the analysis to obtain appropriate results.

The proposed estimators are based on fuzzy life time data.
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In addition to these techniques some parametric and non-
parametric techniques from Accelerated Life Testing are also
generalized for fuzzy life time data.
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timator ŝ∗ based on the fuzzy sample
shown in figure 20 . . . . . . . . . . . . . . 63

Figure 27 Upper and Lower δ-level curves of the
fuzzy estimate of the survival function . . 64

Figure 28 Upper and Lower δ-level curves of the
fuzzy estimate of the hazard rate . . . . . 64

Figure 29 Trapezoidal fuzzy life times . . . . . . . . 66

Figure 30 Characterizing function of the fuzzy esti-
mate α̂∗ . . . . . . . . . . . . . . . . . . . . 68

Figure 31 Characterizing function of the fuzzy esti-
mate β̂∗ . . . . . . . . . . . . . . . . . . . . 68

Figure 32 Characterizing function of the fuzzy esti-
mate γ̂∗ . . . . . . . . . . . . . . . . . . . . 69

Figure 33 Lower and Upper δ-level curves of the
Fuzzy Reliability Function estimate based
on the fuzzy sample given in figure 29. . . 71

Figure 34 Characterizing functions of a fuzzy sample 73

Figure 35 Characterizing function of the fuzzy esti-
mator t̂∗0 . . . . . . . . . . . . . . . . . . . 73

Figure 36 Characterizing function of the fuzzy esti-
mator α̂∗ . . . . . . . . . . . . . . . . . . . 74

Figure 37 Some lower and upper δ-level curves of
the fuzzy estimate of the hazard rate . . . 75

Figure 38 Characterizing functions of a fuzzy sample 77

Figure 39 Characterizing function of the fuzzy esti-
mator β̂∗ . . . . . . . . . . . . . . . . . . . 77

Figure 40 Characterizing function of the fuzzy esti-
mator λ̂∗ . . . . . . . . . . . . . . . . . . . 78

ix



Figure 41 Some lower and upper δ-level curves of
the fuzzy estimate of the hazard rate . . . 79

Figure 42 Fuzzy sample under stress S1 . . . . . . . 81

Figure 43 Fuzzy sample under stress S2 . . . . . . . 82

Figure 44 Characterizing functions of θ̂∗1 and θ̂∗2 . . . 82

Figure 45 Characterizing function of Â∗ . . . . . . . 85
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1

I N T R O D U C T I O N

1.1 fuzzy information

Statistics is the science of learning from data. Data are usually pre-

sented in the form of numbers, vectors, or functions, generally containing

measurements of some phenomena. During the data collection process

measurements are recorded as precise numbers, and countless tech-

niques (Stochastic models) are available to model or to draw inference

from measurements. Stochastic models are used to model variation

among the precise observations. But in practical situations especially

dealing with continuous variables there are two types of uncertainty in

daily life data, one is variation among the observations and another is

imprecision of single observations. Keep in mind that variation among

observations is different from imprecision, which is also called fuzziness.

The common variables which are used in daily life are life time of

an object, amount of rain, amount of carbon emission, color intensity of

light, height of a tree etc. All these variables are of continuous nature and

theoretically measured as precise numbers, but it is worth mentioning

that an exact measurement of a real continuous variable is impossible,

because they are more or less fuzzy.

Classical statistics (Stochastic models) considers only variation among

the precise observations and ignores the fuzziness. By doing so we may
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lose information and get misleading results. Therefore fuzziness of

the single observations should be considered and modeled by so-called

fuzzy numbers (Viertl, 2011).

To consider the imprecision of single observations the idea of fuzzy

sets was first introduced by Zadeh in 1965. According to him in the

physical world you may classify some animal or plants like cow, horse,

birds, etc. but some have unclear status like bacteria, starfish etc. Also

if we consider some examples in linguistic description, like a class of

good students, class of good-looking women, high blood pressure, in

all these situations one cannot characterize it in classical mathematical

set notation. In the same way there are a lot of situations for which we

cannot define precise criteria for the membership to a set (Zadeh, 1965).

In classical set theory a two valued characteristic function, called

indicator function, is used to represent whether an element t is in a subset

A of a universal set M or not, as mentioned in equation (1.1), by the

indicator function 1A(·) which is defined by

1A(t) =

1 if t ∈ A

0 if t /∈ A

 ∀t ∈ M. (1.1)

Since fuzzy set theory is an extension of classical set theory, in which

the two-valued logic is extended to a multi-valued logic, therefore the

indicator function mentioned in equation (1.1) is generalized to the so-

called membership function µA∗ of a fuzzy subset A∗ of M, i.e. equation

(1.2):

2



µA∗(t) =


1 if t ∈ core A∗

δ ∈ (0 , 1) if t belongs to A∗ to some degree δ

0 if t /∈ A∗

 ∀t ∈ M

(1.2)

Where core of a fuzzy subset A∗ is the set of all points t in M such that

µA∗(t) = 1.

The membership function maps the elements from a universal set M

to the interval [0 , 1] (Szeliga, 2004).

1.2 support of functions

The support supp( f ) of a function f : M→ R is the set of points of M

for which the function is not equal to zero, i.e. f (t) 6= 0 ∀ t ∈ supp( f ).

Some work has been done to deal with the imprecision of observa-

tions e.g., (Pak et al., 2013), (Nakama, 2013), (Wu, 2009), (Huang et al.,

2006), (Buckley, 2006), (Nguyen and Wu, 2006), (Lee, 2006), (Hung and

Liu, 2004), (D’Urso, 2003), (Zimmermann, 2001), (Viertl, 1997), (Klir

and Yuan, 1995), (Tzafestas and Venetsanopoulos, 1994), (Frühwirth-

Schnatter, 1993).

1.3 fuzzy numbers

So-called fuzzy numbers t∗ are special fuzzy subsets of R determined

by their so-called characterizing function ξ(·) which is a real function of

one real variable satisfying the following conditions 1-3:

1. ξ : R→ [0 , 1].
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2. For all δ ∈ (0 , 1] the so-called δ-cut Cδ(t∗) := {t ∈ R : ξ (t) ≥ δ}

is a finite union of compact intervals [aj,δ , bj,δ], i.e.

Cδ(t∗) =
kδ⋃

j=1

[aj,δ , bj,δ] 6= ∅.

3. The support of ξ(·) is bounded, i.e.

supp[ξ(·)] := {t ∈ R : ξ (t) > 0 } ⊆ [a , b]

with −∞ < a < b < ∞.

For details see (Viertl, 2011).

The set of all fuzzy numbers is denoted by F(R).

If all δ-cuts of a fuzzy number are non-empty closed bounded inter-

vals, the corresponding fuzzy number is called fuzzy interval.

1.4 remark

The family (Cδ(t∗); δ ∈ (0 , 1]) is nested, i.e. for δ1 < δ2 we have

Cδ1(t
∗) ⊇ Cδ2(t

∗).

1.5 characterizing functions

How to obtain the characterizing function of a fuzzy number is an

important issue. For one-dimensional fuzzy quantities a simple way to

obtain it is the following:

Consider an experiment to measure the light intensity of a picture

on the screen. Let t1, t2, ..., tN be the discrete values of the variable and

h(ti) be the color intensities at position ti, and ∆t the constant distance

4



between the points ti . Then the discrete analog of the derivative h′(·)

is given by the step function η(·) which is constant in the intervals(
ti − ti+1

)
:

η(t) := |h(ti+1)− h(ti)| for t ∈ (ti, ti+1)

and

η(tj) := max {|h(ti+1)− h(ti)| , |h(ti)− h(ti−1)|} for i = 2(1)n− 1.

The corresponding characterizing function ξ(·) is obtained in the

following way:

ξ(t) :=
η(t)

max {η(t) : t ∈ R} t ∈ R

For details see (Viertl, 2011).

For continuous variables the characterizing function of a fuzzy ob-

servation t∗, given by a color intensity transition g(·) can be obtained

through

ξ(t) :=
|g′(t)|

max {|g′(x)| : x ∈ R} ∀t ∈ R,

where g(·) is a function of the continuous variable t, and g′(·) is the

derivative of the function g(·).

For example to obtain the characterizing function for the non-precise

water level of a river, one can observe the wetness of the survey rod. The

intensity of wetness W(h) is a function of height h. Taking the derivative

of W(·), resulting in W ′(·), the corresponding characterizing function of

the fuzzy water level will be given by its values

5



ξ(h) :=
|W ′(h)|

max {|W ′(x)| : x ∈ R} ∀h ∈ R

For the proof see (Viertl, 1997).

1.6 fuzzy vectors

For a n-dimensional fuzzy vector t∗ the so-called vector-characterizing

function ζ(., ..., .) is a function of n real variables t1, t2, ..., tn satisfying

the following three conditions:

1. ζ : Rn → [0 , 1].

2. For all δ ∈ (0 , 1] the so-called δ-cut Cδ(t∗) := {t ∈ Rn : ζ(t) ≥ δ}

is non-empty, and a finite union of simply connected and closed

bounded sets.

3. The support of ζ(., ..., .), defined by supp[ζ(., ..., .)] := {t ∈ Rn : ζ(t) > 0}

is a bounded set.

See (Viertl, 2011).

The set of all n-dimensional fuzzy vectors is denoted by F(Rn).

If all δ-cuts of a n-dimensional fuzzy vector are simply connected

compact sets, then the corresponding n-dimensional fuzzy vector is

called n-dimensional fuzzy interval.

1.7 triangular norms

A vector (t∗1 , t∗2 , ..., t∗n) of fuzzy numbers t∗i , i = 1(1)n is not a fuzzy

vector. For the generalization of statistical inference, functions defined on

sample spaces are essential. Therefore it is basic to form fuzzy elements
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in the sample space M×M× ...×M where M denotes the observation

space of a random quantity. It is necessary to form fuzzy vectors from

fuzzy samples. This is done by so-called triangular norms, also called

t-norms.

Definition: A function T: [0 , 1]× [0 , 1]→ [0 , 1] is called t-norm, if

∀ x, y, z,∈ [0 , 1] the following conditions are fulfilled:

1. T(x , y) = T(y , x)

2. T(T(x , y), z) = T(x , T(y, z))

3. T(x , 1) = x

4. x ≤ y⇒ T(x , z) ≤ T(y , z)

Examples of t-norms are:

1. Minimum t-norm T(x , y) = min {x , y} ∀ (x , y) ∈ [0 , 1]2

2. Product t-norm T(x , y) = x · y ∀ (x , y) ∈ [0 , 1]2

3. Limited sum t-norm T(x , y) = max {x + y− 1, 0}

∀ (x, y) ∈ [0 , 1]2

see (Viertl, 2011).

1.8 extension principle

This is the generalization of an arbitrary function g : M → N for

fuzzy argument value a∗ in M. Let a∗ be a fuzzy element of M with
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membership function µ : M → [0 , 1], then the fuzzy value y∗ = g(a∗)

is the fuzzy element y∗ in N whose membership function ν(·) is defined

by

ν(y) :=

sup {µ(a) : a ∈ M, g(a) = y} if ∃a : g(a) = y

0 if @a : g(a) = y

 ∀y ∈ N.

See (Klir and Yuan, 1995).

1.9 theorem 1

For a continuous function g : R → R, and fuzzy interval t∗ the fol-

lowing holds true:

Cδ [g(t∗)] =
[

min
t∈Cδ(t∗)

g(t) , max
t∈Cδ(t∗)

g(t)
]

∀δ ∈ (0 , 1]

For the proof see (Viertl, 2011).

1.10 lemma 1

Denoting by 1A (·) the indicator function of the set A ⊆ R, for any

characterizing function of a fuzzy number the following is valid:

ξ (t) = max
{

δ·1Cδ(t∗)(t) : δ ∈ [0 , 1]
}

∀t ∈ R

For the proof see (Viertl, 2011).

8



1.11 theorem 2

For a continuous function g: Rn → R, and fuzzy n-dimensional

interval t∗ the following holds true:

Cδ [g(t∗)] =
[

min
t∈Cδ(t∗)

g(t) , max
t∈Cδ(t∗)

g(t)
]

∀δ ∈ (0 , 1]

For the proof see (Viertl, 2011).

1.12 lemma 2

For any fuzzy vector t∗ with vector-characterizing function ζ(., ..., .)

the following is valid:

ζ (t) = max
{

δ·1Cδ(t∗)(t) : δ ∈ [0 , 1]
}

∀ t ∈ Rn

For the proof see (Viertl, 2011).

1.13 remark

It should be noted that not all families (Aδ ; δ ∈ (0 , 1]) of nested

finite unions of compact intervals are the δ-cuts of a fuzzy number. But

the following construction lemma holds:

1.14 construction lemma

Let (Aδ ; δ ∈ (0 , 1]) with Aδ =
⋃kδ

j=1

[
aj,δ , bj,δ

]
be a nested family

of non-empty subsets of R. Then the characterizing function of the

generated fuzzy number is given by

ξ (t) = sup
{

δ·1Aδ
(t) : δ ∈ [0 , 1]

}
∀ t ∈ R.

9



For the proof compare (Viertl and Hareter, 2006).

