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Kurzfassung

Um schwere Probleme lösen zu können, gewann das Konzept der dynamischen Program-
mierung (DP) auf Baumzerlegungen in den letzten Jahren im Forschungsbereich der
Informatik immer mehr an Bedeutung.

Da das Verständnis und die Verbesserungen von Zerlegungsansätzen und DP Kon-
zepten aufgrund der Komplexität der Algorithmen, der großen Datenmengen und der
Schwere der Probleme eine enorme Herausforderung darstellen, wird im Rahmen dieser
Diplomarbeit ein Tool entwickelt, um Systeme, die DP auf Baumzerlegungen anwenden,
analysieren zu können. Bestehende Systeme bieten keine Möglichkeit um den kompletten
DP-Prozess - von der Instanz, über die Baumzerlegung bis hin zur Berechnung, wel-
che durch die Anwendung spezieller Algorithmen auf jeden Knoten der Baumzerlegung
entsteht - zu analysieren. Im Speziellen wird der Ansatz des BEB-basierten DP auf
Baumzerlegungen betrachtet, welcher das Konzept von DP mit dem Abbilden der Infor-
mationen anhand von Binären Entscheidungsbäumen (BEB) verbindet. Um komplexe
Probleme lösen zu können, liegt unser Bestreben zusammenfassend im Design und in der
Entwicklung eines Tools um Systeme, welche BEB-basierte DP auf Baumzerlegungen
anwenden, zu analysieren.

Mithilfe der Untersuchung vorhandener Visualisierungskonzepte und einer Analyse
der technischen Anforderungen entwickeln wir DecoVis, um - neben der Visualisierungs-
möglichkeit von Instanzen, Baumzerlegungen und Berechnungen - mehrere Analysemög-
lichkeiten für DP Systeme anzubieten. Die Analysemöglichkeiten umfassen unter anderem
das Erstellen eines Statistik-Reports, das Hervorheben von Metadaten-Informationen
oder die Animation der Ausführung von Algorithmen.

Um unterschiedliche Systeme, die DP auf Baumzerlegungen anwenden (dynBDD, D-
FLAT, D-FLATˆ2 und Sequoia), bezüglich Leistungsfähigkeit und Stabilität vergleichen
zu können, werden mehrere Benchmark-Tests erzeugt und deren Resultate analysiert. Die
Probleme 3-Colorability, Stable Extension, Hamiltonian Cycle und Preferred Extensions
werden durch die Benchmark-Tests abgedeckt.

Unterschiedlichste Verhalten von Tools, welche BEB-basierte DP auf Baumzerle-
gungen anwenden, entstehen durch die Ausführung der Systeme mittels verschiedenster
Optionen und Einstellungen. Anhand der Analyse dieser unterschiedlichen Systemver-
halten untersuchen wir die Anwendung von DecoVis im Praxiseinsatz. In weiterer Folge
vergleichen wir unterschiedliche Konzepte von Algorithmen und Variabelordnungen in
BEBs anhand speziell gewählter Instanzen aus den Resultaten der Benchmark Tests.
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Abstract

The concept of dynamic programming (DP) on tree decompositions (TDs) has emerged in
recent years as an important research field in computer science for solving hard problems
efficiently.

Since the understanding and improvements of decomposition approaches and DP
concepts represent an enormous challenge due to complex algorithms, large amount of
data and the hardness of problems, we put the focus on the development of a tool used
for the analysis of systems applying DP on TDs. Moreover, recent systems have failed
to address the possibility for analyzing the entire dynamic programming process from
the instance, over the tree decomposition to the computation that is resulting from
the application of specific algorithms on each TD node. In particular, the approach of
BDD-based DP on TDs is considered, that combines the concept of DP with the storage
of information by means of Binary Decision Diagrams (BDDs). In summary, our attempt
is to design and develop a tool for analyzing systems applying BDD-based DP on TDs
for solving complex problems.

With the help of an examination of existing visualization concepts and a technical
requirement analysis, we develop DecoVis, a system that provides - beside the visualization
of instances, tree decompositions and computations - several possibilities for analyzing DP
systems such as statistic report generation, emphasis of particular metadata information
or algorithm execution animation.

In order to compare various systems applying DP on TDs (dynBDD, D-FLAT, D-
FLATˆ2 and Sequoia) regarding performance and stability, several benchmark tests
are generated and the results are analyzed. The benchmark tests cover the problems
3-Colorability, Stable Extension, Hamiltonian Cycle and Preferred Extensions.

Furthermore, we examine the usage of DecoVis in practice by analyzing different
behaviors of various options and settings of systems applying BDD-based DP on TDs.
Based on specific instances that are selected from results of benchmark tests, we compare
different algorithm concepts and variable orders in the BDDs.
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CHAPTER 1
Introduction

1.1 Motivation

Solving hard problems became one of the central challenges in computer science. Even
if computers and their involved technologies are getting faster and better, it is still
an important requirement that solving a problem is done in the most efficient way, in
runtime as well as in memory usage. Nowadays there exist many approaches on how to
solve a particular problem, but understanding which algorithm behaves well for a certain
instance of the problem is often hard to retrace. One approach to gain such insights is a
visualization or some kind of animation which represent what is going on exactly when
applying an algorithm to a particular problem. Even more helpful is a visual comparison
of different algorithms when applied to the same problem.

In this master thesis, we aim to find an appropriate way to meet these requirements
by designing an easy to use tool which provides a visualization for solving complex
problems together with the ability to compare algorithms. The concept of Dynamic
Programming on Tree Decompositions is a recent approach to solve certain problems
efficiently. Therefore we want to put our focus on this approach. In particular BDD-based
Dynamic Programming on Tree Decompositions will be investigated. In this context,
our goal is to visualize the whole process, beginning from the instances to the tree
decompositions, up to the computations which are represented in BDDs. To the best of
our knowledge, there is no other system which provides these advanced features yet.

1.2 Problem Statement

A concept for solving complex problems is splitting the problem into multiple components.
Each component represents a new sub-problem. The whole problem is solved with the
help of the partial results of these separately computed sub-problems. This concept is
called dynamic programming (DP).
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One particular approach is dynamic programming on tree decompositions. Here,
sub-problems are arranged in form of a tree structure called tree decomposition (TD)
[1]. The edges in the tree represent the relation between the sub-problems. To solve the
overall problem the solutions of the sub-problems have to be computed from the leaf
nodes to the root (i.e. in bottom-up order).

A special form of dynamic programming is called BDD-based dynamic programming
where the solution of every sub-problem is represented by a Binary Decision Diagram
(BDD) [2]. A BDD is a data structure for Boolean functions which is illustrated by a
rooted directed acyclic graph (DAG). There are two types of leaf nodes: “0” (FALSE)
and “1” (TRUE). Every path from the root to the leaf node “1” represents a solution
and therefore a model of the Boolean function. BDDs can often be reduced in such a
way that in practice they are exponentially smaller compared to the worst case. Hence,
BDDs provide an efficient way to store the partial and also full solutions of a problem [3].

There exist many concepts and systems for dynamic programming on tree decomposi-
tions. Due to the high complexity of the used algorithms, the large amount of data and
the hardness of problems, the understanding of dynamic programming is very difficult.
Furthermore, the analysis of concepts of dynamic programming and the decomposition is
an enormous challenge. Hence, it is hard to improve already existing algorithms or even
to develop completely new concepts from scratch. Since small modifications can have a
huge impact on the overall computation, a comprehensive debugging and visualization
tool would be extremely useful.

1.3 Aim of Work

The aim of the work is to understand and improve systems using dynamic programming
on tree decompositions for solving complex problems. On the one hand this can be
achieved by obtaining a better understanding about the used concepts and algorithms
and on the other hand by analyzing and comparing the results of such systems.

Our approach is to design and implement a system for the visualization of dynamic
programming on tree decompositions. All tools that apply dynamic programming for
problem solving could be used in our application if they provide an appropriate common
file format. Moreover, the system should provide a way to visualize the entire dynamic
programming process from the instances, over the tree decompositions to the application
of specific algorithms for the computation in each tree decomposition node.

Hence, many further requirements have to be implemented. The main part of the
visualization tool is the graphical representation of these three execution parts: instances,
tree decompositions, and the computations of the sub-problems. Another requirement
is a dynamically composed graphical interface that supports the execution of programs
using dynamic programming algorithms on tree decompositions. Many further features
are necessary to support the analysis of results, concepts and algorithms. For example, it
should be possible to combine the three execution parts to get an overview of the problem.
Another use case would be to compare a single execution part of multiple problems or
configurations separately.
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A particular focus is on BDD-based dynamic programming. To gain a better under-
standing of different approaches, solutions of the computations should be explained by
means of visualization of the BDDs and also by animated BDD-based algorithm execution.
The latter means that a fully animated BDD visualizes the generation of the BDDs and
their contained solutions from bottom to top. Statistic diagrams should furthermore be
used to illustrate and compare metadata, created during the computation of the problems
and sub-problems, such as allocated memory, number of BDD variables, etc. Multiple
metadata values of different configurations and problems should be comparable by an
easy-to-use and clear interface.

On the basis of the realized requirements mentioned above, our implementation should
contain the facility for experimental analysis of concepts and algorithms. By running
benchmarks, we could get all the needed data for our tool. With the help of the results,
algorithms can be developed and existing methods can be enhanced. By means of two
different benchmarking types new insights and knowledge over dynamic programming
algorithms regarding particular problems should be gained.

In order to get a comparison between currently available systems (i.e. dynBDD [3],
Sequoia [4, 5], D-FLAT [6, 7] and D-FLATˆ2 [8]), the first benchmark type deals with the
analysis of various dynamic programming tools. According to these results, statements
about the suitability of the tools, algorithms and concepts for particular problems should
be obtained.

The second benchmarking type should set the focus on a single BDD-based dynamic
programming tool, called dynBDD [3]. Different configurations on problems should be
processed to get conclusions about the used algorithms. In more detail, configuration
settings should differ in options like the used ordering of variables in the BDDs, types of
the tree decomposition and alternative algorithmic concepts.

In summary, the master thesis includes three main contributions:

• The development of a web application providing the visualization of dynamic
programming on tree decompositions

• The comparison and experimental analysis of various dynamic programming tools
by doing benchmark tests

• The analysis of a single BDD-based dynamic programming tool by means of
benchmarks and different configurations

1.4 Methodological Approach
The following steps are necessary to receive the expected results described above:

1. Background Research
By literature and online research, background information about concepts, terms
and definitions are obtained. As a result, we will shortly describe several tools
which have a main focus on dynamic programming or on visualization regarding
problem solving.
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2. Requirements Analysis
Necessary requirements are gathered for the development of a graphical visualization
tool that supports the analysis of systems, concepts and algorithms concerning
dynamic programming on tree decompositions. On the one hand, our tool should
be usable by non-experts for getting an overview of the problem and the concepts
of dynamic programming. On the other hand, the tool should have expert features
for a detailed analysis and comparison, including debugging features. More details
about the required features were already described in the previous section.

For a better overview of the requirements analysis, we use UML diagrams like the
class or sequence diagrams which provide a convenient way for the specification of
requirements.

3. Implementation of Requirements
This part covers the development of a web-based tool that supports the analysis of
dynamic programming algorithms. The focus lies on the visualization of instances,
tree decompositions and the solutions. Furthermore, a dynamic graphical user
interface should support the execution of systems based on tree decompositions.
Animated BDDs based on the partial solutions, the highlighting of models rep-
resented by the BDD and the statistic diagrams of metadata assist the analysis
part.

4. Benchmarks
For the benchmark tests we will use two approaches: The first approach is to
give an overview of the differences between dynamic programming systems on tree
decompositions and their experimental analysis. The second part examines different
aspects and configurations of a particular BDD-based tool, namely the dynBDD
system [3]. Here, the influence of BDD-specific aspects on the computations is
examined.

Both approaches follow the same procedure. First, benchmark tests are executed,
and then, the results are analyzed and compared in more detail.

1.5 Structure of the Work and Division of Master Thesis

The following enumeration as well as Figure 1.1 give an overview of the structure and
the division of the work.

The parts addressed by both authors of the thesis consist of background, related work,
technical requirements and implementation of the software (Chapter 1-4). In each of
these chapters a further division and assignment of sections was done (see the list below),
so that it is clear which part was written by which author. Later the master thesis is split
into two parts, each having another main focus and using other features of the developed
software. The visualization of the instance and tree decomposition including the dynamic
highlighting of nodes is the common feature used by both students.
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The first part is worked out by Thomas Ambroz and deals with the experimental
analysis and comparison of tree-decomposition-based systems. In this part the used
systems are seen as black box tools. The statistic diagram feature of our tool is used
to compare and analyze the metadata generated during the computation. With the
advanced statistic diagram feature the metadata of the results of multiple tools can be
visualized.

The second part covers the configuration options of dynBDD. This component is
created by Andreas Jusits and puts the focus on the emphasis of various dynBDD settings
by means of BDD visualizations and animated BDDs. In fact, the growing, shrinking
and merging of the BDDs representing the partial solutions up to the final solution can
be viewed and played back by using the automated animation. Furthermore, the high-
lighting of paths in the BDD helps to understand the models of the solution in a better way.

Andreas Jusits ... AJ
Thomas Ambroz ... TA

1. Introduction TA AJ

a) Motivation TA AJ

b) Problem Statement TA AJ

c) Aim of Work TA AJ

d) Methodological Approach TA AJ

e) Structure of the Work and Division of Master Thesis TA AJ

2. Background and Related Work TA AJ

a) Dynamic Programming AJ

b) Tree Decomposition AJ

c) Dynamic Programming on Tree Decompositions AJ

d) Binary Decision Diagrams TA

e) Dynamic Programming Systems TA

f) Visualization Concepts TA

3. Technical Requirements TA AJ

a) High-Level Description TA

b) Requirements Analysis AJ

c) Workflow Design AJ

d) System Architecture AJ
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e) Graphical Representation Analysis TA

4. Implementation of the Technical Requirements in DecoVis TA AJ

a) Technical Overview AJ

b) Data Import/Export AJ

c) DynBDD Execution AJ

d) Window Management TA

e) Interactive Visualization Elements TA

f) User Modes TA

5. Comparison of TD-based DP Systems TA

a) Challenges and Goals TA

b) Requirements TA

c) Benchmark Preparation TA

d) Benchmark Runs TA

e) Conclusion TA

6. DecoVis in Practice AJ

a) Introduction AJ

b) Different Approaches and Aspects of BDD-based Dynamic Programming AJ

c) Instance Analysis AJ

d) Tree Decomposition Analysis AJ

e) Computation Analysis AJ

f) Summary AJ

7. Summary and Future work TA AJ

a) Summary TA AJ

b) Future Work TA AJ
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CHAPTER 2
Background and Related Work

This chapter puts the focus on background information about BDD-based dynamic
programming on tree decompositions. Furthermore, similarities to systems using dynamic
programming concepts are illustrated and related work regarding visualization of such
systems are mentioned.

Since the understanding of dynamic programming is necessary for the further chapters
and sections, Section 2.1 handles this concept. By means of an example, this method of
breaking a problem down into simpler subproblems is illustrated.

Section 2.2 gives an overview over tree decompositions. The computation of com-
plex graph problems can often be speed up by decomposing an instance graph into a
tree. Furthermore, normalization types of tree decompositions (none, weak, semi and
normalized) are explained in detail.

In Section 2.3 the connection between Section 2.1 and Section 2.2 is established. It
shows the application of dynamic programming algorithms on tree decompositions. With
the help of examples, two concepts for the computation on tree decompositions, early
decision method and late decision method, are clarified.

The concepts and methods defined in Section 2.3 are extended in Section 2.4 by repre-
senting the solutions of each tree decomposition node as Binary Decision Diagram (BDD).
Different BDD variants and BDD-based dynamic programming on tree decompositions
are moreover explained in this section.

To get an overview over currently available dynamic programming systems for problem
solving, Section 2.5 lists such systems and shortly illustrates the concepts behind.

Section 2.6 gives a summary on visualization concepts for windows, graphs, metadata,
etc. Existing libraries and frameworks that provide solutions to these concepts are illus-
trated. Furthermore, existing visualizations in algorithmic design and logic programming
are described.
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2.1 Dynamic Programming

Dynamic programming defines a concept for mathematical optimization and a method in
computer science for solving complex problems efficiently. The basic idea of dynamic
programming is to break down a problem into subproblems. Firstly, the subproblems
are solved and then the solutions of the subproblems are combined to reach an overall
solution of the problem.

In contrast to the popular divide and conquer concept, where the subproblems
are solved independently of each other, the dynamic programming method consists of
overlapping subproblems. Since each subproblem should only be solved once in dynamic
programming, the reusable solutions have to be stored.

By means of the Fibonacci numbers, the following example in Listing 2.1 illuminates
the difference between a naive algorithm that follows a recursive definition and a dynamic
programming algorithm.

−− Fibonacc i numbers : F1 = F2 = 1 : Fn = Fn-1 + Fn+2
−− naive a lgor i thm :
f ib_naive (n) {

i f n <= 2 then
return 1

e l s e
re turn f ib_naive (n−1) + f ib_naive (n−2)

}

−− dynamic programming approach :
fib_memory = {}
fib_dp (n) {

i f fib_memory conta in s n then
return fib_memory [ n ]

e l s e
f = 1
i f n > 2 then

f = fib_dp (n−1) + fib_dp (n−2)
fib_memory [ n ] = f
re turn f

}

Listing 2.1: Dynamic programming example - Fibonacci numbers

As one can see in Listing 2.1 the naive algorithm calls the function fib_naive with
the same parameters several times, that means the time complexity of this algorithm is
exponential in n. Since fib_memory saves each result in fib_memory, each computed
value can be reused in the next recursion. As a consequence, the time complexity for
fib_memory is linear in n.

The following sections use a special dynamic programming approach for solving
complex problems. Without anticipating details of the following sections, this approach
applies dynamic programming on tree decompositions.
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2.2 Tree Decomposition
Many NP-hard graph problems can be solved efficiently when the input instance can be
represented as tree. Hence, the concept of tree decompositions [1] in combination with
the concept of treewidth [9, 10, 11] provides a powerful method for solving problems
(representable as graphs) that are known to be intractable. The treewidth defines a
measurement unit for the cyclicity of a graph. Furthermore, it gives a logical conclusion
concerning the degree of problem solving efficiency (whether the problem can be solved
efficiently or not).

Many problems lie in complexity class FPT (fixed-parameter tractable) with respect
to treewidth. Problems in FPT [12] are computable in time f(w) ∗ nO(1), where w is
the parameter, n is the size of the input and f(w) is some computable function only
depending on parameter w. The complexity of the problem scales polynomially with the
input size n, but arbitrary with the parameter w (even exponentially or worse). If w is
fixed (i.e. f(w) is a constant), the resulting complexity is polynomial. As a consequence,
also many problems in NP and PSPACE can be solved in FPT. Courcelle’s Theorem
[4] states that problems that can be defined in monadic second-order logic (MSO) are
fixed-parameter tractable with respect to a bounded treewidth.

The treewidth is defined on tree decompositions, that provide, roughly speaking, a
mapping from the instance graph to a tree. As a consequence, each tree decomposition
node includes multiple vertices from the instance graph. The challenge of building
tree decomposition nodes lies in the distribution of the vertices in a way that cyclic
components of the graph are broken up.

Figure 2.1 illustrates the transformation of an instance graph to several possible tree
decompositions. As one can see, there are multiple normalization types that have an
influence on the decomposition algorithms. Tree decompositions with the particular
normalization types are defined as follows.

Definition 1. A tree decomposition of a graph G = (V,E) is a pair (T, χ) where
T = (N,F ) is a (rooted) tree and χ : N → 2V assigns to each node a set of vertices
(called the node’s bag), such that the following conditions are met:

1. For every vertex v ∈ V , there exists a node n ∈ N such that v ∈ χ(n).

2. For every edge e ∈ E, there exists a node n ∈ N such that e ⊆ χ(n).

3. For every v ∈ V , the subtree of T induced by {n ∈ N | v ∈ χ(n)} is connected.

We call maxn∈N |χ(n)| − 1 the width of the decomposition. The treewidth of a graph is
the minimum width over all its tree decompositions.

Condition 1 and 2 ensure that each vertex and edge from the instance graph appear
at least once in the bags of the tree decomposition nodes. Condition 3 guarantees that
all tree decomposition nodes that contains a particular vertex are connected. Lets take b
from each bag of Figure 2.1 and lets call these bags b-bags. As one can see no bag that
contains b is disconnected from the subtree that only consists of b-bags.
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Figure 2.1: Creation of tree decomposition

Furthermore, lets determine the width of the tree decompositions and the treewidth
of the graph from Figure 2.1. Since the maximum bag size of the NONE-decomposition
nodes is 3 ({b,c,d}), the width of this tree decomposition is 2 (also the width of the SEMI,
WEAK and NORMALIZED decomposition is 2). Since no further decompositions
exist with width lower than 2, 2 is also the treewidth of the instance graph.

We distinguish between multiple tree decomposition types. This section introduces
four tree decomposition approaches, also called normalization types. Figure 2.1 depicts
examples for the normalization types NONE, WEAK, SEMI and NORMALIZED
that are defined as follows.

In general, the normalization type of tree decompositions as given in Definition 1
is called NONE. Further tree decomposition normalization types fulfill the conditions
from NONE and additional constraints.

Definition 2. A tree decomposition T = (N,F ) is called WEAK if each t ∈ N is of one
of the following types:

• Leaf node: t has no child nodes.

• Exchange node: t has one child node.

• Join nodes: t has an arbitrary amount n of child nodes t1 to tn with χ(t) = χ(t1) =
... = χ(tn).
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Definition 2 specifies the conditions for the node types of WEAK tree decompositions.
A join node defines a particular node type having more than one child nodes. Furthermore,
each child bag contains the same vertices as the parent bag.

The WEAK tree decomposition in Figure 2.1 meets the conditions defined above.
Furthermore, Figure 2.1 represents a sample WEAK tree decomposition that is equal
to the SEMI tree decomposition (see below). Since {a,b} and {e,f} have no children,
the condition for leaf nodes holds. Moreover, the exchange nodes {d,e}(two times) and
{b,c,d} have only one child and the join node {d,e} has two children with the same
bag({d,e}). Since join nodes in WEAK tree decompositions allow more than one child
node, {d,e} could also appear more than twice as child node of the root node.

Definition 3. A tree decomposition T = (N,F ) is called SEMI if

• the tree decomposition is WEAK and

• Join nodes t have exactly two child nodes t1 and t2 with χ(t) = χ(t1) = χ(t2).

Definition 3 states the conditions for the node types of SEMI tree decompositions
and extends the constraints for WEAK tree decompositions. The difference to WEAK
tree decompositions is, that a join node has exactly two child nodes instead of more than
one child node.

Since {d,e} has exactly two child nodes, the SEMI tree decomposition in Figure 2.1
meets the conditions defined above. The explanations for the other conditions can be
found above.

Definition 4. A tree decomposition T = (N,F ) is called NORMALIZED if

• the tree decomposition is SEMI and

• each Exchange node is of one of the following types:

– Introduction node: t has exactly one child node t1 with χ(t1) ⊂ χ(t) and
|χ(t1)| = |χ(t)| − 1.

– Removal node: t has exactly one child node t1 with χ(t) ⊂ χ(t1) and |χ(t1)| =
|χ(t)|+ 1.

As Definition 4 shows, NORMALIZED tree decompositions follow the conditions
from SEMI, WEAK, NONE and further constraints. The conditions for introduction
node and removal node are equivalent to the requirement that the bag of the parent and
the child node only differs in one vertex. The exception for this rule is the join node
condition, where in case of two children the child bags have to be equivalent to the parent
bag.

The NORMALIZED tree decomposition in Figure 2.1 meets the conditions defined
above. If we check the tree from the root node {d} down to the leaf nodes {b} and
{f}, no bags, except for the join node bag {d,e}, where the child bags contain the same
vertices from the parent bag, differs in exactly one vertex to its parent bag.
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Finding a tree decomposition with optimal width is an NP-hard problem. Several
algorithms (see, e.g. [13]) exist for the generation of tree decompositions. These algorithms
use heuristics based on good elimination ordering of graph vertices. Three possible
heuristics for creating good elimination orderings are described in the following:

• The first heuristic picks the initial vertex in the ordering randomly from the graph.
The vertex with the highest connectivity to the previously selected vertices is
selected next. This last step is repeated until each vertex of the graph occurs in
the ordering.

• The second heuristic selects the vertex with minimum edge count as initial vertex
for the ordering. The vertex is removed from the graph and all its neighbors are
connected (to form a clique). The following vertices in the ordering are picked in
the same way until all vertices are eliminated from the graph.

• The last heuristic selects the vertex with the minimum degree as initial vertex for
the ordering. Next, the vertex with the minimum degree (only edges to unselected
neighbors are counted) is picked. This process is repeated until all vertices are
selected.

2.3 Dynamic Programming on Tree Decompositions
This section describes the necessary process for solving NP-hard problems efficiently
by means of dynamic programming on tree decompositions. The general four steps for
DP on tree decompositions are defined with the help of an example. Furthermore, two
different paradigms regarding the dynamic programming algorithm are described in this
section.

As already mentioned above, the concept of solving a problem by means of dynamic
programming on tree decompositions can be splitted into four steps:

1. Represent the input instance as graph: This is obsolete for problems such as
3-Colorability or Hamiltonian path, because their instances are already represented
as graphs. Problems like Boolean Satisfiability have to be first mapped onto an
appropriate graph. Figure 2.1 illustrates a possible instance used in the following
steps.

2. Decompose the instance graph: As described in detail in Section 2.2, this step
defines the generation of a tree with the help of the input instance. The left graph
in Figure 2.2 depicts a sample tree decomposition created from the instance shown
in Figure 2.1.

3. Traverse the tree decomposition: Figure 2.2 represents the computation of a 3-
Colorability problem, where the tree is traversed in bottom-up order and the results
of each tree decomposition node is stored in a computation table. Each row of the
table stands for a possible coloring of the bag elements. Furthermore, each row
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Figure 2.2: Dynamic programming on tree decompositions

contains an additional index used as reference for further processing and results of
the tree decomposition nodes above. In general, the computation starts bottom-up,
such that the leaf nodes ({a,b} and {e,f}) consist of all possible coloring variants
for their bag elements. First, the possible colorings for {a,b} are generated. Next,
the solutions for {b,c,d} are computed. As one can see, the solutions depend on the
coloring of the child node {a,b}. The last column contains the possible references
to the colorings (rows) of the child node(s). For example, the assignments from
the first row (b=r, c=g, d=b) can be combined either with a=g or a=b. The
next node to be resolved is {e,f}. The join node (and root node) {d,e} consists
of the possible colorings for {d} and {e} depending on the colorings from b=r,
c=g, d=b and {d,e}.

4. Obtain the solutions: At the end, the root node contains all information to obtain
the overall solution to the problem. In Figure 2.2 {d,e} consists of the possible
colorings for the instance graph of the 3-Colorability problem. Each solution has to
be resolved by means of the coloring(s) inside the table(s) and the reference(s) to
the child table(s). As one can see, each row consists of multiple possible colorings.
The first possible coloring can be defined as follows: d=r, e=g, b=g, c=b, a=r,
f=r.

