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Kurzfassung

Die vorliegende Dissertation gibt einen Überblick über die Ergebnisse eines Projektes
an der Technischen Universität Wien seit 2012. Die enthaltenen Veröffentlichungen sind
im Laufe eines Kooperationsprojektes zwischen dem Institut für Mechanik und Mecha-
tronik (Abteilung für Regelungstechnik und Prozessautomatisierung), der FH Joanne-
um Kapfenberg als Forschungspartner und der evon-automation GmbH, Gleisdorf als
Industriepartner entstanden. Das Projekt wurde von der Österreichischen Forschungs-
förderungsgesellschaft (FFG Nr. 832103) gefördert.
Energieeinsparung in Bürogebäuden ist ein aktuelles Thema, welches in dieser Arbeit
behandelt wird. Der Schwerpunkt liegt auf der Entwicklung neuer Methoden für intel-
ligente und energieeffiziente Gebäuderegelungen, welche mit neuen modellprädiktiven
Regelungsstrategien umgesetzt wurden. Darüber hinaus konnte die erste Inbetriebnah-
me in einem realen Gebäude mit sehr guten Ergebnissen abgeschlossen werden.
In dieser Dissertation wird ein nichtlineares modellprädiktives Regelungskonzept für
komplexe Bürogebäude präsentiert. Die Auflösung widersprüchlicher Optimierungszie-
le, wie die Maximierung des Benutzerkomforts und die Minimierung des Energiever-
brauchs, stellt in der Gebäudeautomatisierung die größte Herausforderung dar. Modell-
prädiktive Regelung (MPC) ist in der Lage diese kontroversen Ziele zu lösen, indem sie
Wettervorhersagen und/oder Belegungsinformationen berücksichtigt. Da die Dynamik
in Gebäuden nichtlinear ist, ist für die Regelung ein geeignetes Modell notwendig. In
dieser Arbeit wird das nichtlineare Gebäudemodell durch ein datenbasiertes Black-Box
Modell dargestellt, welches direkt für die MPC Auslegung verwendet werden kann. Das
komplexe nichtlineare Optimierungsproblem wurde in mehrere weniger komplexe Teil-
probleme (Gebäudezonen) aufgeteilt. Jede Zone wird unabhängig von den anderen mit
einem individuellen nichtlinearen MPC (Fuzzy MPC - FMPC) geregelt. Wegen einer
Betonteilaktivierung im Gebäude existieren Kopplungen zwischen den Zonen, somit ist
das globale Ziel, eine kooperative Lösung zwischen den Zonen zu finden. Dieses Pro-
blem führt zu einer Kooperation der FMPCs, somit zu einem kooperativen Fuzzy MPC
(CFMPC), wobei eine unterliegende Iterationsschleife Konvergenz garantiert. Für den
CFMPC wurde Stabilität des geschlossenen Regelkreises und Konvergenz der koope-
rativen Iterationsschleife nachgewiesen. Darüber hinaus ist dieses Konzept allgemein
für komplexe Bürogebäude geeignet, da es in der Lage ist optimal mit Beschränkungen
sowie mit Störungen umzugehen.
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Abstract

The present PhD Thesis provides an overview on the results of a research project at
the Vienna University of Technology since 2012. The publications originated in the
course of a cooperation project between the Institute of Mechanics and Mechatronics
(Division of Control and Process Automation), the FH Joanneum Kapfenberg (Univer-
sity of applied science) as research partner, and evon-automation GmbH, Gleisdorf as
industrial partner. The project has been funded by the Austrian Research Promotion
Agency (FFG No. 832103).
A contemporary issue of potentials for saving energy in buildings is discussed in this
work. The research was focused on the development of new methodologies for smart and
energy-efficient building automation systems. In this context a new nonlinear model
predictive control strategy has been developed for a specific building. Moreover, the
commissioning in a this real building succeeded with excellent results.
In this PhD Thesis a nonlinear model predictive control (MPC) concept for complex
office buildings is presented. Conflicting optimization goals naturally arise in buildings,
where the maximization of user comfort versus the minimization of energy consump-
tion poses the main challenge. MPC technologies are able to reduce the energy demand
while increasing the user comfort, by taking weather predictions and/or occupancy in-
formation into account. Dynamic thermal behavior of buildings is typically nonlinear,
thus, for controlling a suitable model is necessary. In this work the overall nonlin-
ear building model is a data-driven black-box model, which can be directly used for
controller design. The proposed modeling approach is applicable for other complex
buildings. For the demonstration building the complex nonlinear optimization problem
has been split into a set of less complex subproblems (different building zones). For
each zone an independent nonlinear MPC (fuzzy MPC - FMPC) is designed. Because
of an integrated thermal activated building system couplings between different zones
occur, thus, the optimization goal is to find a cooperation between the zones. The
overall problem formulation leads to a cooperation of the FMPCs, to a cooperative
fuzzy MPC (CFMPC), where an underlying cooperative iteration-loop guarantees con-
vergence. Closed-loop stability and convergence of the cooperative iteration-loop has
been proven for the CFMPC concept. Additionally, this concept is suitable for complex
multi-zone office buildings, as it can optimally deal with input and output constraints
as well as with disturbances.
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Chapter 1

Overview

The building sector accounts for a major portion of the world’s energy consumption,
thus, efficient usage of energy is very important. A model predictive controller scheme
has been developed during this work and implemented in a demonstration building.

In Chap. 1 a motivation, the proposed concepts and the related basic research are
presented, the first results of the commissioning in the real building are given, and the
main contribution of the selected journal articles is described. The publications itself
and my own contribution in particular articles can be found in Chap. 2.

1.1 Motivation and problem statement
The global energy consumption of buildings, both residential and commercial, accounts
between 20 % and 40 % in developed countries [1]. Thus, efficient usage of energy
in buildings is an important task. Conflicting optimization goals naturally arise in
buildings, where the maximization of user comfort versus the minimization of energy
consumption poses the main challenge. Model predictive control (MPC) is the ideal
control strategy to deal with such problems, because both, forecasts of external distur-
bances as weather (ambient temperature and radiance) and internal disturbances (oc-
cupancy) can be explicitly handled by MPCs. Furthermore, MPC is able to deal with
input-constraints as well as with output-constraints. The general problem is presented
in Fig. 1.1, where ϑref represents the reference value for the indoor room temperature
and ϑact

mean the actual mean indoor room temperature of the multi-zone office building.
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Figure 1.1: General problem scheme of controlling a multi-zone office building
with internal and external disturbances.

