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Abstract

Ontologies have been extensively advocated in the last decade as a means to enable
a shared understanding of resources between different users and applications. One of
their championed applications is Ontology-based Data Access (OBDA), where ontologies
mediate access to data sources, providing a high-level conceptual view of the data and
making background knowledge available for reasoning at query time. Much research
efforts in the last years have been dedicated to the core problem in OBDA: answering a
query while leveraging the knowledge given by an ontology, sometimes called ontology
mediated query answering (OMQA). However, most work focuses on providing algorithms
for answering queries one-at-a-time. Advanced systems that allow to analyze data by
making modifications to queries and exploring their answers are taken for granted in the
setting of standard relational databases, but in the setting of OMQA they still seem very
far away from the primitive querying capabilities currently available.

In this thesis, we make a first step towards the interactive exploration of data in the
ontology-mediated setting. We introduce a technique to construct an offline compilation
that allows for efficiently answering different variations of a family of queries on the
online phase, without the need to access the original data source. We consider ontologies
formalized using DL-Lite, and focus on conjunctive queries (CQs) that are tree-shaped
and have one answer variable. The compilation phase takes as input two queries that
bound the information needs of the user from above and below, and then in the online
phase, it allows to navigate between all the queries (of the mentioned restricted form)
that fall between these two bounds. We also propose algorithms that construct relevant
variations of a given query that may help the user analyze the data by, for example,
reducing or increasing the number of answers in a minimal way, or identifying common
properties of all objects that are in the answer to a given query. The experiments
carried out with our prototype implementation reveal an overall good performance of
the query-answering procedure and, most importantly, seem to be a promising first step
towards flexible ontology-mediated data exploration.
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Kurzfassung

Ontologien haben sich in den letzten Jahren zu einem wichtigen Mittel für das gemein-
same Verständnis von Ressourcen zwischen verschiedenen Nutzern und Anwendungen
entwickelt. Eine ihrer wichtigsten Anwendungen ist Ontologiebasierter Datenbangkzugriff
(engl. Ontology-based Data Access, OBDA), wobei Ontologien die Rolle von Schnittstellen
zu Datenquellen einnehmen, welche eine abstrahierte Konzeptansicht der Daten darstellen
und Hintergrundwissen für das automatische Schließen zum Abfragezeitpunkt verfügbar
machen. Die meiste Forschung in diesem Bereich fokussiert sich auf die Bereitstellung
von Algorithmen für die sequentielle Beantwortung einzelner Abfragen. Fortgeschrittene
Systeme, welche die Analyse von Daten durch Modifikation von Anfragen und Unter-
suchung ihrer Antworten ermöglichen, werden im Bereich relationaler Datenbanken als
selbstverständlich angesehen, im Kontext von OMQA sind diese jedoch noch weit von
den derzeit verfügbaren Beantwortungsmöglichkeiten entfernt.

In dieser Arbeit machen wir einen ersten Schritt in Richtung interaktiver Explorati-
on von Daten im Kontext von Ontologie-vermittelten Datenbankabfragen. Wir führen
eine Technik zur Offline-Zusammenstellung ein, welche die effiziente Beantwortung ver-
schiedener Variationen einer Familie von Abfragen zur Laufzeit erlaubt, ohne auf die
ursprüngliche Datenquelle zurückgreifen zu müssen. Wir betrachten in DL-Lite forma-
lisierte Ontologien und fokussieren uns auf konjunktive Anfragen (engl. conjunctive
queries, CQ), die eine Baumstruktur und eine Antwortvariable besitzen. Die Zusammen-
stellungsphase hat als Eingabe zwei Abfragen, welche die Informationen des Nutzers von
oben und unten beschränken, und es zur Abfragezeit erlaubt, zwischen allen Abfragen
(der erwähnten Form) innerhalb dieser beiden Schranken zu navigieren. Wir schlagen
auch Algorithmen vor, die relevante Variationen der gegebenen Anfrage konstruieren,
die dem Nutzer helfen können die Daten zu analysieren, z.B. indem sie die Anzahl der
Antworten auf minimale Weise erweitern oder reduzieren, oder gemeinsame Eigenschaften
aller Objekte in der Antwort zu einer gegebenen Anfrage identifizieren. Die mit unserer
Prototyp-Implementierung durchgeführten Versuche zeigen insgesamt eine gute Leistung
in Bezug auf die Anfragenbeantwortungsprozedur, und scheinen vor allem ein vielverspre-
chender erster Schritt in Richtung einer flexiblen Ontologie-vermittelten Datenexploration
zu sein.
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CHAPTER 1
Introduction

Ontologies have been extensively advocated in the last decade as a means to enable a
shared understanding of resources between different users and applications. In computer
science, an ontology is a representation scheme describing a formal conceptualization
of a domain of interest. Basically, an ontology defines a common vocabulary over a
domain and simplifies information sharing. It includes machine-interpretable definitions
of basic concepts in the domain and relations among them. Ontologies have gain a lot of
interest in recent years considering that they offer several advantages such as: sharing
common understanding of how the information is structured, analyzing and reusing
the domain knowledge, they allow domain assumptions to be easily updated and they
abstract away the actual data layer of applications. To sum up, ontologies have a very
valuable role to play in making the semantics of resources available for understanding,
sharing, and reasoning. For this reason, the nowadays known Semantic Web community
has devoted special attention to developing standards for writing and sharing ontologies,
most remarkably the Ontology Web Languages (OWL) [MGH+08], and a huge number
of ontologies that capture different domains are now available.

One powerful application of ontologies that has received much attention in recent years
is Ontology-based Data Access (OBDA), where data sources are connected to ontologies,
and the ontologies mediate the access to the data. It has been argued that ontologies
can help overcome some of the many challenges that today’s information management
requirements pose to traditional data management systems [PLC+08]. For example,
they allow developers to have a unified conceptual view of possibly heterogeneous and
distributed sources, and provide rich inference facilities over weakly structured and
possibly incomplete data. In traditional OBDA, the data is assumed to be stored in
relational databases, which are connected to the ontology using mappings (which are
usually defined in SQL and can be seen as views that act as virtual relations over the
ontology vocabulary). However, many other kinds of data sources, including web data,
can be accessed using ontologies as mediators.
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One of the central problems that arise in OBDA is evaluating a query in the presence of
an ontology, over a given dataset that contains facts according to the ontology vocabulary
(that is, without considering possible mappings from arbitrary data sources). This
problem is sometimes called ontology-mediated query answering(OMQA).

In classical relational databases, query answering is done very efficiently. However,
when adding an ontology on top of the data, query answering becomes a costly task.
Moreover, the presence of the ontology and the implicit reasoning phase, that is intrinsic
to query answering, can make the formulation of queries and the analysis of their answers
very challenging.

One of the main gaps in OBDA is that the existing OMQA systems only support
answering queries one-at-a-time. If given multiple variations of a query, for each one the
query answering engine accesses the data for gathering the answers. Moreover, it is left to
the users to find and formulate the query that precisely captures their information needs.
This aspect represents the main motivation behind our efforts to provide support for
efficiently answer slightly modified versions of a query. Considering the existing powerful
tools in classical database management systems, such as Online Analytical Processing
(OLAP) technique which allows interactive data analysis, we observe the need to compile
relevant information in a meaningful way, in order to boost query answering over the
extracted data fragment. Using an offline compilation, we are interested in providing
efficient online full-query answering for related queries, and compute meaningful query
suggestions for a given query.

For a better understanding, let’s take an example. Suppose that an existing ontology
together with the data allows the user to pose queries over an accommodation booking
domain. The user is interested in finding 4 stars hotels in Vienna that are located in
a central area and have available rooms. Provided that the data does not retrieve any
answers for this request, we consider very useful to suggest a slightly modified query that
will certainly retrieve some answers. In case that the query is retrieving answers and in
fact all these hotels have more things in common, for example they all have Wi-fi and
free breakfast, we find this extra information to be significant for the user and therefore
we want to retrieve it. Another interesting situation is if the initial request has too many
answers, then the user could be interested in knowing the different ways of specializing
the query, in such way that the modified query still offers sufficient options that may
allow different combinations of features which might be of interest for the user.

We are interested in providing algorithms for proposing to the user this kind of
modifications, with instantaneous information of the effect they have on the query answers.
In addition, another reason to tackle this particular problem is that, in literature there
exists OMQA systems which focus on helping the user to build queries based on a given
ontology. However they lack on providing support for data exploration. Our solution
can be used as an extension for these query interfaces, provided that each such system
constructs the type of queries we are considering. We are going to expand this particular
aspect on the next chapter when presenting the state-of-the-art arguments of this thesis.
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Structure of the Thesis

The thesis is structured as follows. Firstly, in Chapter 2 we give a more comprehensible
description of the problem together with the expected results, the related work and
the contributions of this thesis. Chapter 3 provides the preliminaries and introduces
the formalization of the relation that helps characterize related queries. In Chapter 4
we introduce the formalization of the structure that will store the data compilation.
A solution for computing the compilation and the compilation-based query answering
procedure represent the main part of this chapter. The correctness proof of our solution
and the complexity analysis for the proposed algorithms conclude this chapter.

In Chapter 5 we dive into the formalization of data exploration, we offer solutions in
support of computing different types of query modifications. For each such modification
we provide formalization, an algorithmic solution and we prove that the algorithm is
sound and complete. The implementation of our solution and the experimental part
are presented in Chapter 6, while the last part of the thesis, Chaper 7, describes the
conclusions and further research.

3





CHAPTER 2
Problem Description

This chapter presents a more detailed description of the problem we are approaching
alongside the expected results. An overview of the related work is presented in the
state-of-the-art section.

2.1 Problem Description

In recent years there has been an intensive research in OMQA, in which the semantic
knowledge provided by an ontology is exploited when querying data. As mentioned
before, adding an ontology over the data provides several advantages such as simplification
of query formulation, reasoning over the data provides more complete answers, easier
integration of the data from other sources.

In general, the OMQA task is difficult, this aspect representing the downside of
enriching data with domain knowledge. Most work on OMQA focuses on finding the
answers to a conjunctive query (CQ) in the presence of ontologies formalized in description
logics (DLs), which represent decidable fragments of classical first-order predicate logic.
We are interested in analyzing query answering over tractable DLs. Thus, we consider
DL-Lite, introduced in [CGL+07].

The goal of this thesis is to develop techniques that allow interactive query answering
for related queries, rather than answering only one given query. We are interested in
exploring how part of the data projects onto a fragment of the ontology.

We focus on CQs that are tree-shaped and have exactly one answer variable. We
assume that two initial queries are given, which we call the lower- and upper-bound
query. Intuitively, the lower bound query simply says which kind of objects the user is
interested in. It may be something very general, like a query that retrieves all persons,
or all courses. The lower bound query is a query that gathers into a tree-shaped CQ all
specific properties that all these objects may have, and that the user may be interested
in. Then the family of related CQs is composed of all queries of this special form, that
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ask for objects of the type given in the lower bound, that satisfy some combination of
properties from the upper-bound.

Now, given such upper and lower bound queries of this special form, we will develop
techniques for compiling all relevant information into a suitable data structure, in such a
way that one can efficiently answer any in-between query. We will give in Chapter 3 a
clearer picture of what an in-between query is. The property that defines related queries
is as well formalized later on ( see Section 3.3 ).

Computing the offline compilation will provide support in tackling further questions
such as: given an in-between query, compute the minimal query modification such that
the new obtained query is retrieving strictly more or strictly less answers. By modifying
a query we mean constructing a new query that has some syntactical difference compared
with the initial query such that the obtained query gives strictly different set of answers.
In this case minimality is defined in terms of syntactical changes to be made for a given
query.

Another interesting problem to tackle is how to compute most specialized queries,
given an in-between query, such that the set of answers remains the same. Intuitively to
specialize a query means to add more constraints.

We provide concrete formalization of each query modification in Chapter 5.

2.2 Expected Results

The main purpose of this thesis is to come up with a solution for exploring the answers
of related queries. We expect a trade-off between constructing the compilation and the
compilation-based interactive query answering solution. Precisely, we predict the offline
compilation step to be expensive, however we aim at efficient online query answering.

We intend to provide correct algorithms and to test their behavior in practice.
Moreover, our goal is to formalize the solution in such a way that can then be easily
extended to deal with different DLs, such as EL [BBL05].

The most interesting result is to obtain meaningful query suggestions that will provide
concrete support in exploring the answers of a given query. The suggestions represent
minimal variations of a query that reduce or increase the number of answers, or help
identify the common properties of the retrieved answers for a given query.

Provided that the problem we are approaching has concrete practical features, we
intend to implement our solution into a prototype. We expect in the future to integrate
the prototype into a system with a useful user interface that supports interactive query
answering and provides the underpinnings for ontology-mediated data exploration.

6



2.3 State-of-the-art

Query answering in presence of ontologies has been intensively investigated, with multiple
reasoners being created that offer support for different description logics. Among the
existing systems some of them were tailored especially for query answering, such as
PAGOdA [ZGN+15], Ontop [RKZ13], Requiem [PUHM09] or Rapid [CTS11].

The importance of this task has driven other reasoners that were not created exclusively
for query answering, for example Pellet [SPG+07] and HermiT [GHM+14], to implement
query answering related techniques.

We now give a short overview of the existing OMQA systems. Pellet is an OWL 2
DL reasoner which provides a SPARQL API and is capable of computing all certain
answers for internalisable conjunctive queries using the rolling-up technique. HermiT
is a complete OWL 2 reasoner which allows, among other reasoning tasks entailment
checking and it can be also used for query answering. PAGOdA combines the datalog
reasoner RDFox [MNP+14], which does the bulk of the computation, and therefore limits
the calls to HermiT, which are proven to be more expensive. Other OMQA implemented
systems in the literature such as Ontop [RKZ13], Requiem [PUHM09] or Rapid [CTS11]
were specially created for query answering and are focusing on efficiency improvement.

For all these systems the usability might represent an issue, meaning that an user who
is not familiarized with the ontology might find it difficult to write queries. New OMQA
systems were developed, considering this issue, which are emphasizing the importance of
a user-friendly interface. In particular, they are specially designed for users without prior
ontology-related experience. The main functionality is to help users to express queries
that capture their information needs. They provide theoretical underpinnings for query
generation, since SPARQL is not targeted towards users that have no prior information
about the ontology. These systems generate the same kind of queries we are considering
in this thesis, hence our results might be of interest for an eventual support of interactive
data exploration.

One of the first projects in this area is Quelo [FGTT11], which offers a natural
language interface that starts composing the query from a simple phrase as "I am looking
for something". Using a reasoning layer, it retrieves suggestions of possible constraints
and allows the user to add, edit or remove these constraints. The resulting query is a
tree-shaped conjunctive query. The query answering is done using existing reasoning
engines.

Other projects with similar features are the Faceted Search Interface [ACGK+14]
and the Optique virtual query formulation system (VQS) [SKZ+14]. Unlike Quelo, the
Faceted approach uses operations as tick or untick possible constraints and does not use
natural language for this purpose. The Faceted Search Interface also allows interactive
query answering, although internally, since their method proposes tick options only if the
new obtained version of the query has non empty answers and the retrieved answers set
is strictly different.

