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Kurzfassung

Dank täglich wachsender Online-Datenbanken für 3D Models eröffnen sich sowohl für
erfahrene, als auch für unerfahrene Benutzer neue Möglichkeiten zur Erstellung von
neuen Inhalten. Eine solche Möglichkeit ist die Erstellung von neuen Formen durch das
Kombinieren von Teilen bereits existierender Formen. Zu den Vorteilen dieser Methode
der Formsynthese gehören einerseits, dass sie weniger Zeit beansprucht als herkömmliche
Modeling Methoden, andererseits, dass sie ebenfalls von unerfahrenen Benutzern ver-
wendet werden kann. Diese Diplomarbeit präsentiert ein Grundgerüst für diesen Typ
der Formsynthese, das aus 4 Schritten besteht und eine neue Art der Parametrisie-
rung und Erkundung von Formkollektionen beinhaltet. Mithilfe einer modularen und
erweiterbaren Vorgehensweise werden im Co-Analyse-Schritt Teile von Formen basierend
auf ihrer Funktion zu Kategorien gruppiert und dadurch eine Korrespondenz zwischen
Teilen verschiedener Formen erstellt. Indem Relationen zwischen Teilen und die Art und
Weise, wie deren räumliche Verteilungen innerhalb der Kollektion variieren, anaylsiert
werden, kann im Parametrisierungs-Schritt eine kleine Anzahl an Parametern gefunden
werden. Beginnend mit einer existierenden Form als Startpunkt können diese Parameter
im Erkundungs-Schritt dazu genutzt werden, die Kollektion zu durchsuchen, entweder
indem die Parameter direkt geändert werden, oder durch Interaktion mit der Form selbst.
Schließlich können im Formsynthese-Schritt neue Formen erstellt werden, indem Teile
der Start-Form durch korrespondierende Teile von anderen Formen ausgetauscht werden,
die während der Erkundung gefunden wurden.
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Abstract

With online model repositories growing larger every day, both experienced and inexpe-
rienced modelers are presented with new possibilities for content creation. One such
possibility is the creation of new shapes by combining parts of already existing shapes.
The advantages of this shape synthesis method are that it takes less time than traditional
modeling approaches and that it can be used even by inexperienced users. This thesis
introduces a framework for this type of shape synthesis that consists of four stages,
incorporating a new way for parameterization and exploration of shape collections. Using
a modular and extensible approach, the co-analysis stage groups parts of shapes into
categories based on their function, creating a correspondence between parts of different
shapes. By analyzing relations between pairs of parts and how their spatial arrangements
vary across the collection, a small number of parameters is found in the parameterization
stage. Starting with an initial shape, these parameters can then be used to browse
the collection in the exploration stage, either by altering the parameters directly or by
interacting with the shape itself. Finally, in the synthesis stage a new shape can be
created by exchanging parts of the initial shape with corresponding parts of the shapes
found during the exploration.
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CHAPTER 1
Introduction

One of the major bottlenecks in the field of computer graphics is the one of content
creation, particularly the creation of 3D models. High-quality 3D models are a necessity
in many industries, such as entertainment, computer-aided design, urban planning, the
manufacturing of physical objects, as well as medical or scientific visualizations and
simulations. These models can come from a variety of sources. Manually creating a 3D
model not only requires a lot of artistic, but also technical skills. Traditional modeling
applications often contain hundreds of different tools that all take significant effort to
learn how to use properly. For inexperienced users this means that a large time investment
is necessary before even simple 3D models can be created. Furthermore, even experienced
users need to spend a lot of time in order to create high-quality models. Since the
amount of detail that can be rendered and displayed in real time increases every year
thanks to the frequent improvements in technology and algorithms, there are also higher
expectations when it comes to the quality and detail of 3D models, making the creation
process even more time consuming. As an example, recreating the Notre Dame cathedral
for the video game Assassin’s Creed Unity took a total of 5000 man-hours [GG].

Another way to create 3D models is by scanning real-life objects, but this requires
special equipment and often produces 3D models that need additional manual cleanup to
satisfy a high level of quality. Naturally, this also restricts the resulting models to shapes
that already exist in the real world, making it less useful when the user has a concrete
vision of the desired shape. Procedural generation, that is the automatic generation of
content using algorithms that often incorporate randomness and statistical methods, has
also become more prevalent in recent years. While this method can create a large variety
of shapes in a short time, developing the necessary algorithms can be difficult, as can
creating a shape with specific properties since the user usually does not have precise
control over the end result.

However, with online repositories for 3D models like 3D Warehouse [Tri] becoming
more prevalent and growing ever larger, new possibilities have opened up for both
experienced and inexperienced users alike. The availability of large collections of shapes
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Figure 1.1: The availability of large model collections from online repositories like 3D
Warehouse has opened up new possibilities for both experienced and inexperienced users,
such as shape synthesis by combining parts of already existing shapes.

(a small example of which can be seen in Figure 1.1) makes it possible to synthesize new
shapes by combining different parts from already existing shapes. This form of shape
synthesis can be both easy to learn and use, enabling the user to create a large variety
of different shapes in a short time span. But naturally this comes with its own set of
unique challenges that need to be overcome, making it an interesting field of research.

1.1 Problem Statement

There are multiple questions to consider when designing a framework for shape synthesis
from shape collections. First of all, since we would like to exchange parts between shapes,
it is necessary to define what constitutes a part. In their survey about structure, Mitra
et al. define a part of a shape as "a logical entity of semantic significance that controls
the appearance of part geometry" [MWZ+13]. This means that the geometry of a part
is determined by its meaning or function, and not the other way around. To give an
example, the parts of an airplane might consist of a fuselage, wings, stabilizers, engines
and wheels, each of which are designed to fulfill a specific function.

However, shapes are often represented by low-level geometric primitives such as points
or triangles. They may be connected to form a single surface, having no clear boundaries
between individual parts. On the other side of the spectrum, a shape may consist of
many small disconnected segments that should ideally be grouped together to form a
single part. Furthermore, shapes taken from online repositories can vary greatly in their
quality and often have no clear distinction between their parts. The question of how to
segment a shape into parts automatically is a common problem in the field, one which
has seen much research [SM00, KT03, GF08]. The level of detail with which a shape
is represented also matters when defining parts. Segmenting a shape into three or four
parts might suffice when simply populating an environment scene with objects. A more
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technical view of a shape on the other hand might require small items such as screws
and wires to be designated as separate parts. Thus even manual segmentations of shapes
can vary greatly depending on the application.

Next, there is the problem of part correspondence, or identifying which parts can be
reasonably exchanged for other parts. Basing such a correspondence purely on geometric
similarity is a possibility, but even within a specific family there can be much variation in
the geometry of the shapes. High-level analysis of shapes and the structural similarities
within their families may be a better solution to the problem and has seen much research
in recent years [MWZ+13].

The next question concerns the topic of exploration – how to choose from the large list
of parts to create a new shape. If the shape collection is very large, it can be very time
consuming to browse the collection in an attempt to find the specific kind of part one is
looking for. Existing solutions to this problem show that there is generally a trade-off
between control and simplicity. Some methods automatically generate new shapes, for
example by means of a genetic algorithm [XZCOC12], giving the user no control over
the results, but also requiring no interaction at all. Others may suggest parts during the
synthesis process using machine-learning algorithms [CKGK11, KCKK12] or based on
some measure of similarity [FKS+04, KJS07].

Another option is given by parameterizing the shape collection, that is to find a
possibly small number of parameters that the user can alter to find specific shapes or
parts in the collection. The trade-off between control and simplicity exists here as well.
It is certainly possible to reduce the number of parameters to a very small number, for
example by embedding the shapes into a two-dimensional space based on their similarity
[AKZM14]. Exploring the collection using just two parameters is simple, but the drawback
is that it can be difficult to find specific shapes since the only guarantee is that similar
shapes are close to each other, yet the way in which altering the parameters changes the
shape is not immediately apparent.

On the other side of the control-simplicity spectrum, it is also possible to provide the
user with more direct control, for example by defining different relations such as angle
or distance between pairs of parts [FAvK+14]. This lets the user explore the collection
by altering these relations, giving a more concrete idea of the resulting shapes. The
disadvantage is of course that this results in a large number of parameters, some of which
might not even contribute much to the variation between shapes. Finding a good middle
ground between control and simplicity can be difficult and is one of the major challenges
regarding these kinds of methods.

Finally, there is the problem of part alignment. Shapes can come in a variety of
different sizes and orientations, especially when taking them from an online repository.
To be able to exchange parts between different shapes, it is necessary to align them so
the resulting shape looks natural. Even scaling the parts to be of the same size is not
always trivial – parts of shapes may be physically attached to other parts, making the
size of the contact area equally important as the total size of the part to ensure a natural
transition between the connected parts. Orientation is also a problem. Many existing
methods assume the shapes to be in upright position or even globally aligned to make
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the alignment process easier. Of course this is not always guaranteed for shapes taken
from an online repository, possibly requiring manual rectification before existing shape
synthesis methods can be used.

1.2 Contribution and Overview

The main contribution of this thesis is two-fold. First, we introduce a new method
of parameterizing and exploring shape collections using the relations between parts of
the shapes. This provides a possible solution to the question of how to explore the
shape collection in an intuitive and efficient way. By analyzing the spatial arrangements
between types of parts and how they vary across the collection, it is possible to find a
small number of parameters that allow the user to browse the collection in an intuitive
manner. Our main inspiration is the approach by Fish et al. [FAvK+14], but instead
of using each possible type of relation as a parameter, we attempt to find correlations
between these relation types to reduce the size of the parameter space. The exploration
of the shape collection is then done by picking a shape to start with, selecting a pair
of parts and changing the associated parameters either directly or by interacting with
the shape. An important aspect of this exploration process is the coupling between the
parameters and the visual representation of the parameter changes.

The second contribution is a shape synthesis framework that allows the user to create
new shapes by combining parts from existing shapes. This framework deals with the other
problems mentioned in Section 1.1, by incorporating existing algorithms in addition to our
proposed methods of parameterization and exploration. Given a collection of shapes as
input, the framework contains all the necessary functions for the shape synthesis process.
This includes the identification of parts that can be exchanged, the parameterization and
exploration step that enables the user to find the desired parts, and the actual shape
synthesis stage where corresponding parts are exchanged to create a new shape.

The first step uses a modular and extensible co-analysis system to deal with the
problems of part definition and correspondence. The aim of co-analysis is to segment
shapes belonging to a certain family into parts and group these parts into categories
such that parts that fulfill the same function belong to the same category. The reasoning
behind choosing this method is that what constitutes a part is not solely defined by its
geometry, but more importantly by its function. Thus it seems like a natural choice
to allow parts that fulfill the same function to be exchanged. Instead of focusing on a
particular co-analysis algorithm, this step is designed to be modular, allowing the use of
different segmentation and clustering algorithms in the co-analysis process.

The parameterization and exploration stages are as described, allowing the user to
browse the collection by first analyzing and then changing the arrangements between
pairs of parts. Once the desired parts are found, the corresponding parts of the currently
displayed shape can be exchanged with the found parts to create a new shape in the
synthesis stage. This stage is meant as a proof-of-concept; while we do deal with the
problem of aligning parts of different shapes, we do not concern ourselves with mesh
cleanup such as the closing of holes that are created when exchanging parts.
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The rest of this thesis is structured as follows. In Chapter 2 we go into the mathe-
matical background behind the methods presented in this thesis, dealing with the topics
of eigenvalues, graph theory and spectral clustering. Chapter 3 gives an overview of
related work on methods regarding co-analysis, parameterization and exploration of
shape collections and shape synthesis. The main contribution of this thesis is presented
in Chapter 4, where we detail our proposed shape synthesis framework and method for
parameterizing and exploring shape collections. The results of our methods are shown in
Chapter 6. Finally, Chapter 7 concludes this thesis with an evaluation of the results and
a look towards possible future work in the field.
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CHAPTER 2
Foundation

This chapter explains some of the mathematical background of methods applied in this
thesis. Section 2.1 deals with the properties of eigenvalues and eigenvectors which are
useful tools for data analysis and mesh processing. Section 2.2 explains one of the
applications of eigendecomposition called Principal Component Analysis. Since we are
working with triangle meshes, Section 2.3 gives an overview of graph theory, highlighting
the properties of graphs that are most useful to our purposes. Finally, Section 2.4 gives an
introduction to the topic of spectral clustering which utilizes the properties of eigenvectors
and graphs to solve the clustering problem. Proofs and further information on these
topics can be found in many texts on linear algebra [TB97, Mey00] and spectral graph
theory [Chu97, Lux06, ZVD10].

2.1 Eigenvalues and Eigenvectors
This section discusses eigenvalues and eigenvectors of matrices since they are useful tools
for data analysis and mesh processing. Let A be a n×n square matrix. Then a non-zero
vector v is an eigenvector of A if it satisfies

Av = λv, (2.1)

with λ being a scalar that is the eigenvalue associated with v. In other words, when v is
transformed by the matrix A, the result is v itself multiplied by λ. A visual representation
of this can be seen in Figure 2.1. Furthermore, any vector that is a scalar multiple of v is
also an eigenvector of A with the same eigenvalue λ. Equation 2.1 can also be written as

(A− λI)v = 0, (2.2)

with I being the n× n identity matrix. Since any equation of the form Ax = 0 only has
a solution if and only if det(A) = 0, it follows that every eigenvalue λ of A satisfies

det(A− λI) = 0 . (2.3)
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v1

v2 v3

v1

v3

v2

A =( )1.5 0
0 1

Figure 2.1: The vectors v1, v2 and v3 are transformed by the matrix A which scales the
vectors in x-direction by a factor of 1.5. The directions of v1 and v2 remain the same,
thus they are eigenvectors of A with corresponding eigenvalues λ1 = 1.5 and λ2 = 1.
Since the direction of v3 is changed by the transformation, it is not an eigenvector.

The left-hand side of this equation is called the characteristic polynomial p(λ) of A.
The degree of p(λ) is n and thus it also has n roots, which are the eigenvalues of A. An
eigenvalue of A may be a complex number even if every entry of A is real. Furthermore,
eigenvalues may not always be distinct, meaning it is possible that λi = λj for i 6= j.
The set of distinct eigenvalues is called the spectrum of A.

Of particular interest to us are symmetric matrices. A matrix S is symmetric if
S = ST . Symmetric matrices have a number of properties that are useful for mesh
processing and data analysis. Some of these properties are given by the Spectral Theorem.
Let S be a real symmetric n× n matrix, then

S = VDVT =
n∑
i=1

λivivi
T (2.4)

is the eigendecomposition of S, with V = (v1,v2, . . . ,vn) being the matrix of eigenvectors
of S and D being the diagonal matrix of the eigenvalues of S. It is possible to derive the
following properties from this theorem:

• The eigenvalues of S are real numbers.

• S has n eigenvectors that form an orthogonal basis.

• S is diagonalizable.

Another important theorem is the Courant-Fischer theorem. Given a symmetric
n× n matrix S with eigenvalues λi sorted in ascending order, that is λ1 ≤ λ2 ≤ · · · ≤ λn,
the eigenvalues satisfy

λi = min
V⊂Rn
dimV=i

max
v∈V
‖v‖=1

vTSv, (2.5)
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with V being a subspace of Rn with dimension i. As a result, the smallest eigenvalue λ1
is given by

λ1 = min
‖v‖=1

vTSv, (2.6)

and the largest eigenvalue λn is given by

λn = max
‖v‖=1

vTSv . (2.7)

Note that the condition ‖v‖ = 1 can be removed when one replaces the right side
of the equation with the Rayleigh quotient vTSv

vTv . From this it is simple to obtain all
eigenvalues λi and their corresponding eigenvectors vi. Using the previous equation to
compute the largest eigenvalue λn, the second largest eigenvalue λn−1 can be found. We
need to find the vector v that minimizes max vTSv under the constraint ‖v‖ = 1 over all
subspaces V ⊂ Rn with dimension n− 1. We already know that the vector vn maximizes
this equation, and thus the desired subspace must be orthogonal to vn, which leaves only
one choice that we denote as Vn−1. Thus the equation becomes

λn = max
v∈Vn−1
‖v‖=1

vTSv . (2.8)

This process can be continued to compute each λi by maximizing the equation over
the vectors of the subspace Vi which has dimension i and is orthogonal to all previously
computed eigenvectors λj , j = i+1, . . . , n. This makes the theorem useful for optimization
problems, an example of which is explained in the following section.

2.2 Principal Component Analysis
Principal Component Analysis (PCA) [Jol02] is a procedure that transforms a set of
correlated variables into a set of uncorrelated variables called principal components that
are ordered by their variance. This makes it a useful tool in trying to solve the problem
of dimensionality reduction by discarding the principal components with low variance.
Consider the data set X = {x1,x2, . . . ,xn} with xi = (xi1, xi2, . . . , xim)T , containing n
samples with m observed variables each. A large m can be troublesome when it comes
to visually representing the data or when the data is used in computer algorithms whose
performance depends on m. Thus it is desirable to reduce the dimensionality of the
data by finding a representation yi = (yi1, yi2, . . . , yip)T for every xi with p < m. Of
course, reducing the number of dimensions also means discarding some of the information
contained in the data. Thus the aim is to minimize the amount of information that is
lost.

An example can be seen in the data plot shown in Figure 2.2, consisting of 25 samples
with 2 observed variables each. The left side shows the data in the space formed by
the 2 observed variables. The simplest way to reduce the dimensionality would be to
pick either of the two variables and discard the other one. However, a lot of information
would be lost that way. A much better pick would be the line shown in red – it is the
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Figure 2.2: Two plots of 25 data samples with 2 observed variables each. On the left side
the x- and y-axis correspond to the observed variables and the red line shows the first
principal component. The plot on the right shows the data in the principal component
space, using the first and second principal components as the x- and y-axis respectively.

direction in which the data set has the largest variance, also called the first principal
component. Thus we want to find the corresponding coefficients that let us express the
data using the first principal component as the first coordinate axis. In general, we want
to find p coefficients cj = (cj1, cj2, . . . , cjm)T , j = 1, . . . , p that can be used to transform
xi into yi using

yij = cTj xi . (2.9)
First a number of definitions. The mean x̄j of the vectors xi for variable j is given by

x̄j = 1
n

n∑
i=1

xij . (2.10)

The mean is used to compute the variance of the data, which describes how much
the data varies for a given variable. The variance σ2

j of variable j is given by

σ2
j = 1

n− 1

n∑
i=1

(xij − x̄j)2 . (2.11)

The variance only gives information about each variable individually. However, there
is the possibility of variables being correlated, meaning that the value of one variable
depends on the value of the other. This is given by the covariance σjk between variables
j and k:

σjk = 1
n− 1

n∑
i=1

(xij − x̄j)(xik − x̄k) . (2.12)

It is easy to see that the covariance σjj is exactly the variance σ2
j . Using the variances

and covariances we can now construct the m×m covariance matrix Σ with entries σjk
for j, k = 1, . . . ,m. Since σjk = σkj , Σ is also symmetric.
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As mentioned before, our goal is to find the coefficients cj for the directions which
maximize the variance of the data samples. Starting with j = 1 we want to maximize
var(cT1 x). Inserting cT1 x into Equation 2.11, this can also be written as cT1 Σc1. At a
glance, this form looks very similar to the formulation of the Courant-Fischer theorem,
suggesting that the desired coefficients cj may be the eigenvectors of Σ.

