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Abstract

Starting in the early 2000s, there has been a steadily growing interest in random finite sets in the

research community worldwide. Since then, the theory of random finite sets has been successfully

used in a wide variety of scientific fields and in applications such as radar and sonar systems,

air traffic control and navigation, telecommunications, medicine, audio and image processing,

visual tracking, robotics, agriculture, and forestry. The first main contribution of this thesis is

to provide a systematic, detailed, and rigorous introduction to the theory of random finite sets

that can serve as an entry point for readers with no prior exposure to this field. In the second

main contribution, we apply the theory of random finite sets to the problem of estimating the

states of an unknown and random number of objects from image observations. We investigate

a scenario where two independent sensors record partly overlapping images of a bigger scene

and derive an estimator based on the posterior probability hypothesis density. We show how

the estimation performance can be improved by exchanging information between the sensors

over the case where each sensor calculates the estimates separately. Furthermore, we propose a

novel algorithm solving this estimation problem and demonstrate its performance in simulated

scenarios.
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Kurzfassung

Mit Beginn der 2000er Jahre zeichnete sich ein stetig wachsendes Interesse der internationalen

Forschungsgemeinschaft an endlichen Zufallsmengen ab. Seitdem wurde die Theorie der endlichen

Zufallsmengen erfolgreich in vielen Wissenschaftszweigen und in Anwendungen wie Radar- und

Sonarsystemen, Flugsicherung und Navigation, Telekommunikation, Medizin, Audio- und Bild-

verarbeitung, visuelles Tracking, Robotik sowie Land- und Forstwirtschaft eingesetzt. Der erste

Hauptbeitrag dieser Arbeit besteht in einer systematischen, detaillierten und mathematisch rig-

orosen Einführung in die Theorie der endlichen Zufallsmengen, die als erster Einstiegspunkt für

Leser und Leserinnen ohne Vorkenntnisse auf diesem Gebiet dienen kann. Im zweiten Haupt-

beitrag dieser Arbeit wird die Theorie der endlichen Zufallsmengen auf ein Schätzproblem ange-

wandt, in dem die Zustände einer unbekannten und zufälligen Anzahl von Objekten basierend

auf Bilddaten geschätzt werden sollen. Wir untersuchen ein Szenario, in dem zwei voneinander

unabhängige Sensoren teilweise überlappende Bilder aufnehmen und entwickeln einen Schätzer

basierend auf der a-posteriori probability hypothesis density. Wir zeigen, wie die Schätzqualität

durch Austausch von Informationen zwischen den Sensoren gegenüber dem Fall verbessert wer-

den kann, in dem jeder Sensor Schätzwerte getrennt berechnet. Schließlich entwickeln wir einen

neuartigen Algorithmus zur Lösung dieses Schätzproblems und demonstrieren dessen Ergebnisse

in simulierten Szenarien.
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Chapter 1

Introduction

1.1 Motivation

To illustrate the utility of random finite sets (RFSs), let us consider an intuitive application,

namely tracking of multiple targets in a radar system. At each discrete time step, a sensor

collects a sequence of noisy and possibly otherwise distorted measurements of the current target

states (e.g., position, velocity, types, etc.). The task is to obtain an estimate of the target states

based on all collected measurements up to the current time step. Given a suitable state space

model, this problem could be solved by employing a standard Bayes filter or a variation thereof

(see [1]). However, in real-world radar systems, the situation is more complicated since there

are additional aspects that are not incorporated in this simple model [2]:

1. The number of targets is a priori unknown and random. Furthermore, the number of tar-

gets can (randomly) change between time steps since new targets may enter the observation

area (target birth) and old targets may leave it (target death).

2. Similarly, the number of collected measurements is a priori unknown and random. A

target present in the observation area does not necessarily generate a measurement (missed

detection). Conversely, measurements may originate from the environment (clutter); such

measurements are undesired since they do not convey any information about the targets.

The central problem here is that, given a set of measurements, it is not clear whether

an individual measurement is clutter or was generated by a target. Furthermore, even if

this distinction could be made, it is not clear which measurement corresponds to which

target. This problem, which is known as the data association problem, is of fundamental

importance in target tracking applications.

Various classical approaches to solve this problem such as the joint probabilistic data associa-

tion (JPDA) filter and multiple hypothesis tracking (MHT) can be found in [2]. A conceptually
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different approach was first proposed by Mahler in [3]. In this approach, target states and

measurements are modeled as RFSs. An RFS is essentially a finite set consisting of a random

number of random elements. Therefore, employing RFSs naturally captures the random number

of targets and measurements. Moreover, since a finite set is an unordered collection of elements,

modeling the target states and measurements as RFSs inherently implies the lack of an associa-

tion between these quantities. The RFS approach to our target tracking example results in the

formulation of an optimum multi-object Bayes filter [3], which can be thought of as the RFS

counterpart of the conventional Bayes filter and additionally includes all the aspects discussed

above.

1.2 State of the Art

The first appearance of RFSs can be traced back to [4], building upon the theory of point

processes [5]. However, it was Mahler who popularized RFS theory in the context of multi-target

tracking and data fusion problems with his original work in [3], introducing the multi-object

Bayes filter. A direct implementation of the multi-object Bayes filter is in general infeasible and

therefore a considerable amount of research has been carried out since then on finding tractable

approximations. The first of these is the so-called probability hypothesis density (PHD) filter

proposed in [6], which propagates only the first-order moment (the PHD) of the posterior RFS

distribution and has been shown to outperform classical approaches in [7] and [8]. Sequential

Monte Carlo (SMC) and Gaussian Mixture (GM) implementations of the PHD filter have been

introduced in [9] and [10], and their convergence has been studied in [11–13]. An extension of

the PHD filter, known as the cardinalized PHD (CPHD) filter, that propagates also the posterior

cardinality distribution has been proposed in [14]. Closed-form solutions of the CPHD recursions

have been established in [15]. Another approximation to the multi-object Bayes filter, called the

multi-target multi-Bernoulli (MeMBer) filter, is presented in [16]. In contrast to the PHD and

CPHD filters, which propagate first-order moments and cardinality distributions of the posterior

distributions, the MeMBer filter approximates the posteriors as multi-Bernoulli distributions and

propagates their parameters. An unbiased version of the MemBer filter, known as the cardinality

balanced MeMBer (CBMeMBer) filter, has been introduced in [17]. An in-depth study of the

CPHD and CBMeMBer filters is provided in [18].

RFS theory has been employed in a variety of scientific fields and in applications such as track-

ing in sonar images [19]; visual tracking and image processing [20–25]; audio processing [26];

multiuser detection and channel estimation in communications systems [27]; RFS-based simul-

taneous localization and mapping (SLAM) [28], [29]; tracking in indoor and urban environ-
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ments [30–32]; pedestrian tracking [33].

Recently, the concept of labeled RFSs has attracted considerable interest. First established

in [34], labeled RFSs are an extension of conventional RFSs that includes discrete tags. Based

on this approach, labeled versions of the multi-Bernoulli filter that allow the output of target

tracks have been proposed in [35–37]. Another recent trend is the distributed implementation

of multi-target filters in sensor networks using various data fusion approaches [38–41].

1.3 Thesis Outline

One contribution of this thesis is to provide a systematic, detailed, and rigorous introduction

to the theory of RFSs that can be followed easily by readers with no prior knowledge of the

material. To this end, we begin in Chapter 2 by establishing the most important measure-

theoretic concepts of probability theory that will be required later on. Based on this knowledge,

in Chapter 3 we rigorously define RFSs in the measure-theoretic framework of probability theory.

Furthermore, we introduce various descriptions of RFSs such as the cardinality distribution,

belief mass function, and probability density function for RFSs. We discuss the relation between

finite sets and vectors, and present an intuitive interpretation of RFSs in terms of a sequence of

random vectors. Concluding this chapter, we extend our results to accommodate multiple RFSs

and introduce joint and conditional versions of the descriptors used for single RFSs, as well as

the expectation operator for functions of RFSs.

Chapter 4 discusses the basic concepts of the FISST framework [16] such as set integrals,

probability generating functionals, functional derivatives, and the PHD. At the end of this

chapter, four common types of RFSs are presented.

In Chapter 5, we apply the theory of RFSs to the problem of estimating the states of an

unknown and random number of objects from image observations. As a reference, we begin by

analyzing the situation where only one image observation is available and derive an estimator

based on the posterior PHD. Next, we investigate a scenario where two independent sensors

acquire partly overlapping images of a bigger scene and show how by exchanging information

between the sensors the estimation performance can be improved over the case where each sensor

calculates the estimates separately. Furthermore, we propose a novel RFS-based algorithm

solving this latter estimation problem and demonstrate its performance in simulated scenarios.

Chapter 6 summarizes the obtained results and suggests future directions of research.
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Chapter 2

Fundamentals of Measure Theoretic
Probability Theory

This chapter gives a short introduction to the basic concepts of measure theoretic probability

theory, which will be needed later on for the treatment of random finite sets. An excellent treat-

ment of this subject, which is also accessible to non-mathematicians, is [42]. Further good texts

amongst others are [43–45], although these require a more advanced mathematical background.

In Sections 2.1 to 2.5, we define the basic mathematical objects considered in measure theory

and summarize their properties, culminating in the definition of probability spaces and general

random elements in Section 2.6. As we will see in Chapter 3, a random finite set is just a special

case of such a general random element. Section 2.7 establishes the Lebesgue integral and its

main properties, which will later on allow us to define probability density functions for random

finite sets. Throughout this chapter, we will also explain how the generally abstract definitions

and concepts translate to the familiar case of real random variables or random vectors.

2.1 σ-Algebras

Definition 2.1: Let Ω be a set. The power set of Ω is the collection of all subsets of Ω, denoted

by P(Ω) , {A : A ⊆ Ω}. A σ-algebra ΣΩ on Ω is a collection of subsets of Ω, i.e., ΣΩ ⊆ P(Ω),

that satisfies the following conditions:

(a) Ω ∈ ΣΩ.

(b) If A ∈ ΣΩ, then Ac ∈ ΣΩ.

(c) For every countable collection {Ai} with Ai ∈ ΣΩ, i ∈ N,

∞⋃
i=1

Ai ∈ ΣΩ.
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The elements of the σ-algebra are called measurable sets and the pair (Ω, ΣΩ) is called a

measurable space.

Note that due to (a) and (b), Ω and the empty set ∅ = Ωc are always contained in any

σ-algebra. Indeed, the smallest σ-algebra that can be constructed is ΣΩ = {Ω, ∅}, which is also

called the trivial σ-algebra. Because of (c), ΣΩ is closed under countable union. Applying De

Morgan’s law
⋂
i∈I A

c
i = (

⋃
i∈I Ai)c, where I is any index set, it follows from (b) and (c) that ΣΩ

is also closed under countable intersection, i.e.,

Ai ∈ ΣΩ ⇒
∞⋂
i=1

Ai ∈ ΣΩ. (2.1)

Another example of a σ-algebra is the power set P(Ω) itself. This specific σ-algebra is also called

the discrete σ-algebra, and can be considered the most inclusive of all σ-algebras.

In a probability model, we assign probabilities to the elements of a σ-algebra (the events). At

this point, one could ask why we should bother about σ-algebras, instead of just always using

the power set. The reason is that, whenever Ω contains infinitely many elements, we cannot

consistently assign probabilities to each element of P(Ω) (e.g., think of P(R) or P(Rn)). To

remedy this, we restrict ourselves to a σ-algebra, which is small enough to be tractable and at

the same time big enough to contain events of interest. The next definition is key for actually

constructing σ-algebras.

Definition 2.2: Let Ω be a set and C ⊆ P(Ω) an arbitrary collection of subsets of Ω. The

σ-algebra on Ω generated by C, denoted by σ(C), is the minimal σ-algebra that contains all

elements of C. That is,

(a) C ⊆ σ(C);

(b) σ(C) ⊆ ΣΩ for every σ-algebra ΣΩ with C ⊆ ΣΩ.

Note that σ(C) is well-defined (i.e., unique for a given C) [42, p. 16]. Usually, one starts with

the specification of a collection C and then works with σ(C), thereby insisting on the ability to

perform any standard set operation (complement, countable union, countable intersection) on

elements of C while still staying in σ(C).

2.2 Topologies and Borel Algebras

Before introducing the most important σ-algebra, the Borel algebra, we need to define open

sets [46, pp. 116–117]:
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Definition 2.3: Let Ω be a set, and T ⊆ P(Ω) a collection of subsets of Ω with the following

properties:

(a) ∅ ∈ T and Ω ∈ T .

(b) If C ⊆ T , then ⋃
A∈C

A ∈ T .

(c) For any finite collection {A1, . . . ,An} ⊆ T with Ai ∈ T and n ∈ N,

n⋂
i=1

Ai ∈ T .

Then the collection T is called a topology on Ω and the pair (Ω, T ) a topological space.

Furthermore, the elements A of T are called open sets and their complements Ac closed sets.

Similarly to σ-algebras, there are many topologies that can be defined for a given set Ω. For

instance, the trivial topology is T = {∅, Ω} and the discrete topology is T = P(Ω).

In the important case of the Euclidean space Ω = Rd, open sets are defined as follows [47,

Chapter 2]: A ⊆ Rd is open if for every x ∈ A there exists a neighborhood of x

Nr(x) , {y ∈ Rd : ‖x− y‖ < r}, (2.2)

with some r > 0, such that Nr(x) ⊆ A. The collection T = TRd of all those open sets A is then

a topology as in Definition 2.3, and is called the standard topology on Rd. In the standard

topology, the closed sets in Rd are those that contain all their limit points, where x is a limit

point of a set A ⊆ Rd if in every neighborhood of x there is another point y 6= x with y ∈ A. For

instance, in the case of Ω = R, examples of open sets are (−∞, a), (a, b), (a, +∞); and examples

of closed sets are (−∞, a], [a, b], [a, +∞) and finite sets {a1, . . . , an}.

Definition 2.4: Let (Ω, T ) be a topological space and D ⊆ T a collection of open sets. If every

T ∈ T can be represented as

T =
⋃
i∈I

Di,

for some index set I and Di ∈ D, then D is called a base for the topology T . We also say that

T is generated by D.

This notion is similar to a σ-algebra generated by a collection as in Definition 2.2. A base

for the standard topology on Rd is the collection of all neighborhoods as in (2.2).
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Definition 2.5: Let (Ω, T ) be a topological space. The σ-algebra generated by the topology T

is called the Borel algebra on (Ω, T ), denoted by

B(Ω, T ) , σ(T ).

That is, the Borel algebra of a topological space is the smallest σ-algebra that contains all

open sets. Therefore, by Definition 2.1 and the fact that the complement of an open set is a

closed set, the Borel algebra additionally contains all closed sets, and all countable unions and

intersections of open or closed sets. Talking about the Borel algebra of the Euclidean space

Ω = Rd, it is always tacitly assumed that the standard topology T = TRd is used. We will thus

briefly write

B(Rd) , B(Rd, TRd). (2.3)

It is difficult to find subsets of R (or Rd) that are not elements of the Borel algebra, but such

subsets do exist (e.g., Vitali sets).

An important fact in the case of R is that B(R) can be generated in a multitude of ways. For

instance, let I(a,b) denote the collection of all open intervals, i.e.,

I(a,b) , {(a, b) : a, b ∈ R, a ≤ b}. (2.4)

Likewise denote the collection of other types of intervals I(a,b], I[a,b], I(−∞,a), etc. Then it can

be shown [42, pp. 16–18] that B(R) can be generated by any kind of intervals, e.g.,

B(R) = σ(TR) = σ(I(a,b)) = σ(I(a,b]) = σ(I[a,b]) = σ(I(−∞,a)). (2.5)

2.3 Product σ-Algebras

The following definition allows us to combine measurable spaces [42, pp. 143–145]:

Definition 2.6: Let (Ω1, ΣΩ1) and (Ω2, ΣΩ2) be two measurable spaces. Let

Ω1 × Ω2 = {(ω1,ω2) : ω1 ∈ Ω1,ω2 ∈ Ω2}

be the Cartesian product of Ω1 and Ω2. Furthermore, let

ΣΩ1 ⊗ ΣΩ2 , σ({A1 × A2 : A1 ∈ ΣΩ1 ,A2 ∈ ΣΩ2}).

The measurable space (Ω1 × Ω2, ΣΩ1 ⊗ ΣΩ2) is called the product space, and ΣΩ1 ⊗ ΣΩ2 the

product σ-algebra.
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This definition is extended straightforwardly to the product of more than two measurable

spaces: if (Ω1, ΣΩ1), . . . , (Ωn, ΣΩn) are measurable spaces, the product σ-algebra on Ω1×· · ·×Ωn

is

ΣΩ1 ⊗ · · · ⊗ ΣΩn , σ({A1 × · · · × An : Ai ∈ ΣΩi , i = 1, . . . ,n}). (2.6)

For Rd, the product of d copies of the Borel algebra B(R) is equal to the Borel algebra B(Rd),

i.e.,

B(Rd) = B(R)⊗ · · · ⊗ B(R). (2.7)

Specifically, note that all d-dimensional intervals, their complements, countable unions, and

countable intersections are contained in B(Rd).

2.4 Measure Spaces

Definition 2.7: Let (Ω, ΣΩ) be a measurable space. A function µ : ΣΩ → [0, +∞] is called a

measure on Ω if the following holds:

(a) µ(∅) = 0.

(b) For every countable collection {Ai, i ∈ N} ⊆ ΣΩ of pairwise disjoint sets (Ai ∩ Aj = ∅

whenever i 6= j):

µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

The triple (Ω, ΣΩ,µ) is called a measure space and the elements of ΣΩ are called µ-measurable

sets.

A measure µ is called finite if µ(Ω) <∞.

If there exists a countable collection of measurable sets Ai ∈ ΣΩ such that
⋃∞
i=1 Ai = Ω and

µ(Ai) <∞ for all i ∈ N, then the measure µ is called σ-finite.

The basic idea behind a measure is to establish a notion of “size” (length, area, volume,

. . . ) associated with the elements of a σ-algebra. Two simple consequences of Definition 2.7

are [42, p. 31]:

1. If A ⊆ B, then µ(A) ≤ µ(B).

2. For every countable collection of measurable sets Ai ∈ ΣΩ,

µ

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

µ(Ai). (2.8)
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Definition 2.8: Let (Ω, ΣΩ,µ) be a measure space. A set A ∈ ΣΩ for which µ(A) = 0 is called

a null set. A statement S(ω), ω ∈ Ω, holds almost everywhere (abbreviated a.e.) if the set

of elements ω of Ω for which it does not hold is a null set.

Often this notion is encountered in the context of equality of two functions. For instance, let

(Ω1, ΣΩ1 ,µ) be a measure space, and let f(ω1) and g(ω1) be two functions with the same domain

Ω1 and codomain Ω2. Then

f(ω1) = g(ω1) a.e.

means that f(ω1) = g(ω1) for all ω1 ∈ Ω1 except on a null set.

One fundamental measure that can be defined on any measurable space is the counting

measure µC(A) = |A|, where |A| denotes the cardinality of A. More precisely, the counting

measure assigns to each finite set A = {a1, . . . , an} the number of elements in A, i.e., µC(A) = n.

If A is (countably or uncountably) infinite, µC(A) = +∞.

An important measure on (R,B(R)) is the Lebesgue measure λ(A) constructed as follows [47,

pp. 302–310]. The length of a closed interval I = [a, b], with a ≤ b, is defined as

l(I) , b− a. (2.9)

Let A ∈ B(R), and let C ⊆ P(R) be a countable collection of closed intervals. We say that C

covers A if

A ⊆
⋃
I∈C

I. (2.10)

The Lebesgue measure λ(A) is defined by

λ(A) , inf
C

(∑
I∈C

l(I)
)

, (2.11)

where the infimum is taken over all collections C that cover A.

Intuitively the Lebesgue measure is the total length of the collection of intervals that cover

the set A most tightly. For instance, sets containing only one point of R have Lebesgue measure

zero (i.e., they are null sets). It follows that all countable subsets of R are null sets as well. This

specifically means that adding or subtracting countably many points to/from a given set does

not change its Lebesgue measure. The intervals (a, b), (a, b], [a, b), and [a, b] all have Lebesgue

measure b− a. Infinite intervals (as well as R) have Lebesgue measure ∞. Also note that every

set in B(R) is λ-measurable.1

1The converse is not true. That is, there are Lebesgue measurable sets that are not contained in the Borel
algebra.
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A

I

A

I1

I2

I3

I4

Fig. 2.1: Illustration of the Lebesgue measure λ2 on R2. The left part shows a simple open cover of the set A
consisting of only one two-dimensional (2D) interval I. The right part shows a tighter open cover consisting of
four 2D intervals I1, . . . , I4, which has a smaller total area than I. One can repeat this refinement by searching
for another, tighter open cover of A, containing more 2D intervals. The Lebesgue measure can be thought of as
the area of the open cover in the limit of this refinement process.

The definition of the Lebesgue measure can be extended to the Euclidean space Rd, if one

replaces the closed intervals with d-dimensional closed intervals of the form

I , [a1, b1]× · · · × [ad, bd], (2.12)

and the length with the hypervolume

v(I) ,
d∏
i=1

(bi − ai). (2.13)

In the d-dimensional case, the definition of the Lebesgue measure (cf. (2.11)) becomes

λd(A) , inf
C

(∑
I∈C

v(I)
)

, (2.14)

where the infimum is taken over all collections C that cover A. Figure 2.1 shows an example of

this concept for d = 2.

The next theorem presents a construction of a measure on the product space of two measure

spaces [43, p. 232].

Theorem 2.9: Let (Ω1, ΣΩ1 ,µ1) and (Ω2, ΣΩ2 ,µ2) be two measure spaces, with µ1 and µ2 σ-

finite. Then there exists a unique measure µ1 × µ2 : ΣΩ1 ⊗ΣΩ2 → [0, +∞] on the product space

(Ω1 × Ω2, ΣΩ1 ⊗ ΣΩ2) that satisfies

µ1 × µ2(A1 × A2) = µ1(A1)µ2(A2),

for all A1 ∈ ΣΩ1 , A2 ∈ ΣΩ2 . The measure µ1 × µ2 is called the product measure.
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Analogous to (2.6), this can be extended to more than two measure spaces. Specifically, the

product Lebesgue measure on (Rd,B(Rd)), given by

λd(A1 × · · · × Ad) =
d∏
i=1

λ(Ai), (2.15)

is consistent with the original definition in (2.14).

2.5 Measurable Functions

Definition 2.10: Let Ω and X be two sets and let f : Ω → X be a function. The inverse

image of A ⊆ X under f is defined as

f−1(A) , {ω ∈ Ω : f(ω) ∈ A}.

Note that f−1 : P(X ) → P(Ω). The inverse image f−1 has the following properties [42, pp.

71–72]:

1. f−1(∅) = ∅ and f−1(X ) = Ω.