The controller given in Fig. 1.1 consists of two nonlinear MPCs, on the one hand a
cooperative fuzzy MPC and on the other hand a mixed-integer MPC, for details see
Sec. 1.1.2.
The main part, presented in this work, is the cooperative fuzzy MPC, which guarantees
user comfort in a multi-zone demonstration building: University of Salzburg, Austria.

1.1.1 State-of-the-art review
Classical model predictive control (MPC) approaches are presented in [2, 3]. However,
thermal behavior of buildings is typically nonlinear, thus, controlling complex nonlinear
dynamic systems with MPC is a challenging upcoming task in the area of building
automation. Due to the typically high order, internal and external disturbances, and
strong coupling effects in buildings it is difficult, if not impossible, to directly apply
nonlinear control design methods.
Two effective methods to deal with this problem are: (i) Splitting the complex nonlinear
problem into a set of less complex subproblems, solving the subproblems independently,
and finding a cooperation between the set of subproblems. Note that a global optimum
and stability may not be guaranteed in this case, [2, 4, 5]. (ii) Using local linear model
networks (LLMNs) [6]. This LLMN approach is equivalent to Takagi-Sugeno (TS)-fuzzy
modeling, and an effective way to control such systems is given by fuzzy control, [7, 8].
Utilizing the LLMN or TS-fuzzy approach, respectively, the overall complex nonlinear
system is represented by a weighted superposition of the local linear models (LLMs).
In the field of building automation recent papers have shown that energy consumption
can be reduced significantly with the MPC technology, e. g. [9]. Taking the uncertainty
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of disturbances into account either by the use of weather predictions, [10], and/or
occupancy information, [11], by using stochastic MPC (SMPC) was found to be superior
in terms of comfort violations, [12, 13]. In [14] a two level distributed MPC approach
is presented, distinguishing energy conversion and energy distribution without explicit
interface between the controllers. The authors of [15] present an energy efficient MPC
for temperature control, based on a model from a simulation package. The focus in
[15] is on controlling the vapor compression cycle in an air-condition system, which is
used for cooling. An MPC only for a building heating system is introduced in [16],
in contrast to [14], where only building cooling systems are taken into account. In
opposition to [14, 15, 16], in this work the building is controlled for heating and cooling.
A fuzzy modeling approach for buildings is given in [17]. Škrjanc et al. [17] compared
both: theoretical and experimental modeling. The authors of [18] use fuzzy logic-based
advanced on-off control for thermal control in residential buildings. They achieved a
reduction of energy consumption while improving the control performance.
In this PhD Thesis, not only a straight-forward FMPC for buildings is shown. A more
intelligent algorithm for more than one fuzzy MPC (FMPC) is given, a coordinated
FMPC (CFMPC). This problem formulation is similar to distributed MPCs, [19], both
leading to a suboptimal solution. The authors of [19] present a distributed MPC struc-
ture for thermal regulation in buildings with an inner cooperation-loop. In [19], a
simulated building with 3 rooms (one room is one zone) is presented. Moreover, only
heating is proposed. In contrast to [19], in this work a real demonstration building
with 250 rooms per floor is shown. Therefore, the complexity in the recent work is
much higher and the optimization problem for all seasons is more challenging. Further-
more, in [19], only output-coupling is taken into account, which is irrelevant in sense
of building temperature control where the room/zone differences are very small. It is
much more complex to consider input-coupled systems, as it is presented in the recent
work. Furthermore, [4] illustrates the concept of suboptimal MPCs. Scokeart et al. [4]
establish conditions under which suboptimal MPCs are stabilizing. The theoretical
background of cooperative MPCs is given in [20], where the theoretical assumptions
are discussed and proved. Besides the guarantee of user comfort, saving energy and
therewith incurred expenses is a current research area for MPC application in building
as well, [21]. Therefore, also hybrid MPC for storage tanks in the buildings’ supply
level, [22] is an important issue in the area of building automation.
In this work however, nonlinear modeling is required for approximating the considered
dynamic building behavior. Because of the special nonlinar model approach, a FMPC
has been designed, which is completely new in case of fully automated building systems
for heating and cooling. Furthermore, CFMPC has been developed in the course of this
work, which allows to cooperate between different building zones. For this CFMPC
closed-loop stability and convergence has been proven and published. Therefore, a new
concept for fuzzy control has been developed.
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1.1.2 Problem definition
In case of model predictive control (MPC) of buildings the compensation of disturbances
belongs to the most challenging tasks. Both, external disturbances for buildings such
as weather (ambient temperature and radiance) and internal disturbances (occupancy)
can be explicitly handled by MPCs. Also large time-delays caused by the building’s heat
capacity, strong couplings between different building zones, and constraints (technical
and thermal) in all variables can be incorporated in the MPC optimization. This
complete coverage of the overall control problem together with the possibility to directly
balance the trade-off between comfort and energy saving makes a strong point for MPC
in building automation. Furthermore, the predictions of flexible pricing can also be
considered in the MPC optimization problem.
Since one of the most time-consuming parts in the design of model-based controllers is
the model design, it is essential to choose the best fitting model structure. Therefore,
modeling and zoning has to approximate the nonlinear dynamic behavior of complex
buildings. In addition, the building’s orientation (because of different radiance impact)
and the energy supply shafts are important facts to choose the different buildings zones.

In the specific demonstration building time constants in the user comfort level differ
from those of the energy supply level. Therefore, each level needs an appropriate model
for the specific nonlinear dynamics. Also in terms of the control purpose different prob-
lems occur for each level, thus, the complexity of modeling and controlling is definitely
high.

1.2 Goals
The overall goal is to split the global control problem into two less complex optimization
problems. On the one hand user comfort has to be guaranteed, and on the other hand
the potential of energy savings has to be utilized in the best way. In addition, because
of the different dynamical behavior and conflicting optimization goals of each building
level (see Sec. 1.1.2) a hierarchical concept has been developed. The hierarchical concept
consists of two different nonlinear MPCs, in the user comfort level the user comfort is
maximized and in the energy supply level the energy demand is minimized.
Moreover, because of different building zones a cooperation between these zones has to
be developed in the user comfort level, which leads to a cooperative nonlinear MPC.
The nonlinearity is covered by local linear model networks, and the resulting controller
is a so-called fuzzy MPC, thus, a cooperative fuzzy MPC (CFMPC) is developed for
guaranteeing comfort under technical and thermal constraints. The complete theory of
the CFMPC has been developed, closed-loop stability and convergence of the coopera-
tion has been proven. Furthermore, in the supply level a mixed-integer MPC (MI-MPC)
is given to optimize the switching between different supply sources.
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Neither the hierarchical concept, nor the different nonlinear MPCs are state-of-the-art
controllers in the field of building automation. Using just the CFMPC or the MI-MPC
is already a benefit for industry, because the optimization problems are decoupled and
are possible to be applied separately. Thus, flexibility for an implementation in real
buildings is given.