To see if that is the case, we can use the method of Lagrange multipliers. Using the
constraint ‖c1‖ = 1 which is equivalent to cT1 c1 − 1 = 0, we want to maximize

cT1 Σc1 − λ(cT1 c1 − 1), (2.13)

with λ being a Lagrange multiplier. Differentiating with respect to c1 results in

(Σ− λI)c1 = 0, (2.14)

where I is the p× p identity matrix. It follows that c1 is an eigenvector of Σ and λ is its
corresponding eigenvalue. We want to maximize cT1 Σc1 and since c1 is an eigenvector of
Σ, this means that

cT1 Σc1 = cT1λc1 = λcT1 c1 = λ . (2.15)

So the direction of the largest variance is the eigenvector of Σ corresponding to the
largest eigenvalue λ1, which is also the variance of the first principal component. This is
also true in general – the jth principal component is the eigenvector cj corresponding to
the jth eigenvalue λj (sorted in descending order) which is also the variance of the data
in the direction of cj.

Showing that this is true is a little more complex, since it requires the additional con-
straint that the variance of the jth principal component is uncorrelated with all previous
principal components. For j = 2 we have the additional constraint cov(cT1 x, cT2 x) = 0
with

cov(cT1 x, cT2 x) = cT1 Σc2 = cT2 Σc1 = cT2λ1c1 = λ1cT1 c2 . (2.16)

We can use cT1 c2 = 0 as the constraint that the covariance between the two principal
components is zero. Following the same process as before, we want to maximize

cT2 Σc2 − λ(cT2 c2 − 1)− φcT2 c1, (2.17)

with λ and φ being Lagrange multipliers. Differentiating with respect to c2 leads to

Σc2 − λc2 − φc1 = 0, (2.18)

and multiplying with c1
T results in

cT1 Σc2 − λcT1 c2 − φcT1 c1 = 0 . (2.19)

Since the first two terms are the covariance, they are both zero, so it follows that
φ = 0. Inserting into Equation 2.18 results in (Σ− λI)c2 = 0, thus c2 is an eigenvector
of Σ and λ is its corresponding eigenvalue. Again we want λ to be as large as possible,
but because we have the constraint cT1 c2 = 0, it follows that c1 6= c2 and thus λ 6= λ1
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Figure 2.3: A triangle mesh represented as a graph (left) and its corresponding dual
graph (right). Vertices are drawn as circles and edges are drawn as line segments. The
vertices and edges of the graph on the left correspond to the vertices and edges of the
triangle mesh. The dual graph on the right is shown in green, and its vertices correspond
to the faces of the triangle mesh, with the edges showing which faces are adjacent.

(unless Σ has some non-distinct eigenvalues, a case which is discussed in [Jol02]). So λ
must be the second-largest eigenvalue λ2. For further λj this can be shown in a similar
way.

So the coefficients we need to transform the xi with dimensionm into yi with dimension
p are the eigenvectors corresponding to the p largest eigenvalues of the covariance matrix
Σ. Let C be the matrix that has the p largest eigenvectors cj as its columns, then yi can
be obtained by

yi = CTxi . (2.20)

The right side of Figure 2.2 shows PCA applied to the example dataset mentioned
earlier. The x- and y-axis correspond to the first and second principal components
respectively and the dashed lines show the projection of the data points to the first
principal component.

2.3 Graph Theory

Mathematically, a triangle mesh is usually represented as an undirected graph G = (V,E),
with V = {v1, . . . , vn} being the set of vertices of the mesh and E = {eij |vi, vj ∈ V }
being the set of edges connecting vertices vi and vj . G being undirected means that
every edge is undirected, that is eij = eji. A triangle mesh can also be represented as
the dual graph H = (F,E), with F = {t1, . . . , tk} being the faces of the triangle mesh
and E = {eij |ti, tj ∈ F} being the edges connecting faces ti and tj . A weighted graph
has the additional property that all edges have a weight wij ≥ 0 associated with them,
usually a measure of distance or similarity. Naturally it follows that wij = wji for an
undirected edge.
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It is also possible to represent a graph by its adjacency matrix W, which is a square
matrix with dimension n. For a weighted graph, the entries of W are the edge weights
wij if there is an edge that connects vertex vi to vj , and 0 otherwise. In an unweighted
graph, the weight of every edge is simply set to 1. Also, if the graph is undirected, then
W is symmetric. The degree di of a vertex vi is the sum of the weights of its incident
edges, given by

di =
n∑
j=1

wij . (2.21)

This also means that in an unweighted graph, di is equal to the number of edges
incident to vi.

A walk in a graph is a sequence of vertices (v1, v2, . . . , vs) where every edge ei−1,i ∈ E.
A path is a walk where every vertex in the sequence is unique. A graph is called connected
if for any two vertices vi, vj ∈ V there exists a path connecting them, and fully connected
if there exists an edge ei,j ∈ E between every pair of vertices vi, vj ∈ V . A subset
U ⊆ V is called a connected component if there exists a path connecting any two vertices
ui, uj ∈ U , but no path between any two vertices ui ∈ U, vj ∈ V \ U . A graph is called
bipartite if the set of vertices V can be partitioned into two disjoint sets V1 and V2 = V \V1
such that vi ∈ V1, vj ∈ V2 for every edge eij ∈ E.

A random walk is created by choosing a vertex as the first element of the walk and
using the edge weights of its incident edges as probabilities to pick the next vertex in the
sequence. The probabilities can be written as a n× n matrix P with entries pij = wij/di.
Given a row vector f = (f1, f2, . . . , fn) with

∑
fi = 1 that contains the initial probability

distribution to start at each vertex, the distribution after k transitions between neighbors
is given by fPk. A distribution π = (π1, π2, . . . , πn) is called stationary if πP = π. A
graph is called ergodic if there is a unique stationary distribution π that satisfies

lim
k→∞

fPk = π, (2.22)

for any initial distribution f . It can be shown that any connected non-bipartite graph is
ergodic. In such a case the entries of π are given by

πi = di
vol(V ) , (2.23)

with vol(V ) being the sum of the edge weights of all vertices in V given by

vol(V ) =
n∑
i=1

di . (2.24)

A k-way cut of a graph is a partitioning of the set of vertices V into k disjoint sets
V1, V2, . . . , Vk. The corresponding cut set is the set of edges EC = {eij |vi ∈ VI , vj ∈
VJ , I 6= J} where each edge connects vertices of different partitions. The weight of the
cut is then the sum of edge weights of all edges e ∈ EC . A cut is called the minimum cut
if it is the cut with minimum weight out of all possible cuts for a given k.
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2.4 Spectral Clustering

The problem of clustering poses a challenge in many fields such as computer graphics,
data analysis, machine-learning and more. Given a set of data X = {x1,x2, . . . ,xn},
the goal of clustering is to assign each xi to a cluster Cj such that, given a measure of
dissimilarity such as the distance between the data points, the dissimilarity between any
two points of the same cluster is low and the dissimilarity between any two points of
different clusters is high.

A popular clustering algorithm is the k-means algorithm. As the first step, k points
are selected as the centroids for each cluster, either randomly or through some heuristic.
Then each data point is assigned to the cluster whose centroid is closest to the data point,
followed by recomputing the centroid of each cluster from the average of its assigned
data points. The process of assigning points to clusters and recomputing the centroids is
then repeated until there is no change in the cluster assignments.

However, the k-means algorithm has a number of drawbacks, such as having to specify
the number of clusters k beforehand and the quality of the solution converging only to a
local minimum, as it depends on the centroids chosen in the first step. In general, the
euclidean distance between the data points may not be a good measure for similarity,
especially when the optimal clusters are non-linear. Consider the example shown on the
left side of Figure 2.4. Merely by looking at the plot of the data it is easy to see that the
distribution of the data points forms two circles which would serve well as the desired
clusters. However, applying the k-means algorithm with k = 2 results in the clusters
shown on the right of Figure 2.4. The k-means algorithm separates the data based on a
linear discriminant, which leads to an undesirable result because the optimal clusters are
non-linear.

One solution to this problem is to find a representation of the data in a different
space where it is easier to separate the data. There are different ways to achieve this, but
we will focus on the method of spectral clustering since it uses a graph representation of
the data, which is highly relevant for us because we are dealing with triangle meshes.

To create a similarity graph of the data, each data point is treated as a vertex and
connected to the other data points with edges. The weight of each edge is set to be
the similarity between the vertices of the edge, which is usually inversely proportional
to their distance. There are different ways to connect the vertices, such as connecting
the nearest neighbors of each vertex, connecting all vertices whose distance is below a
threshold ε, or simply creating a fully connected graph. The latter requires the similarity
measure to model a local neighborhood though because otherwise the resulting weight
matrix would not be sparse. When working with large matrices, it is often desirable that
they be sparse, meaning that most entries are zero. This is because many numerical
algorithms, like the computation of eigenvalues and eigenvectors, perform better with
sparse matrices.

The reasoning behind representing the data as a graph is related to random walks
and graph cuts. For the former, we can treat the edge weights as the probabilities to
transition from one vertex to the other. We want to choose clusters such that most
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Figure 2.4: Clustering of the 2-dimensional twocircles dataset into 2 clusters. (a) The
optimal clusters are non-linear and have the shape of a circle. These clusters can be
obtained by spectral clustering. (b) The same dataset clustered with k-means, which
leads to an undesirable result. Figure adapted from [NJW02].

vertices of a cluster are close to other vertices of the same cluster, and thus the probability
to stay inside a cluster is higher than the probability to transition to a different cluster.

The graph cut view is that we want to partition the set of vertices such that each
partition corresponds to a cluster. Since we want the similarity between clusters to be
low, we want the weight of the cut to be low as well, which leads to an optimization
problem. However, the minimum cut is not always the best solution to the problem,
since it tends to put isolated vertices into separate clusters because they are connected
only by a small number of edges, which leads to a smaller cut cost. The RatioCut cost
[HK92] tries to alleviate this by normalizing by the number of nodes in each cluster, thus
aiming for the size of each cluster to be about equal. It is given by

RatioCut(V1, V2, . . . , Vk) =
k∑
i=1

cut(Vi, V \ Vi)
|Vi|

, (2.25)

where cut(A,B) is the sum of edge weights connecting vertices of A with vertices of B.
An even better solution is provided by the Normalized Cut cost [SM00] which is given by

Ncut(V1, V2, . . . , Vk) =
k∑
i=1

cut(Vi, V \ Vi)
vol(Vi)

, (2.26)

where vol(A) is the sum of weights for all edges incident to vertices in A. In other
words, we want the similarity of edges inside the clusters to be high and the similarity of
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edges between clusters to be low. Unfortunately, finding the indicator vector f (a vector
with discrete values that indicate which cluster each vertex belongs to) that minimizes
either cut cost is NP-hard. However, by introducing the relaxation criterion that the
resulting indicator vector is also allowed to take on real values, it is possible to compute
an approximate solution through spectral clustering. Relaxing the minimization problem
for the RatioCut cost with k = 2 leads to

min
f

RatioCut(f) = min
v

vTLv
vTv , (2.27)

with L = D−W being called the Laplacian of the graph G(V,E), D being the diagonal
matrix of the vertex degrees and W being the weight matrix of the graph. Thus the
Laplacian is a n× n matrix with entries

L(i, j) =


di − wii, if i = j

−wij , if eij ∈ E
0, otherwise

. (2.28)

Since both D and W are symmetric, L is also symmetric and has n real eigenvalues
and n eigenvectors that form an orthogonal basis. Furthermore, if G is connected, then
the smallest eigenvalue is λ1 = 0, with the corresponding eigenvector being the one
vector 1 where every entry is 1. If G has k connected components, then the eigenvalues
are λj = 0 for j ≤ k and λj 6= 0 for j > k. The eigenvectors corresponding to the λj ,
j ≤ k are the indicator vectors 1j with the ith entry 1j(i) = 1 if vi ∈ Vj and 1j(i) = 0
otherwise, where the Vj are the connected components of G.

Considering these properties and applying the Courant-Fischer theorem, the optimal
2-way partitioning is given by the second smallest eigenvector v2 of L which is also
called the Fiedler vector. The vertices vi of the graph can then be assigned to one of
the two clusters based on the sign of their corresponding entry v2(i). The clusters for
k > 2 can be obtained by recursively partitioning the set of vertices using the second to
kth eigenvectors. Alternatively, it is possible to approach the problem from the other
direction and group the vertices based on the k largest eigenvectors, resulting in the
following algorithm:

1. Compute the Laplacian matrix L.

2. Compute the k eigenvectors v1,v2, . . . ,vk corresponding to the k largest eigenvalues
of L.

3. Construct the n× k matrix V = (v1,v2, . . . ,vk) with the computed eigenvectors
as its columns.

4. Treat the n rows of V as points yi in Rk and perform k-means clustering.

5. Assign each original vertex vi to a cluster Cj if its corresponding point yi ∈ Cj .
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The problem with using L in the spectral clustering algorithm is that doing so only
optimizes the criterion that the similarity between points of different clusters should be
low, but it does not necessarily guarantee a high similarity between points in the same
cluster. This is the objective of the Normalized Cut cost. By relaxing the Normalized
Cut cost minimization problem it can be written as

min
f

Ncut(f) = min
v

vTLv
vTDv . (2.29)

Applying the Courant-Fisher theorem leads to the generalized eigenproblem Lv =
λDv and thus to the formulation of the normalized Laplacian Lrw = D−1L with entries:

Lrw(i, j) =


1− wii

di
, if i = j

−wij
di
, if eij ∈ E

0, otherwise
. (2.30)

This formulation is closely related to random walks, as the transition matrix P can be
written as P = I−Lrw. Note that Lrw is not a symmetric matrix, which in general means
that it does not necessarily have real eigenvalues. However, one can extend Lv = λDv to
D−

1
2 LD−

1
2 v = λD

1
2 v. This leads to a different formulation of the normalized Laplacian

Lsym = D−
1
2 LD−

1
2 with entries

Lsym(i, j) =


1− wii

di
, if i = j

− wij√
didj

, if eij ∈ E

0, otherwise

, (2.31)

which is a symmetric matrix and thus has n real eigenvalues and n eigenvectors that
form an orthogonal basis. Let us denote the eigenvectors of Lsym as ui, then they are
related to the eigenvectors vi of Lrw with ui = D

1
2 vi. Thus the eigenvectors vi are

indeed the real valued solution to minimizing the Normalized Cut cost. They can be
used in the same way as the eigenvectors of the normalized Laplacian L to solve the
clustering problem.

Of course it is also possible to use the eigenvectors ui of Lsym directly for the
clustering as proposed in [NJW02]. In this case it is necessary to normalize each row
of the matrix U = (u1,u2, . . . ,uk) between steps 3. and 4. of the spectral clustering
algorithm. Figure 2.5 shows this method applied to the same dataset as in Figure 2.4.

As mentioned before, spectral clustering is of special interest to us because it can be
directly applied to triangle meshes. On example application is mesh segmentation. By
defining a similarity function on the edges of the dual graph of the mesh, the faces of
the mesh can be clustered into disjoint segments. A common choice for the similarity
function is based on the dihedral angle and edge length between the faces, thus preferring
short boundaries on concave regions of the mesh.
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Figure 2.5: Plots of the eigenvalues obtained by applying the method of Ng et al. [NJW02]
to the twocircles dataset. Using the eigenvalues, it is much easier to find the desired
clusters. Figure adapted from [Ray04].
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CHAPTER 3
Related Work

The framework proposed in this thesis consists of three stages: co-analysis, analysis of
shape collections and shape synthesis. The following sections describe previous research
related to each stage.

3.1 Co-Analysis
The aim of co-analysis is to obtain a consistent co-segmentation of a shape collection.
Given a set of shapes that belong to the same family, the goal is to segment each shape
in such a way that all parts that have the same semantic function are assigned the same
label. The following subsections describe different approaches to achieve this goal.

3.1.1 Feature-based Methods

One approach to co-analysis is to compute features for each face of the shape and then
use the distribution of these features to group the shape segments into categories. The
following subsubsections provide more detailed information on the types of features and
methods that have been proposed.

Features

Various features that capture local or global geometrical properties of a shape can be
computed for each triangle of a shape. The idea behind using these features is that parts
of a shape that serve the same function tend to have similar features. The following
list of features is by no means exhaustive, but they are commonly used in feature-based
co-analysis and also in our own framework. Figure 3.1 shows a number of features
computed on a shape.

• The Average Geodesic Distance (AGD) [HS01] at a point on a surface is defined
as the average of the geodesic distances between the point and all other points on
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Figure 3.1: A number of features computed on a shape. Blue colors correspond to
negative values, red colors to positive values and white colors to values close to zero.
From left to right: Average Geodesic Distance, Gaussian Curvature, Conformal Factor,
Shape Diameter Function, the distance from the base of the shape, and the normal
orientation.

the surface. Since the exact computation of the AGD is expensive, it is usually
approximated. One way to do this for a triangle mesh is to use Dijkstra’s algorithm
to compute the pairwise distances between all pairs of vertices, although to increase
accuracy it might be necessary to add additional points and edges to the surface.

• The Gaussian Curvature (GC) at a point on a surface is the product of the two
principal curvatures at that point. On a triangle mesh the GC can be approximated
in a number of ways [GG06]. One example is the Angle Deficit method, which
computes the GC at a vertex as 2π minus the sum of the angles around the vertex,
weighted by the surface area associated with the vertex.

• The Conformal Factor (CF) [BCG08] is a scalar function on the surface which
describes a mapping of the surface to another surface with the same topology and
with constant GC. For a triangle mesh, the CF can be obtained by solving a set of
linear equations:

LΦ = Kt −Ko, (3.1)

where L is the Laplacian of the mesh, Φ is the CF and solution of the system, Ko

is the GC of the original mesh and Kt is the target GC. Kt can be computed by
assigning each vertex the average GC of the mesh weighted by the surface area
associated with the vertex.

• The Shape Diameter Function (SDF) [SSCO08] is a scalar function that describes
the diameter of the shape in the neighborhood of a point on the surface. To compute
the SDF, a cone is placed at the point with the the reversed normal vector as its
center. Several rays are shot within the cone and intersected with the the mesh.
For each ray, only the first intersection with the mesh is considered, also ignoring
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any intersections with the outside of the mesh (i.e. intersections where the normal
vector points in the opposite direction of the ray direction). The SDF is then the
weighted average of the length of each ray, with the weights being the inverse of
the angle between the ray and the cone center because rays with a larger angle are
more frequent.

• Shape Context (SC)s were originally proposed for object recognition in 2D [BMP02]
and later adapted for use with 3D shapes [KPNK03]. A SC at a point describes the
position of all other points of the shape relative to the current point. The relative
position is expressed by the geodesic distance and the angle between the normal
vector of the current point and the point-to-point vector. These two features are
used to create a 2D histogram capturing the distribution of the other points relative
to the current point.

Sidi et al. [SvKK+11] also propose two further features. The first is the geodesic
distance of a point to the base of the shape, while the second is the orientation of the
normal vector relative to the up-vector of the coordinate system. Both features assume
that the shape has an upright orientation.

Supervised methods

Supervised co-analysis methods are based on machine-learning algorithms and require
a training dataset where each shape part has already been assigned the correct label.
Based on the training data the algorithm learns the probability of a face having a certain
label, which can be used to classify further data. An example can be seen in Figure 3.2.

Kalogerakis et al. [KHS10] compute the labels of each face by minimizing an energy
function consisting of two terms: an unary term and a pairwise term. The unary term
consist of feature vectors for each face of the shape that contain features like the ones
described above. This term describes the probability of the face having a certain label
based on the computed features. The probabilities are learned by training classifiers
using the training set. The pairwise term of the energy function consists of pairwise
features computed for each pair of adjacent faces, such as the dihedral angle between the
two faces and the differences between some of the unary features. This term is used to
penalize adjacent faces being assigned different labels. The solution for minimizing the
energy function is then obtained using graph cuts [BBV+01].