2. For all A ∈ P(X ),

f−1(Ac) = (f−1(A))c. (2.16)

3. For Ai ∈ P(X ), i ∈ I, where I is an arbitrary index set,

f−1
(⋃
i∈I

Ai

)
=
⋃
i∈I

f−1(Ai), (2.17)

f−1
(⋂
i∈I

Ai

)
=
⋂
i∈I

f−1(Ai). (2.18)

For C ⊆ P(X ) a collection of subsets of X , we define

f−1(C) , {f−1(A) : A ∈ C}. (2.19)

The following important fact can be shown [42, p. 73]: If ΣX is a σ-algebra on X , then

f−1(ΣX ) is a σ-algebra on Ω.

Definition 2.11: Let (Ω, ΣΩ) and (X , ΣX ) be two measurable spaces. A function f : Ω→ X is

called ΣΩ/ΣX -measurable (or briefly measurable) if

f−1(ΣX ) ⊆ ΣΩ.
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The concept of a measurable function is important because it makes sure that the inverse

image of any set A ∈ ΣX under a measurable function is contained in ΣΩ. In other words, with

the inverse image operation one never leaves ΣΩ.

Definition 2.12: Let (Ω, ΣΩ,µ) be a measure space, (X , ΣX ) a measurable space, and f : Ω→ X

a measurable function. The measure µf on ΣX defined by

µf (A) = µ(f−1(A)),

for all A ∈ ΣX , is called the push-forward measure of µ. We also say µf is induced by f .

2.6 Probability Spaces and Random Elements

Definition 2.13: A probability space is a measure space (Ω, ΣΩ,P ) with P (Ω) = 1.

The set Ω that contains all the possible outcomes of a random experiment is called the sample

space. The elements of ΣΩ are called events and the measure P is called the probability

measure (also probability distribution).

The following are some simple properties of a probability measure P [42, pp. 29–31].

1. P (∅) = 0 and P (Ω) = 1.

2. For every A ∈ ΣΩ,

P (A) ∈ [0, 1]. (2.20)

3. For every A ∈ ΣΩ,

P (Ac) = 1− P (A). (2.21)

4. For every A,B ∈ ΣΩ,

P (A ∪B) = P (A) + P (B)− P (A ∩B). (2.22)

5. For every A,B ∈ ΣΩ with A ⊆ B,

P (A) ≤ P (B). (2.23)

6. For every countable collection of events Ai ∈ ΣΩ,

P

( ∞⋃
i=1

Ai

)
≤
∞∑
i=1

P (Ai). (2.24)
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Definition 2.14: Let (Ω, ΣΩ,P ) be a probability space, (X , ΣX ) a measurable space, and X : Ω→

X a measurable function. Then X is called a random element of X .

Since X is measurable, it induces a probability measure PX : ΣX → [0, 1] on (X , ΣX ) by (cf.

Definition 2.12)

PX(A) = P (X−1(A)), (2.25)

for all A ∈ ΣX . Consequently, the triple (X , ΣX ,PX) is a probability space.

At this point we make some notational conventions:

• If (X , ΣX ) = (R,B(R)), we write X = x and call x : Ω→ R a real random variable. Real

random variables will always be denoted by sans-serif type, such as x, y, z.

• If (X , ΣX ) = (Rd,B(Rd)), we write X = x and call x : Ω → Rd a real random vector.

Real random vectors will always be denoted by bold sans-serif type, such as x, y, z.

• In Chapter 3, we take define X to be the collection of all finite subsets of Rd and introduce

a Borel algebra B(X ) on X . In this case, we will write X = X and call X : Ω → X a

random finite set. Random finite sets will always be denoted by capital sans-serif type,

such as X, Y, Z.

2.7 Integration

In this section, we define a generalized integral, the so-called Lebesgue integral, which allows us

to integrate real-valued functions defined on measure spaces.

2.7.1 Definition of the Lebesgue Integral

Let (X , ΣX ,µ) be a measure space and let f : X → R be a measurable function with finite range,

i.e.,

f(X ) = {a1, . . . , ak}, (2.26)

for some k ∈ N and a1, . . . , ak ∈ R. Such a function is called simple and can always be written

as

f(x) =
k∑
i=1

ai1Ai(x), (2.27)

where Ai ∈ ΣX are disjoint subsets of X with
⋃k
i=1 Ai = X , and 1Ai(x) is the indicator function

of Ai defined by

1Ai(x) ,


1 if x ∈ Ai,

0 if x 6∈ Ai.
(2.28)



2.7. Integration 15

x

fi(x)
f(x)

Fig. 2.2: The function f(x) is approximated by a simple function fi(x), for which the Lebesgue integral with
respect to λ can be calculated. One can find another simple function with more steps that fits the curve f(x)
more tightly. The Lebesgue integral of f(x) with respect to λ is the area in the limit of this refinement process.

The Lebesgue integral of a simple function f(x) with respect to the measure µ is defined

as2

∫
f(x)dµ(x) ,

k∑
i=1

aiµ(Ai). (2.29)

It can be shown [42, p. 118] that a general nonnegative function f : X → R is ΣX /B(R)-

measurable if and only if there exists an increasing3 sequence of nonnegative simple functions

fi(x), i = 1, 2, . . . such that

f(x) = lim
i→∞

fi(x) a.e. (2.30)

The sequence fi is called an approximating sequence.

This result allows us to extend the definition of the Lebesgue integral to all nonnegative

measurable functions f(x) ≥ 0 as

∫
f(x)dµ(x) , lim

i→∞

∫
fi(x)dµ(x), (2.31)

where fi is an approximating sequence of simple functions as in (2.30) (see Figure 2.2 for an

illustration). Finally, we extend this integral again to all measurable functions f(x) by first

2Other common notations for the Lebesgue integral are
∫
f(x)µ(dx) or briefly

∫
fdµ.

3An increasing sequence of functions means that fi(x) ≤ fj(x) ≤ f(x) for all x ∈ X if i ≤ j.
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defining

f+(x) ,


f(x) if f(x) ≥ 0,

0 if f(x) < 0;
(2.32)

f−(x) ,


−f(x) if f(x) ≤ 0,

0 if f(x) > 0.
(2.33)

Definition 2.15: Let (X , ΣX ,µ) be a measure space and f : X → R a measurable function. If∫
f+(x)dµ(x) <∞ or

∫
f−(x)dµ(x) <∞, then the Lebesgue integral of f(x) with respect to

µ is defined as ∫
f(x)dµ(x) ,

∫
f+(x)dµ(x)−

∫
f−(x)dµ(x). (2.34)

The measurable function f(x) is called µ-integrable if
∫
f(x)dµ(x) 6= ±∞.

Often we will be interested in integrals of functions with domain R, with respect to the

Lebesgue measure λ as defined in (2.11). One important fact is the following [43, pp. 221–222]:

if f(x) is Riemann integrable, then f(x) is Lebesgue integrable (with respect to λ), and∫
f(x)dx =

∫
f(x)dλ(x). (2.35)

Note that the converse is not true. In this sense, the Lebesgue integral is an extension of the

familiar Riemann integral. A similar statement holds for multivariate functions with domain Rd

and the Lebesgue measure λd.

The Lebesgue integral of f(x) with respect to µ over a measurable set A ∈ ΣX is defined by∫
A
f(x)dµ(x) ,

∫
1A(x)f(x)dµ(x). (2.36)

Note that the Lebesgue integral
∫
f(x)dµ(x) as defined in (2.34) is equal to

∫
X f(x)dµ(x). Fur-

thermore, we have

µ(A) =
∫
A

dµ(x), (2.37)

for all A ∈ ΣX . For a general random element X with associated probability space (X , ΣX ,PX)

this becomes

PX(A) =
∫
A

dPX(x), (2.38)

for all A ∈ ΣX . This is the probability of the event A, i.e., Pr(X(ω) ∈ A). Moreover, for a

measurable real-valued function g : X → R, the expectation operator is defined as

E[g(X)] ,
∫
g(x)dPX(x). (2.39)

Note that in the special case of a random variable x, this yields the k-th moments E[xk] if

g(x) = xk, and the k-th central moments E[(x − E[x])k] if g(x) = (x− E(x))k.
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2.7.2 Properties of the Lebesgue Integral

In this section, we present some important properties of the Lebesgue integral. Let f , g : X → R

be two integrable functions and a, b ∈ R, then [46, pp. 126–128]

(Linearity)
∫ (

af(x) + bg(x)
)
dµ(x) = a

∫
f(x)dµ(x) + b

∫
g(x)dµ(x), (2.40)

(Modulus inequality)
∣∣∣∣∫ f(x)dµ(x)

∣∣∣∣ ≤ ∫ |f(x)|dµ(x). (2.41)

If f(x) ≤ g(x) a.e., then ∫
f(x)dµ(x) ≤

∫
g(x)dµ(x). (2.42)

The following theorem states the essential property of the push-forward measure (which we

will use extensively in Section 3.5 in developing a measure for the set space) [43, pp. 215–216]:

Theorem 2.16: Let (Ω, ΣΩ,µ) be a measure space, (X , ΣX ) a measurable space, and f : Ω→ X

a measurable function. Furthermore, let (X , ΣX ) be equipped with the push-forward measure

µf of µ (cf. Definition 2.12). Then, a function g : X → R is integrable with respect to µf if and

only if the composition g ◦ f is integrable with respect to µ. In that case∫
A
g(x)dµf (x) =

∫
f−1(A)

g(f(ω))dµ(ω), (2.43)

for all A ∈ ΣX .

Definition 2.17: Let (X , ΣX ) be a measurable space and let µ1, µ2 be two measures on (X , ΣX ).

Then µ1 is absolutely continuous with respect to µ2, denoted by µ1 � µ2, if

µ2(A) = 0 ⇒ µ1(A) = 0,

for all A ∈ ΣX . One also says µ1 is dominated by µ2, or simply that µ2 is the dominant

measure.

The next theorem will be frequently invoked in Chapter 3 to establish probability density

functions for random finite sets (for a proof see [42, Section 10.1]).

Theorem 2.18 (Radon-Nikodym (RN)): Let (X , ΣX ) be a measurable space, µ1 and µ2

two σ-finite measures on (X , ΣX ), and µ1 � µ2. Then there exists a (a.e.) unique measurable

function f : X → [0,∞) such that

µ1(A) =
∫
A
f(x)dµ2(x),
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for all A ∈ ΣX . This function is denoted by

f(x) = dµ1

dµ2
(x),

and called the Radon-Nikodym derivative (RND) of µ1 with respect to µ2.

Applied to a random element, the RN theorem states the following. Consider a random

element X with its associated probability space (X , ΣX ,PX), and a second measure µ on ΣX
with PX � µ. Then there exists a unique measurable function fX : X → [0,∞) such that

PX(A) =
∫
A
fX(x)dµ(x), (2.44)

for all A ∈ ΣX . That is, the probability measure PX is completely characterized by the nonneg-

ative function fX defined on X . This function is the probability density function (PDF) of

the random element X. Note that∫
fX(x)dµ(x) =

∫
X
fX(x)dµ(x) = PX(X ) = 1. (2.45)

Special case: random variable. If we have a random variable x with associated probability

space (R,B(R),Px) and dominant Lebesgue measure µ = λ, i.e., Px � λ, then (2.44) becomes

the familiar equation

Px(A) =
∫
A
fx(x)dλ(x), (2.46)

for all A ∈ B(R). Here, fx : R→ [0,∞) is the RND

fx(x) = dPx
dλ (x). (2.47)

Special case: random vector. If we have a d-dimensional random vector x = (x1, . . . , xd)

with associated probability space (Rd,B(Rd),Px) and dominant Lebesgue measure µ = λd, i.e.,

Px � λd, then (2.44) becomes

Px(A) =
∫
A
fx(x)dλd(x), (2.48)

for all A ∈ B(Rd). Here, fx : Rd → [0,∞) is the RND

fx(x) = dPx
dλd

(x). (2.49)

Of course, one can always start from the other side (which is usually done in practice), by

specifying a nonnegative, µ-integrable function fX(x) on X that normalizes to one, i.e.,∫
fX(x)dµ(x) = 1. (2.50)
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This function then defines a probability measure PX on ΣX according to (2.44). Note that in

this case PX � µ by construction.

It should be noted that the RN theorem is non-constructive, that is, it only guarantees the

existence of a function, but it does not tell us how to calculate it given a probability measure.

One important property of the RND is the following [46, pp. 127–128]: If µ1 � µ2 and g(x) is

a µ1-integrable function, then∫
g(x)dµ1(x) =

∫
g(x)dµ1

dµ2
(x)dµ2(x). (2.51)

Applied to the definition of expectation (2.39), this yields (here, µ1 = PX and µ2 = µ)

E[g(X)] =
∫
g(x)dPX(x) =

∫
g(x)fX(x)dµ(x), (2.52)

which is the familiar definition of expectation. In the special case of a random variable x, this

becomes the familiar equation

E[g(x)] =
∫
g(x)dPx(x) =

∫
g(x)fx(x)dλ(x). (2.53)

The next theorem will be instrumental in treating joint distributions of random finite sets in

Section 3.7. It is stated here in a general form (for a proof see [42, Section 5.9]).

Theorem 2.19 (Fubini): Let (X , ΣX ,µX ) and (Y , ΣY ,µY) be measure spaces, and let (X ×

Y , ΣX ⊗ΣY ,µX ×µY) be the product space equipped with the product measure as in Definition

2.6 and Theorem 2.9. If f : X × Y → R is µX × µY -integrable, then∫
X×Y

f(x, y)d(µX × µY)(x, y) =
∫
X

(∫
Y
f(x, y)dµY(y)

)
dµX (x)

=
∫
Y

(∫
X
f(x, y)dµX (x)

)
dµY(y).

Besides stating that the order of integration can be changed in an iterated integral, Fubini’s

theorem also implicitly states that the expressions in parentheses are well defined and integrable.

Specifically, it states that f(x, y) is µY -integrable a.e. on X , and the resulting function g(x) =∫
Y f(x, y)dµY(y) is µX -integrable. The second line states the counterpart for µX .

A special version of Fubini’s theorem arises if f(x, y) is nonnegative. In this case, the re-

quirement that f(x, y) is µX × µY -integrable can be dropped [43, p. 233]. This is especially

useful when dealing with PDFs (which are always nonnegative), because the integrability does

not need to be checked before applying the theorem.
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Chapter 3

Random Finite Sets

A random finite set (RFS) X is a random element taking as realizations finite subsets from an

underlying set U , i.e., X ⊆ U . In this work, we will consider only RFSs that take on finite

subsets of the Euclidean space U = RN , with some N ∈ N.

RFSs are useful tools in modeling random experiments, because they incorporate two aspects

not incorporated by random vectors:

1. A random vector can be thought of as an ordered list of random variables, e.g., x =

(x1, x2) 6= (x2, x1). In contrast, an RFS is unordered, e.g., X = {x1, x2} = {x2, x1}.

2. Whereas the number of components of a random vector is usually fixed, RFSs generally

allow varying cardinalities. For instance, X may take realizations {x1}, {x2,x3}, . . ., for

any xi ∈ R. Particularly, the outcome of X may also be the empty set ∅ (with cardinality

0).

Another distinguishing feature – and major mathematical inconvenience – of RFSs is that

they do not form a vector space, since addition of two sets cannot be defined in a useful way.

One consequence of this is that moments cannot be defined for RFSs as for random vectors.

At this point, it should already be clear that RFSs are not a straightforward generalization of

random vectors.

In Section 3.1, we start by defining RFSs rigorously as a special kind of random elements,

establishing the underlying sample space and Borel algebra. As with random vectors, the full

probability measure is often inconvenient to work with. Sections 3.2 and 3.3 introduce two

characterizations of RFSs – the cardinality distribution and the belief mass function – that

determine the probability measure only on a restricted class of events but are more tractable.

In Section 3.4, we discuss how finite sets can be equivalently represented in vector spaces and

introduce a second measure (besides the probability measure) on the measurable set space. This

allows us to invoke the RN theorem to define a PDF for RFSs in Section 3.5. Section 3.6 shows
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how RFSs can be related to a sequence of random vectors. Finally, Sections 3.7 and 3.8 discuss

joint and conditional distributions of two or more random finite sets, respectively.

3.1 Definition of Random Finite Sets

Following [46, Chapter 5], we will now rigorously define RFSs as random elements in the measure-

theoretic framework of Chapter 2. Recall from Section 2.6 that any random element is a mea-

surable mapping from an abstract probability space (Ω, ΣΩ,P ) to a measurable space (X , ΣX ).

For an RFS, the set X is the collection of all finite subsets of RN , i.e.,

X , {X ⊆ RN : |X| ∈ N0}, (3.1)

where |X| = 0 iffX = ∅. A σ-algebra ΣX is a collection of subsets1 of X that fulfills the conditions

in Definition 2.1. Following Section 2.2, we would like to generate ΣX by the collection of open

subsets of X , that is, we are looking for a Borel algebra B(X ). In order to do so, according

to Definition 2.5, we need to specify a topology on X . We take the hit-or-miss topology

from [3, p. 94], restricted to2 X .

Definition 3.1: Let X be the collection of all finite subsets of RN as defined in (3.1), let

K , {K ⊆ RN : K is compact}

be the collection of all compact subsets of RN , and let

O , {O ⊆ RN : O is open}

be the collection of all open subsets of RN . Furthermore, for A ⊆ RN , let

XA , {X ∈ X : X ∩ A 6= ∅}

be the collection of all finite subsets of RN that hit A, and let

XA , (XA)c = {X ∈ X : X ∩ A = ∅}

be the collection of all finite subsets of RN that miss A. Then, the collection of collections of

finite sets D, defined as

D ,
{
XK ∩ XO1 ∩ · · · ∩ XOn : K ∈ K,Oi ∈ O,n ≥ 1

}
, (3.2)

1Since the elements of X are finite subsets of RN , a subset A ⊆ X is a collection of finite subsets. Therefore,
a σ-algebra is a collection of collections of finite subsets of RN .

2In [3], the hit-or-miss topology T ′ is defined on the collection C of all closed subsets of RN , rather than the
collection of all finite subsets X ⊆ C. In this work, by hit-or-miss topology we mean the “subspace” topology T
of T ′ on X ⊆ C, given as T = {A ∩ X : A ∈ T ′}.
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is a base for a topology T . The topology T generated by this base D is called the hit-or-miss

topology on X .

In other words, a collection of finite sets A ⊆ X is a base member A ∈ D iff there exists a

compact subset K of RN and a finite number of open subsets O1, . . . ,On of RN , such that

A = XK ∩ XO1 ∩ · · · ∩ XOn . (3.3)

The whole topology T is then generated by this base (see Definition 2.4), i.e., it is constituted

by all unions of these base members.

With the hit-or-miss topology T in place, we can now define the Borel algebra on X as the

σ-algebra generated by T (cf. Definition 2.5), i.e.,

B(X ) , σ(T ). (3.4)

Hence, (X ,B(X )) is a measurable space. Of course, since the definition of the hit-or-miss

topology T is quite abstract, B(X ) is abstract too. In the following two sections, we will look at

two more practical types of collections of finite sets and show that they are contained in B(X ).

However, at this point, we can formally define an RFS.

Definition 3.2: Let (Ω, ΣΩ,P ) be a probability space, and let X be the collection of all finite

subsets of RN as defined in (3.1). Moreover let B(X ) be the Borel algebra on X generated by

the hit-or-miss topology as in (3.4). A random finite set (RFS) is a ΣΩ/B(X )-measurable

mapping X : Ω→ X .

Particularly, as in Section 2.6, X induces a probability measure PX : B(X )→ [0, 1] on (X ,B(X ))

by

PX(A) , P (X−1(A)) = Pr(X ∈ A), (3.5)

for all A ∈ B(X ). Consequently, (X ,B(X ),PX) is a probability space.

3.2 Cardinality Distribution

It would be desirable to make statements about the cardinality of an RFS X such as: “what is

the probability that |X| = k, for some k ∈ N0.” Let us define the collections of all finite subsets

of RN with exactly k elements as

Xk , {X ∈ X : |X| = k}, (3.6)



24 3. Random Finite Sets

for all k ∈ N0, where X0 = {∅}. With this definition, |X| = k is equivalent to X ∈ Xk. It is clear

that these collections Xk are disjoint and form a partition of X , i.e.,

X =
∞⋃
k=0
Xk, Xk ∩ Xl = ∅ for k 6= l. (3.7)

Additionally, we define the collections containing all finite sets with no more than k elements,

X≤k , {X ∈ X : |X| ≤ k} =
k⋃
i=0
Xi, (3.8)

and the collections containing all finite sets with at least k elements,

X≥k , {X ∈ X : |X| ≥ k} =
∞⋃
i=k
Xi. (3.9)

The proof of the following result can be found in Appendix A.1.

Lemma 3.3: For all k ∈ N0, the collections Xk, X≤k, and X≥k are elements of B(X ).

After checking that the collections Xk are indeed events in our σ-algebra B(X ), we define the

cardinality distribution of X as the restriction of the probability measure PX on the events Xk:

Definition 3.4: The cardinality distribution (CD) of an RFS X with associated probability

space (X ,B(X ),PX) is a function p|X| : N0 → [0, 1] defined by

p|X|(k) , PX(Xk) = Pr(X ∈ Xk) = Pr(|X| = k).

That is, the cardinality distribution is the probability mass function (PMF) of the discrete

random variable |X| : X → N0.

It should be stressed that the CD characterizes an RFS only in part, since the probability

measure is only specified for the particular events Xk.

3.3 Belief Mass Function

Another statement about an RFS that would be interesting to make is: “what is the probability

that X ⊆ A, for some A ⊆ RN .” Let C be the collection of all closed subsets of RN . We define

the collection of all finite subsets of a closed set A ∈ C as

X (A) , {X ∈ X : X ⊆ A}. (3.10)

With this definition, X ⊆ A is equivalent to X ∈ X (A). A proof of the following lemma is

provided in Appendix A.2.
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Lemma 3.5: For any closed subset A ∈ C, X (A) ∈ B(X ).

After establishing that the collections X (A) are indeed events, we make the following definition.

Definition 3.6: Let X be an RFS with associated probability space (X ,B(X ),PX), and let C

the collection of all closed subsets of RN and A ∈ C. The function βX : C → [0, 1] defined by

βX(A) , PX (X (A)) = Pr(X ∈ X (A)) = Pr(X ⊆ A),

is called the belief mass function (BMF) of X.

For A = RN , we have X (RN ) = X and obtain

βX(RN ) = PX(X ) = 1. (3.11)

For A = ∅, we have X (∅) = {∅} = X0 where the last equality follows from (3.6). Therefore, the

BMF evaluated at A = ∅ becomes

βX(∅) = PX({∅}) = PX(X0) = p|X|(0). (3.12)

Because βX(∅) = p|X|(0) 6= 0 in general, βX is not a measure as in Definition 2.7. Note the

difference between the events X ∈ {∅} (which means X = ∅, i.e., X does not contain any

elements) and X ∈ ∅ (which means there is no realization of X). Of course PX(∅) = 0.

A remarkable fact about the BMF is that, although it explicitly assigns a probability only

to the particular events X (A), it completely characterizes the whole probability measure PX –

in the sense that, given βX, there exists a unique PX satisfying PX(X (A)) = βX(A). This is a

consequence of the Choquet theorem in [46, pp. 44–45].