1.3 Methodology
In this work, two main research results are presented. The first one is the modeling of
a nonlinear dynamical building behavior under different assumptions and constraints,
which is suitable for MPC. The second one is, based on previously defined models, the
design and development of a proper nonlinear MPC concept for a multi-zone building.

1.3.1 General concept
Because of conflicting optimization goals the overall control goal is split into two less
complex decoupled optimization goals: 1) maximization of user comfort, and 2) mini-
mization of energy consumption. For both problems nonlinear MPC concepts are used
and applied in the real demonstration building. On the one hand a cooperative fuzzy
MPC (CFMPC) is developed to guarantee user comfort, and on the other hand a mixed-
integer MPC (MI-MPC) was designed as energy management system. Furthermore, the
multi-zone office building was split into two different models as well: 1) a model for
user comfort called “building”, and 2) a model of the supply level in the basement of
the building.
Such a decoupled optimization problem is called hierarchical, because the manipulated
variable (energy demand of the building for securing user comfort) of the first MPC,
the CFMPC, is the reference value of the second MPC, the MI-MPC. Thus, the energy
demand of the building itself is the single communication node between the decoupled
MPCs.
The benefit of such a hierarchical concept is the flexible controller structure, which
easily allows to add new building zones, see Sec. 1.3.2. In addition, the opportunity
for implementing only one MPC is given for industrial partners or owners/operators of
buildings as well. One drawback is the loss of the guaranteed global optimum of the
whole optimization, which can lead to a suboptimal solution. The developed concept
is a hierarchical MPC concept including an CFMPC and an MI-MPC, presented in
Fig. 1.2.
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Figure 1.2: Hierarchical MPC scheme consisting of an CFMPC and an MI-
MPC. Furthermore, ϑref

i is the reference trajectory and ϑact
i,mean the

actual mean indoor temperature for each zone i, i ∈ {1, 2, 3, 4}, for
zoning see Sec. 1.3.2-III. The different colors define the two main
research topics of the overall project.
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The most important benefits and the main structures of each MPC are listed in Fig. 1.2
and in the following:

1. cooperative fuzzy model predictive control (CFMPC)
• maximizes user comfort under technical and thermal constraints
• deals with forecasts of internal and external disturbances (occupancy, radi-

ance, ambient temperature)
• uses underlying fuzzy models for representing the nonlinear building dynam-

ics
• is a new concept which has been theoretically developed and proven

2. mixed-integer model predictive control (MI-MPC)
• minimizes energy consumption under technical constraints (latency time,

number of aggregate switches)
• uses linearized hybrid models (piecewise-affine models)

In this research approach the main focus is put on a newly developed CFMPC concept
(given in red in Fig. 1.2 and Fig. 1.3). This CFMPC and its necessary conditions are
discussed in detail in this work, under the assumption that a perfectly working energy
management system (equal to the MI-MPC) exists. This assumption is illustrated in
Fig. 1.3 and shows the main research topic of this PhD Thesis in red.

Figure 1.3: The considered scheme for this work is given in red, where the MI-
MPC for the supply level is assumed to be perfectly working (grey).
For i = {1, 2, 3, 4}, see Sec. 1.3.2-III.
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1.3.2 Modeling and building zones

I. Modeling
In this section the modeling approach for the building based on data-driven black-
box models is presented. A nonlinear black-box structure for a dynamical system is
a model structure that is adequate to describe the nonlinear building dynamics. The
structure is based on local linear model networks (LLMNs), which are equivalent to
fuzzy inference-rules, [6, 8]. This local linear model (LLM) approach is an efficient way
of model building for complex dynamic systems such as large multi-zone office buildings.
For getting such LLMs the local linear model tree algorithm (LoLiMoT) has been used,
which combines a heuristic strategy for partition space decomposition with weighted
least squares optimization [6]. It therefore provides an LLM approximation of globally
nonlinear dynamic systems.
In LoLiMoT Gaussian Kernel functions are fitted to a rectangular partitioning of the
two-dimensional partition space, spanned by (x1, x2), performed by a decision tree with
axis-orthogonal splits at the internal nodes, see Fig. 1.4.

Figure 1.4: First four iterations of LoLiMoT algorithm for a two-dimensional
partition space (x1, x2).

The selection of the partition space for the LLMs is one of the major tasks, and in
many processes it is given by expert knowledge. If this is not the case, it is necessary
to analyze the measurements to find the strongest nonlinearities in the process. It is
the key point of this algorithm to reach the best results. Note that in Fig. 1.4 the
blue dots represent the cloud of measurements, the red boxes define the chosen LLM
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for the next split (thus the worst performing LLM) and the black boxes give the LLMs
which are kept in the next iteration. Each local model belongs to one hyper-rectangle
in which center the fitting point is placed. New hyper-rectangles are found by testing
the possible splits in all dimensions and taking the one with the highest performance
improvement. The algorithm stops when reaching a predetermined modeling error or
maximum size of the tree.
The algorithm is listed in a short summary, see also Fig. 1.4:

1. Start with a global linear model.

2. Perform axis-orthogonal splits on that model.

3. Find the worst LLM by calculating the local loss function for each model.

4. The hyper-rectangle of the worst LLM is split into two halves by doing an axis-
orthogonal split. Divisions in all dimensions are tried.

5. Fit LLMs for all possible alternative splits by weighted least squares.

6. Compare these fits and implement the one split with the highest performance
improvement.

7. If the termination criterion is met then stop, else go to Step 3.

As shown in [6], two intrinsic features make LoLiMoT extremely fast: First, at each
iteration only the worst local model is considered for division. Second, in Step 3 only
the parameters of those local models that are newly generated by the division have to
be estimated. For the global nonlinearities in the building, the LLMs are blended with
mentioned Gaussian Kernel functions, which leads to fuzzy modeling, and subsequently
to fuzzy model predictive control (FMPC).
Takagi-Sugeno (TS)-fuzzy models, [7], are suitable for approximating systems by in-
terpolating between local linear, time-invariant auto-regressive models with exogenous
inputs (ARX), [8]. The resulting outputs of the LoLiMoT algorithm are parameters
for an ARX-model. Therefore, the equivalence to a TS-fuzzy model is obtained, which
leads to a resulting fuzzy MPC in Sec. 1.3.3.