1.15 combination of fuzzy numbers

Consider a sample of size n from a stochastic quantity T, i.e. t1, t2, ..., tn

then each ti is an element of the observation space MT ⊆ R. In case

of life times MT ⊆ [0 , ∞], and (t1, t2, ..., tn) is an element of the Carte-

sian product MT ×MT × ...×MT of n copies of MT, called sample space,

denoted by Mn
T.

On the other side, if we have fuzzy observations t∗i , i = 1(1)n with

characterizing functions ξi(·) as fuzzy elements of MT, then (t∗1 , t∗2 , ..., t∗n)

is not a fuzzy element of Mn
T. Therefore to obtain a fuzzy element of

Mn
T usually the minimum t-norm is used. For the vector-characterizing

function of the so-called combined fuzzy sample t∗ applying the minimum

t-norm, i.e.

ζ (t1, t2, ..., tn) = min { ξ(t1), ξ(t2), ..., ξ(tn)} ∀ (t1, t2, ..., tn) ∈ Rn,

a fuzzy element of Mn
T ⊆ Rn is obtained.

For the δ-cuts of the combined fuzzy sample the following holds:

Cδ [ζ (., ..., .)] = ×n
i=1Cδ [ξi(·)] ∀δ ∈ (0 , 1]

see (Viertl, 2011)

1.16 fuzzy valued empirical distribution functions

Let t∗1 , t∗2 , ..., t∗n be fuzzy intervals with corresponding δ-cuts

Cδ

(
t∗i
)
=
[
ti,δ , ti,δ

]
∀δ ∈ (0 , 1] and i = 1(1)n.

10



The empirical cumulative distribution function for the given fuzzy

sample is denoted as F∗(·), where Fδ(·) and Fδ(·) represent the cor-

responding lower and upper δ-level functions of the so-called fuzzy

empirical distribution function F∗(·).

The lower and upper δ-level functions are defined through the fol-

lowing equations:

Fδ(t) =
1
n

n

∑
i=1

1(−∞, t](ti,δ) ∀t ∈ R

and

Fδ(t) =
1
n

n

∑
i=1

1(−∞, t](ti,δ) ∀t ∈ R.

See (Viertl, 2011).
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2

M AT H E M AT I C A L O P E R AT I O N S F O R F U Z Z Y

N U M B E R S

Fuzzy set theory is the generalization of classical set theory, therefore,

the mathematical operations addition, subtraction, multiplication, and

division can be generalized for fuzzy quantities (Viertl, 2011).

2.1 addition of fuzzy numbers

For two fuzzy numbers t∗1 and t∗2 with characterizing functions ξ1(·)

and ξ2(·) respectively, the generalized addition t∗1 ⊕ t∗2 has to obey con-

ditions, i.e. to generalize the addition of real numbers and to generalize

interval arithmetic.

The characterizing function ψ(·) of the generalized addition given as:

ψ(z) := sup
t1,t2

{min {ξ1(t1), ξ2(t2)} : t1 + t2 = z} ∀z ∈ R

For fuzzy intervals t∗1 and t∗2 the generalized addition can be defined

using δ-cuts.

Let Cδ(t∗1) = [a1,δ , b1,δ] and Cδ(t∗2) = [a2,δ , b2,δ] ∀ δ ∈ (0 , 1] be

the δ-cuts of t∗1 and t∗2 , then the δ-cut of t∗1 ⊕ t∗2 is given by

12



Cδ(t∗1 ⊕ t∗2) = [a1,δ + a2,δ , b1,δ + b2,δ] ∀δ ∈ (0 , 1].

The characterizing function can be obtained by the above mentioned

Construction Lemma.

2.2 scalar addition

A special case of addition is scalar addition, i.e. adding a constant to

the fuzzy number. Let c be constant c ∈ R which is added to the fuzzy

number t∗ whose characterizing function is ξ(·). The characterizing

function of the new fuzzy number, i.e. t∗ ⊕ c is denoted by η(·) and is

defined as

η(t) := ξ(t− c) ∀t ∈ R.

2.3 scalar multiplication

For scalar multiplication a fuzzy number t∗ with characterizing func-

tion ξ(·) is multiplied by a constant c ∈ R ( 6= 0) in the following way:

The characterizing function of the resulting fuzzy number c� t∗ is de-

noted by η(·), and can be defined as

η(t) := ξ(t/c) ∀ t ∈ R.

13



2.4 multiplication of fuzzy numbers

For two fuzzy numbers t∗1 and t∗2 with characterizing functions ξ1(·)

and ξ2(·) respectively, the characterizing function ψ(·) of the generalized

multiplication t∗1 � t∗2 is given by its values

ψ(z) := sup {min {ξ1(t1), ξ2(t2)} : t1 · t2 = z} ∀z ∈ R.

For fuzzy intervals t∗1 and t∗2 the lower and upper ends of the δ-cuts of

the obtained fuzzy interval can be obtained using δ-cuts:

Cδ (t∗1 � t∗2) =

[
min

(t1,t2)∈×2
i=1Cδ(t∗i )

t1 · t2 , max
(t1,t2)∈×2

i=1Cδ(t∗i )
t1 · t2

]
∀δ ∈ (0 , 1]

2.5 subtraction of fuzzy numbers

The difference of two fuzzy numbers t∗1 , t∗2 is defined as

t∗1 	 t∗2 := t∗1 ⊕ (−t∗2), where −t∗2 is defined by (−1)� t∗2 from section

2.3.

2.6 inverse of fuzzy numbers

For fuzzy interval t∗ with characterizing function ξ(·) obeying

supp [ξ(·)] /∈0, the fuzzy inverse can be defined as (t∗)−1 = 1
t∗ whose

characterizing function is given by the following definition:

ψ(t) :=

 ξ
(

1
t

)
for 1

t ∈ supp [ξ(·)]

0 otherwise

 ∀t ∈ R

14



2.7 division of fuzzy numbers

For two fuzzy numbers t∗1 and t∗2 given that 0 /∈ supp[t∗2 ] having

characterizing functions ξ1(·) and ξ2(·), the fuzzy quotient

t∗1 � t∗2 := t1 � [(t∗2)
−1]

has characterizing function ψ(·) which can be obtained by

ψ(z) := sup
t1,t2

{min {ξ1(t1), ξ2(t2)} : t1/t2 = z} ∀z ∈ R.

For two fuzzy intervals t∗1 and t∗2 obeying 0 /∈ supp[t∗2 ] having char-

acterizing functions ξ1(·) and ξ2(·) with δ-cuts Cδ(t∗1) = [a1,δ , b1,δ] and

Cδ(t∗2) = [a2,δ , b2,δ] ∀δ ∈ (0 , 1] respectively, the δ-cuts of the new

fuzzy number obtained from the generalized division of fuzzy intervals

is defined by

Cδ (t∗1 � t∗2) =

[
min

(t1,t2)∈×2
i=1Cδ(t∗i )

t1/t2 , max
(t1,t2)∈×2

i=1Cδ(t∗i )
t1/t2

]
∀δ ∈ (0 , 1].

2.8 minimum and maximum of fuzzy numbers

If there are n fuzzy intervals, i.e. t∗1 , t∗2 , ..., t∗n with corresponding

characterizing functions ξ1(·), ξ2(·), ..., ξn(·) respectively, then its δ-cuts

are denoted as Cδ(t∗i ) =
[
ti,δ , ti,δ

]
∀ δ ∈ (0 , 1] and i = 1(1)n. Then

15



the minimum t∗min and the maximum t∗max of the fuzzy numbers are

fuzzy intervals respectively, with δ-cuts Cδ(t∗min) and Cδ(t∗max). These

are defined by

Cδ(t∗min) :=
[
min {t i,δ : i = 1(1)n} , min

{
ti,δ : i = 1(1)n

}]
∀δ ∈ (0 , 1],

and

Cδ(t∗max) :=
[
max {t i,δ : i = 1(1)n} , max

{
ti,δ : i = 1(1)n

}]
∀δ ∈ (0 , 1].

Remark: Similarly the classical set operations Equality, Union, In-

tersection, Complement, Product can be generalized to fuzzy sets (Lee,

2006).

2.9 equality of fuzzy sets

Let A∗ and B∗ be two fuzzy sets in M then both are equal, i.e.

A∗ = B∗, iff their membership functions are identical.

2.10 complement of fuzzy sets

For a fuzzy set A∗ of M with membership function µA∗(·), the com-

plement of A∗ is denoted by A∗ with membership function

µA∗(t) = 1− µA∗(t) ∀t ∈ M.
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2.11 union of fuzzy sets

For two fuzzy sets A∗ and B∗ with corresponding membership func-

tions µA∗(·) and µB∗(·) respectively, the union of the fuzzy sets can be

defined by

A∗ ∪ B∗ =̂ µA∗∪B∗(t) =̂ max {µA∗(t), µB∗(t)} ∀t ∈ M.

For arbitrary families of fuzzy sets A∗i =̂ µi(·) with index set I the union

of fuzzy sets is obtained in the following way

⋃
i∈I

A∗i =̂ µ(t) := sup {µi(t) : i ∈ I} ∀t ∈ M.

2.12 intersection of fuzzy sets

For two fuzzy sets A∗ and B∗ with corresponding membership func-

tions µA∗(·) and µB∗(·) respectively, the intersection is defined as

A∗ ∩ B∗ =̂ µA∗∩B∗(t) = min {µA∗(t), µB∗(t)} ∀t ∈ M.

For arbitrary families of fuzzy sets A∗i =̂ µi(·) with index set I, the

intersection of fuzzy sets is obtained as

⋂
i∈I

A∗i =̂ µ(t) := inf {µi(t) : i ∈ I} ∀t ∈ M.
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3

L I F E T I M E A N A LY S I S

Survival analysis can generally be defined as the collection of techniques

for analyzing so-called life time data. In broad sense one can say life

time is ”the time to the occurrence of a specified event”. Life time is also

called survival time, failure time, or event time, and is usually measured

in hours, days, weeks, months, or years.

The specified event depends on the field under study, it may be death

or recovery of a patient from a disease in biomedical sciences, failure of

a mechanical equipment in engineering sciences, divorce in sociology,

change of residence in demography etc. (Lee and Wang, 2013).

The analysis techniques of life time data can be traced back centuries

but the rapid development started about few decades ago, especially

World War II stimulated interest in the reliability of military equipments

(Miller, 2011).

The prominence of survival analysis is to predict the probability of

response, mean survival time, identifying the prognostic factors related

to the life time of units, and to compare the survival distributions.

Models used for survival times are usually termed as time-to event

models (Lee and Wang, 2013).
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A significant number of books and research papers have already been

written for the analysis of life time data, including reliability analysis, e.g.

(Hosmer and Lemeshow, 1999), (Meeker and Escobar, 1998), (Ibrahim

et al., 2001), (Deshpande and Purohit, 2005), (Kleinbaum and Klein,

2005), (Nelson, 2005), (Hamada et al., 2008), (Couallier et al., 2013).

3.1 censoring

In the time-to-event data generally it is very challenging to wait till

the death or failure of all units. One has to terminate the experiment

due to time or other constraints. The observations which still stay at the

termination of the experiment, which have not been observed completely

are called censored observations (Kalbfleisch and Prentice, 2011).

3.1.1 Type I censoring

When the termination time of an experiment is fixed in advance then

the survived items at the time of termination are right censored, which

is called type I censoring.

3.1.2 Type II censoring

When it is decided that the experiment will be terminated when the

rth failure/death occurs, and considering the rest of the items censored

are called type II censoring.

According to (Lee and Wang, 2013) probability density function,

survival function and hazard rate are explained below.
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3.2 probability density function

For a non-negative random variable T the probability density function

is defined as

f (t) = lim
∆t→0

P {an unit dying in the interval(t, t + ∆t)}
∆t

,

it is the limit of the probability that a unit will fail in a short time interval

t to ∆t.

The probability density can be estimated by

f̂ (t) =
Number of units dying in the interval (t, t + ∆t)

(Total number of units) · (Interval width)

3.3 survival function

Let T be a non-negative random variable denoting the waiting time

until a specified event occurred. For instance consider the event is death

and the waiting time until the death of a unit, is survival time. If time t is

some specified time then the survival function is conventionally denoted

by S, which is defined as

S(t) = Pr(Unit will survive time t)

S(t) = Pr(T>t) ∀ t ≥ 0.

From the cumulative distribution function F(·) of T it can also be defined

as

S(t) = 1− Pr(Unit will fail not later than t)
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S(t) = 1− F(t) ∀ t ≥ 0.

With the properties

S(0) = 1 and lim
t→∞

S(t) = 0.

The survival function can be estimated by

Ŝ(t) =
Number of units surviving longer than t

Total number of units
.

3.4 hazard rate

The hazard rate h(·) of survival time T gives the conditional fail-

ure rate, it can be defined as the limit of the probability that an unit

will fail in a short time interval (t, t+∆t), given that it survived to time t:

h(t) := lim
∆t→0

P {an unit at time t fails in time interval (t, t + ∆t)|T > t}
∆t

ĥ(t) =
Number of units dying in the interval beginning at time t

(Number of units surviving at t) · (Interval width)

It can be written as

h(t) =
f (t)
S(t)

∀t ≥ 0,

and can be estimated by

ĥ(t) =
f̂ (t)
Ŝ(t)

∀t ≥ 0.
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Many parametric and non-parametric approaches are available to

model life time data, which are explained below.