3.4 Relation between Finite Sets and Vectors

If we take µ1 = PX in the RN theorem (Theorem 2.18) and establish a second σ-finite measure

µX (corresponding to µ2 in Theorem 2.18) on B(X ) such that PX � µX , we can formally define

a PDF fX : X → [0,∞) for RFSs as the RND

fX(X) = dPX
dµX

(X). (3.13)

The probability of any event A ∈ B(X ) can then be calculated by integrating the PDF over the

event with respect to the measure µX , i.e.,

PX(A) =
∫
A
fX(X)dµX (X). (3.14)
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x1

x2 (X2)c

(b, a)

(a, b)

a b

{a, b}

χ2

χ2

Fig. 3.1: Mapping of 2-dimensional vectors (N = 1, k = 2) to finite subsets of R via the function χ2. Vectors
mirrored along the line (X2)c (in our case, (a, b) and (b, a)) are mapped to the same set with two elements.

Having defined a measure µX , we usually start from the other side by specifying a nonnegative,

µX -integrable function fX(X) on X that normalizes to one, i.e.,∫
fX(X)dµ(x) = 1. (3.15)

This function (the PDF) then defines a probability measure PX on B(X ) according to (3.14). In

this case, PX � µX by construction.

The measure µX , which we call set measure, is not unique, i.e., we are free to choose any

σ-finite measure on B(X ). Depending on our choice we will end up with different classes of RFSs

for which PDFs fX(X) exist. Naturally then, the question arises which specific set measure shall

be used so that PDFs exist for a sufficiently large and useful class of RFSs.

The key concept for introducing the set measure µX in [3, 46] is to represent a finite set as

an equivalent set of vectors. For k ∈ N, let Xk ⊆ RkN be the subset of the Euclidean space RkN

containing all vectors with k different components, i.e.,

Xk ,
{
(x1, . . . , xk) ∈ RkN : xi 6= xj for all i 6= j

}
. (3.16)

Furthermore, let χk : Xk → Xk be functions converting vectors to finite sets, defined by

χk(x1, . . . , xk) , {x1, . . . , xk}, (3.17)

where xi ∈ RN , for i = 1, . . . , k (the case N = 1 and k = 2 is visualized in Figure 3.1). We will

call these functions vector-to-set transformations (VST).

Note that for every finite set {x1, . . . , xk} ∈ Xk there are exactly k! vectors in Xk that are

mapped to it. These vectors correspond to the k! permutations of the elements of the finite set,

i.e.,

χk(xσ1 , . . . , xσk) = {x1, . . . , xk}. (3.18)
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for all permutations σ over 1, . . . , k. It follows that VSTs are surjective and symmetric functions.

The inverse image of a collection of finite sets A ⊆ Xk under χk gives the set of all vectors

that map to the finite sets in A, i.e.,

χ−1
k (A) =

{
(x1, . . . , xk) ∈ Xk : χk(x1, . . . , xk) ∈ A

}
. (3.19)

In the special case where A = {X} contains only one k-ary set with

X = {x1, . . . , xk} ∈ Xk, (3.20)

the inverse image consists of the k! permutations of the elements of X as discussed above in

(3.18), i.e.,

χ−1
k ({X}) =

{
(xσ1 , . . . , xσk) : σ is a permuation over 1, . . . , k}. (3.21)

Thus, we can equivalently think about any finite set X ⊆ RN with k elements as a set of k!

points in the Euclidean domain Xk.

3.4.1 Set Measure for k-ary Sets

The basic idea for establishing a set measure µX on X in [3,46] is to use the VSTs introduced in

the preceding section to induce measures µXk on the subspaces Xk ⊆ X . Then, these measures

are combined to construct the set measure µX for the whole set space X .

We begin by equipping Xk with a σ-algebra B(Xk). Here, we choose the Borel algebra B(RkN )

restricted to Xk ⊆ RkN given by [42, Theorem 1.8.1]

B(Xk) = {A ∩ Xk : A ∈ B(RkN )}. (3.22)

Furthermore, we equip the measurable space (Xk,B(Xk)) with the kN -th product Lebesgue

measure λkN (cf. (2.15)) so that (Xk,B(Xk),λkN ) is a measure space. Similarly, we equip Xk
with the Borel algebra B(X ) (cf. (3.4)) restricted to Xk ⊆ X , i.e.,

B(Xk) = {A ∩ Xk : A ∈ B(X )}, (3.23)

resulting in the measurable space (Xk,B(Xk)). A proof of the following lemma can be found in

Appendix A.3.

Lemma 3.7: The VST χk is B(Xk)/B(Xk) measurable.

After verifying the measurability of χk we define the measure µXk on B(Xk) as the push-forward

measure (Definition 2.12) of λkN weighted by 1
k! , i.e.,

µXk(A) , 1
k!λkN (χ−1

k (A)), A ∈ B(Xk). (3.24)
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The factor 1
k! accounts for the fact that k! points are mapped to each set and, thus, the full

Lebesgue measure would “overvalue” the sets. For A ∈ B(Xk) we will call the event χ−1
k (A) ∈

B(Xk) the vector event corresponding to the (set) event A. That is, we are measuring an event

A ∈ B(Xk) indirectly by first transforming it to the corresponding vector event χ−1
k (A) ∈ B(Xk),

and then measuring the vector event with the Lebesgue measure λkN and divide by k!.

Example 3.8: Before proceeding, let us consider some basic events to better understand the

measure defined in (3.24).

(a) Let A = Xk. Here, we have

χ−1
k (Xk) = Xk. (3.25)

Recall that Xk ⊆ RkN consists of all vectors (x1, . . . , xk) ∈ RkN with k different components

(cf. (3.16)). Accordingly, its complement (Xk)c contains all vectors with at least two identical

components and is the union of proper (lower-dimensional) subspaces of RkN . Since proper

subspaces of RkN are null sets with respect to the Lebesgue measure λkN , (Xk)c is a null set

and (3.24) becomes

µXk(Xk) = 1
k!λkN (Xk) = 1

k!λkN (RkN \ (Xk)c) = 1
k!λkN (RkN ) =∞. (3.26)

(b) Let A = Xk(A) be the collection of all k-ary subsets of the closed set A ⊆ RN (cf. (3.10)).

Note that χk(x1, . . . , xk) ∈ Xk(A) iff all components xi are different and xi ∈ A, for i =

1, . . . , k, or equivalently iff (x1, . . . , xk) ∈ (A× · · · × A) ∩ Xk = Ak ∩ Xk. Hence,

χ−1
k (Xk(A)) = Ak ∩ Xk = Ak \ (Xk)c. (3.27)

As discussed above in (a), (Xk)c is a null set with respect to the Lebesgue measure λkN .

Thus,

µXk(Xk(A)) = 1
k!λkN (Ak \ (Xk)c) = 1

k!λkN (Ak) = 1
k! (λN (A))k. (3.28)

The essential benefit of choosing the measure µXk as the scaled push-forward measure of λkN

under χk is that we can use Theorem 2.16 to integrate functions defined on Xk. Let g : Xk → R be

an integrable function with respect to µXk . Then, according to (2.43) (with f = χk, µXk = 1
k!µf ,

and µ = λkN ) we have∫
A
g(X)dµXk(X) =

∫
A
g(X)d

( 1
k!µf (X)

)
(3.29)

= 1
k!

∫
A
g(X)dµf (X) (3.30)

= 1
k!

∫
χ−1
k

(A)
g(χk(x1, . . . , xk))dλkN (x1, . . . , xk), (3.31)
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for all A ∈ B(Xk). That is, the integral of g(X) with respect to µXk can be calculated as a

“conventional” integral of the composite function g(χk(x1, . . . , xk)) with respect to λkN . We

define the function g̃ : RkN → R as

g̃(x1, . . . , xk) ,


g(χk(x1, . . . , xk)) if (x1, . . . , xk) ∈ Xk,

0 if (x1, . . . , xk) 6∈ Xk,
(3.32)

which we call the equivalent vector function (EVF) corresponding to the set function g(X).

Since the VST χk is a symmetric function (cf. (3.18)), g̃ is symmetric as well, i.e.,

g̃(x1, . . . , xk) = g̃(xσ1 , . . . , xσk), (3.33)

for all permutations σ over 1, . . . , k. Note that there is a one-to-one correspondence between g̃

and g. Clearly, given a set function g we can calculate the EVF g̃ as given by (3.32). Conversely,

given an EVF g̃ we can calculate g({x1, . . . , xk}) by evaluating g̃ at any of the k! permutations

(xσ1 , . . . , xσk). One way to formulate this more precisely is to define θk : Xk → Xk given by

θk(X) , (x1, . . . , xk), xi ∈ X, such that x1 < x2 < · · · < xk, (3.34)

where < is the lexicographical order on RN . That is, θk(X) sorts the k elements of X in an

ascending order and returns the corresponding vector. Note that χk(θk(X)) = X. Using the

function θk, the set function g can then be obtained from the EVF g̃ by

g(X) = g̃(θk(X)). (3.35)

With the definition of the EVF in (3.32) we can write the integral in (3.31) as∫
A
g(X)dµXk(X) = 1

k!

∫
χ−1
k

(A)
g̃(x1, . . . , xk)dλkN (x1, . . . , xk). (3.36)

Again, the point made here is that by using the VST χk to induce the measure µXk we can

represent a set function g(X) by an EVF g̃(x1, . . . , xk). Integrating the set function g(X) over

an event A ∈ B(Xk) with respect to µXk is then equal to the weighted “conventional” integral

of the EVF over the corresponding vector event χ−1
k (A) ∈ B(Xk).

Special case k = 0. In our discussion so far we have introduced the measure spaces (Xk,B(Xk),µXk)

for k ≥ 1. The set space X0 = {∅} consists of just one element, the empty set. Hence, the only

σ-algebra is the trivial σ-algebra B(X0) = {∅,X0} = {∅, {∅}}. We define the measure µX0 on

B(X0) as

µX0(A) , 1A(∅) =


1 if ∅ ∈ A,

0 if ∅ 6∈ A,
(3.37)
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for A ∈ B(X0). Note that a function g : X0 → R is defined on a single element only, i.e., it is

just a single number g(∅) ∈ R. Furthermore, we have∫
A
g(X)dµX0(X) = g(∅)1A(∅). (3.38)

For convenience we make here the convention that

g̃(x1, . . . , x0) , g(∅), (3.39)

and
1
0!

∫
χ−1

0 (A)
g̃(x1, . . . , x0)dλ0N (x1, . . . , x0) , g(∅)1A(∅), (3.40)

so we can use the same notation for k = 0 as for k ≥ 1 in (3.36).

3.4.2 Set Measure for General Finite Sets

After introducing the measure spaces (Xk,B(Xk),µXk), k ∈ N0, for k-ary sets in the preceding

section, we will now establish the set measure µX for general finite sets X ∈ X with the mea-

surable space (X ,B(X )). Since the Xk, k ∈ N0, form a disjoint partition of X =
⋃∞
k=0Xk (cf.

(3.7)), the idea for constructing the set measure µX is as follows:

1. The event A ∈ B(X ) is partitioned into disjoint subevents Ak, k ∈ N0, consisting of all

k-ary sets in A, i.e.,

Ak , A ∩ Xk, k ∈ N0, (3.41)

A =
∞⋃
k=0
Ak. (3.42)

Note that each subevent Ak is included in the corresponding σ-algebra B(Xk) (cf. (3.23)).

2. Each subevent Ak ∈ B(Xk) is then measured with the k-ary set measures µXk(Ak) intro-

duced in Section 3.4.1 and the results summed up, i.e.,

µX (A) ,
∞∑
k=0

µXk(Ak), A ∈ B(X ). (3.43)

A proof of the following Lemma is provided in Appendix A.4.

Lemma 3.9: The function µX as defined in (3.43) is a measure on B(X ).

Inserting the measures µXk from (3.24) and (3.37) we can express the set measure in (3.43) above

as

µX (A) = 1A(∅) +
∞∑
k=1

1
k!λkN

(
χ−1
k (Ak)

)
, (3.44)

where 1A0(∅) = 1A(∅) has been used.
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Example 3.10: Before proceeding, let us consider some basic events to better understand the

set measure defined in (3.43).

(a) Let A = X0 = {∅}. Here 1A(∅) = 1. Furthermore, for k ∈ N, since ∅ 6∈ Xk, we have

Ak = {∅} ∩ Xk = ∅. Hence, χ−1
k (Ak) = χ−1

k (∅) = ∅ and the sum in (3.44) vanishes since

λkN (∅) = 0 for all k ∈ N. Consequently,

µX ({∅}) = 1. (3.45)

(b) Let A = Xn, with some n ∈ N. In this case, 1A(∅) = 0 since ∅ 6∈ Xn. Moreover, because

Xn ∩ Xk = ∅ if k 6= n, only the term with k = n does not vanish in the sum, and thus

µX (Xn) = µXn(Xn) = 1
n!λnN

(
χ−1
n (Xn)

)
=∞, (3.46)

where the last result follows from (3.26) from Example 3.8(a).

(c) Let A = X (A), with some closed subset A ⊆ RN , i.e., A is the collection of all finite

subsets of A. Because ∅ ⊆ A, we have ∅ ∈ A and 1A(∅) = 1. Furthermore, the subevent

Ak = X (A) ∩ Xk = Xk(A) is the collection of all k-ary subsets of A. As shown in Example

3.8(b) we have

µXk(Xk(A)) = 1
k! (λN (A))k. (3.47)

Therefore, the set measure (3.43) becomes (where we use the convention 00 = 1)

µX (X (A)) = 1 +
∞∑
k=1

1
k! (λN (A))k =

∞∑
k=0

1
k! (λN (A))k = eλN (A). (3.48)

After introducing the set measure µX , our next aim is to obtain a formula for integrating a

general set function g : X → R similar to the one we derived in (3.36) for integrating k-ary set

functions. To this end, note that every set function g : X → R can be written in a piecewise

fashion as

g(X) =



g(0)(X) if |X| = 0,

g(1)(X) if |X| = 1,

g(2)(X) if |X| = 2,
...

...

(3.49)
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where g(k) : Xk → R are k-ary set functions, for k ∈ N0. With this notation we obtain upon

inserting the set measure (3.43),∫
A
g(X)dµX (X) =

∫
A
g(X)d

( ∞∑
k=0

µXk(X ∩ Xk)
)

(3.50)

=
∞∑
k=0

∫
A∩Xk

g(X)dµXk(X) (3.51)

=
∞∑
k=0

∫
Ak
g(k)(X)dµXk(X). (3.52)

Since g(k)(X) are k-ary set functions, we can use (3.36) to express the integrals in the sum as∫
Ak
g(k)(X)dµXk(X) = 1

k!

∫
χ−1
k

(Ak)
g̃(k)(x1, . . . , xk)dλkN (x1, . . . , xk). (3.53)

where g̃(k) : RkN → R are EVFs corresponding to the set functions g(k) given by (cf. (3.32))

g̃(x1, . . . , xk) ,


g(k)(χk(x1, . . . , xk)) if (x1, . . . , xk) ∈ Xk,

0 if (x1, . . . , xk) 6∈ Xk,
(3.54)

=


g(χk(x1, . . . , xk)) if (x1, . . . , xk) ∈ Xk,

0 if (x1, . . . , xk) 6∈ Xk,
(3.55)

The set function can then be obtained from the EVFs by

g(X) = g̃(k)(θk(X)), |X| = k, (3.56)

where θk are the functions defined in (3.34). Hence, there is a one-to-one correspondence between

a general set function g(X) and a sequence of symmetric EVFs g̃(k)(x1, . . . , xk), k ∈ N0. Inserting

(3.53) in (3.52), we finally obtain∫
A
g(X)dµX (X) =

∞∑
k=0

1
k!

∫
χ−1
k

(Ak)
g̃(k)(x1, . . . , xk)dλkN (x1, . . . , xk). (3.57)

Integrating the set function g(X) over an event A ∈ B(X ) with respect to µX is then equal to

the weighted sum of “conventional” integrals of the EVFs. We first partition the event A into

k-ary subevents Ak. Then, for each k ∈ N0, the EVFs g̃(k)(x1, . . . , xk) are integrated over the

corresponding vector events χ−1
k (Ak). Finally, the results are weighted by 1

k! and summed up.

3.5 Probability Density Function for RFS

Recall that our motivation for introducing the set measure µX on B(X ) in the previous section

was to be able to define a PDF fX : X → [0,∞) for RFSs as the RND

fX(X) = dPX
dµX

(X). (3.58)
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We can then calculate the probability of any event A ∈ B(X ) by

PX(A) =
∫
A
fX(X)dµX (X). (3.59)

Using (3.57) (with g(X) = fX(X)) this becomes

PX(A) =
∞∑
k=0

1
k!

∫
χ−1
k

(Ak)
f̃

(k)
X (x1, . . . , xk)dλkN (x1, . . . , xk), (3.60)

where f̃
(k)
X : RkN → [0,∞), k ∈ N0 are EVFs corresponding to fX (cf. (3.55)) given by

f̃
(k)
X (x1, . . . , xk) =


fX(χk(x1, . . . , xk)) if (x1, . . . , xk) ∈ Xk,

0 if (x1, . . . , xk) 6∈ Xk.
(3.61)

We will call EVFs corresponding to a PDF equivalent vector densities (EVDs). According

to (3.56) the set PDF can then be obtained from the EVDs by

fX(X) = f̃
(k)
X (θk(X)), |X| = k. (3.62)

Example 3.11: Let us evaluate (3.60) for the events discussed in Example 3.10. To do so, we

first rewrite (3.60) as (cf. (3.40))

PX(A) = fX(∅)1A(∅) +
∞∑
k=1

1
k!

∫
χ−1
k

(Ak)
f̃

(k)
X (x1, . . . , xk)dλkN (x1, . . . , xk). (3.63)

(a) For A = X0 = {∅}, we have 1A(∅) = 1 and χ−1
k (Ak) = ∅, i.e., the integrals in the sum in

(3.63) are all equal to zero. Hence,

PX({∅}) = fX(∅). (3.64)

Note that because PX({∅}) = Pr(X ∈ {∅}) = Pr(X = ∅) = p|X|(0), this implies that

fX(∅) = p|X|(0). (3.65)

(b) In the case A = Xn, n ∈ N, we have 1A(∅) = 0 and Ak = Xn ∩ Xk = ∅ if k 6= n. Thus, only

the integral term with k = n does not vanish in the sum:

PX(Xn) = 1
n!

∫
χ−1
n (Xn)

f̃
(n)
X (x1, . . . , xn)dλnN (x1, . . . , xn) (3.66)

= 1
n!

∫
Xn
f̃

(n)
X (x1, . . . , xn)dλnN (x1, . . . , xn) (3.67)

= 1
n!

∫
RnN

f̃
(n)
X (x1, . . . , xn)dλnN (x1, . . . , xn), (3.68)

where the last expression holds since (Xn)c is a null set. Note that because PX(Xn) =

Pr(|X| = n) = p|X|(n), (3.68) states that the EVD f̃
(n)
X normalizes to n!p|X|(n), i.e.,∫

RnN
f̃

(n)
X (x1, . . . , xn)dλnN (x1, . . . , xn) = n!p|X|(n), n ∈ N0. (3.69)
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That is, any sequence of symmetric functions f̃
(k)
X : RkN → [0,∞), k ∈ N0, that satisfy (3.69)

for an arbitrary CD constitute a valid set PDF fX according to (3.62). In particular, since∑∞
n=0 p|X|(n) = 1, this implies that

fX(∅) +
∞∑
k=1

1
k!

∫
RkN

f̃
(k)
X (x1, . . . , xk)dλkN (x1, . . . , xk) = 1. (3.70)

(c) For A = X (A), with some closed A ⊆ RN , we have 1A(∅) = 1 and χ−1
k (Ak) = Ak ∩ Xk.

Hence, (3.63) becomes

PX(X (A)) = fX(∅) +
∞∑
k=1

1
k!

∫
Ak∩Xk

f̃
(k)
X (x1, . . . , xk)dλkN (x1, . . . , xk) (3.71)

= fX(∅) +
∞∑
k=1

1
k!

∫
Ak
f̃

(k)
X (x1, . . . , xk)dλkN (x1, . . . , xk), (3.72)

where the last expression holds since (Xk)c is a null set. Because PX(X (A)) = Pr(X ∈

X (A)) = Pr(X ⊆ A) = βX(A), the BMF can therefore be calculated from the EVDs by

βX(A) = fX(∅) +
∞∑
k=1

1
k!

∫
Ak
f̃

(k)
X (x1, . . . , xk)dλkN (x1, . . . , xk). (3.73)

3.6 Relation between RFSs and Random Vectors

In this section we show how any RFS can be related to a sequence of random vectors and

determine the EVDs corresponding to the RFS (and thereby the set PDF) given the PDFs of

the random vectors. We begin by introducing a k-ary RFS in Section 3.6.1, which is the result

of converting a single random vector to a set and has exactly k elements. In Section 3.6.2 we

then construct a general RFS (with a random number of elements) using a mixture model based

on a sequence of k-ary RFSs.

3.6.1 k-ary RFS

Let k,N ∈ N arbitrary but fixed. Consider a kN -dimensional random vector

x = (x1, . . . , xk) ∈ Xk, xi ∈ RN , i = 1, . . . , k; (3.74)

with corresponding probability space (Xk,B(Xk),Px), dominating Lebesgue measure λkN , and

PDF fx(x) = fx(x1, . . . , xk). The realizations of the random vector x are then transformed to

k-ary subsets of RN using the VST χk (cf. (3.17)) given by

χk(x) = χk(x1, . . . , xk) = {x1, . . . , xk}. (3.75)
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Since x is a random vector, the finite set

X , χk(x) ∈ Xk, (3.76)

is random as well. We will refer to X as a k-ary RFS. Note that in contrast to a general RFS

(cf. Definition 3.2), which takes realizations in X , a k-ary RFS takes realizations only in the

subspace Xk ⊆ X . That is, the outcome of X has exactly k elements. We follow our derivations

in Section 3.4.1 and equip Xk with the σ-algebra B(Xk) and the measure µXk . Since, as shown

in Lemma 3.7, χk is a measurable function, the probability measure PX on B(Xk) is induced by

PX(A) = Px(χ−1
k (A)) =

∫
χ−1
k

(A)
fx(x1, . . . , xk)dλkN (x1, . . . , xk), (3.77)

for any A ∈ B(Xk).

Per definition (3.24), µXk(A) = 0 implies λkN (χ−1
k (A)) = 0, which due to the right-hand side

of (3.77), implies PX(A) = 0. Hence, PX � µX . Therefore, the RN theorem (Theorem 2.18)

states that there exists an (a.e.) unique function fX : Xk → [0,∞), such that

PX(A) =
∫
A
fX(X)dµXk(X), (3.78)

for all A ∈ B(Xk). Using (3.36), this can be expressed as

PX(A) = 1
k!

∫
χ−1
k

(A)
f̃X(x1, . . . , xk)dλkN (x1, . . . , xk), (3.79)

where f̃X(x1, . . . , xk) is the EVD corresponding to fX(X). Combining (3.77) and (3.79), we see

that the EVD f̃X is related to the vector PDF fx by

1
k!