II. Building zones
Zoning of the different building zones is one of the major tasks, when talking about a
building model. Therefore, four main reasons exist, which lead to multi-zone buildings:

1. More than one supply shaft exists.

2. New buildings contain large glass fronts, thus, the orientation depending on dis-
turbances (radiance) is important.
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3. The energy input in the building is based on different sources: thermally activated
building system, fan coils, etc.

4. The supply results from combinations of different sources: geothermal energy, free
cooling towers, district heating, etc.

In this work two floors including the office rooms have been considered for maximization
of the user comfort. The building contains four supply shafts, which connect the piping
for the cooling and heating supply and return with the supply level in the basement.
The modeling of this specific building is based on these four main shafts, because each
of these shafts supplies one building zone. These zones are distributed according to
the building’s orientation, which is equal to the cardinal direction. This fact makes the
modeling more difficult, since the radiance input is given as a mixture of north-east,
south-east, south-west and north-west. For control purposes, the building model is split
into these four independent zones (red in Fig. 1.5) and one coupling zone (given in blue
in Fig. 1.5).

Figure 1.5: Zone splitting for modeling the University building in Salzburg,
Austria. This scheme represents one floor of the office rooms, note
that the second floor has exactly the same footprint.

III. Model details for specific demonstration building
In the recent approach for the specific building for each zone one LLMN with 3 LLMs
was built. Each such TS-fuzzy model is constituted by an LLMN, which consists of
LLMs. For each LLMN one FMPC is in use. The 3 LLMs of each FMPC are dedi-
cated to the relevant seasons: winter, transition season (spring and fall), and summer.
Overall 13 models were created for control purposes based on historical data and expert
knowledge. In addition, one global model for the floor (coupling zone) is designed for
a global MPC.
Note that a full cross validation and a 24 hours ahead prediction for all 13 models have
been made, and have achieved good results, see Sec. 2.3.
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1.3.3 Cooperative fuzzy model predictive control

I. Basic concept
The basic idea of the CFMPC is based on the fact that parallel input-coupled FMPCs
are cooperating with each other. It has to be assumed that all FMPCs are parallel
and output-blended, additionally an input-coupling between the different FMPCs has
to exist.
The cooperative iteration-loop is computed between consecutive time steps and illus-
trated in Fig. 1.6.

Figure 1.6: Schematic flow-chart of the cooperation iteration-loop between par-
allel FMPCs. Between consecutive time steps k and k+ 1 the q-th
cooperative iteration update hq

i (uj) is computed in a loop for the
i-th manipulated variable of FMPCi, where i = F and j = F \ i.
The resulting cooperative solution for the manipulated variable is
given by u?.
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Only ui for FMPCi ,∀i ∈ F = {1, 2, . . . , F}, is iteratively updated, all other variables
are assumed to be constant during the iteration-loop (e. g. external disturbances). Note
that the updated manipulated variables of FMPCj, uj, ∀j ∈ F \ i are disturbances for
FMPCi. Between consecutive time steps, the cooperative FMPCs perform q iterations
of a feasible path algorithm. Let u? be the overall blended output after the cooperative
iteration-loop. u? is computed such that some cost function is minimized and accept-
able for each zone. The cooperative iteration-update is given by a function hq

i (uj),
which calculates the q-th iteration uq

i . This update is calculated in each iteration step
depending on all other manipulated variables uj. The cooperative iteration-updates are
calculated in a loop until a maximal number of iteration steps (qmax) is reached or if the
increment between the (q − 1)-th and q-th manipulated variable (for all F variables)
is smaller then a given threshold ε. If one of these criteria is fulfilled, the algorithm is
advancing to time step k = k + 1.
The algorithm is listed in a short summary, see also Fig. 1.6:

1. Start with fixed time step k and iteration step q.

2. Calculate uq
i for the q-th iteration with the iteration update hq

i (uj), i = F and
j = F \ i.

3. Check the following criteria:
a)

∣∣∣uq−1
i − uq

i

∣∣∣ < ε,
b) q = qmax.

4. If one criterion is TRUE go to time step k = k + 1.

5. If both criteria are FALSE go back to 2 and start again with q = q + 1.

It is important to note that the individual FMPCs have to be output-blended in this ap-
proach. Furthermore, closed-loop stability of the CFMPC has been proven, see Sec. 2.2.
Moreover, a convergence proof for the cooperative iteration-loop is presented in Sec. 2.2.
In addition, the CFMPC algorithm is able to handle hard constraints as well as unstable
LLMs, see Sec. 2.2.

II. Specific CFMPC for building implementation
In this section the CFMPC structure for the specific building is introduced. Note, it
is assumed that a suitable energy management system (EMS) exists, which is able to
provide the requested energy demand of the CFMPC scheme.
For control purposes, the overall nonlinear building is split into four different zones, see
Sec. 1.3.2–II, which are consisting of input-coupled TS-fuzzy models, see Sec 1.3.2–I.
The CFMPC is able to control the building over the whole year, because the fuzzy rules
are representing the three different seasons, see Sec. 1.3.2–III.
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Energy supply in this specific building is provided by a concrete activated floor distribut-
ing supply water in a second circuit, which means that this building has a thermally
activated buildings system (TABS - coupling zone). Another supply into the building is
based on Fan Coils (FC), which are required for the fast dynamics. The time constant
of TABS is given by approximately 48 h, in contrast to the time constant for FC which
is assumed to be 4 h. The coupling zone is controlled by TABS and each individual zone
is managed by FC, which are able to control fast and react to short-term disturbances.

The control of each LLM is realized by MPC, for each building zone the associated
MPCs are output-blended by the fuzzy membership functions, which leads to FMPC.
In addition to the FMPCs a global MPC is controlling TABS, which affect all other
zones. To coordinate the different controllers a cooperative iteration-loop is assumed,
which leads to CFMPC. The concept is developed for a specific demonstration build-
ing and can be easily adapted for other complex buildings. The CFMPC structure for
the specific building is introduced, and in Fig. 1.7 the control concept for 4 FMPCs
(FMPCi, for the specific zone: i ∈ F = {1, 2, 3, 4} holds) cooperating with 1 global
coupling MPC (MPCT ) is illustrated.
The controlled variable is the average indoor room temperature of each zone denoted
by ϑact

i,mean, ∀i ∈ F. In Fig. 1.7, ϑref
i describes the reference trajectory for the i-th FMPC

of the closed-loop system and ϑact
i,mean represents the actual value. For the coupling zone

the mean ϑ̄ref of the other 4 reference values is taken, and the actual mean indoor room
temperature is given as ϑ̄act.
The manipulated variables before the cooperative iteration-loop are denoted by uj,
j = {T, Fi}, ∀i ∈ F. The “T” denotes “TABS” and “Fi” denotes the control by FC for
zonei. Furthermore, three main disturbances to the building are considered: radiance,
ambient temperature, and occupancy.
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Figure 1.7: CFMPC scheme for the specific building. The scheme shows the
structure of a CFMPC, which is used for the demonstration build-
ing, with 4 different zones, and the assumption that the supply level
is perfectly controlled by an existing energy management system
(MI-MPC).
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1.4 Summary of scientific approaches
In Publication A, see Sec. 2.1, an effective modeling approach for building heating
dynamics is presented. The proposed model is a data-driven fuzzy model, which repro-
duces the nonlinear dynamic behavior of a specific complex building. The fuzzy model
is based on LLMs, for which a two-dimensional partition space is obtained. Benefits
of this effective modeling are the low complexity by design, and that the fuzzy black-
box model is suitable for MPC without any transformations. A full cross-validation
highlights the results of such a low-order fuzzy model for buildings. In summary, an
effective fuzzy black-box model for building heating dynamics has been presented in
this work.