Optique VQS is being developed under Optique project 1 and aims as well for an
1http://optique-project.eu/
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easy-to-use graphical interface that will allow the user to compose complex queries.
In contrast to all above mentioned systems, our main goal is to create a solution that

will allow efficient query answering and interactive exploration of the answers based on
pre-compiled data. This problem has not been tackled by any other OMQA system that
we know of, so this will be the main original aspect that the thesis will bring.

Regarding the main techniques used in OMQA, almost all the above named systems
rely on query reformulations, or materializing the data by adding the inferred information,
and respectively by generating for one query so-called tree witnesses which represent
implied objects that are not explicitly part of the data. Our technique combines the last
two since we generate on-the-fly the relevant inferred information without materializing
the entire data in order to obtain the offline compilation. Moreover, our query answering
technique uses only reasoning over the ontology, without the need to access the data
once that the pre-compiled structure is available.

Among the few related work with respect query specializations is presented in [Nut11].
The authors consider arbitrary CQs and explore only the case of information overload
by providing different methods to specialize a query for EL-family. We are trying to
consider the opposite task as well, since there can be cases in which the user would like
to generalize the query for obtaining a larger set of answers. Our approach is computing
minimal modifications in terms of the changes that need to be made on the structure of
queries.

The next innovative aspect that the thesis brings is to compute most specialized
version of a query that still retrieves the same set of answers. These query modifications
basically help characterizing all the common properties that the answers of a query share
over the ontology.

This theoretical approach of investigating relations among objects based on a pre-
compilation of the data can provide further research questions and bring a fresh perspective
in OMQA area.
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CHAPTER 3
Ontology-mediated Query

Answering

In this chapter we define the syntax and semantics of the DL ontologies we consider in
this thesis. We also introduce the restricted form of queries that we focus on, and define
a special subquery relation that will allow us to formalize the notion of ‘related queries’.

3.1 Description Logics

Description Logics [BCM+03] are fragments of first-order logic specifically adapted
towards the representation of structured knowledge. There are many description logics
of varying expressiveness, suitable for modeling diverse domains of interest. They all
describe the domain in terms of two basic elements:

� concepts - which correspond to classes and denote sets of objects

� roles - which correspond to relationships and denote binary relations on objects.

Domain knowledge is then captured by ontologies, which are a set of logical axioms that
describe the way concepts and roles interrelate.

3.1.1 DL-Lite

In this work we focus on a family of DLs called DL-Lite, and in particular on DL-LiteR
[CGL+07]. The DL-Lite family was explicitly tailored to support tractable query an-
swering over large data. DL-LiteR is the language of choice for ontology-based data
management and access, and it provides the logical underpinning for OWL 2 QL1.

1http://www.w3.org/TR/owl2-profiles/#OWL_2_QL
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Construct Syntax Example Semantics
Atomic role P worksFor P I ⊆ ∆I ×∆I

Inverse role P− teacherOf− {(o, o′) | (o′, o) ∈ P I}
Role negation ¬R ¬memberOf (∆I ×∆I) \RI

Atomic concept A Employee AI ⊆ ∆I

Existential restriction ∃R ∃advisor {o | ∃o′ s.t. (o, o′) ∈ RI}
Concept negation ¬B ¬∃advisor− ∆I \BI

Top concept > >I = ∆I

Individual a Prof1 aI ∈ ∆I

Table 3.1: Syntax and semantics for allowed constructs of concepts and roles

DL-Lite Syntax

We now define the syntax of the basic DL-Litecore, and of DL-LiteR.

Definition 1. Let NC , NR and NI be countably infinite sets of concept names, role
names, and individuals. We define NR = NR ∪ {P− | P ∈ NR} as the set of (complex)
roles. For each R ∈ NR, the inverse of R is defined as R− := P− if R = P ∈ NR, and
R− := P if R := P− for some P ∈ NR.

An ABox is a finite set of assertions of the form A(b), ¬A(b) and R(b, c), ¬R(b, c),
where A ∈ NC , R ∈ NR and b, c ∈ NI . We use Ind(A) to denote the set of all
individuals appearing in an ABox A.

A TBox is a finite set of axioms, whose form depends on the particular DL. For
DL-Litecore the axioms are inclusion statements of the form B v C, where:

B := A | ∃R C := B | ¬B

and A ∈ NC is an atomic concept, R ∈ NR is an atomic role. B defines a basic
concept, R is basic role, and finally, C is a general concept.

DL-LiteR extends DL-Litecore by additionally allowing axioms of the form R v E
with R a basic role, and E a general role:

E := R | ¬R

A knowledge base (KB) K = 〈A,T〉 consists of an ABox A and a TBox T.

DL-Lite Semantics

The semantics of DL KBs is defined in terms of interpretations as follows.

10



Axiom Syntax Example Semantics
Concept inclusion B v C Employee v ∃worksFor BI ⊆ CI

Role inclusion R v E worksFor v memberOf RI ⊆ EI

Concept assertion A(a) Student(Stud1) aI ∈ AI

Role assertion P (a, b) teacherOf(Prof1,GradCourse1) (aI, bI) ∈ P I

Negated concept assertion ¬A(a) ¬Professor(Stud1) aI /∈ AI

Negated role assertion ¬P (a, b) ¬worksFor(Stud1,Dep1) (aI, bI) /∈ P I

Table 3.2: Syntax and semantics for DL-LiteR allowed axioms and assertions

Definition 2. An interpretation has the form I = (∆I, ·I), where the domain ∆I is a
non-empty set, the interpretation function ·I maps each a ∈ NI to an object aI, each
A ∈ NC to AI ⊆ ∆I and each P ∈ NR to a binary relation P I ⊆ ∆I ×∆I. The function
·I is extended to general concepts and roles in the usual way, see the right column of
Table 3.1. An interpretation I satisfies a TBox axiom or ABox assertion σ, written
I � σ, if the corresponding condition in Table 3.2 holds.

An interpretation I satisfies a TBox T, I � T, iff I satisfies all axioms in T. An
interpretation I satisfies an ABox A, I � A, iff I satisfies all assertions in A. An
interpretation I is a model of a KB K = 〈T,A〉, written I � 〈T,A〉, iff it satisfies all
axioms in T and all assertions in A. For a KB K, we let Mods(K) denote the set of all
models of K.

A KB is consistent iff it has at least one model. Let Γ be a TBox T or a KB 〈T,A〉,
and let Γ′ be an assertion C(a) or E(a, b), or an inclusion B v C or R v E. We say that
Γ entails Γ′, and write Γ � Γ′, if I � Γ implies I � Γ′ for every interpretation I. We use
the notation Γ1 vT Γ2 as a shortcut for T � Γ1 v Γ2, where Γ1 v Γ2 is a concept or role
inclusion.

We now give an example of a DL-LiteR KB.

Example 1. As a running example we use the university domain. The following sefl-
explanatory axioms are based on LUBM ontology [GPH05], and in particular on the
restricted version in DL-LiteR syntax presented in [KRRM+14]2.

We consider the TBox in Figure 3.1. We note that the axiom Employee v ∃worksFor.Organization
is not in the DL-LiteR syntax, but we use it as a shortcut for the following two axioms,
where worksForOrg is a role name not occurring elsewhere:

∃worksForOrg− v Organization
worksForOrg v worksFor

We also consider the following ABox:
2https://github.com/ontop/iswc2014-benchmark/tree/master/LUBM
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AdministrativeStaff v Employee Faculty v Employee
∃teacherOf− v Course ∃teacherOf v Faculty

Professor v Faculty FullProfessor v Professor
∃publicationAuthor v Publication ∃publicationAuthor− v Person

publicationAuthor ≡ authorPublication− Department v Organization
∃advisor v Person ∃advisor− v Professor

∃takesCourse v Student ∃takesCourse− v Course
Employee v ∃worksFor.Organization worksFor v memberOf

Figure 3.1: Example TBox describing the domain of universities

FullProfessor(Prof1) publicationAuthor(Pub1,Stud1)
teacherOf(Prof1,GradCourse1) publicationAuthor(Pub1,Prof1)

takesCourse(Stud1,GradCourse1)

Intuitively, the models of this KB are all interpretations where all assertions and inclusions
in the ABox and the TBox are satisfied. For instance, where there is a full professor that
teaches a course that is attended by some student who has co-authored a publication
with him. This KB entails implicit facts that hold in all models. For instance, that Pub1
is a publication or, more interestingly, that Prof1 is an employee and hence works for an
organization.

3.1.2 Canonical Model

We recall the following well known construction of a canonical interpretation for a
DL-LiteR KB:

Definition 3 (Canonical interpretation). For a DL-LiteR KB 〈T,A〉 we construct
an interpretation IT,A such as the domain ∆IT,A consists of all words aR1 . . . Rn (n ≥ 0),
where a ∈ Ind(A), Ri ∈ NR and:

• if n ≥ 1, then T,A � ∃R1(a) and there does not exist R1(a, b) ∈ A, for some
b ∈ Ind(A); moreover for each S vT R1, we have that T,A � ∃S(a) implies
R1 vT S;

• for 1 ≤ i < n, T,A � ∃R−i v ∃Ri+1, R−i 6= Ri+1, and for each S vT Ri+1 it holds
that T,A � ∃R−i v ∃S implies Ri+1 vT S.
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The interpretation function, ·IT,A is defined as follows:

• aIT,A = a for all a ∈ Ind(A)

• AIT,A = {a | T,A � A(a)} ∪ {aR1 . . . Rn | n ≥ 1 and ∃R−n vT A}

• P IT,A = {(a, b) | R(a, b) ∈ A and R vT P} ∪
{(b, a) | R(a, b) ∈ A and R vT P

−} ∪
{(w1, w2) | w2 = w1S and S vT R} ∪
{(w2, w1) | w2 = w1S and S vT R

−}

We call words in ∆IT,A of the form aR1 . . . Rn, with n > 0, anonymous objects,
and let Anon_Obj := ∆IT,A \Ind(A) to be the set of anonymous objects for a given
DL-LiteR KB.

The following result is standard:

Fact 1 (Canonical model existence [CGL+07]). For any given consistent DL-LiteR
KB 〈T,A〉 the interpretation IT,A (constructed according to Definition 3) exists and is a
model of the KB, called the canonical model.

3.2 Query Answering in DL-Lite

Conjunctive queries (CQs) represent a simple query language but which is able to express
"common queries" that are intensively used by many applications. More precisely, CQs
are a special form of first-order queries that can capture select-project-join fragment of
relational algebra and SQL.

Definition 4 (Conjunctive query). A conjunctive query (CQ), is a first-order
formula, q(−→x ) :- ϕ(−→x ,−→y ), where ϕ is constructed using ∧ from atoms of the form A(t),
A ∈ NC and R(t, t′), R ∈ NR, where t, t′ are terms ( individuals or variables from −→x ,−→y ).
Variables −→x are called answer variables and those in −→y bound variables. All bound
variables are implicitly existentially quantified. We use vars(q) to denote the set of all
variables of a given CQ q.

It is known that any relational database corresponds to a first-order (FO) interpreta-
tion and querying databases can be alternatively viewed as mapping query variables to
elements of the interpretation’s domain.

Definition 5 (CQ match). Given a CQ q and an interpretation I, a match π for q
w.r.t. I is a mapping of each term in q to an element of ∆I such that:

� for each concept atom A(t) ∈ q π(t) ∈ AI and

� for each role atom R(t, t′) ∈ q (π(t), π(t′)) ∈ RI.

If such a match π exists, we say that I satisfies q, written I �π q.
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Definition 6 (Set of Answers). Let I be a FO interpretation and q a FO query with
answer variables (x1, . . . , xn). We define the set of answers for q over I as follows:

ans(q, I) := {(e1, . . . , en) | I �π q and π(xi) = ei, 1 ≤ i ≤ n}.

Usually in OMQA the so-called certain answers semantics is adopted, in which the
retrieved answers are those that hold in every model of the KB. The intuition is that
since we do not know which of the KB’s models provides the correct description of the
knowledge domain, one can trust only those answers that can be obtained from every
model of the KB.

Definition 7 (Certain answers). Let K := 〈T,A〉 be a DL-Lite KB, and let q be
a CQ, with n ≥ 1 answer variables. We define cert(q,K) to be the set of certain
answers of q over K, defined as follows:

{(a1, . . . , an) ∈ Ind(A)n | (aI1, . . . , aIn) ∈ ans(q, I) for every I ∈Mods(K)}

Given a KB K := 〈T,A〉 and a CQ q, we write that T,A � q(~a) iff ~a ∈ cert(q,K).

The following two facts about DL-LiteR are well known [CGL+07]. First, if the negative
assertions and inclusions in a given KB do not cause inconsistency, then they have no
effect on query answers and can be disregarded.

Fact 2. Let K, and let K′ be the result of removing all negtive inclusions and assertions
from K. If K is consistent, then cert(q,K) = cert(q,K′).

Query answering over inconsistent KBs is trivial, as the answers are simply all tuples
of constansts of suitable arity. Moreover, the consistency of a given DL-LiteR KB can be
efficiently tested using off-the-shelf algotihms. Hence, in what follows, we may assume
that KBs are consistent and do not contain negative assertions or inclusions.

Second, the canonical model we have described above (see Fact 1) can be used to
answer any query over a given KB K.

Fact 3. Let K be a consistent DL-LiteR KB and let IK be its canonical model. Then
cert(q,K) = ans(q, IK), for every CQ q.

3.3 Related Queries

In this section we define the special type of queries that we consider in the thesis.

Definition 8. (Tree-shaped CQ, 1treeCQ) Let q be a CQ and term(q) = {t | t
is a term in some atom of q} be the set of terms of Q. We construct for q its primal
graph as follows: term(q) is the set of vertices and {〈t, t′〉 | R(t, t′) ∈ q} is the set of
edges. Moreover, we define a labeling function L which maps each vertex and each edge
to a set of concept names, respectively role names, as follows: L(t) = {A | A(t) ∈ q},
L(〈t, t′〉) = {R | R(t, t′) ∈ q}.
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We call q a tree-shaped CQ if its primal graph is a tree. A CQ q is called 1treeCQ if
it is tree-shaped and has exactly one answer variable.

Example 2. For example, the following query is tree shaped, and its primal graph is
represented in Figure 3.2. Since it has one answer variable, it is also a 1treeCQ.

q(x) : −Professor(x),worksFor(y1),Department(y1), teacherOf(x, y2),Course(y2),
authorPublication(x, y3),Publication(y3), publicationAuthor(y3, z1),Person(z1)

x
Professor

y1Department

y2 Course

y3 Publication

z1 Person

worksFor

teacherOf

authorPublication

publicationAuthor

Figure 3.2: Query that has its primal graph as tree.

We now define a special subquery relation between 1treeCQs, that takes into account
the tree-structure of the query, and the way concepts and roles imply each other in the
TBox. Intuitively, a query is a subquery of another if it is a subtree rooted at the same
node, and all the labels of the subquery are more general. Similarly, superqueries can
have more nodes and edges, and have more specific labels.