∫
χ−1
k

(A)
f̃X(x1, . . . , xk)dλkN (x1, . . . , xk) =

∫
χ−1
k

(A)
fx(x1, . . . , xk)dλkN (x1, . . . , xk). (3.80)

Note that 1
k! f̃X(x1, . . . , xk) 6= fx(x1, . . . , xk) in general, since f̃X is symmetric whereas fx may

be not. The key observation here is that the corresponding vector event χ−1
k (A) of any event

A ∈ B(Xk) is symmetric, in the sense that,

(x1, . . . , xk) ∈ χ−1
k (A)⇒ (xσ1 , . . . , xσk) ∈ χ−1

k (A), (3.81)

for all permutations σ over 1, . . . , k. Because of this symmetry we have

PX(A) =
∫
χ−1
k

(A)
fx(x1, . . . , xk)dλkN (x1, . . . , xk)

=
∫
χ−1
k

(A)
fx(xσ1 , . . . , xσk)dλkN (x1, . . . , xk).

(3.82)

We define the symmetric function

f∗x (x1, . . . , xk) ,
∑
σ

fx(xσ1 , . . . , xσk). (3.83)
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x(1)

x(2)

x(3)

...

∅

X(1)

X(2)

X(3)

...

χ1

χ2

χ3

X

n

Fig. 3.2: Setup for generating a general RFS with real elements X. A sequence of random vectors xk is converted
to a sequence of random sets Xk. The discrete random variable n selects an element of this set sequence as the
outcome of X.

where the sum is taken over all k! permutations σ over 1, . . . , k. Because of (3.82), 1
k!f
∗
x integrates

to the probability measure:

1
k!

∫
χ−1
k

(A)
f∗x (x1, . . . , xk)dλkN (x1, . . . , xk) = PX(A). (3.84)

Combining (3.84) with (3.79) we finally obtain

f̃X(x1, . . . , xk) = f∗x (x1, . . . , xk) =
∑
σ

fx(xσ1 , . . . , xσk). (3.85)

3.6.2 General RFS

In this section we will use the k-ary RFSs discussed in Section 3.6.1 to construct a general RFS

X ⊆ RN with a random number of elements and determine the corresponding sequence of EVDs.

Consider for this the setup depicted in Figure 3.2.

Let n ∈ N0 be a discrete random variable, described by its PMF

pn , pn(n) = Pn(n = n), n ∈ N0. (3.86)

Furthermore, let x(k) ∈ Xk, k ∈ N, be a sequence of random vectors of increasing dimensionality

kN , i.e.,

x(k) = (x(k)
1 , . . . , x(k)

k ), x(k)
i ∈ RN , (3.87)

with associated PDFs

fx(k)(x) = fx(k)(x1, . . . , xk). (3.88)

As in Section 3.6.1, these random vectors are converted to k-ary RFSs X(k) via VSTs χk : Xk →

Xk, i.e.,

X(k) , χk(x(k)) = {x(k)
1 , . . . , x(k)

k }, (3.89)
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yielding a sequence of k-ary RFSs X(k), k ∈ N. The probability space corresponding to each X(k)

is (Xk,B(Xk),PX(k)). According to (3.85), the EVD of each X(k) is

f̃X(k)(x1, . . . , xk) =
∑
σ

fx(k)(xσ1 , . . . , xσk). (3.90)

and the probability measures PX(k) can be calculated from the EVDs by

PX(k)(A) = 1
k!

∫
χ−1
k

(A)
f̃X(k)(x1, . . . , xk)dλkN (x1, . . . , xk). (3.91)

for all A ∈ B(Xk).

Moreover, for k = 0 we define the trivial RFS

X(0) ≡ ∅, (3.92)

with sample space X0 = {∅}, and trivial σ-algebra B(X0) = {∅, {∅}}.

Using the discrete random variable n as a random index, the RFS X is then defined to be a

randomly selected element of the sequence X(k), i.e.,

X , X(n). (3.93)

Clearly X ∈ X =
⋃∞
k=0Xk. We equip X with the Borel algebra B(X ) generated by the hit-or-

miss topology (Definition 3.1) and the set measure µX as defined in (3.43). Since n is used as a

selector, the probability measure associated with X, conditioned on n = n, is

PX(A|n = n) = PX(n)(A ∩ Xn) = PX(n)(An), (3.94)

for A ∈ B(X ). For the special case n = 0, (3.94) becomes

PX(A|n = 0) = PX(0)(A0) = 1A(∅). (3.95)

Consequently, the total (unconditional) probability measure PX is given by

PX(A) =
∞∑
n=0

pnPX(A|n = n) (3.96)

= p01A(∅) +
∞∑
n=1

pnPX(n)(An). (3.97)

Using (3.91), we can write (3.97) as

PX(A) = p01A(∅) +
∞∑
k=1

pk
1
k!

∫
χ−1
k

(Ak)
f̃X(k)(x1, . . . , xk)dλkN (x1, . . . , xk). (3.98)

Note that, µX (A) = 0 implies 1A(∅) = 0 and λkN
(
χ−1
k (Ak)

)
= 0 for all k ∈ N, which due to

(3.98) implies PX(A) = 0. Hence, PX � µX . The RN theorem (Theorem 2.18) states that there

exists an a.e. unique function fX : X → [0,∞), such that

PX(A) =
∫
A
fX(X)dµX (X) (3.99)
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for any A ∈ B(X ). Using (3.63), this becomes

PX(A) = fX(∅)1A(∅) +
∞∑
k=1

1
k!

∫
χ−1
k

(Ak)
f̃

(k)
X (x1, . . . , xk)dλkN (x1, . . . , xk). (3.100)

Comparing with (3.98) we obtain

f̃
(k)
X (x1, . . . , xk) = pkf̃X(k)(x1, . . . , xk) = pk

∑
σ

fx(k)(xσ1 , . . . , xσk). (3.101)

Note that for the special case k = 0 this is

f̃
(0)
X = fX(∅) = p0. (3.102)

3.7 Joint Distributions

In this section, we will introduce and discuss joint versions of the statistical descriptors of RFSs

we encountered so far – i.e., joint probability measures, CDs, BMFs, and PDFs – for the case

of multiple RFSs. For ease of exposition, we will restrict ourselves to the case of two RFSs,

although our results can be generalized in a straightforward manner to more than two RFSs.

3.7.1 Joint Probability Measure

Let (Ω, Σ,P ) be a probability space, and let X : Ω→ X and Y : Ω→ Y be two RFSs, where

X , {X ⊆ RN : |X| ∈ N0}, (3.103)

Y , {Y ⊆ RM : |Y | ∈ N0}, (3.104)

with some N ,M ∈ N. Furthermore, let B(X ) and B(Y) be the Borel algebras generated by the

hit-or-miss topology (Definition 3.1). The probability measures are induced by (cf. (3.5))

PX(A) = P (X−1(A)), (3.105)

PY(E) = P (Y−1(E)), (3.106)

for any A ∈ B(X ) and E ∈ B(Y).

We consider the mapping Z : Ω→ X × Y defined by

Z(ω) , (X(ω), Y(ω)), (3.107)

for any ω ∈ Ω. As the σ-algebra on X×Y, we take the product σ-algebra B(X )⊗B(Y) (Definition

2.6). Note that for any A ∈ B(X ) and E ∈ B(Y),

Z−1(A× E) = {ω ∈ Ω : X(ω) ∈ A ∧ Y(ω) ∈ E} = X−1(A) ∩ Y−1(E). (3.108)
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Since X−1(A) ∈ Σ and Y−1(E) ∈ Σ, X−1(A)∩Y−1(E) ∈ Σ, and therefore Z−1(A×E) ∈ Σ. Thus,

Z is a Σ/B(X )⊗B(Y)-measurable function, and the joint probability measure PX,Y , PZ on

B(X )⊗ B(Y) is defined as the measure induced by Z, i.e.,

PX,Y(A× E) , P (Z−1(A× E)) (3.109)

= P (X−1(A) ∩ Y−1(E)) (3.110)

= Pr(X ∈ A ∧ Y ∈ E), (3.111)

for all A ∈ B(X ) and E ∈ B(Y). Note that PX(A) and PY(E) are the marginal probability

measures of PX,Y(A× E), in the sense that

PX,Y(A× Y) = P
(
X−1(A) ∩ Y−1(Y)

)
(3.112)

= P
(
X−1(A) ∩ Ω

)
(3.113)

= P
(
X−1(A)

)
(3.114)

= PX(A), (3.115)

and similarly

PX,Y(X × E) = PY(E). (3.116)

Definition 3.12: The RFSs X and Y are called statistically independent if

PX,Y(A× E) = PX(A)PY(E), (3.117)

for all A ∈ B(X ) and E ∈ B(Y).

According to Theorem 2.9, the product measure PX×PY is the unique measure satisfying (3.117).

Therefore, X and Y are statistically independent if

PX,Y = PX × PY. (3.118)

3.7.2 Joint Cardinality Distribution

Analogously to the CD for a single RFS (see Section 3.2), we define the joint CD for two RFSs

as the restriction of the joint probability measure PX,Y on the following events. For k ∈ N0, let

Xk ∈ B(X ) and Yk ∈ B(Y) (cf. Lemma 3.3) be the events consisting of all finite subsets with

exactly k elements, i.e. (cf. (3.6)),

Xk , {X ⊆ RN : |X| = k}, (3.119)

Yk , {Y ⊆ RM : |Y | = k}. (3.120)

Note that the events Xk and Yk form disjoint partitions of X and Y, respectively.
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Definition 3.13: The function p|X|,|Y| : N0 × N0 → [0, 1] defined by

p|X|,|Y|(k, l) , PX,Y(Xk × Yl) = Pr(|X| = k ∧ |Y| = l)

is called the joint CD of the RFSs X and Y. That is, the joint CD is the joint PMF of the two

discrete random variables |X| and |Y|.

If X and Y are statistically independent, it follows immediately from Definition 3.12 that the

joint CD factorizes as

p|X|,|Y|(k, l) = p|X|(k)p|Y|(l), (3.121)

where p|X|(k) and p|Y|(l) are the CDs of X and Y, respectively.

3.7.3 Joint Belief Mass Function

Let CX and CY be the collections of all closed subsets of RN and RM , respectively. For any

closed subsets A ∈ CX and B ∈ CY , we define the events X (A) ∈ B(X ) and Y(B) ∈ B(Y) (cf.

Lemma 3.5) as (cf. (3.10))

X (A) , {X ∈ X : X ⊆ A}, (3.122)

Y(B) , {Y ∈ Y : Y ⊆ B}. (3.123)

Thus, X (A) is the collection of all finite subsets of the closed set A ∈ CX , and similarly for Y(B).

Definition 3.14: The function βX,Y : CX × CY → [0, 1] defined by

βX,Y(A,B) , PX,Y(X (A)× Y(B)) = Pr(X ⊆ A ∧ Y ⊆ B) (3.124)

is called the joint BMF of X and Y.

If X and Y are statistically independent, it follows from Definition 3.12 that the joint BMF

becomes

βX,Y(A,B) = βX(A)βY(B), (3.125)

where βX(A) and βY(B) are the BMFs of X and Y respectively, as defined in Section 3.3, .

3.7.4 Joint Probability Density Function

For k ∈ N, l ∈ N, let Xk ⊆ RkN and Yl ⊆ RlM be (cf. (3.16))

Xk =
{
(x1, . . . , xk) ∈ RkN : xi 6= xj for all i 6= j

}
(3.126)

Yl =
{
(y1, . . . , yl) ∈ RlM : yi 6= yj for all i 6= j

}
. (3.127)
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Furthermore, let χk : Xk → Xk and ξl : Yl → Yl be VSTs as defined in (3.17), i.e.,

χk(x1, . . . , xk) = {x1, . . . , xk}, (3.128)

ξl(y1, . . . , yl) = {y1, . . . , yl}, (3.129)

where xi ∈ RN and yi ∈ RM . Finally, let µX and µY be set measures as defined in (3.43) on

B(X ) and B(Y), i.e.,

µX (A) =
∞∑
k=0

µXk(Ak), µXk(Ak) =


1A0(∅) if k = 0,

1
k!λkN (χ−1

k (Ak)) if k ≥ 1,
(3.130)

µY(E) =
∞∑
k=0

µYl(El), µYl(El) =


1E0(∅) if l = 0,

1
l!λlM (ξ−1

l (El)) if l ≥ 1,
(3.131)

for all A ∈ B(X ) and E ∈ B(Y).

As the set measure on the product σ-algebra B(X ) ⊗ B(Y) we take the product measure

µX × µY , i.e., the unique measure satisfying (cf. Theorem 2.9)

µX × µY(A× E) = µX (A)µY(E), (3.132)

for all A ∈ B(X ) and E ∈ B(Y). Provided that PX,Y � µX × µY , the RND theorem (Theorem

2.18) states that there exists an (a.e.) unique measurable function fX,Y : X × Y → [0,∞) such

that

PX,Y(A× E) =
∫
A×E

fX,Y(X,Y )d(µX × µY)(X,Y ), (3.133)

for all A ∈ B(X ) and E ∈ B(Y). The function fX,Y(X,Y ) is the RND of PX,Y with respect to

µX × µY , i.e.,

fX,Y(X,Y ) = dPX,Y
d(µX × µY)(X,Y ), (3.134)

and is called the joint PDF of the two RFSs X and Y. Fubini’s theorem (Theorem 2.19) allows

us to write (3.133) as

PX,Y(A× E) =
∫
E

∫
A
fX,Y(X,Y )dµX (X)dµY(Y ), (3.135)

where the order of integration does not matter.

Similarly to (3.49) we write the joint PDF in a piecewise fashion as

fX,Y(X,Y ) = f
(k,l)
X,Y (X,Y ) if |X| = k and |Y | = l, (3.136)
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for k ∈ N0, l ∈ N0, and f
(k,l)
X,Y : Xk × Yl → [0,∞). Analogously to (3.50)–(3.52), by inserting the

set measures µX (3.130) and µY (3.131) in (3.135) we obtain

PX,Y(A× E) =
∫
E

∫
A
fX,Y(X,Y )dµX (X)dµY(Y ) (3.137)

=
∫
E

( ∞∑
k=0

∫
Ak
fX,Y(X,Y )dµXk(X)

)
dµY(Y ) (3.138)

=
∞∑
k=0

∫
Ak

( ∫
E
fX,Y(X,Y )dµY(Y )

)
dµXk(X) (3.139)

=
∞∑
k=0

∫
Ak

( ∞∑
l=0

∫
El
fX,Y(X,Y )dµYl(Y )

)
dµXk(X) (3.140)

=
∞∑
k=0

∞∑
l=0

∫
El

∫
Ak
fX,Y(X,Y )dµXk(X)dµYl(Y ) (3.141)

=
∞∑
k=0

∞∑
l=0

∫
El

∫
Ak
f

(k,l)
X,Y (X,Y )dµXk(X)dµYl(Y ), (3.142)

where in the last step (3.136) has been used. Continuing, we use the push-forward property

(3.31) for X and Y separately, resulting in

PX,Y(A× E) =
∞∑
k=0

∞∑
l=0

∫
El

∫
Ak
f

(k,l)
X,Y (X,Y )dµXk(X)dµYl(Y ) (3.143)

=
∞∑
k=0

∞∑
l=0

∫
El

1
k!

∫
χ−1
k

(Ak)
f

(k,l)
X,Y (χk(x1, . . . , xk),Y )dλkN (x1, . . . , xk)dµYl(Y ) (3.144)

=
∞∑
k=0

∞∑
l=0

1
l!

∫
ξ−1
l

(El)

1
k!

∫
χ−1
k

(Ak)
f

(k,l)
X,Y (χk(x1, . . . , xk), ξ(y1, . . . , yl))

dλkN (x1, . . . , xk)dλlM (y1, . . . , yl). (3.145)

Similary to the EVDs of a single RFS (cf. (3.61) and (3.62)), we define the joint EVDs

f̃
(k,l)
X,Y : RkN × RlM → [0,∞), for k, l ∈ N0, corresponding to the joint PDF fX,Y(X,Y ) by

f̃
(k,l)
X,Y (x1, . . . , xk, y1, . . . , yl) , f

(k,l)
X,Y (χk(x1, . . . , xk), ξ(y1, . . . , yl)) (3.146)

= fX,Y(χk(x1, . . . , xk), ξ(y1, . . . , yl)), (3.147)

for (x1, . . . , xk) ∈ Xk and (y1, . . . , yl) ∈ Yl. Note that due to the symmetry of the VSTs χk and

ξl, the joint EVDs f̃
(k,l)
X,Y are partially symmetric in the following sense: For all (x1, . . . , xk) ∈ Xk

and (y1, . . . , yl) ∈ Yl,

f̃
(k,l)
X,Y (x1, . . . , xk, y1, . . . , yl) = f̃

(k,l)
X,Y (xσ1 , . . . , xσk , y1, . . . , yl), (3.148)

for all permutations σ over 1, . . . , k, and

f̃
(k,l)
X,Y (x1, . . . , xk, y1, . . . , yl) = f̃

(k,l)
X,Y (x1, . . . , xk, yσ1 , . . . , yσl) (3.149)
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for all permutations σ over 1, . . . , l.

The joint PDF can then be calculated from the joint EVDs by

fX,Y(X,Y ) = f̃
(k,l)
X,Y (θk(X),ψl(Y )), |X| = k, |Y | = l, (3.150)

where θk : Xk → Xk as in (3.34), and likewise ψl : Yl → Yl given by

ψl(Y ) , (y1, . . . , yl), yi ∈ Y , such that y1 < y2 < · · · < yk, (3.151)

where < is the lexicographical order on RM . That is, there is a one-to-one correspondence

between the joint set PDF fX,Y(X,Y ) and a family (indexed by k and l) of joint EVDs f̃
(k,l)
X,Y .

Inserting the joint EVDs in (3.145) we finally obtain

PX,Y(A× E) =
∞∑
k=0

∞∑
l=0

1
k!l!

∫
ξ−1
l

(El)

∫
χ−1
k

(Ak)
f̃

(k,l)
X,Y (x1, . . . , xk, y1, . . . , yl)

dλkN (x1, . . . , xk)dλlM (y1, . . . , yl). (3.152)

This is the analogous expression to (3.60) for the case of a single RFS.

Marginalization

Provided that PX � µX , the PDF fX(X) = dPX
dµX (X) exists and therefore

PX(A) =
∫
A
fX(X)dµX (X), (3.153)

for all A ∈ B(X ). Because of (3.115) and (3.135), we obtain on the other hand

PX(A) = PX,Y(A× Y) =
∫
A

(∫
Y
fX,Y(X,Y )dµY(Y )

)
dµX (X). (3.154)

By comparing with (3.153), it immediately follows that

fX(X) =
∫
Y
fX,Y(X,Y )dµY(Y ). (3.155)

By an analogous argument, we obtain

fY(Y ) =
∫
X
fX,Y(X,Y )dµX (X). (3.156)

That is, fX(X) and fY(Y ) are the marginal PDFs of the joint PDF fX,Y(X,Y ).

Using (3.155), the EVDs f̃
(k)
X of the RFS X can be calculated from the joint EVDs f̃

(k,l)
X,Y as

follows:

f̃
(k)
X (x1, . . . , xk) = fX(χk(x1, . . . , xk)) =

∫
Y
fX,Y(χk(x1, . . . , xk),Y )dµY(Y ). (3.157)
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Inserting µY from (3.131) and using the push-forward property (3.31) for Y we further obtain

f̃
(k)
X (x1, . . . , xk) =

∞∑
l=0

∫
Yl
fX,Y(χk(x1, . . . , xk),Y )dµYl(Y ) (3.158)

=
∞∑
l=0

1
l!

∫
ξ−1
l

(Yl)
fX,Y(χk(x1, . . . , xk), ξ(y1, . . . , yl))dλlM (y1, . . . , yl) (3.159)

=
∞∑
l=0

1
l!

∫
RlM

f̃
(k,l)
X,Y (x1, . . . , xk, y1, . . . , yl)dλlM (y1, . . . , yl). (3.160)

Statistical Independence

A proof of the following theorem can be found in Appendix A.5.

Theorem 3.15: Let X and Y be two RFSs with joint PDF fX,Y(X,Y ) and marginal PDFs

fX(X) and fY(Y ). Then, X and Y are statistically independent (see Definition 3.12) iff

fX,Y(X,Y ) = fX(X)fY(Y ) a.e.

Relation to Joint Cardinality Distribution

The joint cardinality distribution defined in Section 3.7.2 can be calculated from the joint EVDs

by inserting A = Xn = {X ⊆ RN : |X| = n} and E = Ym = {Y ⊆ RM : |Y | = m} in (3.152).

Here, the regions of integration become

χ−1
k (Ak) = χ−1

k (Xn ∩ Xk) =


Xn if k = n,

∅ if k 6= n,
(3.161)

and similarly

ξ−1
l (El) = ξ−1

l (Ym ∩ Yl) =


Ym if l = m,

∅ if l 6= m.
(3.162)

Thus, only the integral terms in the sum with k = n and l = m do not vanish and we obtain

p|X|,|Y|(n,m) = PX,Y(Xn × Ym) (3.163)

= 1
n!m!

∫
Ym

∫
Xn
f̃

(n,m)
X,Y (x1, . . . , xn, y1, . . . , ym)

λnN (x1, . . . , xn)dλmM (y1, . . . , ym) (3.164)

= 1
n!m!

∫
RmM

∫
RnN

f̃
(n,m)
X,Y (x1, . . . , xn, y1, . . . , ym)

λnN (x1, . . . , xn)dλmM (y1, . . . , ym), (3.165)

where the last result follows since (Xn)c and (Ym)c are null sets.
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Relation to Joint Belief Mass Function

The joint belief mass function defined in Section 3.7.3 can be obtained from the joint EVDs by

inserting A = X (A) = {X ∈ X : X ⊆ A} and E = Y(B) = {Y ∈ Y : Y ⊆ B} in (3.152), where A

and B are closed subsets of RN and RM , respectively. Here, the regions of integration become

χ−1
k (Ak) = Ak ∩ Xk and ξ−1

l (El) = Bl ∩ Yl (cf. Example 3.8(b)) and we obtain

βX,Y(A,B) = PX,Y(X (A)× Y(B)) (3.166)

=
∞∑
k=0

∞∑
l=0

1
k!l!

∫
Bl∩Yl

∫
Ak∩Xk

f̃
(k,l)
X,Y (x1, . . . , xk, y1, . . . , yl)

λkN (x1, . . . , xk)dλlM (y1, . . . , yl) (3.167)

=
∞∑
k=0

∞∑
l=0

1
k!l!

∫
Bl

∫
Ak
f̃

(k,l)
X,Y (x1, . . . , xk, y1, . . . , yl)

λkN (x1, . . . , xk)dλlM (y1, . . . , yl), (3.168)

where the last result follows since (Xk)c and (Yl)c are null sets.