These four steps provide the basis for applying dynamic programming on tree decom-
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positions. We distinguish between two paradigms regarding the dynamic programming
algorithm that differ in the time of “fixing information” during traversal of the tree [3]:

1. Early Decision Method (EDM):
When the tree is traversed bottom-up, all information gathered during this process
is saved immediately, i.e. every information is incorporated as early as possible.
EDM is comparable with the strategy used for the example in Figure 2.2 (and
in the four steps defined above). If the instance is unsatisfiable, then the EDM
paradigm may detect conflicts at an early stage.

2. Late Decision Method (LDM):
In contrast to the previous paradigm, every information is incorporated as late as
possible, i.e. a vertex is not considered for solutions of tree decomposition nodes
when traversing the tree bottom-up, until the vertex is going to be removed. Hence,
computation operations are delayed as long as possible. This provides advantages
when using algorithms which are more involved. But nevertheless, for unsatisfiable
instances this may lead to delayed detection of conflicts.

One possible approach for solving problems is BDD-based dynamic programming
on tree decompositions. Instead of using computation tables or other structures for
the resolution of the tree decomposition nodes, BDDs (Binary Decision Diagrams)
are generated as solutions for tree decomposition nodes and as basis for further BDD
generation in the parent nodes. More details about BDDs can be found in the following
Section 2.4.

The LDM approach is generally more difficult to implement on table implementations
than when using BDDs. Figure 2.3 represents the instance and tree decomposition
from Figure 2.2 solved with the two BDD-based dynamic programming paradigms EDM
and LDM. Since EDM incorporates all informations received when traversing the tree
decomposition bottom-up, the resulting BDDs are mostly large and complex. As one can
see, each corresponding BDD to its tree decomposition node consists of all its bag-vertices
with the possible coloring variants. In contrast to the EDM solution, the BDDs generated
by LDM are quite small, because BDDs are only manipulated when vertices are removed
from the bag. For example, the BDD, that corresponds to node {b,c,d}, only consists
of BDD nodes including vertex b.

2.4 Binary Decision Diagrams
A Binary Decision Diagram (BDD) [14, 15, 16] is illustrated by a rooted directed acyclic
graph consisting of decision nodes and two leaf nodes (see Figure 2.4). A BDD is used as
data structure representing Boolean functions.

Definition 5. A BDD (Binary Decision Diagram) B = (VB, AB) is a rooted directed
acyclic graph where VB = VT ∪ VN and AB = A> ∪A⊥. The following conditions have to
be satisfied:
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Figure 2.3: Computations as BDDs

• VT consists of exactly two terminal nodes v> and v⊥.

• VN contains the decision nodes, where each v ∈ VN represents a variable v.

• Each v ∈ VN has exactly one outgoing arc in A> and one in A⊥.

Each decision node represents a variable and the edges to the two children, called
THEN-child and ELSE-child, represent the variable assignment. Hence, the edge to the
THEN-child represents a variable assignment of 1 (TRUE), the edge to the ELSE-child
stands for a variable assignment of 0 (FALSE). To make these two types of edges visually
distinguishable, the edge to the THEN-child is usually drawn by a solid line and the edge
to the ELSE-child with a dashed line. The two leaf nodes, also called terminal nodes,
represent the TRUE (1-terminal) and the FALSE (0-terminal) value of the Boolean
function. In general, all paths (assignments) from the root node to the 1-terminal
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Figure 2.4: Binary Decision Diagram (BDD)

represent models of the formula represented by the BDD. A BDD has multiple levels.
The root node has always level 1. With each assignment, we reach a new level, thus
incremented by 1. Hence, the leaf nodes have always the highest level because there are
no other new assignments below them. There exist various types of BDDs as defined in
the following.

An Ordered Binary Decision Diagram (OBDD) [17, 18] is a special form of a BDD,
where the nodes and edges are reordered in such a way that the paths match a predefined
ordering of the variables (see Figure 2.5).

Definition 6. An OBDD (Ordered Binary Decision Diagram) B = (VB, AB) extends a
BDD with the following condition:

• For every path from the root to a terminal node, each variable occurs at most once
and in the same order (i.e., we have a strict total order over the variables).

As we see, an OBDD can simplify the BDD because the assignments of all existing
path from the root to terminal have the same order. Thus every assignment is done at a
particular level independent of the path.

Now we want to describe the term variable order. Each level has a particular variable
assignment. The variable order determines the order in which these variables are or can
be assigned. Hence, it implicitly determines the order and the hierarchy of the levels.

The OBDD can now be further processed to a so-called Reduced Ordered Binary
Decision Diagram (ROBDD) [16, 19, 20], to get a smaller BDD, but still containing the
same information as the Boolean function (see Figure 2.6).
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Figure 2.5: Ordered Binary Decision Diagram (OBDD)

Definition 7. An ROBDD (Reduced Ordered Binary Decision Diagram) extends the
OBDD with the following conditions:

• Isomorphic nodes are merged into a single node with several incoming edges.

• Nodes v ∈ VN where both outgoing arcs reach the same node v’ ∈ VN, are removed.

As we can see from the definition of a ROBDD, the OBDD can be usually reduced
by combining all the nodes which are redundant regarding the assignment information.
Hence, isomorphic nodes are merged and thus the BDD can be very compact. By doing
this reduction, there is also another possibility to shrink the BDD. If the THEN-edge
and the ELSE-edge point to the same node, then these edges inclusive their start node
can be omitted, since in this case the assignment can have both values, TRUE or FALSE,
without having any effect on the represented models. Of course, this can occur over
multiple levels too. Then the edge can directly point to the first node, where such
assignments do not occur any longer. This means that edges can skip one or multiple
levels. Even though the BDD does not explicitly show this assignment, it is still done in
the background. In detail each skipped level doubles the results, one result which has a
variable assignment of TRUE, and another one which has an assignment of FALSE.

The BDD can be further compressed by using the concept of complement nodes and
complement edges as described below:

• Complement nodes:
As already mentioned above, generally all models are represented by the assignments
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Figure 2.6: Reduced Ordered Binary Decision Diagram (ROBDD)

across the edges to the 1-terminal. If we use so-called complement nodes in the
BDD, then the result of the Boolean function is flipped every time when such
a complement node is traversed. This means, that even if the path ends in the
0-terminal, the real result of the Boolean function can be true if an odd number
of complement nodes are included in the path. To make a complement visually
distinguishable from all the other nodes, the node has a red background. As we see
in Figure 2.7, the variable assignment with a = false, b = true, c = false results
in the 0-terminal. But since we come across a complement node, the result has
to be flipped and in fact it is a model. In our example, the introduction of the
complement node does not compress the BDD.

• Complement edges:
Similar to complement nodes, complement edges also flip the result of the Boolean
function if they are contained in a path. But in contrast to a complement node,
which would always have an effect on both outgoing edges, a complement edge only
affects the edge itself and the further path. This is useful when a node has many
incoming edges and the complement meaning should only be applied to a particular
incoming edge. The edge is drawn using a red color. As we see in Figure 2.8, the
use of a complement node reduces the size of the BDD because an already existing
part of the BDD can be used again since it represents exactly the complementary
structure. Hence, this complementary structure in combination with the contrary
meaning of the complement edge results in the original Boolean function. Therefore
a node together with its edges can be removed.
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2.5 Dynamic Programming Systems

In this section we present some systems for dynamic programming on tree decompositions
in more detail. They will be used later on when doing the benchmark tests, hence it
is necessary to understand the basics of these tools. Each tool uses different methods
to implement dynamic programming. We describe the present systems and give some
theoretical background. We discuss the differences, the advantages and also the disadvan-
tages. It is important to say that all mentioned information about the tools will be quite
theoretical for now because it is one of the main contributions of the master thesis to
verify the stated characteristics by executing benchmark tests and analyzing the results
in Chapter 5 and Chapter 6. In this chapter we refer to already existing benchmark
comparisons. We will then see later on whether we can verify the existing comparisons
and the statements made in the related papers of the dynamic programming systems.

2.5.1 D-FLAT

D-FLAT [6, 21, 7] is a system for dynamic programming on tree decomposition in
combination with Answer Set Programming (ASP) [22], meaning that all the algorithms
are defined in the declarative language ASP. The advantage of this approach is that
all specified algorithms are solid and clear. The D-FLAT software uses libraries like
Gringo [23] and Clasp [24] for answer set solving and htdecomp [25] to generate tree
decompositions of the instances. It supports all problems which can be defined in monadic
second-order logic (MSO) to be solved in FPT, therefore it is well-suited for the most
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use cases. Other problems are still supported but may not be solvable in FPT. In detail,
D-FLAT uses the following approach:

1. First the problem instance is parsed which is defined by a set of facts in ASP. Then
an internally constructed hypergraph is generated.

2. Now a tree decomposition is constructed. To get a small tree width of the tree
decompositions, which is necessary for an efficient solving of the problems, dif-
ferent heuristics (see Section 2.2) are provided by the external library htdecomp.
Furthermore, once the tree decomposition is generated, there are different ways
how to normalize the tree, but this process is only optional. As already mentioned
in Section 2.2 normalization is often important to make the specification of algo-
rithms easier because less cases have to be taken into account. It supports the
normalization types WEAK, SEMI, NORMALIZED and NONE.

3. The next step is to calculate the partial solutions by using a data structure called
item tree. Every node of the tree decomposition is associated with an item tree.
This calculation is done by means of the ASP algorithm defined by the user (an
example can be seen in Listing 2.2 and Listing 2.3). The item tree is a tree which
contains for each node a set of ground ASP terms, called the item set. Each node
has a particular type (or, and, accept, reject) and it also includes the information
how the complete solution is built. Each branch in this item tree represents a
computation sequence. The leaf nodes have either accept or reject as node type,
whereas all non-leaf nodes have either and or or. In addition, the user is able to
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switch to a table mode, where the tree depth is just 1. Then the root node is
defined as or node with an empty item set and all children represent a row in the
table. They all have the node type accept. It is important to say that in most cases
the table mode is used since it is usually sufficient for problems in NP.

4. The last step is to merge all these partial solutions and then output the results,
meaning the complete solutions are calculated (see Section 2.3). In this way D-
FLAT is able to solve all the problems in the solving time FPT (fixed-parameter
tractable, see Section 2.2).

2.5.2 D-FLATˆ2
A variant of D-FLAT is called D-FLATˆ2 [8]. This tool eases the development of dynamic
programming algorithms where subset minimization is required. Usually the user has
to define recurring patterns in each dynamic programming algorithm to execute the
subset minimization or maximization. In D-FLATˆ2 this is no longer required since
the tasks like subset minimization are done automatically here. Therefore, the dynamic
programming algorithms defined as ASP code by the user are much simpler and easier to
obtain. Furthermore this leads to better maintainability and an increased readability
since much less code has to be written. There is even another advantage by letting the
system run the subset minimization task automatically. Since the code is now directly
implemented in the software, this leads to an increased performance regarding runtime
and memory. Nevertheless, it is important to say that the user still has to define some
extra code in ASP to let the software know what should be minimized exactly. But these
statements are very simple, in contrast to the definition of a completely own algorithm
for the subset minimization task from scratch.

The D-FLATˆ2 tool executes the dynamic programming algorithm in two stages. In
the first stage, the tool calculates all the solution candidates without any optimization
and minimization procedures. Only in the next step the required optimization regarding
subset minimization is done by searching for counterexamples. This leads to faster
computations of the final solutions and also requires less memory in contrast to the naive
algorithms where the user-defined dynamic programming code including optimizations is
executed in one single stage.

The procedure of computing the overall solution is quite similar to D-FLAT. But it
uses so-called reduced item trees as data structure instead of item trees. Reduced item
trees have always a depth of 1 and store additional information for the minimization,
called minimization item set. This item set contains all the items where minimization
should be applied.

There are already some benchmark tests, where the tool is compared with two other
tools: D-FLAT and ASPARTIX [26]. The latter is a program to generate extensions of
argumentation frameworks directly with ASP [27]. The used instances are grid-based,
meaning that the nodes are arranged in a matrix and the nodes are connected to all
the neighbours, and contain 40 to 65 nodes. The used problem is the enumeration of
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all preferred extensions, a problem from the area of abstract argumentation, with a
treewidth of 4. As seen in the comparison in Figure 2.9, D-FLATˆ2 has the best results
regarding execution time. D-FLAT is a little bit slower and ASPARTIX takes much
more time for the computation. When we compare the used memory, then we see that
D-FLATˆ2 is still the leader and requires much less memory than the other two tools.
But ASPARTIX has better results and requires less memory than D-FLAT in this case.

Figure 2.9: System comparison with D-FLATˆ2 [8]

When comparing different problems between D-FLATˆ2 and D-FLAT, for example
admissible, preferred and semi-stable sets (see [8] for details), the results are varying.
For admissible sets D-FLATˆ2 is a little bit slower and requires also slightly more
space because of the overhead of using reduced item trees. However, for this problem,
minimization is not required. Nevertheless, the overhead can be neglected in fact. For the
other problems D-FLATˆ2 always shows the best results in time and space. Therefore,
the two-stage algorithm seems to be very effective.

2.5.3 Sequoia

Like D-FLAT, Sequoia [4, 5, 28] is also a system which solves problems on graphs having
a small treewidth. The main difference to the other approach is that the user does not
have to specify any dynamic programming algorithm. Instead only the problem has to
be provided as encoded MSO formula (an example can be seen in Listing 2.4). As a
result, the system produces a tree decomposition and the MSO formula is automatically
evaluated on basis of the tree decomposition.

The Sequoia tool is based on the game-theoretic proof of Courcelle’s Theorem (dis-
cussed in Section 2.2). The only requirement is that a data structure with bounded
tree-width is used. This can be done by generating and using a tree automaton of constant
size which accepts or rejects the particular tree decompositions. The only problem is that
the required constants may take much memory space because a power set construction
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1 length(1). or(0).
2 1 { item(1,map(X,red;X,grn;X,blu)) } 1 ← current(X).
3 reject ← edge(X,Y), item(1,map(X,C;Y,C)).
4 extend(0,S) ← root(S).
5 1 { extend(1,S) : sub(R,S) } 1 ← root(R).
6 ← item(1,map(X,C1)), childItem(S,map(X,C2)), extend(_,S), C1 6= C2.
7 reject ← childReject(S), extend(_,S).
8 accept ← final, not reject.

Listing 2.2: 3-Colorability algorithm in D-FLAT

1 length(2). or(0). and(1).
2 1 { item(L,map(X,red;X,grn;X,blu)) } 1 ← current(X), L=1..2.
3 ← edge(X,Y), item(L,map(X,C;Y,C)).
4 ← item(2,map(V,red)), not item(1,map(V,red)).
5 extend(0,S) ← root(S).
6 1 { extend(L+1,S) : sub(R,S) } 1 ← extend(L,R), L = 0..1.
7 ← item(L,map(X,C1)), childItem(S,map(X,C2)), extend(L,S), C1 6= C2.
8 item(2,fail) ← item(1,map(V,red)), not item(2,map(V,red)).
9 item(2,fail) ← extend(2,S), childItem(S,fail).

10 reject ← final, item(2,fail).
11 accept ← final, not reject.

Listing 2.3: Subset-minimization variant of 3-Colorability in D-FLAT

1 ThreeCol(R, B) :=
2 All x (
3 (x notin R or x notin B)
4 and
5 All y (
6 ~adj(x,y) or (
7 (x notin R or y notin R) and
8 (x notin B or y notin B) and
9 ((x in R) or (x in B)

10 or
11 (y in R) or (y in B))
12 )
13 )
14 )

Listing 2.4: 3-Colorability algorithm in Sequoia
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Figure 2.10: 3-Colorability EDM algorithm in dynBDD

is needed for every quantifier which results in problems in real world applications. The
number of these constants depends on the MSO formula and the treewidth.

Sequoia wants to eliminate this memory explosion of the power set construction and
introduced new approaches, for example by computing the transition of the automaton
states on-the-fly instead of constructing the whole tree automation explicitly. Another
approach is to consider the input structure and store only the data information which
the algorithm needs for this particular instance. This way also the transitions in the tree
decomposition would only be constructed when they are really needed.

By applying these approaches the Sequoia software is able to solve problems like the 3-
Colorability or Minimum Vertex Cover more efficiently and also preliminary experiments
with similar problems seem very promising.

2.5.4 DynBDD

As mentioned before, the D-FLAT tool usually uses tables as data structure implemented
by simplified item trees with depth 1. But the disadvantage of simple tables is that
they require much memory in practice. By implementing heuristics or by using a
reduced number of concurrent tables, the required memory usage can be reduced. But
nevertheless, the dynamic programming algorithms have to be adjusted and implemented
for a particular problem.

The dynBDD software [3] uses BDDs as data structure instead of relying on simple
tables. In general, the software is trying to use the memory more efficiently and to reduce
the overall calculation time. The concept of BDDs is well-suited to many different areas
and is already used in the software verification or model-checking, for example.

The process of the computation is similar to D-FLAT. The dynBDD tool also provides
the ability to specify the algorithms on a logical level, but here an algorithm is defined
by Boolean formulas (see Figure 2.10 and Figure 2.11). Another difference is that the
algorithms modify the models concurrently in the BDD when they are executed instead
of only a single model like in table approach where only a single tuple is modified at once.
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Figure 2.11: 3-Colorability LDM algorithm in dynBDD

The dynBDD tool relies on two libraries: CUDD [29] is used for an efficient BDD
management and htdecomp [25] is required for generating the tree decompositions.

There are already done some tests and experiments regarding the effectiveness of
the dynBDD tool in contrast to other tools in this area like D-FLAT, SEQUOIA and
dynPARTIX [30]. Three different types of problems were tested: 3-Colorability, Stable
Extension and Hamiltonian Cycle.

As the results of this experiments in Figure 2.12 show, dynBDD is the leader in all
the tests done so far, both in memory usage and time. It is important to say that only
decision problems are considered.

2.6 Visualization Concepts

To visualize some type of data such as graphs, metadata or other information, a visual-
ization framework or library is necessary since a development of visualization algorithms
and elements from scratch is not recommended and also not a focus of this master thesis.
Depending on the software and the use case, there are many libraries and frameworks
available for client-based tools (e.g. in Java and C++) or also server-client architectures
for web-based applications (usually available for JavaScript). Furthermore, many window
manager concepts and window management systems are available. It is recommended
to provide an efficient user interface and to handle many concurrently opened windows
fully automatically in such a way that manual actions from the user side are not really
necessary or at least only with a minimum of effort.

2.6.1 A Window System

The terms window system and window manager usually describe a part of a system which
is responsible for the appearance, the layout and placement of windows in a graphical
user interface [31, 32, 33, 34]. It provides graphical elements like to open, close, minimize
and maximize the window. Furthermore the ability to move a window or to change its
size is also a main feature of a window system. Thereby, multiple windows can overlap
each other or can protrude outside the visible screen. A window usually also has a title
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Figure 2.12: System comparison with dynBDD [3]

bar and an icon at some certain position like at the top of the window. At the bottom
there is often a status bar located. Furthermore the overall window has some certain
style with or without a border and different colors. To get an overview of all running
windows and to provide some additional features, a task bar or a window bar is required
which contains all currently running windows as a small icon or text or a combination of
both. Some window systems also offer a docking feature to dock a window at a particular
position. In order to simplify the placement of the opened windows, a feature for an
automatic reordering can be available so that the user does not have to spent time on
organizing, resizing and reordering windows.

In addition to the usual window manager and the user interface elements provided
by the operating system, there are also already many window manager and libraries
available for web-based systems, such as:

1. jQuery UI [35]: This is a JavaScript library to implement user interface elements,
effects, widgets and interactions. It is based on jQuery [36] and also provides some
window elements which can be combined with resizeable and dragable features.

2. gridster.js [37]: A JavaScript library which provides an interactive grid-based
layout for elements.

3. OS.js [38]: An implementation of a completely web-based desktop in JavaScript.
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4. Venuts [39]: Another implementation of a web-based desktop in JavaScript. In
addition a mode is available to see all windows at a glance.

2.6.2 Graph Libraries and Frameworks

A small overview and a part of available libraries, frameworks and concepts regarding
graph visualization provides the enumeration below. To provide a solution for visualiza-
tions independent of the underlying operating system, only libraries and frameworks for
Java (standalone applications) and JavaScript (web-based applications) are considered
since they can be run on nearly every operating system.

1. JUNG [40]
JUNG stands for Java Universal Network/Graph Framework and is a pure JAVA
library providing the modeling, visualization and analyzing of graphs and networks.
Different types of graphs can be used such as hypergraphs, directed/undirected
graphs and multi-modal graphs. Furthermore metadata information can be added
to the graph elements.

2. jGraphT / jGraph [41, 42]
The Java library jGraphT in combination with jGraph supports quite the same
variety of graph types as the previous one. The jGraphT library has a focus on
algorithms and the data structure, whereas jGraph is responsible for the visualiza-
tion, the rendering and the GUI. But in contrast to JUNG, it is more suitable for
creating and editing static graphs and diagrams instead of interactive and dynamic
visualizations.

3. GraphStream [43]
GraphStream is also a Java library but in contrast to previous libraries, it provides
a more dynamic graph representation. It is possible to import/export graphs and
to create an evolution of the graph regarding time. This means, nodes and edges
can be added or removed dynamically using many effects and layout styles suitable
for an animation but without an interaction by the user.

4. arbor.js [44]
The graph visualization library called arbor.js can be used to draw and handle
graphs in JavaScript using different available layout algorithms. Hence, it is designed
for web-based tools running directly in the browser. The library provides also some
type of graph organization and uses jQuery and web workers to provide all its
features.

5. sigmajs [45]
The visualization library sigmajs is also designed for JavaScript and offers drawing
of graphs similar to the previous library. But it is not as interactive as the arborjs
because the nodes and edges are static and cannot be adjusted by the user. But
nevertheless the graph can handle mouse events and multiple settings are available
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to customize how the graph or network should be drawn. The library also provides
a good documentation, tutorials and also a well-looking visualization in total.

6. Cytoscape.js [46]
Cytoscape.js is another JavaScript-based library but with many more features. It
provides a lot of different layout algorithms, graph visualizations and interactive
networks. The drawn graphs and networks are very interactive. There are quite
a lot of demos available which give a good overview of all the features provided
by the library. In addition, the graphs can be visualized in many different ways,
not only depending on the layout algorithm but also on the ground visualization
concept by providing various visualization elements, styles and structures like in
Figure 2.13. Also a tree structure is supported.

Figure 2.13: Cytoscape.js examples [46]

7. vis.js [47]
Another JavaScript graph libraray is vis.js which provides also many features and
settings. Probably it has slightly less visualization styles for networks compared
to Cytoscape.js but it additionally provides 2D-based graphs like bar charts on
an interactive timeline or even 3D-based graphs (see Figure 2.14). Hence, it
provides additional visualization concepts beyond the usual network paradigm.
Tree structures for the graph visualization are also supported. All the graphs and
networks are created in a completely dynamical way and are very interactive in
total. This means, the user can interact with the graph by moving the nodes and
edges, by zooming in/out, by selecting nodes and edges, by triggering key/mouse
events and much more.
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Figure 2.14: Vis.js examples [48, 49, 50]

2.6.3 Existing Visualizations in Algorithmic Design and Logic
Programming

The following software applications give a small overview of visualization tools and
concepts in the area of algorithmic design and logic programming:

1. D-FLAT Debugger [51]
The tool D-FLAT Debugger has a focus on assisting and implementing new al-
gorithms for dynamic programming in D-FLAT by visualizing and debugging
the dynamic programming algorithms and their impact on the calculation of the
solutions (see Figure 2.15 for an example).

2. clavis [52, 53]
The software clavis is a visualization tool for the ASP solver clasp. With the
help of a modified version of clasp a log file is created during the solving process.
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Figure 2.15: D-FLAT Debugger [51]

Afterwards the log files are analyzed and visualized by using structural and temporal
views which give a detail insight into how the problem was solved (see Figure 2.16).

3. nomore< [54, 55]
Another system for profiling and visualizing answer set programming is called
nomore<. It reads an ordered logic program, generates an ordered rule dependence
graph and then turns it into a colored graph. The colors depend on the preferred
answer sets of ordered logic programs.

4. DeLP-Viewer [56]
DeLP Viewer is a software to visualize another knowledge representation formalism
called Defeasible Logic Programming (DeLP). In contrast to logic programming
languages like Prolog, DeLP offers constructors for potentially contradictory and
incomplete information. The DeLP Viewer explores the whole reasoning process
and visualizes the inference and the relationships of the involved arguments by
using a so-called dialectical tree, which is a tree-shaped structure (see Figure 2.17).

General visualization tools and universal applications which provide a debugging fea-
ture for dynamic programming are currently not available except for specific applications
which support only a single tool like the D-FLAT Debugger which offers a debugging
feature for D-FLAT only.
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Figure 2.16: Clavis [52]

Figure 2.17: DeLP-Viewer [56]
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CHAPTER 3
Technical Requirements

This chapter specifies the technical requirements for the development of a graphical
visualization tool for dynamic programming on tree decompositions. Section 3.1 gives a
high-level description and a small overview of the requirements. Section 3.2 deals with
the enumeration of the essential technical requirements by means of a UML Use Case
Diagram. Especially the following two modes have to be considered in the analysis. The
expert mode provides the required functionalities for project generation and publication,
while the user mode can be seen as read-only mode.

With the help of UML Activity Diagrams the workflow within the application is
specified in Section 3.3. In particular this section emphasizes the possible work sequences
for expert and user mode. Furthermore, the three main execution parts of the entire
dynamic programming process should be clearly visible and pointed out: instances, tree
decompositions and the solutions of the sub-problems, also called computations.

Section 3.4 deals with the definition of the structure of the three execution parts. On
the basis of a UML Class Diagram necessary entities for instances, tree decompositions
and computations are specified in detail. Moreover, the relations between these entities
are defined.

The graphical analysis in Section 3.5 consists of the design of the user interface for
the visualization tool. Beside the design of the three main components (instances, tree
decompositions and computations) further interface plans for the main page, the window
management or the statistic diagrams are developed.

3.1 High-Level Description
The goal of this chapter is to design and develop a tool that considers the following
requirements:

• Visualize the instances of particular problems in a completely interactive and
dynamical way.
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• Compare different tree decompositions which were generated by various normaliza-
tion modes and tree decomposition algorithms.

• Compare computations and visualize BDDs, supported by interactive visualization
tools and different view modes.

• Understand the dynamic programming algorithms on tree decompositions with the
help of interactive and graphical elements and visualization effects.

• Improve already existing algorithms on the basis of the previous requirement.

• Develop completely new algorithms by taking the results and understandings of
the visualization of similar algorithms into account.

• All these features should be handled by a well-thought window management system
to keep the overview of all the windows which are required during the process of
visualizing, understanding and developing dynamic programming algorithms.

In summary, we have three layers: the instance, tree decomposition and computation
layer. Each instance can have multiple tree decompositions (but at least one). Each tree
decomposition can be used to run multiple computations.