3.5 kaplan-meier estimator

Let 0 ≤ t1 ≤ t2 ≤ t3 ≤ ... ≤ tn be n life times from a given population,

where ni, and di denote the number of observations at risk, and number

of deaths at time ti respectively.

If di denotes the number of deaths at time ti, frequently it is either 0

or 1, but tied survival times are possible. In that case di may be greater

than 1.

The Kaplan-Meier estimator can be expressed as

S(t) = ∏
ti≤t

(1− di

ni
) ∀ t ≥ 0.

(Kaplan and Meier, 1958).

3.6 exponential distribution

For survival time T with exponential distribution we have the follow-

ing:

f (t|λ) = λe−λt ∀ t ≥ 0 with λ > 0

h(t) = λ ∀ t ≥ 0

S(t) = e−λt ∀ t ≥ 0

Based on a complete sample t1, t2, ..., tn of T the Maximum Like-

lihood Estimator for the parameter of the exponential distribution is
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λ̂ = 1
∑n

i=1 ti
n

. An estimator for the hazarad rate is ĥ(t) = λ̂, and for the

survival function is Ŝ(t) = e−λ̂t ∀ t ≥ 0.

3.7 two parameters weibull distribution

The two parameters Weibull distribution is one of the most popular

distributions to model time to event data. Its density is defined by

f (t| τ, β) =
β

τ

(
t
τ

)β−1

exp

{
−
(

t
τ

)β
}

∀ t > 0, with τ > 0, β > 0.

τ : Scale Parameter; also called characteristic li f e time

β : Shape Parameter

The Maximum Likelihood Estimators of the corresponding parame-

ters, based on a complete sample t1, t2, ..., tn are given by

τ̂ =

{
1
n

n

∑
i=1

tβ̂
i

} 1
β̂

(3.1)

and

1
β̂
=

∑n
i=1 tβ̂

i ln(ti)

∑n
i=1 tβ̂

i

− 1
n

n

∑
i=1

ln(ti)

 (3.2)

ĥ(t) =
β̂tβ̂−1

τ̂ β̂
∀ t ≥ 0

Ŝ(t) = e−(
t
τ̂ )

β̂ ∀ t ≥ 0.

The right hand side of equation (3.2) is a monotone increasing func-

tion in β̂, and the left hand side is a decreasing function. It follows that

where they intersect will be the value of β̂. Then putting that value in

equation (3.1) the estimate τ̂ is obtained.
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The Maximum Likelihood Estimators of the parameters τ and β for type

II censored data are

τ̂ =

[
1
r

{
r

∑
i=1

tβ̂

(i) + (n− r)tβ̂

(r)

}] 1
β̂

(3.3)

and

1
β̂
=

∑r
i=1 tβ̂

(i)ln(t(i)) + (n− r)tβ̂

(r)ln(t(r))

∑r
i=1 tβ̂

(i) + (n− r)tβ̂

(r)

− 1
r

r

∑
i=1

ln(t(i))

 (3.4)

respectively.

The right hand side of equation (3.4) is a monotone increasing function

in β and the left hand side is a decreasing function. It follows that where

they intersect will be the value of β̂. Then putting that value in equation

(3.3) an estimate of τ̂ is obtained.

For type I censoring t(r) should be replaced by the pre-specified censor-

ing time (Balakrishnan and Kateri, 2008).
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3.8 three parameters weibull distribution

The density and reliability function of the three parameters Weibull

distribution are given by

f (t|α, β, γ) =
γ

β

(
t− α

β

)γ−1

exp
{
−
(

t− α

β

)γ}
∀ t ≥ α.

α : Location Parameter

β : Scale Parameter

γ : Shape Parameter

The parameters of the three parameters Weibull distribution can be

estimated by (Cran, 1988):

α̂ =
m1 ·m4 − m2

2
m1 + m4 − 2m2

γ̂ =
ln 2

ln(m1 −m2)− ln(m2 −m4)

β̂ =
m1 − α̂

Γ
(

1 + 1
γ̂

)

mk =
n−1

∑
r=0

(
1− r

n

)k (
t(r+1) − t(r)

)
, t(0) = 0

and the three parameters Weibull reliability function is given by

R(t) = exp
{
−
(

t− α

β

)γ}
∀ t ≥ α.
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3.9 gamma distribution

For the random variable T the Gamma distribution is defined by the

density

f (t| λ, γ) =
λ

Γ(γ)
(λt)γ−1e−λt with λ > 0, γ > 0.

The cumulative distribution function is given by

F(t) =
∫ t

0

λ

Γ(γ)
(λt)γ−1e−λt dt ∀ t ≥ 0.

The survival function S(t) can be simply written as

S(t) = 1− F(t) ∀ t ≥ 0,

and the hazard rate is

h(t) = f (t)/S(t).

According to (Lee and Wang, 2013) the moment estimator and a

corrected moment estimator for λ and γ are

λ̂b =
∑n

i=1 ti

∑n
i=1(ti − t)2

and

γ̂b =
(∑n

i=1 ti)
2

∑n
i=1(ti − t)2

where t represents the mean of the life time observations.
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These estimators are biased, the bias corrected estimators are,

γ̂ =
γ̂b

(1 + 2
n )
− 3

n

λ̂ = (
γ̂

t
)(1− 1

nγ̂
)

F̂(t) =
∫ t

0

λ̂

Γ(γ̂)
(λ̂t)γ̂−1e−λ̂t dt.

Ŝ(t) = 1− F̂(t)

ĥ(t) = f̂ (t)/Ŝ(t)

respectively.

3.10 lognormal distribution

For the survival time T such that ln T is normally distributed with

mean µ and variance σ2, the probability density of the lognormal distri-

bution is given by its values for t > 0:

f (t|µ, σ) =
1

tσ
√

2π
exp

[
− 1

2σ2 (ln t− µ)2
]

with µ > 0, σ > 0

The cumulative distribution function can be written as

F(t) =
1

tσ
√

2π

∫ t

0
exp

[
− 1

2σ2 (ln t− µ)2
]

dt.

The survival function S(·) of the lognormal distribution can simply be

written as

S(t) = 1− F(t),
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and the hazard rate is

h(t) = f (t)/S(t) ∀ t ≥ 0.

The Maximum Likelihood Estimators of the parameters of the lognormal

distribution given in (Lee and Wang, 2013) are

µ̂ =
∑n

i=1 ln ti

n

and

σ̂2 =
1
n

[
n

∑
i=1

(ln ti)
2 − (∑n

i=1 ln ti)
2

n

]
.

µ̂ is an unbiased estimate, but σ̂2 is not. An unbiased estimator for σ2

can be obtained as s2 = σ̂2[n/(n− 1)].

An estimate for F(t) is given by

F̂(t) =
1

ts
√

2π

∫ t

0
exp

[
− 1

2s2 (ln t− µ̂)2
]

dt.

Estimates for S(·) and h(·) are

Ŝ(t) = 1− F̂(t)

and

ĥ(t) = f̂ (t)/Ŝ(t)

respectively.

28



3.11 a new model for lifetime distribution with bathtub

shaped failure rate

A new model for lifetime distribution with bathtub shaped failure

rate was proposed by (Haupt and Schäbe, 1992) with probability density

function

f (t) =
1 + 2β

2t0
√

β2 + (1 + 2β)t/t0
for 0 ≤ t ≤ t0 with − 1/2 < β < ∞

and failure rate

h(t) =
1 + 2β

(2t0
√

β2 + (1 + 2β)t/t0)(1 + β−
√

β2 + (1 + 2β)t/t0)
for 0 ≤ t ≤ t0.

The failure rate of the given distribution is bathtub shaped for −1/3 <

β < 1. For precise life time observations t1, t2, ..., tn and assuming that

t1 < t2 < ... < tn, then the maximum likelihood estimators of the

parameters are

t̂0 = t(n)

2
1 + 2β̂

=
1
n

n

∑
i=1

β̂i + t(i)/t̂0

β2 + (1 + 2β̂)t(i)/t̂0
.

For the proof see (Haupt and Schäbe, 1992).
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3.12 a new two-parameter lifetime distribution with bath-

tub shaped failure rate

Another new two-parameter lifetime distribution was proposed by

(Chen, 2000) with probability density function

f (t|λ, β) = λβeλ(1−etβ
)etβ

tβ−1 ∀t > 0 with λ > 0, β > 0,

with failure rate

h(t) = λβetβ
tβ−1 ∀t > 0.

For precise life time observations t1, t2, ..., tn and assuming that

t(1) < t(2) < ... < t(k) are the first k order statistics, where k ≤ n, then

the maximum likelihood estimator β̂ of the parameter β is the solution

of the following equation:

k
β + ∑k

i=1 ln t(i) + ∑k
i=1

(
tβ

(i)ln t(i)
)
−

k
[

∑k
i=1

(
etβ

(i) tβ

(i)ln t(i)

)
+ (n− k)

(
etβ

(k) tβ

(k)ln t(k)

)]
∑k

i=1 etβ

(i) − n− (n− k)etβ

(k)

= 0

The Maximum Likelihood Estimator for λ is given by

λ̂ =
k

∑k
i=1 etβ̂

(i) − n− (n− k)etβ̂

(k)

.

For the proof see (Chen, 2000).
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4

A C C E L E R AT E D L I F E T E S T I N G

To increase life time of mechanical components always remained a

prime interest for the industry. For estimation of the reliability of a

component various life tests were made in available environmental

conditions. The reliability tests require large data, and usually many

manufactured components have long life time, therefore it was very

time consuming to get information about the life time of components.

Similarly in practical applications it was not possible to have the same

environmental conditions for the components. One of the initially papers

to test units under different conditions is ”Accelerated life testing of

capacitors” by (Levenbach, 1957) which was a good reason to test an

electronic equipment under different environmental conditions.

Accelerated Life Testing (ALT) contain popular standard statistical

tools to get information on life time and make inference about various

mechanical products/systems, without waiting longer as the mean life

time of that product.

For reliability tests of mechanical components usually the tests are

performed under different stress levels which are more severe than usual

stress level.
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If we describe life time by a stochastic model f (t|θ) with parameter θ

then the stress dependence of the life time distribution can be written in

the form

θ(S) = ψ(S; A, B, ...),

where ψ(·) is expected to be some identified function with stress level S

and unknown constants A, B, ....

Some important accelerated life testing techniques are explained in

the following sections.

4.1 constant stress levels

In constant stress level accelerated life testing the units are tested

under constant stress levels S1, S2, ..., Sk and life times of the failed units

are recorded.

Consider an exponential distribution which is one of the most pop-

ular distributions to deal with life time data. Its density is f (t|θ) =

1
θ exp [−( t

θ )] for t ≥ 0 and θ >0 with failure rate λ = 1
θ . In order to

estimate the parameter under different stress levels, i.e. S1, S2, ..., Sk, we

get the data set {Si, ni, ri} , i = 1(1)k, where ni is the number of units

under stress Si, and ri is the number of failures under ith stress level.

Maximum Likelihood Estimator for the parameter θi is

θ̂i =

[
∑ri

j=1 ti,(j) + (ni − ri)ti,(ri)

ri

]
,

where ti,(j), j = 1(1)ri denote the observed ri ordered times of failure

under the stress level Si (Viertl, 1988).
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4.2 power rule model

The power rule model for precise data in (Viertl, 1988) is defined as

θ(S) = C
SA where S is stress level, A and C are unknown constants.

For estimation of A and C the modified power rule model is given as

θ̂i = θ̂(Si) =
Ĉ(

Si
S

)Â

where S = ∏k
i=1 Sri/ ∑k

i=1 ri .

In the given equation ri denotes the number of failures under stress level

Si for i = 1(1)k.

If the samples are considered independent of each other for different

stress levels then the Maximum Likelihood Estimators for A and C can

be obtained by the following equations:

k

∑
i=1

ri · θ̂i · (
Si

S
)Â · ln(Si

S
) = 0

Ĉ =
∑k

i=1 ri · θ̂i · (Si
S
)Â

∑k
i=1 ri

Solving the first equation for Â, and afterward the second one for Ĉ

estimates are obtained.
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4.3 step-stress model

Step-stress life test is a particular type of accelerated life testing

approach. In this approach the units are observed under stress for some

pre-specified time and recording the number of failures, and then the

stress level changes to another level, and recording the number of failures

and so on.

Consider a simple two step-stress test in which the life times follow

exponential distributions, i.e. Ex(θ1) and Ex(θ2) at stress level S1 for a

specified time τ and then change to S2.

The general form of the cumulative distribution function of time to event

data can be written in the form below:

G(t) =


G1(t) = F1(t ; θ1) for 0 < t < τ

G2(t) = F2(t− τ + u ; θ2) for τ ≤ t < ∞

where

Fk(t; θk) = 1− exp
{
− t

θk

}
for t ≥ 0 ; θk ≥ 0

with

u =
θ2

θ1
τ.