Definition 9 (Subquery). Given a DL-LiteR TBox T and two 1treeCQs q1 and q2, we
call q1 subquery of q2 (w.r.t. T), written q1 FT q2, iff vars(q1) ⊆ vars(q2) and

� for each atom R1(y1, y2) ∈ q1 there exists R2(y1, y2) or R−2 (y2, y1) ∈ q2 such that
R2 vT R1 and

� for each atom C1(y) ∈ q1 there exists C2(y) ∈ q2 such that C2 vT C1.

Symmetrically, we call q2 superquery of q1 (w.r.t. T).

Example 3 (Superquery/Subquery Example). Let q be the query from Figure 3.2
and TBox T be such in Example 3.1. We add the following axioms:

GraduateStudent v Person u ∃takesCourse.Course
ResearchAssistant v Person u ∃worksFor.ResearchGroup

GraduateCourse v Course

An example of a superquery for q is represented in Subfigure 3.3a. As we can see a
superquery must contain at least the same set of terms, while the corresponding node
and edge labels, can be more restricted with respect to the TBox.

A subquery for q, illustrated in Subfigure 3.3b, can miss out labels or even edges,
while the corresponding labels (for nodes and edges) can be more general with respect to
the TBox (that is, super-concepts and super-roles).
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x
FullProfessor

y1Department

y2GraduateCourse y3 Publication

y4 GraduateStudent

z1 ResearchAssistant

worksFor

teacherOf authorPublication

publicationAuthor

advisor−

(a) Superquery for q

x
Faculty

y1Organization y3

memberOf authorPublication

(b) Subquery for q

Figure 3.3: Example of superquery and subquery for a given 1treeCQ

Remark 1. Since "vT" is transitive for any TBox T , we obtain that "FT" is also a
transitive relation.

Definition 9 expresses the intuition for the characterization of related queries.
However, in order to pre-compile all information needed to correctly retrieve all

answers for each such query, one needs to define boundaries in order to capture only a
targeted fragment of the KB.

Definition 10 (1treeCQ Family). For a given DL-LiteR KB K := 〈T,A〉, let qL, qU
be two 1treeCQs such that qL FT qU holds. We call them the lower bound query,
respectively the upper bound query.

Given a DL-LiteR KB K := 〈T,A〉 and two 1treeCQ as qL, qU, any 1treeCQ q such
that qL FT q FT qU is called in-between query.

We relate the expression 1treeCQs family to the set of 1treeCQs containing qL, qU
together with all the in-between queries.

Therefore, we will be using the expression of 1treeCQs family whenever there exists two
bound queries: a lower-bound query, that is a subquery of any other query, respectively
an upper-bound query that is a superquery of any other query.

The following section focuses on the query answering task, setting the needed prelimi-
naries for the formalization we are considering.

The following result will be useful:

Corollary 1. Let K be a given DL-LiteR KB. For any two given 1treeCQs q1, q2 such
that q1 FT q2, the following holds:

ans(q2, I) ⊆ ans(q1, I), for every I ∈Mods(K).

Proof (sketch). The proof is straight forward since any variable in q1 must appear in q2
and any query atom in q1 is correlated to a more specific one in q2 and therefore, for
every model I of K, every match for q2 is also a match for q1 under I.
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CHAPTER 4
Compiling the Answers for a

Family of Related Queries

The main goal of this chapter is to compile, from a given DL-LiteR KB, a structure that
contains all the information needed to answer a family of related 1treeCQs.

Since all the queries from a 1treeCQs family have the same answer variable in order
to distinguish it we give the following notation:

Notation 1. In what follows, we assume a distinguished term x that is used to denote
the common answer variable of all the queries in a 1treeCQ family.

Note that the upper bound query requires all properties that the user is interested in
to hold simultaneously. Hence, when viewed as a CQ, it will often have no answers, as
these properties will in general not hold simultaneously for any object. However, we are
not interested in the answers to the upper bound query itself, but in the answers to all
the queries that can be generated by taking different combinations of these properties.

As a remark, the lower- and upper-bound queries are not strictly needed but they
are useful since they bound the information that the user wants to navigate. If not given,
we can take some trivial lower- and upper-bound queries. For example take qL(x) : −>
and qU as containing all possible atoms that can be constructed using the TBox syntax.
In this case we will compile answers for all 1treeCQs that can be constructed over the
TBox vocabulary.

We want afterwards to use the offline compilation for retrieving the answers of any
in-between 1treeCQ, without needing to consult the ABox again. To this aim, we observe
that if an individual is an answer to some in-between query, then it must be an answer
to qL (see Corollary 1). Hence we use the answers of qL as possible answers for the
in-between queries, and for each of these individuals a, we identify the maximal queries
in the 1treeCQs family for which a is an answer.

We note that there may be multiple such queries that are incomparable w.r.t. the KB.
As an example, let’s take the TBox described in 3.1 together with the following axioms:
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P1

Professor

C1

Course
C2

GraduateCourse

S1

ResearchAssistant
S2

Student

teacherOf teacherOf

takesCourse− takesCourse−

x
Professor

y Course

z
Student

teacherOf

takesCourse−

Figure 4.1: Example of an ABox A and a query q(x) for which there are 2 incomparable
matches that map x to individual P1

GraduateCourse v Course ResearchAssistant v Student

Figure 4.1 illustrates an ABox represented as a graph, where each individual is a labeled
node with all its satisfying concept names as labels, and the labeled edges represent the
role assertions from the ABox. As showed in the figure, for query

q(x) : −Professor(x), teacherOf(x, y),Course(y), takesCourse−, Student(z)

there exists two incomparable matches, w.r.t. the mentioned TBox, both mapping the
answer variable x to individual P1.

Remark 2. In case of KB inconsistency query answering is trivial and since consistency
for a given DL-LiteR KB can be tested in advance, we will not consider negative assertions
in the ABox.

4.1 Matching Witnesses

In this subsection we introduce the notion of matching witness, which stores information
about individuals and the maximal subqueries of qU that they are an answer for. Given
that we have a starting point from where to map into the canonical model, precisely
the possible answers, one can build all the relevant matches for the 1treeCQs family by
computing each partial match defined on terms t1, t2 ∈ term(qU) for which there exists
R(t1, t2) ∈ qU. More specifically, matching witnesses store how a given partial match
from a term t in the upper-bound query to an object - an individual or an anonymous
object - in the canonical model of K propagates upon the possible matches of its children.

The following definitions and notations come at hand for providing a formalization of
such pre-compilation that will allow to answer any query in the 1treeCQ family.

Intuitively, we want to generate on the fly the objects in Ind(A) ∪Anon_Obj that
are used in query answering for the 1treeCQs family, and we want to do that in an
effective way by identifying the specific roles in the role hierarchy of some role atom in
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qU. We also need to store roles and concepts satisfied by the identified object but only
those which are relevant for the 1treeCQs family, to avoid storing redundant information.

Note that the construction of IT,A already uses this role inclusion specificity when
generating the anonymous part. Thus, we introduce the following useful definitions:

Definition 11 (Most specialized concepts and roles). Given a DL-LiteR KB
K := 〈T,A〉 and any a ∈ ∆IT,A , we define:

MSconcept(a,K) := {A | IT,A � A(a) and for each A′ s.t. A′ vT A, with A′ 6= A, we
have that IT,A 2 A′(a)} to be the set of all most specialized concepts satisfied by
a w.r.t. K

Respectively, for any a, b ∈ ∆IT,A , we define:

MSrole(a, b,K) := {R | IT,A � R(a, b) and for each R′ s.t. R′ vT R, with R′ 6= R,
we have that IT,A 2 R′(a, b)} to be the set of all most specialized roles satisfied by
(a, b) w.r.t. K.

Now, for each pair t1, t2 of query terms that occur together in some atom R(t1, t2) ∈ qU,
and some v1 ∈ Ind(A)∪Anon_Obj, we define a set of matching candidates. Intuitively,
this set contains each v2 such that if v1 is a match for t1 in IT,A, then v2 could be a
match for t2. That is, for some R(t1, t2) in the query we have (v1, v2) ∈ RIT,A .

Recall that, by construction of IT,A, this is possible if either both are individuals,
or at least one of them is an anonymous object and a child of the other. The different
possibilities are reflected in the items of the definition below.

Remark 3. We point out that in the canonical model (see Definition 3) we have aI = a,
hence π(a) = a for every query match π. Therefore in the following definitions, whenever
a term of some query atom is an individual, it can only be mapped to itself.

Definition 12 (Matching candidates). Let K := 〈T,A〉 be a DL-LiteR KB and let
qU be the upper bound CQ. Let {t1, t2} ⊆ term(qU) be such that there is some atom
R(t1, t2) of qU, and let v1 ∈ Ind(A) ∪Anon_Obj.

The set of matching candidates for t2 relative to t1 7→ v1 is

I. if t2 ∈ Ind(A) then

� MCt1 7→v1(t2) := {t2}, if there exists R ∈ MSrole(v1, t2,K) s.t.R′ vT R or
R vT R

′ for some R′(t1, t2) ∈ qU

� MCt1 7→v1(t2) := ∅, otherwise.

II. if t2 ∈ vars(QU) then

MCt1 7→v1(t2) := candA ∪ candvR ∪ candwRS ∪ candw
where:
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1. if v1 ∈ Ind(A) then
i. mapping t2 in the ABox
candA := {v2 | T,A � R(v1, v2) where R′ vT R, for some R′(t1, t2) ∈ qU}

ii. mapping t2 in the anonymous part
candvR := {v1R | T,A � ∃R(v1) where R ∈ MSrole(v1, v1R,K) s.t.
R′ vT R or R vT R

′, for some R′(t1, t2) ∈ qU}
2. if v1 := wR ∈ Anon_Obj then

i. mapping t2 further in the anonymous part
candwRS := {wRS | T � ∃R− v ∃S, where S ∈ MSrole(wR,wRS,K) s.t.
R′ vT S or S vT R

′, for some R′(t1, t2) ∈ qU}
ii. mapping t2 to the predecessor of v1

candw := {w | T � R− v S, where R′ vT S, for some R′(t1, t2) ∈ qU}

By constructing the matching candidates we compute partial matches that are relevant
for some in-between query.

We now intend to compute the most specific concept and role names that such a
partial match satisfies, which are important for the 1treeCQs family. For this purpose
we give the following definition.

Definition 13 (Labels String). For a given a DL-LiteR KB K := 〈T,A〉, qU upper
bound query and a partial match π, we define the associated labels string as follows:

I. if π is of the form [t 7→ v], where t ∈ term(qU) and v ∈ Ind(A)∪Anon_Obj then

labels(t 7→ v) := 〈{C | C ∈MSconcept(v,K) s.t. C ′ vT C or C vT C
′,

for some C ′(t) ∈ qU}〉

II. if π is of the form [t1 7→ a, t2 7→ b], where t1, t2 ∈ term(qU), a, b ∈ Ind(A) ∪
Anon_Obj, such that b ∈MCt1 7→a(t2) then

labels(t1 7→ a, t2 7→ b) := 〈RLabels,CLabels〉

where

CLabels := {C | C ∈MSconcept(b,K) s.t. C ′ vT C or C vT C
′, for some C ′(t2) ∈ qU}

is the set of satisfiable concept names, and RLabels is constructed as follows:

A. if a, b ∈ Ind(A) or a := bR then
RLabels := {R | R ∈ MSrole(a, b,K) s.t. R′ vT R or R vT R′, for some
R′(t1, t2) ∈ qU}
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B. if b := aR then
RLabels := {R}

In the matching candidates and associated labels string, provided that we want to
compute partial matches in any subquery of qU, but in the same time we want to avoid
overloading the matching witnesses, we make use of the MSrole and MSconcept definitions.
However, since these definitions are not at all correlated to the upper-bound query, we
need to make sure that we store only those most specialized roles and concepts which are
relevant for the 1treeCQs family.

For example, given a partial match t1 7→ a, a ∈ Ind(A) and suppose that there exists
aR such that MSrole(a, aR) = {R}. Then aR is of relevance for the 1treeCQs family iff
R vT S and there exists some R′(t1, t2) ∈ qU such that R′ vT S. The same reasoning is
used to identify those most specific concept names which are relevant for the 1treeCQs
family.

Definition 14 (Matching Witness). For a given DL-LiteR KB, lower bound 1treeCQ
qL and upper bound 1treeCQ qU, both rooted in x, we define the root matching
witness

wroot := 〈[labels(x 7→ a1)a1, . . . labels(x 7→ an)an]〉,

where {a1, . . . an} = ans(qL,K).
Moreover, for a given term t ∈ term(qU) and an object a ∈ Ind(A) ∪Anon_Obj we
construct a matching witness for t and a as follows:

wta := 〈valuest1 , . . . , valuestk〉,

where {t1, . . . , tk} = {t′ | there exists R(t, t′) ∈ qU}, and valuesti , 1 ≤ i ≤ k, is
constructed as follows:

1. valuesti := [ε] (ε is the empty string), if MCt7→a(ti) = ∅

2. valuesti := [φ1b1, . . . , φmbm], where bj ∈MCt7→a(ti), 1 ≤ j ≤ m,
and φj := labels(t 7→ a, ti 7→ bj).
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Algorithm 4.1: ConstructAllMatchings
Input: qL,qU 1treeCQs, DL-LiteR KB K := 〈T,A〉
Output: W set of matching witnesses

1 W := {} ;
2 valuesx := ε ;
3 foreach a ∈ ans(qL,K) do
4 φa := {C | C ∈MSconcept(a,K) s.t. C ′ vT C or C vT C

′, for some C ′(x) ∈
qU} ;
/* Append string "φaa" to valuesx */

5 valuesx := valuesx+φaak+",";
6 ConstructMatchWitness(ak,qU,K,W)

7 end
8 wroot := 〈[valuesx]〉 ;
9 add wroot to W ;

Algorithm 4.2: ConstructMatchWitness
Input: a ∈ Ind(A) ∪Anon_Obj, query qU ↓t,where t ∈ term(qU), DL-LiteR

KB K := 〈T,A〉, W set of matching witnesses
Output: matching witness wta

1 wta := 〈 〉 ;
2 child(t) := {t′ | there exists R(t, t′) ∈ qU} ;
3 foreach t′ ∈ child(t) do
4 valuest′ := ε ;
5 values_set := {} ;
6 MCt7→a(t′) := ConstructMatchingCandidates(t,a,t′,qU,K) ;
7 foreach v ∈MCt7→a(t′) do
8 φv := ConstructLabelString(t,a,t′,v,qU,K) ;
9 valuest′ := valuest′ + φvv + ”, ” ;

10 values_set := values_set ∪ {v} ;
11 end
12 wta := wta+[valuest′ ]+",";
13 foreach v ∈ values_set do
14 ConstructMatchWitness(v,qU ↓t′,K)
15 end
16 end
17 add wta to W ;
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Algorithm 4.3: ConstructMatchingCandidates
Input: qU 1treeCQ, DL-LiteR KB K := 〈T,A〉, t1, t2 ∈ term(qU) and

a ∈ Ind(A) ∪Anon_Obj
Output: the set of matching candidates for t2, when t1 7→ a

1 MC := {} ;
2 if t2 ∈ Ind(A) then
3 if there exists R ∈MSrole(a, t2,K) s.t. R′ vT R, for some R′(t1, t2) ∈ qU then
4 return {t2} ;
5 end
6 end
7 if a ∈ Ind(A) then

/* mapping t2 in the ABox */
8 MC := MC ∪ {b | T,A � R(a, b), where R′ vT R, for some R′(t1, t2) ∈ QU} ;

/* mapping t2 in the anonymous part */
9 MC := MC ∪ {aR | T,A � ∃R(a), where R ∈MSrole(a, aR,K) s.t.