3.2 Requirements Analysis

In software engineering, the requirements analysis forms the basis for developing profes-
sional and high-quality systems. The main goal consists of the identification, structuring
and verification of customer requirements. The content of this section elaborates the
abstraction of all specified requirements into a list of use cases. One use case defines one
goal of an actor which consists of several actions and events.

In general two actors are identified: Expert and User. In opposition to the User actor,
that possesses facilities for project visualization and analysis, the Expert actor owns (in
addition to the User actor’s facilities) capabilities for project generation and publication.

The UML Use Case Diagram in Figure 3.1 illustrates these two actors for the
interaction with the system’s use cases. In the following the use cases are described in
detail.

3.2.1 Expert Use Cases

Generate tool output The expert user has to choose a suitable command line tool
that uses dynamic programming algorithms on tree decompositions. Furthermore, this
tool should have the capability for generating an output in form of files for the three
categories instances, tree decompositions and computations. A configuration file offers
the possibility of setting the path to that program.

In order to provide in the graphical user interface arbitrary options from the command
line tool, the form fields displayed in the user interface representing these options have
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Figure 3.1: UML use case diagram

to be defined in the configuration file. The preparation of the three categories in the
visualization tool as well as the definition of their options in the configuration file should
be treated separately for each category. Option name, the possible parameter values,
the default parameter value, a label and the input type define the appearance of each
form field in the user interface. The execution command is built up by appending the
options and parameters to the command string. The name of the generated output file is
composed of the name of the input file and the used options. An additional property
in the configuration file implies the filtered options for the output file name. After the
nonrecurring set-up the expert user has unrestricted use of the graphical user interface
for the output generation.
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In addition to the three separated graphical user interfaces for the generation of
instances, tree decompositions and computations, a fourth interface for an overview over
all generated files has to be shown. Furthermore this overview gives an information
about the relations between the generated tree decompositions and the corresponding
computations.

Import instances, tree decompositions, computations The expert user has two
opportunities for importing files: Either the output is imported that was created with the
visual output generator described above, or previously generated files from the local hard
disk are uploaded. If the latter is the case, several instances and tree decompositions can
be imported at once. Each composition is associated with a particular tree decomposition
that has to be loaded beforehand. For the loading of computations the user has to choose
the corresponding tree decomposition.

Export project The graphical user interface should contain a possibility for exporting
the generated or imported files. All available components should be linked up to one
project file. Additional information such as the association between tree decompositions
and computations or the original file names have to be appended. As a result, the expert
user downloads the project file to his computer.

Import project By means of a file selection dialog, the exported project files can be
uploaded again from the local hard disk to the system at a later time. In the course of a
project import, the state of the visualization tool from the time of the project export
has to be restored. This means, that all present instances, tree decompositions and
computations from the time of project export appear in the visualization tool.

Publish project The stored project files from a particular folder have to be itemized
in the graphical user interface and loaded after a selection. A further setting in the
configuration file contains the file path to the public folder that is reachable from the
application.

3.2.2 User Use Cases

Open project One or more published projects that are listed in the user interface of
the visualization tool can be chosen and loaded. The project is loaded and visualized as
in the import project use case.

Visualize tool instances The system visualizes the instance input file. The prerequi-
site is that the file is already available in the system. Hence, the instance was obtained
by building from the visual output generator, the import via file selection or loading
from an open/imported project. The instance has to be represented in the form of an
undirected hypergraph. The connection of an edge with more than two vertices should be
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emphasized. Furthermore, vertex name and vertex type should be clearly depicted. To
gain a clear view of the instance graph, the system should take care of arranging vertices.

Visualize tool tree decompositions In contrast to the instance that is represented
by a graph, a tree decomposition should be displayed as a tree. One tree node represents a
bag, i.e. a list of the corresponding vertices from the instrance graph. The normalization
type of the tree decomposition should be explicitly depicted.

Visualize tool computations of tree decompositions The visualization of a com-
putation looks the same as the tree from its corresponding tree decomposition. In
addition to the tree decomposition data, the computation consists of computation data
such as metadata and solutions of tree decomposition nodes in form of BDDs. Hence,
computation data enable further use cases like visualizing each tree decomposition result
as a BDD, statistic reports, animations, etc.

Emphasize metadata values in tree decomposition nodes Each tree decom-
position node has assigned multiple metadata values from the computation. A tree
decomposition view has to be displayed where the metadata values are emphasized. As
starting point the user has to select one metadata type. The assigned metadata values of
each tree node should be emphasized in any way, that the relative difference between
the tree nodes and its assigned metadata values are visually recognizable. An additional
feature is the information of the concrete metadata values.

Statistic report There are two types of statistic reports: the single metadata statistic
report and the advanced statistic report that stretches over multiple metadata types and
computations. The statistic report is prepared with the help of a line chart where the
x-axis describes the elapsed time and the y-axis the metadata value. One line in the
chart shows the metadata values per metadata type and per computation. In contrast to
the single metadata statistic report that consists of just one line, the advanced statistic
report consists of several user-defined metadata types over multiple computations.

Animate statistic report The animation of statistic report represents an extension of
the statistic report. Throughout the elapsed time on the x-axis the chart is continuously
built up from left to right.

Visualize BDD The computation result of each tree decomposition node should be
visualized as Binary Decision Diagram. After the selection of a specific tree decomposition
node, the BDD should appear. Basically the BDD is depicated as a rooted directed
acyclic graph where the only leaf nodes are TRUE and FALSE. Appropriate shapes and
colors for nodes, leaf nodes, edges (different for ELSE-edge and THEN-edge), complement
nodes and complement edges have to be used. The BDD is built up from the root node
on the top to the leaf nodes on the bottom where the nodes should be clearly arranged.
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Visualize computation table Given a BDD, another possibility for visualizing the
models of the solution is to list the models with their variable assignment. A table has
to be generated where each row represents a path from the root node to the leaf node
and therefore a model and each column shows a level in the BDD. After the selection of
a specific row in the computation table, the corresponding path in the BDD has to be
highlighted. Furthermore the selection of a column in the computation table results in
the highlighting of the BDD nodes that are located on the appropriate level.

Animate computations by means of BDDs Given a tree decomposition window
and an animation window, computations are visualized in form of animations. By
means of the visualization of the BDDs from each level of the tree decomposition, the
computation should be animated from bottom to top. Especially the merging of branches
has to be emphasized. Simultaneously to the depiction of the BDDs, the corresponding
tree decomposition nodes should be highlighted. The tool should offer the possibility to
control the animation step at any time with the options: play, stop, forward, backward,
begin and close. There are three animation modes: The first mode calcutates the overall
animation view height by means of the highest BDD from all levels. The second mode
defines for each level an individual height according to the highest BDD in this level. The
third mode uses the predefined variable order from the input computation file. The height
of the view conforms to the number of the variables in the computation file. Details
about animation and the three animation modes can be found in Section 3.5.

Select related nodes Three selection modes (description can be found in detail
in Section 3.5) should support the highlighting of related nodes within instances, tree
decompositions and BDDs. The first mode marks nodes with exactly the same information
content from the selected node(s). The second mode marks nodes containing the full
information content from the selected node(s). And the last selection mode marks nodes
consisting of any part of the information content from the selected node(s).

3.3 Workflow Design

The control flow of the system from one activity to another is described with the help
of activity diagrams. Moreover, this control flow is illustrated by means of a flow chart
where each activity stands for an operation of the system. With the help of four activity
diagrams, the workflows for project generation and analysis (use published projects)
are illustrated. The project generation workflow (shown in Figure 3.2) is performed by
experts and the analysis workflows (Figure 3.3, Figure 3.4 and Figure 3.5) are used by
the users.

The following two subsections give an insight into the activities of the project gen-
eration workflow and the analysis workflow by means of scenarios covering most of the
available operations in the system.
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3.3.1 Project Generation Workflow

The workflow project generation is performed by experts and leads to the generation of
project files composing instances, tree decompositions and computations. In addition
to that, further information such as the relations between tree decompositions and
computations are packed into the project file. Finally, generated projects can be published
for the users of the visualization tool.

DecoVis - Generate Project
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tool output 

import tool 
output

export 
project

open 
project

import 
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view 
project

select related tree 
decomposition

publish 
project

Figure 3.2: Workflow: Project generation

The scenario in Figure 3.2 illustrates the workflow with its different variants for
creating an user-defined project containing an arbitrary number of instances, tree decom-
positions and computations.

As prerequisite for the usage of the expert functions, the expert user has to deploy
and configure the application. Settings for the used user mode, the output generation
tool, the temporary file path, the publishment folder, etc. have to be set before the
application can be opened. After the application is opened, a graphical user interface
provides multiple possibilities to view project components (instances, tree decompositions
and computations). Moreover, the several ways for project creation and project editing
are explained in the following.

Generating tool output provides one way for creating instances, tree decompositions
and computations in form of files. As one can see, this activity can be repeated as often
as desired. Moreover, already generated instances or tree decompositions could be used
as parameters for further processing.

There are two variants for including input data into the project file, which can be
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repeated arbitrarily often:

1. import tool output
On the one hand, generated tool output data can be imported after their creation
and, on the other hand, already generated files from the computer’s hard disk
can be uploaded. In contrast to the first approach, the upload needs in case of
computations the information about the corresponding tree decomposition.

2. import project
Another possibility for importing data is to import already existing projects via
file upload. As a consequence the current project can either be set up on the basis
of the uploaded project, or extended with its content. Furthermore, additional
information like the original file names and the relationships between included tree
decompositions and computations are also taken over.

The subsequent activity after the import of the data represents the generation and
export of a project file. This project file containing the output files, the original file
names and the relationship between included tree decompositions and computations is
downloaded to a user-defined folder on the computer.

After these steps for the generation and export of the project file, the expert user has
to copy the project to the publication folder defined in the configuration file. After a
restart of the application, the project has to appear in the list of published projects in
the user interface. The released projects can be opened and used in further consequence
by each user having access to the application. How these published projects can be used
in the user mode is described in the next subsection.

3.3.2 Analysis Workflows

Starting point for the analysis workflows are the generated and published projects that
are used by the users of the visualization tool. Beside the visualization of the three main
components (instances, tree decompositions and computations) several workflows are
provided for the analysis of them such as BDD animation, statistic diagram, etc.

The activity diagrams in Figure 3.3, Figure 3.4 and Figure 3.5 represent the usages
of a published project. In all activity diagrams the basic activities, represented by the
first three activities (open project, select tree decomposition and choose computation(s)),
assume the existence of an instance, a tree decomposition and computation(s). Hence,
the first three activities only indicate the selection of these elements in the graphical user
interface.

Figure 3.3 illustrates the workflow for finding and highlighting valid paths in particular
BDDs. After the basic activities, the user has to choose a particular BDD for further
analysis of the computation by selecting the corresponding tree decomposition node of
the BDD. As a result, the BDD in form of a tree with the TRUE and FALSE leaf node
gets displayed.

The BDD window furthermore contains a possibility for visualizing the appropriate
computation table. The computation table is eventually another representation of the
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Figure 3.3: Workflow: Path highlighting in BDD

BDD. Because a row contains variable assignments, each row is equivalent to a path in
the BDD passed through by the variable assignments from the root node to the TRUE
leaf node. A more detailed explanation can be found in Section 3.5.

After the selection of the rows, the valid models are found and the corresponding
paths are highlighted in the BDD. Since this activity was the last step in the scenario,
the terminal node in the activity diagram is reached.
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Figure 3.4: Emphasize metadata values workflow

Figure 3.4 represents the workflow for emphasizing metadata values by means of tree
decomposition nodes. The first three activities in the activity diagram depict the basic
activities described above.

After the selection of one computation, an arbitrary metadata type such as memory
usage, elapsed time or number of BDD variables has to be chosen. The tree decomposition
representation is used for metadata visualization by including the metadata value into the
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corresponding tree decomposition node. The approaches for emphasizing metadata values
in tree decomposition nodes (e.g. by computing the shape size of the node relatively to
its metadata value) are described in Section 3.5.

The activities of selecting computations, selecting metadata types and the visualization
of metadata values can be repeated as often as desired. As a consequence, several
computations with their metadata types and values can be compared.
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Figure 3.5: Create animation workflow

Figure 3.4 represents the workflow for creating statistic diagram animations and BDD
animations. As shown in the activity diagram, the user has the choice between single
and multiple computation and metadata type selection:

• Single selection
After the selection of one computation, the user can pick either the visualization
of the computation data in form of a BDD animation or the illustration of the
metadata values of one metadata type in a statistic diagram. In contrast to
the visualization of a statistic diagram depending on multiple computations and
metadata types, the depiction after single selection contains just one line in the
line chart representative for the selected metadata type.

• Multiple selection
The selection of several computations and metadata types also results in the
statistic diagram visualization. Each line in the visualized line chart represents a
computation with its metadata values plotted on the y-axis.

In order to see the statistical progress of the selected metadata type(s) from its
computation(s), the statistic diagram in form of a line chart provides an animation
represented in the last activity before the terminal node. The animation continuously
builds up the lines along the x-axis from left to right.

Since each tree decomposition node has a solution in form of a BDD stored in the
computation, this activity starts the animation of the BDDs from the lowest level of

44



the tree decomposition to the root node. Beside the window for the animation of the
BDDs, a second window contains the highlighted tree decomposition nodes associated
to the visible BDDs. More details about the BDD animation and the statistic diagram
animation can be found in Section 3.5.

3.4 System Architecture

A UML class diagram is a helpful instrument for designing business models. Since
instance, tree decomposition and computation are often used terms in this master thesis,
this section provides a brief insight into the abstractions of these three components.

Tree Decomposition 
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1 *

1 1
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- String: type

1
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- Integer: ID

children*

1
parent
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1
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<<Interface>>

Source

- Boolean: tChildComplement

Figure 3.6: UML class diagram - instance, tree decomposition and computation

Figure 3.6 shows the entities and relations that are necessary to model instances, tree
decompositions and computations. As one can see in the class diagram, each of these
components implements the interface Source. This interface represents an abstract type
for all output data generated by tools using dynamic programming on tree decompositions.
Furthermore, the interface provides the basis for enhancements in the tool as well as
in the UML class diagram. The next subsections give a detailed description over each
component with a corresponding graph visualization.

45



3.4.1 Instance

The UML class diagram from Figure 3.7 is an extract from the diagram in Figure 3.6
and contains the essential entities and associations for instance information.

Instance Graph

Vertex

- String: type

1

*

- String: name
- Integer: ID

Edge

- String: type

1

*

* *

a

b

c

d

e

f

edge

edge

edge

edge

edge

edge

vertex

Figure 3.7: UML class diagram - instance

An Instance Graph consists of vertices and edges. Since we consider hypergraphs,
an edge could have more than two endpoints. As one can see in Figure 3.7, the instance
can be represented as undirected graph where vertices (e.g. vertex, represented as
tooltip) as well as edges (e.g. edge) are characterized by a type. Furthermore, each
vertex contains a unique identifier (ID, not visible in the graph) and a name (e.g. a).

As an example for explaining hypergraphs and the properties name and type of
vertices and edges, family relationships can be used: A Vertex describes a person where
the ID-property illustrates the social security number, the name-property contains the
first name and surname and the type-property represents the sex of the person. Married
and child define possible binary edge types and team represents a possible hyperedge
type.

3.4.2 Tree Decomposition

As suggested by the name, a tree decomposition can be visualized as tree. As defined
in the class diagram in Figure 3.8, (TD) is made up of a root tree decomposition node.
Except for leaf nodes (having no children), each other node has at least one child node.
More details about tree decompositions can be found in Section 2.2.

As the class diagram and the sample tree decomposition in Figure 3.8 show, a tree
decomposition node (TD) is identified by a unique id (ID) and has an arbitrary amount
of vertices from the instance assigned, that form the bag of the tree decomposition node.
The sample tree decomposition nodes in Figure 3.8 are described by the ID (with prefix
n) and a name-array of the assigned vertices.
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n1: {d,e}

n2: {b,c,d} n4: {e,f}

n3: {a,b}

Tree Decomposition (TD)

Vertex

- String: type

TD Node

- Integer: ID

children*

1 parent

1

1 root

* *

- String: name
- Integer: ID

Figure 3.8: UML class diagram - tree decomposition

3.4.3 Computation

As one can see in the overview diagram in Figure 3.6, associations to the Vertex (from
the instance) and to the TD Node (from the tree decomposition) are established.

As illustrated in the class diagram in Figure 3.9, Computation consists of multiple
variables (DDVariable). Each variable is composed of a unique id (ID), a type, a
number for unique identification, an index (node level) and the relation to several
vertices from the instance. Details about the background of the properties can be found
in Section 2.4.
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Figure 3.9: UML class diagram - computation

Furthermore, the Computation contains for each node in the tree decomposition an
appropriate Computation Content, i.e. a Binary Decision Diagram with additional
information. To support an optimized implementation of the tree traversion, each
Computation content contains the information to its parent content, i.e. the parent
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node from the tree decomposition. Each Computation Content is extended by any
number of metadata information consisting of metadata type and the corresponding
metadata value.

The following explanations focus on BDDs and its elements, as one can see by means
of the class diagram and the sample BDD in Figure 3.9. Each BDDNode consists
of a unique id (ID), the information if it represents a complement (complement, in
Figure 3.9 the root node), the information if one of the child edges represents a complement
(eChildComplement and tChildComplement), in the case of a leaf node the value
FALSE (represented by 0-node) or TRUE (represented by 1-node) and the relation to
a variable. Further information about BDDs and their representation can be found in
Section 2.4 and Section 3.5.

The sample BDD in Figure 3.9 illustrates the solution to the root node n1 from
Figure 3.8. Several models for the tree decomposition node can be taken from the
depicted BDD.

3.5 Graphical Representation Analysis

The Graphical Representation Analysis consists of three parts:

1. The first part is about the containers which display and visualize data to the user.
In fact, they are simple windows embedded in the GUI of the web application.

2. The second part describes in detail how all the data is visualized to give the user the
best and most convenient way to analyse and understand them. There are several
types of windows, each having different use cases and user interface elements.

3. The last part is about the graphical data analysis. In this section the relationships
between all the data elements and the interaction between them in the web user
interface are examined carefully.

3.5.1 Windows

The main components in the web user interface form the windows. Each window has
particular elements like buttons and dropdown fields, depending on the window type and
the data which should be visualized. Figure 3.10 illustrates the conceptual design. The
user can view multiple windows at once and is able to close or minimize each of them
separately. Furthermore, there is a window management which allows to reorder the
windows. As an additional feature, it supports the automatic adjusting of the window
sizes to the screen and the browser window.

At the top of all the windows there is a tab bar, displaying all currently opened
windows, including the visible and also the minimized ones. Additionally, the user is
able to close and minimize them in both views, in the tab bar and also in the particular
window for a more convenient user interface.
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A further feature in this window management is the setting for defining how many
windows should be displayed on the screen at once. Depending on the user choice the
window elements are adjusted automatically, regarding the size and position. This user
interface element can be implemented as shown in Figure 3.11.

Altogether, there are 7 window types, each having different menu elements:

• Instance window
The instance window has only the two standard buttons for minimizing and closing
the window.

• Tree decomposition window without any computation
The tree decomposition window includes a button to add a computation file.

• Tree decomposition window after loading the computation
This window type displays the metadata and solutions of the computations. There-
fore it offers a dropdown menu to select one of the available metadata types, a
play button for the animation of the BDD and a button to display the selected
metadata in an own statistic diagram window.

• BDD window
The BDD window displays a single BDD and therefore a partial or full solution of
the tree decomposition. It only offers a single button to display the appropriate
computation table.

• Computation table window
This window type displays the computation table of a BDD.

• BDD animation window
When clicking the “Play” button in the tree decomposition window (with a com-
putation preloaded of course), the animation of the BDDs is started in the BDD
animation window. Additionally, all windows are minimized, except the tree de-
composition window and the currently used animation window. This provides a
better overview and visualization since the animation is viewed in a larger scale.
The BDD animation window includes buttons to control the animation, like playing
or pausing the animation, going to the next or previous step and adjusting the
animation speed.

• Statistic diagram window
This window visualizes the metadata in a statistic diagram. To display each node
automatically step by step, it provides a button to start this type of animation.

3.5.2 Graphical Representation

In this section we will describe the graphical representation in detail. It is necessary to
design the visualization in such a way that it can handle large amounts of data since this
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Figure 3.10: Window management
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Windows on the screen:

Figure 3.11: Change window number

will be required for a data analysis. Furthermore, hypergraphs are supported and should
be visualized in an attractive way.

Large Amount of Data

For the benchmark tests and also for other purposes like analyzing the data, computations
and algorithms, it is required that the underlying graph library can handle large amounts
of data (like in Figure 3.12). This also includes a stable and smooth visualization where
an interaction with the user is still possible, meaning selecting nodes, resizing the graph
or moving nodes. But what are large amounts of data exactly? How many nodes and
edges should be displayed without any further problems?
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• We defined that for our purposes up to 100 nodes including the edges should be
handled error-free for the instance graph (of course assumed when running on a
conventional computer).

• With this decision for the instance graph, up to 300 nodes should be possible for a
tree decomposition, assuming that a tree decomposition has approximately a three
times higher node number in contrast to its instance.

• A BDD should handle up to 200 nodes without problems.

• Taking the previous three decisions into account, up to 1000 nodes should be
possible for a BDD animation step when assuming that an average of 10 BDDs are
displayed simultaneously and only an average of 100 nodes are used for a BDD.

Figure 3.12: Large instance

Figure 3.13: Hypergraph

Graphs & Hypergraphs

Hyergraphs are graphs which can have edges with more than two end points, meaning
that an edge can connect also 3 nodes or more (see Figure 3.13).

Nodes and edges of a hypergraph or of a simple graph can have different types. To
avoid that there are too many labels, different colors make the nodes and edges identifiable
regarding their type. The concrete type should be visible by moving the mouse over the
element.
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There are many challenges regarding simple graphs and hypergraphs. How should
the graph be visualized? Nodes should not be overlapping, the edges should be as short
as possible and the graph should be displayed in such a way that the user can get the
most out of them. There are already many algorithms for graph visualizations available,
which have a focus on force-directed graph drawing [57, 58], meaning that the graph is
drawn in a well looking way. But nevertheless, there are still many questions: which
algorithm should be used exactly? And since they offer a lot of options to optimize the
visualization, which options should be chosen?

In fact, the algorithms and options are always depending on the graph data and of
course, on the amount of data. Both of them are very variable in our use cases. Therefore,
it should be possible to display the graphs and hypergraphs in such a way that they
are still providing optimal visualizations, independent of the data and the number of
nodes. For our purposes we visualize many more data types than simple graphs and
hypergraphs, such as tree decompositions, BDDs, computation tables and metadata as
described in the following sections.

Tree Decomposition

For the visualization of the tree decompositions, a tree is used (see Figure 3.14). Of
course, this is just a sub type of a simple graph, but the tree is displayed with some
layout requirements: There is a root node at the very top and the branches are oriented
to the bottom.

Figure 3.14: Tree decomposition
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Binary Decision Diagram

For a graphical representation of the solutions, one approach is to use BDDs (see
Figure 3.15). A BDD is visualized by a rooted directed acyclic graph as already described
in Section 2.4. It looks like a tree structure, but it has only two leave nodes which should
be visualized with “0” (representing False) and “1” (representing True). Furthermore,
the branches can be merged together when walking from the root to the leaves, resulting
in a more compact visualization. This should be considered when using graph algorithms.
Since the BDD shows a Boolean function, each node has two outgoing edges. The
THEN-edge should be drawn by a solid line, the ELSE-edge by a dashed line. To reduce
the overall graph, complement nodes and edges are used which negate the result when
the path is walking through. To make these nodes and edges distinguishable, appropriate
colors should be used.

1 0

Figure 3.15: BDD

Table

Another way to display the solution is to use a table (see Figure 3.16). This should be
implemented as an alternative to the BDD visualization. Actually it should extend the
analysis of the solutions. Each row covers one or multiple solutions and therefore a path
in the BDD, each column represents a horizontal level in the BDD. The table contains
a horizontal header describing the variable assignments for the columns and a vertical
header numbering the various solutions. The value of a cell in the table can be “0”, “1”
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or “-”, whereas “0” represents the variable assignment FALSE, “1” the assignment TRUE
and “-” means that both Boolean values can be used to get a solution. It is important to
say that the table contains all real solutions and not necessarily the paths in the BDD
which are ending in the “1” leave. That is because the BDD can contain complement
edges and nodes, which negate the result. In fact, the table resolves the negations so
that only valid solutions are shown. For example, if a path in the BDD ends in the “0”
node and contains an odd number of complement nodes/edges, then the table is showing
this path as valid solution since the result of the Boolean function in the BDD has to be
negated.
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Figure 3.16: Computation table

Metadata

When the solutions are calculated and the computations are being done, we get metadata
about the computation process, such as memory usage, elapsed time or number of BDD
variables. The software should support the visualization of all these metadata types.

One approach to do that is to create a statistic diagram, which shows each metadata
value as simple node on the y axis. The vertical x axis indicates the elapsed time since the
beginning of the computation process (see Figure 3.17). Multiple metadata types can be
added to this diagram. In addition, also a specific metadata type of multiple computations
can be illustrated which provides an efficient way of comparing them. Another approach
would be to include the metadata values already in the tree decomposition. For example,
we can use different shapes, colors or sizes for the vertices in the graph. Since we deal
with many different values, the best solution is to use different sizes. Smaller vertices
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represents a low value, while bigger ones represents higher values (see Figure 3.18).
When we apply some particular metadata type, such as the memory consumption, we
perfectly see which nodes consume the most memory resources. Furthermore, we see
the non-computed nodes by using a predefined color and small node size, for example
if the partial solutions are unsatisfiable. Then, as we are going bottom-up in the tree
decomposition, further computations up to the next branch do not make sense which are
illustrated by these non-computed nodes.
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Time

V
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e

Time

Figure 3.17: Statistic diagram of metadata

3.5.3 Graphical Data Analysis

Graphical data analysis in general describes which data is contained in graphs and
diagrams and how they are related. Furthermore, it also includes how visualized elements
can be used to get the most information of them and how a detailed analysis works.
Therefore, this section deals with the analysis of the data used in the graphs including
the relationships between them. In detail, it contains:

• the relationships between particular window types and their included data,

• the analysis of the BDD animation and

• the benefits of visualizing metadata in the statistic diagrams.

For example, multiple tree decompositions of an instance often have commonly used
parts, similarities or even same node and edge elements. The same applies for BDDs.
Also, the instance graphs have a very close relationship to their tree decomposition.
Furthermore there are connections between the BDD and the computation table, since
they describe the same solutions. There should be a generally usable highlight feature to
mark nodes with all their related contents. Different highlight modes should be available
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Figure 3.18: Metadata values in tree decomposition

to give the user the best utility to interact with the graphs and the data (as required in
Section 3.2.2). The BDDs of a particular tree decomposition should be analyzed and
evaluated from the bottom to the top by using an animation with different view modes.
To visualize the metadata in a convenient way, interactive statistic diagrams should be
used.

Visualizing Relationships between Data Elements

There should be different modes available to highlight the nodes and vertices. Here, we
distinguish between “select” and “highlight”. The first one means the user action when
the user is clicking on a node. The latter is the action done by the software to color the
particular nodes.