For exponential distributions the cumulative distribution function under

step-stress will be of the form:

G(t) =


G1(t) = 1− exp

{
− t

θ1

}
for 0 < t < τ

G2(t) = 1− exp
{
− τ

θ1
+ τ−t

θ2

}
for τ ≤ t < ∞,
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with corresponding density

g(t) =


g1(t) = 1

θ1
exp

{
− t

θ1

}
for 0 < t < τ

g2(t) = 1
θ2

exp
{
− t−τ

θ2
− τ

θ1

}
for τ ≤ t < ∞.

Let n units be placed under stress level S1 for a specified time τ and

then stress is changed to S2 until r failures in total occur with r < n.

The experiment is terminated on the occurrence of rth failure/death.

This type of censoring is called type II censoring.

Let n1 be the number of failed units till time τ and total failures are

fixed to r showing type II censored data, then under condition

1 ≤ n1 ≤ r− 1 the likelihood function is denoted as

L
(

θ1, θ2; t1,(1), t1,(2), ..., t1,(n1)
, t2,(n1+1), ..., t2,(r)

)
,

and the corresponding maximum likelihood estimators are

θ̂1 =

[
∑n1

j=1 t1,(j) + (n− n1)τ

n1

]

θ̂2 =

[
∑r

j=n1+1(t2,(j) − τ) + (n− r)(t2,(r) − τ)

r− n1

]
.

(Balakrishnan et al., 2007)
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4.4 non-parametric estimation

According to (Shaked et al., 1979), let S1, S2, ..., Sk be denoting accel-

erated stress levels and ti,l , i = 1(1)k, l = 1(1)ni are the corresponding

life times under accelerated stress levels. Let F1, F2, ..., Fk are the corre-

sponding Cdf’s of the life times.

Let ni be the number of units tested under stress level Si where

i = 1(1)k, and N = ∑k
i=1 ni is the total number of units tested.

The data will be transformed by the form Ti =
1
ni

∑ni
l=1 til where i =

1(1)k.

The scale factor between Fi and Fj is denoted by αij, where

αij =
(
Si/Sj

)γ , i 6= j

γ = ln(αij)/
(
lnSi − lnSj

)
.

The estimator of αij is given by

α̂ij = Ti/T j for i 6= j,

and the estimate of γ can be obtained as

γ̂ij = ln(α̂ij)/
(
lnSi − lnSj

)
for i 6= j

which can be written as

γ̂ij =

ln
(

Ti
T j

)
ln
(

Sj
Si

) for i 6= j.
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An overall estimator of γ can be obtained as weighted average of the

γ̂ij’s:

γ̂ =
∑k

i=1 ∑k
j=i+1 ln(

Sj
Si
)ln( Ti

T j
)

∑k
i=1 ∑k

j=i+1(ln(
Sj
Si
))2

.

4.5 acceleration functions

In non-parametric accelerated life testing, acceleration functions are

considered as important modeling technique. Main aim of this analysis

is to estimate the relationship between the cumulative distribution func-

tions of life times that are tested under stress level S1 and S2 respectively.

Linear acceleration functions and power type acceleration functions are

commonly used in accelerated life testing (Viertl, 1988).

4.6 linear acceleration functions

For life time observations which are tested under different stress

levels a linear acceleration function can be simply defined as

a(t) = α · t ∀ t ≥ 0.

This means for the relationship between the corresponding cdf’s

F(t|S2) = F(α1,2 · t|S1) ∀ t ≥ 0.
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For ordered life time observations of two samples, i.e. t1,(1), t1,(2), ..., t1,(n)

and t2,(1), t2,(2), ..., t2,(n) obtained under two stress levels S1 < S2 respec-

tively, the relative acceleration coefficient α1,2 can be estimated by

l̂nα1,2 =
1
m

m

∑
i=1

ln
t1,(i)

t2,(i)

where m ≤ n.

4.7 power type acceleration functions

The relationship between the cumulative distribution functions of

life times under different stress levels through a power type acceleration

function can be written as

F(t|S2) = F(α1,2 . tβ1,2 |S1) ∀ t ≥ 0, (4.1)

where Ti denotes the random variable describing life time under stress

level Si. The mentioned relationship can be estimated based on the above

stochastic equation (4.1).

Let t1,(1), ..., t1,(n) and t2,(1) , ..., t2,(n) be independent ordered samples

under stress S1 and S2 respectively.

For the parameters α1,2 and β1,2 the corresponding estimators given

in (Viertl, 1988) are

β̂1,2 =
1
m

m

∑
k=1

ln t1,(k+1) − ln t1,(k)

ln t2,(k+1) − ln t2,(k)
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and

l̂nα1,2 =
1
m

m

∑
k=1

[
ln t1,(k) − β̂1,2 ln t2,(k)

]
where m ≤ n.
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5

L I F E T I M E A N A LY S I S A N D F U Z Z Y D ATA

Measurement actions are performed for well-defined purposes. In gen-

eral people measure to know. This requires special attention to record

the information given by measurements, and it has to be recorded in

intervals to avoid misunderstanding.

In the technologic use of measurement instruments it is evident how

the concept like ”exactness” or ”equality” needs to be banned. Even on

the measurement obtained from a high quality instrument one can only

believe that it is exact, but the characteristic exact cannot be obtained in

reality. This can be confirmed practically by repeating measurement of

some continuous phenomenon (Barbato et al., 2013).

These arguments also support the idea explained in (Viertl, 2006),

that in fact there are two types of uncertainty in the measurements, one

is variation among the observations and another is fuzziness.

From the centuries classical statistical tools are developed to model

variation among the observations, without considering the imprecision

of single observations.
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Classical statistics (Stochastic models) consider only variation among

the precise observations and ignores the fuzziness. By doing so we may

lose information and get misleading results (Viertl, 2011).

From the centuries life time analyses are used to model life time data

in efficient way. In (Viertl, 2009), it has been shown that life time obser-

vations are not precise numbers but fuzzy, therefore life time analysis

techniques should be generalized to deal with fuzziness of the observa-

tions.

5.1 generalized kaplan-meier estimator

The Kaplan-Meier estimator is one of the popular methods for precise

survival times. It is natural that life time is of continuous nature, there-

fore it is unrealistic to deal life time observations as precise numbers.

Consequently, fuzzy numbers are more suitable and realistic to describe

real survival times.

For fuzzy life time observations t∗1 , t∗2 , ..., t∗n having δ-cuts

Cδ(t∗i ) = [ti,δ , ti,δ] ∀δ ∈ (0 , 1] and i = 1(1)n, the generalized Kaplan-

Meier estimator is denoted by S∗(t) and its upper and lower δ-level

curves are obtained in the following way:

Cδ(S∗(t)) =

[
min

t∈×n
i=1Cδ(t∗i )

S(t) , max
t∈×n

i=1Cδ(t∗i )
S(t)

]
∀ δ ∈ (0 , 1]

with t = (t1, t2, ..., tn) ∈ [0 , ∞)n ∀ δ ∈ (0 , 1].
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Where S(t) = min
t∈×n

i=1Cδ(t∗i )
S(t) is the lower end of the δ-cut which

defines the lower δ-level curve and S(t) = max
t∈×n

i=1Cδ(t∗i )
S(t) is the upper

end of the δ-cut which defines the upper δ-level curve.

The above mathematical calculations are realized through the follow-

ing algorithm:

1. The values for δ are taken from 0 to 1 with an increment ∆ ∈ (0 , 1).

2. For a given value of δ calculate the δ-cuts of the fuzzy combined

sample t∗.

3. Taking minimum and maximum from the δ-cuts to generate hypo-

thetical classical samples.

4. Kaplan-Meier survival probabilities are calculated and the Kaplan-

Meier survival curves are drawn for fixed δ-level.

5. Steps 2-4 are performed for each δ = 0(∆)1.

Figure 1: Characterizing functions of a fuzzy life times sample
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Figure 2: Some lower and upper δ-level curves of the Generalized Kaplan-
Meier Estimator
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The curves for δ show the boundaries of the supports of the corre-

sponding characterizing functions.

The generalized Kaplan-Meier estimator incorporates fuzziness of

the observations, therefore the results based on the generalized Kaplan-

Meier estimator are more suitable and realistic.
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5.2 fuzzy maximum likelihood estimators of the two param-

eter weibull distribution for fuzzy censored data

The two parameter Weibull distribution is considered as the most

important distribution for modeling life time data. Therefore, maximum

likelihood estimators need to be generalized for fuzzy observations

t∗1 , t∗2 , ..., t∗n. Fuzzy maximum likelihood estimators are denoted by τ̂∗

and β̂∗.

Where τ̂ and β̂ are the solutions of the equations mentioned in section

3.1 and 3.2 respectively.

The generating family of intervals (Bδ; δ ∈ (0 , 1]) for the fuzzy

estimator β̂∗ is obtained by

Bδ

(
β̂∗
)
=

[
min

t ∈×n
i=1Cδ(t∗i )

β̂ , max
t ∈×n

i=1Cδ(t∗i )
β̂

]
.

In a similar way the generating family of intervals (Aδ; δ ∈ (0 , 1])

for the fuzzy estimate τ̂∗ can be obtained:

Aδ

(
τ̂∗
)
=

[
min

t ∈×n
i=1Cδ(t∗i )

τ̂ , max
t ∈×n

i=1Cδ(t∗i )
τ̂

]
.

with
(

t = t(1), t(2), ..., t(r)
)

.

The characterizing functions φ(·) of τ̂∗ and ψ(·) of β̂∗ are given by

the construction lemma in the following way:

φ (τ) = sup
{

δ·1Aδ
(τ) : δ ∈ [0 , 1]

}
∀ τ ∈ [0 , ∞)
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ψ (β) = sup
{

δ·1Bδ
(β) : δ ∈ [0 , 1]

}
∀ β ∈ [0 , ∞)

The above mathematical calculations can be done approximately by

the following algorithm:

1. The values for δ are taken from 0 to 1 with an increment4 ∈ (0 , 1).

2. For a given value of δ all δ-cuts of the fuzzy observations are

determined.

3. Taking values from the δ-cuts to get hypothetical classical samples.

4. From these hypothetical classical samples at a given level δ, calcu-

late the classical estimates.

5. In order to construct the generalized (fuzzy) estimators take mini-

mum and maximum values from these estimates and consider it as

the end points of the family (Aδ and Bδ ; δ ∈ (0 , 1]) of generating

intervals Aδ and Bδ for the characterizing functions of the fuzzy

estimators at a given level of δ.

6. Steps 2-5 are performed for each estimator for δ = 0 (4) 1.

7. From all these generating intervals Aδ and Bδ obtained for each

δ (i.e. δ = 0 (4) 1) through the above mentioned Construction

Lemma the characterizing functions of the fuzzy estimates of the

parameters are obtained approximately.
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Figure 3: Sample of Type I censoring with fuzzy censoring time
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Figure 4: Characterizing function of τ̂∗ for type I censoring data with
fuzzy censoring time from figure 3
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Figure 5: Characterizing function of β̂∗ for type I censoring with fuzzy
censoring time from figure 3
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Next the termination time of the experiment is assumed to be a pre-

cise number. Given below in figure 6 is a sample of 8 units with 7 failures

and 1 censored observation, with precise censoring time. Figure 7 and

figure 8 show the characterizing functions of the fuzzy estimates of the

Weibull parameters based on fuzzy failure times and precise censoring

time from figure 6.

Figure 6: Sample of Type I censoring with precise censoring time
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Figure 7: Characterizing function of τ̂∗ for type I censoring data from
figure 6 with precise censoring time
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Figure 8: Characterizing function of β̂∗ for type I censoring with precise
censoring time from figure 6
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For type II censoring considering 8 fuzzy failure times and 2 censored

observations are given in figure 9. The characterizing functions of the

corresponding fuzzy estimates are given in figure 10 and figure 11.

Figure 9: Sample of Type II censoring with fuzzy failure times
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Figure 10: Characterizing function of τ̂∗ for type II censoring with fuzzy
failure times from figure 9
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Figure 11: Characterizing function of β̂∗ for type II censoring with fuzzy
failure times from figure 9
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5.3 generalized estimation for exponential distribution

Based on fuzzy life time observations t∗1 , t∗2 , ..., t∗n the generalized

(fuzzy) estimates for the parameter, survival function, and hazard rate of

the exponential distribution are denoted by λ̂∗, Ŝ∗(t), and ĥ∗(t) respec-

tively. The δ-cuts of the parameter estimate can be written as

Cδ[λ̂
∗] = [λδ , λδ] ∀ δ ∈ (0 , 1],

and the δ-level curves for the survival function, and hazard rate are

defined as

Cδ[Ŝ∗(t)] =
[
Sδ(t) , Sδ(t)

]
∀ δ ∈ (0 , 1],

and

Cδ[ĥ∗(t)] =
[

hδ(t) , hδ(t)
]

∀ δ ∈ (0 , 1],

respectively.
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These δ-cuts and δ-level curves for the exponential distribution can

be formulated for fuzzy observations (t∗1 , t∗2 , ..., t∗n) having δ-cuts

Cδ[t∗i ] =
[

ti,δ , ti,δ
]

∀δ ∈ (0 , 1] as:

Cδ[λ̂
∗] =

 1
∑n

i=1 ti,δ
n

,
1

∑n
i=1 ti,δ

n

 ∀ δ ∈ (0 , 1]

Cδ[Ŝ∗(t)] =
[
e−λδt , e−λδt

]
∀ δ ∈ (0 , 1]

Cδ[ĥ∗(t)] =
[
λδ , λδ

]
∀ δ ∈ (0 , 1]

The characterizing functions can be constructed by the mentioned

Construction lemma.