R′ vT R or R vT R
′, for some R′(t1, t2) ∈ qU}

10 else
/* a is an anonymous object */

11 let a := wR, wR ∈ Anon_Obj ;
/* mapping t2 further in the anonymous part */

12 MC := MC ∪ {wRS | T � ∃R− v ∃S, where S ∈MSrole(wR,wRS,K) s.t.
R′ vT S or S vT R

′ for some R′(t1, t2) ∈ qU} ;
/* mapping y to the predecessor of a */

13 MC := MC ∪ {w | T � R− v S, where R′ vT S for some R′(t1, t2) ∈ qU} ;
14 end
15 return MC

Algorithm 4.4: ConstructLabelString
Input: qU 1treeCQ, DL-LiteR KB K := 〈T,A〉, t1, t2 ∈ term(qU) and

a, b ∈ Ind(A) ∪Anon_Obj
Output: the associated labels string

1 CLabels := {C | C ∈MSconcept(a,K) s.t. C ′ vT C or C ′ vT C, for some
C ′(t2) ∈ qU} ;

2 if a, b ∈ Ind(A) or a is of form bR then
3 RLabels := {R | R ∈MSrole(a, b,K) s.t. R′ vT R or R vT R

′, for some
R′(t1, t2) ∈ qU} ;

4 end
5 if b is of form aR then
6 RLabels := {R} ;
7 end
8 return 〈RLabels,CLabels〉 ;
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4.1.1 Computing Matching Witnesses

In this section we are going to present an algorithm that is computing the set of all
matching witnesses W, for a given problem instance: a DL-LiteR KB and two 1treeCQs
as qL and qU. We provide in the following section, a solution for query-answering any
in-between query based on the pre-computed matching witnesses.

Notation 2. Firstly we present some notations which will be used from this section
onwards:

� A restriction of a 1treeCQ q to a subset of terms {t1, . . . , tn} ⊂ term(q), written as
q |{t1,...,tn}, is a subquery of q formed by discarding all atoms which contain some
term t /∈ {t1, . . . , tn}.

� For a given in-between query q and a term t ∈ vars(q), let q �t be a query obtained
by discarding all nodes in the primal graph which are ancestors of t (respectively
the corresponding query atoms in q), obtaining the sub-tree rooted in t.

Algorithm 4.1 computes the set of all matching witnesses W by iterating over the
answers of qL and for each answer a constructs labels(x 7→ a). Algorithm 4.2 recursively
computes for all children the matching candidates, using Algorithm 4.3, and the associated
labels string constructed by Algorithm 4.4.
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Algorithm 4.5: GetAnswers
Input: DL-LiteR KB K := 〈T,A〉, q in-between query, W set of all matching

witnesses
Output: ans(q,K)

1 ans := {} ;
2 foreach wx

a ∈W do
/* x is the answer variable */

3 is_answer := true ;
4 checkedAllChlidren := false ;
5 if CheckRolesAndConcepts(q |{x},labels(x 7→ a))== false then
6 is_answer := false ;
7 end
8 while is_answer == true and checkedAllChildren == false do
9 childx := {t | there exists R(x, t) ∈ q}/* children of x in q */

10 foreach t ∈ childx do
11 is_answer := IsAnswer(wx

a ,t, q �t,W) ;
12 if is_answer == false then
13 break foreach /* a is not an answer */
14 end
15 if t is last element in childx then
16 checkedAllNeigh := true ;
17 end
18 end
19 end
20 if is_answer == true then
21 ans := ans ∪ {a} ;
22 end
23 end
24 return ans ;

4.2 Query Answering based on Matching Witnesses

In this section we are going to provide an algorithmic solution for query answering
any in-between query, for a given problem instance. Provided that we have already all
information needed for this task stored in the matching witnesses, let W denote the set
of all matching witnesses that is constructed beforehand by the Algorithm 4.1.

The following definition formalizes the conditions for which an individual or an
anonymous object is part of a match for a given in-between query that is not necessarily
rooted in x. Given the tree-structure of any query in the 1treeCQs family, one can make
use of recursion to check for a satisfiable match.

Definition 15 (Satisfaction). Let q be a 1treeCQ rooted in t, where t ∈ term(qU),
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Algorithm 4.6: CheckRolesAndConcepts
Input: Q in-between query, φv := 〈RLabels,CLabels〉 associated label string
Output: true if φv satisfies concept and roles atoms in q, false otherwise

1 sat_labels := true ;
2 foreach R(t1, t2) ∈ q do
3 if φv does not contain any role name S s.t. S vT R then
4 sat_labels := false ;
5 break foreach ;
6 end
7 end
8 foreach C(t) ∈ q do
9 if φv does not contain any concept name A s.t. A vT C then

10 sat_labels := false ;
11 break foreach ;
12 end
13 end
14 return sat_labels

such that q FT qU �t. An object b ∈ Ind(A) ∪Anon_Obj satisfies q (w.r.t. W) iff:

1. if t = x then b ∈ Ind(A), and for every C ′(x) ∈ q there exists C ∈ labels(x 7→ b)
such that C vT C

′

2. if t is a leaf in the tree-structure of q then wtb := 〈〉 ∈W

3. for each t′ child of t in q there exists v (∈ Ind(A ∪Anon_Obj) in valuest′ of wtb
such that labels(t 7→ b, t′ 7→ v) := 〈RLabels,CLabels〉 satisfies:

� for each R′(t, t′) ∈ q there exists R ∈ RLabels such that R vT R
′

� for each C ′(t′) ∈ q there exists C ∈ CLabels such that C vT C
′

and v satisfies q �t′ (w.r.t. W).

Algorithm 4.7 encodes the satisfaction definition while Algorithm 4.5 gathers all the
answers by checking if the associated labels strings satisfy conditions of item 3 in the above
definition. Considering that the root matching witness collects all possible candidates
and that each possible candidate is an answer for qL, if it satisfies the in-between query
w.r.t. W, implies there exists a match that maps x to that individual.

4.3 Correctness and complexity

The following theorem defines the correctness of Algorithm 4.5 that is indeed retrieving
all answers for a given problem instance and an in-between query.
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Algorithm 4.7: IsAnswer
Input: qt 1treeCQ, t root of qt, w

tp
v matching witness for parent of t, W set of all

matching witnesses
Output: true, if there exists v ∈ valuest in w

tp
v s.t. v satisfies qt w.r.t. W,

false otherwise
1 if valuet == [ε] in wtpv then
2 return false ;
3 end
4 is_answer := true ;
5 for vt ∈ valuest do
6 if CheckRolesAndConcepts(Q |{tp,t},labels(t 7→ vt))== false then
7 continue;
8 else
9 if t is a leaf and wtvt

∈W then
/* we matched the whole sub-tree */

10 return true ;
11 end
12 checkedAllChildren := false ;
13 while is_answer == true and checkedAllChildren == false do
14 childt := {t′ | there exists R(t, t′) ∈ q}/* children of t in qt

*/
15 foreach t′ ∈ childt do
16 is_answer := IsAnswer(wtvt

,t′, Q �t′,W) ;
17 if is_answer == false then
18 break foreach /* vp is not a match */
19 end
20 if t′ is last element of childt then
21 checkedAllChildren := true ;
22 end
23 end
24 end
25 if is_answer == true and checkedAllChildren == true then
26 return true;
27 end
28 end
29 end
30 return is_answer;
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Theorem 1 (Correctness of Constructing MatchingWitnesses). Given aDL-LiteR
KB K, qL, qU 1treeCQs, let W be the set of matching witnesses constructed by Algorithm
4.1 for K, qL and qU. For each in-between 1treeCQ q, qL FT q FT qU, the following holds:

cert(q,K) = {a | a ∈ Ind(A) s.t. a satisfies q (w.r.t.W)}.

Proof. Let q be an arbitrary in-between query as above, and let

ansW(q,K) = {a | a ∈ Ind(A) s.t. a satisfies q (w.r.t.W)}.

"⊆" To prove that: for q cert(q,K) ⊆ ansW(q,K)
Let a ∈ cert(q,K) arbitrarily chosen. Then,

(1) T,A � q(a) which implies that there exists a match π s.t. IT,A �π q and π(x) = a.

To prove: a satisfies q w.r.t. W.

(2) Since q FT qU we get that for each query atom R(t1, t2) ∈ q there exists R′(t1, t2) ∈
qU s.t. R′ vT R, and for each query atom A(t) ∈ q there exists A′(t) ∈ qU s.t.
A′ vT A.

Claim 1. For each pair of terms t, t′ ∈ q s.t. there exists some R(t, t′) ∈ q the following
holds:

π(t′) ∈MCt7→π(t)(t′)

Proof. In order to prove Claim 1, we need to follow the definition of matching candidates
and to reason by cases.

1. if t′ ∈ Ind(A) then in this case MCt 7→π(t)(t′) = {t′ | T, A � R(π(t), t′) s.t. R′ vT R
or R vT R

′ for some R′(t, t′) ∈ qU}.
Given the construction of IT,A and (1) we get that π(t′) = t′ and for eachRq(t, t′) ∈ q
we have IT,A � Rq(π(t), t′). Moreover, it follows from (2) that for some R′(t, t′) ∈ qU
we have R′ vT Rq. Thus π(t′) ∈MCt7→π(t)(t′).

2. if π(t′) := π(t)R then from construction of IT,A it must be that R ∈MSrole(π(t),
π(t′),K) and if π(t) ∈ Ind(A) then T � ∃R(π(t)), otherwise if π(t) := wS ∈
Anon_Obj then T � ∃S− v ∃R. Moreover, also from construction of IT,A it
follows that R ∈ MSrole(π(t), π(t′),K). Given (1) we obtain R vT Rq, for each
Rq(t, t′) ∈ q. Finally, using (2) we get that there exists some R′(t, t′) ∈ qU s.t.
R′ vT R vT Rq. Now, using Definition 12, it follows that π(t′) ∈MCt7→π(t)(t′).

3. if π(t) := π(t′)R then using (1) follows that T � R v Rq for each Rq(t, t′) ∈ q.
From (2) and Definition 12 it follows that π(t′) ∈MCt7→π(t)(t′).

4. if π(t), π(t′) ∈ Ind(A) then from (1), (2) and Definition 12 follows that π(t′) ∈
MCt7→π(t)(t′).
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Claim 2. For each pair of terms t, t′ ∈ q s.t. there exists some R(t, t′) ∈ q, labels(t 7→
π(t), t′ 7→ π(t′)) := 〈RLabels,CLabels〉 satisfy the following conditions:

a) for each Rq(t, t′) ∈ q there exists R ∈ RLabels s.t. R vT Rq and

b) for each Aq(t′) ∈ q there exists A ∈ CLabels s.t. A vT Aq.

Proof. Claim 2 follows immediately from Definition 13 since all cases imply that whenever
R ∈ RLabels we have IT,A � R(π(t), π(t′)) and R ∈MSrole(π(t), π(t′),K) (even the cases
when π(t′) ∈ Anon_ObjqU since π(t′) ∈ MCt7→π(t)(t′) ) s.t. for some R′(t, t′) ∈ qU,
R′ vT R holds. From (2) we get that there exists some Rq(t, t′) ∈ q s.t. R′ vT Rq. Using
definition of MSrole (see Definition 11) and (1) we can conclude that condition a) holds.
Analogously, we can conclude that condition b) holds.

Claim 3. For each t ∈ term(q), wtπ(t) ∈W.

Proof. For proving Claim 3 we will make use of the construction of matching witnesses
algorithm. Algorithm 4.1 traverses the entire tree-structure of qU starting from root x.
Since π(x) ∈ ans(qL,K), then wx

π(x) ∈W. Next, Algorithm 4.2 iterates over each child t
of x and using Claim 1 we get that π(t) ∈ valuest (of wx

π(x)). Hence w
t
π(t) ∈W and so

on until the last level in (the tree-structure of) qU is reached.

Claim 4. For each t ∈ term(q), π(t) satisfies q �t w.r.t. W.

Proof. From (2) and the definition of q �t, we conclude that q �tFT qU �t. Proof by
induction on the structure of Definition 15.

Induction base (IB): t is a leaf in the tree-structure of q �t. Then either t = x or
t 6= x, from Claim 3 we get that wtπ(t) = 〈〉 ∈W.

Induction hypothesis (IH): For each t′ child of t in (the tree-structure of) q �t, π(t′)
satisfies q �t′ w.r.t. W.

Induction step (IS): to prove that π(t) satisfies q �t w.r.t. W.

a) If t = x then given (1) and definition of labels(t 7→ π(t)) implies that there
exists C ∈ labels(t 7→ π(t)), specifically C ∈ MSconcept(π(t),K), s.t. C vT Cq for
each Cq(t) ∈ Q. Moreover, using (2), we get that there exists some C ′ ∈ qU s.t.
C ′ vT C vT Cq. Hence, using now IH, we get that π(t) satisfies q �t w.r.t. W.

b) if t 6= x then from Claim 3 follows that wtπ(t) ∈W and using Claim 1 we get that
π(t′) ∈ MCt7→π(t)(t′), thus π(t′) ∈ valuest (of wtπ(t)). Moreover, from Claim 2 it
follows that labels(t 7→ π(t), t′ 7→ π(t′)) satisfies conditions in Definition 15. Lastly,
from IH follows that π(t) satisfies q �t w.r.t. W.
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Using Claim 4 for x we conclude that π(x) := a satisfies q w.r.t. W. Since a arbitrary
chosen, we can now conclude that cert(q,K) ⊆ ansW(q,K).

"⊇" To prove that: cert(q,K) ⊇ ansW(q,K).
Let a ∈ ansW(q,K) arbitrarily chosen.

To prove that a ∈ cert(q,K) holds.

(3) a satisfies q w.r.t. W implies that:

i. a ∈ valuesx s.t. for each Cq(x) ∈ q there exists C ∈ labels(x 7→ a) s.t.
C vT Cq

ii. if x is a leaf then wx
a := 〈〉 ∈W

iii. for each t child of x there exists vt ∈ valuest (of wx
a ) s.t. for each Rq(x, t) ∈ q,

resp. Cq(t) ∈ q there exists R ∈ RLabels, resp. C ∈ CLabels (in labels(x 7→
a, y 7→ vy) ) s.t. R vT Rq, resp. C vT Cq, and vt satisfies q ↓t w.r.t. W .