Furthermore, we clarify the naming of the elements in the various graphs. An instance
graph consists of vertices and edges, whereas all other graphs consist of nodes and edges
like the tree decomposition or the BDD. Each vertex in an instance graph has an ID. Each
node in the tree decomposition has a so-called bag which is a set of vertices. The nodes
of the BDD include a variable with a set of vertices, usually they are also containing
some more information which is not required for the visualization part. To make the
relations between the graphs visible to the user, each node or vertex can have a label
visualizing some information like the vertex ID, the bag of the tree decomposition or the
set of vertices in the BDD.

Now we introduce 3 highlighting modes by using the example of an instance graph
and a tree decomposition.
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If we select one or multiple vertices in the instance graph, nodes in the tree decompo-
sition should be highlighted regarding the chosen highlighting mode. One possibility is
to highlight these nodes in the tree decomposition which exactly contain the vertices of
the selection in the instance graph, let us call this mode “EXACT”, illustrated in Figure
3.19.

8

1

0

4

3

9

2

6

7

5

0, 1, 8, 5

0, 1, 2, 5

2, 7 0, 2, 8 1, 4, 2

4, 2, 3

2, 9, 3

{}

{} {}

{}

Figure 3.19: Highlighting mode: EXACT

Another option is to highlight all the nodes which contain the vertices of the selection
in the instance graph at least. Since this is a simple conjunction, the mode is called
"AND" (see Figure 3.20).

The last possibility is to highlight all the nodes which contain one of the vertices of
the selection in the instance graph. This is a simple disjunction, the mode is called "OR"
(see Figure 3.21).

Instance with Tree Decomposition When we create a tree decomposition, we want
to know where the vertices of the instance graph are used in the tree decomposition for
better analysis of the algorithms and the configuration. Of course, each node has a bag
containing a subset of the vertices of the instance, as already mentioned before. This is
also represented by a label. But this alone may not be sufficient for the user, generally
when the bags are quite large. Hence, the introduced highlighting feature and different
colors would increase the overall clarity.

TD with TD Tree decompositions should be easily comparable to each other. This
way, the user can analyse common parts and can get a better overview of the differences
between the configurations used to create the tree decompositions. But to compare them,
we want to use the introduced highlighting feature again. This allows us to highlight
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Figure 3.20: Highlighting mode: AND
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Figure 3.21: Highlighting mode: OR

common parts, by using the “AND”, “OR” or “EXACT” mode. The highlighting of these
nodes should be a helpful tool for a detailed analysis and comparison (see Figure 3.22).

BDD with BDD The same approach is required when comparing BDDs. Hence, the
nodes of the BDDs should also be interactive and the highlighting should be done in
exactly the same way as already described for the comparison of tree decompositions
(see Figure 3.23). Then the computations can be easily compared.
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Figure 3.22: Compare tree decompositions

1 01 0

Figure 3.23: Compare BDDs

BDD with Table The BDD and the related computation table should be interactive.
When clicking the rows or columns in the computation table, we should get the highlighting
in the BDD graph, illustrated in Figure 3.24. Combining these two visualization elements
provides an efficient way to understand the solutions since we have a graph visualization
in connection with a data table. The BDD is very compact, hence it may contain
complement edges/nodes and skipped levels. Therefore the data table should enhance
this visualization by providing the solutions in detail. The user can find out the path a
model belongs to. All the paths containing an odd number of complement elements are
then very clear this way because the user sees paths are ending in the “0” node but they
are still models in the computation table. Also skipped levels in the BDD can be seen in
the computation table very easily since there are “-” values specified at these positions.
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Figure 3.24: Path highlighting in BDD

BDD Evolution Bottom-Up

As we see, BDDs are very compact and contain the partial or even full solutions of our
problem. But how are these solutions computed? How are the BDDs related to each
other? To make the BDD evolution fully visible to the user, the so-called BDD animation
should provide a great way to illustrate that. The animation should start at the very
bottom of the tree decomposition. All BDDs in this level should be visible next to each
other inside the BDD animation window. Each level in the tree decomposition has an
animation step and each step has a BDD for each tree decomposition node (see Figure
3.25). The whole animation is played automatically by walking from the bottom to
the top in the tree decomposition. In detail, after a particular time span the BDDs of
the next level of the tree decomposition should be visible by doing a slow fade in. The
great challenge is to design the animation in a clear way for example by implementing
additional effects like the merging of BDDs. This is necessary when two or multiple nodes
in the tree decompositions are merged in the next level. Then the related BDDs have to
be merged as well (see Figure 3.26). These effects should support the understandability of
the general concept of the computation process as well as the generation of the solutions.
During the animation, BDDs are usually merged, so that there remains only one single
BDD in the end, representing the final solution of the root node.

Depending on the problem and its size, different view modes support a better visibility
of the animation process:

• A view is required where all BDDs are consistent in their size during the whole
animation process, meaning that the space between two consecutive levels in the
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Figure 3.25: BDD animation

BDD should always have the same height.

• Another view would be to display the BDDs bigger and make the BDDs better
visible. Each BDD is now displayed independent of the others. Hence, the space
between two consecutive levels varies from BDD to BDD and the size is not
comparable any longer. This results in a zoomed view, since the BDDs are zoomed
to the full window size.

• Another view mode would be to stretch the BDDs to some predefined global order.
Each computation includes a global variable order, which can be used for this
purpose. Every level in the BDD is moved to the related level of this global variable
order since a BDD level always refers to particular variable. It is important to say
that only the space may be increased, the order of the variable assignments remains
the same. Hence, every level of the BDD may get assigned a new higher level.
Using this mode, merging BDDs would be better illustrated because usually the
BDDs are interlocking. Also, the levels of the merging BDDs are always referring
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Figure 3.26: Merging BDDs during BDD animation

to the same variable assignment, resulting in a better animation. The disadvantage
of this view is that the BDDs are usually displayed smaller, since the variable order
defines a fixed number of levels and not all levels may be used for the BDD. In fact,
the number of levels in this view is the greatest possible. Therefore the BDDs are
usually looking stretched and with bigger spaces between some levels.

Metadata Visualization

Trees We have already described in detail how metadata could be visualized. Our
approach is to use trees with different node sizes. Now we want to describe how such
tree structures have an impact on the analysis of the metadata. For the development of
algorithms, we want to see the duration of the computation, the memory consumption,
the number of used variables and so on. When we include all these metadata types
with their values in the node size in the tree decomposition, we immediately see the
bottlenecks and the parts where many resources are needed. The bigger the nodes, the
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bigger the value. It is exactly visible when resources are needed, when they are released
and which configurations provide the best results. In fact, this information can also be
used to improve the computation process by adjusting the algorithms.

Statistic diagrams To compare the metadata in some other way, we want to use
statistic diagrams. With the help of this approach, we can easily compare different
metadata types or a specific metadata type of multiple tree decompositions. They should
all correspond to the same x-axis which is illustrating the elapsed time. Furthermore, by
selecting particular nodes in the tree decomposition, also the appropriate nodes in the
statistic diagrams are highlighted. This helps to understand the relationships between
the two visualizations of metadata.
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CHAPTER 4
Implementation of the Technical

Requirements in DecoVis

This chapter contains our realization of the technical requirements specified in Chapter 3
for the development of a graphical visualization tool for dynamic programming on tree
decompositions in form of a web application named DecoVis.

Section 4.1 gives a short technical overview over technologies, concepts, frameworks
and standards used in DecoVis. This background information offers the possibility to
easily understand the implementation part of DecoVis.

Section 4.2 deals with the interfaces used for importing and exporting instances, tree
decompositions and computations in DecoVis. Especially the particular data format
of each component used for importing and exporting of files are covered. Furthermore,
project files for the composition of an arbitrary amount of instances, tree decompositions
and computations are presented.

The capability of dynBDD execution in DecoVis is described in Section 4.3. DynBDD
is a command line tool applying dynamic programming algorithms on tree decompositions.
The focus in this section lies on the explanation of the configuration used for dynamic
dialog generation of the graphical user interface. Moreover, the steps in DecoVis for
initiating the dynBDD execution with its options and parameters are illustrated.

Section 4.4 gives an overview over the window management in DecoVis. Besides the
windows for the visualization of instances, tree decompositions and computations, further
window types representing BDDs, computation tables of BDDs, BDD animation and
statistic diagrams are explained.

Interactive visualization elements are covered in Section 4.5. In more detail, the
interactions between different elements from the same window or other windows are
illustrated. Especially the different modes for node highlighting are explained. Moreover,
the interplay between BDDs and their computation tables is demonstrated.

Section 4.6 describes the two DecoVis modes: view mode and admin mode. Similarities
and distinctions regarding functionalities are outlined.
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4.1 Technical Overview

This section deals with the technical background of DecoVis in more detail. In order to
make the system easiliy accessible, the decision was made to develop the visualization
system in form of a web application. Since this decision entails restrictions in the used
technologies, the following subsections as well as Figure 4.1 depict the used concepts,
technologies, frameworks and standards that fulfill the requirements and goals in the
easiest and best possible way.

Cient Browser

DecoVIS

Bootstrap, jQuery, JavaScript Vis.js

AJAX
engine

Instance TD 1

Instance TD 1 TD 2 BDD

Web Server

DecoVIS

HTTP 
request

JSON
data

Figure 4.1: Technical overview

In a nutshell, DecoVis uses the following dependencies:

• Bootstrap v3.3.2 (http://getbootstrap.com)

• jQuery v1.11.1 (http://jquery.com)

• Vis.js v4.2.0 (http://visjs.org)

• Java v1.7 (http://www.java.com)

• Apache Tomcat v7.0 (http://tomcat.apache.org)

• Spring Framework v4 (http://projects.spring.io/spring-framework)

The following paragraphs describe the used concepts, libraries, frameworks, etc.
illustrated in Figure 4.1 in more detail.
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Network Architecture DecoVis consists of a classical client/server architecture. Since
the browser of the client provides the graphical user interface to the user, the application
is deployed on the server, or more precisely the web server. By means of the Hypertext-
Transfer-Protocol (HTTP) the web server answers to client requests.

Web Server In order to deploy the web application on the server, a web server has
to be configured. DecoVis uses the open-source web server Apache Tomcat that acts
as webcontainer. Since Tomcat implements the specification for Java Servlets and Java
Server Pages (JSP), it serves requests to the programmed Java Servlets and JSPs from
the DecoVis java project.

Programming languages Since the Tomcat web server runs Java compiled code, the
web application is written in Java. For client-side scripting the dynamic programming
language JavaScript is used. Furthermore, AJAX (Asynchronous JavaScript and XML)
is the technology used for data exchange with the server component and updating of the
HTML-page.

Application framework The Spring Framework is an open-source application frame-
work for Java platforms developed for creating high performing and easily testable
applications. Since this framework provides a lot of features for the development of web
applications, it is the appropriate application framework for DecoVis. Furthermore, the
Spring Framework is widely spread and provides a comprehensive documentation and
library support.

GUI framework Bootstrap is an open-source HTML, CSS and JavaScript framework
that is used for the representation of a graphical user interface in a web browser. The
decision to use Bootstrap in DecoVis is taken because the developed web pages are
appropriately rendered on different devices such as smartphones, tablets or computers.
Furthermore, web pages can be designed in an easy and fast way.

GUI libraries Vis.js is a JavaScript library for the visualization of graphs and statistic
diagrams. Basically it consists of the visualization components: network, timeline,
graph2d and graph3d. Since the component network is able to represent undirected
graphs and trees, it is used for the visualization of instances, tree decompositions and
BDDs. For the statistic diagram in form of a line chart, the vis.js component graph2d is
applied. Since the JavaScript library jQuery supports the handling of some Bootstrap
elements such as the Bootstrap wizard, it is also included in DecoVis.

Standard Formats As file format for instances, tree decompositions and computations
GraphML [59] is chosen. It provides an XML structure and is flexibly extendable. The
creation of a new XML schema was not necessary, because GraphML already supports
the representation of undirected hypergraphs, hierarchical graphs and application-specific
attribute data.
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Since JavaScript and a lot of JavaScript libraries, that feed their components with
JSON (JavaScript Object Notation) objects, are included in DecoVis, it is obvious to use
JSON on the one hand for client side code objects and on the other hand for the data
exchange with the web server.

4.2 Data Import/Export

This section gives on the one hand file specifications for the used input and output
files and on the other hand importing and exporting features in DecoVis. There exist
two possibilities for uploading data to DecoVis: Either instances, tree decompositions
and computations are imported as separated files, or they are imported composed in a
project file. The former option assumes, that the user is aware of the relation between
tree decompositions and their corresponding computations, whereas the second option
contains the information about the links between the files in the project file.

Figure 4.2: Data import/export

Figure 4.2 illustrates the main menu in the main page. Furthermore, access points
for file import and project import/export can be found.

4.2.1 File Specification

In order to make information about the components instances, tree decompositions and
computations portable, a standardized file format is used in DecoVis. Since GraphML
[59] offers a file format for graphs with a flexible extension mechanism, this file format
is used for each component. In the following the instantiations for the components are
illustrated.
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<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<graphml ...>

<key attr.name="vertex-name" attr.type="string" for="node" id="vname"/>
<key attr.name="vertex-type" attr.type="string" for="node" id="vtype"/>
<key attr.name="edge-type" attr.type="string" for="hyperedge" id="etype"/>

<graph edgedefault="undirected" id="input-instance">
<node id="v0">
<data key="vname">a</data>
<data key="vtype">vertex</data>

</node>
:

<hyperedge>
<data key="etype">edge</data>
<endpoint node="v0"/>
<endpoint node="v1"/>

</hyperedge>
</graph>

</graphml>

Listing 4.1: GraphML: Instance

Instance

As one can see in Listing 4.1, the outer element graphml specifies an XML-file in
GraphML-format. Each key tag defines an attribute value used for the key attribute in
the data elements. The attribute attr.name in each key element specifies the name,
attr.type the data type, for the parent tag of the data tag and id the value in the
particular key attribute. The definition and usage of the key elements stretches over all
GraphML-files (Instance, Tree Decomposition, Computation).

The id attribute of the graph tag indicates the file type, in this case input-instance
stands for the instance file type. Moreover, a node element declares a vertex with its
unique identifier, name and type. The unique identifier (id) is defined as value of the id
attribute in the node tag. The name and type information can be found in the data
elements where vname and vtype attribute values identify the particular information.

The hyperedge tag enables the definition of an edge with its type (etype) and
an arbitrary amount of vertices (endpoint). The values of the node attributes in the
endpoint tags refer to the particular id attribute values from the node elements defined
above.

Tree Decomposition

Listing 4.2 specifies a tree decomposition in GraphML-format. The only key element
defined in this GraphML-file represents the bag (list of vertices) of a tree decomposition
node.

As its name implies, the id hypertree-decomposition indicates the tree decompo-
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<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<graphml ...>

<key attr.name="bag" attr.type="string" for="node" id="bag"/>

<graph edgedefault="undirected" id="hypertree-decomposition">
:

<node id="n3">
<data key="bag">b, c, d</data>

</node>
<node id="n4">
<data key="bag">a, b</data>

</node>
:

<edge source="n3" target="n4"/>
:

</graph>

</graphml>

Listing 4.2: GraphML: Tree decomposition

sition file type. The node elements with their id represent a tree decomposition node.
Additionally, the bag attribute value in the data element depicts the association to
instance vertices by means of comma separated vertex-names. Edge tags specify the link
between a source node and a target node by means of the node ids.

Computation

As Listing 4.3 shows, beside the key elements used for node and edge representation,
key elements in computation files furthermore consist of metadata definitions used for
each tree decomposition node.

The computation graph is identified by bdd-computation in the id attribute of the
graph element. Next to the graph tag, a list of variable definitions (bdd:variable) fol-
lows. Each variable contains an identifier (id), an index (bdd:index), a type (bdd:type),
a number (bdd:number) and the corresponding vertices from the instance graph
(bdd:vertices) by means of a comma separated string. The level of the variable in the
BDD is represented by the bdd:index (details can be found in Section 2.4). If multiple
variables in the BDD contain the same content, bdd:number defines a counter for these
variables. Each node element consists of an identifier (should be the same as in the tree
decomposition), metadata information and the computed BDD graph.

Metadata information are represented in a data element where the key attribute
represents the metadata type and the element content its value. An arbitrary amount of
metadata information can be specified in each node element.

Since a BDD is a tree, it consists of an identifier (id), nodes (node) and edges (edge)
to its child nodes. Each node is represented by an identifier (where the prefix is the
id of the BDD followed by “::”). Further node data elements can contain information
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<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<graphml ....>
<key attr.name="bag-size" attr.type="int" for="node" id="meta-td-bagsize"/>
<key attr.name="number-of-DD-nodes" attr.type="int" for="node"

id="meta-bdd-node-count"/>
:

<graph edgedefault="undirected" id="bdd-computation">
<data key="dd-variables">
<bdd:variable id="var3">
<bdd:index>3</bdd:index>
<bdd:type>red</bdd:type>
<bdd:number>0</bdd:number>
<bdd:vertices>b</bdd:vertices>

</bdd:variable>
:

</data>
<node id="n3">
<data key="meta-td-bagsize">3</data>
<data key="meta-bdd-node-count">4</data>
:

<graph edgedefault="directed" id="n3::">
<node id="n3::x800a8cc">

<data key="dd-ncomplement">true</data>
<data key="dd-nvariable">var3</data>

</node>
<edge source="n3::x800a8cc" target="n3::x800a8cb">

<data key="dd-etype">T</data>
</edge>
<node id="n3::x800a8b4Z">

<data key="dd-nvalue">0</data>
</node>
<edge source="n3::x800a8cc" target="n3::x800a8b4Z">

<data key="dd-etype">E</data>
</edge>
:

</graph>
</node>
<edge source="n3" target="n4"/>

:
</graph>

</graphml>

Listing 4.3: GraphML: Computation

whether the node is a complement node (dd-ncomplement), the assigned variable
(dd-nvariable) and the value in the case of a leaf node (dd-nvalue). BDD edges (edge)
are represented by the parent BDD node (source) and the child BDD node (target),
the edge types (dd-etype) THEN (T) or ELSE (E) and also the information if the edge
represents a complement edge (dd-ecomplement, not existing in Listing 4.3).
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4.2.2 File Import

Basically any number of files can be imported at a time. There are two possibilities for
uploading instance files and tree decomposition files over the graphical user interface:

1. Via a big button with the label “select files” in the center of the main page that is
shown after the opening of DecoVis.

2. Via the ""...”-button that is attached after the tab-list that represent already
imported files.

The only thing the user has to bother is establishing the connection between a tree
decomposition and its computation. Hence, the file selection of the computation file can
be recognizably found in the window of the appropriate tree decomposition.

Particular settings of DecoVis can be defined in a global configuration file. The
following setting contains the folder used for the file upload defined in the configuration
file:
temp_dynbddfile_path=/tmp/tmp_files

Selected files and also project files are uploaded to this location. Furthermore, the file
gets an unique identifier as file name, whereby the mapping between the original filename
and the generated identifier gets stored in the web application.

The following sections give an overview over the file types and their information
content. The contents of the files are fragmented into important parts that are used for
illustration and explanation.

4.2.3 Project Import

A project file is a zip file and furthermore the composition of arbitrary many instances,
tree decompositions, computations and additional information. Except for the filename,
the zip file includes the input files in their original state. In order to avoid files with
different contents but with same filenames, the original filename is renamed. The changed
filename is made of a key generator launched from DecoVis in the course of each file
import.

As the Listing 4.4 shows, the additional information is saved in an ordinary XML
file. To each file (graph) extra information such as the indication if the graph was visible
(active) in DecoVis before the project export, the file identifier (file_id) to find the
corresponding file in the zip folder, the original file name (file_name), the window id
(id) in DecoVis and in case of a computation file, the corresponding window id of the
tree decomposition (parent_window_id).

4.2.4 Project Export

As one can see in Figure 4.2, DecoVis provides the generation of a project with a
subsequent download. All currently available files from the DecoVis session are used for
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<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<visProject>

<graphs>
<active>true</active>
<file_id>7b1e12a1-94f6-40c2-ab77-5eb7dacaf352</file_id>
<file_name>6_nodes.lp-hg-pCOL.graphml</file_name>
<id>1</id>
<parent_window_id></parent_window_id>

</graphs>
<graphs>

<active>true</active>
<file_id>50120ba9-fc4e-430b-9183-df146c919fca</file_id>
<file_name>6_nodes.lp-hg-pCOL-td-seed2-nNONE.graphml</file_name>
<id>2</id>
<parent_window_id></parent_window_id>

</graphs>
<graphs>

<active>true</active>
<file_id>611c347e-9c25-4154-b1ab-7ba2a7afd010</file_id>
<file_name>6_nodes.lp-hg-pCOL-td-seed2-nNONE-comp.graphml</file_name>
<id>3</id>
<parent_window_id>2</parent_window_id>

</graphs>
</visProject>

Listing 4.4: Project file

the project generation. The subsection above illustrates and describes the appended
XML file that contains additional information.

The configuration file for the web application contains a publication folder, see
example below. DecoVis loads and lists all projects found there. The process of project
generation followed by project publication can be speed up by specifying the publication
folder in the course of a project export. This saves one intermediate step.
public_project_path=/tmp/publication

4.3 DynBDD Execution
DynBDD is a command line tool for solving complex problems. Furthermore, it uses
BDD-based dynamic programming algorithms on tree decompositions for problem solving.
More details about DynBDD can be found in Section 2.5. Beside the possibility of
importing generated tool output externally, dynBDD output can be directly generated in
DecoVis. Moreover, in the course of generation this output can be imported. DecoVis
provides a wizard for creating instances, tree decompositions and computations.

Figure 4.3 represents the starting page of this wizard. The wizard consists of four
tabs: Instance, Tree Decomposition, Computation and Overview. In general the
first three wizard steps contain input file(s), options (with parameters), a GENERATE
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button and the generated output files. At the end of the wizard one gets an overview
over the generated output files and furthermore an option for importing them into the
current session. All imported files and all files available in the current session can then
be used for generating new tree decompositions or computations.

4.3.1 Dynamic Dialog Generation

The options and parameters for the execution of the dynBDD tool can be chosen in
the first three wizard steps. The form of the options in DecoVis and their use in the
execution tool can be defined in the configuration file.

The first setting that is necessary for the execution is the path where the dynBDD
tool can be found on the hard disk.
dynbdd_path=/home/user/dynbdd

By means of the following subsections the configuration settings for dynamic dialog
generation and their consequences on the user interface for the generation of the options
for instances, tree decompositions and computations are illustrated. The option order in
the configuration file is kept for the dialog. The basic syntax for the key of each setting
can be found below.
syntax: dynbdd.[type].[option].[attribute]

As one can see, dynbdd represents the beginning of each key in the settings. The
type depends on the particular output type, i.e. instance, td and comp. The option
placeholder stands for the option that is used for the execution string for dynBDD.
Attribute represents the usage of the value for the user interface and the execution string.
Possible replacements for attribute are option, values, value, label and type.

To explain these possible attribute values, the attribute problem used in each of the
first three wizard steps is illustrated. The definitions of the problem settings can be
found in Listing 4.5, Listing 4.6 and Listing 4.7. Their effect on the elements of each
wizard step in the user interface are illustrated in Figure 4.3, Figure 4.4 and Figure 4.5.
The option (option) in the dynBDD execution is called -p and has a default value
(value) dummy. The type of the user interface element (type) in the wizard dialog is
a combobox (combo). In this example possible values (values) for the combobox are
dummy, col, ham and sat. The prefixed label for the combobox (label) is Problem.

Each dynBDD execution takes per default an instance file as input. In the case of
GraphML-Instance generation (Tab:Instance) the input file must be a lp-file, in all other
cases a GraphML-file. The definition of the input file format is depicted in the following
subsections.

To use a generated tree decomposition file (or an already existing tree decomposition
file from the current session) in the dynBDD execution as input file, the value attribute
of the declared option must be defined as {td}. Moreover, an option attribute must
exist.
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In general, the name of the generated file depends on the input file name and is
appended by the type and each option (option) with its selected value (by default value)
in the user interface. Options excluded for file name generation are the option names
added to the value of the filenamefilter key in the configuration file.

4.3.2 Tab: Instance

Listing 4.5 defines the necessary settings for the generation of the Instance wizard step
in Figure 4.3. As one can see, each key starts with dynbdd.instance. followed by the
particular option and attribute.

Figure 4.3: Instance window for dynBDD

dynbdd.instance. ...
problem.option=−p
problem.values=dummy,col,ham,sat
problem.value=dummy
problem.label=Problem
problem.type=combo

output.option=−−output
output.value=graphml

only_parse_instance.option=
−−only−parse−instance

print_hypergraph.option=−−print−hypergraph

filenamefilter=−−output,−−only−parse−instance,
−−print−hypergraph

Listing 4.5: Instance settings

Since option problem and the setting filenamefilter are already defined above, the
remaining settings from Listing 4.5 are explained in the following.

The dynBDD options output, only_parse_instance and print_hypergraph
have no type attribute defined. Hence, no user interface elements are generated for
them. Each option and value (if available) can be seen as “static” (fixed) option and
parameter for the dynBDD execution.

4.3.3 Tab: Tree Decomposition

Beside the already described settings for option problem, option output and the general
setting filenamefilter, further possible settings for the tree decomposition generation
are illustrated in Listing 4.6. The generated wizard step in the user interface is shown in
Figure 4.4.

Since only_decompose and print_decomposition have no attribute type defi-
nition, no elements in the user interface are generated for these options. They are used
as “static” (fixed) options without parameters for the dynBDD execution.
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Figure 4.4: Tree decomposition window for
dynBDD

dynbdd.td. ...
problem.option=−p
problem.values=dummy, col, ham, sat
problem.value=dummy
problem.label=Problem
problem.type=combo

output.option=−−output
output.value=graphml

only_decompose.option=−−only−decompose

print_decomposition.option=
−−print−decomposition

graphml_instance.option=−−graphml−instance

seed.option=−−seed
seed.value=0
seed.label=Seed
seed.type=field

norm.option=−n
norm.values=none, weak, semi, normalized
norm.value=none
norm.label=Normalization
norm.type=combo

filenamefilter=−−output,−−only−decompose,
−−print−decomposition,−−graphml−instance

Listing 4.6: Tree decomposition
settings

As already mentioned above, the input file format for the instance file can be
chosen. By default, an lp-file is used as input for the dynBDD execution. Listing 4.6
specifies graphml_instance with the value –graphml-instance. As illustrated in the
combobox for Select Instance-File: in Figure 4.4, the input file must be a graphml-file
from the current session.

The option seed takes –seed as dynBDD execution option. The used parameter can
be user-defined with the help of a textfield (field). Furthermore, the textfield is prefixed
with the label Seed. Per default, the textfield contains the value 0 (in Figure 4.4 the
value is 2).

Norm describes the normalization type by means of a combobox with the possible
values none, weak, semi and normalized. The default value is none and the label for
the combobox is Normalization. The option for the dynBDD execution is –n.

4.3.4 Tab: Computation

Listing 4.7 defines possible settings for the generation of the Computation wizard
step in Figure 4.5. Since option problem, option output, option decomp, option
graphml_instance and the setting filenamefilter follow the same schema as the
settings explained above, they are not described here furthermore.