Characterizing functions of fuzzy life time observations and the fuzzy

parameter estimator are given in figure 12 and figure 13 respectively.

Some δ-level curves of the fuzzy estimated survival function and

fuzzy estimate of the hazard rate are given in figure 14 and figure 15.

Figure 12: Characterizing functions of the fuzzy life times sample
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Figure 13: Characterizing function of the fuzzy estimator λ̂∗
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Figure 14: Some Upper and Lower δ-level curves of the fuzzy estimate of
the survival function
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The curves for δ = 0+ show the boundaries of the supports of the

corresponding characterizing functions.
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Figure 15: Some Upper and Lower δ-level curves of the fuzzy estimate of
the hazard rate
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5.4 generalized estimation for weibull distributions

For the parameter estimation of Weibull distributions the generalized

(fuzzy) estimators for the parameters, survival function, and the hazard

rate based on fuzzy life times t∗1 , t∗2 , ..., t∗n are denoted as τ̂∗, β̂∗, Ŝ∗(t),

and ĥ∗(t) respectively.

The δ-cuts of τ̂∗ and β̂∗, and δ-level curves of Ŝ∗(t) and ĥ∗(t) are the

following:

Cδ [τ̂
∗] = [τδ , τδ] ∀ δ ∈ (0 , 1]

Cδ

[
β̂∗
]
=
[

β
δ

, βδ

]
∀ δ ∈ (0 , 1]

Cδ

[
Ŝ∗(t)

]
=
[
Sδ(t) , Sδ(t)

]
∀ δ ∈ (0 , 1]

and

Cδ

[
ĥ∗(t)

]
=
[

hδ(t) , hδ(t)
]

∀ δ ∈ (0 , 1]
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respectively.

These can be formulated by theorem 2 from section 1.11 in the

following way:

Cδ

[
β̂∗
]
=

[
min

t ∈×n
i=1Cδ(t∗i )

β̂ , max
t ∈×n

i=1Cδ(t∗i )
β̂

]
∀ δ ∈ (0 , 1]

Cδ [τ̂
∗] =

{ 1
n

n

∑
i=1

t
β

δ
i,δ

} 1
βδ

,

{
1
n

n

∑
i=1

tβδ
i,δ

} 1
β

δ

 ∀ δ ∈ (0 , 1]

Cδ

[
Ŝ∗(t)

]
=

[
e−(

t
τδ
)βδ

, e−(
t

τδ
)

β
δ
]

∀ δ ∈ (0 , 1]

Cδ

[
ĥ∗(t)

]
=

β
δ
tβ

δ
−1

τ
βδ
δ

,
βδtβδ−1

τ
β

δ
δ

 ∀ δ ∈ (0 , 1]

The characterizing functions can be constructed from the above men-

tioned Construction lemma.
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Figure 16: Characterizing function of the fuzzy estimator τ̂∗ from the
sample in figure 12
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Figure 17: Characterizing function of the fuzzy estimator β̂∗ from the
sample in figure 12
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Figure 18: Some Upper and Lower δ-level curves of the fuzzy estimate of
the survival function
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Figure 19: Upper and Lower δ-level curves of the fuzzy estimate for the
hazard rate
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5.5 generalized estimation for gamma distributions

Gamma distribution explained in section 3.9 is based on precise life

time observations. Therefore the estimators λ̂ and γ̂ for parameters,

survival function and hazard rate mentioned in section 3.9 need to be

generalized for fuzzy life times.

The generalized (fuzzy) estimators for parameters, survival function,

and hazard rate of the gamma distribution based on fuzzy life times can

be written as λ̂∗, γ̂∗, Ŝ∗(t), and ĥ∗(t) respectively.

The δ-cuts of the estimators and δ-level curves of the fuzzy estimates

of the survival function and hazard rate are denoted by

Cδ

[
λ̂∗
]
=
[
λδ , λδ

]
∀ δ ∈ (0 , 1],

Cδ [γ̂
∗] =

[
γ

δ
, γδ

]
∀ δ ∈ (0 , 1],

Cδ

[
Ŝ∗(t)

]
=
[
Sδ(t) , Sδ(t)

]
∀ δ ∈ (0 , 1],

and

Cδ

[
ĥ∗(t)

]
=
[

hδ(t) , hδ(t)
]

∀ δ ∈ (0 , 1]

respectively.

Using the notation t = (t1, t2, ... , tn) the above δ-cuts of the fuzzy

estimates are formulated as

Cδ

[
λ̂∗
]
=

[
min

t ∈×n
i=1Cδ(t∗i )

λ̂ , max
t ∈×n

i=1Cδ(t∗i )
λ̂

]
∀ δ ∈ (0 , 1]
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Cδ

[
γ̂∗
]
=

[
min

t ∈×n
i=1Cδ(t∗i )

γ̂ , max
t ∈×n

i=1Cδ(t∗i )
γ̂

]
∀ δ ∈ (0 , 1]

Cδ

[
f̂ ∗(t)

]
=
[

f (t|λδ, γδ) , f (t|λδ, γ
δ
)
]

∀ δ ∈ (0 , 1]

Cδ

[
F̂∗(t)

]
=
[

F(t|λδ, γδ) , F(t|λδ, γ
δ
)
]

∀ δ ∈ (0 , 1].

The lower and upper δ-level curves of the fuzzy estimates of the survival

function can be defined as

Sδ(t) = 1−
[

F(t|λδ, γ
δ
)
]

∀ δ ∈ (0 , 1]

Sδ(t) = 1−
[
F(t|λδ, γδ)] ∀ δ ∈ (0 , 1].

The lower and upper δ-level curves of the fuzzy estimates of the

hazard rate are defined as

hδ(t) = f
δ
(t)/Sδ(t) ∀ δ ∈ (0 , 1]

hδ(t) = f δ(t)/Sδ(t) ∀ δ ∈ (0 , 1].

Characterizing functions of fuzzy life time observations and fuzzy

estimates of the Gamma distribution are depicted in figures 20-24.
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Figure 20: Characterizing functions of the fuzzy life times sample
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Figure 21: Characterizing function of the fuzzy estimator λ̂∗ based on
the fuzzy sample shown in figure 9
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Figure 22: Characterizing function of the fuzzy estimator γ̂∗ based on
the fuzzy sample shown in figure 9
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Figure 23: Upper and Lower δ-level curves of the fuzzy estimate of the
survival function
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Figure 24: Upper and Lower δ-level curves of the fuzzy estimate of the
hazard rate
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5.6 generalized estimation for lognormal distributions

Lognormal distribution, parameter estimators, estimators of survival

function and hazard rate explained in section 3.10 are based on precise

life time observations. The explained estimates need to be generalized

for fuzzy life times.

The generalized estimators for the parameters, survival function, and

hazard rate of the lognormal distribution based on fuzzy life times are

denoted as µ̂∗, ŝ∗, Ŝ∗(t) and ĥ∗(t) respectively.

The δ-cuts of the estimators and δ-level curves of the fuzzy estimates

of the survival function and hazard rate can be written as

Cδ [µ̂
∗] =

[
µ

δ
, µδ

]
∀ δ ∈ (0 , 1]

Cδ [ŝ∗] = [sδ , sδ] ∀ δ ∈ (0 , 1]

Cδ

[
Ŝ∗(t)

]
=
[
Sδ(t) , Sδ(t)

]
∀ δ ∈ (0 , 1]

61



and

Cδ

[
ĥ∗(t)

]
=
[

hδ(t) , hδ(t)
]

∀ δ ∈ (0 , 1]

respectively. These can be formulated by using theorem 2, section 1.11:

Cδ [µ̂
∗] =

[
min

t ∈×n
i=1Cδ(t∗i )

µ̂ , max
t ∈×n

i=1Cδ(t∗i )
µ̂

]
∀ δ ∈ (0 , 1]

Cδ [ŝ∗] =

[
min

t ∈×n
i=1Cδ(t∗i )

ŝ , max
t ∈×n

i=1Cδ(t∗i )
ŝ

]
∀ δ ∈ (0 , 1]

Cδ

[
f̂ ∗(t)

]
=
[

f (t|µ
δ
, sδ) , f (t|µδ, sδ)

]
∀ δ ∈ (0 , 1]

Cδ

[
F̂∗(t)

]
=
[

F(t|µ
δ
, sδ) , F(t|µδ, sδ)

]
∀ δ ∈ (0 , 1]

The lower and upper δ-level curves of the fuzzy estimates of the survival

function are defined as

Sδ(t) = 1− [F(t|µδ, sδ)] ∀ δ ∈ (0 , 1]

Sδ(t) = 1−
[

F(t|µ
δ
, sδ)

]
∀ δ ∈ (0 , 1].

The lower and upper δ-level curves of the fuzzy estimate of the

hazard rate are defined by

hδ(t) = f
δ
(t)/Sδ(t) ∀ δ ∈ (0 , 1]

hδ(t) = f δ(t)/Sδ(t) ∀ δ ∈ (0 , 1].
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Figure 25: Characterizing function of the fuzzy estimator µ̂∗ from the
fuzzy sample shown in figure 20
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Figure 26: Characterizing function of the fuzzy estimator ŝ∗ based on the
fuzzy sample shown in figure 20
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Figure 27: Upper and Lower δ-level curves of the fuzzy estimate of the
survival function
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Figure 28: Upper and Lower δ-level curves of the fuzzy estimate of the
hazard rate
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5.7 generalized estimation for the three parameter weibull

distribution

Estimators α̂, β̂, and γ̂ for three parameter Weibull distribution ex-

plained in section section 3.8 are based on precise life time observations.

The generalized estimates based on fuzzy life time observations are

explained below.

For fuzzy life time observations t∗1 , t∗2 , ... , t∗n, if α̂∗ is a fuzzy parameter

estimator for the location parameter of the three parameter Weibull

distribution based on fuzzy data, then its δ-cuts are denoted by

Cδ(α̂
∗) = [αδ , αδ] ∀δ ∈ (0 , 1],

where

αδ = min
t∈×n

i=1Cδ(t∗i )

m1 ·m4 − m2
2

m1 + m4 − 2m2

and

αδ = max
t∈×n

i=1Cδ(t∗i )

m1 ·m4 − m2
2

m1 + m4 − 2m2
.

In a similar way β̂∗, γ̂∗ are fuzzy estimators of scale and shape

parameter of the three parameter Weibull distribution respectively. Its

δ-cuts are defined by

Cδ

(
β̂∗
)
=
[

β
δ

, βδ

]
∀δ ∈ (0 , 1],

β
δ
= min

t∈×n
i=1Cδ(t∗i )

m1 − α̂

Γ
(

1 + 1
γ̂

)
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and

βδ = max
t∈×n

i=1Cδ(t∗i )

m1 − α̂

Γ
(

1 + 1
γ̂

)
where

Cδ(γ̂
∗) =

[
γ

δ
, γδ

]
∀δ ∈ (0 , 1],

γ
δ
= min

t∈×n
i=1Cδ(t∗i )

ln 2
ln(m1 −m2)− ln(m2 −m4)

and

γδ = max
t∈×n

i=1Cδ(t∗i )

ln 2
ln(m1 −m2)− ln(m2 −m4)

.

As an example take fuzzy life time observations with trapezoidal

characterizing functions as given in figure 29.

Figure 29: Trapezoidal fuzzy life times
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For the construction of the characterizing function ψ(·) of the fuzzy

estimates of the Weibull parameters the following steps are applied:

1. The values for δ are taken from 0 to 1 with an increment 0.1.
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2. For a given value of δ all δ-cuts of the fuzzy observations are

determined.

3. Taking 10 values from all δ-cuts (for n observations we obtain 10n

values) we obtain hypothetical classical samples.

4. From these hypothetical classical samples at a given level δ, the

standard classical estimates of the parameters are calculated.

5. In order to construct the characterizing function of a generalized

(fuzzy) estimator θ̂∗ the minimum and maximum values from

these estimates are taken and are considered as the end points

of the family (Aδ; δ ∈ (0 , 1]) of generating intervals Aδ of the

characterizing function of the fuzzy estimators at a given level of δ.

6. Steps 3-5 are performed for each for δ = 0(0.1)1.

7. From all these generating intervals Aδ obtained for each δ (i.e. δ =

0+, 0.1, 0.2, ..., 1) through the above mentioned Construction lemma

an approximation of the characterizing functions of the fuzzy esti-

mates of the parameters are obtained.