Notation 3. For each pair t, t′ ∈ term(q) s.t. there exists Rq(t, t′) ∈ q, let vt, vt′ ∈
Ind(A) ∪ Anon_Obj be such that vt satisfies q �t w.r.t. W and vt′ is the value in
valuest′ of wtvt

for which the labels conditions hold and vt′ satisfies q �t′ . Whenever vt
and vt′ are in the above described situation, we write vt ; vt′ .

Definition 16. For the ease of notation, we define a function level on terms in q which
retrieves the term’s level number in the tree-structure of q, with level(x) = 0.

Claim 5. For each t, t′ ∈ term(q) s.t. there exists some Rq(t, t′) ∈ q, if vt ; vt′ then
IT,A �π q |{t,t′}, where π := [t 7→ vt, t

′ 7→ vt′ ].

Proof. For proving Claim 5 we distinguish two cases:

a) if t = x then vt ∈ ans(qL,K). In this case labels(t 7→ vt) := {C | C ∈
MSconcept(vt,K) s.t. for some C ′(t) ∈ qU, C

′ vT C or C vT C ′}. Using the
definition of MSconcept(vt,K) we get that for each C ∈ labels(t 7→ vt), IT,A � C(vt)
and since for each Cq(t) ∈ q there exists C ∈ labels(t 7→ vt) s.t. C vT Cq (because
vt satisfies q �t), we get that IT,A � Cq(vt), thus IT,A �π q |{t}, with π := [t 7→ vt].

b) if t 6= x then Let tp be the parent of t in the tree-structure of q. From (3) we
get that there exists vtp ; vt. Also, since for each Cq(t) ∈ q there exists some
C ∈ labels(tp 7→ vtp , t 7→ vt) s.t. C vT Cq. From Definition 13 we get that
IT,A � C(vt), since C ∈ MSconcept(vt,K). Hence IT,A � Cq(vt) for each Cq(t) ∈ q.
Thus IT,A �π q |{t}, with π := [tp 7→ vtp , t 7→ vt].
Let t′ be a child of t. Now, vt satisfies q �t w.r.t. W (from vtp ; vt) thus
there must exists some v′t ∈ valuest′ of wtvt

s.t. for each Rq(t, t′) ∈ q there exists
R ∈ labels(t 7→ vt, t

′ 7→ vt′) s.t. R vT Rq, respectively for each Cq(t′) ∈ q there
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exists C ∈ labels(t 7→ vt, t
′ 7→ vt′) s.t. C vT Cq and moreover, vt′ satisfies q �t′

w.r.t. W. Hence vt ; vt′ .

Once again, since each R ∈ RLabels and each C ∈ CLabels (of labels(t 7→ vt, t
′ 7→ vt′))

are contained in MSrole(vt, vt′ ,K), respectively MSconcept(vt′ ,K) (even the case
when vt′ ∈ Anon_Obj because vt′ ∈ MCt7→vt(t′)). This implies that IT,A �
Rq(vt, vt′) and IT,A � Cq(vt′), for each Rq(t, t′) ∈ q, respectively each Cq(t′) ∈ q.
Hence, we get that whenever vt ; vt′ , IT,A �π q |{t,t′} with π := [t 7→ vt, t

′ 7→ vt′ ]
holds.

Definition 17. Let γ be a mapping for each term t ∈ term(q) to a value in Ind(A) ∪
Anon_Obj constructed as follows:

a) if t = x then γ(t) = a

b) if there exists tp parent of t in (the tree-structure of) q then if γ(tp) ; vt where
vt ∈ valuest (of w

tp
vtp

) then γ(t) = vt

Remark 4. From (3) we conclude that γ is defined on each term t ∈ term(q).

Claim 6. For each term t ∈ term(q), IT,A �γ q �t.

Proof. Let t be an arbitrarily chosen term of q and n be the number of levels in q.We
prove by induction on level(t).

Induction base (IB): level(t) = n − 1 thus t is a leaf in the tree-structure of q,
therefore wtγ(t) := 〈〉 ∈W.

a) if t = x then γ(t) = a. Since γ(t) satisfies q �t then for each Cq(t) ∈ q there
exists C ∈ labels(t 7→ γ(t)) s.t. C vT Cq. Since C ∈MSconcept(vt,K) we get that
IT,A � C(γ(t)), therefore IT,A � Cq(γ(t)). Thus IT,A �γ q �t.

b) if t 6= x then there exists tp parent of t (in the tree-structure of) q. From Remark
4 we get that there exists γ(tp) s.t. γ(tp) satisfies q �tp w.r.t. W. Therefore
there exists γ(t) ∈ valuest (of w

tp
γtp) s.t. γ(tp) ; γ(t). Using Claim 5 we get that

IT,A �γ q | {tp, t}, hence IT,A �γ q |{t} and since t is a leaf we get IT,A �γ q �t.

Induction hypothesis (IH): for each t′ child of t in (the tree-structure of) q,
IT,A �γ q �t′ .

Induction step (IS): Following the same reasoning as in IB either t = x or t 6= x
we get that IT,A �γ q |{t}. Once more from Remark 4 we conclude that for each child t′
of t in (the tree-structure of) q there exists γ(t′) s.t. γ(t) ; γ(t′). Using Claim 5 we get
that IT,A �γ q |{t,t′}. Now, using IH we get that IT,A �γ q �t.
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Using Claim 6 when t = x we get that IT,A �γ q. Since a ∈ ansW(q,K) arbitrarily chosen
and since γ is a match for q and it was constructed based on (3) we can now conclude
that whenever a ∈ ansW(q,K) then a ∈ cert(q,K). Therefore ansW(q,K) ⊆ cert(q,K)
holds.

Since both ansW(q,K) ⊆ cert(q,K) and ansW(q,K) ⊇ cert(q,K) hold we obtain
that ansW(q,K) = cert(q,K).
q is an arbitrarily chosen in-between query, therefore we can now claim that Theorem 1
holds.

4.3.1 Complexity Analysis

In this section we provide the complexity of constructing the entire set of matching
witnesses and the complexity of the query answering procedure that makes use of the
matching witnesses. The results are not surprising since trying to store information
for all matches in the canonical model of every in-between query intuitively sounds like
an exponential task, given that there can be exponentially many in-between queries.
This pre-compilation represents the trade-off for providing a tractable (in the size of the
input) query answering procedure, since it is known that query answering in DL-LiteR is
NP-hard.

Complexity of Constructing the Matching Witnesses Set

It is easy to observe that given a DL-LiteR KB and two 1treeCQs as qL and qU, Algorithm
4.1 will create exponentially many matching witnesses. Specifically, by iterating over
each level in the tree-structure of qU, for each match of the parent tp, the child t can
be matched in |A|+ l + 1 ways, where |A| is the size of the ABox, l = |{R(tp, t) ∈ qU}|
representing the maximal number of anonymous objects that can be created for t, which
is liniar in size of qU, and 1 represents the case when t can be matched to the predecessor
of tp. Let k be the number of children of t in qU. Given the construction of a matching
witness, it follows that

size(wtvt
) ≤ k ∗ ((|RLabels + CLabels|) ∗ (|A|+ l + 1))

where |RLabels + CLabels| represents the size of the associated label string, which is liniar
in K. Thus, we obtain that any matching witness is polynomial in the size of K and qU.

Since the tree-structure of qU has n levels, it follows that at level i, 1 ≤ i ≤ n, the
number of matching witnesses created so far is bounded by (|A| + l + 1)i since there
are already at most (|A|+ l + 1)(i−1) matches for the parent and for each one there can
be (|A|+ l + 1) matching candidates. Thus, there can be exponentially many matching
witnesses in the depth of qU.
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Complexity of Query Answering based on Matching Witnesses

Algorithm 4.5, for input W and in-between query q, basically iterates over all a ∈
cert(qL,K) and collects only those that satisfy q w.r.t. W.

We analyze the complexity of the decision problem for all possible answers. Precisely,
for each a, the algorithm takes from the wroot the associated labels string to check if the
concepts constraints are satisfied and then calls Subfunction 4.7 to verify if for each child
t of x, in (the tree-structure of) q, there exists v ∈ valuest (of wx

a ) such that v satisfies
q �t w.r.t W. Algorithm 4.7 is a recursive procedure, which can be used as an alternating
procedure, to determine satisfaction for each term t 6= x. Hence, it is possible to make
use of alternation, to correctly and easily determine the time complexity for the task at
hand [CKS81].

Since for each term t in q, the algorithm needs to store locally only the matching
witness of the parent, the relevant atoms from the query and the current value from
valuest, it can be done using only LOGSPACE working memory, hence we conclude
that Algorithm 4.5 runs in ALOGSPACE. From the results of [CKS81], it follows that
ALOGSPACE = PTIME, therefore our query answering procedure runs in polynomial
time, in the size of W and q.

However, since W is exponentially large, we obtain that the query answering procedure
measured in the KB K, qL, qU and the in-between query q runs in EXPTIME. This result
is not at all surprising, since query answering in DL-LiteR is known to be intractable in
combined complexity [ACKZ09].
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CHAPTER 5
Query Modifications

In this chapter, we show how the information stored in a matching witness can be used
to explore our data. Given a query, we identify interesting variations of it that could
be relevant to a user. For example, we identify the minimal ways to modify the current
query so that it provides more or less answers. We are also interested in identifying all
the common properties that our set of answers has, that is, the possible additions to our
query that, while making it syntactically more restrictive, would still retrieve the same
set of answers. In the experiments in the next section, we will illustrate the usefulness of
these query modifications on several examples.

5.1 Construction of Maximal Queries

Intuitively, the set of constructed matching witnesses contains information regarding how
much of the upper-bound query we have matched in the canonical model, so that some
a ∈ Ind(A) is an answer. Hence we can read from the witness, for each individual a that
is a possible answer, the set of maximal queries in the family for which a is a match. We
will see that these maximal queries provide the key information to suggest the user the
desired query modifications.

Before computing these maximal queries, we remark that there can be multiple such
maximal queries for the same individual a.

Definition 18 (Incomparable queries). Two 1treeCQs q1, q2 are said to be incom-
parable iff q1 6FT q2 and q2 6FT q1.

We are going to give an example of why there can exist maximal incomparable queries.
Suppose that TBox T is such as in Example 3.1 together with the following axioms:

Article v Publication Book v Publication
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Now, considering the ABox A, represented in graph mode in Subfigure 5.1a, it is
clear that query

q(x) : −Professor, authorPublication(x, y1),Book(y1),Article(y1)

that has its primal graph as in Subfigure 5.1b, does not have a satisfiable match w.r.t.
〈T,A〉.

However, there exists subqueries of q, e.g. Subfigure 5.1c and Subfigure 5.1d for which
there are satisfiable matches w.r.t. the KB.

P1

Professor

B1

Book
A1

Article
authorPublication authorPublication

(a) ABox

x
Professor

y1 Book, Article

authorPublication

(b) Query q(x)

x
Professor

y1 Article

authorPublication

(c) Subquery q1(x)

x
Professor

y1 Book

authorPublication

(d) Subquery q2(x)

Figure 5.1: Example of incomparable queries

Definition 19 (t-Maximal Query). Let q be a 1treeCQ rooted in t, where t ∈
vars(qU), s.t. q FT qU �t. Query q is said to be t-maximal for a ∈ Ind(A)∪Anon_Obj
iff:

(1) a satisfies q �t w.r.t. W, and

(2) for each q′ �t s.t. q �t FT q
′ �t FT qU �t, a does not satisfy q′ �t w.r.t. W.

Suppose that qU is the query represented in 5.1b. Then, queries 5.1c and 5.1d are
both x-maximal for P1 and they are incomparable considering the above presented KB.

In what follows, we assume fixed upper- and lower-bound queries qL and qU, and use
W to denote the set of all matching witnesses constructed in previous Chapter 4. We use
ans(q,W) to denote the answers for q over W, which are the individuals a such that a
satisfies q w.r.t. W (see Theorem 1).

Now, we will provide a method of constructing these x-maximal queries for some
individual a ∈ ans(qL,W).
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Algorithm 5.1: constructMaxQueries
Input: b ∈ Ind(A) ∪Anon_Obj, t ∈ term(qU), W
Output: the set of t-maximal queries for b

1 qt := {C(t) | C ∈ labels(t 7→ b)} ;
2 Qt = {} ;
3 S := {} ;
4 foreach t′ s.t. valuest′ 6= [ε] in wtb do
5 Qt

′ := {} ;
6 foreach v ∈ valuest′ do
7 qvt′ := {R(t, t′) | R ∈ labels(t 7→ b, t′ 7→ v)} ;
8 foreach q ∈ constructMaxQueries(v,t′,W) do
9 Qt

′ := Qt
′ ∪ {qvt′ ∪ q} ;

10 end
11 end

/* discard the queries which are not maximal */
12 incomp := false ;
13 while incomp == false do
14 incomp := true ;
15 foreach q1, q2 ∈ Qt

′ do
16 if q1 FT q2 then
17 Qt

′ := Qt
′ \ {q1} ;

18 incomp := false ;
19 else
20 if q2 FT q1 then
21 Qt

′ := Qt
′ \ {q2} ;

22 incomp := false ;
23 end
24 end
25 end
26 end
27 foreach q′ ∈ Qt′ do
28 Qt = Qt ∪ {qt ∪ q′} ;
29 end
30 S := S ∪ {Qt} ;
31 Qt = {} ;
32 end
33 if S == {} then
34 Qt = Qt ∪ qt ;
35 S = S ∪Qt ;
36 end

/* combine all possible maximal queries of the children */
37 combine(S, Qt,{},0) ;
38 return Qt ;
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Algorithm 5.2: combine
Input: S = {Q1, . . . , Qn} set of sets of queries, Q collects the combined queries, q

query to be constructed, k the index of current set in S
1 if k == n then
2 Q := Q ∪ {q} ;
3 else
4 foreach query q′ ∈ Sk do
5 q := q ∪ q′ ;
6 combine(S,Q,q,k + 1)
7 end
8 end

Algorithm 5.3: answersMaxQueries
Input: W the set of matching witnesses
Output: H the set of pairs of the form 〈a,Qa〉, where a ∈ Ind(A) s.t. wx

a ∈W
and Qa the set of x-maximal queries for a

1 H := { } ;
2 foreach a s.t. wx

a ∈W do
3 Qa := constructMaxQueries(a, x, W) ;
4 H := H ∪ {〈a,Qa〉};
5 end

5.1.1 Constructing x-maximal Queries

Algorithm 5.3 iterates over each possible answer of the 1treeCQ family and creates for
each such individual a all the x-maximal queries. The recursive Algorithm 5.1 does the
actual job, since given the match x 7→ a, it iterates over each child term t and over each
matching candidate for t in wx

a creating recursively all t-maximal queries.
Only the maximal queries are returned, since lines 17− 30 make sure to delete the

queries formed that are subqueries of some other query. Lastly, since for each child we
have constructed all the maximal queries, we need to combine all possibilities in order to
obtain all x-maximal queries for a.

Solution Correctness

Theorem 2 (t-maximal Queries Correctness). Let a be such that wax ∈ W, arbi-
trarily chosen. Then,

{q | q is x-maximal for a} = constructMaxQueries(a,x,W)

Proof. "⊇" Let q be a query constructed by constructMaxQuery(a,x,W).
We prove by induction on the level of t in (the tree-structure of) q the following claim:
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Claim 7. For each t ∈ term(q) and v ∈ valuest such that q �t∈ constructMaxQuery(v, t,W),
q �t is t-maximal for v.