3.8 Conditional Distributions

3.8.1 Conditional Probability Density Functions

In order to avoid the involved theory of conditional probability measures [42, Chapter 10], we

begin by defining conditional PDFs. Let fX,Y(X,Y ) be a continuous joint PDF of two RFSs X

and Y. Then, the conditional PDF of X, given the outcome Y = Y , is defined for fY(Y ) 6= 0

by

fX|Y(X|Y ) , fX,Y(X,Y )
fY(Y ) , (3.169)

and similarly for fY|X(Y |X). Note that in general the conditional PDF is only defined for

almost all Y ∈ Y (or X ∈ X , respectively). Combining (3.169) and the analogous expression of

fY|X(Y |X) yields

fX|Y(X|Y ) = fY|X(Y |X)fX(X)
fY(Y ) . (3.170)

This is Bayes’ theorem for RFSs.

3.8.2 Conditional Probability Measure

The conditional PDF fX|Y(X|Y ) establishes a conditional probability measure for X by

PX|Y(A|Y ) =
∫
A
fX|Y(X|Y )dµX (X), (3.171)
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for allA ∈ B(X ). This conditional probability measure is related to the joint probability measure

(cf. (3.135)) by

∫
E
PX|Y(A|Y )fY(Y )dµY(Y ) =

∫
E

(∫
A
fX|Y(X|Y )dµX (X)

)
fY(Y )dµY(Y ) (3.172)

=
∫
E

∫
A
fX,Y(X,Y )dµX (X)dµY(Y ) (3.173)

= PX,Y(A× E), (3.174)

where in (3.173) Fubini’s theorem (Theorem 2.19) and (3.169) have been used. Furthermore, we

have

∫
Y
fX|Y(X|Y )fY(Y )dµY(Y ) =

∫
Y
fX,Y(X,Y )dµY(Y ) = fX(X), (3.175)

where (3.169) and the marginalization equation (3.155) have been used. This is the total proba-

bility theorem for RFSs.

3.8.3 Conditional Cardinality Distribution

Restricting the conditional probability measure in (3.171) to the events A = Xn, we define the

conditional CD of X given Y = Y by

p|X||Y(n|Y ) , PX|Y(Xn|Y ) =
∫
Xn
fX|Y(X|Y )dµX (X). (3.176)

3.8.4 Conditional Belief Mass Function

Similarly, restricting the conditional probability measure in (3.171) to the events A = X (A), the

conditional BMF of X given Y = Y is defined as

βX|Y(A|Y ) , PX|Y(X (A)|Y ) =
∫
X (A)

fX|Y(X|Y )dµX (X). (3.177)

3.8.5 Statistical Independence

From Theorem 3.15 and (3.169), it immediately follows that two RFSs X and Y are statistically

independent iff

fX|Y(X|Y ) = fX(X), (3.178)

or, equivalently, iff

fY|X(Y |X) = fY(Y ). (3.179)
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3.8.6 Conditional Independence

In the case of joint PDFs of more than two RFSs, one can condition on any of these RFSs by

straightforward generalization of (3.169). As an example, for three RFSs X, Y, Z with joint PDF

fX,Y,Z(X,Y ,Z), the conditional joint PDF of X and Y given the observation Z = Z is

fX,Y|Z(X,Y |Z) = fX,Y,Z(X,Y ,Z)
fZ(Z) . (3.180)

The RFSs X and Y are called conditionally independent given Z = Z if (cf. Theorem 3.15)

fX,Y|Z(X,Y |Z) = fX|Z(X|Z)fY|Z(Y |Z), (3.181)

or equivalently (cf. (3.178))

fX|Y,Z(X|Y ,Z) = fX|Z(X|Z), (3.182)

or equivalently (cf. (3.179))

fY|X,Z(Y |X,Z) = fY|Z(Y |Z). (3.183)

3.9 Expectation for RFS

Let X be a RFS with PDF fX(X) and let g : X → R be a measurable function. The expectation

of g(X) is defined by (cf. (2.39) and (2.52))

E[g(X)] ,
∫
X
g(X)dPX(X) =

∫
X
g(X)fX(X)dµX (X). (3.184)

Note that for RFSs there is no direct analog to the 1-st order moment of a random vector since

g(X) = X is not a real-valued function. In Section 4.4 we introduce a 1-st order moment, called

the probability hypothesis density.

Example 3.16: Let g(X) = |X|. Since the EVFs of |X| are |χk(x1, . . . , xk)| = k, (3.184) yields

upon using (3.57)

E[|X|] =
∫
X
|X|fX(X)dµX (X) =

∞∑
k=0

1
k!

∫
RkN

kf̃
(k)
X (x1, . . . , xk)dλkN (x1, . . . , xk). (3.185)

Continuing, by using (3.69) we obtain

E[|X|] =
∞∑
k=0

k

k!k!p|X|(k) =
∞∑
k=0

kp|X|(k). (3.186)
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Analogously to (3.184), we define the joint expectation of a measurable function f : X×Y →

R with respect to the joint PDF fX,Y(X,Y ) as

E[f(X, Y)] ,
∫
Y

∫
X
f(X,Y )fX,Y(X,Y )dµX (X)dµY(Y ). (3.187)

Let X and Y be two statistically independent RFSs, i.e. (cf. Theorem 3.15), fX,Y(X,Y ) =

fX(X)fY(Y ). Furthermore, let f(X,Y ) = g(X)h(Y ), where g : X → R and h : Y → R are two

measurable functions. Then, (3.187) becomes

E[g(X)h(Y)] =
∫
Y

∫
X
g(X)h(Y )fX(X)fY(Y )dµX (X)dµY(Y ) (3.188)

=
∫
X
g(X)fX(X)dµX (X)

∫
Y
h(Y )fY(Y )dµY(Y ) (3.189)

= E[g(X)]E[h(Y)]. (3.190)

That is, the expectation of the product g(X)h(Y) of two statistically independent RFSs X and

Y is the product of the individual expectations E[g(X)] and E[h(Y)].

The conditional expectation of a measurable function g : X → R with respect to a con-

tinuous conditional PDF fX|Y(X|Y ) is defined by

E[g(X)|Y ] ,
∫
X
g(X)fX|Y(X|Y )dµX (X). (3.191)

Let X and Y be two statistically independent RFSs. Then, according to (3.178), fX|Y(X|Y ) =

fX(X) and (3.191) becomes

E[g(X)|Y ] =
∫
X
g(X)fX(X)dµX (X) = E[g(X)]. (3.192)

That is, the conditional expectation reduces to the unconditional expectation. Finally, by insert-

ing f(X,Y ) = g(X) and fX,Y(X,Y ) = fX|Y(X|Y )fY(Y ) (cf. (3.169)) in (3.187) we can calculate

the expectation of g(X) from the conditional expectation E[g(X)|Y ] as follows:

E[g(X)] =
∫
Y

∫
X
g(X)fX|Y(X|Y )fY(Y )dµX (X)dµY(Y ) (3.193)

=
∫
Y

(∫
X
g(X)fX|Y(X|Y )dµX (X)

)
fY(Y )dµY(Y ) (3.194)

=
∫
Y

E[g(X)|Y ]fY(Y )dµY(Y ). (3.195)

This is the total probability theorem for the expectations of RFSs (cf. (3.175)).
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Chapter 4

Finite Set Statistics (FISST)

This chapter provides an introduction to a mathematical framework for treating RFSs, called

Finite Set Statistics (FISST), which was developed by Mahler in [3,6,16,48–50]. In particular

a very readable introduction is [16]. Unless stated otherwise, the material of this chapter is taken

from [16, Chapter 11].

The FISST framework builds upon and extends the measure-theoretic formalism for RFSs

considered in Chapter 3. Section 4.1 introduces the set integral, which is essentially just a

notation for the Lebesgue integral with respect to the measure µX on B(X ) as defined in (3.43).

In Section 4.2, a new descriptor of RFSs, the probability generating functional, is defined and

discussed. In Section 4.3, the concept of functional derivatives is established. Section 4.4 defines

a first order-moment of an RFS known as the probability hypothesis density. Furthermore, at

the end of that section, a pictorial summary of all the descriptors of RFSs considered in this

work and their relationships is provided. Finally, in Section 4.5, we present and discuss four

common types of RFSs.

4.1 Set Integral

Let X be the collection of all finite subsets of RN (3.1), equipped with the Borel algebra B(X )

(3.4) and the set measure µX given by (3.43)

µX (A) =
∞∑
k=0

µXk(Ak), µXk(Ak) =


1A0(∅) if k = 0,

1
k!λkN (χ−1

k (Ak)) if k ≥ 1.
(4.1)

The set integral of a µX -integrable function f : X → R over a closed subset A ⊆ RN is

defined as

∫
A
f(X)δX ,

∫
X (A)

f(X)dµX (X), (4.2)
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where X (A) = {X ∈ X : X ⊆ A} (cf. (3.10)). That is, the set integral is just a different notation

for the Lebesgue integral with respect to µX over X (A) (the collection of all finite subsets of a

closed set A). Using (3.57), we can express the set integral as∫
A
f(X)δX =

∞∑
k=0

1
k!

∫
Ak
f̃ (k)(x1, . . . , xk)dλkN (x1, . . . , xk), (4.3)

where f̃ (k)(x1, . . . , xk), k ∈ N0 are the EVFs corresponding to f(X) (cf. (3.55)) and

λkN [χ−1
k (X (A))] = λkN (Ak ∩ Xk) = λkN (Ak), (4.4)

has been used.

It follows that set integrals are linear, i.e.,∫
A

(a1f1(X) + a2f2(X)) δX = a1

∫
A
f1(X)δX + a2

∫
A
f2(X)δX, (4.5)

for any a1, a2 ∈ R and any µX -integrable functions f1, f2 : X → R. However, since X (A1∪A2) 6=

X (A1) ∪ X (A2), the set integral is not additive in A, i.e., if A1 ∩ A2 = ∅ then∫
A1∪A2

f(X)δX 6=
∫
A1

f(X)δX +
∫
A2

f(X)δX. (4.6)

Iterated set integrals of functions with two finite sets as argument f : X × Y → R are defined

by (cf. (3.135)) ∫
B

∫
A
f(X,Y )δXδY ,

∫
Y(B)

∫
X (A)

f(X,Y )dµX (X)dµY(Y ), (4.7)

and similarly for functions with more than two finite sets as arguments.

Note that if f(X) = fX(X) is the PDF of a RFS X, (4.2) becomes∫
A
fX(X)δX = PX(X (A)) = Pr(X ⊆ A) = βX(A). (4.8)

Similarly, if f(X,Y ) = fX,Y(X,Y ) is the joint PDF of the RFSs X and Y, (4.7) becomes∫
B

∫
A
fX,Y(X,Y )δXδY = PX,Y(X (A)× Y(B)) = Pr(X ⊆ A ∧ Y ⊆ B) = βX,Y(A,B). (4.9)

4.2 Probability Generating Functionals

A functional F [h] is a mapping of functions h : RN → R to real numbers. In most cases, we will

consider functions h : RN → [0, 1], which we will refer to as test functions.

Example 4.1: One important class of functionals are linear functionals f [h] corresponding

to some function f : RN → R, defined as

f [h] ,
∫
RN

h(x)f(x)dλN (x). (4.10)
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As the name already suggests, these functionals are linear, i.e.,

f [a1h1 + a2h2] = a1f [h1] + a2f [h2], (4.11)

for any functions h1,h2 and scalars a1, a2 ∈ R, provided the corresponding integrals exist. Note

that for h = 1A, where 1A is the indicator function of a closed set A ⊆ RN , the linear functional

is the integral of f(x) over A, i.e. (cf. (2.36)),

f [1A] =
∫
RN

1A(x)f(x)dλN (x) =
∫
A
f(x)dλN (x). (4.12)

Furthermore, if the function f(x) = fx(x) is the PDF of a random vector x ∈ RN , we have

fx[h] =
∫
RN

h(x)fx(x)dλN (x) = E[h(x)], (4.13)

and according to (4.12)

fx[1A] =
∫
A
fx(x)dλN (x) = Px(A) = Pr(x ∈ A). (4.14)

Let h be a real valued-function on RN , and let X ∈ X be a finite subset of RN . The power

of h with respect to X is defined as

hX ,


1 if X = ∅,∏k
i=1 h(xi) if |X| = k,X = {x1, . . . , xk}.

(4.15)

Note that for h fixed, hX is a function from X to R.

Example 4.2: As a simple example, consider the constant function h(x) ≡ c, with some c ∈ R.

Then hX = c|X|. In particular, for h(x) ≡ 0 we have

0X =


1 if X = ∅,

0 if X 6= ∅,
(4.16)

= 1X0(X), (4.17)

where X0 = {∅}. For h(x) ≡ 1 we have

1X = 1. (4.18)

Furthermore, the power of the indicator function 1A(x) for A ⊆ RN is

1XA =


1 if X = ∅,∏k
i=1 1A(xi) if |X| = k,X = {x1, . . . , xk},

(4.19)

=


1 if X ⊆ A,

0 if X 6⊆ A,
(4.20)

= 1X (A)(X), (4.21)
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where X (A) = {X ∈ X : X ⊆ A} is the collection of all finite subsets of A.

Let Xi ∈ X , i = 1, . . . , k be finite sets. Then, it follows immediately from (4.15) that

h
⋃k

i=1 Xi =
k∏
i=1

hXi . (4.22)

The probability generating functional (PGFL) of an RFS X ∈ X with PDF fX(X) is

defined as the expectation of hX (cf. (3.184))

GX[h] , E[hX] =
∫
RN

hXfX(X)δX. (4.23)

Using (4.2) and (4.3), the PGFL can be written as

GX[h] =
∫
X
hXfX(X)dµX (X) (4.24)

=
∞∑
k=0

1
k!

∫
RkN

(
k∏
i=1

h(xi)
)
f̃

(k)
X (x1, . . . , xk)dλkN (x1, . . . , xk) (4.25)

where by convention
∏0
i=1 h(xi) = 1.

The following properties of the PGFL immediately follow from (4.25):

• GX[0] = fX(∅).

• GX[1] = 1.

• For nonnegative functions h1 and h2 satisfying h1(x) ≤ h2(x) a.e., we obtain GX[h1] ≤

GX[h2].

Furthermore, the PGFL at h = 1A, where A is a closed subset of RN , is equal to the BMF:

GX[1A] =
∫
X

1XA fX(X)dµX (4.26)

=
∫
X

1X (A)(X)fX(X)dµX (4.27)

=
∫
X (A)

fX(X)dµX (4.28)

= PX(X (A)) = βX(A), (4.29)

where (4.21) has been used.

The most important property of PGFLs is the following [16, p. 803].

Theorem 4.3: Let Xi ∈ X , i = 1, . . . ,n be statistically independent RFSs with PGFLs GXi [h],

and let

X =
n⋃
i=1

Xi. (4.30)

Then

GX[h] =
n∏
i=1

GXi [h]. (4.31)
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That is, the PGFL of the union of statistically independent RFSs is the product of the PGFLs

of the individual RFSs. Inserting h = 1A in (4.31) and using (4.29), we obtain an analogous

factorization for the BMF of a union of independent RFSs, i.e.,

βX(A) =
n∏
i=1

βXi(A). (4.32)

4.2.1 Joint Probability Generating Functionals

Let X ∈ X and Y ∈ Y be two RFS with joint PDF fX,Y(X,Y ). The joint PGFL of X and Y is

defined as the expectation of hXgY with respect to fX,Y(X,Y ) (cf. (3.187)), i.e.,

GX,Y[h, g] , E[hXgY] =
∫
RM

∫
RN

hXgY fX,Y(X,Y )δXδY , (4.33)

where h and g are test functions on RN and RM , respectively. It is easily shown that the joint

PGFL has the following properties:

• GX,Y[0, 0] = fX,Y(∅, ∅).

• GX,Y[0, 1] = fX(∅).

• GX,Y[1, 0] = fY(∅).

• GX,Y[1, 1] = 1.

Analogous to (4.26)–(4.29), the joint BMF can be obtained from the joint PGFL by setting

h = 1A and g = 1B, where A and B are closed subsets of RN and RM respectively, i.e.,

GX,Y[1A, 1B] = βX,Y(A,B). (4.34)

Furthermore, the marginal PGFLs GX[h] and GY[g] can be obtained from the joint PGFL by

setting either h or g to 1, i.e.,

GX,Y[h, 1] = GX[h], (4.35)

GX,Y[1, g] = GY[g]. (4.36)

Finally, if X and Y are statistically independent, the joint PGFL factorizes as

GX,Y[h, g] = GX[h]GY[g]. (4.37)
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4.2.2 Conditional Probability Generating Functionals

Let X ∈ X and Y ∈ Y be two RFSs with conditional PDF fX|Y(X|Y ). We define the conditional

PGFL of X given Y = Y as the expectation of hX with respect to fX|Y(X|Y ) (cf. (3.191)), i.e.,

GX|Y[h|Y ] , E[hX|Y ] =
∫
RN

hXfX|Y(X|Y )δX. (4.38)

The following properties follow from this definition:

• GX|Y[0|Y ] = fX|Y(∅|Y ).

• GX|Y[1|Y ] = 1.

• GX|Y[1A|Y ] = βX|Y(A|Y ).

The conditional BMF can be obtained from the condtional PGFL by setting h = 1A, where A

is a closed subset of RN , i.e.,

GX|Y[1A|Y ] = βX|Y(A|Y ). (4.39)

Furthermore, if X and Y are statistically independent, the condtional PGFL equals the marginal

PGFL, i.e.,

GX|Y[h|Y ] = GX[h]. (4.40)

Finally, using (4.33) and (3.169), the joint PGFL can be calculated from the conditional PGFL

by

GX,Y[h, g] =
∫
RM

∫
RN

hXgY fX,Y(X,Y )δXδY (4.41)

=
∫
RM

gY
(∫

RN
hXfX|Y(X|Y )δX

)
fY(Y )δY (4.42)

=
∫
RM

gYGX|Y[h|Y ]fY(Y )δY . (4.43)

This is the PGFL version of the total probability theorem.

4.3 Functional Derivatives

The Fréchet derivative (also known as directional or gradient derivative) of a functional F [h]

in direction g is defined as [6]

δF

δg
[h] , lim

ε↘0

F [h+ εg]− F [h]
ε

. (4.44)

Some functionals also allow distributions, such as the Dirac delta function δx(y) = δ(y−x), as

arguments.
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Example 4.4: For the linear functional corresponding to a continuous function f as defined in

(4.10), we have

f [δx] =
∫
RN

δ(y − x)f(y)dλN (y) = f(x). (4.45)

In this case, the functional derivative of a functional F [h] at x ∈ RN , if it exists, is defined

as the Fréchet derivative of F [h] in direction g = δx [6], i.e.,

δF

δx
[h] , lim

ε↘0

F [h+ εδx]− F [h]
ε

. (4.46)

Note that the functional derivative δF
δx [h] depends on the function h and the vector x, i.e., it

can be considered as a functional with respect to h parameterized by x. Higher-order functional

derivatives of F [h] at x1, . . . , xk ∈ RN are defined recursively by

δkF

δx1 · · · δxk
[h] , δ

δx1

δk−1F

δx2 · · · δxk
[h], (4.47)

provided that all derivatives exist. If X is a finite subset of RN , then the functional derivative

of F [h] at X is defined as

δF

δX
[h] ,


F [h] if X = ∅,

δkF
δx1···δxk [h] if |X| = k and X = {x1, . . . , xk}.

(4.48)

Note that for δF
δX [h] to be well defined it is implicity assumed that for any given h the order of

the derivatives does not matter. (This is necessary because in X = {x1, . . . , xk} the elements

xi are not ordered.)

Example 4.5: Consider the special case where the PDF of X takes the form

fX(X) =


f(x) if X = {x},

0 if |X| 6= 1,
(4.49)

where f(x) is an arbitrary continuous vector PDF. Note that in this case all EVDs with k 6= 1

are zero and f̃
(1)
X (x) = f(x). Using (4.25), the PGFL of X is obtained as

GX[h] =
∫
RN

h(x)f(x)dλN (x) = f [h]. (4.50)

That is, the PGFL is the linear functional f [h] (cf. (4.10)) corresponding to the vector PDF

f(x). The functional derivative of GX[h] = f [h] at some point x ∈ RN is then given by

δGX
δx

[h] = lim
ε↘0

f [h+ εδx]− f [h]
ε

(4.51)

= lim
ε↘0

f [h] + εf [δx]− f [h]
ε

(4.52)

= f [δx] (4.53)

= f(x), (4.54)
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where the last result follows from (4.45). Since δGX
δx [h] does not depend on h anymore, differen-

tiating it again yields
δ

δy

δGX
δx

[h] = lim
ε↘0

f(x)− f(x)
ε

= 0. (4.55)

Consequently, the functional derivative of GX[h] at some finite set X ⊆ RN is obtained from

(4.48) as

δGX
δX

[h] =


f [h] if X = ∅,

f(x) if X = {x},

0 if |X| ≥ 2.

(4.56)

We finally list some basic properties of functional derivatives (for a more complete list and

proofs see [16, Section 11.6]). For any differentiable functionals F1[h],F2[h], any scalars c, a1, a2 ∈

R and n ∈ N, any vector x ∈ RN , any finite set X ⊆ RN , and any differentiable function

g : R→ R, the following holds:

1. Constant Rule:

δ

δX
c =


c if X = ∅,

0 if X 6= ∅.
(4.57)

2. Linearity:

δ

δX
(a1F1[h] + a2F2[h]) = a1

δF1

δX
[h] + a2

δF2

δX
[h]. (4.58)

3. Power Rule:

δ

δx
(F1[h]n) = nF1[h]n−1 δF1

δx
[h]. (4.59)

4. Product Rule I:

δ

δx
(F1[h]F2[h]) = δF1

δx
[h]F2[h] + δF2

δx
[h]F1[h]. (4.60)

5. Product Rule II:

δ

δX
(F1[h]F2[h]) =

∑
Y⊆X

δF1

δY
[h] δF2

δ(X \ Y ) [h]. (4.61)

6. Chain Rule:

δ

δx
g(F1[h]) = dg

dy (F1[h])δF1

δx
[h]. (4.62)

Here, dg
dy (F1[h]) denotes the derivative of the function g(y) evaluated at y = F1[h].
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4.4 Probability Hypothesis Density

In this section, we introduce a first-order moment of an RFS, called the probability hypothesis

density (PHD) [16, Section 16.2]. Let X ⊆ RN be an RFS with PDF fX(X). We define the

function νX : B(RN )→ [0,∞) by

νX(S) , E[|X ∩ S|] =
∫
RN
|X ∩ S|fX(X)δX, (4.63)

which is known as the intensity measure of the RFS X. That is, νX(S) is equal to the expected

number of elements of X that are contained in the region S ⊆ RN . A proof of the following

theorem is provided in Appendix A.6.