The option dm is visualized in Figure 4.5 as a checkbox (checkbox) with the label
Decision Method (Default: ldm). The dynBDD execution uses –edm as option
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Figure 4.5: Computation window for dynBDD

dynbdd.comp. ...
problem.option=−p
problem.values=dummy, col, ham, sat
problem.value=dummy
problem.label=Problem
problem.type=combo

output.option=−−output
output.value=graphml

dm.option=−−edm
dm.label=Decision Method (Default: ldm)
dm.type=checkbox

decomp.option=−d
decomp.value=graphml

graphml_instance.option=−−graphml−instance

graphml_td_in.option=−−graphml−td−in
graphml_td_in.value={td}

filenamefilter=−−output,−d,−−graphml−instance,
−−graphml−td−in

Listing 4.7: Computation settings

(without parameter) only if the checkbox is selected. Since the checkbox is not selected
in Figure 4.5, no option for dm information is used in this example.

For computation generation the dynBDD execution needs information about the
related tree decomposition. The option graphml_td specifies the “static” (fixed) option
for the dynBDD execution. {td} defines a placeholder for the selected tree decomposition
graphml-file shown in Figure 4.5. This tree decomposition file (taken from the current
session) is furthermore used as input parameter for the dynBDD execution.

4.3.5 Tab: Overview

This wizard step gives an overview over the generated output files from the wizard
and the files that were already in the DecoVis session before the wizard dialog was
started. As one can see in Figure 4.7, the information about the tree decompositions and
computations belonging together is emphasized. The Finish button imports all newly
generated components into the current session. If the wizard is canceled in any step, the
generated output files are discarded.

4.4 Window Management

It is necessary to give the user an intuitive and clear window management feature since
the most use cases require many windows, which are opened, closed, minimized, reordered
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Figure 4.6: Overview window for dynBDD

and so on. There are many window types available, interacting with each other. Therefore
we invested particular effort in the implementation of a well-thought, easy to use interface
including a window management which provides all these features. In addition, our choice
for a web application gives us the opportunity to use the new HTML5 and CSS3 features,
which support us in the development of an intuitive and user-friendly interface.

4.4.1 Window Handling

The main part of the window management builds the window handling which is responsible
for adding, closing, minimizing, reordering windows (see Figure 4.7). For a better overview
of the currently available window elements, we implemented a tab bar, showing all visible
and minimized windows. They can be closed and minimized from this tab bar. It
also includes a button to add a new window, for example to load an instance or tree
decomposition file. For all other features which are relying on a window container, the
window is created dynamically when it is required.

Below the tab bar, all currently opened windows are visible. They are always adjusted
automatically to the browser window. There is no need to adjust the positions manually.
We intentionally did this to make sure that always all windows are clearly visible and
not overlapping, without wasting empty space. Hence, this saves time for the user to do
some positioning of the windows.

In order to increase the usability, the user can specify the maximum number of
windows visible at once on the screen. On small screens probably only two or three
windows make sense, whereas on big screens up to 9 windows are possible. Additionally,
the windows can be reordered individually by drag and drop, but they are always arranged
automatically in the grid.
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Figure 4.7: DecoVis: Window management

4.4.2 Window Types

We implemented 7 different windows types, covering all the required features mentioned
in the technical requirements of Chapter 3. Each of them provides a specific use case
and also has slightly different user interface elements.

Instance Window

The instance window is used to display the problem instance. The window does not
need any special requirements, it just visualizes a simple graph like in Figure 4.8 or a
hypergraph like in Figure 4.9. The window has only two buttons, one to close the window
and one to minimize it. These two buttons are included in every window, independently
of its concrete type. The instance window is either created by loading a GraphML file or
is dynamically created after the dynBDD execution.

Since the chosen library does not support hypergraphs out of the box, a custom
graph had to be implemented. There have to be inserted helper nodes having edges to
all required nodes, simulating an edge with multiple end points.

Tree Decomposition

This window type is used to visualize the tree decomposition of a particular instance
(see Figure 4.10). In the title bar of the window it provides an additional button to add
a computation file. Similar to the instance window, the tree decomposition window is
created by loading a tree decomposition file or by executing the dynBDD process. Hence
it does not require any other window or data element and it is completely independent.
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Figure 4.8: Window type: Instance Figure 4.9: Hypergraph example

Computation Window

The computation window is created when loading a computation file in the tree decom-
position window or when executing the dynBDD process (see Figure 4.11). In contrast to
the previous window types, this one depends on some other data, namely the data of the
tree decomposition. In fact, it shows the same visualization as in the tree decomposition
window, but since it has the computation data included, it has the ability to display some
information, i.e. the metadata, about the computation inside the graph. Therefore, this
window type has a dropdown field in the title bar to select the particular metadata which
should be visualized. Furthermore, this window type provides some more interaction
with the graph visualization. By double clicking on a node, the corresponding BDD is
displayed in a new window, representing a partial solution of the problem.

BDD Window

As mentioned in the last section, the BDD window is dynamically created when the
user wants to display the computation content of a node. Hence, this window type also
depends on the tree decomposition window. To let the user know which data the BDD
belongs to, the title bar contains the window ID of the tree decomposition and the clicked
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Figure 4.10: Window type: Tree decompo-
sition

Figure 4.11: Window type: Computation

node ID (see Figure 4.12). Additionally, it contains a button to display the computation
table of the current BDD.

Computation Table Window

The computation table window is a little bit different in comparison to the other window
types because it does not contain any graph visualization (see Figure 4.13). Instead, it
consists of an interactive table element. Since it is created by the BDD window, it relies
on it and has some relationships to the BDD. In fact, the computation table enhances
the BDD by displaying the solutions in detail. The rows and columns of the table are
clickable, which results in highlighting them. Also the relationship between the BDD and
the table is used to display some more information to the user. When selecting a row in
the computation table, the path in the BDD is highlighted. By clicking on a column, all
the nodes of the related vertical level in the BDD are highlighted.

BDD Animation Window

In contrast to the previous window types, this window has many more user interface
elements. As mentioned in the requirement analysis, the BDD animation shows the full
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Figure 4.12: Window type: BDD

evaluation of the BDDs from the bottom to the top of the tree decomposition. Usually
the animation is done fully automatically, but the user is able to control the animation,
of course. Steps can be jumped forwards, backwards, the current step can be paused and
the animation stopped. Additionally, the animation speed can be adjusted. All these
user interface elements can be found in the title bar as illustrated in Figure 4.14.

There are many transition effects, like fading in, fading out and moving BDDs. With
some minor optimizations and calculations this results in a clear animation view by
growing, shrinking and merging the BDDs. Hereby, the BDDs representing the partial
solutions are transforming to the final solution at the top. In addition, the current
animation step is displayed in the tree decomposition window by highlighting the vertical
level containing the nodes which represent a BDD each. Usually the user has two opened
windows while playing the animation: The tree decomposition window which provides a
perfect overview of the overall animation process and the animation window which is
visualizing the currently animated BDDs.

Since the animation part is one of the main features of our software, we investigated
much time to improve the animation and to make it as fluently as possible. We encountered
some performance problems when testing some instances with a large amount of data. An
animation step requires to display all BDDs in the current level of the tree decomposition,
which results in many nodes and edges which have to be drawn inside the window.
Furthermore all the elements are animated, they are moved around and faded in/out.
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Figure 4.13: Window type: Computation table

Figure 4.14: Window type: BDD animation

And of course, the next animation step has to be calculated shortly before to provide the
transition effects. As we see, there are many calculations to be done. And the more nodes
and edges we have, the more overhead is necessary. This could result in an unstable
and not very well looking animation due to delays or short freezes. To overcome this
problem, we improved the used algorithms for the animation and the related code parts
and furthermore, we developed a pre-loading of the animations, so that pictures are taken
of the drawn BDD graphs. This is done automatically when running the animation the
first time. Hence the first run may be a slow or has some time delays, but the subsequent
runs make use of the preloaded graphs. This improves the whole process a lot and results
in a smooth and stable animation, even with many nodes and edges without loosing
quality or visualization details.

There are different ways how to illustrate the BDDs when we animate them. Depending
on the size and data, other views are recommended and useful for a better visualization,
analysis and understanding as already described in Section 3.5.3.
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The default view mode is called Consistent View (see Figure 4.15). As the name
may already reveal, this is a view where the BDD size is consistent to all other BDDs
independent of the solution and the animation step. Therefore, the distance between two
consecutive levels in a BDD is always the same. This makes sense to compare the BDD
sizes between the animation steps. However, the BDDs can be smaller in some cases. If
a BDD needs a large width to display all the nodes in a particular level, then the height
may be smaller and therefore the space between the levels may be also reduced. This
makes sure that the nodes and edges of the BDD are still visible and it prevents that the
BDD looks like pressed together from the sides.

Figure 4.15: BDD animation: Consistent View

The next view mode we implemented is the Zoomed View (see Figure 4.16). In
contrast to the previous one, the BDDs of the current animation step are always zoomed
as far as possible, meaning the BDDs are usually filling the full window. Like in the
previous view mode, the BDDs can be smaller in this mode too. If a BDD has a large
width, then the height of the BDD may be smaller than the window height. Nevertheless,
the advantage of this view mode is that the BDDs are better visible, especially when
there are big differences in the height of the BDDs during the animation process. Since
each BDD has its own size and is displayed separately, the space between two consecutive
levels may be different compared to other BDDs.

The third and last view mode is called Var Order View (see Figure 4.16). The name
of this view may not be clear first, so let us examine the meaning in detail. When
generating the solutions and doing all the computations, we get also a predefined global
variable order (see Section 2.4) which is generally used in every BDD visualization. When
we traverse the paths in the BDD from the top to the bottom, the occurrences of the
variables are exactly in the same order as defined in this global variable order. This is
equal for every BDD independent of the view mode. But in the Var Order View we apply
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Figure 4.16: BDD animation: Zoomed View

the BDD on the full variable hierarchy. Since not every BDD makes use of all defined
variables, we get a stretched BDD. Now, every particular variable assignment is always
done on the same level, independent of the BDD size and the current animation step.
When a variable is not used in the BDD, the level is just skipped, resulting in a stretched
BDD. Hence, every particular level in the BDD may be moved to the relating level of the
global variable order. The order of the variable assignments is still preserved, only the
space between the levels may be increased due to skipped levels. The great advantage is
that the gaps and skipped levels of a BDD may be filled by other BDDs when they are
merged. This makes the animation clearer because then the BDDs are interlocking. As
mentioned in the other two view modes, the BDDs may be smaller and therefore do not
correspond to the variable order. This happens only in very rare cases since the BDDs
are much higher than wide in this view mode.

Statistic Diagram Window

The last window type which is used in our software is the statistic diagram window. It
contains some other type of visualization: A diagram with x and y axis, which illustrates
the statistic of the metadata values of the computation process. The x-axis represents
the elapsed time regarding the execution of the computation, the y-axis represents the
value of the metadata.

There are two ways how to create a statistic diagram. The first way is to select a
metadata type in the dropdown field in the computation window and click the appropriate
button to show the statistic diagram. Here, only one single metadata type can be selected
as we see in Figure 4.11. But our statistic diagram also supports multiple data sets.
Therefore we introduced the Expert statistic available in the main menu on the top of
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Figure 4.17: BDD animation: Var Order View

the GUI. It provides simple checkboxes of all metadata types of all currently opened
computations (see 4.18). It is easy to compare multiple data sets (see Figure 4.19),
either different metadata types of a single computation or the same metadata of multiple
computations, or even a mix of them. Additionally, the user is able to use a node-based
x-axis instead of the time-based one.

As some extra feature, the statistic diagram window contains a button to start a
little animation by displaying the nodes one after each other regarding the x-axis.

4.5 Interactive Visualization Elements

The visualization elements embedded in the windows are completely interactive. This
section describes all the interactive elements in detail.

For example, the user is able to select nodes and edges, move particular nodes, move
the overall graph and zoom in/out. All these features are very helpful, especially for
graphs with a large data amount and many nodes. Details about the nodes and edges,
like labels and types, may only be visible at a particular zoom level to avoid an overloaded
visualization.

4.5.1 Node Highlighting

As already mentioned, nodes in every graph visualization can be selected. By doing that,
some other nodes in the same or in other windows may be highlighted automatically
depending on the current highlighting mode (also see Section 3.5.3). There are 3 modes
available: EXACT, AND and OR. More details about the modes are described in the
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Figure 4.18: Window type: Statistic diagram dialog

Figure 4.19: Window type: Statistic diagram visualization

following section. Furthermore we want to describe what exactly happens when we select
a node in the instance graph, in the tree decomposition or in the BDD window.

Selection Modes

One of the three highlighting modes is called EXACT. Like the name may already reveal,
only nodes are highlighted which meet the requirements exactly, that is the same vertex
or the same set of vertices of the selection. This highlights all the same nodes in other
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windows. An example can be seen in Figure 4.20.

Figure 4.20: Highlighting mode: EXACT

The next mode is called AND. Each node may contain a couple of elements. The
AND mode provides a simple conjunction of these elements. Hence all the nodes are
highlighted which contain at least the elements of the currently selected node. Of course,
they may contain also other elements, which is the difference to the first mode. In fact,
the constraint is less strong than the EXACT mode, resulting in more highlighted nodes,
illustrated in Figure 4.21.

Figure 4.21: Highlighting mode: AND

The third mode sets the weakest conditions for highlighting nodes. It provides a
disjunction and highlights all the nodes which contain at least one of the containing
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elements in the currently selected node. Therefore, this mode will highlight the most
nodes in comparison to the other two modes, see Figure 4.22.

Figure 4.22: Highlighting mode: OR

Instance

Now we want to describe in detail what happens exactly when we select a vertex in
the instance graph. When describing the highlighting modes we did not mention some
important information: when nodes are selected, the highlighting features act differently
for instance graphs and for tree decompositions. That is because instance graphs have
only vertices while tree decompositions have nodes containing a set of vertices, called
bag. The same applies for BDD nodes which can also have multiple vertices.

The difference for instance graphs only occurs if multiple vertices are selected by
the user. This can be done by pressing the Ctrl key. In the instance window, multiple
selected vertices are still seen as multiple vertices for other instances, but for all the other
window types, like tree decompositions, they are seen as a single set of elements.

Let us clarify that by means of an example as shown in Figure 4.23: Assuming we
select multiple vertices in the instance graph, like 2, 3 and 4, and we are using the
EXACT mode. Then other instances will highlight the nodes with 2, 3 or 4, if they are
available. But tree decomposition nodes can contain multiple elements and therefore
can be matched with the selected vertices as a set of elements. Therefore, in a tree
decomposition all the nodes are highlighted which are containing the bag consisting of 2,
3 and 4 in a single node. That is because the selected vertices are seen as a bag in this
case. Like already mentioned before, this affects only a selection of multiple vertices in
an instance window. A single selected vertex will always have the same behavior in all
window types.
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Just for information: when we take only instances then it does not matter which
highlighting mode we set since they do exactly the same in this case. EXACT, AND
and OR fulfill the same requirements because every vertex consists only of the vertex ID.
Only when nodes having sets with multiple vertices are used, the modes become relevant,
like for tree decompositions or for BDDs.

Figure 4.23: Selecting vertices in instance

Tree Decomposition

The behavior of selecting nodes in tree decompositions is similar to that of vertices in
the instance graphs (see Figure 4.24). When selecting one or multiple nodes in a tree
decomposition, all other nodes in other tree decomposition windows or also in BDDs
are matched regarding the current highlighting mode. Each selected node contains a
bag of vertices, which is compared with other nodes having also a bag or set of vertices.
Like in the previous section, there is a small difference when vertices in instance windows
are highlighted. Since the instance vertices only consist of an ID, they are highlighted if
they match at least one element in the containing sets in the selected nodes, completely
independent of the highlighting mode.

When a statistic diagram is loaded and a tree decomposition node is selected, then
the related node in the statistic diagram is also highlighted in this case.

BDD

When selecting nodes in a BDD, the highlighting is done in exactly the same way as
already described for tree decompositions (see Figure 4.25) because nodes in BDDs also
contain a set of vertices. In BDDs, the nodes contain a little more information than
a simple set such as the variable name and an index. This can be seen in the visible
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Figure 4.24: Selecting nodes in tree decomposition

label of the nodes. The set of vertices is always defined in the brackets like in the tree
decomposition. Instances are the exceptions and their vertices are always highlighted if
the element is contained in one of the sets of the selected nodes in the BDD.

Figure 4.25: Selecting a node in BDD

4.5.2 Computation Table: Path/Level Selection

The computation table provides some enhanced highlighting features. As illustrated in
Figure 4.26, by selecting a row, not only the row is highlighted but also the corresponding
path in the BDD. Complement nodes and edges are taken into account. Hence, a path
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may end in the “0” node, but nevertheless it is a model due to the complement. The
highlighting color for complement nodes and edges is slightly different to the normal one
to recognize the complement although the nodes are highlighted. As we see in Figure 4.27
the appropriate vertical level in the BDD is highlighted after a column is selected.

Figure 4.26: Highlighting row in computation table

4.6 User Modes
There are two user modes in the DecoVis software: the view mode and the admin mode.
These modes can be defined in the config file, by adjusting the following line:
### view, admin ###
usermode=admin

4.6.1 View Mode

The view mode is intended for the normal website user and is restricted (see Figure 4.28).
Only predefined projects can be loaded, there is no way to load own files and dynBDD
commands cannot be executed either. Also the export feature is disabled. This way the
tool works as simple viewer. But the user is able to use all the other features and the
entire interactive visualizations are enabled without any limitations. The software is
designed in such a way that many people can use the viewer concurrently, without any
significant performance issues on the server since the visualization is done completely by
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Figure 4.27: Highlighting column in computation table

the browser and therefore on the user’s computer. The restrictions of the user prevent
that some expensive calculations are done on the server and of course they improve the
overall server-side security.

Figure 4.28: View mode

4.6.2 Admin Mode

In contrast to the view mode, the admin mode provides full control of the DecoVis
software. All features are enabled in this mode like the dynBDD execution, the file import
and the project import/export. Of course, all other features of the view mode are also
enabled. All the exported projects done in the admin mode can be used as predefined
projects in the view mode. Only authorized people should get access to this mode since
it provides command line executions by running the dynBDD process which may affect
the security and accessibility of the server when misused.
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Figure 4.29: Admin mode
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CHAPTER 5
Comparison of TD-based DP

Systems

In this chapter we present the differences of various dynamic programming systems on
tree decompositions regarding performance and stability. This is done by executing many
benchmarks tests and then by analyzing the results in detail. For this purpose it is not
necessary to know the internal implementations of all the systems (even though they
are available as open source), therefore they are handled like black-box-systems. We
feed them with some input data, i.e the instances of different problems, and analyze the
output afterwards. Any information about the internal processing is not relevant in this
case. To get a meaningful result, many problems and instances have to be considered,
of course. Later on, some of the results are examined in DecoVis by using the statistic
diagram feature and the graph visualizations.

5.1 Challenges and Goals

There are many challenges when dynamic programming systems are compared. First,
appropriate problems and instances have to be considered to get a meaningful result.
Since it is not possible at all to test each instance of every problem, only particular
problems with particular instances have to be taken into account. The challenge is to
select only these problems and instances which cover a wide range or are more likely to
be used in real world scenarios.

Second, all systems must be able to support the the solving of the selected problems
and they also have to offer the same problem type like decision, counting or enumeration
problems. Otherwise, the result would not be comparable. Hence, the assortment of
appropriate problems may be very restricted. Since the internal overhead of counting
problems is often negligible regarding decision problems, the only exception may be the
use of decision problems together with counting problems.

95



Third, the computations of the different systems should be done by using the same
tree decompositions because the tree decomposition may have a strong impact on the
runtime and memory usage. Therefore, all systems have to provide the feature of defining
a particular tree decomposition as input.

Another challenge is to select meaningful criteria and properties when comparing
the systems. An example would be to compare the runtime and/or the memory usage
during the computations because they can be measured externally without relying on
the particular tool. There might also be other data which can be used, for example
some BDD specific metadata, but all of them are system dependent and therefore not
comparable among each other. The selected properties also have to be illustrated, for
example by using a bar or scatter diagram. Attention should be paid to the clarity
because this visualization should be used to demonstrate the performance differences and
benefits.

Last but not least, it is important to call the systems with the proper options and
arguments. Often they provide additional information as output like whole solutions or
debugging data which may falsify the result because writing the output (into a file or
just to the console) takes time and memory. That is why passing the right arguments
which deactivates all these unnecessary output is very important.

As a result, the goal is to get a very accurate and meaningful comparison of the
selected dynamic programming systems by solving all mentioned challenges as far as
possible. We want to know which system is the best regarding runtime and memory.
Furthermore it would also be very helpful to get to know whether there are performance
differences between the selected problems and instances. Some systems may be better
than others only for some particular problems or instances. Therefore the goal is not only
to get one best system but rather to get the information about which tool is well suited
for which problem or which type of instance in detail. All the performance information
gathered during the various benchmark tests should be illustrated in meaningful and
clear diagrams.

5.2 Requirements

Before we are able to run the benchmark tests, we need to prepare the dynamic program-
ming systems, the benchmark server and also choose the right problems, i.e. the type or
category of the problem, the problem itself and the corresponding instances.

5.2.1 Choosing the Problems and their Instances

There exist several problem types such as decision, counting, optimization and enumer-
ation problems. The output of decision problems is only true or false. The result of
counting problems is the number of available solutions. Enumerating problems produces
a list of all available solutions, whereas optimization problems result in only optimal
solutions with regard to an optimization criterion (for example the best or worst solution
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regarding the minimal or maximal number of vertices). For our purpose, only the first
two problem types make sense, because the optimization problem can only be used for
particular problems and the enumeration problem would not be suitable for a comparison.
Enumerating all solutions of a problem would result in a memory and time issue since
writing to an output (file or console) is quite expensive and the more solutions are
available, the more affected would be the result. Generally, enumerating the solutions
internally, even without writing them out to the console, takes exponential time. That is
why we decline this problem type, but nevertheless, that is not relevant for a meaningful
comparison of dynamic programming systems. It is only important that we get to know
whether one or multiple solutions are available. Since we assume that all the solutions
are correct, we usually do not need to verify them and also do not need to compare them
with other solutions produced by different tools either. Nevertheless, we have a look
at the results and quickly compare them just to make sure that the encodings of the
problems and also the options for the particular tools work correctly.

Now we introduce the concrete problems we want to use in our benchmark tests: 3-
Colorability, Hamiltonian Cycle, Stable Extension, Vertex Cover and Preferred Extension.
We use many different instances for all these problems:

• random graphs,

• subsets of grid-based graphs and

• real-world-instances

The first two groups will be tested with many different instances each. In detail,
for the random graphs we start from 10 vertices up to 75 vertices per instance. It is
important to say that the treewidth for random graphs is only limited by the number of
vertices. For the grid-based graphs we use instances starting from 10 vertices up to 1000
vertices. In detail, we use grid-based graphs where the vertices are arranged in a grid
and each vertex has up to 8 neighbor vertices: left, right, top, bottom and the 4 diagonal
vertices. But we always use a subset of the edges of this grid-based graph to generate an
instance. Here, we use a fixed treewidth of 5 and 20 to get to know how the treewidth
has an impact on the performance.

As listed in the following, we also take real world instances into account:

• Metro Beijing (231 vertices and 256 edges)

• Metro Berlin (174 vertices and 187 edges)

• Metro London (304 vertices and 410 edges)

• Metro Munich (97 vertices and 134 edges)

• Metro Shanghai (292 vertices and 332 edges)
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• Metro Singapore (127 vertices and 143 edges)

• Metro and Tram of Vienna (138 vertices and 328 edges)

• The Graph and Digraph Glossary (72 vertices and 118 edges) [60, 61]

• The Bibliography for the Book “Product Graphs” (674 vertices and 613 edges)
[62, 63]

The last two are based on the Pajek datasets by Batagelj and Mrvar [64]. Especially
these instances are very important since they represent scenarios which are more likely
to be used in reality and cover a completely different domain comparing to the randomly
generated graphs. Therefore these instances have a high relevance when doing meaningful
comparisons. All of them have a treewidth which is not greater than 8.

5.2.2 Dynamic Programming Systems

We want to use four different dynamic programming systems on tree decompositions
for our comparison: dynBDD, D-FLAT, D-FLATˆ2 and Sequoia. All these tools are
already introduced in Section 2.5 where the most important features and some details
about already available comparisons are revealed. Now we describe the requirements for
our benchmark tests. Every tool has different command line options which may have an
impact on the result. We show the concrete calls for every tool which are used for all
tests. As mentioned before, there are many different types of problems. Not every tool
supports all types and the same applies for concrete problems.

Therefore we are unable to use the same problem type and problem for all tools,
but in contrast to that, we are trying to do several comparisons, each having a different
focus. All tools can handle decision problems. Enumeration and counting problems are
supported by D-FLAT and D-FLATˆ2. Sequoia and D-FLAT are both capable of solving
optimization problems. As mentioned before, enumeration problems can not be used.
We are not planning to use any optimization problems, hence this problem type is also
irrelevant for us. The overhead of counting problems in contrast to decision problems can
be neglected. If there is at least one solution available, this equals to true for decision
problems. If there is no solution available, it equals to false. These assumptions result in
the following comparisons:

• The 3-Colorability and Hamiltonian Cycle problems are compared in the course of
a decision problem using the tools dynBDD, D-FLAT and Sequoia.

• The Stable Extension problem is solved by D-FLAT and dynBDD, also done by
decision problems since dynBDD is only able to handle this problem type.

• In order to show the benefits of processing in two stages for minimization/maxi-
mization problems, the Preferred Extensions problem is used. Here, D-FLAT and
D-FLATˆ2 are compared, where the former provides only a one-stage computation
and the latter has support for two-staged computations. For this comparison the
number of solutions regarding minimization are considered.
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5.2.3 Comparing Data

We have already specified the problem type, the concrete problems, their instances and
also the relating tools which are capable of solving the problems. Now we want to describe
how the results are being compared. First, for every problem, together with a particular
tool, we define a benchmark run. Then, we need the data of the output result of each
run. Since, each tool has a different output, we need to collect them and evaluate them
afterwards. If the tool was not able to find a solution in some predefined time or memory
or it produced an error, then the result is marked as invalid and it cannot be taken into
account. In detail, we used a time limit of 3 minutes and a memory limit of 4GB. Higher
time limits are not very practicable for this number of instances. When the tool produces
a solution within the time and memory limit, we have a quick look whether the solutions
are correct (by checking them with the outputs of the other tools) and take the used
time and memory of this run as result. Next, all results are compared with the help of
diagrams. For each problem and data type (time or memory) a separate diagram will be
used containing all the different tools which were used for this particular problem. Every
tool is then depicted by a tool-specific color.

A line chart is used for the grid-based and random graphs. For each instance we
generate one single tree decomposition which is then used in all tools. The x-axis contains
the number of solved instances, in detail a particular x-value describes one single instance.
The y-axis illustrates either the memory or time usage. It is important to say that the
x-value does not describe the same instance for all systems. The x-values of a particular
system are sorted by their y-value. Hence, the x-value can not be compared among the
dynamic programming systems. But in contrast to that, the values (runtime or memory)
of a particular dynamic programming system are now monotonically increasing in the
diagram. Otherwise we would get confusing diagrams since the values usually fluctuate
extremely even if the number of vertices is increasing. Additionally, it is easy to see when
there were occurrences of errors like timeouts or an out-of-memory because such results
are missing in this case.