In Publication B, see Sec. 2.2, a newly developed CFMPC concept is presented. The
overall nonlinear plant is assumed to consist of several parallel input-coupled TS-fuzzy
models. Each such TS-fuzzy subsystem is represented in the form of a LLMN. The
control of all LLMs in each LLMN is realized by an MPC. For each LLMN the outputs
of the associated MPCs are blended by the fuzzy membership functions, which leads to
a resulting structure that one FMPC is designed for each LLMN-subsystem. Overall,
a parallel combination of FMPCs results, which mutually affects all LLMN-subsystems
by their respective manipulated variables. To compensate detrimental cross-couplings
in this setup, a cooperation between the FMPCs is introduced.
For this cooperation, convergence is proven and for the closed-loop system a stability
proof is given. In addition, it is demonstrated in a simulation example that the pro-
posed input-constraint CFMPC algorithm achieves convergence of the fuzzy LLMNs
within few cooperative iteration steps. This work shows theoretically that the CFMPC
algorithm is able to handle hard constraints as well as unstable LLMs. Simulations are
given to demonstrate the effectiveness of the theoretical results.

In Publication C, see Sec. 2.3, the developed CFMPC (Sec. 2.2) is presented to co-
ordinate different input-coupled manipulated variables of buildings (building model is
presented in Sec. 2.1). The overall nonlinear building is split into four different zones,
which are consisting of input-coupled TS-fuzzy models, and one global coupling zone.
The CFMPC concept is able to control both modes, heating and cooling, in contrast to
most of the state-of-the-art MPCs in buildings, where just heating or cooling systems
are controlled. Thus, the validity over all seasons is one great advantage. The concept
is developed for a specific demonstration building and can be easily adapted for other
complex buildings. The CFMPC achieves significantly higher control performance with
slightly less energy consumption in contrast to state-of-the-art controllers and MPCs in
building. The closed-loop simulation examples verify the advantages and effectiveness
of the CFMPC in building automation.
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In Publication D, see Sec. 2.4, for the sake of completeness an excursion to the MI-
MPC and the underlying supply level is given. It shows the basic idea of a hybrid
energy management system for the supply level in buildings, using an MI-MPC, in a
hierarchical control scheme.

1.5 Scientific contributions of this work
The scientific contributions of this work are universally applicable. The developed
concept is flexible and easy to extend to additional building zones. However, data-
driven modeling depends on specific building measurements, thus, obtaining a valid
model is one of the most time-consuming parts. The hierarchical controller concept
(consisting of two nonlinear MPCs) leads to a decoupling of conflicting optimization
goals. Therefore, the new concept is easy to implement and flexible in the structure.
The most theoretical useful contribution is the development of the CFMPC, for which
closed-loop stability and convergence has been proven. In addition the commissioning
in the real building has already been performed with excellent results in the first month
of operation.
The scientific contributions of this work and can be summarized:

• Development of flexible and effective fuzzy black-box models.
– These models are valid for adoption in various nonlinear processes with non-

linear system behavior.
– For the specific building a full cross-validation underlines the model quality.

• Flexibility of hierarchical control concept.
– Decoupling of conflicting optimization problems.
– Easy to implement and the possibility to use individual MPCs, instead of

the overall hierarchy.
– For the specific building the flexibility for adding new building zones or

supply sources is given.
– The preparation for future integration in Smart Grids and for flexible pricing

is given and can be easily added in the specific MPCs.

• Development of CFMPC.
– The complete theory has been developed with a completely new FMPC.
– Closed-loop stability has been proven.
– Convergence has been proven.
– The CFMPC has been tested for unstable LLMs and oscillating LLMs with

input and output constraints.
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– For the specific building a flexibility for adding new building zones is given.
– The communication between different input-coupled systems has been im-

proved and is easy to handle with the CFMPC.

• Commissioning in the real building.
– The CFMPC is active in the demonstration building.
– The concept is easy to implement and flexible.
– The CFMPC achieves very good results right from the start in the closed-

loop on-line run.
– The proof of concept has passed the commissioning with excellent results.
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1.6 Commissioning in a real building

1.6.1 Facts of the demonstration building
The demonstration building in this work is a 27.000 m2 university building near the
center of Salzburg, Austria. It has five floors above ground containing several large and
numerous smaller meeting rooms, offices and lecture rooms. In this approach two floors
including the office rooms have been considered for maximization of the user comfort.
On each floor the building contains 250 office rooms, the footprint of these floors is
identical and each has an effective area of about 6.500 m2. The facade of this special
building has a glass ratio of about 70 % and outside blinds extend over 2 floors, see
Fig. 1.8.

Figure 1.8: Demonstration building: University building in Salzburg, Austria.
©Luigi Caputo

1.6.2 Simulation setup
The simulation set-up for the demonstration building is given in Sec. 1.3.3-II. In the
simulation the developed CFMPC has been compared to historical data of the state-of-
the-art PID controller, which was originally implemented in the building. Furthermore,
the CFMPC has been compared to a global linear MPC and an FMPC neither with
cooperation nor with the knowledge of coupling zones.
The CFMPC concept shows a performance increase of 21.86 % as compared to an FMPC
concept without cooperation. Furthermore, the performance of the presented CFMPC
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concept provides an improvement of 19.67 % over the rule-based PID controller in the
specific demonstration building and 16.17 % against a global linear MPC. The relations
of performance are calculated by the mean squared error (MSE).

1.6.3 Results of the commissioning in the real building
In this part the results of the first commissioning with optimal parameters from theo-
retical calculations is shown, see Fig. 1.9.