Proof. Induction base (IB): t is a leaf in (the tree-structure of) q. Then wtv = 〈〉.
Given the construction of a matching witness, either t is a leaf in (the tree-structure of)
qU, or for each child t′ in qU, MCt7→v = ∅.

That means, when t is mapped to v, neither of its children have a match. It follows
that q �tFT qU �t since in this case q �t= {C(t) | C ∈ labels(t 7→ v)}.

labels(t 7→ v) gathers all most specialized concept names for v w.r.t. qU, meaning
that if there exists C ′ vT C, for some C ∈ labels(t 7→ v) it follows that IT,A 2 C ′(v).
Hence we obtain that q �t is t-maximal for v.

Induction hypothesis (IH): For each t′ child of t in (the tree-structure of) q, for each
v′ ∈ valuest′ of wtv such that q �t′∈ constructMaxQueries(t′, v′,W), it holds that q �t′
is t′-maximal for v′.

Induction step (IS): To prove that q �t is t-maximal for v.
Since Qt is the returned set of queries of constructMaxQueries(v, t,W) we get that

q �t∈ Qt. From IH it follows that for each t′ such that valuest′ 6= [ε] in wtv there exists
v′ ∈ valuest′ such that q �t′ is t′-maximal for v′. Thus Qt′ (in Algorithm 5.1) will contain
qv
′
t′ := {R(t, t′) | R ∈ labels(t 7→ v, t′ 7→ v′)} ∪ q �t′ (lines 8− 10).

If there exists other queries in Qt′ , lines 12− 26 makes sure that Qt′ contains only
incomparable such queries.

Since q �t′ is t′-maximal and since labels(t 7→ v, t′ 7→ v′) contains most specialized
role names for v and v′, we get that qv′t′ is not deleted from Qt

′ in this process and that
Qt
′ will contain only incomparable queries. Therefore,

(1) for each t′ such that valuest′ 6= [ε] and for each v′′ 6= v′ we get that

� the constructed qv′′t′ FT q
v′
t′ , or

� qv
′′
t′ and qv′t′ are incomparable.

qv
′
t′ together with the other incomparable queries in Qt′ are extended by adding atoms

{C(t) | C ∈ labels(t 7→ v)} and it is collected firstly by Qt (a set of queries), and then by
S (a set of sets of queries), which collects the set of queries constructed for each t′ (lines
27− 30). Now, taking into account (1) and the fact that associated labels string contain
the most specialized concept names satisfied by v, we conclude that

(2) each such Qt constructed for each t′ will contain only incomparable queries.

Lastly, from the method combine we get that

q �t= {C(t) | C ∈ labels(t 7→ v)}
⋃

t′s.t.valuest′ 6=[ε]
qv
′
t′

Using (2) and the construction of the associated labels string (see Definition 13) we
obtain that q �t is t-maximal for v.
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We can use now Claim 7 for x and a, since wx
a ∈ W, hence we obtain that q is

x-maximal for a and x.

"⊆" Let q be an arbitrarily x-maximal query for a.
We will prove that q ∈ constructMaxQueries(a,x,W).

Claim 8. For each t ∈ term(q) and for each v such that q �t is t-maximal for v,
q �t∈ constructMaxQueries(v, t,W).

We will provide a proof of the above defined claim by induction on the level of t in
(the tree-structure of) q.

Proof. Induction base (IB): t is a leaf in q. Provided that q �t is t-maximal for
v the following must hold: for each C(t) ∈ q �t, C ∈ MSconcept(v,K). Therefore,
C ∈ labels(t 7→ v).

Given the construction of the matching witnesses and the fact that t is a leaf we
get that valuest = [ε]. Lines 33− 36 in constructMaxQueries(v, t,W) make sure that
q �t∈ constructMaxQueries(v, t,W) since in this case the method combine will return
only qt.
Induction hypothesis (IH): For each t′ child of t in (the tree-structure of) q and for
each v′ such that q �t′ is t′-maximal for v′, it holds that

q �t′∈ constructMaxQueries(v′, t′,W)

Induction step (IS): To prove that q �t∈ constructMaxQueries(v, t,W).
From IH for each t′ child of t in (the tree-structure of) q and v′ such that q �t′ is

t′-maximal for v′, implies that v′ satisfies q �t′ w.r.t. W and since v satisfies q �t we get
that v′ ∈ valuest′ ∈ wtv. From lines 4− 32 in constructMaxQueries(v, t,W) and IH we
get that

qv
′
t′ := {R(t, t′) | R ∈ labels(t 7→ v, t′ 7→ v′)} ∪ q �t′

Given that q �t contains q �t′ and q �t is t-maximal for v, we can conclude that qv′t′ will
not be deleted in the incomparable loop (lines 12−26). Now using again the fact that q �t
is t-maximal for v and q �t′ is t′-maximal for v′, we can conclude that for each R(t, t′) ∈ q,
R ∈ MSrole(v, v′,K), respectively for each C(t) ∈ q, C ∈ MSconcept(v,K), therefore
we obtain that each q �t|{t,t′} ∪q �t′∈ Qt in algorithm constructMaxQueries(v, t,W).
Lastly since S gathers, for each t′, {C(t) | C ∈ labels(t 7→ v)} ∪ qv′t′ , the method combine
will create all possible combinations. Since

q �t= {C(t) | C ∈ labels(t 7→ v)}
⋃
t′

qv
′
t′

we can conclude that q �t∈ constructMaxQueries(v, t,W).

Applying now Claim 8 for a,x we obtain that q ∈ constructMaxQueries(a,x,W).
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Complexity Analysis for x-maximal Queries Construction

In general for some individual a, over a DL-LiteR KB there can be exponentially many
such x-maximal queries since there can be exponentially many incomparable matches for
a in the canonical model. The set of matching witnesses stores all these matches, while
Algorithm 5.3 explores all these matches for constructing the maximal queries.

Moreover, the method combine (see Algorithm 5.2) for level i in qU computes the
n-fold Cartesian product over the maximal queries sets of the children on level i+ 1.

Therefore, the Algorithm 5.1 which constructs all x-maximal queries for some indi-
vidual runs in EXPTIME.

5.2 Query Modifications

In this section we rely on the x-maximal queries constructed above, to compute modified
versions of a query in a 1treeCQ family that can allow a user to flexibly explore the query
answers.

Below we use a notion of intersection between queries that also takes into account
the concept and role hierarchy, similarly as the subquery relation in Definition 9.

Definition 20 (Intersection). Given two 1treeCQs q1, q2 we define the intersection
of q1 and q2 w.r.t. T as follows:

q1 ∩T q2 = {C(t) | C(t) ∈ q1 or C(t) ∈ q2, s.t. there exists C1(t) ∈ q1, C2(t) ∈ q2 and
C1 vT C,C2 vT C hold }∪

{R(t, t′) | R(t, t′) ∈ q1 or R(t, t′) ∈ q2, s.t. there exists R1(t, t′) ∈ q1, R2(t, t′) ∈ q2 and
R1 vT R,R2 vT R hold }

Intuitively, the intersection of two queries keeps those query atoms that are implied
by some atom in each query.

Example 4. Let’s consider the following two 1treeCQs created using the TBox T from
Example 3.1.

q1(x) : −Professor(x), teacherOf(x, y) q2(x) : −AssociatedProfessor(x),worksFor(x, y)

Now, suppose that AssociatedProfessor vT Professor holds for T.
Then, q1 ∩T q2 = {Professor(x)}

Additionally to this special notion of intersection, we use below the union and
difference of queries, but these are defined as the standard set theoretic operations on
their atoms.

Definition 21 (Union, Difference). Given two 1treeCQs q1, q2 we define the union
of q1 and q2 w.r.t. T as follows:

q1 ∪T q2 = {C(t) | C(t) ∈ q1( or ∈ q2)} ∪ {R(t, t′) | R(t, t′) ∈ q1( or ∈ q2)}
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Given two 1treeCQs q1, q2 we define the difference between q1 and q2 w.r.t. T

as follows: q1 \T q2 = {C(t) | C(t) ∈ q1 and C(t) /∈ q2} ∪ {R(t, t′) | R(t, t′) ∈ q1 and
R(t, t′) /∈ q2}

Specializations and Generalizations

We use the term query specialization to refer to any superquery of a given q in a 1treeCQ
family. Indeed, superqueries ‘specialize’ the query by requiring additional or more specific
properties to hold. We further distinguish between two kinds of specializations: the ones
that retrieve the same answers as the given q, and the ones that retrieve strictly less
answers.

Definition 22 (Neutral Specialization). Let q1 be a 1treeCQs. Any q2 such that
q1 FT q2 and ans(q2,W) = ans(q1,W) is said to be a neutral specialization of q1.

Remark 5. Trivially, any in-between 1treeCQ is a neutral specialization of itself.

Definition 23 (Strict Specialization). Let q1 be a 1treeCQs. Any q2 such that
q1 FT q2 and ans(q2,W) ( ans(q1,W), with ans(q2,W) 6= ∅ is said to be a strict
specialization of q1.

Conversely, any subquery of a given 1treeCQ q is less constrained than q, and it can
retrieve the same set of answers as q or strictly more answers. We are interested in those
subqueries that retrieve strictly more answers.

Definition 24 (Generalization). Let q1 be a 1treeCQs. Any q2 such that q2 FT q1
and ans(q1,W) ( ans(q2,W) is a generalization of q1.

5.2.1 Maximal Neutral Specializations

The first query modification problem we consider is to construct the maximal neutral
specializations of a query. Intuitively, the maximal neutral specialization includes all
the additional constraints that we can add to the query without modifying its answers,
and hence it makes explicit all the properties that are common to all the individuals in
the query answer. It can be seen as a way to provide the user with the most complete
information about the query answers.

Definition 25 (Maximal Neutral Specialization). Let q be an in-between 1treeCQ.
A maximal neutral specialization for q w.r.t. ans(q,W) is a neutral specialization
q′ and for each superquery q′′ such that q′ FT q

′′ we have ans(q′′,W) 6= ans(q,W).

Algorithm 5.4 constructs a set of neutral specializations for a given in-between query,
by computing the intersection of all possible combinations of the superqueries of the given
1treeCQ that are relevant in preserving the same set of answers. Not all the constructed
specializations are maximal but, importantly, all the maximal ones are constructed.
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Algorithm 5.4: neutralSpecialization
Input: W the set of matching witnesses, q in-between query
Output: Q the set of neutral specializations of q

1 S := {};
2 ans(q,W) := getAnswers(q,W) ;
3 foreach a ∈ ans(q,W) do
4 Qa := constructMaxQueries(a, x, W) ;
5 S := S ∪ {Qa};
6 end
/* the set of neutral specializations of q */

7 Q := ∅;
/* compute intersection of each set in the Cartesian

product of the sets in S */
8 intersect(S,Q,q,∅,0);
9 return Q;

Algorithm 5.5: intersect
Input: S = {Q1, . . . , Qn} set of sets of queries, Q collects the neutral

specializations, q in-between query, qinter intersection query, k the index of
current set in S

1 if k == n then
2 Q := Q ∪ {qinter} ;
3 else
4 foreach query q′ ∈ Qk do
5 if q FT q

′ then
6 if qinter == ∅ then
7 qinter := q′;
8 else
9 qinter := qinter ∩T q′ ;

10 end
11 intersect(S,Q,q,qinter,k + 1)
12 end
13 end
14 end
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Algorithm 5.6: maxNeutralSpecialization
Input: W the set of matching witnesses, q in-between query
Output: Q the set of maximal neutral specializations of q

1 Q := neutralSpecialization(q,W);
2 foreach q1 ∈ Q do
3 foreach q2 ∈ Q do
4 if q1 6= q2 and q1 FT q2 then
5 Q := Q \ {q1};
6 end
7 end
8 end
9 return Q;

To obtain the maximal neutral specializations, it is then enough to eliminate the ones
that are not maximal, as done in Algorithm 5.6.

We now prove that the algorithm is correct.

Theorem 3. For any in-between query q the following holds:

{q′ | q′ maximal neutral specialization of q} = maxNeutralSpecialization(q,W)

Proof. In order to prove theorem 3 we need to prove the following propositions:

(a)
{q′ | q′ neutral specialization of q} ⊇ neutralSpecialization(q,W)

(b)

{q′ | q′ maximal neutral specialization of q} ⊆ neutralSpecialization(q,W)

(c)

{q′ | q′ maximal neutral specialization of q} = maxNeutralSpecialization(q,W)

"(a)" Let q′ ∈ neutralSpecialization(q,W) arbitrarily chosen. To prove that: q′ is
a neutral specialization of q. Let ans(q,W) = {a1, . . . an}. q′ =

⋂
T qai , where q FT qai

and qai is x-maximal for ai, 1 ≤ i ≤ n.

Claim 9. For each q1, q2 such that q FT q1 and q FT q2 it holds that q FT q1 ∩T q2.

Proof. From Definition 20 we get that q1 ∩T q2 contains only concept atoms such as
C(t) ∈ (q1 or q2) and there exists C1(t) ∈ q1 and C2(t) ∈ q2 such that C1 vT C and
C2 vT C.

Now from the subquery definition we get that for each C(t) ∈ q there must exist
C1(t) ∈ q1 and C2(t) ∈ q2 such that C1 vT C and C2 vT C. Hence, clearly the concept
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axiom of the subquery definition holds in case of q1 ∩T q2. Using the same reasoning for
role atoms we conclude that indeed q FT q1 ∩T q2.

Using Claim 9 in case of q′ ∈ Q we obtain that q FT q
′.

To prove that ans(q,W) ⊆ ans(q′,W). Let ai ∈ ans(q,W) arbitrarily chosen. Thus
there is qai such that qai is x-maximal for ai, and q FT qai . Evidently ai ∈ ans(qai).
Since any other qaj , j 6= i, 1 ≤ j ≤ n is a superquery of q, we get that ai ∈ ans(qaj ,W).
Now given the definition of the query intersection, we get that ai ∈ ans(qai ∩T qaj ),
1 ≤ j ≤ n, j 6= i. Hence ai ∈ ans(q′,W) and since ai was arbitrarily chosen we can
conclude that:

(i) ans(q,W) ⊆ ans(q′,W).

(ii) Trivially, we obtain the other direction ans(q′,W) ⊆ ans(q,W) since q FT q
′.

Thus using (i) and (ii) we get that ans(q′,W) = ans(q,W), therefore q′ is a neutral
specialization of q.

q′ is arbitrarily chosen, so we can now conclude that (a) holds indeed.

"(b)" Let q′ be an arbitrarily chosen maximal specialization of q and let ans(q,W) =
{a1, . . . , an}.