Van Kaick et al. [VTS+11] use a similar approach, but their joint labeling method
further utilizes pairwise correspondences between shapes. The energy function is extended
by a third term that describes whether or not a face on one shape S should have the
same label as a face on another shape T . To learn how significant each unary feature is
for this decision, a classifier is trained using the training dataset. For each face in S, its
similarity to all faces in T is computed for each unary feature. Then a small number of
the most similar assignments is chosen for each face in S, together with whether or not
they have the same label, to create the set of vectors used to train the classifier. Finally,
the classifier is used in the query step to find the most likely assignments between faces
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Figure 3.2: An example for supervised feature-based co-analysis [VTS+11]. Classifiers
are trained to learn the probabilities of a face having a certain label based on its features.
Then the classifiers are used to categorize faces of unknown shapes.

that should have the same label. For each a pair of shapes, the third term of the energy
function consists of the top 20% assignments with the highest probability of having the
same label.

Unsupervised methods

The advantage of unsupervised algorithms is that all the information used in the co-
analysis is obtained from the input set of shapes itself, thus a pre-segmented training
dataset is not required. In all of the following methods each shape is first segmented
individually, creating an oversegmentation of the shape. These segments are then clustered
based on the per-face features.

Sidi et al. [SvKK+11] use the SDF, the orientation of the face normals and the
geodesic distance from the base of the shape as their per-face features. These features are
used to create an initial oversegmentation of each individual shape using the mean-shift
algorithm [CM02]. Per-segment features are also defined and include the distribution
of the per-face features, the area of the segment and a vector of three components
based on eigenvalues that describe the overall geometry of the shape. The segments are
then embedded into a new space using diffusion maps [NLCK05] and clustered using an
agglomerative hierarchical algorithm. Finally, the co-segmentation is refined by creating
a statistical model of each label based on the per-face features and then minimizing an
energy function consisting of two terms. The first term is the probability of a face having
a certain label and the second term penalizes adjacent faces being assigned different
labels based on the dihedral angle and the length of the edge connecting them.

Hu et al. [HFL12] create an oversegmentation using the Randomized Cuts algorithm
[GF08] and then compute histograms capturing the distribution of the per-face features
in each segment. The used features are AGD, GC, CF, SDF and SCs. Since SCs are
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Figure 3.3: An example for unsupervised feature-based co-analysis [MXLH13]. Shapes
are first over-segmented, then the segments are clustered using their face-level features.
A statistical model is then used to refine the labeling of the faces.

histograms themselves, they are first clustered with a k-means algorithm and then binned
into the histogram according to their associated cluster index. Each segment is then
considered to be a point in a RH×d space, with H being the number of features and d
being the number of histogram bins. They then perform subspace clustering [Vid11] to
find multiple low-dimensional subspaces which correspond to the different labels. Finally,
segment boundaries are refined using Fuzzy Cuts [KT03].

The approach of Meng et al. [MXLH13] is similar to that of Sidi et al. – each shape
is oversegmented individually and the segments are clustered according to their per-face
features. Then the segmentation is refined based on a statistical model. The four features
used in the process are AGD, CF, SDF and SCs. The first two are considered intrinsic
features, while the latter two are considered extrinsic features. This distinction is made
because the intrinsic features are given a higher weight during the clustering step, while
the extrinsic features are given a higher weight during the refinement step. For the
clustering step, an affinity matrix is constructed based on the dissimilarity between the
histograms of the feature distribution on the segments. The initial co-segmentation is
then obtained by using the Normalized Cuts algorithm [SM00] on the affinity matrix. The
refinement step is similar to the method of Sidi et al., but the optimization is performed
iteratively instead of just once and, as mentioned before, the features are given different
weights. The step-by-step process is depicted in Figure 3.3.

Wang et al. [WAV+12] suggest a semi-supervised approach that first computes a
co-segmentation using any other unsupervised method and then refines that segmentation
with the help of user input. Given a set of shapes that has been co-segmented, each shape
segment is broken down into small super-faces that consist of several faces. The user can
then define must-link or cannot-link constraints between pairs of super-faces. After setting
the constraints, the super-faces are embedded using a spring system, represented by a
fully-connected undirected graph. The nodes of the graph represent the super-faces and
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are connected by different kinds of edges that also work as springs with a specified relaxed
length. The relaxed length of metric edges is given by the feature-based dissimilarity of
the connected super-faces. If a metric edge is longer or shorter than its relaxed length,
it tries to get back to its relaxed length, thus exerting a force on the connected nodes.
Constraints are represented as must-link or cannot-link edges. Must-link edges have a
short relaxed length and only exert a force when they are longer than the relaxed length.
On the other hand, cannot-link edges have a long relaxed length and only exert a force
when they are shorter than the relaxed length. The force exerted by constraint edges
is also much higher than that of metric edges. Computing the embedding based on the
spring system leads to an objective function that needs to be minimized, defined as the
sum of the energies stored at each edge. The super-faces are then clustered using the
k-means algorithm in the embedded space. Furthermore, the system can suggest pairs of
super-faces that will likely improve the segmentation if a constraint is assigned between
them. This is done by identifying low-confidence points that are farther away from their
assigned cluster center and closer to the other clusters.

3.1.2 Alignment-based Methods

Another type of method uses proximity as a cue to obtain a consistent co-segmentation.
The idea is to globally align the shapes and consider parts that are close to each other as
having a higher probability to have the same label.

Golovinskiy et al. [GF09] first construct a graph that represents the shape collection.
The nodes of the graph correspond to the faces of the shapes and the edges can be divided
into two types. The intra-mesh adjacency edges connect faces that are adjacent in their
respective shapes and their weight is determined by the dihedral angle and the length of
the edge connecting the two faces. Additional adjacency edges are added if the shape
contains disconnected components because it is possible that they should be assigned
the same label. For this purpose, the two components are sampled and for each pair of
sample points closer than a certain threshold, an adjacency edge is added between the
faces containing these points, with the weight of the edge depending on the distance.
The second type of edges, the inter-mesh correspondence edges, connect faces of different
shapes that are close to each other. For each pair of shapes, the shapes are globally
aligned and sampled. For each sample point on the first shape, the closest point on
the other shape whose normal vector points roughly in the same direction is considered.
If the distance between the two points is under a threshold, the two faces containing
the points are connected with a correspondence edge, with the weight depending on
the distance. An example can be seen in Figure 3.4, where adjacency edges are shown
in green and correspondence edges are shown in red. Finally, a hierarchical clustering
scheme is used to obtain the co-segmentation. Each node of the graph begins as its own
segment and in each step two segments are merged based on their edge weights. To
reduce computation time, only the intra-mesh adjacency edges are used for merging in
the early stage of the algorithm, which corresponds to an individual oversegmentation of
each shape. Furthermore, the boundaries between segments are refined every few steps
to increase the quality of the segmentation.
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Figure 3.4: An example for alignment-based co-analysis [GF09]. Correspondences between
faces of aligned shapes are created based on the distance between the faces. The
correspondences, here depicted by red edges, are then used to assign a label to each face
(here outlined by green edges).

However, because this method relies on rigid global alignment, it might fail in cases
where there is a great variation of relative part scale across the shape collection. To solve
this problem, Xu et al. [XLZ+10] first group the shapes according to their style based on
the Anisotropic Part Scale (APS) of their parts. Each shape is represented by a graph
where the nodes correspond to the Oriented Bounding Box (OBB) of the shape parts and
the edges represent adjacencies between these OBBs. To cluster the shapes according
to their styles, the APS style distance is used as a distance measure. For each possible
part composition (which is any subset of parts of the shape), its APS style signature is
computed. The signature is based on the scale of the part OBBs in each of the three
major directions, as well as their linearity, planarity and sphericity (which are based on
the ratios between their eigenvalues). A Laplacian matrix is constructed for each of these
values and their eigenvalues are computed, yielding a total of 6n eigenvalues, where n is
the number of parts in the part composition. Given two shapes, the distance between all
possible pairs of part compositions with the same number of parts is computed, with the
distance being the euclidean distance between the eigenvalues of the signature. The APS
style distance between the two shapes is then simply the minimum distance between their
part compositions. The actual co-analysis step is similar to the approach by Golovinskiy
et al., but is only performed with shapes belonging to the same style cluster and using the
part OBBs instead of faces as nodes of the graph. Finally, correspondences between parts
of shapes belonging to different clusters are established using a deform-to-fit approach
[ZSCO+08]. For a given pair of shapes, a search tree is constructed where each node
represents a possible correspondence between a part of the first shape and a part of the
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Figure 3.5: An example for structure-based co-analysis [VXZ+13]. A consistent co-
segmentation is computed based on structural information, such as part hierarchy or
relationships between parts.

second shape. When traversing the tree, at each node the first shape is transformed in
such a way that the parts of the two shapes that are specified at the node match each
other. For each subgraph the amount of overlap between the two shapes is computed to
choose the best matching. Furthermore, to reduce the search space, the search tree is
pruned based on the type of OBB and the kind of adjacency between adjacent parts.

3.1.3 Structure-based Methods

Structure-based methods try to solve the co-analysis problem by considering the hierar-
chies and relationships between individual parts of the shape. This is based on the idea
that objects serving similar functions often share the same structure.

Van Kaick et al. [VXZ+13] first compute a graph representation of a shape where
the nodes are the parts of the shape and the edges represent adjacency or symmetry
relations between parts. The hierarchy of a shape is represented by a binary tree. The
root node of a tree is the entire shape and contains all of its parts. For each lower
level of the tree, the graph representing the parts of the current node is cut into two
graphs, although parts connected by symmetry edges are considered a single atomic
entity. Thus the leaves of the tree are either single parts or symmetry groups. A number
of candidate hierarchies is created by taking samples of the possible trees for a shape:
First, all binary decompositions of the root node’s parts are computed and a number
of samples is selected. This is done recursively for every node of the tree. Once that is
done, all possible combinations of these partitions are considered to take a number of
samples from to serve as the candidate hierarchies. These candidates are then clustered
according to their tree-to-tree distance Dt which is defined as

Dt(hi, hj) = min[Dn(Ni, Nj) + ω(Dt(hi1, hj1) +Dt(hi2, hj2)),
D′n(Ni, Nj) + ω(Dt(hi2, hj1) +Dt(hi1, hj2))]

, (3.2)
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where Ni and Nj are the root nodes of the trees i and j, hi1 and hj1 are their respective
left children, hi2 and hj2 are their respective right children and Dn and D′n are the node-
to-node distances which correspond to the amount of translation and scaling necessary
to align the axis-aligned bounding boxes enclosing all parts of the node.

For the clustering, the candidate trees are embedded into a normalized space using
diffusion maps and clustered using agglomerative hierarchical clustering. After that, the
medoid for each cluster is computed and for each shape one of two possible representative
trees is selected. The first possibility is the tree that is closest to the medoid of its cluster,
thus maximizing intra-cluster similarity. The second possibility is the tree that is closest
to the cluster with the most central medoid, leading to increased inter-cluster similarity.
The latter is only selected if the intra-cluster similarity remains above a certain threshold,
otherwise the first possibility is chosen. Then, new candidate trees are sampled that are
close to the selected representatives for each shape and the clustering and representative
selection are repeated for a number of iterations. Finally, correspondences between the
representative trees are computed by first matching the root nodes of two trees and then
recursively matching their children according to the tree-to-tree distance. As an example,
Figure 3.5 shows a number of chairs that have been matched based on their hierarchies.

Zheng et al. [ZCOAM14] also compute a graph representation of each shape where
nodes are parts and edges signify either adjacency or symmetry relations. For the
algorithm, groups of symmetric parts are once again treated as atomic entities. Any
connected subgraph of this graph is considered a valid part composition (note that the
authors refer to this simply as a part that consists of connected segments or components,
but since this choice of terminology clashes with the meaning of part used in the majority
of the referenced papers, we choose to call it a part composition). These part compositions
are used to create a Pair Arrangement (PA) that consists of exactly two disjoint part
compositions that are connected by at least one adjacency edge. The signature of a PA
is defined as a normalized vector with 8 entries, each entry corresponding to the distance
between the corner vertices of the axis-aligned bounding boxes of the part compositions.
A similarity matrix M1 is constructed where the number of entries is the total number of
PAs across all shapes. Each entry measures the similarity between two PAs based on their
signature, but only if the two PAs belong to different shapes. M1 is then used to create
another similarity matrix M2 that encodes the similarity between part compositions of
different shapes. The similarity M2(pa, pb) between two part compositions pa and pb is
the sum of all similarities between PAs where pa is part of one PA and pb is part of the
other PA. M2 is then used to create a third matrix M3 whose entries are the similarities
between individual parts belonging to different shapes. The similarities are computed by
considering every non-zero entry in M2. Given two part compositions pa and pb, pa split
into two sub-compositions a1 and a2, and pb is split into b1 and b2. a1 is then matched
with b1 and a2 with b2 (the ordering is determined by the maximum y-coordinate of the
bounding boxes). There are 4 possibilities for a matching:

1. At least one sub-composition is not a connected graph, in which case the cut is
discarded.
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2. Both a1 and b1 are individual parts, then M3(a1, b1) = M3(a1, b1) + M2(pa, pb).

3. If a1 is an individual part while b1 is a part composition (or vice versa), M2(pa, pb)
is distributed to M3(a1, b1i) according to the bounding box volumes of b1i, with
b1i being the individual parts of b1.

4. If both a1 and b1 consist of more than one part, they are both split based on the
best possible match of sub-compositions (based on the entries of M1) and the
procedure is continued.

Finally, a spectral clustering algorithm is used on M3 to obtain the co-segmentation.
Laga et al. [LMS13] combine geometric cues with structural information. They first

compute a hierarchical graph of each shape. In the lowest level of the graph, nodes
correspond to individual parts and edges signify adjacency and symmetry relations. The
nodes of the next level of the graph are created by merging nodes of the lower level.
Parts are merged if one of the following conditions is true, in the following order:

1. Parts A and B are merged to create a part C if C is geometrically similar to either
A or B (thus merging a smaller part with a larger part).

2. A and B are symmetrical.

3. Parts are merged based on adjacency, with higher priority given to merge operations
where the resulting part’s geometric similarity with the parts that are merged is
higher.

Each node is connected to its parent in the next graph level by an enclosure edge. In
the next step, further edges are added between parts that correspond to different kinds of
relationships: side-contact (the normal of the contact area is perpendicular to the axis of
symmetry of one part), co-centricity (the axes of symmetry are parallel and close enough)
and horizontal support (the normal of the contact area and the gravity vector of one part
point in the same or opposite directions). To compute the similarity between two parts,
both geometric and contextual information is considered. The geometric similarity Kgeo

depends the size of the parts, the three eigenvalues of the parts obtained by a PCA, and
a histogram that measures the pairwise distances of uniformly sampled points on the
surfaces of the parts. Given two shape graphs G1 and G2, the total similarity between
nodes PA and PB is given by the p-order graph kernel Kp(G1, G2, PA, PB):

Kp(G1, G2, PA, PB) = Kgeo(PA, PB)×
∑

PS∈NG1 (PA)
PQ∈NG2 (PB)

Krel(e, f)Kp−1(G1, G2, PS , PQ),

(3.3)
with K0(G1, G2, PA, PB) = Kgeo(PA, PB), NG(x) being the neighboring nodes of node x
on graph G, e and f being the edges connecting PA to PS and PB to PQ, and Krel(e, f)
being 1 if e and f are the same type of edge and 0 otherwise. This kernel not only
compares the geometric similarity between two nodes, but also all walks of length p
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starting at the nodes. This measure of similarity is then used for supervised co-analysis.
Based on a training dataset where each shape part has been assigned the correct label, a
Support Vector Machine is trained for each label which is then used to classify the parts
of the other shapes.

3.2 Parameterization of Shape Collections

The purpose of analyzing shape collections is to find the high-level semantic features
which are shared by certain families of shapes while at the same time finding out in which
ways individual shapes of a family differ. As an example, one can imagine a collection of
seating furniture that contains chairs and benches. In this case, the distance between the
legs of the shape might be a good feature for differentiating between chairs and benches
since the legs of a bench are usually further apart than the legs of a chair.

Fish et al. [FAvK+14] compute a meta-representation of a shape family by looking at
the relationships between parts. The input shapes are assumed to already be segmented
and labeled. Each part of a shape is represented by an OBB. A set of unary and binary
relations is defined for each part or pair of parts respectively. The unary relations encode
the extends of the part OBB axes in relation to the axes of the entire shape OBB (the
axes are ordered according to their alignment with the global x-, y- and z-axis). Binary
relations between parts include scale (the relative difference between the axes of the
two part OBBs), angle (the angle between the axes of the two part OBBs) and contacts
(the relative placement of the intersection point between the two part OBBs). For each
relation, a Probability Density Function (PDF) is computed using a 1D Kernel Density
Estimator, with the bandwidth of the kernel estimated from the range of the data. The
PDF for a relation shows the frequency of a certain setting for the relation within the
shape family, as can be seen on the left side of Figure 3.6. The PDF can then be used in
three ways. First, by starting with an initial shape and choosing one of the relations, the
user can explore the shape collection by using the PDF as a guide. Clicking on a point
in the PDF shows the shapes whose relations are closest to the chosen setting. Second, it
can be used for constrained editing. If the user modifies a part by means of translation,
scaling or rotation, the system can check whether the modified relations are valid based
on the PDFs and can make adjustments if necessary. Finally, it is possible to use the
PDF to edit multiple shapes at once by moving and scaling parts of the PDF itself.

Averkiou et al. [AKZM14] compute a 2D embedding of a shape family where similar
shapes are clustered. First a number of templates is computed based on the method
by Kim et al. [KLM+13]. These templates serve as a general approximation of the
shapes where each shape part is represented by a box and they can be used to create
a consistent co-segmentation of the shapes. This is done by aligning a shape with a
template and minimizing an energy function based on which parts overlap. The unary
term of the function encodes the amount by which the volume of the box increases if
a face is assigned to it, while the pairwise term punishes adjacent faces being assigned
to different boxes. Once each shape is segmented into parts, each part is represented
by an axis-aligned bounding box. A configuration vector is computed for each shape
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Figure 3.6: Analysis of shape collections. Left: The meta-representation of a shape family
[FAvK+14] captures the distribution of defined relationships between parts (in this case
the angle between the wings and fuselage of an airplane). Right: ShapeSynth [AKZM14]
computes a 2D embedding of a shape family where similar shapes are clustered based on
the arrangement of their parts.

that contains 6 entries for each part: the x-, y- and z-coordinates of the bounding box
center relative to the center point of the shape, as well as the scale of each bounding
box axis relative to the bounding box axes of the shape. The distance between two
shapes is then the length of the difference between their configuration vectors. A pairwise
distance matrix is computed and used to create a 2D embedding of the shapes with
multi-dimensional scaling. To reduce computation time for very large shape collections,
the distance matrix is only computed for a number of sample shapes and the embedding
of the remaining shapes is interpolated based on its nearest neighbors. The data is then
clustered using the mean-shift algorithm and each cluster is re-embedded on its own,
creating a hierarchy of clusters. Such an embedding can be seen on the right side of
Figure 3.6. The user can then explore the shape collection by clicking on a point in the
embedded space, with preview models shown for each detected cluster. When clicking
on a cluster, the system goes to the next level in the cluster hierarchy and shows the
embedded space of that cluster. The system can also synthesize new models when clicking
on an empty space. First, the configuration vector of the new shape is computed based
on the embedding. The configuration vector is used to create an abstract shape made of
boxes that satisfy a number of constraints, such as symmetry, contact and equal length
in one or more axes. Finally, a full shape is synthesized by replacing each box with a
part from the existing shapes that are most similar to that box.