For the real-world instances we use a bar chart instead of a line chart. We generate
10 different tree decompositions for each instance which are then used in all tools. The
reason for this is, that one single tree decomposition may not be suitable for a particular
dynamic programming tool, because tree decompositions can have a strong impact on the
runtime. Since we do not have as many real world instances as random and grid-based
ones, the output would falsify the end result much more if one tree decomposition is
“bad” for a computation. That is why we use many different ones to eliminate this issue.
For the bar chart we now use the minimum and therefore the best result. The reason
why we will use the minimum value and not the average value is, that if one of the 10
runs fails, we would not be able to calculate the average value. Every instance is grouped
by the tools and the related minimum time and minimum memory data is illustrated
by a bar. Each tool has a different color. The x-axis shows the name of the particular
instance and the y-axis shows the value of the used time or memory.
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5.2.4 Benchmark Server

For the overall benchmark tests we used a server at our university which is principally
designed for benchmark purposes. The server runs Linux as operating system and
provides an octa-core Intel Xeon processor with 3.5 GHz per core (Intel(R) Xeon(R)
CPU E5-2637 v3 @ 3.50GHz). About 256 GB of RAM are available. Only one single
core is used for the benchmarks test and each test is executed after another.

5.3 Benchmark Preparation
Instances

As mentioned before, we want to use random instances, grid-based instances and real-
world examples. Now we want to generate all needed instances. For this purpose we are
using a tool, called GraphGenerator.jar that is written in Java, to generate a graph. It
takes the following arguments:

• -g: graph type (random, grid-based...)

• -n: number of vertices

• -t: maximal treewidth (only for grid-based)

• -p: probability to set an edge to a possible vertex

Hence, the tool generates a single graph per run and produces a .lp file as output
containing edge and vertex predicates suitable as input for most of our dynamic pro-
gramming tools. By using a shell script we generate 75 random graphs, beginning from
5 vertices up to 79 vertices. The edge probability is decreased with each additional
vertex, to prevent that graphs with more vertices get too many edges. In detail, we
used the formula 1/i ∗ 2 where i is the number of vertices. This results in building a
constant number of edges regarding the overall graph, meaning that for every added
vertex approximately 2 edges will be inserted.

Then we create 250 grid-based graphs, beginning from 10 up to 1006 vertices, thus
always increased by 4 vertices. Here we use an edge probability of 50%. Since every
vertex can only have up to 8 edges (left, right, top, bottom and the 4 diagonals), we have
an average of 4 inserted edges for each added vertex. Furthermore, we set the maximal
treewidth to 5.

The same is done for another 250 grid-based graphs, but the maximal treewidth is
now set to 20.

The real-world instances are already available as .lp files, so that they are ready to
be used in dynBDD, D-FLAT and D-FLATˆ2.

An exception is Sequoia: some additional preparations and file conversions have to be
done for all instances to be suitable for Sequoia, i.e. converting the .lp files to so-called
.leda files which contain the graph representation as LEDA format [65]. Sequoia only
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accepts this type of format as input. Therefore, we used self-written Java tools to convert
all the files.

Furthermore, for argumentation problems like Stable Extension and Preferred Ex-
tension we have to alter the instance files a little bit since argumentation problems
require arg and att predicates instead of the vertex and edge ones. This is done by simple
replacements.

Tree decompositions

For every existing instance file we need to generate a tree decomposition which is used for
all the dynamic programming tools. For the self-generated graphs, i.e. random graphs
and grid-based graphs, we need exactly one single tree decomposition. For the real-world
instances we need 10 different tree decompositions each. As mentioned before, this is
because a tree decomposition can have a very high impact on the runtime and memory
usage. We do not have as many real-world instances available as randomly generated
graphs, therefore only one single tree decomposition for each of the 10 real-world instances
could falsify the overall result very easily. By using 10 different ones each, we get 100
runs in total for the real-world instances.

As we always use 75 or 250 instances for all the other instance groups, it is enough
to use only one single tree decomposition in these cases. The tree decompositions are
generated with the help of dynBDD.

We need 4 different variables:

• lp_file: the LP file which contains ASP encoded instances

• td_file: Tree decomposition file

• td_file_sequoia: Tree decomposition file for Sequoia

• seed: Seed value for the tree decomposition

Command to generate the tree decompositions:
dynbdd -p col --output graphml --only-decompose --print-decomposition --seed

${seed} -n normalized < ${lp_file} > ${td_file}

Command to generate the tree decompositions for Sequoia (using Shell, only a single
line has to be changed inside the file to be compatible with Sequoia):
cat ${td\_file} | sed -e "s/attr.name=\"bag\"/attr.name=\"sequoia_bag\"/" >

td_file_sequoia

Used Tools and Software

To run the benchmark tests, we are using the following tools and software:
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• dynBDD: Version 1.0.4

– using CUDD 2.5.0 and Sharp 1.1.1

• D-FLAT : Version 1.1.0

– using Gringo 4.5.3, Clasp 3.1.3 and Sharp 1.1.1

• D-FLATˆ2: Version unknown, from 14 Dec 2014

– using Gringo 4.4.0, Clasp 3.1.1 and Sharp 1.1.1

• Sequoia: Version 0.9, from 28 Aug 2015

• Several self-written shell scripts and tools:

– to generate the instances (LP files, containing edges and vertices),
– to convert the LP files to GraphML files,
– to generate the tree decompositions,
– to convert an LP file to the LEDA format,
– to adjust the existing instance files to be compatible with argumentation

problems (e.g. Stable Extension and Preferred Extension) and
– to run the benchmark tests including the measurement of runtime and memory

usage.

Computations

Now we have everything that is needed to do the computations and benchmarks using
the 4 dynamic programming tools.

In our shell scripts we use the following variables:

• lp_file: the LP file which contains ASP encoded instances

• leda_file: the LEDA file needed for Sequoia which contains the instance

• td_file: tree decomposition file

• td_file_sequoia: tree decomposition file for Sequoia

• problem: problem name for dynBDD

• problem_lp: problem definition for D-FLAT and D-FLATˆ2

• problem_mso: problem definition for Sequoia

• seed: seed value for the tree decomposition (only needed for subset problems)

dynBDD command:
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dynbdd -p ${problem} --output quiet -d graphml --graphml-td-in ${td_file} <
${lp_file}

D-FLAT command:
dflat -p ${problem_lp} --depth 0 --no-counting --tables --output quiet -d

graphml --graphml-in ${td_file} < ${lp_file}

Sequoia command:
sequoia -f ${problem_mso} -e Bool -g ${leda_file} -t ${td_file_sequoia}

Sequoia command to use an incidence graph internally (like for Hamiltonian Cycle,
where an incidence graph is required for the code written in the MSO file):
sequoia -f ${problem_mso} -e Bool -g ${leda_file} -t ${td_file_sequoia} -2

D-FLAT command for subset problems (like Preferred Extension, which will be
discussed later on in more detail)
dflat -p ${problem_lp} -e arg -e att --tables-max --output quiet --depth 0

-n normalized --seed ${SEED} < ${lp_file}

D-FLATˆ2 command for subset problems:
dflat -p ${problem_lp} -e arg -e att --tables-max --output quiet -n

normalized --seed ${SEED} < ${lp_file}

Hint: when using subset problems, we define the seed value of the tree decomposition
explicitly in the command because D-FLATˆ2 provides no option to define an already
existing tree decomposition. It would not make sense to define only the existing tree
decomposition for D-FLAT alone. Therefore we feed D-FLAT and D-FLATˆ2 with the
same seed value during the benchmark, resulting in the fact that a particular seed value
produces the same tree decompositions in both tools.

Preparations for DecoVis

For the 3-Colorability, Stable Extension and Hamiltonian Cycle problem we want to pick
one or two instances which look interesting for a detailed analysis and load them into
the DecoVis tool. We either compare one instance by using two different tools or we
compare two instances by using one single tool. For this purpose we need three files: the
instance graph as GraphML file, the already generated tree decomposition mentioned
before (which is already in the GraphML format) and the computation files containing
metadata about this run. Since only dynBDD and D-FLAT provide options to output
such metadata files, we can only use these two systems for a detailed analysis. For
dynBDD we use the metadata types called elapsed-time-in-ms (representing the current
runtime) and memory-in-use-by-manager-in-bytes (representing the memory usage in
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bytes of the BDDs). For D-FLAT we use the time metadata (representing the current
runtime) and item-tree-size (representing the memory usage in bytes of the item tree). It
is important to say that memory-in-use-by-manager-in-bytes and item-tree-size describe
only the memory usage of the data structure (BDD or item tree) of a particular node of
the tree decomposition and not the overall current memory usage by the system when
processing this node. Therefore these metadata types are only restricted comparable for
the total memory usage, discussed later on.

5.4 Benchmark Runs

5.4.1 3-Colorability - DynBDD, D-FLAT, Sequoia

The 3-Colorability problem is supported by dynBDD, D-FLAT and Sequoia. The output
of the problem states whether a graph is colorable with three different colors whereby
two vertices must not have the same color if there is an edge between them.

As mentioned before, we take three different instance groups for our benchmark test:
random graphs, grid-based graphs and real-world-instances.

Results & Comparison
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Figure 5.1: 3-Colorability - Time (grid-based instances, treewidth 5)

The first result of the benchmark test is depicted in Figure 5.1. It shows the required
runtime for grid-based instances having a maximal treewidth of 5. Altogether 250
instances were tested. As we see, dynBDD is the fastest system. D-FLAT is a little bit
slower. In contrast to dynBDD and D-FLAT, Sequoia takes the most time and is about
10-20 times slower. There were not any timeouts (meaning above the 3 minutes) or any
out-of-memory (above the 4 GB limit), which we call shortly “memout” from now.
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Figure 5.2: 3-Colorability - Memory (grid-based instances, treewidth 5)

Figure 5.2 shows the memory usage of the three systems. Here we have some
interesting facts: dynBDD and D-FLAT have nearly the same memory usage for the
first half of the instances, but then dynBDD needs about 3 times more for the last half
of the instances. Sequoia already needs much more memory at the beginning than the
other two systems, but at the end, Sequoia and dynBDD are nearly the same because the
memory usage of Sequoia does not increase as fast as dynBDD. There were no timeouts
or memouts.
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Figure 5.3: 3-Colorability - Time (grid-based instances, treewidth 20)

For the grid-based instances with a maxmimal treewidth of 20, the result is a little
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bit different in contrast to the treewidth of 5, as can be seen in Figure 5.3 and Figure 5.4.
Here, dynBDD is the leader again, not only in time but also in memory usage. Close
behind is D-FLAT, which has only a deviation after 200 instances. Sequoia has already a
very big deviation after 100 instances where the time and memory usage increase rapidly
at this point. All instances of dynBDD were fine, but D-FLAT had 42 timeouts during
this test, that is why the line is ending at instance 208. Sequoia had much more timeouts,
in detail 131. Additonally, Sequoia had 1 memout.
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Figure 5.4: 3-Colorability - Memory (grid-based instances, treewidth 20)
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Figure 5.5: 3-Colorability - Time (random instances)

Now we tested random instances and the results are similar to the grid-based instances.

106



In Figure 5.5 we see the runtime of 75 random instances, beginning from 5 to 79 vertices.
For the first 30 instances all three systems perform nearly identical but then Sequoia is
again the first system that rapidly increases in runtime. It also had 25 timeouts. D-FLAT
is the next one who drifts away, but only had 21 timeouts. The leader is dynBDD again
having only 9 timeouts. Memouts did not occur during this run.
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Figure 5.6: 3-Colorability - Memory (random instances)

The deviation of the memory usage is very similar to the runtime and so are the
rankings, as can be seen in Figure 5.6.

Next, we analyze realworld instances, which are more interesting. The dynBDD
system is still the leader in all instances when comparing the runtime (see Figure 5.7).
The second and third positioned systems vary from instance to instance. For the metros
in Beijing, Shanghai, Singapore and Vienna, D-FLAT is better than Sequoia, but for
the other metros Sequoia is the faster one. If we look at the two additional real world
instances, we can see that there is an enormous difference for the Pajek Glossary, where
D-FLAT is better, but in contrast to that, for the Pajekt Sandi instance, Sequoia is much
faster.

The memory usage of the real world instances are only interesting for the Pajek Sandi
instance, because here dynBDD needs the most space, as we can see in Figure 5.8. But
all the other instances do not have any special results, since dynBDD requires the least
memory, followed by D-FLAT and then Sequoia with the most memory usage.

Analysis in DecoVis

Now we analyse some instances in more detail. We choose 2 instances from the random
graphs, where the first one has 51 vertices and the second one has 52 vertices. Our
benchmark dataset of D-FLAT reveals that the instance with 51 vertices takes about
7 times more runtime and about 5 times more memory usage than the instance with
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Figure 5.7: 3-Colorability - Time (realworld instances, minimum of 10 TDs)
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Figure 5.8: 3-Colorability - Memory (realworld instances, minimum of 10 TDs)
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52 vertices. We load the instances in DecoVis to get more details about what happens
exactly during the computation. Figure 5.9 shows the two instances, left the one with 51
vertices and right the one with 52 vertices. As we can see they look quite similar.

Figure 5.9: Random graphs: 51 vertices (left) vs. 52 vertices (right)

When we load the tree decompositions in DecoVis including the runtime metadata
(see Figure 5.10), we easily see that the tree decompositions are also similar and both
instances took a consistent runtime. In particular, there are no conspicuous values from
one node to another. It is important to say that the size of the nodes regarding their value
is only consistent per instance. Both have the same size at the top but they are describing
different values. Hence, this comparison gives us only details about the distribution
of the runtime. In fact, we see that both instances have a quite similar distribution
of the runtime during the computation, but the real absolute values in seconds can be
completely different.

When we load the item tree sizes into the tree decompositions, we see that the
distribution of the memory usage is a little bit different (see Figure 5.11).

To get an overview about the real runtime and memory values during the computation,
we use the statistic diagram feature of DecoVis. In Figure 5.12 we see the runtime
differences, where the blue one is the instance with 51 vertices and the orange one
illustrates the instance with 52 vertices. The unit of the y-axis are seconds, the x-axis
describes a particular node.

Figure 5.13 shows information about the item tree size. Both diagrams reveal that
the higher runtime and memory usage is quite distributed over the whole computation
process, but in the middle there is the most difference in runtime as well as in memory.

The last diagram (Figure 5.14) of this analysis shows the memory usage regarding
runtime instead of the node index.
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Figure 5.10: 3-Colorability, D-FLAT, 2 random graphs: Time

Summary

As we see, dynBDD is the most efficient tool regarding runtime and memory usage when
comparing 3-Colorability problems. D-FLAT takes a little bit longer and usually also
needs more memory. The most time and memory is required by the Sequoia tool. Here,
many instances could not be solved within the predefined time of 3 minutes and the 4GB
memory. Figure 5.15 shows once again the timeouts and memouts of the three different
tools in each instance group. Furthermore, the numbers of solved instances (satisfiable
or unsatisfiable) are illustrated.

5.4.2 Stable Extension - DynBDD, D-FLAT

The Stable Extension problem belongs to the area of argumentation [27, 66]. In broad
terms, there are arguments and there can be conflicts between them. If there is a conflict
between some arguments, there is a binary relation between them. Illustrated as a
directed graph, each vertex is an argument and each edge shows the conflict or the
so-called attack relation. Furthermore, we can pick a so-called extension which is a subset
of all the available arguments. There exist several semantics on how an extensions is
selected, like the Stable Extension or the Preferred Extension. The latter is described
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Figure 5.11: 3-Colorability, D-FLAT, 2 random graphs: Item tree size

Figure 5.12: 3-Colorability, D-FLAT, 2 random graphs: Time
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Figure 5.13: 3-Colorability, D-FLAT, 2 random graphs: Item tree size

Figure 5.14: 3-Colorability, D-FLAT, 2 random graphs: Item tree size

later on. A Stable Extension is a set of arguments which is, first, conflict-free (meaning
that there is no conflict and therefore no edge between them), and second, this set attacks
all other arguments which do not belong to this extension set.

We take the same instances as before to run the Benchmark tests for the Stable
Extension problem. But in contrast to the 3-Colorability problem we can only use
dynBDD and D-FLAT because the Stable Extension encoding is currently not available
for Sequoia. As mentioned before, the instances have to be prepared a little bit to be
compatible with argumentation problems because there are not longer vertex and edge
predicates but arg and att predicates instead (in fact, they are simply renamed to be
usable for the argumentation problems).
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Satisfiable Unsatisfiable Timeout Memout 

Grid-based 
Treewidth 5 

dynBDD 1 249 0 0 

D-FLAT 1 249 0 0 

Sequoia 1 249 0 0 

Grid-based 
Treewidth 20 

dynBDD 13 237 0 0 

D-FLAT 13 195 42 0 

Sequoia 13 106 130 1 

Random 

dynBDD 53 14 8 0 

D-FLAT 39 13 23 0 

Sequoia 38 13 24 0 

Realworld 

dynBDD 9 1 0 0 

D-FLAT 9 1 0 0 

Sequoia 9 1 0 0 

Figure 5.15: 3-Colorability - Summary of timeouts, memouts and solved instances

Results & Comparison

Figure 5.16 shows the comparison of the runtime of grid-based instances with a maximal
treewidth of 5. As we see, dynBDD solves the problem much faster than D-FLAT. The
difference is so big, that the growth of the runtime in dynBDD is not visible in the
diagram at all.
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Figure 5.16: Stable Extension - Time (grid-based instances, treewidth 5)
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For the memory usage it looks completely different, as can be seen in Figure 5.17.
At the beginning dynBDD needs less memory, but then there is a quite high jump in
memory usage so that D-FLAT is better for about 100 instances. At the end dynBDD is
the leader again because the memory growth is not as high as for D-FLAT. The trend of
the diagram shows clearly, that D-FLAT will take more memory. There were no timeouts
or memouts. The anomaly of dynBDD will be analyzed later on by using DecoVis.
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Figure 5.17: Stable Extension - Memory (grid-based instances, treewidth 5)

When we compare the instances with a maximum treewidth of 20 (see Figure 5.18),
then we get a very clear result. The runtime of D-FLAT begins to grow rapidly after 75
instances, whereas the runtime of dynBDD only has a visible growth at the end. D-FLAT
had 167 timeouts.

The same applies for the memory usage (see Figure 5.19). Once again we see some
jumps in memory usage for dynBDD, but nevertheless it is the whole time the leader.

In Figure 5.20 and Figure 5.21 we see the differences of runtime and memory usage
of random instances. Once again, dynBDD is much faster and takes much less memory
during the computations. There were 16 timeouts of D-FLAT.

Even for all real-world examples, dynBDD is the leader, as can be seen in Figure 5.22
and Figure 5.23. In this case, there were no timeouts or memouts.

Analysis in DecoVis

As we have seen in the last section, there are some quite unusual memory jumps occurring
in the dynBDD computation runs. Now we want to analyze these jumps in more detail
with the help of DecoVis.

First, we load the two instances of the grid-based graphs having a maximum treewidth
of 5, as can be seen in Figure 5.24: one with 294 vertices which is shown on the left and
one with 326 vertices which is shown on the right side. Both instances look very slim

114



 

0

20

40

60

80

100

120

140

160

180

200

0 25 50 75 100 125 150 175 200 225 250

Ti
m

e
 [

s]
 

# of instances 

dynBDD

D-FLAT

Figure 5.18: Stable Extension - Time (grid-based instances, treewidth 20)
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Figure 5.19: Stable Extension - Memory (grid-based instances, treewidth 20)
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Figure 5.20: Stable Extension - Time (random instances)
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Figure 5.21: Stable Extension - Memory (random instances)
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Figure 5.22: Stable Extension - Time (realworld instances, minimum of 10 TDs)
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Figure 5.23: Stable Extension - Memory (realworld instances, minimum of 10 TDs)
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and long. They are quite similar in total, since they are having a maximal treewidth of
only 5. But the left and smaller one (regarding the number of vertices) takes about 4
times more memory usage. The runtime is quite the same.

Figure 5.24: Grid-based graphs: 294 vertices (left) vs. 326 vertices (right)

When we now load the tree decompositions including the runtime metadata in DecoVis
(see Figure 5.25), we can see that the smaller instance (left) needs the most runtime in
the right part of the tree decomposition, whereas the bigger instance (right) needs the
most runtime in the middle part.

Now we look at the memory usage by filling the tree decompositions with the memory
values, illustrated in Figure 5.26. We see, that the distribution of the memory is similar
to the runtime. Until now, we cannot see any anomalies.

To get a better analysis of the values in detail, we look at the statistic diagrams of
the runtime, shown in Figure 5.27. As expected, they are quite the same.

Now we look at the diagrams of the memory usage, shown in Figure 5.28 and Fig-
ure 5.29 (first with the node index as x-axis, then with runtime as x-axis). The metadata
produced during the computation does not reflect the real memory usage consumed by
the operating system, but only of the BDDs. But here, we cannot see any memory jumps.
We get a very surprising information: the metadata of the dynBDD computation does
not reveal a significant higher memory usage during the whole computation. In fact, the
instance with 294 nodes is consuming less memory for the BDDs than the instance with
326 nodes. This is completely contradicting our benchmark results since we expected
that there is somewhere a much higher memory usage either at some particular node in
the tree decomposition or at least continually over the the whole computation. What is
the reason for this behavior? In fact, we cannot find anything wrong, so we replicate
the benchmark test. We get the following unexpected result: For the same instance, the
final memory usage is jumping from a low value to a four time higher value completely
randomly, but never anything between.
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Figure 5.25: Stable Extension, dynBDD, 2 grid-based graphs: Time

It seems that sometimes the memory is allocated in quite high steps. It must have
something to do on how dynBDD allocates the memory. The internal memory usage for
the BDDs produced by dynBDD as metadata is obviously correct and never shows such
jumps. But the total memory usage of the whole application has sometimes much more
allocated memory and that is why we get these unusual jumps in the benchmark tests.
Unfortunately, we do not know the exact reason for this behavior because we are seeing
the dynBDD tool as black-box-system and we have no other metadata available which
could give us insight in what is going on in detail. But we strongly assume that dynBDD
and/or its used libraries allocate more memory than they would actually need since this
happens completely randomly.

Furthermore, we see that dynBDD starts with an already high memory consumption
for the first node and then the memory is only slowly decreasing. Probably that is
because many variables are instantiated even before the first node is processed.

Summary

In fact, all results were very clear: dynBDD is always the leader in runtime as well as
in memory usage. There is a small exception for dynBDD because there is an unusual
memory jump for the grid-based instances of treewidth 5, but overall it does not influence
the further trend of these instances. At the end of the benchmarks we also show the
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Figure 5.26: Stable Extension, dynBDD, 2 grid-based graphs: Memory

Figure 5.27: Stable Extension, dynBDD, 2 grid-based graphs: Time
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Figure 5.28: Stable Extension, dynBDD, 2 grid-based graphs: Memory

Figure 5.29: Stable Extension, dynBDD, 2 grid-based graphs: Memory
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overall result of satisfiable and unsatisfiable instances including the timeouts and memouts
(see Figure 5.30).

  
Satisfiable Unsatisfiable Timeout Memout 

Grid-based 
Treewidth 5 

dynBDD 147 103 0 0 

D-FLAT 147 103 0 0 

Grid-based 
Treewidth 20 

dynBDD 203 47 0 0 

D-FLAT 72 11 167 0 

Random 
dynBDD 63 12 0 0 

D-FLAT 51 8 16 0 

Realworld 
dynBDD 9 1 0 0 

D-FLAT 9 1 0 0 

Figure 5.30: Stable Extension - Summary of timeouts, memouts and solved instances

5.4.3 Hamiltonian Cycle - DynBDD, D-FLAT, Sequoia

Hamiltonian Cycle is a path in a graph which visits all vertices - each vertex exactly once
[67, 68]. Since it is a cycle, the vertex of the end of the path has to be the vertex of the
beginning of the path. This problem is tested with dynBDD, D-FLAT and Sequoia with
the same instances as before.

Results & Comparison

We begin with the grid-based instances having a maximum treewidth of 5. In Figure 5.31
we recognize several important facts regarding runtime: First, dynBDD is able to solve
the most instances in contrast to the other two tools. But for the first 100 instances,
D-FLAT performs better and takes less runtime. For the next instances, the runtime
of D-FLAT grows very fast and reaches the timeout limit, whereas dynBDD is able to
solve 34 more instances. Sequoia is only able to solve 4 instances in total. Second, we
generally see the overall difficulty of the problem in contrast to the first two problems
(3-Colorability and Stable Extension) where always all instances could be solved by at
least one tool. In this case dynBDD had 102 timeouts and 1 memout. D-FLAT had 128
timeouts. The last one is Sequoia with 246 timeouts.

The memory usage shown in Figure 5.32 is similar to the runtime but now D-FLAT
performs always the best, followed by D-FLAT and Sequoia as the last one.

When comparing the grid-based instances with a maximum treewidth of 20, we do
not get any changing information regarding performance (see Figure 5.33). The leader
is D-FLAT, followed by dynBDD. We see that both of them can solve quite the same
number of instances but D-FLAT is much faster. The last one is Sequoia again which is
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Figure 5.31: Hamiltonian Cycle - Time (grid-based instances, treewidth 5)
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Figure 5.32: Hamiltonian Cycle - Memory (grid-based instances, treewidth 5)
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only able to solve 5 instances. In detail, D-FLAT had 164 timeouts, dynBDD had 59
timeouts with additional 120 memouts and Sequoia causes 245 memouts.
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Figure 5.33: Hamiltonian Cycle - Time (grid-based instances, treewidth 20)

The memory usage which is shown in Figure 5.34 is exactly the same regarding the
performance rankings.
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Figure 5.34: Hamiltonian Cycle - Memory (grid-based instances, treewidth 20)

Now we test the random instances, illustrated in Figure 5.35 and Figure 5.36. As we
see, the rankings are now a little bit clearer, but they do not reveal any new performance
information since they are very similar regarding the grid-based instances. Here, D-FLAT
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had only 5 timeouts, dynBDD had 10 timeouts and Sequoia failed in 59 instances with 3
timeouts and 56 memouts.
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Figure 5.35: Hamiltonian Cycle - Time (random instances)
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Figure 5.36: Hamiltonian Cycle - Memory (random instances)

Now we analyze the last instance group, the real-world instances. When comparing
the runtime (see Figure 5.37) we get some new information regarding performance. For
the first 6 instances and also the very last instance, it is very clear that dynBDD is much
faster, followed by D-FLAT. Sequoia is not able to solve any of the 10 instances per
real-world example, that is why it is marked with an X.
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The remaining 3 instances are solvable by Sequoia, but we see thatmetro_tram_vienna,
metro_vienna and pajek_glossary need very much time in contrast to dynBDD or D-
FLAT.