In figures 30 - 32 the characterizing functions of the fuzzy estimates

of the Weibull parameters α, β, and γ based on the fuzzy sample from

figure 29 are depicted:
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Figure 30: Characterizing function of the fuzzy estimate α̂∗
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Figure 31: Characterizing function of the fuzzy estimate β̂∗
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Figure 32: Characterizing function of the fuzzy estimate γ̂∗
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5.8 estimation of the reliability function

The lower and upper δ-level curves of a fuzzy estimate R∗(·) of the

reliability function R(·) of a three parameter Weibull distribution are

obtained from the corresponding generating family (Aδ; δ ∈ (0 , 1]):

Aδ

(
R∗(x)

)
=

[
inf

x∈×n
i=1Cδ(x∗i )

α̂δ∈[αδ , αδ]

β̂δ∈
[

β
δ

, βδ

]
γ̂δ∈[γδ

, γδ]

{
exp

{
−
(

x− α̂δ

β̂δ

)γ̂δ
}}

,

sup
x∈×n

i=1Cδ(x∗i )
α̂δ∈[αδ , αδ]

β̂δ∈
[

β
δ

, βδ

]
γ̂δ∈[γδ

, γδ]

{
exp

{
−
(

x− α̂δ

β̂δ

)γ̂δ
}}]

∀δ ∈ (0 , 1], t ≥ α, (A)

The fuzzy estimate of the reliability function of the three parameter

Weibull distribution is obtained through the following algorithm:

1. The values taken for δ are 0, 0.5, 1.
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2. For a given value of δ all δ-cuts of the fuzzy observations are

determined.

3. Taking 10 values from all δ-cuts (for n observations we obtain 10n

values) hypothetical classical samples are obtained.

4. From these hypothetical classical samples at a given level δ, the

standard classical estimates of the parameters are calculated.

5. Based on these estimates the values of the reliability function given

in equation (A) are calculated for times 110, 120, 130, 140, 150, 160,

170, 180, 190, 200, 212.

6. The lower and upper δ-level curves of the fuzzy estimate of the reli-

ability function are constructed by taking minimum and maximum

values of the classical estimated values of the reliability function at

time points 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 212 at a

given level of δ.

7. The minimum values make the lower δ-level curve, and the maxi-

mum values make the upper δ-level curve.

8. Steps 2-7 are performed for δ = 0, 0.5, and 1.
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Figure 33: Lower and Upper δ-level curves of the Fuzzy Reliability Func-
tion estimate based on the fuzzy sample given in figure 29.
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5.9 a new model for lifetime distribution with bathtub

shaped failure rate

Let t∗1 , t∗2 , ... , t∗n be denoting fuzzy life time observations with corre-

sponding δ-cuts Cδ(t∗i ) =
[
ti,δ , ti,δ

]
∀δ ∈ (0 , 1].

Based on fuzzy life time data the generalized (fuzzy) estimators for

the parameters explained in 3.11 are denoted by t̂∗0 and α̂∗.

The generating families of intervals for the fuzzy estimators t̂∗0 and

α̂∗ are denoted as (Aδ(t̂∗0); ∀δ ∈ (0 , 1]) and (Bδ(α̂
∗); ∀δ ∈ (0 , 1]),

respectively and are obtained by the following equations:

Aδ(t̂∗0) =
[
t(n),δ , t(n),δ

]
∀δ ∈ (0 , 1]

where t0,δ = t(n),δ and t0,δ = t(n),δ denote lower and upper ends of the

δ-cut of the largest order statistic respectively.

For the lower and upper ends of the generating family of intervals

for the fuzzy estimator α̂∗, the estimator explained in section 3.11 is

generalized in the following way:
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Solving the following equations

for α1,δ : 2
1+2α −

1
n ∑n

i=1
α+t(i),δ/t0,δ

α2+(1+2α)t(i),δ/t0,δ
= 0

for α2,δ : 2
1+2α −

1
n ∑n

i=1
α+t(i),δ/t0,δ

α2+(1+2α)t(i),δ/t0,δ
= 0

for α3,δ : 2
1+2α −

1
n ∑n

i=1
α+t(i),δ/t0,δ

α2+(1+2α)t(i),δ/t0,δ
= 0

for α4,δ : 2
1+2α −

1
n ∑n

i=1
α+t(i),δ/t0,δ

α2+(1+2α)t(i),δ/t0,δ
= 0

and defining

αδ = min [α1,δ, α2,δ, α3,δ, α4,δ]

αδ = max [α1,δ, α2,δ, α3,δ, α4,δ] ,

the generating family
(

Bδ (α̂
∗) = [αδ , αδ] ∀δ ∈ (0 , 1]

)
is obtained.

The characterizing functions for the fuzzy parameter estimates are

obtained by the mentioned Construction lemma.
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Figure 34: Characterizing functions of a fuzzy sample
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Figure 35: Characterizing function of the fuzzy estimator t̂∗0
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Figure 36: Characterizing function of the fuzzy estimator α̂∗
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Based on fuzzy estimates of t0 and α the δ-level curves of the fuzzy

estimate of hazard rate are given by Cδ(h∗(t)) = [hδ(t) , hδ(t)] ∀δ ∈

(0 , 1].

The corresponding δ-level curves are obtained as

hδ(t) =
1 + 2αδ

(2t0,δ

√
α2

δ + (1 + 2αδ)t/t0,δ)(1 + αδ −
√

α2
δ + (1 + 2αδ)t/t0,δ)

∀δ ∈ (0 , 1]

and

hδ(t) =
1 + 2αδ

(2t0,δ

√
α2

δ + (1 + 2αδ)t/t0,δ)(1 + αδ −
√

α2
δ + (1 + 2αδ)t/t0,δ)

∀δ ∈ (0 , 1].

74



Figure 37: Some lower and upper δ-level curves of the fuzzy estimate of
the hazard rate
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5.10 new two-parameter lifetime distribution with bath-

tub shaped failure rate

For fuzzy life times fuzzy parameter estimators and a fuzzy estimator

for the hazard rate for the new two-parameter distribution defined by

(Chen, 2000) can be written as:

Cδ(β̂∗) = [β
δ

, βδ] ∀δ ∈ (0 , 1]

Cδ(λ̂
∗) = [λδ , λδ] ∀δ ∈ (0 , 1]

Cδ(h∗(t)) = [hδ(t) , hδ(t)] ∀δ ∈ (0 , 1]

Lower and upper limits of the generalized families of intervals for the

fuzzy estimator β̂∗ are approximated through the following equations:
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β1,δ =
k
β + ∑k

i=1 ln t(i),δ + ∑k
i=1

(
tβ

(i),δln t(i),δ
)
−

k
[

∑k
i=1

(
etβ

(i),δ tβ

(i),δln t(i),δ

)
+ (n− k)

(
etβ

(k),δ tβ

(k),δln t(k),δ

)]
∑k

i=1 etβ

(i),δ − n− (n− k)etβ

(k),δ

= 0

and

β2,δ =
k
β + ∑k

i=1 ln t(i),δ + ∑k
i=1

(
tβ

(i),δln t(i),δ
)
−

k
[

∑r
i=1

(
etβ

(i),δ tβ

(i),δln t(i),δ

)
+ (n− k)

(
etβ

(k),δ tβ

(k),δln t(k),δ

)]
∑k

i=1 etβ

(i),δ − n− (n− k)etβ

(r),δ

= 0

where

Aδ(β̂∗) = [{min(β1,δ, β2,δ)} , {max(β1,δ , β2,δ)}] ; ∀δ ∈ (0 , 1].

where β
δ
= min[β1,δ , β2,δ] and βδ = max[β1,δ , β2,δ].

The characterizing function of β̂∗ can be obtained by the mentioned

Construction lemma.

Lower and upper limits of the generating family of intervals for the

fuzzy estimator λ̂∗ are approximated through the following equations:

Aδ(λ̂
∗) =

 k

∑k
i=1 et

βδ
(i),δ − n− (n− k)et

β
δ

(k),δ

,
k

∑r
i=1 et

β
δ

(i),δ − n− (n− k)et
βδ
(k),δ


∀δ ∈ (0 , 1]
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where λδ and λδ represent the lower and upper limits of the interval

at level δ. The characterizing function of λ̂∗ can be obtained by the

Construction lemma.

Given below in figures 38-40 are characterizing functions of fuzzy

sample, β̂∗, and λ̂∗ respectively.

Figure 38: Characterizing functions of a fuzzy sample
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Figure 39: Characterizing function of the fuzzy estimator β̂∗
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Figure 40: Characterizing function of the fuzzy estimator λ̂∗
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Lower and upper δ-level curves of the fuzzy hazard rate are given by:

hδ(t) = λδβ
δ
etβδ tβδ−1 ∀δ ∈ (0 , 1], ∀t ∈ [0 , ∞)

hδ(t) = λδβδetβ
δ tβ

δ
−1 ∀δ ∈ (0 , 1], ∀t ∈ [0 , ∞)
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Figure 41: Some lower and upper δ-level curves of the fuzzy estimate of
the hazard rate
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5.11 accelerated life testing and fuzzy information

In order to obtain generalized (fuzzy) estimators based on fuzzy life

time observations for accelerated life testing, the procedures to obtain

generalized estimators are given in the following sections.

5.11.1 Constant Stress Levels and Fuzzy Life Times

As discussed earlier life time observations are more or less fuzzy and

parameter estimators are functions of life time observations. Therefore

the estimators explained in section 4.1 are needed to be generalized for

fuzzy life time observations, i.e. θ̂∗i = f (t∗i,(j), j = 1(1)ri), where t∗i,(j)

denote the fuzzy life times of ri failed units under the stress level Si.

Since the parameter estimator θ̂∗i is becoming a fuzzy value, therefore

its δ-cuts are denoted as Cδ

(
θ̂∗i
)
=
[
θi,δ , θi,δ

]
∀ δ ∈ (0 , 1].

To obtain θi,δ and θi,δ the proposed estimators are explained below:

Under constant stress levels Si, i = 1(1)k the generating family of the

fuzzy estimator θ̂∗i from section 4.1 for the parameters are defined by

Aδ(θ̂
∗
i ) =

[
∑ri

j=1 ti,(j),δ + (ni − ri)ti,(ri),δ

ri
,

∑ri
j=1 ti,(j),δ + (ni − ri)ti,(ri),δ

ri

]

∀ δ ∈ (0 , 1]

where
[
ti,(j),δ , ti,(j),δ

]
∀ δ ∈ (0 , 1] are the δ-cuts of the fuzzy life

times t∗i,(j).

The characterizing function of θ̂∗i is obtained by the Construction lemma
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for characterizing functions.

For the construction of the characterizing functions of the fuzzy

estimates as an example we have S1 = 1, n1 = 5, r1 = 3, and

S2 = 2.5, n2 = 5, r2 = 4.

The characterizing functions of the observed fuzzy life times and

fuzzy estimates of the parameters are given in figure 42, figure 43, and

figure 44 respectively.

Figure 42: Fuzzy sample under stress S1
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Figure 43: Fuzzy sample under stress S2
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Figure 44: Characterizing functions of θ̂∗1 and θ̂∗2
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5.11.2 Power Rule Model and Fuzzy Life Times

But as discussed earlier life time observations are not precise numbers

but fuzzy. Therefore the generalized estimators for θi explained in section

4.2 are written as θ̂∗i , i = 1(1)k for fuzzy life time data.

The estimates of A and C will also be fuzzy because they are functions

of θ̂∗i , defined by

Ĉ∗ = f1(θ̂
∗
i ), Â∗ = f2(θ̂

∗
i ) and also θ̂∗(Si) =

Ĉ∗(
Si
S

)Â∗ .

Therefore its δ-cuts are

Cδ(Â∗) =
[
Aδ , Aδ

]
∀ δ ∈ (0 , 1]

Cδ(Ĉ∗) =
[
Cδ , Cδ

]
∀ δ ∈ (0 , 1]

Cδ(θ̂
∗(Si)) =

[
θδ(Si) , θδ(Si)

]
∀ δ ∈ (0 , 1].

For the estimation of lower and upper ends of the generating families of

intervals of A∗, C∗, and θ̂∗(Si) respectively the proposed estimators are

explained below:

The generating families of intervals of the fuzzy estimators Â∗ and

Ĉ∗ are denoted as
[
Aδ , Aδ

]
and

[
Cδ , Cδ

]
, respectively. In order to obtain

them we have the following equations:

Aδ = min

{
k

∑
i=1

ri · θi,δ · (
Si

S
)A · ln(Si

S
) = 0 ,

k

∑
i=1

ri · θi,δ · (
Si

S
)A · ln(Si

S
) = 0

}

∀ δ ∈ (0 , 1]
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Aδ = max
{

∑k
i=1 ri · θi,δ · (

Si
S
)A · ln(Si

S
) = 0 , ∑k

i=1 ri · θi,δ · (Si
S
)A · ln(Si

S
) = 0

}
∀ δ ∈ (0 , 1]

and

Cδ = min
{

∑k
i=1 ri·θi,δ·(

Si
S
)Aδ

∑k
i=1 ri

,
∑k

i=1 ri·θi,δ·(
Si
S
)Aδ

∑k
i=1 ri

,
∑k

i=1 ri·θi,δ·(
Si
S
)Aδ

∑k
i=1 ri

,
∑k

i=1 ri·θi,δ·(
Si
S
)Aδ

∑k
i=1 ri

}
∀ δ ∈ (0 , 1]

Cδ = max
{

∑k
i=1 ri·θi,δ·(

Si
S
)Aδ

∑k
i=1 ri

,
∑k

i=1 ri·θi,δ·(
Si
S
)Aδ

∑k
i=1 ri

,
∑k

i=1 ri·θi,δ·(
Si
S
)Aδ

∑k
i=1 ri

,
∑k

i=1 ri·θi,δ·(
Si
S
)Aδ

∑k
i=1 ri

}
∀ δ ∈ (0 , 1]

The characterizing functions for Ĉ∗ and Â∗ are obtained by the above

mentioned Construction lemma.