Yumer et al. [YCHK15] encode the style of a shape within a family with semantic
attributes. These attributes were found by conducting two user studies, using a number
of training datasets from different shape families. In the first one, the 5 most prominent
attributes were gathered for each shape family (e.g. fashionable, durable, comfy, feminine
and active for a collection of shoes). In the second one, users were asked to rate these 5
attributes by comparing pairs of shapes. To find out how the attributes correlate to the
style of a shape, each shape is abstracted by a number of handles [YK14]. These handles
can be spheres, cylinders, cones or quadrics and are labeled so that handles of different
shapes that are in correspondence have the same label. Each handle also has a number
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Figure 3.7: Exploration of a shape family with semantic attributes [YCHK15]. First,
a correlation between semantic attributes (determined by a user study) and geometric
attributes is computed. The shapes are then embedded into a 2D space based on the
geometric attributes. A height map is used to show high and low values for a chosen
semantic attribute (in this case the ’sportyness’ of a car).

of features, including the position and orientation relative to the shape bounding box,
the difference of these two features to every other handle of the shape, and also some
features associated with the handle type, e.g. the radius of the sphere or the opening
angle of the cone. The features are represented by a sparsely encoded vector, where each
entry is preceded by an integer corresponding to the label of the handle to account for
parts that are not present in all shapes. The mapping between the semantic attributes
and the features happens in two steps. First, absolute values for the attributes need
to be computed since the users in the study only rated the attributes of the shapes in
comparison to other shapes. The attribute scores are modeled as a normal distribution
and a system of linear equations is formed. By solving it in a least-squares sense, the
absolute attribute scores are obtained. Second, a scoring function is constructed that
allows the computation of the score f̃a(xs) of attribute a for a new shape with features
xs that is not included in the training dataset:

f̃a(xs) =
∑
t∈τ

ωt(xs)∑
j ωj(xs)fa(xt), (3.4)

with τ being the set of each training shapes, and fa(xt) being the known attribute
score of training shape t. ωt(xs) is a weight function that depends on the length of the
difference between the feature vectors xs and xt, excluding any features that are present
in one shape, but not in the other. Finally, the system can be used for shape exploration.
Each shape is embedded into a 2D space based on their feature vectors using locally
linear embedding [RS00]. Then a scalar field is computed in the embedded space using
the equation above. This can be visualized as a height map for a certain attribute, where
each point on the map is colored according to the score of the attribute, as shown in
Figure 3.7.
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3.3 Shape Synthesis

Traditional modeling methods can be difficult to learn and the creation of detailed
shapes often takes a lot of time even for experts. But with online model repositories
growing larger every day, shape synthesis based on existing shapes has become a possible
alternative for content creation.

Funkhouser et al. [FKS+04] allow the user to exchange parts between shapes by
selecting a part and then searching for similar parts in a database. If the original
shape is not already segmented into parts, the user can use an intelligent scissor tool
that computes the best cut close the user’s input, based on edge length (short cuts are
preferred), dihedral angle between faces (cuts along concave regions are preferred) and
face normal direction (a cut should preferably circle around the back side of the shape).
The search for replaceable parts happens in two steps. First, the database is queried
for shapes that are similar to the current shape. This is done by computing two voxel
grids each for both the initial shape and the database shapes. For a shape A the voxel
grid RA is the rasterization of the boundary of the shape, i.e. a voxel is 1 if it contains
part of the boundary or 0 otherwise. The second voxel grid EA encodes the the squared
euclidean distance to the closest point on the boundary for each voxel. The distance
between two shapes A and B is then defined as 〈RA, EB〉+ 〈RB, EA〉. Then the selected
part is compared to parts of the matching shapes. This works in a similar manner as
matching parts, only the first voxel grid is modified to have weight value w for voxels that
contain a part of the shape boundary that belongs to the selected part. To exchange the
selected part of the initial shape with a matching part from the database, the two parts
are aligned using a variation of the Iterative Closest Point algorithm [BM92]. Finally,
the new part is connected to the remainder of the shape using a greedy scheme that
associates and connects each vertex along the cut boundary of the shape with a vertex of
the cut boundary of the new part.

Kraevoy et al. [KJS07] first segment each shape into parts based on a measure of
convexity and compactness. Convexity is defined as the average distance of each triangle
to the convex hull of its part, while compactness is the area to volume ratio of the convex
hull. At the beginning, each connected component of a shape is considered a part. For
each part, a seed triangle is selected based on its distance to the convex hull of the part
and the compactness of the tetrahedron formed by the triangle and convex hull center.
A new part is grown from the seed triangle by adding adjacent triangles until adding
another triangle increases the convexity error above a set threshold. The part growing
step is repeated until there is no change in the number of parts created. A hierarchical
segmentation can also be computed by using a low threshold for the convexity error and
then merging adjacent parts based on an increased threshold.

Two shapes are then matched to see which parts can be exchanged. This is done by
first finding a coarse one-to-one correspondence between components which consist of
any number of parts of a shape. First, a midpoint graph is constructed for each shape by
computing the midpoint of the boundary for each pair of adjacent parts and connecting
them with straight edges. Given a one-to-one correspondence between components C1 of
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Figure 3.8: Model composition from interchangeable components [KJS07]. New shapes
are created by starting with an existing shape and exchanging its parts with compatible
parts from other shapes.

the first shape and C2 of the second shape, their midpoint graph distance is defined as
the sum of squared differences of the minimum midpoint distances between each pair
of components (C1a, C1b) on the first shape to the corresponding pair of components
(C2a, C2b) on the other shape. Together with a measure for component convexity (defined
as the sum of the convex hull volumes of all components of both shapes) and a measure
for volume similarity, a cost function is constructed and must be minimized to find the
best matching of components. This is done using a stochastic local search scheme where
the global minimum is found by first computing multiple local minima with a steepest
descent minimization starting with different initial guesses. Two operations are allowed
for each step of the minimization: the swap operation swaps the correspondences between
two pairs of components and the regroup operation separates a part from one component
and merges it with another component. Correspondences between smaller parts of the
shape can then be found by recursively repeating the algorithm for the sub-components
of each pair of matched components. Finally, to exchange two components the system
uses the midpoints to align the swapped-in component with the remainder of the shape.
A number of shapes created with this system can be seen in Figure 3.8.

Jain et al. [JTRS12] work with shapes that have already been segmented into parts.
For every shape, each part is resampled into a point cloud and PCA is used to compute
the eigentransformation from the global coordinate system to the local coordinate system
of the part. Contacts between parts are detected and stored in an adjacency graph. For
each shape, a part hierarchy is created, represented by a tree whose root node contains
all parts. For each node, the major symmetry and the eigentransformation is computed
and stored. To create child nodes, its parts are split by the major symmetry plane if it
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exists, creating two child nodes (or three if the center of a part is close to the symmetry
plane). In case there is no symmetry detected for a node, the parts are split based on the
plane defined by the origin and x-, y- or z-axis of the local coordinate system. To ensure
that a child node contains only connected parts, all nk child nodes of the tree level k are
split into their respective parts. The nk largest parts are chosen as new child nodes and
all smaller parts are merged with their smallest adjacent child node.

To exchange parts between two shapes, a matching between the shape hierarchies is
computed. To to this, a new hierarchy for target shape is created. For a new level k,
empty child notes are created for each parent node in the same way as on level k in the
source hierarchy. Then the parts of each parent node are matched with the most similar
part of the corresponding parent node of the source hierarchy, based on their positions in
the local coordinate system. The part is then assigned to the child node in the target
hierarchy corresponding to the child node of the matching part in the source hierarchy.
Child nodes that remain empty are removed and the corresponding child node in the
source hierarchy is merged with the closest child node. In the end, each part or connection
of parts of the source shape has a direct correspondence with a part or connection of
parts on the target shape. A new shape S(w) is then created by blending between two
shapes S1 = S(0) and S2 = S(1) with weight parameter w ∈ [0, 1]. Increasing from 0 to
1 causes the leaf nodes of S1 to be exchanged one by one with the corresponding leaf
nodes of S2, with the nodes sorted by size so that the largest nodes are in the middle and
the smallest nodes at the outsides. Aligning inserted nodes with the remainder of the
shape is done using a spring system. Every node center and the contact points of every
node are modeled as masses. Node centers are connected to its own contact points by
springs that try to remain at their set length. Connections between nodes are modeled
as zero-length springs between their contact points. Solving the spring system yields the
best alignment of parts under the given contact constraints.

Zheng et al. [ZCOM13] find correspondences between parts that can be exchanged
by looking at functional substructures of a shape. The term defined for the type of
substructure that is used is Symmetry Functional Arrangement (SFARR). The sub-
structure consists of a triplet of parts: two symmetric parts that are connected by a
non-symmetric part. First, a graph abstraction is computed for each shape, where nodes
correspond to parts and edges correspond to adjacency between parts. Edges can be
either directed or undirected. Directed edges are called supportive edges and are used to
connect parts where the first part is under the second part, thus supporting it. All other
edges are undirected. SFARRs are found by detecting symmetries between parts and
then consulting the shape graph to see whether they are connected to the same node,
thus forming a valid SFARR. SFARRs can be one of three types depending on the edges
of their respective sub-graphs. If the edges connecting the symmetric parts with the
non-symmetric part are directed, the SFARR is of the placement type P if the edges
point towards the symmetric parts, or of the support type S if the edges point towards
the non-symmetric part. If the edges are undirected, the SFARR is of the embed type E.
Two other attributes are also defined:

• A SFARR is stable if the projection of its center of gravity falls inside the convex

34



Figure 3.9: Smart Variations [ZCOM13]: symmetric substructures called SFARRs are
detected and exchanged between shapes.

hull of its ground-touching vertices.

• A SFARR is coaxial if all of its parts are coaxial and the symmetric parts are
cylindrical.

Two SFARRs are considered compatible for exchange if they are of the same type and
shared the same attributes. Special consideration is given to parts that belong to more
than one SFARR. Since it is possible that the common part serves a different function
in each SFARR, a cluster is created which represents a connected sub-graph containing
the SFARRs that share a common node. Additional attributes are assigned to those
SFARRs. If the common part has both a placement and support role, it gets the P + S
attribute, and similarly a combination of embed and support yields E + S. A node with
attributes ∆i is then only replaceable by another node with attributes ∆j if both of the
following conditions are true:

• ∆i ⊆ ∆j or (∆i \∆j)
⋂
S, P = ∅

• Both nodes have the same number of contact slots (each cylindrical part has on
slot at its contacting end and each cuboid part has two slots at the ends of its
contacting edge).

The part replacement step begins with computing all SFARR clusters on the graph
whose nodes are to be replaced. They are sorted according to their size and beginning
with the first cluster, the SFARRs are replaced in a specific order, determined by their
geometric compatibility with all the compatible SFARRs in the other graphs. The
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geometric compatibility depends on the scale difference of corresponding nodes and the
relative arrangement between the two SFARRs being compared, given by the difference
of the subtended angle and perimeter of the triangle formed between the node centers of
a triplet. SFARRs are replaced node by node, with the contact relations of a node to be
replaced being used as constraints for the alignment (the contact slots mentioned above).
Figure 3.9 shows how the parts of two shapes are combined to create a new shape.
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CHAPTER 4
Framework for Shape Synthesis

This chapter describes our framework and the methods used to create a new shape from
a collection of shapes that belong to the same family. Section 4.1 gives an overview
for each stage of the system. The first stage, co-analysis, is described in more detail in
Section 4.2. Section 4.3 describes how the collection is analyzed to find a small number
of parameters that the user can then use to explore the collection as described in Section
4.4. Together they form the main contribution of this thesis. Finally, Section 4.5 explains
how new shapes can be created by exchanging parts between existing shapes.

4.1 System Overview
The input is a shape collection M = {M1,M2, . . . ,Mm} that contains m shapes Mi.
The shapes are assumed to be of the same shape family (e.g. airplanes, chairs or vases).
Although it is generally possible to use a collection that contains shapes from different
families, it may result in unrealistic or implausible synthesized shapes. The process of
creating a new shape from the input collection can be divided into four stages, which are
also described in Figure 4.1:

1. Co-Analysis

2. Parameterization

3. Exploration

4. Shape Synthesis

To be able to exchange parts between shapes, it is first necessary to find correspon-
dences between parts of different shapes. This is done in the co-analysis stage. Given
the shape collection M as input, the co-analysis produces a co-segmentation of M,
which means that every part of each shape gets assigned a label l from a set of labels
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(b)(a) (c)

(d) (e)
Figure 4.1: Overview of the proposed system. (a) The input is a set of shapes from the
same family. (b) A consistent co-segmentation is obtained using co-analysis. (c) Each
shape is abstracted as a graph, and the distribution of features between adjacent parts is
analyzed. (d) The shape collection is explored by changing the features between adjacent
parts. (e) New shapes are created by combining parts of existing shapes.

L. Semantically, each label l corresponds to a common functionality inherent in every
part labeled with l. As an example, the set of labels for an airplane might consist of
the fuselage, wing, stabilizer and engine, although the name of each label can also be
represented by a number. Practically, we assume all parts with the same label to be
interchangeable.

Next we compute a small number of parameters that allow the user to explore the
collection. We compute a graph representation of each shape, where nodes correspond
to parts and edges connect parts that are adjacent. A number of relational features
is computed for each edge, such as the distance, angle and relative scale between the
adjacent parts. For each pair of labels (l, k), all edges connecting parts labeled l and k
are embedded into a feature space based on the computed relational features. Principal
Component Analysis (PCA) is performed to reduce the dimensionality, yielding one or
two parameters that best describe how the relations between parts labeled l and k vary
across the collection.

The computed parameters can then be used to explore the collection. Starting with
an initial shape, the user can change the parameters for each relation, either directly by
manipulating a slider, or by interacting with the part arrangements of the shape itself
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(a) (b) (c) (d)

Figure 4.2: Overview of the co-analysis stage. (a) The input is a set of shapes from the
same family. (b) Face-level features are computed for each shape. (c) Each shape is
segmented individually. (d) Segments are clustered based on their feature distribution,
producing a co-segmentation.

using a manipulator handle similar to those common in modeling programs. The two
ways of interaction are coupled, so that changes are always reflected on both sides. The
system then finds the shape whose relations most closely resemble the altered parameters,
thus allowing the user to browse the collection.

Finally, a new shape is created by exchanging parts. Starting with an existing shape,
the user can alter the parameters to find and select another shape that has the desired
parts. The exchange operation removes all parts of the current shape with label l and
replaces them with parts labeled l of the selected shape. Since the two shapes are not
perfectly aligned, the new parts are transformed so they fit together with the remainder
of the shape. The user can then proceed to replace other parts of the shape or even parts
that have already been exchanged previously to create the desired shape.

4.2 Co-Analysis Stage

The aim of co-analysis is to produce a consistent co-segmentation of a collection of
shapes. Given a set of shapes, each shape is segmented into parts, and each part is
assigned a label, so that all parts across the collection with a certain label share the
same functionality. Many different approaches have been proposed as a solution to the
co-segmentation problem (see Section 3.1), but each one has its own advantages and
disadvantages. Since there is no absolute best method and because co-analysis isn’t the
main focus of this thesis, we have instead opted for a more general three-step approach
that allows the user to choose from a number of options for each step. The three steps
are feature computation, individual segmentation and segment clustering. An overview
of the co-analysis process can be seen in Figure 4.2.

4.2.1 Feature Computation

In the first step, a number of features is computed for each face of every shape. The chosen
features are Average Geodesic Distance (AGD), Gaussian Curvature (GC), Conformal
Factor (CF), Shape Diameter Function (SDF), Shape Context (SC), the face normal
orientation and the geodesic distance from the base of the shape. Subsection 3.1.1
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describes these features in more detail. Per default each feature has equal weight, but the
user can assign different weights to each feature or even disregard some features entirely
by giving them zero weight. Exporting them to and importing them from an external file
is also possible. Since the computation of these features may take some time, especially
for shapes with many faces, this option can be used to try out different algorithms in the
following stages without needing to recompute the features.

4.2.2 Individual Segmentation

In the second step, each shape is segmented individually. While many shapes in online
repositories already consist of multiple disconnected meshes, this is not always the case.
For that reason we provide the user with a number of options to split a shape into parts.
The first and second options are based on the 3D-NCuts approach [TLGG14]. First we
compute the dual graph of the mesh, where nodes correspond to faces and adjacent faces
are connected by an edge. Each graph edge is assigned a weight based on the dihedral
angle between the faces and the length of the mesh edge connecting the faces so that
short segment boundaries along concave regions of the shape are preferred. Then the
Normalized Cuts algorithm [SM00] is used to create a partitioning of the graph, with
each partition corresponding to a segment.

For the first option, the shape is immediately split into n segments based on the n
largest eigenvectors of the graph Laplacian, while the second option applies the algorithm
recursively to split each partition in two. The third and fourth options allow the user
to import a segmentation from an external file, with the former taking the input as it
is and the latter additionally splitting disconnected segments into separate segments.
The fifth option is intended for shapes that already consist of multiple disconnected
meshes and simply treats each of them as a separate segment. To account for cases
where additional manual modifications are required, we provide a simple tool to create
a manual segmentation, allowing the user to assign single faces or connected regions of
faces to a segment by clicking on them. The segmentation resulting from any of these
methods can also be exported to an external file.

4.2.3 Segment Clustering

In the last step, the segments are clustered to create the co-segmentation. Strictly
speaking this is the step where the actual co-analysis takes place, since in the first two
steps each shape is processed individually. Three options are provided for this step.

The first option is based on the work of Sidi et al. [SvKK+11] and Meng et al.
[MXLH13], although without the optimization step. For each segment, one histogram
per feature is computed by adding the surface area of each segment face to the histogram
bin corresponding to its feature value. Then a n× n affinity matrix A is constructed,
where n is the total number of segments. To compute the distance between two segments,
we must first compute the distance between their feature histograms. For that purpose
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we use the Bhattacharyya distance [Bha43] dB, which is defined as

dB(hfi , h
f
j ) = − ln

(
nbins∑
k=1

√
hfi (k)hfj (k)

)
, (4.1)

with hfi and hfi being the histograms of segments i and j for feature f , and nbins being
the number of histogram bins, which is the same for each histogram. The distance
dS between a pair of segments is then given by the euclidean distance between their
respective histograms for all features f :

dS(i, j) =
√∑

f
dB(hfi , h

f
j )2 . (4.2)

By applying a Gaussian Kernel on the distance, the affinity Aij between the two
segments i and j is obtained:

Aij = e
−dS(i,j)

2σ2 , (4.3)

with σ2 being the variance of the distances dS . The Gaussian Kernel works as a filter that
results in a high affinity when the distance is small and a low affinity when the distance is
large. The filter is modeled after a Gaussian function so that very large distances result
in an affinity close to zero. The entries of the affinity matrix A are then the affinities Aij
between each pair of segments.

Then we use the Normalized Cuts algorithm on the affinity matrix to obtain a
clustering of the segments. In the original algorithms by Sidi et al. and Meng et al.,
an additional optimization step is performed where a statistical model based on the
computed features and clustered segments is created. This model is then used to re-
estimate the probabilities of each face belonging to a certain cluster in order to refine the
co-segmentation. This step is not included in our implementation since the individual
co-analysis algorithms are not the focus of this thesis, although it would certainly improve
the results obtained by this particular algorithm.

The second option is an extension of the first option based on the work by Laga et
al. [LMS13], where we also incorporate structural information for computing the affinity
matrix. In addition to the steps of the first option, we construct a hierarchical structural
graph of each shape with nodes corresponding to segments (or groups of segments) and
edges within the same level of the graph corresponding to adjacency and symmetry
relations. The lowest level of the graph contains a node for each individual segment, while
the nodes of the higher levels correspond to groups of adjacent or symmetric parts. Each
upper level node also has an enclosure edge connected to each node of the next lower
level whose corresponding parts it contains. The affinity between two segments is then
based on the geometric similarity (using the distances between the feature histograms
as in the previous option), as well as the structural similarity (based on the similarity
of their neighbors in the graph and the type of edge they are connected with). A more
comprehensive explanation can be found in Subsection 3.1.1. The third option is not an
actual co-analysis algorithm, as it simply accepts the segmentation obtained from the

41



previous step as-is. This can be used in combination with loading the segmentation from
an external file for quick use of the following stages.