Assume that q′ /∈ neutralSpecialization(q,W). Let {a1, . . . an} = ans(q,W). Given
that neutralSpecialization(q,W) computes a set of queries such that:

Q = {
⋂
T

qai | q FT qai and is x-maximal for a, 1 ≤ i ≤ n}

Using (a) we get that any q′′ ∈ Q is a neutral specialization of q.
Particularly we are interested in queries q′′ ∈ Q that fulfill such condition for each

q∗ ∈ Q, q∗ 6= q′′ either:

(i) q∗ FT q
′′ or

(ii) q∗ 6FT q
′′ and q′′ 6FT q∗ holds.

Let q′′ ∈ Q be such query. Therefore there exists {qa1 , . . . qan}, where q FT qai and
qai is x-maximal for ai and x, 1 ≤ i ≤ n, such that q′′ =

⋂
T qai .

Therefore, for each q∗ such that qai FT q∗ it holds that ai /∈ ans(q∗,W).
Now, making use of the "∩T" definition and a small abuse of the x-maximality

definition, we can observe that:

(1) q′′ is x-maximal for {a1, . . . , an}, meaning that for each q∗ such that
⋂

T qai FT q∗,
it holds that {a1, . . . an} * ans(q∗,W).

We distinguish now two cases for q′:
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(i) there exists such q′′ ∈ Q such that q′′ FT q
′. But using relation (1) and the fact

that q′′ is a neutral specialization we get a contradiction with our initial assumption
that q′ is a maximal neutral specialization �

(ii) for each such q′′ ∈ Q, q′ and q′′ are incomparable. This case cannot hold since
using (1) and the fact that Algorithm constructMaxQueries(q,W) is correct in
retrieving all x-maximal queries for each ai, 1 ≤ i ≤ n, it must be the case that
there exists such q′′ for which q′ FT q

′′ holds.

Following cases (i) and (ii) we conclude that there exists q′′ ∈ Q such that q′ FT q
′′

and q′′ FT q
′. Therefore assumption is false, q′ ∈ neutralSpecialization(q,W).

Moreover, since q′ is arbitrarily chosen, we obtain that (b) holds.

"(c)" Algorithm 5.6 discards, from the neutral specializations, the ones that are
subqueries of another one, obtaining only the maximal ones. Therefore, now using (a)
and (b) we get that indeed algorithm maxNeutralSpecialization(q,W) constructs all
the maximal neutral specializations of q, hence proposition (c) holds.

5.2.2 Minimal Strict Specialization

The second query modification problem we consider is to find the minimal strict spe-
cializations of a given query, that is, which are the minimal modifications to the query
that will result in a smaller set of answers. In this section we provide an algorithm to
construct all such minimal strict specializations.

Definition 26 (Minimal Strict Specialization). Let q be an in-between 1treeCQ.
A minimal strict specialization for q is a strict specialization q′ that satisfies the
condition that for each q′′ such that q FT q

′′ FT q
′ and q′′ is a neutral specialization of q.

Remark 6. It can be the case that q cannot be strictly specialized without loosing all
answers. In this case we say that q’s only strict modification is qU.

The idea to retrieve all minimal strict specializations of a query, in case if there exists
at least one, is to use once again the set of x-maximal queries for each a ∈ ansW(q,K).

Algorithm 5.7 computes strict specializations of an in-between 1treeCQ q by iteration
over its answers and for each individual a, keeping in mind that each of the queries
retrieved by algorithm constructMaxQueries(a, q,W) are incomparable, we collect them
as possible modifications of q.

Given the definition of minimal strict specialization, we make use of the maximal neu-
tral specializations by identifying all the x-maximal queries that are proper superqueries
of some maximal neutral specialization. By adding to the maximal neutral specialization
any atom in the difference, we make sure that we will loose some answer while each such
obtained query will have at least one answer.

Theorem 4. For any in-between 1treeCQ q the following holds:
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Algorithm 5.7: strictSpecialization
Input: W the set of matching witnesses, q in-between query
Output: Q set of strict specializations of q

1 Q := ∅ ;
2 Qmax := ∅;
3 ans(q,W) := getAnswers(q,W) ;
4 foreach a ∈ ans(q,W) do
5 Qmax := Qmax∪ constructMaxQueries(a, x, W) ;
6 end
7 Qneutral := maxNeutralSpecialization(q,W) ;
8 foreach q1 ∈ Qmax do
9 foreach q2 ∈ Qneutral do

10 if q2 FT q1 then
11 qdiff := q1 \T q2;
12 foreach query atom A ∈ qdiff do
13 if q2 ∪ {A} is 1treeCQ then
14 Q := Q ∪ {q2 ∪ {A}} ;
15 end
16 end
17 end
18 end
19 end
20 return Q;

Algorithm 5.8: minStrictSpecialization
Input: W the set of matching witnesses, q in-between query, qU upperbound query
Output: Q set of minimal strict specializations of q

1 Q := strictSpecialization(q,W);
2 foreach q1 ∈ Q do
3 foreach q2 ∈ Q do
4 if q1 6= q2 and q2 FT q1 then
5 Q := Q \ {q1};
6 end
7 end
8 end
9 if Q == ∅ then

10 Q := Q ∪ {qU} ;
11 end
12 return Q;
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(a) {q′ | q′ is a strict specialization of q} ⊇ strictSpecialization(q,W)

(b) {q′ | q′ is a minimal strict specialization of q} ⊆ minStrictSpecialization(q,W)

Proof. "(a)" Since Algorithm 5.7 returns a set of queries that are obtained by adding
atoms to some neutral specializations, clearly each such obtained query will loose some
of the answers that the input in-between query has.

Therefore, (a) clearly holds.

"(b)" Let q be an in-between query arbitrarily chosen.
Case I. q does not have strict specializations without loosing all answers. Therefore,

let q′ = qU be the only minimal strict specialization for q. Clearly, each of the x-maximal
queries for a ∈ ans(q,W) is a maximal neutral specialization for q. Given that each
of the queries returned by algorithm maxNeutralSpecialization(q,W) is incompara-
ble with the others, we get that lines 12 − 16 in algorithm strictSpecialization(q,W)
will not compute since qdiff would be empty. Therefore, lines 9 − 10 in algorithm
minStrictSpecialization(q,W) will apply in this case, hence qU is returned.

Case II. q has strict specializations that retrieve answers. Let q′ be a minimal strict
specialization of q, arbitrarily chosen.

To prove that q′ ∈ minStrictSpecialization. Since q′ is a strict specialization, we
get that there exists some a ∈ ans(q,W) such that a /∈ ans(q′,W).

Given that, for each q′′ such that q FT q
′′ FT q

′, q′′ is a neutral specialization of q or
q′′ = q. Moreover, it is obvious that q′ must contain exactly one extra atom compared
to q′′, otherwise q′ is not minimal strict specialization or q′′ is not maximal neutral
specialization.

Let A be the query atom such that A /∈ q′′ and A ∈ q′. Since q′ 6= qU then
ans(q′,W) 6= ∅.

In each qmax x-maximal query for a′ ∈ ans(q′,W), there exists query atom A′ ∈ qmax
such that A′ vT A, A′ and A are defined on the same terms. But then q′ is no longer
minimal strict specialization of q, therefore we must conclude that A′ = A. Hence,
qmax ∈ Qmax (Algorithm 5.7 lines 4 − 6). Following lines 8 − 19 for qmax and q′′ we
obtain that A ∈ qdiff . Therefore, from lines 12− 16 we get that q′ will be returned by
strictSpecialization(q,W).

Since q′ is minimal, it follows that lines 4− 6 in minStrictSpecialization(q,W) do
not apply in this case, therefore q′ ∈ minStrictSpecialization(q,W).

q′ was arbitrarily chosen, hence we get that (b) holds.

5.2.3 Minimal Generalization

Finally, we consider the problem of finding the minimal generalizations of given query.
That is, we want to relax the query in a minimal way to retrieve more answers.

Definition 27 (Minimal Generalization). Let q be an in-between 1treeCQ. A min-
imal generalization or relaxation for q is a generalization q′ such that for each q′′,
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that is q′ FT q
′′ FT q, it holds that:

ans(q′′,W) = ans(q,W)

Remark 7. It might be the case that an in-between 1treeCQ q cannot be generalized if
ans(q,W) = ans(qL,W). Hence, whenever q is a neutral specialization of qL it doesn’t
have any generalizations.

Algorithm 5.9: minGeneralization
Input: W the set of matching witnesses, q in-between query
Output: Q the set of minimal generalizations for q

1 Q := ∅;
2 ans(q,W) := getAnswers(q,W) ;
3 foreach a ∈ ans(qL,W) and a /∈ ans(q,W) do
4 Qa := constructMaxQueries(a, x, W) ;
5 foreach q′ ∈ Qa do
6 qinter := ∅ ;
7 if q′ FT q then
8 Q := Q ∪ q′ ;
9 else

10 qinter := q ∩T q′ ;
11 if qinter 6= ∅ then
12 Q := Q ∪ qinter;
13 end
14 end
15 end
16 end
17 return Q;

Algorithm 5.9 computes generalizations of a given in-between 1treeCQ q by iterating
over each non-answer individual’s x-maximal queries and checking whether there exists
already a generalization, or computing the intersection with q to provide a possible
generalization for q.

Theorem 5. For any in-between 1treeCQ q the following holds:

{q′ | q′ minimal generalization of q} ⊆ minGeneralization(q,W)

Proof. Let q′ be a minimal generalization of q, arbitrarily chosen.
To prove: q′ ∈ minGeneralization(q,W).
Assume that q′ /∈ minGeneralization(q,W). It is easy to see that each query

q′′ ∈ minGeneralization(q,W) represents a generalization of q. We are interested in
identifying the minimal generalizations among those.
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Since q′ is a minimal generalization of q then there must exists some a ∈ ans(qL,W)
such that a ∈ ans(q′,W) and a /∈ ans(q,W). Hence, lines 3-14 in Algorithm 5.9 apply
for a. Then, due to the fact that Algorithm constructMaxQueries is correct and a is an
answer for q′, there must exist q′′ that either:

� q′′ is x-maximal for a and x and q′′ FT q. This imply that for each q∗ such that
q′′ FT q∗, a does not satisfy q∗ w.r.t. W. Hence, contradiction with the fact that
a ∈ ans(q′,W) and q′ is minimal generalization of q E

� q′′ = q ∩T qmax, where qmax is x-maximal for a and x. It is easy to see that "∩/T "
preserves maximality since it takes only those role atoms and concept atoms that
subsume something in both queries. Therefore, for each q∗ such that q′′ FT q∗ FT q
we get that a /∈ ans(q∗,W) which leads again to contradiction considering the facts
that a ∈ ans(q′,W) and q′ is minimal generalization of q that is not retrieved by
algorithm minGeneralization(q,W) E

Following the reasoning by cases, we obtain that our assumption is wrong so in fact
q′ ∈ minGeneralization(q,W).

Since q′ was arbitrarily chosen, we obtain that Theorem 5 holds for any in-between
1treeCQ q.
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CHAPTER 6
Implementation and Experiments

The main purpose of this chapter is to get an idea of how our solution behaves in practice.
Therefore, we implemented the algorithms presented in Chapter 4 and in Chapter 5 and
ran some experiments. The obtained insights are presented in the following sections.

6.1 Implementation Details

The matching witness solution is implemented in Java (jdk1.8), using additional libraries.
For loading the ontology we used the OWLAPI java library1, a very useful library that
is able to parse a KB in different formats and which has a reasoner interface that is
implemented by many existing OBDA systems. For ABox reasoning we used the Ontop
[RKZ13] since it provides complete answers under OWL 2 QL profile and it uses a datalog
engine for retrieving the answers. However, Ontop was specially tailored for OBDA
tasks and it does not provide full support when the data is not stored using relational
databases. Therefore, we used HermiT reasoner2 for TBox reasoning. HermiT is a more
complex system that captures the entire OWL 2 profile but it is not optimal for OWL
2 QL, especially in case of ABox reasoning tasks. To boost the performance we used
multi-threading for computing the matching witnesses as well as for query answering.
However, we intend to modify our implementation in the future as we believe that some
optimization can be made in order to obtain better performance.

Under this implementation, the matching witnesses, using the data sets presented
in Table 6.1, took several minutes to compute for small and medium-sized data sets, on
each 1treeCQs batch, while for the large-sized data sets the computation lasted several
hours. One of the causes might be how Ontop evaluates 1treeCQs with more than 1 level,
which are relatively simple. It computes in 2 seconds (for the smallest data set) up to 1
minute (for the largest data set) over the data sets presented in Table 6.1.

1http://owlapi.sourceforge.net/
2http://www.hermit-reasoner.com/
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#D, #U Size (MB)
DS1 6D, 1U 3.3
DS2 11D, 1U 6
DS3 15D, 1U 8.05
DS4 21D, 2U 11.3
DS5 31D, 2U 16.8
DS6 34D, 2U 18.5
DS7 35D, 3U 18.9

Table 6.1: Datasets - Departments(D) distributed over Universities(U)

We also observed that the performance of query answering procedure, the construction
of x-maximal queries and the algorithm for each query modification, are influenced by the
performance of HermiT reasoner, which is not recommended when using multi-threading.
We needed to limit the number of active threads in order to avoid an endless loop that
is caused when accessing a specific method in the OWL API library (both reasoners
use OWL API to store and access the ontology and the assertions). Therefore the
implementation could not take advantage of the High Performance Computing (HPC)
clusters that could have dramatically speed up reasoning for big ontologies.

However, once the compilation is created, we do store it on the physical memory and
retrieving it back is done very fast.

In the following section we provide the details of the evaluation, with an em-
phasize on the interesting obtained query modifications and we analyze the depen-
dence relations of the performance for the following algorithms: getAnswers (Algo-
rithm 4.5), answersMaxQueries (Algorithm 5.1), maxNeutralSpecialization (Algorithm 5.6),
minStrictSpecialization (Algorithm 5.8) and minGeneralization (Algorithm 5.9).

6.2 Experiments

Specifications. The entire evaluation was done on a server using 7 CPUs (each core
running at 2.3GHz), 10 GB RAM, operating system Ubuntu Server amd64, java version
Java SE Runtime Environment 7.

Ontology. As ontology we used LUBM [GPH05] that is a well known ontology suitable
for testing, especially since it provides a data generator, and its domain is very easy
to comprehend and relatively simple. To match our DL fragment, we used a modified
version, over the OWL 2 QL profile, that was used in [KRRM+14].

However, even when using different sizes ABoxes, see Table 6.1, the number of
anonymous objects that can be constructed is quite restricted. We encountered difficulties
on formulating 1treeCQs with depth larger than 3. Another issue we found is that concept
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#MWs #PA
DS1 4915 435
DS2 8937 796
DS3 12180 1085
DS4 17109 1507
DS5 25328 2237
DS6 27977 2464

Table 6.2: Datasets with #Matching witnesses(MWs) and #Possible answers (PA) for
Batch1

and role hierarchies are relatively small and concepts do not overlap on same relations,
allowing only simple queries that can be formulated in order to make actual sense.
Due to this aspect, we formulate upper-bound queries that do not have answers but
provide possibilities for constructing large number of in-between queries. Nonetheless,
the constructed in-between queries make sense with respect to the domain of the ontology
and they retrieve answers.

Datasets. We used the LUBM generator3 to compute the data sets. The concrete
information about each used ABox is presented in Table 6.1.