The fuzzy estimate for the parameters of θ(Si) are obtained by the

following generating families:

Aδ(θ̂
∗(S1)) =

[
Cδ

(S1/S)Aδ
,

Cδ

(S1/S)Aδ

]
∀ δ ∈ (0 , 1]

Aδ(θ̂
∗(S2)) =

[
Cδ

(S2/S)Aδ
,

Cδ

(S2/S)Aδ

]
∀ δ ∈ (0 , 1]

From these generating families of intervals the characterizing func-

tions are obtained by the Construction lemma.

The characterizing functions of Â∗, Ĉ∗, and θ̂∗(Si) are depicted in

figures 45-47 and, fuzzy life times are considered from figures 42-43.
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Figure 45: Characterizing function of Â∗
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Figure 46: Characterizing function of Ĉ∗
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Figure 47: Characterizing functions for θ̂∗(Si)
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5.11.3 Step-Stress Model and Fuzzy Life Times

As discussed earlier life time observations are not precise numbers

but fuzzy. Therefore the likelihood function and parameter estimators for

the step-stress model are required to be generalized for fuzzy life time

observations. The likelihood function for fuzzy data can be generalized

by the extension principle and is denoted as

L∗(θ1, θ2; t∗1,(1), t∗1,(2), ..., t∗1,(n1)
, t∗2,(n1+1), ..., t∗2,(r)).

For fuzzy life time observations the generalized parameter estimators

are denoted as θ̂∗1 and θ̂∗2 . Since these estimators will be functions of

fuzzy life time observations, therefore its δ-cuts are denoted by

Cδ(θ̂
∗
1) =

[
θ1,δ , θ1,δ

]
∀ δ ∈ (0 , 1]

and

Cδ(θ̂
∗
2) =

[
θ2,δ , θ2,δ

]
∀ δ ∈ (0 , 1].
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For the step-stress model explained in section 4.3, fuzzy estimates

of the corresponding parameters can be obtained through the following

equations:

Aδ(θ̂
∗
1) =

[
∑

n1
j=1 t1,(j),δ +(n−n1)τ

n1
,

∑
n1
j=1 t1,(j),δ +(n−n1)τ

n1

]
∀ δ ∈ (0 , 1]

Aδ(θ̂
∗
2) =

[∑r
j=n1+1(t2,(j),δ −τ)+(n−r)(t2,(r),δ −τ)

r−n1
,

∑r
j=n1+1(t2,(j),δ −τ)+(n−r)(t2,(r),δ −τ)

r−n1

]
∀ δ ∈ (0 , 1]

From these generating families of intervals using the mentioned Con-

struction lemma the characterizing functions can be obtained.

For the construction of characterizing functions of fuzzy parameter

estimates, as an example, n = 20, r = 16, n1 = 4, τ = 21, S1 = 1, S2 = 2.5

are considered.

Figure 48: Fuzzy sample
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Figure 49: Fuzzy sample before time τ = 21
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Figure 50: Fuzzy sample after time τ = 21
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Figure 51: Characterizing functions of θ̂∗1 and θ̂∗2 based on the algorithm
from section 5.11.3.
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5.11.4 Non-Parametric Estimation for Fuzzy Life Times

The estimator γ̂ explained in section 4.4 is based on precise life time

observations, and needs to be generalized for fuzzy life time observations.

The generalized fuzzy estimator of γ is denoted by γ̂∗, having δ-cuts

Cδ(γ̂
∗) =

[
γ

δ
, γδ

]
∀ δ ∈ (0 , 1].

If we consider precise stress levels S1, S2, ..., Sk and fuzzy life time

observations t∗i,l, l = 1(1)ni and i = 1(1)k having δ-cuts

Cδ(t∗i,l) =
[
ti,l,δ , ti,l,δ

]
∀δ ∈ (0 , 1], then δ-cuts of the mean of these

life time observations can be written as

Cδ(T
∗
i ) =

[
1
ni

ni

∑
l=1

ti,l,δ ,
1
ni

ni

∑
l=1

ti,l,δ

]
∀ δ ∈ (0 , 1].

Defining

Ti,δ =
1
ni

ni

∑
l=1

ti,l,δ and Ti,δ =
1
ni

ni

∑
l=1

ti,l,δ
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the lower and upper ends of the generating family of intervals(
[γ

δ
, γδ]; ∀ δ ∈ (0 , 1]

)
for the fuzzy estimator of γ can be calculated

as:

γ
δ
= min

∑k
i=1 ∑k

j=i+1

(
ln
(

Sj
Si

))(
ln

(
Ti,δ
Tj,δ

))

∑k
i=1 ∑k

j=i+1

(
ln
(

Sj
Si

))2 ,
∑k

i=1 ∑k
j=i+1

(
ln
(

Sj
Si

))(
ln
(

Ti,δ
Tj,δ

))
∑k

i=1 ∑k
j=i+1

(
ln
(

Sj
Si

))2



∀δ ∈ (0 , 1]

γδ = max

∑k
i=1 ∑k

j=i+1

(
ln
(

Sj
Si

))(
ln

(
Ti,δ
Tj,δ

))

∑k
i=1 ∑k

j=i+1

(
ln
(

Sj
Si

))2 ,
∑k

i=1 ∑k
j=i+1

(
ln
(

Sj
Si

))(
ln
(

Ti,δ
Tj,δ

))
∑k

i=1 ∑k
j=i+1

(
ln
(

Sj
Si

))2

 .

∀δ ∈ (0 , 1]

From this generating family of intervals the characterizing function

of the fuzzy estimator γ̂∗ can be obtained through the above mentioned

Construction lemma.

Given below are the characterizing functions of three fuzzy samples,

and fuzzy parameter estimates under S1, S2, and S3, respectively.
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Figure 52: Fuzzy sample under S1 = 36
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Figure 53: Fuzzy sample under S2 = 34
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Figure 54: Fuzzy sample under S3 = 32
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Figure 55: Characterizing function of the fuzzy parameter estimate γ̂∗
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5.11.5 Linear Acceleration Function and Fuzzy Life Times

Linear acceleration functions explained in sub-section 4.6 are based

on precise life times, therefore this needs to be generalized for fuzzy life

times. For fuzzy life time observations t∗1,(1), ..., t∗1,(n) and t∗2,(1) , ..., t∗2,(n)

under stress S1 and S2 respectively, the generating family of intervals of

the fuzzy estimator l̂n α1,2
∗

is obtained through the following equations:

Cδ(t∗i,(j)) =
[
ti,(j),δ , ti,(j),δ

]
∀ δ ∈ (0 , 1], i = 1, 2.

Aδ(l̂n α1,2
∗
) =

[
1
m

m

∑
j=1

ln
t1,(j),δ

t2,(j),δ
,

1
m

m

∑
j=1

ln
t1,(j),δ

t2,(j),δ

]
∀ δ ∈ (0 , 1]

From the generating family of intervals, i.e.
(

Aδ(l̂n α1,2
∗
); ∀δ ∈ (0 , 1]

)
the characterizing function of the fuzzy estimator l̂n α1,2

∗
can be obtained

by the Construction lemma.

Characterizing functions of fuzzy samples, and fuzzy estimator of

the parameter ln α1,2 are depicted in figures 56 to 58 respectively.

Figure 56: Fuzzy sample under S1 = 1
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Figure 57: Fuzzy sample under S1 = 1.5
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Figure 58: Characterizing function of l̂n α1,2
∗
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The empirical cumulative distribution function explained in section

4.6 can be generalized for fuzzy life time data.

The relationship between cumulative distribution functions under

different stress levels S1 < S2 in a non-parametric model is the following:

F(t|S2) = F(α1,2 · t|S1) α1,2 > 1, ∀t > 0 (5.1)

Let us consider T1 to be the life time under stress S1 and T2 is the life

time under stress S2.

Then equation (5.1) implies

Pr(T2 ≤ t) = Pr(T1 ≤ α1,2 · t) = Pr(
T1

α1,2
≤ t).

If F(·) is invertible it follows

T2 =
T1

α1,2

and

T1 = α1,2 · T2. (5.2)

Since life time observations are fuzzy, therefore the CDF from equa-

tion (5.1) has to be generalized for fuzzy life time data.

For fuzzy life times the generalized CDFs are written as

F∗(t|S2) = F∗(α1,2 · t|S1).
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Based on precise linear acceleration function and fuzzy life time

observations the relationship in equation (5.2) takes the following form:

T∗1 = α1,2 · T∗2 (5.3)

The relationship given in equation (5.3) leads to the conclusion that

uncertainty of T2 implies bigger uncertainty of T1 by α1,2 > 1.

Let t∗2 be a fuzzy life time observed under stress S2.

The extrapolated life time t∗1 given in equation (5.3) is a fuzzy number

having δ-cuts

Cδ(t∗1) =
[

t1,δ , t1,δ
]

∀δ ∈ (0 , 1].

Then the lower and upper ends of the generating family of intervals for

the transformed life time are defined by

t1,δ = α1,2 · t2,δ ∀δ ∈ (0 , 1]

t1,δ = α1,2 · t2,δ ∀δ ∈ (0 , 1].

Example:

Consider a precise linear acceleration constant α1,2 = 3 and fuzzy sample

t∗2,1, t∗2,2, ..., t∗2,5 under stress level S2 in figure 59.
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Figure 59: Fuzzy sample under S2 = 1.5N
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In figure 60 are the characterizing functions of the extrapolated life

times under S1 based on equation (5.3).

Figure 60: Characterizing functions of the transformed fuzzy life times
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This means that the δ-cuts of the extrapolated fuzzy life times t∗1,1, t∗1,2, ..., t∗1,5

based on the fuzzy life times t∗2,1, t∗2,2, ..., t∗2,5 contain more fuzziness.
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For the fuzzy empirical CDFs based on fuzzy life times under S2 and

transformed life times data at δ = 0+ are considered which are given

below in figure 61:

α1,2 = 3

C0+(t∗2,1) = [1 , 2.5]

C0+(t∗2,2) = [3 , 4.5]

C0+(t∗2,3) = [5 , 6.5]

C0+(t∗2,4) = [7 , 8.5]

C0+(t∗2,5) = [9 , 10.5]

are the lower and upper ends of the support of the fuzzy life times

t∗2,1, t∗2,2, ..., t∗2,5 at δ = 0+

Figure 61: Lower and upper δ-level curves of the fuzzy empirical CDF
based on fuzzy life times and linear acceleration function
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The solid lines represent the support functions of the fuzzy empirical

CDF based on t∗2,1, t∗2,2, ..., t∗2,5, and the dashed lines represent the fuzzy

empirical CDF for the transformed fuzzy sample obtained by equation

(5.3).
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5.11.6 Power Type Acceleration Function and Fuzzy Life Times

The power type acceleration function explained in section 4.7 is also

based on precise life times, therefore this needs to be generalized for

fuzzy life times.

Let t∗1,(1), ... , t∗1,(n) and t∗2,(1) , ... , t∗2,(n) be the corresponding fuzzy life

time observations under stress S1 and S2 respectively. Then the δ-cuts of

fuzzy life times, and estimators are denoted by

Cδ(t∗j,(i)) =
[
ti,(j),δ , ti,(j),δ

]
∀ δ ∈ (0 , 1],

and

Cδ(β̂∗1,2) =
[

β
1,2,δ

, β1,2,δ

]
∀ δ ∈ (0 , 1],

Cδ(l̂n α1,2
∗
) =

[
ln α1,2,δ , ln α1,2,δ

]
∀ δ ∈ (0 , 1].

Equations for generating families of intervals for the generalized

estimators are given below:

Aδ(β̂∗1,2) =

[
1
m

m

∑
k=1

ln t1,(k+1),δ − ln t1,(k),δ

ln t2,(k+1),δ − ln t2,(k),δ
,

1
m

m

∑
k=1

ln t1,(k+1),δ − ln t1,(k),δ

ln t2,(k+1),δ − ln t2,(k),δ

]

∀ δ ∈ (0 , 1]

Aδ(l̂n α1,2
∗
) =

[
1
m

m

∑
k=1

[ln t1,(k),δ − β̂1,2,δ ln t2,(k),δ] ,
1
m

m

∑
k=1

[ln t1,(k),δ − β̂
1,2,δ

ln t2,(k),δ]

]

∀ δ ∈ (0 , 1]
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From these generating families of intervals, i.e.
(

Aδ(l̂n α1,2
∗
); ∀δ ∈ (0 , 1]

)
and

(
Aδ(β̂∗1,2); ∀δ ∈ (0 , 1]

)
the characterizing functions of the fuzzy

estimators l̂n α1,2
∗

and β̂∗1,2 can be obtained through the Construction

lemma.

As an example two precise stress levels, i.e. S1 = 1, S2 = 2, and n1 =

n2 = 5 are considered.