As mentioned before, co-analysis is not the main focus of this thesis. As such we only
provide a small number of options for each step. However, the system is designed to be
easily extensible, allowing the development of additional methods for each step of the
process, which is further explained in Section 5.2.

4.3 Parameterization Stage

The aim of the parameterization stage is to find a small number of parameters that allow
the user to explore the shape collection. The idea is to use the spatial features, such
as vertical and horizontal distance, angle and relative scale between adjacent parts as a
guide, similar to the work of Fish et al. [FAvK+14]. However, using every spatial feature
as a parameter would result in a large number of parameters, and some of them might not
vary much across the collection, making them a bad choice for exploring the collection.
Furthermore, correlations might exist between different features, resulting in a lot of
empty regions in the exploration space if these features are used as separate parameters.
Thus we use PCA to reduce the dimensionality of the parameter space, resulting in a
small number of exploration parameters. The whole stage can be divided into three steps.
First we create a graph abstraction of each shape, followed by computing the spatial
features between each pair of adjacent parts. In the last step, the exploration parameters
are found by analyzing how these spatial features vary for similar pairs of parts.

4.3.1 Shape Graph

The input is a set of shapes that has been co-segmented, meaning that every face of a
shape has been assigned a label l from a set of labels L that is the same for the entire
collection. First, we compute a structural graph for each shape. Nodes correspond to
parts or groups of parts and edges correspond to relationships between them, specifically
adjacency, symmetry and enclosure. The graph is a hierarchical graph with two levels.
The top level contains one node for each label present in the shape, with each node
corresponding to the union of all faces with that specific label. To create the bottom-level
nodes, each top-level node is split into multiple nodes based on the connectedness of its
faces. A breadth-first search is performed to find connected regions of faces with the
same label. Each of these connected regions forms a part, and thus a node in the bottom
level of the graph which is connected to its parent with an enclosure edge. An example
of such a graph can be seen in Figure 4.3.

Problems might arise with shapes where there are many small disconnected parts
that are close to each other and should really be treated as a single larger part. We
use the bounding boxes of the parts to test whether or not they intersect. Since the
bounding box is the smallest box that contains all points of its associated part, it is a
useful approximation for the part itself. An axis-aligned bounding box, whose edges have
the property that they are aligned with the axes of the global coordinate system, can
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be easily computed based on the maximum and minimum coordinates of the contained
points. The disadvantage is that the dimensions of the axis-aligned bounding box depend
on the orientation of its corresponding part, which can be a problem since we do not
assume the shapes to be globally aligned.

To use an Oriented Bounding Box (OBB) would a better solution for our purposes.
The advantage of OBBs is that their edges do not have to be aligned with the axes of the
global coordinate system, making them orientation-invariant. Computation of an OBB is
a little more complex. We use PCA on the points of the part to compute their principal
components. The first principal component corresponds to the direction in which the
point coordinates have the greatest variance, while the second principal component
maximizes the variance within the two-dimensional subspace that is orthogonal to the
first principal component. The third principal component is orthogonal to both the first
and second principal components, and thus they form an orthogonal basis which can be
used as the local coordinate system of the OBB. The dimensions of the OBB can then
be computed using the maximum and minimum coordinates of the points in the local
coordinate system.

However, using the entire OBB might still be too inaccurate for parts that are not
convex, so we perform an intersection test by creating a binary OBB tree for each part.
The root node of the tree is the entire OBB of the part. Since it is a binary tree, each
node has at most two child nodes, each corresponding to roughly one half of the OBB of
its parent. To create the child nodes, the OBB of the parent node is split in half along
the longest axis of the local coordinate system of the OBB and each face is assigned to
one half based on its centroid position. The OBB of the new child node is then computed
from the assigned faces. If one half does not contain a face, no child node is created for
that half. The nodes are recursively split until the leaf nodes of the tree only contain
a single face each. To test whether or not two parts intersect, an intersection test is
performed between their trees, starting with the root nodes. If the two nodes intersect,
the first tree is traversed down, testing for intersection at each node. Once a leaf node
has been reached, the second tree is traversed, again checking for intersection at each
node. If there is an intersection between two leaf nodes, then the two parts are considered
to be intersecting and are merged to form a single part.

Next we test for adjacency between parts with different labels. First we iterate over
all mesh edges to find faces that are adjacent and have different labels. When such a
pair of faces is found and an adjacency edge between the nodes of their corresponding
labels does not yet exist, such an adjacency edge is created. Furthermore, we take the
boundary vertices between the two segments, meaning all mesh vertices that are incident
to at least one face of each label, to compute the contact center and a number of contact
vectors.

The contact center is computed by taking the average of all boundary vertices, while
the contact vectors are obtained by performing PCA on the boundary vertices. The
contact vectors are sorted according to their eigenvalues in descending order. We will also
refer to the eigenvector corresponding to the smallest eigenvalue as the contact normal
since it serves as the normal vector of the plane that best approximates the contact area.
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Figure 4.3: A co-segmented mesh with its corresponding shape graph. Each node of the
upper level of the graph corresponds to the set of all parts with a specific label, here
represented by the color. The lower level of the graph has one node for each part of
the shape, each with the same color as its parent node in the upper level. Black edges
correspond to adjacencies between parts, while green edges represent symmetries between
parts.

Additionally, we compute the diameter of the contact area based on the range of the
boundary vertex coordinates in the subspace formed by the first and second contact
vectors. The contact center, vectors and diameter are stored with the adjacency edge
and will be useful later in aligning parts of different shapes.

We also must consider shapes that consist of multiple meshes. To test for adjacency,
we once again use OBB trees, but in addition to the intersection tests between the nodes
of the trees, there is one more intersection test between the faces of the leaf nodes, using
Möller’s triangle intersection algorithm [Möl97]. A single intersection is enough to create
an adjacency edge between the nodes corresponding to the parts, but we continue to
search for all intersections between the parts and use the intersection points to compute
the contact center and contact vectors for the adjacency edge. The adjacencies in the
bottom level of the shape graph are then transferred to the top level – if there is an
adjacency edge between two bottom-level nodes and there is no adjacency edge connecting
their parent nodes, such an edge is created between the parents.

To complete the shape graph, symmetry relations are computed between nodes of the
bottom level, but only between nodes that share the same parent node. Symmetries are
detected using an approach similar to the one in [JTRS12]. A translational symmetry
transform between two parts can be created using the vector between their centers. To
test for a reflective symmetry, the vector between the centers is used as a normal vector
to create a symmetry plane at the midway point between the part centers. To create
a rotational symmetry transform, a third part is selected to fit a circle to the center of
the three parts, thus defining a rotation. To check whether two parts are symmetrical
in regards to a transform, one part is transformed with the symmetry transform. If the
distance between the center of the transformed part and the center of the other part
is under a threshold, and their eigenvectors are similar in length, a symmetry edge is
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created between the nodes corresponding to the two parts.

4.3.2 Spatial Features

Next we compute a feature vector x for each bottom-level adjacency edge. We have chosen
four features to capture the spatial arrangement between each adjacent pair of parts p
and q: the vertical distance dy and horizontal distance dxz between part centers, the angle
θ between parts and the bounded relative scale s between parts. Let d = (dx, dy, dz)T
be the distance vector between part centers pc and qc. Then the vertical distance dy is
simply the y-coordinate of d. The horizontal distance is the euclidean distance between
the part centers in the xz-plane: dxz =

√
d2
x + d2

z. Both dy and dxz are normalized by
dividing by the diameter of the bounding box obtained by merging the bounding boxes
of the two parts. We have chosen not to use the distance in x- and z-direction as separate
features because it would necessitate the assumption that the orientation of all shapes is
globally aligned, which is not always the case with models taken from an online database.
We do, however, assume that the shapes are in upright position. To compute the angle θ
between parts, we select the OBB axis of each part that is best aligned with the contact
normal of the adjacency edge and compute the angle between them.

The relative scale sr(p, q) between two parts p and q is obtained by dividing the OBB
diameter of p by the OBB diameter of q. However, the scale is not symmetric since
sr(p, q) = 1/sr(q, p), so we define a consistent ordering based on the part labels. Let Lp
and Lq be the labels of parts p and q, then the ordered relative scale so is given by

so(p, q) =
{
sr(p, q), if Lp < Lq

sr(q, p), otherwise
. (4.4)

Furthermore, we want to limit the range of the feature. We define a mapping s with

s(p, q) =

1− 1
so(p, q)

, if so(p, q) > 1

so(p, q)− 1, otherwise
. (4.5)

This mapping limits the range of the feature to the interval [−1, 1] such that s(p, q) = 0
means that the OBB diameter of the two parts have equal length, positive values mean
that p is larger than q and negative values mean that p is smaller than q.

4.3.3 Exploration Parameters

For the last parameterization step, we define a set of relations R for the shape collection.
A relation Rlk is contained in the set only if there exists at least one shape in the
collection whose graph contains an adjacency edge between nodes labeled l and k. Since
the adjacency edges are undirected, the relations are symmetrical, i.e. Rlk = Rkl. For each
relation, we want to compute one or two exploration parameters, the number depending
on the amount of correlation between the spatial features. This is done by using PCA to
reduce the dimensionality of the feature space spanned by the spatial features. For each
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Figure 4.4: The distribution of the shapes in the vase datset based on the spatial features
between the neck and body of the shapes. The scale is plotted on the y-axis, while the
vertical distance, horizontal distance and angle are plotted on the x-axis. There is almost
no variation in the latter two features, thus they are not very useful as parameters for
exploring the shape collection.

relation Rlk, all corresponding adjacency edges are embedded into a feature space based
on the centered feature vectors x̂pq = xpq − x̄lk, where xpq is the feature vector of the
adjacency edge between parts p and q, and x̄lk is the mean of the feature vectors of all
adjacency edges between parts labeled l and k.

Then we compute each feature’s variance for every relation and remove the features
with a variance smaller than a threshold. The reasoning is that for any given relation
there might be some features that do not significantly contribute to the variability within
the shape collection. An example of this can be seen in Figure 4.4, where the horizontal
distance and angle between the neck and body of the shapes in the vase dataset are the
same for most shapes. Thus they are not useful parameters for browsing the collection.
We set the threshold to 0.005 which was chosen empirically.

Next we perform PCA for each relation since there is the possibility of correlation
between features. If two features are strongly correlated, it is possible to use a single
parameter for these features instead of using one parameter for each. Figure 4.5 shows an
example in which the horizontal distance and relative scale between the legs and seat of
the shapes in the chair dataset are correlated. Since the legs of a chair are usually placed
at the corners of the seat, their horizontal distance to the center of the seat depends on
the size of the seat. On the other hand, for chairs that only have a single leg, the leg is
usually placed at the center for balance and needs to be larger to carry the weight of the
seat.

Performing the PCA yields the principal component coefficient matrix Vlk and the
variances λ for each relation, as well as a principal component score ypq for each adjacency
edge between parts p and q. The rows of Vlk can be seen as the axes of the principal
component space expressed as vectors in the feature space. The scores ypq express the
coordinates of the adjacency edge in the principal component space and are used as our
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Figure 4.5: The spatial features between adjacent parts can be correlated. In this case
there is a correlation between the horizontal distance and scale between seat and legs of
the chair.

parameters for the exploration of the shape collection. They are obtained by transforming
the centered feature space coordinates x̂pq with the corresponding transposed coefficient
matrix VT

LpLq :
ypq = VT

LpLq x̂pq . (4.6)

The principal component variances λ are simply the variances of the data for each
axis of the principal component space. They are used to decide the number of parameters
used for the exploration. We choose to use the two principal components with the largest
variances if the variance of the second component is larger than half the variance of
the first component. Otherwise we choose only the first principal component since the
second component does not significantly contribute to the variation of the relation. In
cases where we need two principal components but two features have been discarded
because their variance is too small, we do not use the principal components as parameters.
Instead we use the two remaining features directly since it is more intuitive to control
them separately. Since we only need one or two principal components, we only store at
most two columns of Vlk and ypq with each relation and adjacency edge respectively.
Finally, we also store the mean feature vector x̄lk, as well as the minimum and maximum
of the features and scores of each relation for later use.

4.4 Exploration Stage
Using the coefficient scores y as parameters, it is now possible to explore the shape
collection. Starting with an existing shape, the user selects an adjacency edge apq by
picking a pair of adjacent parts p and q. It is then possible to alter the parameters ypq
of the chosen edge apq. This can be done in two ways. First, it is possible to change
the parameters directly by interacting with one or two sliders, each corresponding to an
entry of ypq. The second way of altering the parameters is by interacting with the shape
itself, using a manipulator tool to transform the selected part and then recomputing the
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Figure 4.6: Exploration of the shape collection by directly changing the parameters of
the chosen adjacency edge. In each image, the original shape is shown on the left, while
the shape that best fits the altered parameters is shown on the right. In this example,
the parameters between the legs and seat of the chair are altered by interacting with the
slider, and the bounding boxes of the chair’s legs are updated accordingly.

parameters from the new transformation. A coupling between the parameter sliders and
the visual representation ensures that any changes are always reflected on both sides.
This is explained in Subsection 4.4.1. Once the altered parameters are computed, we
search for the shape in the collection that best fits these parameters, which is described
in Subsection 4.4.2.

4.4.1 Visual Representation

Interacting with a slider is a simple and quick way of changing a parameter value. The
problem with this kind of interaction is that the effect of increasing or decreasing the
parameters is not immediately apparent to the user. Because of that, we have designed a
visual aid in the model viewer that is coupled to the parameters. The selected part p as
well as all parts that are connected to p by a symmetry edge are visually represented
by their OBBs. Additionally, a line connecting the OBB centers of p and q is shown to
represent the selected adjacency edge. To show the effect of altering the parameters,
the position, rotation and scale of the OBB of p is updated accordingly. An example of
this can be seen in Figure 4.6. The spatial arrangements between the legs and seat of
the shown chair are are altered by interacting with a slider. The OBBs of the legs are
updated according to the altered parameters, and reflect the variations of this particular
relation shown in Figure 4.5. The shape containing the adjacency edge that best fits the
altered parameters is also shown next to the original shape. To apply the parameter
changes to the visual representation, it is first necessary to compute the altered spatial
features from the altered parameters.

Let y′pq denote the altered parameters of the adjacency edge apq, and let ∆ypq =
y′pq − ypq be the difference between the altered and original parameters. Using ∆ypq
and the coefficient matrix VLpLq we can compute the change in terms of the original
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spatial features:
∆xpq = VLpLq∆ypq, (4.7)

with ∆xpq = (∆dy,∆dxz,∆θ,∆s)T . We can apply these changes to the original arrange-
ment between p and q to represent the change visually. With d = (dx, dy, dz)T again as
the distance vector between part centers pc and qc, we can get the translation vector
∆d to the new position of pc by

∆d = ∆dy


0
dy
|dy|
0

+ ∆dxz


dx
dxz
0
dz
dxz

 . (4.8)

To apply the change of the angle between the parts, it is first necessary to determine
the axis of rotation. Let up and uq denote the OBB axes of p and q that are best aligned
with the contact vector of apq. Since we want to transform the OBB of p in relation to the
OBB of q, the axis of rotation can be obtained by the cross product uq × up. Of course
this is only possible when 〈uq,up〉 6= 0, in which case the OBB of p is rotated by ∆θ
around the computed axis of rotation using the contact center as the pivot. Otherwise we
do not visualize the rotation, since we have no means to determine the axis of rotation.

Finally, to apply the change in scale, we first compute the new relative scale s′r from
s′ = s+ ∆s:

s′o =


1

1− s′ , if s′ > 0.

1 + s′, otherwise
, s′r =


s′o, if Lp < Lq.
1
s′o
, otherwise . (4.9)

Since s′r denotes the new relative scale of p in relation to q, it is first necessary to
scale p to be of the same size as q before applying the new scaling s′r. Thus the OBB of
p is scaled by s′r(p,q)

sr(p,q) .
To keep the symmetry between symmetric parts, we also apply any parameter change

∆y to the parameters of relevant adjacency edges of symmetric parts. Let P and Q
denote the set of parts symmetric to p and q respectively. ∆y is then added to the
parameters of all adjacency edges apiqj where pi ∈ P, qj ∈ Q. The OBBs of the parts pi
displayed in the model viewer are also transformed based on the changed parameters.
Naturally it is also possible to change the order of p and q when selecting an adjacency
edge. Since the adjacency edge is undirected, the altered coordinates y′ stay the same.
The only thing that changes is the visualization: because p and q are swapped in the
equations above, the visualization shows the transformed OBB of q in relation to p.

It is important to note that the altered features can possibly take on values that
exceed the minimum or maximum features present in the shape collections, or even result
in invalid values such as a negative distance or scale. This can happen because at most
the first two principal component scores are changed, while the others remain the same.
For this reason we store the minimum and maximum features for each relation during
the parameterization so we can restrict the visual representation to those values.
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Figure 4.7: It is also possible to change the parameters by interacting with the shape
itself. The bounding box of the selected part can be transformed using a manipulator
tool. Once the transformation has been accepted, the altered parameters are computed
from the transformed bounding box and the visualization is updated to stay in line with
the new parameters. The shape shown on the right is the shape which best fits the new
parameters.

The other method of changing the parameters is by interacting with the shape in the
model viewer. After selecting an adjacency edge by picking a pair of adjacent parts p
and q, the user can activate edit mode to freely translate, rotate and scale the OBB of
p. This can be done with a manipulator tool similar to those in conventional modeling
programs. Once the user accepts the transformation of the OBB, a feature vector xp′q
is computed, with p′ denoting the transformed OBB. We center the feature vector by
subtracting the mean feature vector x̄Lp′Lq of the corresponding relation RLp′Lq and
compute the new principal component score yp′q using Equation 4.6. If the new score
falls outside the range of scores of the relation, the values are clamped so they do not
exceed the minimum and maximum values. Finally, the OBB is transformed once more
based on yp′q to ensure that the visual representation stays in line with the parameters.
Figure 4.7 shows an example of this.

4.4.2 Finding The Best Fit

The altered parameters are then used to find shapes in the collection that best fit these
parameters. There are two options for this search: finding the pair of parts in the
collection that best satisfy the parameters of the currently selected adjacency edge, or
incorporating all adjacency edges of the current shape in the search to find the most
fitting shape in the collection. The first case is simple. Let apq be the currently selected
adjacency edge with altered parameters y′pq, and let ALpLq denote the set of adjacency
edges between parts labeled Lp and Lq (note that apq is also included in this set). Then
we can find the best fitting adjacency edge a∗ by

a∗ = arg min
a∈ALpLq

‖y′pq − ya‖ . (4.10)
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Figure 4.8: Existing parts can be copied and assigned a different label. Such a new part
can then be used as a proxy to explore the collection or to swap in parts from other
shapes.