 

0

0,5

1

1,5

2

2,5

Ti
m

e
 [

s]
 

dynBDD

D-FLAT

Sequoia

Figure 5.37: Hamiltonian Cycle - Time (realworld instances, minimum of 10 TDs)

Regarding memory usage, D-FLAT performs mostly the best and therefore has
mainly the lowest memory usage, followed by dynBDD (shown in Figure 5.38). Quite
interesting is that Sequoia can beat dynBDD in the two instances metro_tram_vienna
and metro_vienna.

Analysis in DecoVis

For a detailed analysis of instances in DecoVis, this time we choose a real-world instance.
Furthermore we want to compare and analyze the results between dynBDD and D-FLAT
using one single instance. As instance we choose the Metro London.

First, we load the instance in DecoVis resulting in the graph shown in Figure 5.39. It
is obviously that the graph reflects a metro system.

Now, we load the tree decomposition twice as can be seen in Figure 5.40, once loaded
using the runtime metadata of D-FLAT (on the left, metadata is named time) and once
loaded using the runtime metadata of dynBDD (on the right side, metadata is called
elapsed-time-in-ms). We can see, that D-FLAT is spending the most time only at the
very left side of the tree decomposition while dynBDD is already spending time from the
very bottom of the tree decomposition and especially on the right side. Here, we also see
how the systems are processing the tree decomposition during the computation. D-FLAT
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Figure 5.38: Hamiltonian Cycle - Memory (realworld instances, minimum of 10 TDs)

is beginning from the bottom of the very right side, whereas dynBDD is beginning from
the opposite.

To get a detailed comparison of the memory usage, we change the metadata of the
D-FLAT tree decomposition to item-tree-size and the dynBDD one to memory-in-use-by-
manager-in-bytes, see Figure 5.41. It is very important to say that these two metadata
types are not comparable to each other in the manner of absolute values even though
they are both given in bytes. The reason is that D-FLAT seems to produce the exact
item-tree-size for every node of the tree decomposition, but in contrast to that, dynBDD
seems to do some caching and other things influencing the memory usage during the
computation. This falsifies the memory usage when only a particular node of the tree
decomposition (and therefore a single BDD) is considered.

But nevertheless, the two metadata types can be used for a comparison of relative
values regarding the whole computation, meaning the minimum values of both metadata
types are set to the same level and the maximum values are set to the same level. This is
how the visualization of metadata values inside tree decompositions in DecoVis already
works. Each node size visualizes a relative value and that is why we can compare the
approximate memory usage of D-FLAT and dynBDD in these visualizations.

The biggest item tree size (and therefore approximately the most memory) of D-FLAT
is used in the beginning of the very left path of the tree decomposition. In dynBDD
the most memory is used at the beginning of all the paths on the right side of the tree
decomposition which reaches their maximum on the top when all the paths get merged.

In Figure 5.42 we see the absolute values of the runtime regarding the node index. In
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Figure 5.39: Realworld instance: Metro London (304 vertices)

D-FLAT the most time is needed for the first nodes while in dynBDD the runtime is
constantly increasing from the first node index to the last one.

In Figure 5.43 we illustrate the absolute memory values in bytes. Always keep in mind
that they are not really comparable, but nevertheless we want to show the differences.
The dynBDD tool (orange line) reveals a quite constant memory usage for the BDDs.
But the real sizes of the particular BDDs are certainly lower, probably due to caching or
some reservation of memory during the computation. D-FLAT (blue line) on the other
hand has a very low memory usage for the item trees. It is so low that it is not really
visible. To give a better insight of the item tree sizes in D-FLAT, we illustrate them in
Figure 5.44. Here, we see only the item tree sizes in bytes of D-FLAT. Only for a few
nodes in the tree decomposition an item tree is used at all, for all other nodes the item
tree size is 0.

Summary

For the Hamiltonian Cycle problem we get different performance results regarding the
three tools dynBDD, D-FLAT and Sequoia. Here, D-FLAT usually performs best,
followed by dynBDD and Sequoia. This applies to runtime as well as memory usage.
Only for some grid-based instances of treewidth 5, dynBDD performs a little bit faster
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Figure 5.40: Hamiltonian Cycle, D-FLAT & dynBDD, Metro London: Time

Figure 5.41: Hamiltonian Cycle, D-FLAT & dynBDD, Metro London: Item tree size vs.
memory
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Figure 5.42: Hamiltonian Cycle, D-FLAT & dynBDD, Metro London: Time

Figure 5.43: Hamiltonian Cycle, D-FLAT & dynBDD, Metro London: Memory

130



Figure 5.44: Hamiltonian Cycle, D-FLAT, Metro London: Memory

than D-FLAT. But there is another small exception: for the 2 real-world instances
metro_tram_vienna and metro_vienna, Sequoia requires a little bit less memory than
dynBDD. In Figure 5.45 we see the overview of solved instances in total.

  
Satisfiable Unsatisfiable Timeout Memout 

Grid-based 
Treewidth 5 

dynBDD 11 136 102 1 

D-FLAT 1 121 128 0 

Sequoia 1 3 0 246 

Grid-based 
Treewidth 20 

dynBDD 2 69 59 120 

D-FLAT 0 86 164 0 

Sequoia 0 5 0 245 

Random 

dynBDD 7 58 10 0 

D-FLAT 6 64 5 0 

Sequoia 4 12 3 56 

Realworld 

dynBDD 0 10 0 0 

D-FLAT 0 10 0 0 

Sequoia 0 3 0 7 

Figure 5.45: Hamiltonian Cycle - Summary of timeouts, memouts and solved instances
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5.4.4 Preferred Extension - D-FLAT, D-FLATˆ2

The Preferred Extension [27, 69] is also an extension of the abstract argumentation
framework. First, we want to describe an Admissible Set which is required to understand
the Preferred Extension.

An Admissible Set E has two important properties: First, it is conflict-free, therefore
there is no conflict between the arguments in E. Second, all arguments are acceptable
with respect to E, meaning that if there is an attack from an argument a not included in
E to an argument b in E, there has to be at least one argument in E which defends b by
attacking a.

A set is a Preferred Extension if it is subset maximal among all Admissible Sets.
Therefore we can use now the D-FLATˆ2 tool which has a focus on subset maximization
(and also minimization) problems.

Results & Comparison

In Figure 5.46 we see the comparison of D-FLAT and D-FLATˆ2 with grid-based instances
having a maximum treewidth of 5. It is easy to see that D-FLATˆ2 is much faster and
can handle about twice of the instances in contrast to D-FLAT. In detail, D-FLATˆ2
is able to solve 33 instances, whereas D-FLAT can only solve 15 instances. All other
instances had a timeout.
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Figure 5.46: Preferred Extension - Time (grid-based instances, treewidth 5)

The memory usage illustrated in Figure 5.47 shows that D-FLATˆ2 needs only a
minimum of memory.

Figure 5.48 and Figure 5.49 are showing similar results when comparing grid-based
instances with a maxmimum treewidth of 20. Here, D-FLATˆ2 solves 32 instances and
D-FLAT 23 instances. All the other ones reached the time limit.
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Figure 5.47: Preferred Extension - Memory (grid-based instances, treewidth 5)
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Figure 5.48: Preferred Extension - Time (grid-based instances, treewidth 20)
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Figure 5.49: Preferred Extension - Memory (grid-based instances, treewidth 20)

The same applies to the random instances shown in Figure 5.50 and Figure 5.51: the
growth of runtime and memory happens in quite the same way as before. But in total
more instances could be solved. This way D-FLATˆ2 could handle 49 instances. The
other 26 instances had a timeout. D-FLAT was now able to solve 27 instances. It had
42 timeouts and this time there were 6 memouts.
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Figure 5.50: Preferred Extension - Time (random instances)

For all the 10 realworld instances D-FLATˆ2 is also able to beat D-FLAT in runtime as
well as in memory usage (see Figure 5.52 and Figure 5.53). 5 instances could not be solved
by D-FLAT because of a timeout occurred in all the 10 different tree decompositions of
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Figure 5.51: Preferred Extension - Memory (random instances)

every instance. D-FLATˆ2 had only 1 timeout.
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Figure 5.52: Preferred Extension - Time (realworld instances)

In Figure 5.54 we see a summary of all solved instances including timeouts and
memouts.
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Figure 5.53: Preferred Extension - Memory (realworld instances)

 
 

Solved Timeout Memout 

Grid-based 
Treewidth 5 

D-FLAT 15 235 0 

D-FLAT^2 33 217 0 

Grid-based 
Treewidth 20 

D-FLAT 23 227 0 

D-FLAT^2 32 218 0 

Random 
D-FLAT 27 42 6 

D-FLAT^2 49 26 0 

Realworld 
D-FLAT 5 5 0 

D-FLAT^2 9 1 0 

Figure 5.54: Preferred Extension - Summary of timeouts, memouts and solved instances
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Summary

It is very clear that D-FLATˆ2 is the leader in this benchmark because it could always
perform better, not only in runtime but also in memory usage.

5.5 Conclusion
In total, we executed 4 different benchmark tests covering the following problems:

• 3-Colorability: The benchmark revealed that dynBDD is the most efficient tool
regarding runtime and memory usage. D-FLAT is a little bit slower but still
powerful. However, Sequoia is significant slower in all instances.

• Stable Extension: Here, dynBDD seems to be very efficient too. In all instances
it is many times faster and requires extremely little memory in contrast to D-FLAT.
Sequoia was not tested because it does not support this problem.

• Hamiltonian Cycle: For this problem, dynBDD is not the leader any longer
since D-FLAT is able to solve more instances and is also quite faster and takes less
memory. Again, Sequoia needs the most time and space and additionally can only
solve a very small amount of instances.

• Preferred Extension D-FLATˆ2 performs very well when the Preferred Extension
problem is tested. It is faster and takes less memory than D-FLAT. We see that
the processing in two stages of D-FLATˆ2 indeed has a big performance advantage.

As we can see, there are different rankings, depending on the particular problem.
The dynBDD tool is the first choice for 3-Colorability and Stable Extension problems,
but D-FLAT handles Hamiltonian Cycle problems better. When we compare subset
maximization problems like the Preferred Extension, then D-FLATˆ2 is the best choice.

Although Sequoia did not score well in all our used benchmark tests, this does not
necessarily mean that this applies to other problems.
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CHAPTER 6
DecoVis in Practice

This chapter puts the focus on the usage of DecoVis for analyzing systems that apply
dynamic programming on tree decompositions. Representatively, dynBDD is used in this
chapter for such dynamic programming tools. Furthermore, this chapter tries to explain
particular behaviors of different options and settings provided by dynBDD. In addition
to the dynBDD analysis, conclusions about the suitability of DecoVis for daily use are
obtained.

Section 6.1 and Section 6.2 provide an introduction to Sections 6.3 - 6.5. The focus
in Section 6.1 is placed on the structure of the three sections. The used approaches for
analysis are explained in detail.

Section 6.2 gives a short overview over different settings that can be applied on
dynBDD. These settings represent various approaches and aspects of BDD-based Dynamic
Programming on Tree Decompositions. Furthermore, the configuration for each described
option in the DecoVis dynamic dialog generation for dynBDD execution is illustrated.

Sections 6.3 - 6.5 deal with the analysis of dynBDD by means of DecoVis. Furthermore,
the three sections cover the analysis of the three process steps used by systems applying
dynamic programming on tree decompositions. Each process step generates an output
(Instance, Tree Decomposition and Computation) that can be analyzed in detail by
DecoVis.

The summary in Section 6.6 examines the analysis of systems using dynamic pro-
gramming on tree decompositions by means of DecoVis. On the one hand this section
emphasizes the strengths of DecoVis and on the other hand shows the potential for future
developments.

6.1 Introduction

DynBDD provides several options and settings that yield various behaviors when comput-
ing solutions of problems. This chapter explains particular behaviors by means of DecoVis.
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For this purpose, instances, tree decompositions and computations are generated, that
are raising interesting issues.

Instances are analyzed in Section 6.3 with the help of their instance graphs. Several
different instance graphs that are used as basis for further tree decompositions and
computations in this chapter are visualized by means of DecoVis. Tree decompositions
are analyzed in Section 6.3 regarding the different normalization types (definitions and
details can be found in Section 2.2). The specific characteristics of each normalization
type are illustrated with the help of DecoVis. The most comprehensive analyses concern
computations (Section 6.4). They are evaluated regarding different decision methods and
variable orders. In general, we introduced a consistent approach used for the analysis of
computations:

• Description
General information about the particular analysis is listed. Furthermore, used
instances, benchmark tests and settings of benchmark tests are described.

• Instance Selection
To get a better overview, benchmark test results are visualized with the help of
diagrams. In further consequence, representative runs and their settings used for
further analysis are chosen from benchmark test results.

• Analysis with DecoVis
Instances, tree decompositions and computations generated by dynBDD are ana-
lyzed with the help of DecoVis.

• Conclusions
On the basis of the analysis by means of DecoVis, conclusions for dynBDD are
finally derived.

6.2 Different Approaches and Aspects of BDD-based
Dynamic Programming

Since dynBDD is a tool applying BDD-based Dynamic Programming on Tree Decomposi-
tions, it is used in this chapter for computing solutions of NP-hard problems. Furthermore,
dynBDD provides several approaches for solving problems. To apply specific approaches
in dynBDD execution, particular options have to be included for running dynBDD.

Several concepts are explained in the following and the corresponding options and
parameters for dynBDD execution are illustrated. Since dynBDD can be executed out
of DecoVis with the help of the dynamically generated dynBDD execution dialog, the
necessary settings to use the options and parameters are also given in the following.
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6.2.1 TD Normalization

As already explained in Section 2.2, several possibilities exist for decomposing graphs.
The four tree decomposition normalization types are NONE, WEAK, SEMI and NOR-
MALIZED.

Since dynBDD supports each of these normalization types, the dialog in DecoVis
for dynBDD execution should provide an input form for the selection of a particular
normalization type.
dynbdd.td.norm.option=−n
dynbdd.td.norm.values=none, weak, semi, normalized
dynbdd.td.norm.value=none
dynbdd.td.norm.label=Normalization
dynbdd.td.norm.type=combo

Listing 6.1: DecoVis normalization settings

As Listing 4.3 shows, the option for dynBDD is n and the possible parameters are
none, weak, semi and normalized.

6.2.2 LDM / EDM

DynBDD defines two different paradigms regarding the dynamic programming algorithm
used for solving tree decomposition nodes: Late Decision Method (LDM) and Early
Decision Method (EDM). Detailed explanations about the two concepts can be found in
Section 2.3.

In contrast to the combobox for the selection of the normalization type above, the
decision method can be represented as checkbox in DecoVis.
dynbdd.comp.dm.option=−−edm
dynbdd.comp.dm.label=Decision Method (Default: ldm)
dynbdd.comp.dm.type=checkbox

Listing 6.2: DecoVis decision method settings

Since dynBDD uses LDM by default, Listing 6.2 defines the selection of the possible
option edm.

6.2.3 Variable Ordering

Systems using BDD-based Dynamic Programming on Tree Decompositions like dynBDD
provide multiple concepts for the ordering of variables. A BDD variable defines the
assignment of a value to arbitrarily many vertices (details can be found in Section 3.4).
Furthermore, each BDD variable assigns a particular BDD level (order) where level 1
specifies the level of the root node and the leaf nodes have the highest level. Variable
ordering has a strong influence on the construction of BDDs.

Figure 6.1 serves as example for an instance graph and a tree decomposition for
further explanations. DynBDD supports the following variable ordering types:
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Figure 6.1: Variable ordering example

• Instance
The variable order depends on the vertex order in the instance (source) files. Let
us assume the vertices in Figure 6.1 are defined in the instance file in the following
order: f, e, d, b, c, a. In instance order this order remains the same.

• Lexicographic
The variable order depends on the alphabetical order of the vertex names defined
in the input file. Lexicographic variable order regarding the instance vertices in
Figure 6.1 results in the following ordering: a, b, c, d, e, f.

• Td-first
Td-first variable order depends on the traversal order of the tree decomposition
when computing the corresponding BDDs. DynBDD traverses the tree post-order.
The td-first order prioritizes vertex names in the order they occur when traversing
the tree post-order. The td-first order for the vertices in Figure 6.1 is defined as
follows: b, a, d, c, e, f.

• Degree-high
Degree-high prioritizes each vertex with the help of its degree: When the degree is
high, the order is also high. The degree-high order for the vertices in Figure 6.1 is
defined as follows: b, d, c, e, a, f.

• Degree-low
This variable order is the inverse of degree-high: When the degree is high, the order
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is low. The degree-low order for the vertices in Figure 6.1 is defined as follows: a,
f, c, e, b, d.

Since dynBDD supports each of these order types, the dialog in DecoVis for dynBDD
execution should provide an input form for the selection of a particular order type.
dynbdd.comp.ordering.option=−o
dynbdd.comp.ordering.values=instance, lexicographic, td−first, degree−high, degree−low
dynbdd.comp.ordering.value=instance
dynbdd.comp.ordering.label=Ordering
dynbdd.comp.ordering.type=combo

Listing 6.3: DecoVis variable ordering settings

As Listing 6.3 shows, the option for dynBDD is o and the possible parameters are
instance, lexicographic, td-first, degree-high and degree-low.

6.3 Instance Analysis
In general, instances represent the structure of graphs. Their nodes and edges are used
for graph analysis and for the generation of tree decompositions. This section lists
several graph instances used as basis for the tree decompositions and computations in
the following sections (Section 6.4 and Section 6.5). They make use of DecoVis that
visualizes the instances on the one hand and emphasizes particular characteristics of each
instance on the other hand.

6.3.1 Vienna Metro

Figure 6.2: Vienna Metro
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The first instance illustrates a real-world graph representing the Vienna metro map.
It consists of the metro lines U1, U2, U4, U4 and U6 (valid as of November 2015).

Beside the displaying of the metro stations and metro lines in Vienna, Figure 6.2
shows that the stations and lines are also appropriately arranged. That means, that the
placements of stations and lines are similar to the placements in official Vienna metro
maps (maps available via internet or printed maps). The stations illustrated in the left
window of Figure 6.2 are placed manually via DecoVis. The right window represents a
zoomed view to the stations of the inner districts of Vienna. Furthermore, the metro
station Karlsplatz is selected in Figure 6.2.

6.3.2 Grid-based Instances

A grid is a m× n graph consisting of horizontal and vertical edges where the vertices
are aligned in form of a grid. To keep it simple, the grids used in this chapter are n× n
graphs. Basically the following applies: The greater n, the higher the amount of graph
cycles inside the n×n graph. Furthermore, we use this graph type because the treewidth
is always proportional to the graph size, i.e. the treewidth of n× n graphs is always n.

Figure 6.3: Grid instance graphs: 4..49 (node count)

Figure 6.3 illustrates the visualization of the grids where n is between 2 and 7 in
DecoVis. Furthermore, DecoVis tells us about the construction process of the algorithm
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that generated the grid graphs. As one can see the algorithm starts with vertex 0 that
is set to the corner of each grid. Subsequently, the next vertex 1 is connected via an
edge to 0. To build a line in the grid, this process is repeated until vertex n-1 is reached.
After the creation of n-1 lines with the help of this process, edges are added to connect
the lines to form a grid.

6.3.3 Random Instances with Edge Probability

Here we consider a random graph consisting of a fixed amount of nodes and a random
number of edges. The number of edges is given by the edge-probability, which represents
the probability whether an edge exists between pairs of vertices.

Figure 6.4: Random graphs with edge-probability: 0%, 4% , 7%, 9%

As one can see in Figure 6.4 each instance consists of 25 nodes. The used edge-
probabilities are 0%, 4% , 7% and 9%. In order to illustrate that the instance graphs are
generated independently to each other, the vertices 0 and 1 are selected in each instance.
It is easy to see the neighbors of the selected vertices in a random graph vary from
instance to instance and the amount of neighbors increases with the edge-probability.
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6.3.4 Clique-based Instances

A clique is a worst case instance regarding the number of edges. A graph is a clique, if
every two distinct nodes in the graph are adjacent. As a consequence, the treewidth of
the graph is the number of nodes minus 1. Furthermore, a clique consists of the maximal
possible amount of graph cycles regarding its node count.

Figure 6.5: Clique with treewidth: 1..8

Figure 6.5 represents cliques where the treewidth is defined between 1 and 8. As one
can see with the help of vertex 0, each vertex retains its neighbors in spite of increasing
treewidth.

6.4 Tree Decomposition Analysis

6.4.1 Description

A tree decomposition represents a mapping from the instance graph to a tree. Hence, each
tree decomposition node contains several vertices from the instance graph. Furthermore,
we differ between four normalization types of tree decompositions: none, weak, semi and
normalized. Since DecoVis provides the possibility of visualizing tree decompositions
generated with dynBDD, various interesting issues about tree decompositions can be
analyzed with the help of DecoVis.

This section analyzes the occurrences of particular vertices from the instance graph
in tree decompositions with different normalization types. Furthermore, various charac-
teristics of each normalization type are illustrated by means of DecoVis.
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Figure 6.6: Instance + tree decompositions

Figure 6.6 represents the Vienna metro instance from Section 6.3 and a possible
decomposition, generated with each normalization type, visualized with the help of
DecoVis. The difference to the Vienna metro instance from Section 6.3 is the replacement
of the metro station names (vertex names) by numbers.

We select vertex 48 (Wien Mitte - Landstraße) for further analysis. As one can
see in Figure 6.6, 48 can be found several times in the bags of each tree decomposition.
We can conclude from this figure, that the occurrences of 48 increases from the none
normalized tree decomposition up to the normalized tree decomposition. The differences
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between the normalization types are analyzed in the following in more detail.

6.4.2 None vs. Weak Normalized Tree Decompositions

The difference between none normalized tree decompositions and weak normalized tree
decompositions lies in the definition of join nodes. For join nodes in weak normalized
tree decomposition applies: On the one hand each join node has at least two child nodes
and on the other hand each child bag of a join node is equivalent to the join node bag.

Figure 6.7: None vs. weak normalized tree decompositions

Figure 6.7 represents two zoomed views of the none normalized tree decomposition
and the weak normalized tree decomposition of the Vienna metro instance that can be
found in Figure 6.6. The two windows consist of the tree decomposition nodes where
48 is a member of the bag. The root nodes of the two tree decompositions and their
child nodes serve as example to illustrate the difference between the normalization types
none and weak. In contrast to the none normalized tree decomposition, each child node
(n3, n9, n123, n133 and n136) of the weak normalized tree decomposition comprise
the same bag (5, 6, 7 and 48) as the root node n123. DecoVis nicely illustrates that
vertices included in the bags of join nodes are more widespread in weak normalized tree
decompositions than in the corresponding none normalized tree decompositions.

6.4.3 Weak vs. Semi Normalized Tree Decompositions

The difference between weak normalized tree decompositions and semi normalized tree
decompositions is, that join nodes in semi normalized tree decompositions have exactly
two child nodes instead of more than one child node.

To illustrate the difference between the weak normalized and the semi normalized
normalization type on the one hand and to analyze the distribution of vertex 48 on
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Figure 6.8: Weak vs. semi normalized tree decompositions

the other hand, Figure 6.8 represents the extracts of the weak normalized and the semi
normalized tree decomposition where 48 can be found in the bags. It is easy to see,
that each join node consists of exactly two child nodes (i.e. n2 with child nodes n3 and
n154). We observe, that vertex 48 can be found in less bags of the semi normalized tree
decomposition than in bags of the weak normalized tree decomposition. Furthermore,
we see that a vertex available in a bag of the semi normalized tree decomposition join
node spreads deeper towards the leaf nodes than the corresponding vertex in the weak
normalized tree decomposition.

6.4.4 Semi vs. Normalized Tree Decompositions

The difference between semi normalized tree decompositions and normalized tree decom-
positions lies in the definition of exchange nodes. For exchange nodes in normalized tree
decompositions applies: The bag of the parent node and the bag of the child node only
differs in one vertex.

The application of this definition can be found in the comparison of the semi normalized
and normalized tree decomposition in Figure 6.9. We choose n155 from the semi
normalized tree decomposition and the corresponding node n270 from the normalized
tree decomposition for further distinctions. With the help of DecoVis it is easy to see
that the definition above can not be applied to n155 and n156 in the semi normalized
tree decomposition. The normalized tree decomposition solves this problem by breaking
up the bag of n270 into further tree decomposition nodes n271 and n270. As this
example already suggests, normalized tree decompositions normally consist of much
more nodes than the corresponding semi normalized tree decompositions. Furthermore,
we can conclude from this observation made with DecoVis, that the normalized tree
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Figure 6.9: Semi vs. normalized tree decompositions

decomposition has a greater tree height than the corresponding semi normalized tree
decomposition.

6.5 Computation Analysis

6.5.1 LDM / EDM - BDD Manipulation during the Computation

Description

EDM (Early Decision Method) and LDM (Late Decision Method) represent two different
dynamic programming approaches used for tree decompositions. The following expla-
nations give an insight into the process of generating BDDs in each decision method.
Furthermore, the following question is discussed with the help of a benchmark test and
DecoVis: How do the decision methods LDM and EDM differ in the manipulation of the
BDDs during the computation?
FIXED:
Instance: Vienna metro
Problem: 3−Colorability
Ordering: Instance
Normalization: Normalized
Nodes: 93

VARIABLE:
Seed: 1..40
Decision−Method: LDM vs. EDM
Measurement: Memory
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We use the Vienna metro map without station name specification, shown in Figure 6.6,
as instance for the benchmark test (the station names are included in Figure 6.2). The
benchmark test gives us information about the memory consumption of dynBDD when
the 3-Colorability problem is solved by means of LDM and EDM and various seed values.
Furthermore, the result of the benchmark test is used for instance selection.

Instance Selection

The diagram in Figure 6.10 represents a scatter chart in combination with a line chart.
The memory consumption of the runs, applying different seeds (1..40) and decision
methods, are visualized by means of dots in the chart. Furthermore, the average memory
consumption across the specified seeds of each decision method is illustrated with the
help of a line.
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Figure 6.10: EDM vs. LDM: Statistics

We can see in Figure 6.10, that on average EDM requires more memory for solving
the 3-Colorability problem for the Vienna metro instance. Furthermore, this illustration
of the benchmark test by means of the diagram helps to select computations with the
highest difference regarding memory usage during the computation process. Since the
memory consumption between the LDM and EDM computation differs most when seed 1
is used, these two computations are used for further analysis.
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Analysis with DecoVis

We observe in the result of the benchmark test in Figure 6.10, that on average EDM
requires more memory than LDM for solving the 3-Colorability problem for a real-world
instance. The following analysis gives one possible explanation for this observation.

Figure 6.11: EDM vs. LDM (seed 1): Tree decomposition

The left window in Figure 6.11 represents the tree decomposition generated with
seed 1 and visualized with the help of DecoVis. The right window represents a zoomed
view of the tree decomposition consisting of tree decomposition nodes used for further
illustrations. n147, n146, n145 and n144 represent the chosen tree decomposition
nodes for the explanation of how LDM and EDM differ in the manipulation of their
BDDs during the computation process.