Characterizing functions of the fuzzy samples, and fuzzy estimates

are depicted in figures 59 to 62 respectively.

Figure 62: Fuzzy sample under S1 = 1
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Figure 63: Fuzzy sample under S2 = 2
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Figure 64: Characterizing function of β̂∗1,2
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Figure 65: Characterizing functions for l̂n α1,2
∗
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Empirical cumulative distribution functions for power type accelera-

tion function explained in section 4.7 can be generalized for fuzzy life

time data.

This relationship between cumulative distribution functions under

different stress levels S1 < S2 in a non-parametric model is the following:

F(t|S2) = F(α1,2 · tβ1,2 |S1) with α1,2 > 1, and β1,2 > 1, ∀t > 0

(5.4)

Let us consider T1 to be the life time under stress S1 and T2 is the life

time under stress S2.

Then equation (5.4) implies

Pr(T2 ≤ t) = Pr(T1 ≤ α1,2 · tβ1,2) = Pr

((
T1

α1,2

)1/β1,2

≤ t

)
.
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If F(·) is invertible it follows

T2 =

(
T1

α1,2

)1/β1,2

and

T1 = α1,2 · T
β1,2
2 . (5.5)

Since life time observations are fuzzy, therefore the CDF from equa-

tion (5.4) has to be generalized for fuzzy life time data.

For fuzzy life times the generalized CDFs are written as

F∗(t|S2) = F∗(α1,2 · tβ1,2 |S1) with α1,2, and β1,2 > 1, ∀t > 0.

Based on power type acceleration function and fuzzy life time obser-

vations the relationship in equation (5.5) takes the following form:

T∗1 = α1,2 ·
(
T∗2
)β1,2 (5.6)

The relationship given in equation (5.6) leads to the conclusion that

uncertainty of T2 implies bigger uncertainty of T1 by α1,2 > 1, and

β1,2 > 1.

Let t∗2 be a fuzzy life time observed under stress S2.

The transformed fuzzy life time t∗1 given by equation (5.6) is a fuzzy

number having δ-cuts

Cδ(t∗1) =
[

t1,δ , t1,δ
]

∀δ ∈ (0 , 1].
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Then the lower and upper ends of the generating family of intervals for

the transformed life time are defined by

t1,δ = α1,2 · t
β1,2
2,δ ∀δ ∈ (0 , 1]

t1,δ = α1,2 · t
β1,2
2,δ ∀δ ∈ (0 , 1].

Example:

Consider a power type acceleration function with constants α1,2 = 3, and

β1,2 = 1.5.

Characterizing functions of a fuzzy sample t∗2,1, t∗2,2, ..., t∗2,5 under

stress level S2 are given in figure 66.

Figure 66: Fuzzy sample under S2 = 2N
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In figure 67 are the characterizing functions of the transformed fuzzy

life times under S1 based on equation (5.6).
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Figure 67: Characterizing functions of the transformed fuzzy life times
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This means that the δ-cuts of the transformed fuzzy life times t∗1,1, t∗1,2, ..., t∗1,5

based on the fuzzy life times t∗2,1, t∗2,2, ..., t∗2,5 contain more fuzziness.

For the fuzzy empirical CDF of the fuzzy life times under S2, and

transformed fuzzy life times data at δ = 0+ the following holds:

α1,2 = 3

β1,2 = 1.5

C0+(t∗2,1) = [1 , 2.5]

C0+(t∗2,2) = [3 , 4.5]

C0+(t∗2,3) = [5 , 6.5]

C0+(t∗2,4) = [7 , 8.5]

C0+(t∗2,5) = [9 , 10.5]

are lower and upper ends of the support of the fuzzy life times

t∗2,1, t∗2,2, ..., t∗2,5 at δ = 0+.
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Figure 68: Lower and upper δ-level curves for δ = 0+ of the fuzzy empir-
ical CDF based on fuzzy life times for power type acceleration
function
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The solid lines represent the fuzzy empirical CDF based on t∗2,1, t∗2,2, ..., t∗2,5,

and the dashed lines represent the fuzzy empirical CDF for the trans-

formed fuzzy sample obtained by equation (5.6).

This shows the dramatic increase of fuzziness in accelerated life

testing.
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6

C O N C L U S I O N S

Statistical analysis techniques of life time data can be traced back cen-

turies, which reflects its importance and resulted into rapid development

of various statistical approaches during the last few decades to get

refined and relevant results.

The emergence of technological advancement augments the increase

in life time of units, which with only few observations draw inference

about the aggregate of units. Hence, it is pertinent to utilize all the

available information in the best possible manner.

Likewise, the world of real measurements establishes the fact that

exact measurement of a continuous quantity is unattainable, and all such

quantities are more or less fuzzy. While, most of the classical statistical

tools allied with continuous quantities are based on precise observations,

and ignore fuzziness.

Furthermore, it has already been mentioned that life time obser-

vations are more or less fuzzy; therefore, dealing with life time data

fuzziness of individual observations needs to be considered.

For this purpose in addition to stochastic models, the best up to date,

fuzzy number approaches are more relevant than precise measurements.
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In this study some of the most important techniques pertaining to life

time data are generalized for fuzzy life times to draw more suitable and

appropriate inference.

Fuzzy parameter estimation, fuzzy survival function estimation and

fuzzy hazard rate estimation of the Exponential distribution, Weibull

distribution, Gamma distribution, and Lognormal distribution are en-

compassed in the study.

Furthermore, parameter estimation of bathtub hazard rate distribu-

tions and three parameter Weibull distribution were also generalized for

fuzzy life time data.

Dealing with life time data, Accelerated Life Testing (ALT) approaches

are regarded as one of the most prominent fields of statistics; therefore,

these techniques also require generalization for fuzzy life time data.

ALT techniques, for the first time in the present study, are reckoned

for fuzzy life time data. Some techniques related to constant stress

level, step-stress level, power rule model, non-parametric estimation and

acceleration functions are considered and generalized for fuzzy life time

data.

Additionally, dramatic increase in the fuzziness of the transformed

fuzzy life times by acceleration functions were observed.

The proposed estimators are based on two types of uncertainty:

fuzziness of individual observations and stochastic variation among the

observations.

Therefore, inference based on the proposed generalized estimators

are more suitable and realistic.
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Haupt, E. and Schäbe, H. (1992). A new model for a lifetime distribution

with bathtub shaped failure rate. Microelectronics Reliability, 32(5):633 –

639.

Hosmer, D. and Lemeshow, S. (1999). Applied Survival Analysis: Regression

Modeling of Time to Event Data. Wiley, New York.

Huang, H.-Z., Zuo, M. J., and Sun, Z.-Q. (2006). Bayesian reliability

analysis for fuzzy lifetime data. Fuzzy Sets and Systems, 157(12):1674–

1686.

Hung, W.-L. and Liu, Y.-C. (2004). Estimation of Weibull parameters

using a fuzzy least-squares method. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 12(05):701–711.

110



Ibrahim, J., Chen, M., and Sinha, D. (2001). Bayesian Survival Analysis.

Springer, New York.

Kalbfleisch, J. and Prentice, R. (2011). The Statistical Analysis of Failure

Time Data. Wiley, New Jersey.

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from

incomplete observations. Journal of the American Statistical Association,

53(282):457–481.

Kleinbaum, D. and Klein, M. (2005). Survival Analysis: A Self-Learning

Text. Springer, New York.

Klir, G. J. and Yuan, B. (1995). Fuzzy Sets and Fuzzy Logic: Theory and

Applications. Prentice-Hall, New Jersey.

Lee, E. T. and Wang, J. W. (2013). Statistical Methods for Survival Data

Analysis. Wiley, New Jersey.

Lee, K. H. (2006). First Course on Fuzzy Theory and Applications. Springer,

London.

Levenbach, G. J. (1957). Accelerated life testing of capacitors. IEEE

Transactions on Reliability and Quality Control, PGRQC(10):9–20.

Meeker, W. and Escobar, L. (1998). Statistical Methods for Reliability Data.

Wiley, New York.

Miller, R. (2011). Survival Analysis. Wiley, New York.

Nakama, T. (2013). Statistical Procedures for Fuzzy Data in Medical Research.

Springer, Berlin - Heidelberg.

111



Nelson, W. (2005). Applied Life Data Analysis. Wiley, New Jersey.

Nguyen, G. T. and Wu, B. (2006). Fundamentals of Statistics with Fuzzy

Data. Springer, New York.

Pak, A., Parham, G., and Saraj, M. (2013). Reliability estimation in

Rayleigh distribution based on fuzzy lifetime data. International Journal

of System Assurance Engineering and Management, 5(4):487–494.

Shaked, M., Zimmer, W. J., and Ball, C. A. (1979). A nonparametric

approach to accelerated life testing. Journal of the American Statistical

Association, 74(367):694–699.

Szeliga, E. (2004). Structural reliability - fuzzy sets theory approach.

Journal of Theoretical and Applied Mechanics, 42(3):651–666.

Tzafestas, S. and Venetsanopoulos, A. (1994). Fuzzy Reasoning in Infor-

mation, Decision, and Control Systems. Kluwer Academic Publishers,

Norwell.

Viertl, R. (1988). Statistical Methods in Accelerated Life Testing. Vandenhoeck

& Ruprecht, Göttingen.

Viertl, R. (1997). On statistical inference for non-precise data. Environ-

metrics, 8(5):541–568.

Viertl, R. (2006). Univariate statistical analysis with fuzzy data. Computa-

tional Statisitcs & Data Anaysis., 51(1):133–147.

Viertl, R. (2009). On reliability estimation based on fuzzy lifetime data.

Journal of Statistical Planning and Inference, 139(5):1750 – 1755.

112



Viertl, R. (2011). Statistical Methods for Fuzzy Data. Wiley, Chichester.

Viertl, R. and Hareter, D. (2006). Beschreibung und Analyse unscharfer

Information: Statistische Methoden für unscharfe Daten. Springer, Wien.

Wu, H.-C. (2009). Statistical confidence intervals for fuzzy data. Expert

Systems with Applications, 36(2):2670 – 2676.

Zadeh, L. (1965). Fuzzy sets. Information and Control, 8(3):338 – 353.

Zimmermann, H. (2001). Fuzzy Set Theory - and Its Applications. Kluwer

Academic Publishers, Norwell.

113


	Dedication
	Acknowledgments
	Declaration
	Abstract
	Contents
	List of Figures

	List of Figures
	

	INTRODUCTION
	Fuzzy Information
	Support of Functions
	Fuzzy Numbers
	Remark
	Characterizing Functions
	Fuzzy Vectors
	Triangular Norms
	Extension Principle
	Theorem 1
	Lemma 1
	Theorem 2
	Lemma 2
	Remark
	Construction Lemma
	Combination of Fuzzy Numbers
	Fuzzy Valued Empirical Distribution Functions

	MATHEMATICAL OPERATIONS FOR FUZZY NUMBERS
	Addition of Fuzzy Numbers
	Scalar Addition
	Scalar Multiplication
	Multiplication of Fuzzy Numbers
	Subtraction of Fuzzy Numbers
	Inverse of Fuzzy Numbers
	Division of Fuzzy Numbers
	Minimum and Maximum of Fuzzy Numbers
	Equality of Fuzzy Sets
	Complement of Fuzzy Sets
	Union of Fuzzy Sets
	Intersection of Fuzzy Sets

	LIFE TIME ANALYSIS
	Censoring
	Type I censoring
	Type II censoring

	Probability Density Function
	Survival Function
	Hazard Rate
	Kaplan-Meier Estimator
	Exponential Distribution
	Two Parameters Weibull Distribution
	Three Parameters Weibull Distribution
	Gamma Distribution
	Lognormal Distribution
	A New Model for Lifetime Distribution with Bathtub Shaped Failure Rate
	A New Two-parameter Lifetime Distribution with Bathtub Shaped Failure Rate

	ACCELERATED LIFE TESTING
	Constant Stress Levels
	Power Rule Model
	Step-Stress Model
	Non-Parametric Estimation
	Acceleration Functions
	Linear Acceleration Functions
	Power Type Acceleration Functions

	LIFE TIME ANALYSIS AND FUZZY DATA
	Generalized Kaplan-Meier estimator
	Fuzzy Maximum Likelihood Estimators of the Two Parameter Weibull Distribution for Fuzzy Censored Data
	Generalized Estimation for Exponential Distribution
	Generalized Estimation for Weibull Distributions
	Generalized Estimation for Gamma Distributions
	Generalized Estimation for Lognormal Distributions
	Generalized Estimation for the Three Parameter Weibull Distribution
	Estimation of the Reliability Function
	A New Model for Lifetime Distribution with Bathtub Shaped Failure Rate
	New Two-parameter Lifetime Distribution with Bathtub Shaped Failure Rate
	Accelerated Life Testing and Fuzzy Information
	Constant Stress Levels and Fuzzy Life Times
	Power Rule Model and Fuzzy Life Times
	Step-Stress Model and Fuzzy Life Times
	Non-Parametric Estimation for Fuzzy Life Times
	Linear Acceleration Function and Fuzzy Life Times
	Power Type Acceleration Function and Fuzzy Life Times


	CONCLUSIONS
	Bibliography