In order to take all adjacency edges into account when searching for the shape that
best fits the altered parameters, we must first consider how to deal with cases where the
cardinality of parts varies across the collection. For every shape Mi we first compute the
average parameter vector ȳi

lk for each relation Rlk given by

ȳi
lk =


∑
a∈Ai

lk
ya

|Ailk|
, if |Ailk| > 0

ymax
lk − ymin

lk
2 , otherwise

, (4.11)

with Ailk being the set of adjacency edges of shape Mi between parts labeled l and k,
and ymax

lk and ymin
lk being the maximum and minimum values for ylk. Furthermore, we

extend each vector ȳi
lk by adding another entry zilk, which is the weighted number of

adjacency edges between parts labeled l and k given by

zilk =

ω
|Ailk| −Aminlk

Amaxlk −Aminlk

, if Amaxlk −Aminlk > 0

0, otherwise
, (4.12)

with Aminlk = min
i=1...n

|Ailk|, Amaxlk = max
i=1...n

|Ailk| and ω ≥ 0 being a weight parameter that
decides how important the number of adjacency edges is in finding similar shapes. The
average of the altered parameters ȳ′lk is computed in the same manner. The shape M∗
that is closest to the altered parameters can then be found by

M∗ = arg min
Mi∈M

∑
Rlk∈R

‖ȳ′lk − ȳi
lk‖ . (4.13)

Since we can also take the number of adjacency edges into account when searching
for the best fit, it is necessary to provide the user with a way to add or remove adjacency
edges of the current shape. Either operation is only allowed when the number of adjacency
edges |Ailk| remains within the interval [Aminlk , Amaxlk ] after increasing or decreasing it.
The first step is to select an adjacency edge by picking two adjacent parts p and q. An
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adjacency edge can be deleted by pressing the corresponding button. Creating a new
adjacency edge is done by creating a new part p′ that is then connected to q. This can
be achieved by copying the OBB of p and using the manipulator tool to move it to a
new location. Once confirmed, the vertices and faces of p are copied and placed at the
new location using the transformation of the OBB. To obtain an approximation for the
contact center and contact vectors of the new adjacency edge, we intersect the edges of
the OBB of p′ with the planes of the OBB of q and vice versa. The points of intersection
are then treated as the boundary vertices between the two parts to compute the contact
center and vectors. If the OBB of p′ is placed so that there are less than 3 intersections,
the new location is not accepted and the user can either alter the transformation of the
OBB or cancel the creation of the new part.

Finally, it is also possible to change the label of a copied part, thus allowing the
creation of adjacency edges that do not occur in the current shape. While the new part
still has the geometry of the part that was copied, it can be used as a proxy to find
shapes with similar part arrangements and to swap in parts with the same label from
other shapes. Figure 4.8 shows an example of this process. The shown shape from the
chair dataset only consists of a seat and a leg. The leg part is copied, transformed, placed
on top of the seat and assigned the label of a back part. It is then used as a proxy to
find and swap in a back part from a different shape.

4.5 Shape Synthesis Stage

The final stage of the shape synthesis process is the exchange of parts between shapes.
Once the shape M∗ with the desired parts has been found by using the process explained
in Section 4.4, the user can replace the part p of the currently selected adjacency edge
apq with a corresponding part of M∗. First, the faces and vertices of p are removed from
the shape. The system then picks a part p∗ from M∗ with the same label as p as a
replacement and adds its vertices and faces to the current shape. Since the two shapes
are not aligned, it is necessary to transform p∗ so it fits together with the remainder of
the shape. This is done with the help of the contact centers and contact vectors of the
adjacency edge apq and its corresponding edge ap∗q∗ in M∗ that connects p∗ with a part
q∗ that has the same label as q. The aim is to find the transformation that best aligns
the two contact areas, which can be done by aligning the contact vectors.

As the first step, scaling is applied to p∗ based on the relative scale between the
contact diameters of apq and ap∗q∗ . Next we make sure that the contact normals of apq
and ap∗q∗ point in the same direction as the the vectors pointing from the contact center
to the OBB of p and p∗ respectively. If this is not the case, we reverse the direction of
the contact vectors. Then we check if the two contact vectors point in the same direction.
If not, q∗ is mirrored across the plane defined by the contact center and contact normal
of ap∗q∗ (in this case the order of the vertex indices of the faces of p∗ also needs to be
reversed to preserve the direction of the face normals). To align the contact vectors, we
first compute the angle between the contact normals and use their cross product as the
axis of rotation to align them. Next we align the transformed first contact vector of ap∗q∗
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(a) (b) (c)

Figure 4.9: Part alignment between the handle and body of a shape from the vase dataset.
The arrows represent the contact vectors, with the first and second vectors shown in red
and green respectively, and the contact normal shown in blue. (a) The full shape, with
the area of interest highlighted. (b) Side view of the contact area. (c) Frontal view of
the contact area.

with the axis corresponding to the first contact vector of apq. This is done by using the
aligned contact normal as the axis of rotation and rotating the first contact vector of
ap∗q∗ so that it aligns with either the first contact vector of apq or its inverted vector,
whichever requires the smaller rotation. Finally, p∗ is translated by the vector between
the contact centers of apq and ap∗q∗ . An illustration of this process can be seen in Figure
4.9. Also, to keep symmetry between parts, the process is repeated for all parts that are
symmetric to p.

Once the parts have been exchanged, the user can repeatedly go through the explo-
ration and shape synthesis stages, by selecting another adjacency edge, exploring the
shape collection and exchanging further parts. Naturally, it is also possible to exchange
or explore with parts that have been swapped in from other shapes.

This system serves as a simple demonstration of how new shapes can be created by
swapping in parts from other shapes. Depending on how well the swapped-in parts fit
with the remainder of the shape, the results might look far from perfect without further
refinements. For example, when the parts of the initial shape are connected, removing
these parts results in holes which would need to be filled (an example of how this can be
achieved can be found in [FKS+04]). Other considerations include how to handle the
exchange between parts where the topology of the contact areas differs, or constraints
of plausibility like requiring the shape to be stable with regards to gravity. But since
shape synthesis is not the main contribution of this thesis, the proposed system suffices
for purposes of demonstration.
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CHAPTER 5
Implementation

This chapter gives an explanation about the implementation of our proposed framework.
Section 5.1 details the base framework and libraries that were used. Section 5.2 explains
how the co-analysis stage was designed to be modular and easily extensible. In Section
5.3 we explain the data structure we use to store the shape graphs of each shape. Finally,
Section 5.4 contains details about the user interface and methods of interaction with the
application.

5.1 Base Framework and Libraries

The application is written in C# , using Helix 3D Toolkit with SharpDX as a base.
Shapes are loaded from files containing vertex positions and faces of a triangle mesh.
The supported file types are OBJ and OFF, but the application can be easily extended
to support further file extensions as long as the file contains the necessary information to
create a triangle mesh. The loaded shapes are stored as objects of the TriangleMesh
class [Kol05], which uses a halfedge data structure. This data structure makes it easier
and more efficient to navigate through the neighborhood of a vertex, edge or face of the
mesh, which is needed in many operations present in the application. One disadvantage
is that the data structure is very strict about the layout of the mesh. For example, an
edge can never have more than two adjacent faces. This can be a problem when using
shapes from a model repository, since such standards are not enforced there.

The application also uses MATLAB for several operations, thus a working copy of
MATLAB is required to run the application. Whenever necessary, data is passed to
MATLAB where it is processed and then the results are queried. Most notably, the
application uses the k-means algorithm of MATLAB for computing the SC feature and
the PCA algorithm of MATLAB to compute the contact areas and exploration parameters
for each adjacency edge. The co-analysis stage also uses a MATLAB implementation of
the Normalized Cuts algorithm [CYS04].
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For the contact and symmetry detection, as well as the computation of OBBs and
OBB trees of parts, we use an existing implementation developed during a previous
student project. Finally, the application uses an open source implementation of a C#
priority queue, primarily used in Dijkstra’s algorithm for the computation of the geodesic
distances on the triangle mesh.

5.2 Co-Analysis Extendability
As mentioned in the previous chapter, the co-analysis stage of the application is developed
to be both modular and easily extensible. The co-analysis process consists of three steps:
feature computation, individual segmentation and segment clustering. The classes and
methods used in this stage are contained in the CoAnalysis library.

During the first step, various features are computed for each face of every
shape. The features used in this application are explained in Subsection 3.1.1. The
FeatureDescriptor class contains all methods for feature computation. With the
exception of SCs, each face-level feature is represented by a double-type value and the
features for each shape are stored in a jagged array. The first dimension contains an
entry for each feature, while the second dimension contains an entry for each face of the
shape. Since the size of the array depends on the number of features, it is possible to add
more features without changing any of the other modules of the co-analysis stage. SCs
are the one exception to the way features are represented in the application. Since a SC
is a 2D histogram, additional processing is needed to bring it into the same format as the
other features. We use the same method as Hu et al. [HFL12] by clustering the SCs of
all shapes using k-means and then using the cluster index of each SC as the new feature.

During the individual segmentation, the shapes are segmented into regions of connected
faces, with each face being assigned a label corresponding to their segment. The algorithm
used for the segmentation can be chosen during runtime from a number of options.
Further segmentation algorithms can be developed to increase the number of options
available. For this purpose, the CoAnalysis library contains an interface with the name
ISegmentationAlgorithm. It contains a single method

int[] Segment( TriangleMesh mesh,
int nSegments
);

which must be implemented when creating a class that extends the interface. The two
inputs are the TriangleMesh to be segmented and the number of segments that should
be created. The output is an integer array containing the corresponding segment label for
each face of the shape. To include the new algorithm as an option for the segmentation
step, an instance of the class only needs to be added to the list of options at application
startup.

The third step, segment clustering, is implemented in a similar manner. During
this step, the segments of all shapes are clustered, assigning a new label to each
segment so that that all segments with the same label belong to the same category.
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Once again, a number of options is available for this step and more can be added by
extending the IClusteringAlgorithm interface. This interface has two methods.
bool RequiresFeatures() returns true if the implemented algorithm requires the
computation of face-level features. This is used during first step of the co-analysis stage.
Since not all co-analysis algorithms depend on face-level features, the feature computation
can be skipped in those cases. The second method is

IList<int[]> Cluster( IList<TriangleMesh> meshList,
IList<double[][]> featureList,
IList<int[]> segmentList,
int nClusters,
double[] featureWeights,
bool autoClusters

);

which performs the clustering. The inputs are, in order: the list of shapes as objects
of the TriangleMesh class, the list of features in the format described earlier, the list
containing the labels of each shape computed in the previous step, the desired number of
clusters, an array containing the weight for each feature and a boolean that determines
whether the number of clusters should be estimated by the algorithm or not. Of course it
is not required for the implementation of a clustering algorithm to use all of these inputs
during the algorithm. The output is a list containing an integer array for each shape,
with each array containing the new segment labels of each face.

5.3 Shape Graph Data Structure

In the parameterization stage we compute a graph abstraction of each shape. Such
a graph is represented by the MeshGraph class. The parts of a shape correspond to
nodes in the graph, which are represented by the MeshGraphNode class. Relationships
between parts, such as adjacency or symmetry, correspond to edges in the graph and
are represented by the MeshGraphEdge class. The data structure works as follows: A
MeshGraph stores a list of MeshGraphNode objects for each level of the graph. For
the parameterization stage we only ever use two levels, but the class is also used in one
of our co-analysis algorithms where it can have more levels. Each MeshGraphNode
stores the index of the shape it belongs to, its OBB, the indices of its faces and the
corresponding label. A list of MeshGraphEdge objects that are incident to the node
can be used to quickly find adjacent or symmetric nodes. For each MeshGraphEdge
we store the two incident MeshGraphNode objects and the type of the edge which
can be adjacency, symmetry or enclosure. An enclosure edge represents a parent-child
relationship between nodes of different levels. In this case, the parent node is always
saved as the second node of the edge. For adjacency edges of the lower level we also store
the contact center, contact normals and the diameter of the contact area, as well as the
exploration parameters y.
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Figure 5.1: The user interface of the application. It consists of two regions. The left
side is the model viewer which displays the currently selected shape and a preview of
the shape that best fits the altered parameters. The right side contains controls for the
different stages of the system.

This allows us to quickly find specific nodes and edges for different purposes. For
example, disconnected parts with the same label can be found by iterating over the
enclosure edges of the corresponding node in the upper level of the graph, while parts
that are adjacent or symmetric to a specific part can be found by iterating over its edges
of the corresponding type. Since the number of edges incident to each node is quite small
in general, this is fast and efficient. Also, since we allow the user to make changes to the
shape graph of the currently selected shape in order to explore the collection, a copy of
the shape graph is created when selecting a shape from the collection. All changes by
the user are only applied to this copy to ensure that the original shape remains the same
and can be chosen when searching for the shape that best fits the altered parameters.

5.4 User Interface

The user interface, which can be seen in Figure 5.1 is divided into two regions, with the
model viewer on the left side and the user controls on the right side. The model viewer
displays the currently selected shape and during the exploration stage also a preview of
the shape that best fits the exploration parameters altered by the user. The controls
are organized into panels corresponding to the different stages of the system. The first
panel contains some options related to the rendering, allowing the user to choose which
elements to display in the model viewer. The second panel contains the files of the shape
collection. Here, files can be added or removed from the current collection and the shape
to be displayed in the model view can be selected.
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The third, fourth and fifth panel are relevant for the co-analysis stage. The Feature
panel is used for setting the weights of the face-level features and to visualize the features
on the currently displayed shape. It is also possible to export the computed features
which are saved in a file with the extension FTR and placed in the same folder as
the shape file. If such a file is present during the feature computation step, it will be
automatically used to import the features instead of computing them. The Segmentation
panel allows the user to choose a segmentation algorithm from a number of options. The
chosen algorithm can be applied to the displayed shape in order to visualize, export
or edit the resulting segmentation. The Co-Analysis panel contains a list of available
clustering algorithms for the third step of the co-analysis process. When performing the
co-analysis, the parameters of the previous two panels are taken into account, using the
chosen feature weights and the selected segmentation algorithm.

The sixth panel is used for the parameterization, exploration and shape synthesis
stages. Once the co-analysis stage has concluded, the parameterization can be performed
by pressing the corresponding button. Two drop-down boxes allow the selection of an
adjacency edge by first picking a shape part from the first box and then picking an
adjacent part from the second box. With the sliders it is possible to alter the parameters
of the adjacency edge directly. The panel also offers controls for copying and deleting
parts, as well as creating new proxy parts by copying a part and assigning a new label to
it. Finally, the Select button exchanges the part currently selected for a corresponding
part of the shape that best fits the altered parameters, allowing the creation of a new
shape.

Interaction is also possible in the model viewer by clicking on the displayed shape.
The MeshGeometryModel3D class provided by Helix 3D Toolkit with SharpDX au-
tomatically performs a hit test when the user clicks somewhere in the model viewer.
However, that functionality is not enough for our purposes. For that reason we extended
its functionality, creating the HittableMeshGeometryModel3D class. This class ad-
ditionally stores the index of the last triangle hit by clicking on the shape, also taking
into account whether the Shift or Ctrl keys were pressed during the click.

The result of such an interaction depends on the stage of the system. While in the
exploration stage, left-clicking allows the selection of the shape part the hit triangle
belongs to. Holding Shift while clicking on the shape selects the adjacency edge between
the selected first part and the part that was hit, provided that these two parts are actually
adjacent. When editing the current segmentation, simply left clicking changes the label
of the hit triangle. Clicking while holding the Shift key changes the label of the whole
connected segment the hit triangle belongs to. Finally, holding Ctrl while clicking works
similar to a color picker, allowing the user to select the label of the hit triangle to use for
the other two operations.
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CHAPTER 6
Results

In this chapter we perform a number of test. All of the tests are performed on a machine
with an Intel Core i5 processor with four 3.40GHz cores, 8 GB RAM and a AMD Radeon
HD 6950 graphics card. The test datasets are taken from the Princeton Shape Benchmark
[SMKF04], the Shape COSEG Dataset [Wan] and 3D Warehouse [Tri].

We use two different versions of the large COSEG chair dataset which consists of a
variety of chairs and benches. The test set contains the shapes numbered 0 to 188 and
400 to 632, for a total of 275 shapes (note that not all numbers exist in the dataset). The
number of faces of the shapes in this set range from 336 to 20928, with an average of
3522. The full set also contains the remaining 125 shapes in addition to the shapes of
the test set. Some of these shapes have a higher face count, resulting in a range of 336 to
31456 faces for the set, with an average of 4611.

The large COSEG vases dataset contains a total of 300 shapes. The types of shapes
in the set include vases, cups and buckets. The average face count of the set is 2533,
ranging from 832 to 6528. Finally, we also use two smaller datasets. The candelabra set
from the COSEG benchmark consists of 28 shapes, with 9952 to 10004 faces, the average
being 9996. The plane dataset consists of 15 plane and fighter jet shapes that have been
put together from shapes found on 3D Warehouse and the Princeton Shape Benchmark.
The face count for this set ranges from 480 to 28592, with 5482 faces on average. Images
of the used datasets can be found in Appendix A.

The labeling of the shapes is obtained using our co-analysis stage. For the actual tests
we use the option to load an existing segmentation from a file, usually provided together
with the dataset. The shapes of the plane dataset do not come with an existing labeling,
so we created our own segmentation using our manual segmentation tools. We also
tested different combinations of our implemented segmentation and clustering algorithms.
While the resulting co-segmentations can be used successfully in the following stages of
the framework, our implementation lacks the refinement step of the original algorithm
and thus leads to a higher error rate in the labeling. This can lead to unsatisfactory
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results, so to demonstrate the full capabilities of the other stages, we use an existing
segmentation.

6.1 Parameterization and Exploration Results

This section presents the results of a number of tests that were made for the exploration
stage. We perform tests for both single-relation and multi-relation exploration. Note that
for these tests, we assume that each shape is already correctly segmented and labeled.
Numbers for the parameterization of the shape collections can be found in Appendix B.

The parameterization of the shape collection needs to be done only once before
exploration of the collection becomes possible. The performance depends on the number
of shapes and the number of faces for each shape. We recorded the duration of the
parameterization for the test datasets. On the test system, the parameterization of
the test chair set takes 1 minute and 16.91 seconds. The full chair set contains more
shapes including some shapes with a higher face count and thus the time it takes to
parameterize the set is higher, taking 2 minutes and 32.48 seconds. The parameterization
of the vases dataset takes 1 minutes and 14.48 seconds. Finally, it takes 26.79 seconds
for the candelabra dataset and 11.14 seconds for the plane dataset.

Since the computation of the shape that best fits the altered parameters is fast,
exploration of the shape collection can then be done in real time even for large sets. As
a test, the exploration of the combined collection of the vases and full chair datasets (for
a total of 700 shapes) results in a framerate of 30 − 40 frames per second on the test
system even when considering all relations in the computation of the shape that best fits
the altered parameters.

6.1.1 Single-relation Exploration

In this subsection we present the results of our single-relation exploration tests, meaning
that only the currently selected relation is taken into account when searching for the
shape that best fits the altered parameters. Figure 6.1 shows the results for the relation
between the backrest and the seat of the shapes in the test chair dataset. The additional
shapes of the full set are not used in order to demonstrate how the parameters change
depending on the variability of the set, which will be shown later. We use the provided
segmentation files for the labeling of the parts.

The analysis of this dataset yields the first two principal components as exploration
parameters. The shapes shown in Figure 6.1 are ordered roughly according to their
position in the exploration parameter space. This means that change to the first parameter
is shown on the horizontal axis, while change to the second parameter is shown on the
vertical axis. Increasing the first parameter results in an increase for the relative scale
and vertical distance, but a decrease for the angle and horizontal distance of the backrest
relative to the seat. Increasing the second parameter results in an increase of all features.

As a result, similar shapes are closer to each other than dissimilar shapes. For
example, angled backrests can be found mostly on the left side of the parameter space,
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Figure 6.1: The analysis of the relation between the backrests and seats of the chair
dataset results in the first two principal components being used as exploration parameters.
In each box, the original shape used for the exploration is shown on the left, while the
preview of the shape that best fits the altered exploration parameters is shown on the
right. The altered parameters are represented visually by the bounding box of the
backrest.

while large backrests can be found near the top and right sides of the parameter space.
Furthermore, most benches are closer to the bottom side of the parameter space since the
horizontal distance between their backrest and seat is small in relation to their combined
bounding box diameter.

The reason for why we exclude some shapes for the test is because it is a good example
for how the parameterization can change depending on the dataset. The excluded part
of the set consists of many shapes that are scaled in direction of the y-axis. For the
backrests and seats in particular this means that stretching the shape causes the vertical
distance and relative scale of the backrest to increase, while the horizontal distance
(relative to the combined bounding box diameter) becomes smaller. Vertically shrinking
the shape on the other hand decreases the vertical distance and relative scale while at the
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Figure 6.2: A plot of the relative scale and vertical and horizontal distance between the
backrests and seats of the chair dataset. Blue circles represent the shapes of the test
set, while red squares represent the excluded shapes. For the excluded shapes, there is
a strong correlation between the shown features. This is because most of the excluded
shapes have been scaled vertically as can be seen on the right.

same time increasing the horizontal distance in relation to the combined bounding box
diameter. As a result, the correlation between the scale, horizontal and vertical distance
becomes stronger, which can also be seen in Table B.1.