Theorem 4.6: The function νX as defined in (4.63) is a measure on B(RN ). Furthermore, νX is

absolutely continuous with respect to the product Lebesgue measure λN , i.e.,

νX � λN . (4.64)

Since νX and λN are measures on B(RN ) with νX � λN , the RN theorem (Theorem 2.18)

states that there exists an (a.e.) unique measurable function DX(x) : RN → [0,∞) such that

νX(S) =
∫
S
DX(x)dλN (x). (4.65)

This function is the PHD (also known as the intensity density) of the RFS X. That is, the PHD

is a unique function associated to an RFS whose integral over a region S ∈ B(RN ) is equal to

the expected number of elements of X contained in that region. In particular, the integral of the

PHD over RN yields the expected number of elements of X since∫
RN

DX(x)dx = E[|X ∩ RN |] = E[|X|] =
∞∑
n=0

np|X|(n). (4.66)

As shown in [16, Chapter 16], the PHD can be calculated from the PDF fX(X) by

DX(x) = E[δX(x)] =
∫
RN

δX(x)fX(X)δX, (4.67)

where

δX(x) ,


0 if X = ∅,∑k
i=1 δxi(x) if |X| = k,X = {x1, . . . , xk},

(4.68)

and δxi(x) = δ(x− xi) are Dirac delta functions located at xi.

The PHD can also be derived from the PGFL by [16, Chapter 16]

DX(x) = δGX
δx

[1]. (4.69)

Another important property of the PHD is the following [5, p. 163].
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p|X|(k) PX(A) βX(A)

fX(X)

GX[h] DX(x)

A = Xk

A = A(A)

Choquet

RND

∫
Xk

(·)dµX

∫
A(·)dµX ∫

A
(·)δX

∫
hX(·)δX

h = 1A

∫
δ
X (x)(·)δX

δGX
δx

[1]

Fig. 4.1: Graphical summary of the various descriptors of RFSs and their interrelations. The dashed edges
indicate a nonconstructive relation.

Theorem 4.7 (Campbell): Let DX(x) be the PHD of the RFS X and let g : RN → R. Then

E
[∑

x∈X
g(x)

]
=
∫
RN

g(x)DX(x)dλN (x). (4.70)

At this point, we have introduced the main descriptors of an RFS X:

• Probability measure PX(A).

• Cardinality distribution (CD) p|X|(n).

• Belief mass function (BMF) βX(A).

• Probability density function (PDF) fX(X).

• Probability generating functional (PGFL) GX[h].

• Probability hypothesis density (PHD) DX(x).

A graphical summary of these descriptors and their interrelations is provided in Figure 4.1.
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4.5 Elementary Distributions

In this section we discuss four common types of RFSs and derive their PDFs, BMFs, PGFLs,

and PHDs [32, Section 2.9].

4.5.1 Independent and Identically Distributed Cluster RFS

An independent, identically distributed (i.i.d.) cluster RFS arises if all component random vec-

tors x(k)
i in our general construction in Section 3.6.2 are i.i.d. with a common PDF fx(k)

i

(x) =

f(x), i.e., fx(k)(x1, . . . , xk) =
∏k
i=1 f(xi). Hence, the EVDs of an i.i.d. cluster RFS are given by

(cf. (3.101))

f̃
(k)
X (x1, . . . , xk) = pk

∑
σ

k∏
i=1

f(xσi) = pkk!
k∏
i=1

f(xi), (4.71)

where pk = p|X|(k), k ∈ N0, is an arbitrary CD. Note that the EVDs (and thereby the PDF) are

fully characterized by the PDF f(x) and the CD pk. The PGFL of this RFS is, from (4.25),

GX[h] =
∞∑
k=0

pk

∫
RkN

(
k∏
i=1

h(xi)f(xi)
)

dλkN (x1, . . . , xk) (4.72)

=
∞∑
k=0

pk

k∏
i=1

∫
RN

h(xi)f(xi)dλN (xi) (4.73)

=
∞∑
k=0

pk(f [h])k, (4.74)

where f [h] =
∫
X1
h(x)f(x)dλN (x). Using (4.29) and f [1A] =

∫
A f(x)dλN (x) = Px(A), the BMF

can be easily calculated from the PGFL as

βX(A) = GX[1A] =
∞∑
k=0

pk(Px(A))k. (4.75)

For the PHD we get from (4.69)

DX(x) = δGX
δx

[1] =
∞∑
k=0

pk

[
δ

δx

(
f [h]k

)]
h=1

, (4.76)

where the linearity of the functional derivative (4.58) has been used. Using the power rule (4.59)

and δ
δxf [h] = f(x) (cf. (4.54)), the derivative becomes

δ

δx

(
f [h]k

)
= kf [h]k−1 δ

δx
f [h] = kf [h]k−1f(x), (4.77)

and therefore, since f [1] =
∫
RN f(x)dλN (x) = 1, we obtain

DX(x) =
∞∑
k=1

pkkf [1]k−1f(x) =
∞∑
k=0

pkkf(x) = E[|X|]f(x). (4.78)

Note that the i.i.d. cluster RFS is fully characterized by the CD and PHD.
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4.5.2 Poisson RFS

Poisson RFSs are a special case of i.i.d. cluster RFSs where the cardinality distribution is Poisson,

i.e.,

pk = e−λλk

k! , (4.79)

with mean λ > 0. Inserting this into (4.71), the EVDs of a Poisson RFS are

f̃
(k)
X (x1, . . . , xk) = e−λλk

k∏
i=1

f(xi), (4.80)

where f(x) is again an arbitrary vector PDF. Note that a Poisson RFS is completely specified

by λ and f(x). Similarly, the PGFL, BMF, and PHD can be calculated by inserting (4.79) into

(4.74), (4.75), and (4.78), respectively. We thus obtain for the PGFL

GX[h] =
∞∑
k=0

e−λλk

k! fk[h] = e−λ
∞∑
k=0

(λf [h])k
k! = e−λeλf [h] = eλ(f [h]−1). (4.81)

The BMF is hence given by

βX(A) = GX[1A] = eλ(Px(A)−1). (4.82)

Finally, since E[|X|] = λ, the PHD is

DX(x) = λf(x). (4.83)

Note that the Poisson RFS is fully characterized by the PHD.

4.5.3 Bernoulli RFS

Bernoulli RFSs are very simple RFSs that are either empty with probability 1− p, or contain a

single element with probability p. Consequently, the PDF of a Bernoulli RFS is of the form

fX(X) =


1− p if X = ∅,

pf(x) if X = {x},

0 if |X| ≥ 2,

(4.84)

with some p ∈ [0, 1] and vector PDF f(x). The PGFL, BMF, and PHD are easily derived as

GX[h] = fX(∅) +
∫
h(x)pf(x)dx = 1− p+ pf [h], (4.85)

βX(A) = GX[1A] = 1− p+ pPx(A), (4.86)

DX(x) = δGX
δx

[1] = p
δf

δx
[1] = pf(x). (4.87)
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4.5.4 Multi-Bernoulli RFS

A multi-Bernoulli RFS is an RFS X that is the union of a finite number of statistically indepen-

dent Bernoulli RFSs Xk, i.e.,

X = X1 ∪ · · · ∪ XK . (4.88)

Here, K ≥ 2, and each Xi has a PDF fXi of the form (4.84) with parameters pi and fi(x). Due

to the independence assumption, the PGFL and BMF are given by the product of the individual

PGFLs and BMFs, respectively (cf. (4.31) and (4.32)):

GX[h] =
K∏
i=1

GXi [h] =
K∏
i=1

(1− pi + pifi[h]) (4.89)

and

βX(A) =
K∏
i=1

βXi(A) =
K∏
i=1

(1− pi + piPxi(A)). (4.90)

The PHD can be calculated by using the product rule (4.60)

DX(x) = δGX
δx

[1] (4.91)

=
[
δ

δx

K∏
i=1

GXi [h]
]
h=1

(4.92)

=
K∑
i=1

GX1 [h] · · · δGXi
δx

[h] · · ·GXK [h]
∣∣
h=1 (4.93)

=
K∑
i=1

GX1 [1] · · · pifi(x) · · ·GXK [1] (4.94)

=
K∑
i=1

pifi(x), (4.95)

where GXi [1] = 1 has been used. The EVDs are given by [16, pp. 368–370]

f̃
(k)
X (x1, . . . , xk) =

∑
1≤i1 6=···6=ik≤K

Qi1,...,ik

k∏
j=1

fij (xj), (4.96)

where

Qi1,...,ik =
∏K
i=1(1− pi)∏k
j=1(1− pij )

k∏
j=1

pij . (4.97)
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Chapter 5

State Estimation from Image
Observations

5.1 State Estimation from a Single Image

In this section we discuss the problem of jointly estimating the number of objects and their

corresponding states based on a noisy image observation.

5.1.1 Data Model

Let s = (s1, . . . , sm) ∈ Rm, with m = m1m2 be a random vector consisting of the pixel values

of an m1 × m2 grayscale image and let z ∈ RN denote the state of an object. Furthermore,

let T (z) be a function that gives the set of pixel-indices in the image that are influenced by an

object with state z. We will refer to the pixels influenced by an object as its pixel set. An object

affects the pixels of its pixel set by changing their distributions. The conditional PDF of pixel

si given the state z can therefore be written as [22]

p(si|z) =


ϕ(si, z) if i ∈ T (z),

φ(si) if i 6∈ T (z),
(5.1)

with arbitrary but known PDFs ϕ(si, z) and φ(si).

We are only interested in objects that actually affect our image, i.e., objects located in the

state space

R , {z ∈ RN : T (z) 6= ∅} ⊆ RN . (5.2)

The number of objects as well as their states are unknown and random. Since the objects do not

possess an inherent ordering, we therefore model them as an RFS Z ⊆ R with given (prior) PDF

fZ(Z). Furthermore, we assume that the likelihood function g(s|Z) , fs|Z(s|Z) is separable, i.e.,
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it can be written in a factorized form as [22]

g(s|Z) = π(s)
∏
z∈Z

η(z, s), (5.3)

where

π(s) =
m∏
i=1

φ(si), (5.4)

η(z, s) =
∏

i∈T (z)

ϕ(si, z)
φ(si)

. (5.5)

5.1.2 Estimator

Our task is to obtain an estimate Ẑ of the realization Z = Z based on the image observation

s = s. We will use an estimator based on the posterior PHD (cf. (4.67))

D(z|s) ,
∫
R
δZ(z)f(Z|s)δZ, (5.6)

where the posterior f(Z|s) , fZ|s(Z|s) can be calculated from the likelihood function g(s|Z)

and prior fZ(Z) by using Bayes’ rule, i.e.,

f(Z|s) = g(s|Z)fZ(Z)∫
R g(s|Z)fZ(Z)δZ . (5.7)

An estimation procedure based on the posterior PHD is outlined in [16, pp. 504–505] and consists

of the following two steps.

Algorithm 1 PHD Estimator for One Image
1: Calculate the expected number of objects given the image observation (cf. (4.66))

E[|Z||s] =
∫
R
D(z|s)dλN (z) (5.8)

and round it to the nearest integer to obtain an estimate for the number of objects

K̂ = round
(
E[|Z||s]

)
. (5.9)

2: Determine the position of the K̂ highest local maxima ẑ1, . . . , ẑK̂ of the posterior PHD
D(z|s). The estimate Ẑ is then given by

Ẑ = {ẑ1, . . . , ẑK̂}. (5.10)

In general, this estimation problem does not admit closed form solutions since the posterior

PDF f(Z|s) (and hence the posterior PHD and the mean number of objects) cannot be evaluated

explicitly. However, as we will show subsequently, if the prior is Poisson distributed (cf. Section

4.5.2) the posterior PHD can be determined up to a constant factor. A proof of the following

proposition is provided in Appendix A.7.
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Proposition 5.1: Let the RFS Z be a Poisson RFS (cf. Section 4.5.2) with CD p|Z|(k) = e−µµk

k!

, µ > 0 and elementary vector PDF ψ(z), i.e., the EVDs of Z are given by

f̃
(k)
Z (z1, . . . , zk) = e−µµk

k∏
i=1

ψ(zi), k ∈ N0. (5.11)

Then the posterior f(Z|s) is Poisson distributed as well, i.e.,

f̃ (k)(z1, . . . , zk|s) = e−ν(s)ν(s)k
k∏
i=1

f(zi|s), k ∈ N0, (5.12)

with mean

ν(s) = µα(s), (5.13)

α(s) ,
∫
R
ψ(z)η(z, s)dλN (z), (5.14)

and elementary vector PDF

f(z|s) = ψ(z)η(z, s)
α(s) . (5.15)

Corollary 5.2: Under the premise of Proposition 5.1, the expected number of objects E[|Z||s]

and the posterior PHD D(z|s) are given by

E[|Z||s] = µα(s), (5.16)

D(z|s) = µψ(z)η(z, s). (5.17)

Proof: This follows immediately from (4.83) by inserting ν(s) and f(z|s) from Proposition

5.1. �

5.2 State Estimation from Two Images

We are now extending the estimation problem from the previous section to the case where two

partly overlapping grayscale images are observed.

5.2.1 Data Model

As before, let z ∈ RN be a state vector and si = (s(1)
i , . . . , s(m)

i ) ∈ Rm, i = 1, 2 with m = m1m2

be two random vectors consisting of the pixel values of two m1 × m2 grayscale images. The

functions Ti(z) give the set of pixel-indices in image observation i that are illuminated by an

object with state z. The conditional PDF of pixel s
(j)
i given the state z is (cf. (5.1))

p(s(j)
i |z) =


ϕi(s(j)

i , z) if j ∈ Ti(z),

φi(s(j)
i ) if j 6∈ Ti(z),

(5.18)
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R1\2

R2\1

R12

R1

R2

Fig. 5.1: Example of two overlapping state spaces R1 = R1\2∪R12 associated with image s1, and R2 = R12∪R2\1
associated with image s2.

with arbitrary but known PDFs ϕi(s(j)
i , z) and φi(s(j)

i ).

We define the local state spaces Ri consisting of all state vectors z ∈ RN that illuminate at

least one pixel in image si, i.e.,

Ri , {z ∈ RN : Ti(z) 6= ∅}, i = 1, 2. (5.19)

The global state space R is the union of the local state spaces,

R , R1 ∪R2. (5.20)

We explicitly assume that R12 , R1 ∩R2 6= ∅, i.e., there are states z ∈ R that illuminate pixels

both in s1 and s2 (see Figure 5.1).

As before, we model the random objects as a RFS Z ⊆ R with given (prior) PDF fZ(Z). For

each image, we are interested in estimating the local RFSs

X , Z ∩R1 ⊆ R1, (5.21)

Y , Z ∩R2 ⊆ R2. (5.22)

That is, X contains only the elements of Z that lie in R1 and Y contains only the elements of Z

that lie in R2. Since R1 and R2 overlap, there might of course be some states that are part of

both X and Y (this happens if the state is in the region R12). Hence, we expect to obtain a better

estimate of X given both observations s1 and s2 rather than using only the local observation s1

(and similary for Y).

Furthermore, we assume again that the local likelihood functions g1(s1|X) and g2(s2|Y ) are
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separable and can be written as (cf. (5.3))

g1(s1|X) = π1(s1)
∏

x∈X
η1(x, s1), (5.23)

g2(s2|Y ) = π2(s2)
∏

y∈Y
η2(y, s2), (5.24)

where for i = 1, 2 (cf. (5.4) and (5.5))

πi(si) =
m∏
j=1

φi(s(j)
i ), (5.25)

ηi(z, si) =
∏

j∈Ti(z)

ϕi(s(j)
i , z)

φi(s(j)
i )

. (5.26)

Since by construction X contains all state vectors that influence s1, the image observation s1

is conditionally independent of Y given X. By a similar argument s2 is conditionally independent

of X given Y. Therefore, the conditional PDFs of si given X and Y are

g(s1|X,Y ) = g1(s1|X), (5.27)

g(s2|X,Y ) = g2(s2|Y ). (5.28)

Because of (5.18) s1 is conditionally independent of s2 given X and Y. Thus, the global likelihood

function g(s1, s2|X,Y ) factorizes as

g(s1, s2|X,Y ) = g(s1|X,Y )g(s2|X,Y ) = g1(s1|X)g2(s2|Y ). (5.29)

Using Bayes’ rule we obtain the global posterior f(X,Y |s1, s2) as

f(X,Y |s1, s2) = Cg1(s1|X)g2(s2|Y )f(X,Y ), (5.30)

where C = C(s1, s2) is a normalization constant given by

C =
(∫

R2

∫
R1

g1(s1|X)g2(s2|Y )f(X,Y )δXδY
)−1

(5.31)

and f(X,Y ) is the joint prior PDF of X and Y (which has yet to be determined from the given

global prior PDF fZ(Z)).

5.2.2 Estimator

Our task is to obtain an estimate X̂ of the realization X = X based on the image observations

s1 = s1 and s2 = s2. (Due to the symmetry of the problem it is straightforward to modify the

derived results for estimation of Y = Y ). Similarly to the case with only one image in Section

5.1.2 we use an estimator based on the posterior PHD (cf. (5.6))

D(x|s1, s2) ,
∫
R1

δX(x)f(X|s1, s2)δX, (5.32)
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where the marginal posterior f(X|s1, s2) can be calculated from the global posterior given in

(5.30) by integrating out Y , i.e.,

f(X|s1, s2) =
∫
R2

f(X,Y |s1, s2)δY = C

∫
R2

g1(s1|X)g2(s2|Y )f(X,Y )δY . (5.33)

In analogy to Algorithm 1, an estimation procedure based on the posterior PHD is as follows.

Algorithm 2 PHD Estimator for Two Images
1: Calculate the expected number of objects given the image observations

E[|X||s1, s2] =
∫
R1
D(x|s1, s2)dλN (x) (5.34)

and round it to the nearest integer to obtain an estimate for the number of objects

K̂ = round
(
E[|X||s1, s2]

)
. (5.35)

2: Determine the position of the K̂ highest local maxima x̂1, . . . , x̂K̂ of the posterior PHD
D(x|s1, s2). The estimate X̂ is then given by

X̂ = {x̂1, . . . , x̂K̂}. (5.36)

Since g1(s1|X) and g2(s2|Y ) are given by (5.23) and (5.24) it remains to determine the joint

PDF f(X,Y ) from the global prior fZ(Z) and calculate the integral in (5.33). In general, (5.33)

does not admit closed form solutions. However, as we will see, if the global prior fZ(Z) is

Poisson distributed then the marginal posterior f(X|s1, s2) is Poisson distributed as well and

the posterior PHD D(x|s1, s2) can be determined up to a constant factor.

We start by showing the following important result (a proof is provided in Appendix A.8).

Lemma 5.3: Let f(Z) be a PDF on Z(R) (cf. (3.10)) with some closed R ⊆ RN and let R1 ⊆ R

and R2 ⊆ R. Then ∫
R1∪R2

f(Z)δZ =
∫
R2\R1

∫
R1

f(X ∪ Y )δXδY .

Before proceeding, we define the Dirac measure on set spaces.

Definition 5.4: Let X be a set space as in (3.1) and let ΣX be a σ-algebra on X . The Dirac

measure on ΣX for an arbitrary X0 ∈ X is defined by

δX0(A) , 1A(X0) =


1 if X0 ∈ A,

0 if X0 6∈ A,
(5.37)

for all A ∈ ΣX .
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It can be easily shown that for a measurable real-valued function f(X) the following holds [51]∫
X
f(X)dδX0(X) = f(X0). (5.38)

We will follow the common abuse of notation and write this integral as∫
X
f(X)δX0(X)δX ,

∫
X
f(X)dδX0(X) = f(X0), (5.39)

and refer to δX0(X) as the Dirac delta function centered at X0. The equation above is also known

as the sifting property of the Dirac delta function. For a proof of the following proposition see

Appendix A.9.

Proposition 5.5: Let fZ(Z) be the PDF of the global RFS Z. Then the joint PDF of the local

RFSs X = Z ∩R1 and Y = Z ∩R2 is given by

f(X,Y ) = fZ(X ∪ Y )δX12(Y12),

where δX12(Y12) is the Dirac delta function as in (5.39), X12 , X ∩R12 and Y12 , Y ∩R12.

Finally, utilizing Lemma 5.3 and Proposition 5.5, the following can be shown (a proof can be

found in Appendix A.10).

Proposition 5.6: Let the RFS Z be a Poisson RFS (cf. Section 4.5.2) with CD p|Z|(k) = e−µµk

k!

, µ > 0 and elementary vector PDF ψ(z), i.e., the EVDs of Z are given by

f̃
(k)
Z (z1, . . . , zk) = e−µµk

k∏
i=1

ψ(zi), k ∈ N0. (5.40)

Then the marginal posterior f(X|s1, s2) is Poisson distributed as well, i.e.,

f̃ (k)(x1, . . . , xk|s1, s2) = e−ννk
k∏
i=1

f(xi|s1, s2), k ∈ N0, (5.41)

with mean

ν , µε1(s1, s2), (5.42)

ε1(s1, s2) ,
∫
R1

ψ(x)η1(x, s1)γ2(x, s2)dλN (x), (5.43)

γ2(x, s2) ,


η2(x, s2) if x ∈ R12

1 otherwise.
(5.44)

and elementary vector PDF

f(x|s1, s2) = ψ(x)η1(x, s1)γ2(x, s2)
ε1(s1, s2) . (5.45)
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Corollary 5.7: Under the premise of Proposition 5.6, the expected number of objects E[|X||s1, s2]

and the posterior PHD D(x|s1, s2) are given by

E[|X||s1, s2] = µε1(s1, s2), (5.46)

D(x|s1, s2) = µψ(x)η1(x, s1)γ2(x, s2). (5.47)

Proof: This follows immediately from (4.83) by inserting ν and f(x|s1, s2) from Proposition

5.6. �

Note that for non-overlapping images, i.e., R12 = ∅, we have γ2(x, s2) ≡ 1 and ε1(s1, s2) =∫
R1
ψ(x)η1(x, s1)dλN (x) = α(s1) from (5.14). In this case, the image observation s2 does not

contain any information about the objects in X and the expected number of objects E[|X||s1, s2]

and the posterior PHD D(x|s1, s2) given above reduce to (5.16) and (5.17) for the case of a

single image.

5.3 Numerical Study

In this section, we implement the PHD estimators derived in Sections 5.1 and 5.2 in a 2-

dimensional scenario and demonstrate the performance gain that can be achieved by using both

image observations instead of just one.

5.3.1 Single Image Scenario

We will investigate grayscale images consisting of 45×45 pixels (i.e., m1 = m2 = 45). Each pixel

covers a square area in R2 with side lengths ∆. The whole image therefore occupies the rectangle

[0,m1∆]×[0,m2∆], as illustrated in Figure 5.2. An object (if present) is completely characterized

by its state z = (z1, z2) ∈ R2, which is simply the objects position in the 2-dimensional space. If

an object with state z is present it influences a 4× 4 array of pixels around it, where the center

of the array is chosen as the nearest point in the pixel grid (a∆, b∆). As indicated in Figure 5.2,

there might be fewer than 16 pixels affected by an object (in the extreme case there might be

just one). Given an object with state z we model the random pixel values si by

si =


ni + h(i, z) if i ∈ T (z),

ni if i 6∈ T (z),
i = 1, . . . ,m. (5.48)

Here, ni is zero mean white Gaussian noise with variance σ2 and h(i, z) is the point spread

function given by [22]

h(i, z) = ∆2I

2πσ2
h

exp
(
−((a− 0.5)∆− z1)2 + ((b− 0.5)∆− z2)2

2σ2
h

)
, (5.49)
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z2

z1

1
2
3...