Evaluation measurements. We evaluated 3 batches of 1treeCQs families that
range over different concepts of the ontology. We measured the number of possible
answers for the 1treeCQs family, the size of the matching witnesses set, the average time
for answering an in-between query, average time to construct x-maximal queries for a
possible answer and for each query modification we measured the average computational
time for an in-between query.

6.2.1 Batch1

For this batch, the lower bound query is quite general:

qL(x) : −Employee(x)

and, the upper bound is as follows:

qU(x) : −Dean(x),Professor(x),FullProfessor(x), teacherOf(x, y1),Course(y1),
headOf(x, y2),Department(y2), authorPublication(x, y3),Publication(y3)

For this batch were generated 259 in-between queries of which 64 of the in-between
queries have answers over the DS1-DS6 datasets, presented in Table 6.1.

3http://swat.cse.lehigh.edu/projects/lubm/
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Figure 6.1: Performance of QA and x-maximal query construction relative to the number
of possible answers and matching witnesses

Table 6.2 shows the size of the matching witnesses set computed for the corresponding
number of possible answers. Particularly, we measure the size of W after the execution
of Algorithm 4.1.

Subfigure 6.1a shows that query answering for Batch1 is efficient for data sets that
have at most ' 1200 possible answers that produce ' 1.4 · 104 matching witnesses.
For data sets which have more than 1500 possible answers, and which produce more
than 1.75 · 104 matching witnesses, algorithm getAnswers performs beyond the 1 second
threshold.

Analyzing Subfigure 6.1b we observe that for each data set, in spite of the relative
large number of possible answers and the number of produced matching witnesses, the
answersMaxQueries algorithm is very efficient, running for all ABoxes in less than 0.1
seconds. Thus we can infer that, for at least these particular KBs, the algorithm’s
performance does not dependent on the size of the possible answers set nor on the number
of constructed matching witnesses.

The uniformity of the generated data is observed in Figure 6.1, since considering
Table 6.2, the ratio #PA/#MWs is approximately the same for each data set.

A look at the performance of query answering and x-maximal queries construction,
for a specific data set, is presented in Subfigure 6.2a.

The query modifications performance for this batch is illustrated in Subfigure 6.2b.
The fastest to compute for this batch are the maximal neutral specializations, whereas
the minimal generalizations are slightly more costly. The most expensive to compute are
the minimal strict specializations since the algorithm minStrictSpecialization explicitly
computes the maximal neutral specializations for the input query.

We now illustrate a few of the concrete obtained modifications for this batch of
1treeCQs.
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Figure 6.2: Analysis of QA and construction of x-max. queries performance over the
data sets, and the possible answers dependence of query modifications for Batch 1
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Figure 6.3: Example of obtained modifications for in-between query for Batch 1

From the ontology we know that:

headOf vT worksFor vT memberOf and Professor vT Faculty

Therefore, the example of Figure 6.3 is very interesting since given the in-between
query of Subfigure 6.3a, there are two incomparable minimal generalizations illustrated
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in Subfigure 6.3b.
The unique maximal neutral specialization, represented in Subfigure 6.3c, adds more

specific information that all answers of the in-between query have in common. Therefore,
each Employee that teaches something and has published something is also, according to
the existing data, a Faculty that worksFor a Department. Moreover we learn that each
such individual teaches a Course, and is author of a Publication.

Considering the above axioms, if we want to specialize the query in a minimal way
there are two options, according to Subfigure 6.3d.

Another interesting example, see Figure 6.4, is when all the answers of a given query,
have in common an x-maximal query. Therefore, if we analyze the query of Subfigure
6.4c which is a maximal neutral specialization of query in Subfigure 6.4a, we obtain more
concrete information with respect to the in-between query’s answers. Basically each
Employee that is headOf something is in fact a FullProfessor. What is interesting is that
there is no axiom in the ontology which implies that each head of a department should
be a full professor, so this information is inferred only from the data. In this specific case
there are no strict specializations that would actually retrieve answers. For the same
in-between query we obtained a minimal generalization, see Subfigure 6.4b, which relaxes
headOf constraint and asks instead for employees that worksFor something.

x
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y1 y2 y3
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authorPublication

(a) In-between query

x
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y3
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teacherOf authorPublication

(c) Maximal Neutral Specialization

Figure 6.4: Example of obtained modifications for in-between query of Batch 1

6.2.2 Batch2

The second round of experiments were conducted on the following lower- and upper-
bound queries:

qL(x) : −Organization(x),member(x, y1), subOrganizationOf(x, y2)
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#MWs #PA
DS1 4108 6
DS2 7394 11
DS3 9988 15
DS4 14118 21
DS5 20917 31
DS6 22917 34
DS7 23523 35

Table 6.3: Datasets with #Matching witnesses(MWs) and #Possible answers (PA) for
Batch2

qU(x) : −Department(x), Institute(x),ResearchGroup(x),College(x),
subOrganizationOf(x, y2),University(y2),member(x, y1),FullProfessor(y1),

teacherOf(y1, z1), orgPublication(x, y3), publicationAuthor(y3, z2),
ResearchAssistant(z2),worksFor(z3, u1),ResearchGroup(u1),

takesCourse(z3, u2),GraduateCourse(u2),Course(u2)

For this batch the 1treeCQs family contains 273 queries, among which only few of
them retrieve answers. This is due to the fact that orgPublication is not liked to the data
neither implicitly inferred from the ontology nor explicitly stated in the assertions of the
ABoxes. The computation of matching witnesses is very influenced by the performance
of Ontop and HermiT. For example gathering all the possible answers for all the batch,
meaning the answers for qL, we use Ontop to get the instances by posing the associated
SPARQL query. Since in this case qL is a bit more complex than Batch1’s qL, the
evaluation time, which is dependent on the size of the data, ranges from 2.6 seconds for
the small ABox, until 1 minute for the largest ABox.

This is a very interesting case regarding the number of possible answers and the
number of created matching witnesses. As follows from Table 6.3, the possible answers
are very restricted but they compute a very large number of matching witnesses. The
reason is that each partial match for term y1 in atom member(x, y1) is computed,
meaning that for each organization and for each one of its members a matching candidate
is created. However, the total number of organizations is very small.

This aspect has a very compelling effect on the performance of query answering pro-
cedure and x-maximal queries computation as Figure 6.5 shows. Surprisingly, Subfigure
6.6a shows the reverse situation of the Batch1 performance. Query answering is done
extremely fast over each data set. However, as seen in Subfigure 6.5a the number of
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Figure 6.5: Performance of QA and x-maximal queries construction for Batch2

possible answers is small for each data set. This is an interesting observation, keeping in
mind that for Batch1, the number of possible answers is relatively large.

On the other hand, for larger data sets the average time to compute the x-maximal
queries, as shown in Subfigure 6.6a, is almost 40 times higher than for Batch1, keeping in
mind that the number of matching witnesses for Batch2 is slightly smaller than for Batch1.
The results shown in Subfigure 6.5b are not explaining this alteration on performance
compared to the previous batch. Intuitively, the cause is the size of a matching witness,
since in case of Batch2, each organization has large number of members, which creates
large set of matching candidates for variable y1. Previously, in Batch1 the range of roles
teacherOf, headOf or authorPublication contains considerably less individuals in the
data.
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Figure 6.6: Analysis of QA and Max queries performance over the data sets and the
possible answers dependence of query modifications for Batch 2

x
Department

y1 y2

member subOrganizationOf

(a) In-between query

x
Department

y2
University

y1
FullProfessor

z1

subOrganizationOf
member

teacherOf

(b) Maximal Neutral Specialization

x
ResearchGroup

y1 y2y3

member subOrganizationOf
orgPublication

(c) In-between query

x
Institute

y2y1

subOrganizationOf
member

(d) Minimal Generalization

Figure 6.7: Example of query modifications for in-between queries of Batch 2

The performance of query modifications for this batch is represented in Subfigure
6.6b. One can observe that in the case of small number of possible answers, the average
computational time for any query modification is less than 1.5 seconds. Moreover, it
looks like the hypothesis that the performance of each modification algorithm depends
on the number of possible answers is rectified by these particular results. Since in this
case we have small number of possible answers, the performance is significantly reduced
compared to the results obtained over Batch1.

Provided that there are only 4 in-between queries in this batch which have answers
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Table 6.4: Datasets with #Matching witnesses(MWs) and #Possible answers (PA) for
Batch3

#MWs #PA
DS1 19880 3233
DS2 35537 5777
DS3 47873 7773

over the data sets, neither of these queries had minimal specializations without loosing
all answers. Thus, Figure 6.7 shows the extra information from the KB that all the
answers of the in-between query, pictured in Subfigure 6.7a, have in common over the
Batch2 1treeCQs family. For query of Subfigure 6.7c, since there are no maximal neutral
specializations, we get that it does not have answers. Thus, Subfigure 6.7d suggests to
look up for Institute, given that each possible answer, accoring to the existing data in
each ABox, is in fact a Department and the ontology contains the following axioms:

Department v Institute Institute v Organization

Moreover one needs to drop the orgPublication role atom since it does not have any
matches in the data.

6.2.3 Batch3

The last batch represents the 1treeCQs family with the largest set of possible answers
since the lower bound query is as follows:

qL(x) : −Student(x)

The upper bound query fixed for this batch is:

qU(x) : −GraduateStudent(x),ResearchAssistant(x),Student(x),
takesCourse(x, y1),Course(y1),worksFor(x, y3),

ResearchGroup(y3), advisor(x, y4),AssistantProfessor(y4)

For this batch, in particular, to compute the set of matching witnesses takes very
long, and for the other data sets not presented in Table 6.4 the computation was time
outed after few hours.

Also in this case it can be observed from Subfigure 6.8a that the performance of
query answering procedure suffers when large number of possible answers are involved.
However, once again the computation of x-maximal queries is very efficient, see Subfigure
6.8b , in spite of the large number of possible answers, respectively of matching witnesses.
For this batch again the size of a matching witness is relatively small, since each role
atom in qU ranges over a small part of the objects in the data.
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Figure 6.8: Performance of QA and x-maximal queries construction for Batch3
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Figure 6.9: Analysis of QA and Max queries performance over the data sets and the
possible answers dependence of query modifications for Batch 3

The striking difference between the performances of query answering procedure and
x-maximal queries computation can be observed in the plot of Subfigure 6.9a.

Now, given that each type of query modification is making explicit use of the query
answering procedure, the results of Subfigure 6.9b are quite predictable.

One of the most interesting modifications case retrieved in our evaluation is exemplified
in Figure 6.10. For query pictured in Subfigure 6.10a, one can minimally relax the
query, see Subfigure 6.10b, by changing worksFor label with a more general one, namely
memberOf, since worksFor vT memberOf holds in the ontology.

Now, it looks like the in-between query can be maximally specialized in such way that
the set of answers remains unchanged. Subfigure 6.10c offers much more information
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Figure 6.10: Example of obtained modifications for in-between query of Batch 3

regarding the answers since we obtained that each Student that worksFor something and
has advisor is in fact a GraduateStudent and a ResearchAssistant that also takesCourse.
If too many answers are retrieved, the query can be minimally specialized such that
it will still have answers, see Subfigure 6.10d. In this case, concept atom Professor is
changed with a sub-concept - AssistantProfessor.

6.3 Discussion

After analyzing the evaluation on each batch we reached to some interesting conclu-
sions. The first one is that the performance of the solution depends very much on the
implementation and especially on the reasoners used, therefore we believe that further
improvements can be done.

The second important observation is that the performance of query answering pro-
cedure is strictly dependent on the number of possible candidates. Provided that each
query modification algorithm is using the query answering procedure or it iterates over
the possible answers, we can conclude that their performance is influenced by the size of
the set of possible answers.

The third remark is a more intuitive one, given the surprising results related to the
construction of x-maximal queries. The performance results do not show a connection
between the number of possible answers or the number of matching candidates since
for Batch1 and Batch3 the computation is very efficient in spite of the large number of
possible answers or matching witnesses. We observed that if the size of a matching witness
is large, since the algorithm branches over each matching candidate, the performance of
algorithm constructMaxQueries is altered.

The most interesting part of our experiments are the computed query modifications
which indeed offer useful information about targeted objects. Maximal neutral special-
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izations help characterize the common properties that the answers of a query have in
common, where in some cases the information is inferred strictly from the ABox. Minimal
strict specialization provides solution for obtaining less answers, in a minimal way, such
that the constructed query modification still retrieves answers. Minimal generalization
modification provides the option to enlarge the set of answers, for a given query, and we
obtained that in some cases there are indeed multiple incomparable choices to do so.
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CHAPTER 7
Conclusions and Further Research

In this thesis we provided a compilation technique that can be used to retrieve and
explore answers for queries within two bounds. Firstly, we defined the relation FT

between two queries, with respect to the ontology, that together with the bound queries
characterize a 1treeCQs family. We introduced the matching witness structure that is
used to capture the part of the canonical model that is of interest for a family of 1treeCQs.
The pre-computed set of matching witnesses represents the offline compilation tailored
to support query answering of any 1treeCQ of the family and to compute the maximal
matches on the upper-bound query for each possible answer. We provided an algorithm
for answering queries over the compilation. We proved its correctness and analyzed its
complexity.

Towards supporting the exploration of the possible answers of the 1treeCQs family, we
defined x-maximal queries and presented an algorithm for constructing all such queries
for each possible answer. Using the computed maximal queries, we defined different types
of query modifications for a given 1treeCQ: maximal neutral specialization, minimal
strict specialization and minimal generalization. We implemented our algorithms using
existing reasoners for dealing with ABox and TBox reasoning tasks and tested them
based on experiments on 3 different batches of 1treeCQs.

There are still many questions that remain open. A natural next step is to explore
how one can extend the solution to other DLs. It seems that this can be done at least
for Horn-DLs, since a canonical model can be constructed. Moreover, the construction
of the matching witnesses should not be hard to adapt to richer Horn-DLs. Another
interesting but challenging question is how to extend the solution in such way that it
considers queries that are not exactly tree-shaped. This would be indeed very valuable
to achieve and we believe to be possible to adapt these techniques but it would be not
trivial.

Regarding the actual solution, is there any optimization that can be made? One first
look shows that collecting all possible matching candidates is costly and there are ways
to reduce the size of a matching witness.
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Another interesting direction for further work is to refocus on a different term as
answer variable. For example using a compilation made for answering queries about
students, we could also answer queries about courses. This seems very straight-forward
considering that the provided solution is storing all the relevant information for this
purpose.

Considering the implementation part, we are intending to provide a user interface.
Moreover, as we mentioned before there are OMQA systems, such as Quelo [FGTT11] and
SemFacet[ACGK+14], which are constructing 1treeCQs based on the existing ontology.
Therefore an integration of our solution might be interesting from a practical perspective.

The key contributions of this work are the novel perspective on query answering
based on a pre-compilation of the KB, and the exploration of individuals in the ABox.
The experiments carried out with our prototype implementation reveal an overall good
performance of the query-answering procedure and, most importantly, seem to be a
promising first step towards flexible ontology-mediated data exploration.
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