Computed by means of LDM, Figure 6.12 illustrates the corresponding BDDs to the
tree decomposition nodes n147, n146, n145 and n144. As one can see, the BDDs of
n147, n146 and n145 only consist of one node, the leaf node TRUE (1). Since vertex
65 gets removed in tree decomposition node n144, the corresponding BDD to node n144
is illustrated in Figure 6.12 with window id 8. As a consequence, the BDD only consists
of variable assignments in the BDD nodes for the vertices 64 and 66.

The BDDs of the EDM computations can be found in Figure 6.13. We can clearly see
here, that each tree decomposition node consists of a corresponding BDD that does not
only contain a TRUE leaf node. Furthermore, it is easy to see that each vertex from the
bag of a tree decomposition node can be found in the corresponding BDD. For instance,
the BDD of n145 contains BDD variables for the vertices 64, 65 and 66.
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Figure 6.12: LDM - BDDs

Conclusion

DecoVis nicely illustrates the difference of the BDD manipulations during the computation
process between the LDM approach and the EDM approach. BDDs only change during
the LDM computation if a vertex gets removed from the bag of a tree decomposition
node. In contrast to LDM, EDM always generates new BDDs consisting all vertices from
the bag of the corresponding tree decomposition node. This observation is one possible
explanation for the result of the benchmark test above: On average, EDM requires more
memory than LDM for solving the 3-Colorability problem for an instance of real life.
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Figure 6.13: EDM - BDDs

6.5.2 LDM / EDM - Instances with High Edge Density

Description

Solving problems with several graph instances, each consisting of a very high edge density,
by means of LDM and EDM represents the analysis of worst case scenarios. A benchmark
test, using various instances with a high edge density, and DecoVis help us to answer the
following question: How and why do instances with high edge density differ regarding
LDM and EDM?

The details and parameters for the benchmark test are defined in the following:
FIXED:
Problem: Hamiltonian Cycle
Seed: 0
Normalization: NORMALIZED
Ordering: Instance
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VARIABLE:
Instance: cliques treewidth=2..9
DM: EDM vs. LDM
Measurement: Memory

Each instance graph used in the benchmark test is a clique, i.e. every two distinct
nodes in the graph are adjacent. As a consequence, the treewidth of the graph is the
number of nodes minus 1. The benchmark test computes the satisfiability of each instance
graph regarding Hamiltonian Cycles with the help of the EDM algorithm and the LDM
algorithm.

Instance Selection
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Figure 6.14: EDM vs. LDM: Statistics

Figure 6.14 illustrates the results regarding the memory consumption for solving
the problem with its instances defined above with the help of a line chart. The lines
represent the decision methods LDM and EDM. The x-axis defines on the one hand the
treewidth of the graph and on the other hand the node count that can be computed from
the treewidth (node count = treewidth + 1). The y-axis defines the used memory for
each run in the unit megabytes.
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As one can see, the memory consumption is quite similar when solving instances with
treewidth 2, 3 and 4. Since the memory consumption rises sharply from treewidth 5 to
treewidth 9, it seems that the consumption of EDM grows strongly exponential whereas
the used memory of LDM grows slightly exponential. All instances with a treewidth
greater than 9 and computed by means of EDM, result in a timout.

Analysis with DecoVis

Figure 6.15: Clique with treewidth 5 and its tree decomposition

We want to explain this behavior by analysis with the help of DecoVis. Figure 6.15
illustrates in the left window the instance of the clique with treewidth 5 and in the center
window the tree decomposition of the instance graph. The right window provides a
zoomed view of the node n9 from the tree decomposition shown in the center window.
Since tree decomposition node n9 is selected for further analysis, each vertex from the
bag of the tree decomposition node (Figure 6.15) is marked and n9 is emphasized in
Figure 6.16.

Figure 6.16 represents a statistic report of the LDM (3) and EDM (4) computations
regarding the number of nodes in the generated BDDs (y-axis). The x-axis in the line
chart represents the tree decomposition nodes in the computation order (post-order), in
this tree decomposition: from n13 to the root node n1. As one can see in the statistic
report, EDM with the tree decomposition nodes n9, n8, n7, n6 and n5 need much more
BDD nodes in comparison to their corresponding tree decomposition nodes from LDM.
As an example, the BDD of the marked tree decomposition node n9 from the EDM line
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Figure 6.16: LDM vs. EDM: Statistic report (number of DD-nodes)

consists of 495 nodes, the corresponding node from the LDM line only consists of 25
nodes.

Figure 6.17 illustrates the computed BDDs from the LDM and EDM computation of
tree decomposition node n9. As one can see, the BDD of the LDM computation is build
up of way less nodes than the BDD of the EDM computation.

The window on the top of Figure 6.18 represents the corresponding computation table
to the BDD computed with the help of LDM shown in the left window of Figure 6.17. The
window on the bottom of Figure 6.18 represents the corresponding computation table of
the BDD computed with the help of EDM shown in the right window of Figure 6.17. Each
line of the particular computation table represents a possible model that is represented
by the corresponding BDD.

Conclusion

By means of the benchmark test regarding solving the Hamiltonian Cycle problem of
various cliques it is clearly recognizable, that cliques computed with EDM need much
more memory consumption than the corresponding LDM computation. Due to these
benchmark test results we have a reason to believe, that solving an instance graph with
a high edge density by means of EDM results in a much higher memory consumption
than solving the same instance graphs with the help of LDM (at least if the Hamiltonian
Cycle problem is applied).
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Figure 6.17: LDM vs. EDM: BDDs (node n9)

Figure 6.18: LDM vs. EDM: Computation tables (node n9)

The reason for the higher memory consumption can be found in Figure 6.16 and
Figure 6.17. Via DecoVis we draw the following conclusion: The BDDs computed for
each tree decomposition node contain in the EDM case much more variables than in the
LDM case, i.e. the BDD consists of considerably more nodes and edges. Hence, in this
computation, EDM-BDDs represent much more models than LDM-BDDs. The proof for
this statement can be found in Figure 6.18 where the EDM-BDD represents 87 models
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and the LDM-BDD just represents 1 model.

6.5.3 LDM / EDM - Satisfiability of Instances

Description

Let us focus on the analysis of LDM and EDM regarding performance of solving problems.
For this purpose the analysis of a benchmark test, consisting of serveral instances, gives
us information about the runtime of each decision method. Furthermore we will deal with
the question: What is the reason for similar or different performances when comparing
LDM and EDM?

The details and parameters for the benchmark test are defined in the following:
FIXED:
Problem: 3−Colorability
Seed: 0
Normalization: NORMALIZED
Ordering: Instance
Nodes: 27

VARIABLE:
Instance: random graph, edge−probability: 1...20
DM: EDM vs. LDM
Measurement: Runtime

Each run in the benchmark test checks the 3-Colorability of an instance with the
help of the EDM algorithm and the LDM algorithm. Furthermore, the benchmark test
consists of several random graph instances, where all instance graphs consist of 27 vertices
and differ in their number of edges. In order to make the problem solving more complex
from run to run, the amount of edges is increased in each run. The edge amount is
calculated by the edge-probability, which represents the probability whether an edge
exists between pairs of vertices.

Instance Selection

Figure 6.19 represents the results regarding the runtime for solving the problem with its
instances defined above. Each line in the line chart stands for a decision method used
for solving the problem. The x-axis defines the probability (in percent) whether an edge
exists between pairs of vertices and the y-axis defines the required time (in seconds) for
solving the problem.

The instance graphs from the benchmark test where the edge-probability is between
1% and 8% are satisfiable, instances with an edge-probability greater than 8% are
unsatisfiable. As one can see in Figure 6.19 the runtime stays quite similar as long as
the problem with its instance is satisfiable. From the moment when the runs deliver
unsatisfiable as result, the runtime for EDM remains fairly constant in spite of more
complex instances. In contrast to the runtime of EDM, LDM entails a longer runtime in

159



0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

0,5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ti
m

e
 [

s]

Edge-Probability [%]

LDM

EDM

Figure 6.19: EDM vs. LDM: UNSATISFIABLE if probability > 8%

case of unsatisfiability. Furthermore, there is a strong trend that the runtime of LDM
increases with the density of edges in the instance.

Analysis with DecoVis

The following explanations try to give an answer to the question mentioned in the
beginning: What is the reason for similar or different performances when comparing LDM
and EDM? The answer is supported by debugging specific runs with the help of DecoVis.
Since DecoVis provides features for comparing metadata information of computations,
particular computations of specific runs from the benchmark test are picked out and
compared.

The instance with the edge-probability 8% is used as the basis for the two tree
decompositions in Figure 6.20 that illustrates the comparison of the computations
generated with the LDM algorithm and the EDM algorithm. Each tree represents the
tree decomposition generated from the instance. The metadata value of the particular
computation is emphasized in each tree decomposition node. In Figure 6.20 the metadata
elapsed-time-in-ms is used for the comparison. The higher the corresponding elapsed-
time-in-ms value in a tree decomposition node, the bigger is the node shape.

Figure 6.21 is used for comparing another two computations with the help of their
metadata information. Here the instance with edge-probability 18% is used.
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Figure 6.20: LDM vs. EDM (8%): Elapsed time

Conclusion

Figure 6.20 consists of computations resulting when solving a satisfiable problem by
means of LDM and EDM. There is no significant difference when comparing the LDM
and EDM computations. Hence, we can conclude that if a 3-Colorability problem (with
similar execution parameters for dynBDD) is satisfiable and there is no recognizable
difference between the LDM and EDM computation when the computations are compared
by means of DecoVis, the runtime for solving this problem is in both cases similar.

In contrast to Figure 6.20, the computations in Figure 6.21 are based on an unsatisfi-
able instance. As one can see in the LDM computation, the elapsed time (in DecoVis
illustrated by elapsed-time-in-ms) increases when the tree is traversed post-order.
Only the last few nodes near to the root node are not computed, i.e. they are not any
more considered because of unsatisfiability. As one can see in the EDM computation,
the algorithm aborts the process after only a few nodes. This leads to the conclusion
that EDM has a better runtime than LDM when solving unsatisfiable problems, be-
cause unsatisfiability is recognized at a very early stage and the solving process is, as a
consequence, much earlier aborted.
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Figure 6.21: LDM vs. EDM (18%): Elapsed time

6.5.4 Variable Order - Impact on Computations

Description

The following analysis focuses on various variable orders of systems using BDD-based
Dynamic Programming on Tree Decompositions. Furthermore, different variable order
types used to solve a real-world problem are examined. Mainly, the following question
is discussed with the help of a benchmark test and DecoVis: What is the impact on
computations if different variable orders are used for real-world graphs?
FIXED:
Instance: Vienna metro
Problem: 3−Colorability
Normalization: NORMALIZED
Decision−Method: EDM
Nodes: 93

VARIABLE:
Seed: 1..40
Ordering: instance, lexicographic, td−first, degree−high, degree−low
Measurement: Memory

We use the Vienna metro map without station name specification as instance for the
benchmark test. The benchmark test gives us information about the memory consumption
of dynBDD when the 3-Colorability problem is solved by means of different variable
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order types and various seed values. The result of the benchmark test helps us in further
consequence to compare the computations generated with different variable order types.
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Figure 6.22: Variable ordering: Statistics

The diagram in Figure 6.22 illustrates the used memory consumption of the benchmark
test runs applying different seed values and variable orders. As one can see, the average
memory consumptions of the variable orders do not differ significantly when various seeds
are used as basis for the benchmark test. Since the 3-Colorability problem of the Vienna
metro map can be solved in less than 0.1 seconds by means of dynBDD, a repeating of the
same benchmark test always results in different memory consumption values. Hence, it
is easy to see, that no conclusions about “which variable order is best used for real-world
problems” can be drawn.

Although no trend is obvious, we select the computations (instance, lexicographic, td-
first, degree-high, degree-low) solved with seed 10 from the diagram in Figure 6.22, because
they use nearly the same memory (3 MB). Furthermore, they provide an appropriate
basis to analyze the impact of different variable orders on computations with DecoVis.
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Analysis with DecoVis

Figure 6.23 represents a statistic report of computations solved with the variable orders
instance (2), lexicographic (3), td-first (4), degree-high (5) and degree-low
(6). The statistic report illustrates the number-of-DD-nodes used for each tree
decompositions node. The x-axis in the line chart represents the tree decompositions
node in computation oder (post order).

Figure 6.23: Statistic report - number-of-DD-nodes

As one can see in Figure 6.23, the five approaches are quite similar in the number of
BDD-nodes. This could be one possible explanation for the similar memory consumption
values in Figure 6.22. One visible difference between the variable orders can be found
between index 200 and 230. Since tree decomposition node 159 lies between the two
values, each BDD (instance, lexicographic, td-first, degree-high, degree-low) of node 159
is used for further analysis.

In order to compare the BDDs of tree decomposition node 159, Figure 6.24 illustrates
in window Statistic Report (#8) a zoomed view of the statistic report in Figure 6.23.
As one can see, each BDD consists of a different number of BDD nodes. With the
help of this view it is easy to order (ascending) the five approaches regarding number
of BDD nodes: instance (2), lexicographic (3), degree-low (6), td-first (4) and
degree-high (5).

Figure 6.24 furthermore represents the BDDs of tree decomposition node 159 gen-
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erated with each of the five variable orders. In general, tree decomposition node 159
contains four vertices in its bag: 5, 6, 33 and 48. In order to see the influence of different
variable orders in various BDDs, the BDD nodes where 5 occurs are marked. As a
consequence, the different placements of 5 in different levels are emphasized.

Figure 6.24: BDDs - node 5 is selected

Conclusion

By means of the benchmark test analysis above it is not possible to give general statements
about the performance of particular variable orders. As Figure 6.24 shows, a well-chosen
variable order has a positive effect even on BDDs consisting of few vertices. It is easy to
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see, that the BDD from the second window (BDD (from #2/n159) (#9)) computed
with instance order is composed of much less BDD nodes than the other BDDs in
Figure 6.24.

6.5.5 Variable Order - Impact on Join Nodes

Description

Now we focus on the analysis of BDD evolution in the dynBDD computation process
when tree decompositions are solved. First, we examine the performance of various
variable orders on the basis of several instances with the same node count, but different
edge placement, in form of a benchmark test. Next, a representative instance from the
benchmark test is chosen for further analysis. In order to compare the join nodes of two
computations with different variable orders, the animation feature of DecoVis is used to
discuss the following question: What is the impact on join nodes when different variable
orders are used?

The following settings are used for the benchmark test:
FIXED:
Problem: Hamiltonian Cycle
Seed: 0
Normalization: NORMALIZED
Decision−Method: LDM
Nodes: 10

VARIABLE:
Instance: 20 instances with edge−probability 15%
Ordering: instance, lexicographic, td−first, degree−high, degree−low
Measurement: Memory

Each run in the benchmark test checks the existence of Hamiltonian Cycles of an
instance with the help of different variable orders. The benchmark test consists of several
random graph instances, where each instance graph consists of 10 vertices. In order to
receive a statement about the performance of each variable order type, the hardness of
the instances should remain about the same from run to run. Hence, the edges of the
instances are generated with an edge-probability of 15 %, i.e. an edge exists between
pairs of vertices with probability 15 %.

Instance Selection

We can see in Figure 6.25, that on average each variable order requires pretty much the
same memory for solving the Hamiltonian Cycle problem for instances with 10 vertices
and an edge probability of 15 %. Nevertheless, td-first variable order requires the lowest
memory on average in the benchmark test, whereas instance variable order uses the most
memory on average. This illustration of the benchmark test by means of the diagram
helps to select in further consequence representative (with a high difference regarding
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Figure 6.25: Hamiltonian Cycle: Statistics

memory usage) computations. Since the td-first variable order performs much better
than the other variable order types when instance 1 is used as basis, it is used for further
analysis.

Analysis with DecoVis

Figure 6.26 illustrates instance 1 from the benchmark test. Furthermore, the vertices 0,
1, 2, 7, 8 and 9 included in the bags of the tree decomposition nodes that are used for
further analysis are emphasized.

The first window (Tree Decomposition - normalized (#2)) in Figure 6.27 rep-
resents the normalized tree decomposition of instance 1 in DecoVis. Furthermore, the
tree decomposition nodes with the bag elements 0, 1, 2, 7, 8 and 9 are selected. Two of
the five emphasized node represent join nodes.

The window in the center (Statistic Report (#8)) illustrates a statistic report about
the number-of-DD-nodes used for each tree decomposition node in the computation
process. The right window (Statistic Report (#9)) visualizes the zoomed view of the
statistics between index 20 and 35 from the Statistic Report (#8).

We can observe with the help of the instance graph in Figure 6.26 and the reports in
Figure 6.27, that despite the low number of vertices, the instance is more difficult to solve
due to the high edge density than e.g. the Vienna metro map. Furthermore, the statistic
report shows that the td-first variable order requires the least number of BDD nodes.
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Figure 6.26: Instance 1 with 15% edge-probability

Figure 6.27: Number-of-DD-nodes: instance(3) vs. lexicographic(4) vs. td-first(5) vs.
degree-high(6) vs. degree-low(7)

We use the animation feature from DecoVis in Figure 6.28 to analyze the evolution
of the BDDs generated to each join node of the tree decomposition. Therefore only three
levels of the tree decomposition are animated in Figure 6.28. Since td-first variable
order requires the lowest number of BDD nodes in the statistic report and degree-high
variable order requires the highest number of BDD nodes, the computations of these
two variable orders are compared in the Figure 6.28. The first column in Figure 6.28
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Figure 6.28: BDD animation of td-first(5) and degree-high(6)

represents a zoomed view of the tree decomposition, where the currently animated tree
decomposition nodes are emphasized. The window in the center and in the right window
represent the corresponding BDDs to the selected tree decomposition nodes in td-first
variable order and degree-high variable order.

Conclusion

One possible conclusion regarding the benchmark test above and the statistic reports in
DecoVis is, that variable orders with a much lower number of BDD nodes on average
(td-first in Figure 6.27) imply lower memory consumption (as we see in Figure 6.25).

The impact of different variable orders on join nodes can easily be visualized with the
help of DecoVis. As we see in Figure 6.28 the merging of two BDDs with a high number
of nodes also result in a BDD with a high number of nodes and edges, that represents
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the solutions of all child nodes. A consequence of this recognition is, that a well-chosen
variable order has a positive impact on the corresponding BDD of a join node.

6.6 Summary
DecoVis supports the analysis of several components regarding dynamic programming
on tree decompositions and helps to discuss multiple interesting questions regarding
computations. Instance analysis in DecoVis deals with the following issues:

• Visualize graph instances representing the structure of graphs (e.g. Vienna metro
map, grid-based instances, random instances with edge probability, clique-based
instances, etc.).

• Particular characteristics of instances can be emphasized.

Furthermore, DecoVis provides several possibilities for the analysis of tree decompo-
sitions. As a consequence, various interesting issues about tree decompositions can be
analyzed with the help of DecoVis:

• Tree decompositions of instances are visualized.

• Occurrences of particular vertices from the instance graph are emphasized in tree
decompositions in different normalization types (none, weak, semi and normalized).

• Various characteristics of each normalization type are illustrated.

By means of DecoVis several interesting questions regarding computations of solved
problems can be discussed and analyzed. The following paragraphs contain on the one
hand some of these interesting questions and on the other hand attempts to answer the
questions by means of DecoVis:

How do the decision methods LDM and EDM differ in the manipulation of
the BDDs during the computation?

BDDs only change during the LDM computation if a vertex gets removed from the
bag of a tree decomposition node. In contrast to LDM, EDM always generates new
BDDs consisting of all vertices from the bag of the corresponding tree decomposition
node. These observations are nicely shown by means of DecoVis.

How and why do instances with high edge density differ regarding LDM and
EDM?

By means of a benchmark test we demonstrated that cliques computed with EDM need
much more memory than the corresponding LDM computation. Due to the benchmark
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test result, regarding solving the Hamiltonian Cycle problem of several cliques with EDM
and LDM, we have a reason to believe that solving an instance graph with a high edge
density by means of EDM results in a much higher memory consumption than solving
the same instance graphs with the help of LDM. The reason for the higher memory
consumption can be appropriately illustrated by means of DecoVis: The BDDs computed
for each tree decomposition node contain in the EDM case considerably more nodes and
edges than in the LDM case.

What is the reason for similar or different performances when comparing
LDM and EDM?

With the help of DecoVis it turned out that conclusions about the performance of
EDM and LDM can only be drawn when unsatisfiable instances are considered. The
EDM computation analysis in DecoVis illustrated that the computation algorithm aborts
the process after only a few nodes. This leads to the conclusion that EDM has a
better runtime than LDM when solving unsatisfiable problems, because unsatisfiability is
recognized at a very early stage and the solving process is much earlier aborted.

What is the impact on computations if different variable orders are used in
real-world graphs?

We saw that no general statements about the performance of particular variable
orders can be made with the help of our benchmark tests and the analysis via DecoVis
when problems of real-world graphs are solved. Nevertheless, DecoVis nicely illustrates
that a well-chosen variable order has a positive effect on the construction of BDDs.

What is the impact on join nodes when different variable orders are used?

The impact of different variable orders on join nodes can easily be analyzed with the
help of DecoVis. The animation feature in DecoVis visualizes nicely the merging of two
BDDs into a join node. Since the join node has to include all solutions of the child nodes,
the construction of the join node mostly results in a BDD with more nodes and edges
than its child BDD nodes. We can conclude again that a well-chosen variable order has
also a positive impact on the corresponding BDD of a join node.
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CHAPTER 7
Summary and Future Work

This chapter gives a short summary about the approach for developing a tool for the
analysis of systems using dynamic programming on tree decompositions for solving
complex problems. Additionally, we look back to the applications of our implemented
tool DecoVis. In order to improve existing analysis features and support further analysis
possibilities, this chapter furthermore deals with ideas for future work.

7.1 Summary

In general, this thesis puts the focus on the development of a tool for analyzing systems
using BDD-based dynamic programming on tree decompositions for solving complex
problems. In order to understand the concepts and approaches of such BDD-based
dynamic programming systems, we first explained the concept of dynamic programming
on tree decompositions in detail and then introduced Binary Decision Diagrams (BDDs).
In addition to the description of already existing dynamic programming systems, we
examined available visualization concepts (graph libraries, frameworks, etc.) in order to
develop an analysis tool for such systems.

After having specified the technical requirements via UML diagrams, we implemented
our system in DecoVis. Beside the visualization of instances, tree decompositions and
computations, DecoVis provides several possibilities for analyzing dynamic programming
systems. Furthermore, a technical overview, all features and two different modes were
explained in detail.

In order to present differences of various systems applying dynamic programming on
tree decompositions regarding performance and stability, several benchmark tests were
generated and the results analyzed in further consequence. For this purpose, the dynamic
programming systems dynBDD, D-FLAT, D-FLATˆ2 and Sequoia were compared in form
of black-box-systems. We executed and analyzed different benchmark tests covering the
problems 3-Colorability, Stable Extension, Hamiltonian Cycle and Preferred Extensions.
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To examine the usage of DecoVis in practice, we analyzed different behaviors of
various options and settings of systems applying BDD-based dynamic programming on
tree decompositions. Emphasis of particular characteristics of instances supported the
analysis of specific instances. The visualization of various characteristics of normalization
types and emphasis of the occurrences of particular vertices from the instance graph
represented the main issues when tree decomposition were analyzed. Based on specific
instances that are selected from the results of benchmark tests, different decision methods
(LDM and EDM) and variable orders (instance, lexicographic, td-first, degree-high and
degree-low) were compared and analyzed in detail by means of DecoVis.

As a result, one of the main contributions of this master thesis is the development
of a completely new system for the analysis of dynamic programming to understand,
compare and improve the involved algorithms. Such a tool was not available yet. Another
contribution is that we implement this system as a web-based tool, which has the big
advantage that the concept and basic understanding of Dynamic Programming on Tree
Decompositions can be made available to a lot of people very easily. Last not but least,
we compared different tools applying DP on TD by means of benchmark tests. While
doing that we pointed out the strengths and weaknesses of these systems. Furthermore
the different configurations and settings for BDD-based DP on TD were investigated. All
these results can now be used for the improvement and further development.

The DecoVis software can be found at:
http://decovis.dbai.tuwien.ac.at

7.2 Future Work
In the course of the DecoVis implementation, the comparison of various systems applying
dynamic programming on tree decompositions and the analysis of DecoVis in practice,
we identified great potential for future work. Some improvements regarding DecoVis are
enumerated in the following:

Standalone tool for large instances and computations Some interesting instances
and computations were generated during the comparison of different dynamic program-
ming systems and the analysis of dynBDD by means of DecoVis that could not be
visualized with DecoVis. The reason was that the graph library and the browser cannot
deal with huge input graphs. Hence, we concluded that a browser is not the right place to
compute and visualize such complex information. The main problem of web browsers is,
that they are usually single-threaded. One possible solution to use full processor power
is to visualize the information in a standalone tool. The disadvantage of this approach is,
that the conveniences of web applications would not be provided any more.

Session-scoped web-application In order to shift several processor intensive func-
tions and data storages from the browser to the web-server, the web-application has to
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be adapted with the session-scoped feature. This extension leads to the availability of
client specific data on the web-server. One positive effect and example would be that
large BDDs would not be loaded from the web-server until their selection in the graphical
user interface.

File-refactoring of instances, tree decompositions and computations Instances,
tree decompositions and computations are currently stored in GraphML-format (XML).
To save time for the transformation into JSON format as used in the visualization library,
all components could be stored in JSON-format. Furthermore, the way of representing
BDDs of tree decomposition nodes in computation files can be optimized. Since identical
BDDs (with exactly the same BDD nodes and edges) are often stored redundantly, BDDs
could be listed after the tree decomposition nodes in the file, i.e. each tree decomposition
node contains a reference to the corresponding BDD.

Animate multiple computations concurrently To compare two computations with
the help of the current DecoVis version, computations have to be animated sequentially.
Saved animation steps (can be downloaded in form of PNGs) can be compared afterwards.
The parallel animation of several computations is desirable, where multiple computations
have to be preselected. Afterwards, the computations are animated concurrently in
multiple windows.

Instance generation and manipulation We often need to analyze several compu-
tations with instances as basis, that only differ minimally, i.e. one vertex or edge is
added or removed in contrast to the previous instance. Furthermore, a possibility for
automatically generating well-known graphs such as grid-based graphs, cliques or graphs
with fix vertex count and edge probability would be required. Hence, DecoVis could be
enhanced with instance generation and instance manipulation.

Support of several systems applying dynamic programming on tree decom-
positions The current DecoVis version provides the dynamic selection of a tool and its
execution parameters and options with the help of a property file. Since further systems
applying dynamic programming on tree decompositions can implement the generation of
instances, tree decompositions and computations fitting to the interface of DecoVis, the
selection between several integrated systems could be supported.

Support of further data structures DecoVis could support the interpretation and
visualization of further data structures (e.g. “Item trees”).

Benchmark-Environment Since most of the analyzed components in DecoVis are
obtained and chosen in the course of benchmark tests, a benchmark-environment could
be embedded into DecoVis. Programs to be benchmarked, used options and parameters,
instances, time of execution, iterations, used servers and much more could be controlled
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by means of DecoVis.

Some future work may also include more benchmark tests, for example benchmarks having
a focus on other problems, more instances and other metadata types for comparison.
Also new approaches and algorithms including different configurations and settings could
be investigated by using the DecoVis system.
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