R

Fig. 5.2: The relation between a grayscale image (solid grid) and the 2-dimensional Euclidean space. Shaded
arrays represent the 4× 4 arrays of pixels that are illuminated by objects located at the crosses. The dark shaded
pixels are the ones that are part of the image. As can be seen, an object may influence less than 16 pixels. We
require that the objects are located in the subspace R ⊆ R2, indicated by the dashed rectangle, so that at least
one pixel is illuminated by every object.

where I is the source intensity, σ2
h is the blurring factor, and i = (a−1)m2+b with a ∈ {1, . . . ,m1}

and b ∈ {1, . . . ,m2}. Note that the point spread function is essentially a Gaussian distribution

with mean z and variance σ2
h that is additionally scaled by the factor ∆2I.

The conditional PDF of pixel si given the state z can therefore be written as (cf. (5.1))

p(si|z) =


ϕ(si, z) if i ∈ T (z),

φ(si) if i 6∈ T (z),
(5.50)

where

ϕ(si, z) = 1√
2πσ2

exp
(
−(si − h(i, z))2

2σ2

)
, (5.51)

φ(si) = 1√
2πσ2

exp
(
− s2

i

2σ2

)
. (5.52)

That is, an object with state z introduces a mean h(i, z) to the noisy pixel values in its vicinity

that declines exponentially with the distance from the pixel to the objects position. If multiple

objects are present, there may be several objects influencing the same pixel. For example, if

Z(i) = {z ∈ Z : i ∈ T (z)} ⊆ Z, then si = ni +
∑

z∈Z(i) h(i, z). We will however neglect this case
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and approximate the likelihood function to be separable as (cf. (5.3)) [22]

g(s|Z) = π(s)
∏
z∈Z

η(z, s), (5.53)

where

π(s) =
m∏
i=1

φ(si) =
m∏
i=1

1√
2πσ2

exp
(
− s2

i

2σ2

)
, (5.54)

η(z, s) =
∏

i∈T (z)

ϕ(si, z)
φ(si)

(5.55)

=
∏

i∈T (z)

1√
2πσ2 exp

(
− (si−h(i,z))2

2σ2

)
1√

2πσ2 exp
(
− s2

i

2σ2

) (5.56)

= exp

 ∑
i∈T (z)

2sih(i, z)− h2(i, z)
2σ2

 . (5.57)

Of course, with this approximation we will incur an additional error whenever two or more

objects are located close enough to each other to affect the same pixel. Under this premise, our

results from Section 5.1 hold approximately and the posterior PHD is given by (cf. (5.17))

D(z|s) = µψ(z)η(z, s). (5.58)

The RFS Z is taken as a Poisson RFS with mean µ and uniformly distributed elementary vector

PDF ψ(z) ≡ 1
λ2(R) . With this assumption, the peak localization of the posterior PHD D(z|s) is

equivalent to finding the local maxima of

F (z|s) , log(η(z, s)) =
∑

i∈T (z)

2sih(i, z)− h2(i, z)
2σ2 , (5.59)

where (5.57) has been used. Note that E[|Z||s] (cf. (5.16)) cannot be determined explicitly since

there is no closed form solution to α(s) =
∫
R ψ(z)η(z, s)dλ2(z). A good approximation of α(s)

is numerically extremely challenging due to a high dynamic range of η(z, s). The problem can

be appreciated by looking at Figure 5.3 where three images and the corresponding log(η(z, s))

functions are shown for three different source intensities with the parameters ∆ = 1, σ2 = 1,

σ2
h = 1, and µ = 2. As can been seen, even for moderate intensities up to I = 100, the range

of log(η(z, s)) extends from around −500 to 500. Hence, η(z, s) has extremely narrow localized

high peaks (approaching dirac delta functions) impeding the application of efficient numerical

integration techniques.

Therefore, we propose a different estimator in Algorithm 3 where we select the highest peaks

of the posterior PHD D(z|s) that lie above a certain threshold as estimates. The parameter Ns

in Algorithm 3 should be chosen such that there is at least one z̄ ∈ Z̄ in the vicinity of each peak
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Fig. 5.3: Different image realzations and their corresponding cost functions F (z) = log(η(z, s)). The source
intensities I of the point spread function are from top to bottom I = 1, 30, 100. Actual object positions are
indicated by purple markers.

corresponding to an actual object to ensure that the subsequent gradient ascents reach these

maxima (cf. Figure 5.3). In general, the threshold value Ft for discarding noise peaks depends

on the noise variance σ2 and the source intensity of the objects I. Ideally, it should be set such

that all object maxima are kept and all noise maxima are discarded, which of course cannot be
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Algorithm 3 Estimator for One Image
1: Uniformly sample F (z|s) at the pixel grid positions z = (a∆, b∆) with a = 1, . . . ,m1,
b = 1, . . . ,m2 and collect the Ns highest points in Z̄ = {z̄1, . . . , z̄Ns}.

2: for all z̄i ∈ Z̄ do
3: Perform a gradient ascent algorithm with z̄i as initialization, a maximum of Ng iterations

and step size ∆g = 1/I2, resulting in a local maxima z̃i.
4: end for
5: Discard all local maxima z̃i below a threshold level, F (z̃i|s) < Ft.
6: Collect the Ñs remaining maxima in the set Z̃ = {z̃1, . . . , z̃Ñs}.
7: Ẑ = ∅, j = 1.
8: while Z̃ 6= ∅ do
9: Select an arbitrary element z̃ ∈ Z̃.

10: Find all z̃i ∈ Z̃ with ‖z̃i − z̃‖ < D and collect them in the set Sj .
11: Add ẑj = arg maxz̃i∈Sj F (z̃i|s) as an estimate Ẑ ← Ẑ ∪ {ẑj}.
12: Discard all points in Sj from Z̃.
13: j ← j + 1.
14: end while
15: Output the estimate Ẑ = {ẑ1, . . . , ẑN̂}.

achieved for all parameter pairs σ2 and I (cf. Figure 5.3 (top) where the actual objects position

are drowned in noise). Finally, the parameter D should be chosen such that all local maxima

estimates of the gradient ascents corresponding to the same peak are clustered together.

5.3.2 Two Images Scenario

In this section, we extend our scenario with a single image from the previous section to the case

where two partly overlapping images are observed. We use the same parameters as discussed

in Section 5.3.1 with the main difference that we now have two instead of one image. The first

image s1 occupies a region of the state space as indicated in Figure 5.2. The setup of the second

image s2 is identical except that its upper left corner is located at the position p ∈ R2. Given

an object with state z we model the random pixel values s(j)
i of image i = 1, 2 by (cf. (5.48))

s(j)
i =


n(j)
i + hi(j, z) if j ∈ Ti(z),

n(j)
i if j 6∈ Ti(z),

j = 1, . . . ,m. (5.60)

Here, n(j)
i is zero mean white Gaussian noise with variance σ2

i = 1 and hi(j, z) is the point

spread function for image i as in (5.49) The conditional PDF of pixel s(j)
i given the state z can

therefore be written as (cf. (5.50))

p(s(j)
i |z) =


ϕi(s(j)

i , z) if j ∈ Ti(z),

φi(s(j)
i ) if j 6∈ Ti(z),

(5.61)
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where (cf. (5.51) and (5.52))

ϕi(s(j)
i , z) = 1√

2πσ2
i

exp
(
−(s(j)

i − hi(j, z))2

2σ2
i

)
, (5.62)

φi(s(j)
i ) = 1√

2πσ2
i

exp
(
−(s(j)

i )2

2σ2
i

)
. (5.63)

Again, we neglect the cases where two or more objects illuminate the same pixel in the same

image and approximate the local likelihood functions to be separable (cf. (5.23) and (5.24))

g1(s1|X) = π1(s1)
∏

x∈X
η1(x, s1), (5.64)

g2(s2|Y ) = π2(s2)
∏

y∈Y
η2(y, s2), (5.65)

where for i = 1, 2 (cf. (5.25) and (5.26))

πi(si) =
m∏
j=1

φi(s(j)
i ) =

m∏
j=1

1√
2πσ2

i

exp
(
− [s(j)

i ]2
2σ2

i

)
, (5.66)

ηi(z, si) =
∏

j∈Ti(z)

ϕi(s(j)
i , z)

φi(s(j)
i )

(5.67)

=
∏

j∈Ti(z)

1√
2πσ2

i

exp
(
− (s(j)

i −hi(j,z))2

2σ2
i

)
1√

2πσ2
i

exp
(
− [s(j)

i ]2
2σ2
i

) (5.68)

= exp

 ∑
j∈Ti(z)

2s(j)
i hi(j, z)− h2

i (j, z)
2σ2

i

 . (5.69)

Under this premise, our results from Section 5.2 hold approximately and the posterior PHD is

given by (cf. (5.47))

D(x|s1, s2) = µψ(x)η1(x, s1)γ2(x, s2). (5.70)

The RFS Z is chosen as a Poisson RFS with mean µ = 2 and uniformly distributed elementary

vector PDF ψ(z) ≡ 1
λ2(R) . With this assumption, the peak localization of the posterior PHD

D(x|s1, s2) is equivalent to finding the local maxima of

F (x|s1, s2) , log(η1(x, s1)) + log(γ2(x, s2)), (5.71)

We use an estimation algorithm analogous to Algorithm 3, with the difference being that we

now operate on F (x|s1, s2) instead of F (z|s).
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Algorithm 4 Estimator for Two Images
1: Uniformly sample F (x|s1, s2) at the pixel grid positions x = (a∆, b∆) with a = 1, . . . ,m1,
b = 1, . . . ,m2 and collect the Ns highest points in X̄ = {x̄1, . . . , x̄Ns}.

2: for all x̄i ∈ X̄ do
3: Perform a gradient ascent algorithm with x̄i as initialization, a maximum of Ng iterations

and step size ∆g = 1/I2, resulting in a local maxima x̃i.
4: end for
5: Discard all local maxima x̃i below a threshold level, F (x̃i|s1, s2) < Ft.
6: Collect the Ñs remaining maxima in the set X̃ = {x̃1, . . . , x̃Ñs}.
7: X̂ = ∅, j = 1.
8: while X̃ 6= ∅ do
9: Select an arbitrary element x̃ ∈ X̃.

10: Find all x̃i ∈ X̃ with ‖x̃i − x̃‖ < D and collect them in the set Sj .
11: Add x̂j = arg maxx̃i∈Sj F (x̃i|s1, s2) as an estimate X̂ ← X̂ ∪ {x̂j}.
12: Discard all points in Sj from X̃.
13: j ← j + 1.
14: end while
15: Output the estimate X̂ = {x̂1, . . . , x̂N̂}.

The top of Figure 5.4 shows typical realizations of s1 and s2 for I = 30, ∆ = 1, σ2
i = 1,

σ2
h = 1, µ = 2, and p = (14.05, 14.05), where the red corners indicate the shared region of both

images. The corresponding cost functions F (x|s1) (utilizing just the single image s1 as in (5.59))

and F (x|s1, s2) (utilizing both images) are shown in the middle and bottom part, respectively.

As can be seen by comparing the two cost functions, the contribution of image s2 (via the right

term in (5.71)) is an enhancement of the target peaks and a reduction of the background noise

in the overlap region, thereby facilitating object detection. Furthermore, the maxima of the

peaks in the overlap region are better aligned with the actual object positions (indicated by

purple markers), thereby reducing the localization error (see next section). Note however that

the two cost functions are identical outside the overlap region, which means that the detection

and localization of objects outside this region does not improve compared with the single image

case. Under the assumption of uniformly distributed objects we therefore expect a gain in the

estimator performance, which should increase with the size of the overlap region.

5.3.3 Performance Evaluation

To assess the performance of our estimators we use the optimal subpattern assignment (OSPA)

metric defined as follows [52].

Definition 5.8: Let X = {x1, . . . , xm} ⊆ RN and Y = {y1, . . . , yn} ⊆ RN be two finite sets

with m ≤ n. Furthermore, let

d(c)(x, y) , min(c, ‖x− y‖), (5.72)
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Fig. 5.4: Typical image realizations of s1 (top left) and s2 (top right) for I = 30. The red corners indicate the
shared region of both images. The corresponding cost functions F (x|s1) (utilizing just the single image s1) and
F (x|s1, s2) (utilizing both images) are shown in the middle and bottom part, respectively. The purple markers
indicate actual object positions.
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for x, y ∈ RN with some c > 0. Here, ‖x‖ denotes the Euclidean norm on RN .

For p ≥ 1, the p-th order OSPA metric with cutoff c is defined by

d̄(c)
p (X,Y ) ,

(
1
n

(
min
σ

m∑
i=1

d(c)(xi, yσi)
p + cp(n−m)

)) 1
p

, (5.73)

where the minimization is performed over all n! permutations σ over 1, . . . ,n.

Note that for p = 1, the OSPA metric can be split into two additive terms

d̄
(c)
1 (X,Y ) = d

(c)
elem(X,Y ) + d

(c)
card(X,Y ), (5.74)

with

d
(c)
elem(X,Y ) , 1

n
min
σ

m∑
i=1

d(c)(xi, yσi), (5.75)

d
(c)
card(X,Y ) , 1

n
c(n−m). (5.76)

Here, d
(c)
elem(X,Y ) can be interpreted as a “per element distance” between X and Y . For each

one of the
(n
m

)
m-ary subsets of Y , the m! permutations are searched to yield a minimum of the

sum in (5.75). The subset of Y yielding the lowest of these sums are the elements of Y nearest to

the elements of X. The “cardinality distance” d
(c)
card(X,Y ) takes account of the different number

of elements in X and Y .

The following parameters were used for our simulations:

• Data model parameters: ∆ = 1, σ2
i = 1, σ2

h = 1, and µ = 2.

• Algorithm parameters: Ns = 20, Ng = 100, D = 1.5
√

2,

Ft =


a1 exp

[
− (I−a2)2

a2
3

]
if I < 30,

20 if I ≥ 30,
(5.77)

with a1 = 42.96, a2 = 57.33, and a3 = 31.21. Here, the parameter Ft was determined

empirically by noting suitable values for different realizations and performing curve fitting

on the observations.

For our simulations we used an OSPA metric with p = 1 and cutoff c = 30. We calculated

the Monte Carlo averaged OSPA distance d̄
(30)
1 (X, X̂) between the actual objects X and our

estimates X̂ with 1000 trials for 50 values of the source intensity I from 1 to 100 and various

overlap regions. The results are shown in Figure 5.5. We refer to d
(30)
elem(X, X̂) and d

(30)
card(X, X̂)

as the localization error and the cardinality error, respectively. Their Monte Carlo averaged

values are shown in Figure 5.5 as well.
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Fig. 5.5: Monte Carlo averaged OSPA metric (top), cardinality error (middle), and localization error (bottom)
for p = 1 and cutoff c = 30.
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As can be seen from the OSPA plot (top), using both images with Algorithm 4 generally

outperforms Algorithm 3, which uses a single image (corresponding to 0% overlap). Also (as

expected), bigger overlap regions achieve higher gains (with 100% overlap corresponding to two

independent observations of the same scene). The biggest gains are achieved from around I = 10

to I = 20, that is for low “SNR” values, and decreases for higher values of I.

Comparing the cardinality error (middle) and the localization error (bottom), we see that the

cardinality error is the main contribution to the overall OSPA distance. Interestingly, for I values

from around 5 to 10, the algorithms incorporating both images are yielding a higher cardinality

error than the single image estimator, which is probably caused by the hard detection threshold

used. The error floor of around 2.5 for the cardinality error is due to the approximations of the

local likelihood functions (5.64) and (5.65) and because of the clustering of objects which are

near enough to each other such that their pixel sets in the image overlaps.

For intensity values bigger than 20, the localization error is mostly negligible compared to

the cardinality error. The weaker localization performance of the algorithms utilizing two im-

ages from I = 1 to about I = 5, is caused by the inferior detection capability of the single

image algorithm as shown in the cardinality error plot. From around I = 5 onward the object

localization improves compared to the single image approach.

We want to point out, that there are certainly better implementations of our algorithms,

since for an optimum performance the step sizes and discarding thresholds should be carefully

matched to the source intensity values and noise variances.
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Chapter 6

Conclusion

In this work, we provided a principled introduction to the theory of random finite sets with an

emphasis on accessibility for readers completely new to the field. We then applied this theory to

the problem of jointly estimating the number and states of an unknown and random number of

objects based on image observations. We derived estimators based on the posterior probability

hypothesis density for two different scenarios with a single image and with two partly overlapping

images. Our simulations demonstrated a performance gain achieved by utilizing information

from both images compared to the case where the estimation is based on only a single image.

The proposed estimation algorithms are rather simple and partly based on heuristics. Fur-

ther improvements could be achieved by adopting more sophisticated gradient ascent algorithms,

e.g., line search approaches to find better step sizes and speed up convergence. Moreover, find-

ing methods to robustly and accurately approximate the posterior expected number of objects

(which we circumvented by using a simple discarding scheme involving empirically determined

thresholds) could yield another performance gain, especially with respect to cardinality errors

in the low-SNR regime.

In our simulations, we investigated a two-dimensional scenario where most parameters were

fixed. Further research is required to analyze the effects of different combinations of, e.g., image

resolutions and sizes, prior distributions, noise variances, and object sizes. The study of scenarios

involving more complex state spaces presents another venue for future research. Examples

include the use of random source intensities for objects or augmenting the object states with a

discrete attribute to distinguish between different object types with different appearances and

orientations. Finally, it would be desirable to generalize our results to scenarios with more than

two overlapping images. Depending on the image topologies considered, this could possibly

lead to a form of information exchange between adjacent images that is similar to conventional

message passing algorithms for estimating random vectors.
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Appendix A

Mathematical Proofs

A.1 Proof of Lemma 3.3

The proof presented here is outlined in [46, p. 48]. First we prove that X≥k ∈ B(X ) by showing

that X≥k is the union of specific base members of the hit-or-miss topology T . Since T consists

of all unions of base members (cf. Definitions 3.1 and 2.4), it then immediately follows that

X≥k ∈ T . Furthermore, because B(X ) = σ(T ) (see (3.4)), according to Definition 2.2 we have

T ⊆ B(X ) and therefore X≥k ∈ B(X ).

Consider those base members A ∈ D of the hit-or-miss topology T (cf. Definition 3.1) that

have the following form:

• Let n = k, thus we have exactly k open sets O1, . . . ,Ok.

• Furthermore, let these open sets be disjoint: Oi ∩Oj = ∅ if i 6= j.

• Let K = ∅, which gives X ∅ = {X ∈ X : X ∩ ∅ = ∅} = X .

According to (3.3), every base member A fulling these requirements can be written as

A = X ∩ XO1 ∩ · · · ∩ XOk = XO1 ∩ · · · ∩ XOk . (A.1)

Therefore, the collection of all these specific base members is

D(k) , {XO1 ∩ · · · ∩ XOk : Oi ∈ O and Oi ∩Oj = ∅ if i 6= j} . (A.2)

Denote the union of all these base members by

A(k) ,
⋃

A∈D(k)

A (A.3)

Of course, A(k) ∈ T since it is the union of base members of T .

We will show that A(k) = X≥k by first showing A(k) ⊆ X≥k and then X≥k ⊆ A(k). Suppose

X ∈ A(k). By (A.3) and (A.2), there exist at least k disjoint O1, . . . ,Ok such that X ∩ Oi 6= ∅,
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for i = 1, . . . , k. Since all Oi are disjoint, |X| ≥ k, or equivalently X ∈ X≥k. Hence, we have

shown that X ∈ A(k) implies X ∈ X≥k. We thus conclude that A(k) ⊆ X≥k.

Conversely, suppose X ∈ X≥k. Then there are at least k different xi ∈ RN such that xi ∈ X

for i = 1, . . . , k. Since the underlying space is RN , there are k disjoint open sets O1, . . . ,Ok
with xi ∈ Oi. Thus, X ∩ Oi 6= ∅, which implies X ∈ XO1 ∩ · · · ∩ XOk . By (A.3) and (A.2), it

follows X ∈ A(k). Hence, we have shown that X ∈ X≥k implies X ∈ A(k). We thus conclude

that X≥k ⊆ A(k).

We will next show that X≤k ∈ B(X ). Observe that X≤k = (X≥k+1)c. Since X≥k+1 ∈ B(X ) as

shown above, by Definition 2.1, (X≥k+1)c ∈ B(X ), and therefore X≤k ∈ B(X ).

Finally, note that Xk = X≤k ∩ X≥k. Because X≤k ∈ B(X ) and X≥k ∈ B(X ), and because

B(X ) is closed under countable intersections, we conclude Xk ∈ B(X ).

A.2 Proof of Lemma 3.5

Consider those base members A ∈ D of the hit-or-miss topology T (cf. Definition 3.1) that have

the following form:

• Let n = 1, thus we have only one open set O1 = O.

• Let K = ∅, which gives X ∅ = {X ∈ X : X ∩ ∅ = ∅} = X .

According to (3.3), every base member A ∈ D fulfilling these requirements can be written as

A = X ∩ XO = XO, (A.4)

for some open set O ∈ O. By Definition 2.4, A ∈ T . Furthermore, by Definitions 2.5 and 2.2,

A ∈ B(X ). We take the complement

(A)c = (XO)c = XO. (A.5)

Because of Definition 2.1, (A)c ∈ B(X ) and thus

XO ∈ B(X ). (A.6)

Given any closed set A ⊆ RN , we put O = Ac, which yields

XO = XAc = {X ∈ X : X ∩ Ac = ∅} = {X ∈ X : X ⊆ A} = A(A). (A.7)

Hence, it follows from (A.6) that A(A) ∈ B(X ) for all closed subsets A of RN .
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A.3 Proof of Lemma 3.7

According to [42, Proposition 3.2.1], χk is measurable iff

χ−1
k (A) ∈ B(Xk), (A.8)

for every A ∈ Tk, where Tk is the hit-or-miss topology T on X from Definition 3.1 restricted to

Xk ⊆ X . That is, Tk is generated by the base [53, Theorem 6.3]

Dk =
{

(Xk)K ∩ (Xk)O1 ∩ · · · ∩ (Xk)On : K ∈ K,Oi ∈ O,n ≥ 1
}

. (A.9)

We will show that for every A ∈ Tk,

χ−1
k (A) ∈ TXk , (A.10)

where TXk is the standard topology TRkN on RkN restricted to Xk, given by [53, Definition 6.1]

TXk = {O ∩ Xk : O ∈ TRkN}. (A.11)

Since B(Xk) = σ(TXk) due to [42, Theorem 1.8.1], TXk ⊆ B(Xk). Consequently, (A.10) implies

(A.8).