Figure 1.9: First results of the controller commissioning in the real building.
In the red area the conventional PID controller is still active, in the
gray field the CFMPC becomes active and tuning of an underly-
ing basic PID control loop has been done (three-way valve of heat
supply TABS), and in green the work of only the new CFMPC is
illustrated.

In Fig. 1.9 the strategy of the conventional PID controller is shown in the red area,
activating the CFMPC and tuning an underlying basic PID controller (three-way valve
of heat supply TABS) is given in the gray field, and the completely integrated CFMPC
in the building is shown with a green background. The whole commissioning with the
transition from the conventional strategy to the fully automated CFMPC took only a
few days. In Fig. 1.9 the switch from the conventional PID controller to the CFMPC is
given. In the first and the last subplot the disturbances ambient temperature ϑambient
and radiancej are given, j = {north, east, south, west}. In the second subplot the mean
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indoor room temperatures ϑact
i,mean of the i zones are illustrated, i = {NE, NW, SE, SW}.

It is obvious, that the mean zone temperatures are strongly correlated with both dis-
turbances, however, the maximal temperature differences during 24 hours in the green
area are given in Tab. 1.1.

Zone Temperature difference
zoneNE ∆NE = 0.6386 ◦C
zoneNW ∆NW = 0.8142 ◦C
zoneSE ∆SE = 0.5652 ◦C
zoneSW ∆SW = 0.7359 ◦C

Table 1.1: Difference between the maximal and minimal indoor mean room
temperature of each zone: ∆i = max(ϑact

i,mean) − min(ϑact
i,mean), i =

{NE, NW, SE, SW} for samples 1000 to 1300 in Fig. 1.9.

In the third and fourth subplot of Fig. 1.9 the heat supplies of TABS and FC are
illustrated. In the red field the conventional PID controller was active and the variance
of both supply temperatures is high. In subplot three the tuning of an underlying basic
PID controller for the TABS supply temperature has been done and is shown in the
gray area. Finally in the green field the CFMPC is fully integrated, and in subplot
three and four supply temperatures of the new strategy are shown, which are almost
constant. Furthermore, it is obvious that the strategy of the CFMPC favors lower
supply temperatures. The fourth subplot of Fig. 1.9 illustrates the drop of the average
supply temperature of FCs by approximately 10 ◦C, caused by the energy minimizing
CFMPC strategy.
In Tab. 1.2 a comparison over one week based on an equivalent variance in the ambient
temperature between the conventional PID controller concept and the newly developed
CFMPC concept is given.

Variance of. . . PID controller CFMPC
ϑambient 3.2418 ◦C2 3.4305 ◦C2

ϑact
NE,mean 0.0860 ◦C2 0.1008 ◦C2

ϑact
NW,mean 0.1163 ◦C2 0.1094 ◦C2

ϑact
SE,mean 0.0909∗ ◦C2 0.1679∗ ◦C2

ϑact
SW,mean 0.1510∗ ◦C2 0.2545∗ ◦C2

TABSsupply heat 0.2026∗ ◦C2 0.0562∗ ◦C2

FCsupply heat 6.5384∗ ◦C2 0.0049∗ ◦C2

Table 1.2: Comparison over one week based on an equivalent variance in the
ambient temperature. ∗ stands for a significant difference with α =
2%, Levene Test.
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The most impressive result is that the variance in supply temperature of both supply
sources can be significantly reduced while variance in the mean room temperatures
in the different zones is only slightly increased. The control strategy of the CFMPC
is more smooth with less supply temperature in ◦C. No user complaints have been
recorded since the commissioning of the CFMPC, due to the small difference in the
standard deviations of temperatures (see Tab. 1.3) which always stays below 0.12 ◦C.
Therefore, the standard deviation in ◦C are given in Tab. 1.3 to underline the results
even if a significant difference has been analyzed.

standard deviation of. . . PID controller CFMPC
ϑambient 1.8005 ◦C 1.8522 ◦C
ϑact

NE,mean 0.2932 ◦C 0.3175 ◦C
ϑact

NW,mean 0.3411 ◦C 0.3308 ◦C
ϑact

SE,mean 0.3015 ◦C 0.4098 ◦C
ϑact

SW,mean 0.3886 ◦C 0.5045 ◦C
TABSsupply heat 0.4501 ◦C 0.2370 ◦C
FCsupply heat 4.5005 ◦C 1.2476 ◦C

Table 1.3: Comparison of standard deviations depending on Tab. 1.2.

Tab. 1.3 illustrates that the differences between the standard deviations (CFMPC to
conventional PID control) in all zones are in the interval [0.0103 ◦C; 0.1159 ◦C], where
the smallest difference is in zone NW and the biggest in zone SW. However, the dif-
ference between the two control strategies is apparently not noticeable for the user.
Additionally, Fig. 1.10 illustrates, that the CFMPC is able to minimize the operating
range of both supply sources. Note that zero-mean measurements are used based on
the data of Tab. 1.2.

Figure 1.10: Boxplots of zero-mean supply heat temperatures for comparison
of the conventional PID controllers with the proposed CFMPC.
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1.6.4 Summary of commissioning
To summarize the proof of concept in the real building: The CFMPC achieves excellent
performance in the first commissioning, the transition has been smooth and without
any complications. Therefore, the developed CFMPC concept is promising to obtain
energy savings with equal user comfort, even without an additional energy management
system.
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a b s t r a c t

In this paper an effective modeling approach for building heating dynamics is presented. The proposed
model is a so-called fuzzy black-box model. This data-based model is able to reproduce the nonlinear
dynamic behavior of a complex office building split into different zones. The fuzzy black-box model is
based on local linear models (LLM), for which a 2-dimensional partition space is obtained. In the proposed
work data pre-processing is one of the most important tasks and thus extensively explained. This includes
the selection of suitable input and output data and selection of appropriate model orders. Furthermore, it
is presented that even with a small amount of data good models can be achieved. The output of this LLM
algorithm is an autoregressive model with exogenous input (ARX). The resulting model is specifically
tailored for model-based control design. The uniqueness of the presented work lies not only in the low-
order of the building model, but also in the way of retrieving a model in the most effective and time-saving
way.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

Energy efficient climate control is an important current task,
hence there has been a growing rethinking in energy savings. The
building sector accounts for about 40% of the total energy consump-
tion [1]. In order to guarantee indoor environmental quality (IEQ)
while minimizing building energy consumption, it is necessary to
both invest in passive energy saving measures (isolation, external
shading, freecooling, etc.) and in intelligent automation schemes
[2]. Energy savings must be carefully assessed with respect to the
consequences in IEQ, which is not only affected by thermal qual-
ity but also by air quality, lighting, sound, odor, and vibration. It
is known, that model predictive control (MPC) is able to reduce
this energy consumption in an efficient way [3]. However, it is also
common knowledge that modeling is crucial for a well operating
controller. Therefore, this work shows a new effective approach for
creating a dynamical nonlinear building model. This model on the
one hand is able to represent the important nonlinear effects of a
specific building and on the other hand is well suited for control
purposes.