Figure 6.2 shows a plot of the datasets and two examples for the shapes of the
excluded set. The relative scale is shown on the x-axis and the distances are shown on the
y-axis, with test shapes represented by blue circles and the excluded shapes represented
by red squares. As can be seen, the excluded shapes show a strong correlation between
the scale and the vertical and horizontal distance of the backrests – as the scale increases,
the vertical distance also increases while the horizontal distance becomes smaller. The
consequence is that when using the whole dataset in the analysis, the first principal
component has a larger variance than when only using the shapes in the test dataset and
thus only the first principal component is used for exploration.

We also analyze the relation between the legs and seat of the chairs. The results are
similar to the observations made previously in Section 4.3. The legs of the shapes mostly
vary in scale and horizontal distance, and these two parameters are strongly correlated.
Because of that, chairs with a single large leg are clustered on one side of the parameter
space, while benches can be found on the other side because their legs are further apart
horizontally and smaller in relation to the size of the seat. An example can be seen in
Figure 4.6.

Another test is performed using the vases dataset. Again we use the provided
segmentation files for the labeling of the parts, although we correct two of the cup shapes
that have their insides incorrectly labeled as a neck part instead of a body part. Three
relations are inspected in the following tests: neck to body, base to body and handle to
body.

For both the neck and the base of the shapes, there is almost no variability in
horizontal distance and angle between parts. There is also no strong correlation between
the two remaining features vertical distance and scale and thus the analysis yields two
principal components for the exploration. Since there are only two relevant features
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Figure 6.3: Exploration of the vase dataset using the relation between neck and body
(top two rows), and base and body (bottom two rows). In both cases, only two features
are relevant (horizontal distance and scale) and they are not strongly correlated. Thus
the horizontal distance and scale are used directly as parameters for the exploration.

anyway, the two exploration parameters are the individual features, with the scale being
the feature with the larger variance in both cases. Figure 6.3 shows some example shapes
found by exploring the collection using the relations of the neck and base parts to the
body of the shapes.

Exploration using the relations of the handles to the body of the vases also yields
interesting results. Both the first and second principal components have high variance
and thus both are used in the exploration. Increasing the first exploration parameter
results in an increased vertical distance while the horizontal distance decreases. The
angle also decreases slightly, but the scale remains almost unchanged. Increasing the
second parameter mostly results in the scale of the handle becoming larger and the angle
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Figure 6.4: Exploration of the vase dataset using the relation between handle and body.
Changes to the first principal component are shown on the x-axis, while changes to the
second principal component are shown on the y-axis.

becoming smaller, though the vertical distance also decreases slightly.
Once again this results in similar shapes being clustered. Handles that are orthogonal

to the body can be found on the top of the parameter space, while angled handles can
be found near the bottom. Furthermore, on the left side of the parameter space one can
find handles that are connected to the side of the body, while the handles on the right
side are mostly connected to the top of the body. Since the handle of cup shapes are
orthogonal and on the side of the body, these types of shapes are clustered near the top
left of the parameter space. Bucket shapes on the other hand can be found near the
top right of the parameter space since the handles are also orthogonal to the body, but
placed on top of it.

Regular vases can be found near the bottom since their handles are generally smaller
compared to the body. Again the shapes on the left side have handles that are attached
to the side of the body while the right side has shapes with handles that are connected
to the top of the body. As a result, vertically long shapes can be found mostly on the
right side, while short shapes can be found on the opposite side.

Finally, we also test two small datasets. The candelabra set from the COSEG
benchmark consists of 28 shapes whose parts can be categorized as candle, flame, base
and handle. The plane dataset consists of 15 plane and fighter jet shapes that have been
put together from shapes found on 3D Warehouse and the Princeton Shape Benchmark.
Its parts consist of fuselage (or body), wheel, wing, engine and stabilizer. Note that we
assign engines of passenger planes and missiles of fighter jets the same label.
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Figure 6.5: Exploring the candelabra dataset using different relations. In the first row,
the relation between the handle and the base of the candelabra is changed. In the second
row, the dataset is explored by changing the relation between the candles and the base.

First we look at the relation of the handles to the base of the candelabra dataset.
The first two principal components are used since they both have a high variance. The
first exploration parameter mostly controls the scale and horizontal distance – as the
scale decreases, the horizontal distance increases. This is because the handles are mostly
attached to the side of the base and thus its relative size is strongly correlated with the
horizontal distance between the part centers. The second parameter mostly controls the
other two features, with a decrease in the vertical distance causing the angle between
the parts to increase. The reason for this is that most handles that are orthogonal to
the base are attached closer to the top, while most handles that are angled are attached
closer to the bottom of the base. An example of this can be seen in the top row of Figure
6.5.

For the candle-base relation of the candelabra dataset, the angle accounts for almost
no variation within the dataset and is thus ignored in the PCA. The first principal
component shows a strong correlation between scale and distance. As the scale increases,
the vertical distance also does, but the horizontal distance decreases. This is because
dataset contains shapes with up to three candles connected to the base. For shapes with
a single candle it is usually placed in the center of the base. On the other hand, the
candles are more spread out if there is more than one and the base needs to be larger
to accommodate the additional candles in those cases. Increasing the second parameter
results in an increase in vertical distance and a slight increase in horizontal distance.
In this relation it is less useful for finding different candles, but it can be used to find
differently shaped bases like plates, bowls or stands. Examples can be seen in the bottom
row of Figure 6.5.

For the plane dataset we test three different relations. The wings of the planes
in relation to the fuselage mostly differ in angle and scale. Vertical and horizontal
distance are discarded for the PCA. Since both principal components show a high enough
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Figure 6.6: Exploring the plane dataset using different relations. The top row shows how
changing the relation between the wing and fuselage can be used to find other shapes in
the collection. In the bottom row, the relation between stabilizer and fuselage (left), as
well as the relation between engine and wing (right) are used in the exploration.

variance, both remaining features are used as parameters directly. The scale is useful
for differentiating passenger planes from fighter jets, while the angle is useful in finding
differently shaped wings. The stabilizer-to-fuselage relation mostly varies in angle, though
the other three features still show enough variance to be kept. The variation can be
explained well by the first principal component – increasing the angle results in an
increase in horizontal distance, but a decrease in vertical distance and scale. Finally, the
engine-to-wing relation mostly differs in scale and horizontal distance, with angle and
vertical distance having almost no variance. The first principal component is enough
to describe the variability of the relation as scale and horizontal distance are positively
correlated. This is because the engines and rockets have the same label – most of the
fighter jets have small wings with rockets attached to the end of the wings, while the
passenger plane have large wings and the engines are closer to the center of the wings.
Figure 6.6 show examples of these relations.

6.1.2 Multi-relation Exploration

In this section we explore the shape collections by taking multiple relations into account.
By changing the parameters of multiple relations it is possible to find more specific results.
The tests are performed using the same datasets as before.

For the first test, we use the chair dataset, again with some of the shapes excluded.
The testing procedure is as follows: We first set the parameter for the leg-seat relation of
the chair. Then we alter the parameters for the relation between the backrest and the
seat. The results can be seen in Figure 6.7. The left column shows the parameters for
the legs of the chair. We choose three settings for the test with parameter values near
the ends and middle of the parameter space. This corresponds to the different kind of
chair shapes in the dataset – benches whose legs are far apart, chairs with a single large
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Figure 6.7: Exploration of the chair dataset using multiple relations. The column on the
left shows the parameters of the leg-seat relation that is used for the other shapes of the
corresponding row. Changing the parameters of the backrest-seat relation then yields
different results by also taking into account the setting of the leg-seat relation.

leg and conventional chairs.
The rows of Figure 6.7 then show the exploration of the dataset using the relation

between the backrest and seat of the chairs, taking into account the altered parameter
for the leg-seat relation shown in the left column. For every other column, the three
shapes in the column use the same parameters for the backrest-seat relation, which can
be seen in the visualization of the bounding box. However, the shape that best fits the
altered parameters is not the same as the parameters for the legs are also taken into
consideration. As a result, the shapes in the first row are conventional chairs, the shapes
in the second row are more like benches and the shapes in the third row all have a single
large leg.

For the next test we also consider the number of parts as a parameter. Finding a good
weight ω to determine how much influence the difference in part numbers has depends
on the use case. For this test we intend to only search for shapes that have the exact
same number of parts. For that purpose, ω is set to a large value, in this case 100.
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Figure 6.8: Exploration of the vases dataset using multiple relations and different numbers
of parts. The original shape is shape shown in the top left, with the number of handles
altered for the starting shape of the second and third row. Exploring the collection using
the same changes to the parameters results in similar shapes for each starting shape,
with the major difference being the number of handles.

We choose a shape from the vase dataset as the starting shape to search for other
shapes in the dataset. This starting shape contains a neck, a base and two handles which
are all connected to the body of the shape. Then we explore the collection by alternately
changing the parameters of the neck and the base of the shape. The exploration consists
of the following four steps:

1. The vertical distance and scale of the neck are increased.

2. The vertical distance of the base is increased, while the scale of the base is decreased.

3. The scale of the neck is decreased.

4. The vertical distance of the base is decreased, while the scale of the base is increased.

We perform this exploration process three times, each time with a different number
of handles. In the first test, the number of handles is unchanged. In the second test,
both handles are removed. Then in the third test each handle is copied and placed so
that the four handles form a rotational symmetry. This specific placement isn’t strictly
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Figure 6.9: Exploration of the candelabra and plane datasets by adding parts that do
not exist in the starting shapes shown on the left. By copying a part and assigning it a
different label, it is possible to find shapes of the collection with different parts than the
starting shape. In this example, a handle is added to the candelabra in the top row, and
engines and wheels are added to the plane in the bottom row.

necessary – it would also be possible to place the copied handles at the exact location
of their original counterpart since we only measure the horizontal distance as a whole
and not separately for the x- and z-directions. However, the resulting visualization is
closer to the types of shapes that are contained in the dataset, making the visualization
more accurate. The exploration parameters for the handles are not changed in any of
the steps.

The results can be seen in Figure 6.8. The first row shows the exploration with two
handles, the second row without handles and the third row with four handles. The shapes
shown in each column show a lot of similarities, reflecting the change in parameters.
The major difference is the number of handles. The first column shows shapes with a
body that is roughly as wide as it is long, with both the base and neck being small in
comparison. The body and base of the shapes in the second column are similar, but
the neck is longer for all three shapes. the change of the base results in the body of the
shapes becoming a little longer and less wide, as shown in the third column. The fourth
column has shapes with a very long and thin body, resulting from the neck decreasing in
size.

Finally, the fifth column is the only one with a shape that is very different from the
others. The first two rows show shapes with a large base and body, but a small neck,
while the third row contains the same shape as in the first column. As can be seen, its
base is significantly smaller than the bases of the other two shapes. This is because there
is no shape with four handles in the dataset that fits the altered parameters for all the
parts.

In the last exploration test, we show how to deal with cases where the starting shape
does not contain all possible relations. For this we use the candelabra and plane datasets.
The top row of Figure 6.9 shows a candelabra shape that consists of a candle, flame and
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base. We would like to find a shape with a handle, so we copy the candle part, assign it
the label of a handle and place it to the side of the base. Immediately the best fitting
shape in the collection changes and now shows a candelabra that also has a handle, as
shown in the second column. The newly placed handle can then be used to explore the
collection as usual, which can be seen in the third column.

Lastly, a similar test is performed with the plane dataset, which is demonstrated in
the second row of Figure 6.9. The starting shape, shown on the left side, is a fighter jet
that contains the fuselage, wings and stabilizers. We first make two copies of the fuselage,
assign the labels of an engine and place them at the end of both wings, resulting in the
shape shown in the second column. Then we copy the stabilizers, turn them into wheels
by assigning the corresponding label and then place them under the fuselage. The best
fit changes again, now to a plane that has both wheels and engines, as shown in the third
column.

6.2 Synthesis Results
This section shows the results of creating new shapes in the shape synthesis stage. We use
the same datasets as in the exploration tests and create some new shapes by combining
parts of different existing shapes. This is done by first picking a starting shape and using
the parts of the shape to explore the shape collection. Once a shape with the desired
parts has been found, the corresponding parts of the current shape are replaced by them.

Figure 6.10 shows some new chairs created by combining parts of the chair dataset.
For most of shapes, the existing parts are merely replaced by other parts. The second
shape in the top row and the fourth shape in the bottom row originally do not contain a
backrest, so in both cases we add one by copying the leg, placing it on top of the seat,
changing the label to that of a backrest and replacing it with a backrest from another
shape. Similarly, the starting shape of the fifth column in the bottom row only has a
single leg, but we create a chair with three legs by copying it twice.

Shape synthesis results for the vase dataset can be seen in Figure 6.11. Once again
we choose a starting shape, explore the collection using the part relations and exchange
parts between shapes. For each shown shape we exchange all parts except the body of
the vase. Note that the second and fourth shapes in the bottom row originally do not
have a neck and base part respectively. For these parts we again copy a different part
and changed the label to find corresponding parts in other shapes.

Figure 6.12 shows a few examples using the candelabra dataset. The two shapes on
the left side are created in a continuation of the exploration process shown in Figure
6.9. Using the created parts to explore the collection, we then exchange these parts with
corresponding parts from the shapes that best fit the altered exploration parameters. In
this case, two different handles are swapped in to create a new shape.

Finally, Figure 6.13 shows three synthesized plane shapes. Similarly to the previous
example, the two shapes on the bottom row display a continuation of the exploration
from Figure 6.9. To create these shapes, two different kinds of engine parts, another
stabilizer and some wheels are swapped in.
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Figure 6.10: Some examples for shapes created in the shape synthesis stage, in this case
using the chair dataset.

Figure 6.11: Some examples for shapes created in the shape synthesis stage, in this case
using the vase dataset.
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Figure 6.12: Some examples for shapes created in the shape synthesis stage, in this case
using the candelabra dataset.

Figure 6.13: Some examples for shapes created in the shape synthesis stage, in this case
using the plane dataset.
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6.3 Limitations
In this section, we take a look at some of the drawbacks of our proposed system. One
problem is that the center of the parameter space is usually more densely populated than
the outer regions. Since altering parameter values directly is done using a slider, this can
make it difficult to find shapes that only differ slightly in their parameters. At the same
time, a small change to a parameter with a value near the borders of the parameter space
might not give a different result for the best fitting shape when the distance between the
nearest neighbors is large. A possible solution could be to let the user choose from the k
best fitting shapes instead of just the single shape that best fits the altered parameters.
Alternatively, it would be possible to set the parameter controls in a way such that the
changes to the parameter are smaller when there exist many shapes near its current value.
Furthermore, incorporating a depiction of the density into the parameter controls similar
to the methods described in Section 3.2 could give the user a better understanding of the
parameter space prior to the actual exploration.

Another possible issue is that our visual representation of parameter changes is just
an approximation, so the results are not always exact. Since we do not assume the shapes
to be globally aligned, distance can only be displayed by translating the bounding boxes
based on their current displacement. Similarly, a change of angle can only be visualized
based on the current angle between the parts – if the angle is zero, it is not possible to
determine the correct axis of rotation. The relative scale of parts is also only determined
by their bounding box diameter, thus there is no clear distinction between thin long
shapes and large boxy shapes. Some of these problems can be alleviated by assuming
that the shapes are globally aligned, but even then it is possible that there may be no
perfect alignment between a pair of shapes.

In the shape synthesis stage, parts are aligned based on the contact area between the
parts. While this results in the parts fitting together more naturally, the transformation
for the alignment is applied globally to the whole part. This can cause the swapped-in
parts to become much larger or smaller compared to the rest of the shape. An example
of this can be seen in the fourth shape in the bottom row of Figure 6.11. The initial
shape does not contain a base part and because of the alignment process the swapped-in
handles are larger than the main body of the shape. As a consequence, the body is not
touching the ground, so we need to add a base part to make the shape more realistic.
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CHAPTER 7
Conclusion

In this final chapter we first provide a summary of our proposed framework, condensing
the most important information into Section 7.1. Then we discuss the results obtained
from our tests, highlighting the goals we achieved as well as some problems with our
approach. This can be found in Section 7.2. Finally, we take a look at how some of these
problems could possibly be alleviated, suggesting topics for further research topics in
Section 7.3.

7.1 Summary

In this thesis, we presented a framework for shape synthesis from shape collections,
introducing a new method of parameterization and exploration of those collections. With
ever growing online repositories for 3D models becoming more prevalent, creating new
shapes by combining parts of already existing shapes has become a real possibility for
content creation that is not only easy to use, but also faster than traditional modeling
methods.

Our proposed framework consists of four stages: co-analysis, parameterization, explo-
ration and synthesis. In the co-analysis stage, shapes are segmented into parts which are
then grouped into categories according to their function. Instead of focusing on a specific
co-analysis algorithm, we use a modular and extensible approach that allows different
algorithms to be developed and used in this stage.

The parameterization and exploration stages form the other main contribution of
this thesis. Relations between parts are analyzed in how their spatial arrangements
vary across the collection, yielding a small number of parameters that can be used to
explore the collection. The parameters can be altered either directly or by interacting
with the shape itself. A visual representation of how the spatial arrangements change
when altering the parameters provides a better understanding of the kind of shapes that
can be found in the exploration process, making it more intuitive to search for specific
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shapes. To account for shapes containing a varying number of parts, the system includes
a copy-and-paste operation for parts that also allows for the addition of parts that are
not present in the currently displayed shape.

In the last stage, new shapes are assembled by combining parts from the shapes found
in the exploration process. Since the shapes in the collection are not necessarily aligned,
the new parts are transformed to fit together with the remainder of the shape. Once
swapped in, the new parts can then be used to explore the collection as usual, in order
to replace further parts or even parts that have already been exchanged before. This
makes it possible to create a large variety of new shapes in a short time.

7.2 Discussion

Our test results for the parameterization and exploration stages show that the shapes
found while browsing the collection are mostly in line with our expectations. Spatial
features with low variation within the collection – which are not very useful for distin-
guishing between shapes – are eliminated successfully, as is the case with the neck and
base parts of the vases dataset where there is almost no variation in angle and horizontal
distance. Similarly, our analysis correctly detects correlations between spatial features as
evidenced by the different results for the two chair datasets. As a result, the parameters
for each relation reflect the way in which the relation varies the most across the collection.

The visual representation of parameter changes proves a useful aid for understanding
the effect of altering the parameters, making it more intuitive to search for specific kinds
of shapes when interacting with the parameters directly. Representing the selected parts
by their bounding boxes serves as a useful approximation and gives a rough preview of
the shape that best fits the altered parameters.

Exploring the shape collection by focusing on a single relation is a quick way to
browse through the available shapes containing the parts of the chosen relation. On the
other hand, it is possible to search for shapes with more specific part arrangements by
taking all relations into account. The ability to alter the parameters by interacting with
the shape itself is also useful in cases where the user has a concrete idea of the desired
shape. The disadvantage of this multi-relation exploration is that for shapes that have
many different relations it can be tedious to set the parameters for all relations. Letting
the user choose a subset of relations instead of taking all relations into account could be
an improvement in these cases.

Our system also gives special consideration to cases where the number of parts differs
between shapes, which is something that is usually treated with less importance in existing
approaches. Finding a good weight for how much differing part numbers influence the
computation of the best fit can be difficult and depends on the use case. A low number
like 0.2 can help distinguish similar shapes that mostly differ by the number of parts,
while a value like 0.5 is more likely to yield shapes with the desired part number unless
there are no similar shapes with the same number of parts. High weights with values
larger than 1 can be used to restrict the resulting shapes to contain a specific number of
parts, but this can greatly reduce the number of possible fits if there is a large variation
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in part numbers within the collection, making the exploration parameters themselves
less relevant.