Because Tk is generated by Dk, every element A ∈ Tk can be written as the union of base

members

A =
⋃
i∈I
Ei, (A.12)

where Ei ∈ Dk, with some index set I. Using (2.17) together with property (b) from Definition

2.3, it follows that χ−1
k (A) ∈ TXk if

χ−1
k (E) ∈ TXk , (A.13)

for every E ∈ Dk. Since every base member E ∈ Dk itself can be written as an intersection (cf.

(A.9))

E = (Xk)K ∩ (Xk)O1 ∩ · · · ∩ (Xk)On , (A.14)

using (2.18) together with property (c) from Definition 2.3, it follows that χ−1
k (E) ∈ TXk if

χ−1
k

(
(Xk)K

)
∈ TXk , (A.15)

for any compact set K ∈ K, and

χ−1
k

(
(Xk)O

)
∈ TXk , (A.16)

for any open set O ∈ O.
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To show the former, note that

χ−1
k

(
(Xk)K

)
= χ−1

k

(
{X ∈ Xk : X ∩K = ∅}

)
(A.17)

= χ−1
k

({
{x1, . . . , xk} ∈ Xk : x1 6∈ K ∧ · · · ∧ xk 6∈ K

})
(A.18)

=
{
(x1, . . . , xk) ∈ Xk : x1 6∈ K ∧ · · · ∧ xk 6∈ K

}
(A.19)

= (Kc × · · · ×Kc︸ ︷︷ ︸
k times

) ∩ Xk. (A.20)

SinceKc is open, Kc ∈ TRN . According to [53, p. 53], TRkN is the product topology TRN×· · ·×TRN .

Therefore, (Kc × · · · ×Kc) ∈ TRkN . Because of (A.11)

(Kc × · · · ×Kc︸ ︷︷ ︸
k times

) ∩ Xk ∈ TXk , (A.21)

and therefore χ−1
k

(
(Xk)K

)
∈ TXk .

For the latter, we have

χ−1
k

(
(Xk)O

)
= χ−1

k

(
{X ∈ Xk : X ∩O 6= ∅}

)
(A.22)

= χ−1
k

({
{x1, . . . , xk} ∈ Xk : x1 ∈ O ∨ · · · ∨ xk ∈ O

})
(A.23)

=
{
(x1, . . . , xk) ∈ Xk : x1 ∈ O ∨ · · · ∨ xk ∈ O

}
(A.24)

=
(
(O × R(k−1)N ) ∪ (RN ×O × R(k−2)N ) ∪ · · ·

· · · ∪ (R(k−1)N ×O)
)
∩ Xk. (A.25)

Since O ∈ TRN and RN ∈ TRN , all the cartesian products above are contained in the product

topology TRkN . Hence, their union is an element of TRkN . Because of (A.11) the intersection with

Xk is included in TXk . Thus, χ−1
k

(
(Xk)O

)
∈ TXk . This concludes the proof that χk is measurable.

A.4 Proof of Lemma 3.9

We need to check the properties in Definition 2.7. Obviously, µX is nonnegative, since all µXk

in (3.43) are nonnegative. Moreover, µX0(∅) = 1∅(∅) = 0 since ∅ 6∈ ∅. Furthermore, for k ∈ N,

µXk(∅) = λkN (χ−1
k (∅)) = λkN (∅) = 0. Thus, µX (∅) = 0. Finally, suppose {A(i)} ⊆ B(X ), i ∈ N,

is a countable collection of pairwise disjoint events. Then, using (3.43),

µX

( ∞⋃
i=1
A(i)

)
=
∞∑
k=0

µXk

(( ∞⋃
i=1
A(i)

)
∩ Xk

)
=
∞∑
k=0

µXk

( ∞⋃
i=1

(A(i) ∩ Xk)
)

(A.26)

=
∞∑
k=0

µXk

( ∞⋃
i=1
A(i)
k

)
, (A.27)
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where A(i)
k = A(i)∩Xk. Because the µXk are measures and A(i)

k ∩A
(j)
k = ∅ if i 6= j, using property

(b) in Definition 2.7, we get for the last expression:

∞∑
k=0

µXk

( ∞⋃
i=1
A(i)
k

)
=
∞∑
k=0

∞∑
i=1

µXk(A
(i)
k ) =

∞∑
i=1

µX (A(i)), (A.28)

where the last equality follows since µXk(A
(i)
k ) ≥ 0 and therefore the summation order can be

changed.

Hence, we have shown that

µX

( ∞⋃
i=1
A(i)

)
=
∞∑
i=1

µX (A(i)). (A.29)

This concludes the proof.

A.5 Proof of Theorem 3.15

Suppose X and Y are statistically independent, i.e. (see Definition 3.12),

PX,Y(A× E) = PX(A)PY(E), (A.30)

for all A ∈ B(X ) and E ∈ B(Y). It follows that (cf. (3.59))

PX,Y(A× E) =
∫
A
fX(X)dµX (X)

∫
E
fY(Y )dµY(Y ) (A.31)

=
∫
A

∫
E
fX(X)fY(Y )dµX (X)dµY(Y ), (A.32)

where Fubini’s theorem (Theorem 2.19) has been used. Because the product measure is unique,

by comparing with (3.135), we see that

fX,Y(X,Y ) = fX(X)fY(Y ) a.e. (A.33)

Conversely, assume that

fX,Y(X,Y ) = fX(X)fY(Y ) a.e. (A.34)

Inserting in (3.135), we obtain

PX,Y(A× E) =
∫
A

∫
E
fX(X)fY(Y )dµX (X)dµY(Y ) (A.35)

=
∫
A
fX(X)dµX (X)

∫
E
fY(Y )dµY(Y ) (A.36)

= PX(A)PY(E). (A.37)

This concludes the proof.
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A.6 Proof of Theorem 4.6

To show that νX is a measure on B(RN ) we need to check properties (a) and (b) in Definition

2.7.

(a) Since |X ∩ ∅| = |∅| = 0, we obtain upon inserting S = ∅ in (4.63)

νX(∅) =
∫
RN
|X ∩ ∅|fX(X)δX =

∫
RN

0fX(X)δX = 0. (A.38)

(b) Let Si ∈ B(RN ), i ∈ N, be a sequence of pairwise disjoint sets. Then

νX

( ∞⋃
i=1

Si

)
=
∫
RN

∣∣∣∣∣X ∩
∞⋃
i=1

Si

∣∣∣∣∣ fX(X)δX =
∫
RN

∣∣∣∣∣
∞⋃
i=1

(X ∩ Si)
∣∣∣∣∣ fX(X)δX. (A.39)

Since Si ∩ Sj = ∅ if i 6= j, it follows that (X ∩ Si) ∩ (X ∩ Sj) = ∅ if i 6= j. That is, the

sequence of finite sets X ∩ Si, i ∈ N, is pairwise disjoint. Because for disjoint finite sets A

and B, we have |A∪B| = |A|+ |B|, it follows that |
⋃∞
i=1(X ∩ Si)| =

∑∞
i=1 |X ∩ Si|. Inserting

this in (A.39) we obtain

νX

( ∞⋃
i=1

Si

)
=
∫
RN

∞∑
i=1
|X ∩ Si| fX(X)δX =

∞∑
i=1

∫
RN
|X ∩ Si| fX(X)δX =

∞∑
i=1

νX(Si), (A.40)

where the linearity of the set integral (4.5) has been used. This concludes the proof that νX

is a measure on B(RN ).

To prove νX � λN we need to show that λN (S) = 0 implies νX(S) = 0. Suppose λN (S) = 0

and note that

|X ∩ S| =


0 if X = ∅,∑

x∈X 1S(x) if X 6= ∅,
(A.41)

where 1S is the indicator function of S. The EVFs corresponding to |X ∩ S| are therefore

|χk(x1, . . . , xk) ∩ S| =
k∑
i=1

1S(xi), k ∈ N0 (A.42)

where by convention
∑0
i=1 1S(xi) = 0. Using (4.3) we expand the set integral in (4.63) and

insert the EVFs for |X ∩ S| to obtain

νX(S) =
∞∑
k=0

1
k!

∫
RkN

(
k∑
i=1

1S(xi)
)
f̃ (k)(x1, . . . , xk)dλkN (x1, . . . , xk) (A.43)

=
∞∑
k=1

1
k!

k∑
i=1

∫
RkN

1S(xi)f̃ (k)
X (x1, . . . , xk)dλkN (x1, . . . , xk).︸ ︷︷ ︸

=I

(A.44)
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Using Fubini’s theorem (Theorem 2.19), the integral I can be written as

I =
∫
RN
· · ·
∫
RN

1S(xi)f̃ (k)
X (x1, . . . , xk)dλN (x1) . . . λN (xk) (A.45)

=
∫
RN
· · ·

∫
S︸︷︷︸

i-th position

· · ·
∫
RN

f̃
(k)
X (x1, . . . , xk)dλN (x1) . . . λN (xk) (A.46)

Since we assumed λN (S) = 0, we have I = 0 and therefore νX(S) = 0. This concludes the proof

of νX � λN .

A.7 Proof of Proposition 5.1

Inserting the likelihood function (5.3) in (5.7), we obtain the posterior as

f(Z|s) = C(s)
(∏

z∈Z
η(z, s)

)
fZ(Z), (A.47)

where C(s) is a normalization constant given by

C(s) =
[∫

R

(∏
z∈Z

η(z, s)
)
fZ(Z)δZ

]−1

. (A.48)

Using (5.11), the posterior EVDs are therefore

f̃ (k)(z1, . . . , zk|s) = C(s)
(

k∏
i=1

η(zi, s)
)
e−µµk

k∏
i=1

ψ(zi) (A.49)

= C(s)e−µµk
k∏
i=1

η(zi, s)ψ(zi). (A.50)

Because the EVDs normalize to k!p|Z|(k|s) (cf. (3.69)), we have

p|Z|(k|s) = 1
k!

∫
Rk
f̃ (k)(z1, . . . , zk|s)dλkN (z1, . . . , zk) (A.51)

= C(s)e
−µµk

k!

∫
Rk

k∏
i=1

η(zi, s)ψ(zi)dλkN (z1, . . . , zk) (A.52)

= C(s)p|Z|(k)
k∏
i=1

∫
R
η(zi, s)ψ(zi)dλN (zi) (A.53)

= C(s)p|Z|(k)α(s)k. (A.54)

Using
∑∞
k=0 p|Z|(k|s) = 1, this allows us to calculate the normalization constant C(s) as

[C(s)]−1 =
∞∑
k=0

p|Z|(k)α(s)k (A.55)

= e−µ
∞∑
k=0

[µα(s)]k
k!︸ ︷︷ ︸

=eµα(s)

(A.56)

= e−µ(1−α(s)). (A.57)
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Multiplying (A.50) with α(s)k
α(s)k and inserting C(s) finally yields

f̃ (k)(z1, . . . , zk|s) = α(s)k
α(s)k e

µe−µα(s)e−µµk
k∏
i=1

η(zi, s)ψ(zi) (A.58)

= e−µα(s)[µα(s)]k
k∏
i=1

η(zi, s)ψ(zi)
α(s) (A.59)

= e−ν(s)ν(s)k
k∏
i=1

f(zi|s). (A.60)

A.8 Proof of Lemma 5.3

Expanding the set integral as in (4.3), we have∫
R1∪R2

f(Z)δZ =
∞∑
k=0

1
k!

∫
(R1∪R2)k

f̃ (k)(z1, . . . , zk)dλkN (z1, . . . , zk) (A.61)

=
∞∑
k=0

1
k!

k∑
n=0

(
k

n

)∫
(R2\R1)k−n

∫
Rn1

f̃ (k)(z1, . . . , zk)dλnN (z1, . . . , zn)

dλ(k−n)N (zn+1, . . . , zk) (A.62)

Using the bijective mapping (k,n)→ (j = k − n,n) for n ≤ k, this becomes∫
R1∪R2

f(Z)δZ =
∞∑
j=0

∞∑
n=0

1
n!j!

∫
(R2\R1)j

∫
Rn1

f̃ (n+j)(z1, . . . , zn+j)dλnN (z1, . . . , zn)

dλjN (zn+1, . . . , zn+j) (A.63)

=
∞∑
n=0

1
n!

∫
Rn1

[ ∞∑
j=0

1
j!

∫
(R2\R1)j

f̃ (n+j)(z1, . . . , zn, zn+1, . . . , zn+j) (A.64)

dλjN (zn+1, . . . , zn+j)
]
dλnN (z1, . . . , zn) (A.65)

=
∞∑
n=0

1
n!

∫
Rn1

[∫
R2\R1

f({z1, . . . , zn} ∪ Y )δY
]

dλnN (z1, . . . , zn) (A.66)

=
∫
R2\R1

[ ∞∑
n=0

1
n!

∫
Rn1

f({z1, . . . , zn} ∪ Y )dλnN (z1, . . . , zn)
]
δY (A.67)

=
∫
R2\R1

∫
R1

f(X ∪ Y )δXδY . (A.68)

A.9 Proof of Proposition 5.5

Consider the event

X (A1)× Y(A2) = {(X,Y ) ∈ X (R1)× Y(R2) : X ⊆ A1 ∧ Y ⊆ A2}, (A.69)

with A1 ⊆ R1 and A2 ⊆ R2. This event is equivalent to the event

A′ = {Z ∈ Z(R) : Z ∩R1 ⊆ A1 ∧ Z ∩R2 ⊆ A2}. (A.70)
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Note that Z = {z1, . . . , zn} ∈ A′ iff

(zi ∈ A1 ∨ zi ∈ R2\1) ∧ (zi ∈ A2 ∨ zi ∈ R1\2), i = 1, . . . ,n. (A.71)

Expanding this expression yields the equivalent condition

(zi ∈ A1 ∧ zi ∈ A2) ∨ (zi ∈ R2\1 ∧ zi ∈ A2)

∨ (zi ∈ A1 ∧ zi ∈ R1\2) ∨ (zi ∈ R2\1 ∧ zi ∈ R1\2)︸ ︷︷ ︸
≡false

, (A.72)

which is equivalent to

Z ⊆ (A1 ∩ A2) ∪ (A2 ∩R2\1) ∪ (A1 ∩R1\2). (A.73)

Thus,

A′ = Z
(
(A1 ∩ A2) ∪ (A2 ∩R2\1) ∪ (A1 ∩R1\2)

)
. (A.74)

Continuing, we have

Pr(X ⊆ A1 ∧ Y ⊆ A2) =
∫
A2

∫
A1

f(X,Y )δXδY (A.75)

=
∫

(A1∩A2)∪(A2∩R2\1)∪(A1∩R1\2)
fZ(Z)δZ. (A.76)

Using Lemma 5.3 the last expression becomes

Pr(X ⊆ A1 ∧ Y ⊆ A2) =
∫

(A2∩R2\1)∪(A1∩R1\2)

∫
A1∩A2

fZ(X12 ∪W )δX12δW (A.77)

=
∫
A1∩R1\2

∫
A2∩R2\1

(∫
A1∩A2

fZ(X12 ∪X1 ∪ Y2)δX12

)
δY2δX1. (A.78)

Since

A1 = (A1 ∩R1\2) ∪ (A1 ∩R2), (A.79)

A2 = (A2 ∩R2\1) ∪ (A2 ∩R1), (A.80)

we can use Lemma 5.3 to write (A.75) as

Pr(X ⊆ A1 ∧ Y ⊆ A2) =
∫
A2∩R1

∫
A2∩R2\1

∫
A1

f(X,Y2 ∪ Y12)δXδY2δY12 (A.81)

=
∫
A2∩R1

∫
A2∩R2\1

∫
A1∩R2

∫
A1∩R1\2

f(X1 ∪X12,Y2 ∪ Y12)

δX1δX12δY2δY12 (A.82)

=
∫
A1∩R1\2

∫
A2∩R2\1

( ∫
A2∩R1

∫
A1∩R2

f(X1 ∪X12,Y2 ∪ Y12)

δX12δY12
)
δY2δX1. (A.83)
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Comparing with (A.78) we obtain

∫
A1∩A2

fZ(X12 ∪X1 ∪ Y2)δX12 =
∫
A2∩R1

∫
A1∩R2

f(X1 ∪X12,Y2 ∪ Y12)δX12δY12︸ ︷︷ ︸
=K

. (A.84)

We make the following ansatz for the joint pdf

f(X,Y ) = f∗(X,Y )δX12(Y12), (A.85)

where δX12(Y12) is the dirac delta function on the set space Z(R) as introduced in (5.39) with

X12 = X ∩ R12 and Y12 = Y ∩ R12. Since X = Z ∩ R1 and Y = Z ∩ R2, the elements of X

contained in the region R12 must be exactly the same as the elements of Y contained in R12.

The delta function in (A.85) makes sure that all pairs (X,Y ) that do not fulfill this requirement

are assigned zero probability. Inserting (A.85) in the right-hand side of (A.84), we obtain

K =
∫
A1∩R2

∫
A2∩R1

f∗(X1 ∪X12,Y2 ∪ Y12)δX12(Y12)δY12︸ ︷︷ ︸
=L

δX12 (A.86)

Using the sifting property of the Dirac delta (5.39), the inner integral evaluates to

L =


f∗(X1 ∪X12,Y2 ∪X12) if X12 ⊆ A2 ∩R1,

0 otherwise.
(A.87)

Hence the integration area of the outer integral reduces to Z(A1 ∩ A2), yielding

K =
∫
A1∩A2

f∗(X1 ∪X12,Y2 ∪X12)δX12. (A.88)

Consulting (A.84), we see that

f∗(X1 ∪X12,Y2 ∪X12) = fZ(X12 ∪X1 ∪ Y2), (A.89)

and consequently with X = X1 ∪X12 and Y = Y2 ∪ Y12 we finally obtain

f(X,Y ) = fZ(X ∪ Y )δX12(Y12). (A.90)
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A.10 Proof of Proposition 5.6

Using Lemma 5.3 and Proposition 5.5 we develop the posterior (5.33) as follows:

f(X|s1, s2) = C

∫
R2

g1(s1|X)g2(s2|Y )f(X,Y )δY (A.91)

= Cg1(s1|X)
∫
R2\1

∫
R12

g2(s2|Y2 ∪ Y12)f(X,Y2 ∪ Y12)δY12δY2 (A.92)

= Cg1(s1|X)
∫
R2\1

∫
R12

g2(s2|Y2 ∪ Y12)fZ(X ∪ Y2 ∪ Y12)δX12(Y12)δY12δY2 (A.93)

= Cg1(s1|X)
∫
R2\1

g2(s2|Y2 ∪X12)fZ(X ∪ Y2 ∪X12)δY2 (A.94)

= Cg1(s1|X)
∫
R2\1

g2(s2|Y2 ∪X12)fZ(X ∪ Y2)δY2, (A.95)

where X = X1 ∪ X12, X12 = X ∩ R12 and X1 = X ∩ R1\2 (and similarly for Y ). Inserting the

local likelihood function g2 from (5.24) we obtain

f(X|s1, s2) = Cg1(s1|X)
∫
R2\1

π2(s2)
∏

y∈Y2

η2(y, s2)
∏

x∈X12

η2(x, s2)fZ(X ∪ Y2)δY2 (A.96)

= Cg1(s1|X)π2(s2)
∏

x∈X12

η2(x, s2)
∫
R2\1

∏
y∈Y2

η2(y, s2)fZ(X ∪ Y2)δY2︸ ︷︷ ︸
=K

. (A.97)

Expanding the set integral as in (4.3) and inserting the prior (5.40), the integral term K becomes

K =
∞∑
k=0

1
k!

∫
Rk2\1

[
k∏
i=1

η2(yi, s2)
] [
e−µµk+|X|

k∏
i=1

ψ(yi)
∏

x∈X
ψ(x)

]
dλkN (y1, . . . , yk) (A.98)

= e−µµ|X|
∏

x∈X
ψ(x)

∞∑
k=0

µk

k!

∫
Rk2\1

k∏
i=1

η2(yi, s2)ψ(yi)dλkN (y1, . . . , yk) (A.99)

= e−µµ|X|
∏

x∈X
ψ(x)

∞∑
k=0

µk

k!

k∏
i=1

∫
R2\1

η2(y, s2)ψ(y)dλN (y)︸ ︷︷ ︸
=α2(s2)

(A.100)

= e−µµ|X|
∏

x∈X
ψ(x)

∞∑
k=0

[µα2(s2)]k
k!︸ ︷︷ ︸

=eµα2(s2)

(A.101)

= eµ(α2(s2)−1)µ|X|
∏

x∈X
ψ(x). (A.102)

Inserting this and the likelihood function g1(s1|X) from (5.23) in (A.97) we obtain

f(X|s1, s2) = Cπ1(s1)π2(s2)µ|X|eµ(α2(s2)−1)
[ ∏

x∈X
η1(x, s1)ψ(x)

] ∏
x∈X12

η2(x, s2)

 (A.103)

= Cπ1(s1)π2(s2)µ|X|eµ(α2(s2)−1) ∏
x∈X

ψ(x)η1(x, s1)γ2(x, s2), (A.104)
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with γ2(x, s2) as defined in (5.44).

Because the EVDs normalize to k!p|X|(k|s1, s2) (cf. (3.69)), we have

p|X|(k|s1, s2) = 1
k!

∫
Rk1

f̃ (k)(x1, . . . , xk|s1, s2)dλkN (x1, . . . , xk) (A.105)

= Cπ1(s1)π2(s2)eµα2(s2) e
−µµk

k!︸ ︷︷ ︸
=p|Z|(k)

∫
Rk1

k∏
i=1

ψ(xi)η1(xi, s1)γ2(xi, s2)

dλkN (x1, . . . , xk) (A.106)

= Cπ1(s1)π2(s2)eµα2(s2)p|Z|(k)
k∏
i=1

∫
R1

ψ(x)η1(x, s1)γ2(x, s2)dλN (x)︸ ︷︷ ︸
=ε1(s1,s2)

(A.107)

= Cπ1(s1)π2(s2)eµα2(s2)p|Z|(k)ε1(s1, s2)k (A.108)

Using
∑∞
k=0 p|X|(k|s1, s2) = 1, this allows us to calculate the normalization constant C as

C−1 = π1(s1)π2(s2)eµα2(s2)
∞∑
k=0

p|Z|(k)ε1(s1, s2)k (A.109)

= π1(s1)π2(s2)eµα2(s2)e−µ
∞∑
k=0

[µε1(s1, s2)]k
k!︸ ︷︷ ︸

eµε1(s1,s2)

(A.110)

= π1(s1)π2(s2)eµ(α2(s2)+ε1(s1,s2)−1). (A.111)

Multiplying (A.104) with ε1(s1,s2)k
ε1(s1,s2)k and inserting C finally yields

f̃ (k)(x1, . . . , xk|s1, s2) = ε1(s1, s2)k
ε1(s1, s2)k e

−µα2(s2)e−µε1(s1,s2)eµµkeµα2(s2)e−µ

k∏
i=1

ψ(xi)η1(xi, s1)γ2(xi, s2) (A.112)

= e−µε1(s1,s2)[µε1(s1, s2)]k
k∏
i=1

ψ(xi)η1(xi, s1)γ2(xi, s2)
ε1(s1, s2) (A.113)

= e−ννk
k∏
i=1

f(xi|s1, s2). (A.114)
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