∗ Corresponding author. Tel.: +43 1 58801 325522.
E-mail addresses: michaela.killian@tuwien.ac.at (M. Killian),

barbara.mayer@fh-joanneum.at (B. Mayer), martin.kozek@tuwien.ac.at (M. Kozek).

An effective modeling approach for building heating systems is
introduced by identifying a fuzzy black-box model. A local linear
model tree (LoLiMoT) algorithm is proposed for creating an effi-
cient building model [4,5]. This fuzzy black-box algorithm uses
local linear models (LLM), a so-called partition space, and different
parameters for training based on measurement data. In this work
a 2-dimensional partition space is used, this space is given from
expert knowledge or it is manually chosen, it represents the most
important nonlinearities in the process to be modeled. One high-
light of this work is, that within the whole building dynamics each
building-zone can have different dynamics. Therefore, the whole
building is split into zones, which are modeled separately.

1.2. State-of-the-art MPC

Since the specific MPC formulation is an important driver for the
building model structure, a short overview on MPC and building
applications is given.

Classical linear model predictive control (MPC) approaches are
presented in [6]. However, thermal behavior of buildings is typically
nonlinear, which leads to a nonlinear MPC (NMPC) approach.

In terms of buildings the authors of [3] present an MPC for
an energy efficient building heating system, based on RC models.
These models are based on the description of heat transmission
between nodes that are representing temperatures, whereas the
present approach is based on LLMs suitable for a specific NMPC.
A comparison between different control strategies of thermal

http://dx.doi.org/10.1016/j.enbuild.2015.02.057
0378-7788/© 2015 Elsevier B.V. All rights reserved.
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Nomenclature

ARX autoregressive model with exogenous input
FC fan coil
FMPC fuzzy MPC
k� steepness of the membership function
LLM local linear model
LLMN local linear model network
LoLiMoT local linear model tree
ṁ mass flow in kg s−1

MPC model predictive control
NE north-east
NMPC nonlinear MPC
NW north-west
occi occupancy of zone i in %
Q̇ heat flow in J
radi radiance of zone i in W/m2

SE south-east
SW south-west
TABS thermal activated building system
TS Takagi–Sugeno
t90% 90% value of step-response in %
ϑambient ambient temperature in K
ϑFC heat supply FC in K
ϑindoor indoor room temperature in K
ϑmean,i

indoor mean indoor temperature of zone i in K
ϑTABS heat supply TABS in K

comfort in buildings is presented in [7]. The results clearly indicate
that the best control strategy for the building in [7] is an MPC
controller. Another advantage of MPC is the effective compensation
of disturbances. For a detailed discussion about MPC dealing with
disturbances in buildings see [8,9]. For MPC dealing with weather
forecasts see [8], different occupancy patterns are presented in [9].

An advantageous model for MPC is the Takagi–Sugeno (TS)
fuzzy model [10,4,11], which is used in the presented approach.
The resulting NMPC is a so-called fuzzy MPC (FMPC), [11,10].
Nelles et al. [4] discussed the identification of dynamical nonlinear
processes with a fuzzy black-box approach, and the equivalence
between LLMs and TS-fuzzy models is shown.

FMPC is able to deal with overall nonlinear systems by control-
ling LLMs and produce the global nonlinear output by blending the
LLMs with membership functions. In [12–14] the FMPC concept
with underlying TS-fuzzy models is presented, both in practice and
theory.

1.3. State-of-the-art system identification

For system identification different basic approaches are com-
mon. The classical linear system identification is described in [15].
In this work the superior performance of nonlinear over linear
model structure is shown utilizing LLM identification techniques
[4,11]. Privara et al. [16] have shown that the time and effort for
modeling a building is much larger than for the consecutive control
design. In [17,16] the relevance of models for MPCs is presented,
as well as an overview and an analysis of different identifica-
tion tools, most importantly deterministic-physical modeling or
probabilistic semi-physical modeling. The problem of probabilistic
semi-physical modeling, mentioned in [16] is the high compu-
tational demand, therefore it is suitable only for a smaller set
of measured variables. For deterministic semi-physical modeling
least squares (LS) are used for solving the parameter estimation
problem. The possible advantage is an efficient solver with guar-
anteed global optimum of the parameter estimates, however, the

physical model part requires expert knowledge and an incorrect
model structure will inevitably lead to biased parameters. In the
proposed work a fuzzy black-box algorithm is used for identifying
the utilized ARX, furthermore, a low-order model is assumed by
design. This approach relief’s the user of physical modeling and is
computationally efficient.

In [18] a building model suitable for MPC based on RC models
is presented. The main limitation of the model is the focuses on a
single room, thus neglecting thermal couplings between neighbor-
ing zones. In contrast, the proposed method utilizes an effective
low order model for two floors of a building (250 rooms), which is
suitable for MPC design.

Black-box modeling for buildings has been presented earlier.
In [19,20] black-box modeling of buildings has been reported,
however, in [19] subspace identification is used, and in [20]
input\output data are generated by using co-simulation between
EnergyPlus and Matlab. The presented subspace approach, pre-
sented in [19] uses orthogonal and oblique projections to find
Kalman state sequences for obtaining then system matrices, while
in the proposed work local linear ARX models are identified by using
only orthogonal splits in the partition space, which leads to time-
variant system matrices. In contrast to [20] in the recent approach
real measurements are chosen for the identification. In [21] a gray-
box model is has been presented, where system identification is
used to identify reduced-order models. White-box modeling is also
common in building modeling. This approach gives nearly perfect
physical models of a building, but these highly complex models
are not suitable for control design. Therefore, they are used for
reproducing missing measurements, for validation, or to simulate
open-loop cases. However, in this approach fuzzy black-box mod-
eling is used for defining the global nonlinear thermal behavior on
buildings, subjected to the condition that the system has a man-
ageable amount on states, inputs and outputs.

In [22] a Heating, Ventilation and Air Condition (HVAC) sys-
tem of a building is controlled with fuzzy control, therefore a
TS-fuzzy model for the building dynamics is used. The authors of
[22] achieved a more effective and more energy-efficient control
strategy in contrast to the conventional PI controller. In that as well
as in [22,23] Gaussian Kernel functions are used for the membership
functions.