Altering part numbers for a given shape is made simple by a copy-and-paste system
for parts. If one wants to only increase the part numbers without changing the associated
parameters for the purpose of exploration, the copied parts can be quickly placed at
the exact location of its original part. On the other hand, the copied parts can also be
transformed and placed at a different location, for example to later exchange them for
other parts. Changing the label of the copied part allows the user to add parts that are
not present in the current shape, making it possible to explore the entire collection from
every initial shape.

Our framework allows us to work with a variety of shape collections from different
sources. The modular design of the co-analysis stage makes it possible to deal with
different problems that may come up when working with different shapes. For example,
the co-analysis algorithms we implemented do not function well when the shapes consist
of multiple disconnected surfaces or contain geometrical defects. In these cases we were
able to create a manual segmentation when there was no segmentation provided with the
shapes, as is the case with the plane dataset. Of course, the manual segmentation tools
are also useful for improving the results of other co-analysis methods which can then be
exported for later use.

The results of our shape synthesis tests show a nice variety of created shapes. With
our alignment method we try to optimize the alignment between the contact areas of the
parts, which yields a better transition between adjacent parts. While there is certainly
much more work required to produce high-quality shapes in this manner, we believe our
shape synthesis stage is sufficient in demonstrating the capabilities of the framework as a
whole.

7.3 Future Work

There are still a lot of open questions when it comes to the problem of parameterization
and exploration of shape collections. We specifically look at relations between pairs of
parts, but naturally it is also possible to consider the individual properties of parts or
their arrangements with regards to the whole shape. These ideas have also been explored
individually in existing approaches, but to our knowledge there is no method utilizing all
of these viewpoints simultaneously. Also, while our system detects correlations between
spatial features for a single relation, it would be interesting to extend this approach
to finding possible correlations between different relations. Furthermore, to produce
better results when working with a large number of features, it might be necessary to
consider non-linear methods of dimensionality reduction [LV07] for the computation of
the exploration parameters rather than the linear method of PCA.

Incorporating varying part numbers is also something that still needs more research.
Existing approaches tend to ignore the number of parts present in shapes or simply use
the average when performing computations. However, part numbers can be an important
aspect when distinguishing between shapes and thus should not be ignored. Searching for
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correlations between part numbers and spatial arrangements between parts (an example
of which can be seen in the chair dataset, as described previously) is an interesting idea,
but since part numbers are given by a discrete value while other features are continuous,
the best way of doing so is yet to be determined.

The large quality differences for shapes from online repositories are a general problem
with these methods. Many existing approaches make assumptions for the state of the
shapes, such as the shapes being globally aligned or there being intersections between
the triangles of adjacent parts. Some algorithms might even require manual cleanup of
the 3D models before they can be used. The result is that the actual practical use of
these methods is greatly diminished. Considering all possible problems regarding the
quality of the shapes is one of the major challenges when working with shapes taken
from online repositories.
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APPENDIX A
Datasets

Figure A.1: The chair dataset of the Shape COSEG Dataset. Image adapted from [Wan].
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Figure A.2: The vase dataset of the Shape COSEG Dataset. Image adapted from [Wan].

Figure A.3: The candelabra dataset of the Shape COSEG Dataset. Image adapted from
[Wan].
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Figure A.4: The plane dataset with shapes taken from 3D Warehouse [Tri] and the
Princeton Shape Benchmark [SMKF04].
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APPENDIX B
Parameterization Data

Covariance Matrix of Chair Dataset
Test Set V.Dist. H.Dist. Angle Scale
V.Dist 0.0172 0.0010 -0.0046 0.0068
H.Dist 0.0010 0.0086 0.0039 -0.0014
Angle -0.0046 0.0039 0.0102 0.0013
Scale 0.0068 -0.0014 0.0013 0.0130
Full Set V.Dist. H.Dist. Angle Scale
V.Dist 0.0290 -0.0067 -0.0069 0.0261
H.Dist -0.0067 0.0120 0.0057 -0.0119
Angle -0.0069 0.0057 0.0133 -0.0026
Scale 0.0261 -0.0119 -0.0026 0.0410

Table B.1: The covariance matrices of the two chair datasets. The test set contains 275
shapes, while the full set contains all 400 shapes. In the full set, the scale is correlated
more strongly with the vertical and horizontal distance.
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Dataset Relation Variance
V.Dist. H.Dist. Angle Scale

Chair Test Back-Seat 0.0172 0.0086 0.0102 0.0130
Leg-Seat 0.0287 0.1013 0.0012 0.1479

Chair Full Back-Seat 0.0290 0.0120 0.0133 0.0410
Leg-Seat 0.0362 0.0901 0.0018 0.1582

Vases
Neck-Body 0.0109 0.0000 0.0011 0.0516
Base-Body 0.0179 0.0001 0.0011 0.0281
Handle-Body 0.0535 0.0354 0.0679 0.0571

Candelabra Candle-Base 0.0763 0.0182 0.0000 0.0570
Handle-Base 0.0096 0.0155 0.0140 0.0076

Plane
Wings-Body 0.0009 0.0023 0.0277 0.0140
Stabilizer-Body 0.0064 0.0082 0.0448 0.0110
Engine-Wing 0.0018 0.0388 0.0036 0.0895

Table B.2: The variances of each feature for the relations of the test datasets. Grey text
means that the variance of the feature is too low and is thus discarded.
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Dataset Relation PC PC Coefficients
Variance V.Dist. H.Dist. Angle Scale

Chair Test
Back-Seat 1.5988 0.0784 -0.0365 -0.0546 0.0501

1.3071 0.0526 0.0504 0.0497 0.0624

Leg-Seat 2.1831 -0.0920 0.1684 - 0.1224
0.6945 0.1168 0.2307 - -0.0059

Chair Full
Back-Seat 2.3185 0.0941 -0.0552 -0.0424 0.1121

0.9632 -0.0067 0.0120 0.0057 -0.0119

Leg-Seat 2.2294 -0.1052 0.1564 - 0.2584
0.6696 0.1253 0.2254 - -0.0163

Vases

Neck-Body 1.1176 0.0737 - - 0.1606
0.8824 -0.0737 - - 0.1606

Base-Body 1.2552 0.0945 - - 0.1186
0.7448 -0.0945 - - 0.1186

Handle-Body 1.8515 0.1566 -0.1320 -0.0578 -0.0067
1.5020 0.0464 0.0019 0.1744 -0.1710

Candelabra
Candle-Base 1.7364 0.1230 -0.0803 - 0.1598

0.8688 0.2336 0.0708 - -0.0231

Handle-Base 1.6291 0.0374 0.0711 0.0065 -0.0630
1.4880 -0.0632 0.0325 0.0843 -0.0071

Plane

Wing-Body 1.2957 - - 0.1177 0.0837
0.7043 - - 0.1177 -0.0837

Stabilizer-Body 2.5328 -0.0399 0.0488 0.0939 -0.0540
0.7089 0.0056 -0.0050 0.1719 -0.0605

Engine-Wing 1.3380 - -0.1393 - -0.2116
0.6620 - 0.1393 - 0.2116

Table B.3: Principal Component variances and coefficients for each relation of the test
datasets. Missing entries mean that the feature has a low variance and was discarded.
Grey text means that the second principal component has low variance and isn’t used in
the exploration.

87





Bibliography

[AKZM14] Melinos Averkiou, Vladimir G. Kim, Youyi Zheng, and Niloy J. Mitra.
ShapeSynth: Parameterizing model collections for coupled shape exploration
and synthesis. Computer Graphics Forum, 33(2):125–134, 2014.

[BBV+01] Yuri Boykov, Yuri Boykov, Olga Veksler, Olga Veksler, Ramin Zabih,
and Ramin Zabih. Fast Approximate Energy Minimization via Graph
Cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239, 2001.

[BCG08] Mirela Ben-Chen and Craig Gotsman. Characterizing Shape Using Confor-
mal Factors. Proceedings of the 1st Eurographics Conference on 3D Object
Retrieval, pages 1–8, 2008.

[Bha43] Anil K. Bhattacharyya. On a measure of divergence between two statistical
populations defined by their probability distributions. Bulletin of the
Calcutta Mathematical Society, 35:239–258, 1943.

[BM92] Paul Besl and Neil McKay. A Method for Registration of 3-D Shapes, 1992.

[BMP02] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape Matching and
Object Recognition Using Shape Contexts. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(24):509–522, 2002.

[Chu97] Fan R. K. Chung. Spectral Graph Theory. 1997.

[CKGK11] Siddhartha Chaudhuri, Evangelos Kalogerakis, Leonidas Guibas, and
Vladlen Koltun. Probabilistic reasoning for assembly-based 3D modeling.
ACM Transactions on Graphics, 30(4):35:1–35:10, 2011.

[CM02] Dorin Comaniciu and Peter Meer. Mean shift: A robust approach toward
feature space analysis. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 24(5):603–619, 2002.

[CYS04] Timothee Cour, Stella Yu, and Jianbo Shi. Normalized Cut Segmentation
Code, 2004.

89



[FAvK+14] Noa Fish, Melinos Averkiou, Oliver van Kaick, Olga Sorkine-Hornung,
Daniel Cohen-Or, and Niloy J. Mitra. Meta-representation of shape families.
ACM Transactions on Graphics, 33(4):34:1–34:11, 2014.

[FKS+04] Thomas Funkhouser, Michael Kazhdan, Philip Shilane, Patrick Min, William
Kiefer, Ayellet Tal, Szymon Rusinkiewicz, and David Dobkin. Modeling by
example. ACM Transactions on Graphics, 23(3):652–663, 2004.

[GF08] Aleksey Golovinskiy and Thomas Funkhouser. Randomized cuts for 3D
mesh analysis. ACM Transactions on Graphics, 27(5):145:1–145:12, 2008.

[GF09] Aleksey Golovinskiy and Thomas Funkhouser. Consistent segmentation of
3D models. Computers & Graphics, 33(3):262–269, 2009.

[GG] Sven Grundberg and Chase Gummer. "Ubisoft Spends 5,000
Man-Hours Recreating Notre Dame". The Wall Street Journal.
http://blogs.wsj.com/digits/2014/08/15/ubisoft-spends-5000-man-
hours-recreating-notre-dame/ (accessed November 18, 2015).

[GG06] Timothy D. Gatzke and Cindy M. Grimm. Estimating Curvature on
Triangular Meshes. International Journal of Shape Modeling, 12(1):1–28,
2006.

[HFL12] Ruizhen Hu, Lubin Fan, and Ligang Liu. Co-segmentation of 3D shapes
via subspace clustering. Computer Graphics Forum, 31(5):1703–1713, 2012.

[HK92] Lars Hagen and Andrew B. Kahng. New spectral methods for ratio cut
partitioning and clustering. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 11(9):1074–1085, 1992.

[HS01] Masaki Hilaga and Yoshihisa Shinagawa. Topology matching for fully
automatic similarity estimation of 3D shapes. Proceedings of the 28th
annual conference on Computer graphics and interactive techniques, pages
203–212, 2001.

[Jol02] Ian Jolliffe. Principal Component Analysis, Second Edition. 2002.

[JTRS12] Arjun Jain, Thorsten Thormählen, Tobias Ritschel, and Hans-Peter Seidel.
Exploring Shape Variations by 3D-Model Decomposition and Part-based
Recombination. Computer Graphics Forum, 31(2):631–640, 2012.

[KCKK12] Evangelos Kalogerakis, Siddhartha Chaudhuri, Daphne Koller, and Vladlen
Koltun. A probabilistic model for component-based shape synthesis. ACM
Transactions on Graphics, 31(4):55:1–55:11, 2012.

[KHS10] Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. Learning
3D mesh segmentation and labeling. ACM Transactions on Graphics,
29(4):102:1–102:12, 2010.

90



[KJS07] Vladislav Kreavoy, Dan Julius, and Alla Sheffer. Model composition from
interchangeable components. Proceedings of the 15th Pacific Conference on
Computer Graphics and Applications, pages 129–138, 2007.

[KLM+13] Vladimir G. Kim, Wilmot Li, Niloy J. Mitra, Siddhartha Chaudhuri, Stephen
DiVerdi, and Thomas Funkhouser. Learning part-based templates from large
collections of 3D shapes. ACM Transactions on Graphics, 32(4):70:1–70:12,
2013.

[Kol05] Alexander Kolliopoulos. A Generic Halfedge Mesh Data Structure for .Net.
2005.

[KPNK03] Marcel Körtgen, Gil-Joo Park, Marcin Novotni, and Reinhard Klein. 3D
Shape Matching with 3D Shape Contexts. The 7th Central European
Seminar on Computer Graphics, 2003.

[KT03] Sagi Katz and Ayellet Tal. Hierarchical mesh decomposition using fuzzy
clustering and cuts. ACM Transactions on Graphics, 22(3):954–961, 2003.

[LMS13] Hamid Laga, Michela Mortara, and Michela Spagnuolo. Geometry and
Context for Semantic Correspondences and Functionality Recognition in
Manmade 3D Shapes. ACM Transactions on Graphics, 32(5):150:1–150:16,
2013.

[Lux06] Ulrike Von Luxburg. A Tutorial on Spectral Clustering. Statistics and
Computing, 17(4):395–416, 2006.

[LV07] John A. Lee and Michel Verleysen. Nonlinear dimensionality reduction.
Springer New York, 2007.

[Mey00] Carl D. Meyer. Matrix Analysis and Linear Algebra. 2000.

[Möl97] Tomas Möller. Fast triangle-triangle intersection test. Journal of Graphics
Tools, 2(2):25–30, 1997.

[MWZ+13] Niloy J. Mitra, Michael Wand, Hao (Richard) Zhang, Daniel Cohen-Or,
Vladimir Kim, and Qi-Xing Huang. Structure-aware shape processing.
SIGGRAPH Asia 2013 Courses, pages 1:1–1:20, 2013.

[MXLH13] Min Meng, Jiazhi Xia, Jun Luo, and Ying He. Unsupervised co-segmentation
for 3D shapes using iterative multi-label optimization. CAD Computer
Aided Design, 45(2):312–320, 2013.

[NJW02] Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering:
Analysis and an algorithm. Advances in Neural Information Processing
Systems 14, pages 849–856, 2002.

91



[NLCK05] Boaz Nadler, Stephane Lafon, Ronald R. Coifman, and Ioannis G.
Kevrekidis. Diffusion Maps, Spectral Clustering and Eigenfunctions of
Fokker-Planck operators. Advances in Neural Information Processing Sys-
tems 18, pages 955–962, 2005.

[Ray04] Vikas Chandrakant Raykar. Spectral clustering and kernel principal com-
ponent analysis are pursuing good projections. Technical report, 2004.

[RS00] Sam T. Roweis and Lawrence K. Saul. Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323–2326, 2000.

[SM00] Jianbo Shi and Jitendra Malik. Normalized Cuts and Image Segmentation.
Ieee Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–
905, 2000.

[SMKF04] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas Funkhouser.
The Princeton Shape Benchmark. In Shape Modeling International, 2004.

[SSCO08] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent mesh parti-
tioning and skeletonisation using the shape diameter function. The Visual
Computer, 24(4):249–259, 2008.

[SvKK+11] Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and Daniel Cohen-
Or. Unsupervised co-segmentation of a set of shapes via descriptor-space
spectral clustering. ACM Transactions on Graphics, 30(6):126:1–126:10,
2011.

[TB97] Lloyd N. Trefethen and David Bau. Numerical Linear Algebra. 1997.

[TLGG14] Zahra Toony, Denis Laurendeau, Philippe Giguère, and Christian Gagné.
3D-NCuts : Adapting Normalized Cuts to 3D Triangulated Surface Seg-
mentation. Proceedings of the 9th International Conference on Computer
Graphics Theory and Applications (GRAPP), pages 144–152, 2014.

[Tri] Trimble. 3D Warehouse. https://3dwarehouse.sketchup.com/ (accessed
November 18, 2015).

[Vid11] René Vidal. Subspace Clustering. IEEE Signal Processing Magazine,
28(2):52–68, 2011.

[VTS+11] Oliver Van Kaick, Andrea Tagliasacchi, Oana Sidi, Hao Zhang, Daniel
Cohen-Or, Lior Wolf, and Ghassan Hamarneh. Prior knowledge for part
correspondence. Computer Graphics Forum, 30(2):553–562, 2011.

[VXZ+13] Oliver Van Kaick, Kai Xu, Hao Zhang, Yanzhen Wang, Shuyang Sun, Ariel
Shamir, and Daniel Cohen-Or. Co-hierarchical analysis of shape structures.
ACM Transactions on Graphics, 32(4):69:1–69:10, 2013.

92



[Wan] Yunhai Wang. The Shape COSEG Dataset.
http://web.siat.ac.cn/˜yunhai/ssl/ssd.htm (accessed November 18,
2015).

[WAV+12] Yunhai Wang, Shmulik Asafi, Oliver Van Kaick, Hao Zhang, Daniel Cohen-
Or, and Baoquan Chen. Active co-analysis of a set of shapes. ACM
Transactions on Graphics, 31(6):165:1–165:10, 2012.

[XLZ+10] Kai Xu, Honghua Li, Hao Zhang, Daniel Cohen-Or, Yueshan Xiong, and
Zhi-Quan Cheng. Style-content separation by anisotropic part scales. ACM
Transactions on Graphics, 29(6):184:1–184:10, 2010.

[XZCOC12] Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. Fit and diverse:
Set Evolution for Insiring 3D Shape Galleries. ACM Transactions on
Graphics, 31(4):57:1–57:10, 2012.

[YCHK15] Mehmet Ersin Yumer, Siddhartha Chaudhuri, Jessica K. Hodgins, and
Levent Burak Kara. Semantic Shape Editing Using Deformation Handles.
ACM Transactions on Graphics, 34(4):86:1–86:12, 2015.

[YK14] Mehmet Ersin Yumer and Levent Burak Kara. Co-Constrained Handles
for Deformation in Shape Collections. ACM Transactions on Graphics,
33(6):187:1–187:11, 2014.

[ZCOAM14] Youyi Zheng, Daniel Cohen-Or, Melinos Averkiou, and Niloy J. Mitra.
Recurring part arrangements in shape collections. Computer Graphics
Forum, 33(2):115–124, 2014.

[ZCOM13] Youyi Zheng, Daniel Cohen-Or, and Niloy J. Mitra. Smart variations:
Functional substructures for part compatibility. Computer Graphics Forum,
32(2):195–204, 2013.

[ZSCO+08] Hao Zhang, Alla Sheffer, Daniel Cohen-Or, Qingnan Zhou, Oliver Van
Kaick, and Andrea Tagliasacchi. Deformation-driven shape correspondence.
Proceedings of the Symposium on Geometry Processing, pages 1431–1439,
2008.

[ZVD10] Hao Zhang, Oliver Van Kaick, and Ramsay Dyer. Spectral mesh processing.
Computer Graphics Forum, 29(6):1865–1894, 2010.

93





Acronyms

AGD Average Geodesic Distance. 19, 20, 22, 23, 39

APS Anisotropic Part Scale. 25

CF Conformal Factor. 20, 22, 23, 39

GC Gaussian Curvature. 20, 22, 39

OBB Oriented Bounding Box. 25, 26, 29, 43–45, 48–50, 52, 56, 57
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PCA Principal Component Analysis. 9, 12, 28, 33, 38, 42, 43, 46, 55, 67

PDF Probability Density Function. 29

SC Shape Context. 21–23, 39, 55, 56

SDF Shape Diameter Function. 20–23, 39

SFARR Symmetry Functional Arrangement. 34–36
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