The main difference between these approaches and the present
one is, that in the current work a dynamical nonlinear model is
identified, whereas in [23] a static model is assumed. Furthermore,
the partition space in [23] is chosen as the whole input space, while
in this paper a 2-dimensional partition space is. In addition, in the
approach proposed here a fuzzy black-box model for a heating is
presented, whereas in [23] only illuminance is considered.

In modern buildings Thermal Activated Building Systems (TABS)
and Fan Coils (FC) are the major supply for building heating and
cooling control. In [24] a fuzzy model for FC is given and described.
The main advantage of the fuzzy controller for FC is not mainly
given in performance, but in the easiness of understanding and
including fuzzy linguistic logic. In the approach proposed here a
fuzzy model for the whole building heating dynamics is presented
(two floors, each including 250 rooms).

Another common approach in data-driven modeling is using
neural networks (NN) [4,5]. In [25] an energy analysis of a building
using two different types of artificial neural networks (ANN) is pre-
sented. Least squares and back propagation algorithms are used in
[25], demonstrating that ANNs outperform linear models over large
time frames. In [26] a neural-network based MPC for HVAC systems
using predicted mean vote (PMV) index is given. In [26] the PMV
index depends on six factors: metabolic rate, clothing insulation, air
temperature and humidity, air velocity, and the mean radiant tem-
perature. Utilizing a neural-network based MPC significant energy
savings from approximately 50% are reported.
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Fig. 1. Photo of the University building in Salzburg, Austria.

The remainder of this work is structured as follows: In Section 2
a general description of the demonstration building is given. The
methodology of fuzzy black-box modeling is outlined in Section 3.
The following section contains the building identification and the
specific model structure. Simulation and validation results are pre-
sented in Section 5, and Section 6 summarizes the results.

2. Building description

The building which is presented in this work is a 27.000 m2 Uni-
versity building in the center of Salzburg, Austria. It has five floors
above ground containing several large and numerous smaller meet-
ing rooms, offices and lecture rooms. There are six atriums within
the building complex (see Fig. 2), which are additional disturbances,
because of incident radiation. The facade of this special building
has a glass ratio of about 70% and outside blinds, see Fig. 1. In this
paper the modeling is limited to the second and third floor, where
the offices of the building are located (in Fig. 1 these zones are
shown with the wooden blinds). In each of these floors the building
contains 250 office rooms, the footprint of these floors is identical
and each has an effective area of about 6.500 m2. For the layout see
Fig. 2. The building contains five shafts nearby the side staircases. In
four of these shafts, the piping for the (cooling and) heating supply
and return are installed, connecting the supply level in the base-
ment to all floors. The modeling of this specific building is based on
these four main shafts (see Fig. 2), because each of these shafts sup-
plies one building-zone. These zones are chosen according to the
building’s orientation, which is equal to the cardinal direction. This
fact makes the modeling more difficult, since the radiance input is
given as a mixture from North-East (NE), South-East (SE), South-
West (SW) and North-West (NW), see Fig. 2. In this work zone NE
and zone SW are considered to be identified by a fuzzy black-box
algorithm. Zone SW is affected by radiance the most, in contrast
to zone NE, which is affected by radiance the least. For zone SE
and zone NW the same method is used, but in this work only the
modeling of zone NE and zone SW are demonstrated.

In this approach an effective fuzzy black-box model for heating
is presented and validated. In this specific building energy input is
provided by a concrete activated floor distributing supply water in
a second circuit, which means that this building has a Thermal Acti-
vated Buildings System (TABS). The supply into the building of this
resource is based on Fan Coils (FC). The supply heat temperatures
are denoted by ϑTABS and ϑFC. Both, district heating and heat pumps,
can contribute to the supply temperature in the building. More
specifically, Fig. 3 presents the inputs and output in an example
of one single-room. Note, that ϑambient denotes the ambient tem-
perature and ϑindoor denotes the output, the averaged indoor room

Fig. 2. Layout of the second floor, which is identically partitioned as the third floor.
In this picture the atriums and the four main shafts are shown. Furthermore, the
orientation and the layout of the rooms is given.

temperature for one room. Note that a “generic indoor tempera-
ture” ϑmean

indoor can be assumed for one building zone, because of the
fact that inside the building only insignificant temperature differ-
ences occur. The walls in all rooms of one zone have approximately
the same temperature and the temperature distribution is assumed
to be homogeneous. Hence, radiation of opaque walls is neglected
and the mean of all indoor air temperatures as measured by the
automation system. Temperature sensors are integrated in the
room operating system, and the mounting height is handicapped
accessible based on DIN18040, approximately between 85 cm and
105 cm. The sensors have a measuring range of 273.15–323.15 K,
and an accuracy of ±0.1 K. External radiance is measured by four
mono-crystal silicon cells, oriented in the cardinal directions. These
sensors have a measuring range of 0–1200 W/m2, an accuracy of 5%
(ISO 9060), and a long-term stability of <1%/year.

3. Black-box model

3.1. General black-box modeling aspects

In this approach a fuzzy black-box model for buildings is pre-
sented. It is to note, that for a nonlinear dynamical black-box model

Fig. 3. Inputs and output for the specific black-box model shown in an example.
The supply heats are denoted by ϑTABS and ϑFC.
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Fig. 4. Schematic work flow of data-driven black-box model.

many measurements of the process are needed. These measure-
ments should include the typical behavior of the building heating
dynamics, and also contain stronger excitation of the heat supply
than during the normal process. However, for a good and realistic
black-box model these measurements have to describe the main
nonlinear ties in the process (building dynamics).

In Fig. 4 it is shown how a data-driven black-box model in gen-
eral works. For modeling with a black-box, input- and output-data
are required [15]. The matrix of input-data X is inserted in the real
process (building itself) and in the black-box model of this pro-
cess. From the real process the outputs Y are measured. The model
simulates a so-called predicted output Ŷ . The goal is to minimize
the error between the predicted output of the model Ŷ and the
real measured output of the process Y. This leads to minimize the
error ‖Y − Ŷ‖2

2, and to update the model parameters, symbolized
in Fig. 4 with the diagonal arrow through the black-box model-
ing box. In this approach for the black-box a local linear model tree
(LoLiMoT) algorithm is used and presented in Section 3.2 [4,5]. After
showing the main details of the algorithm in an overview, the math-
ematical formulation of the extracted so-called Takagi–Sugeno (TS)
fuzzy models for representation of the local linear models (LLM) is
presented in Section 3.3.

3.2. Black-box modeling with local linear model trees (LoLiMoT)

The LoLiMoT algorithm combines a heuristic strategy for
partition space decomposition with weighted least squares opti-
mization [4]. It therefore provides an LLM approximation of globally
nonlinear dynamic systems.

In LoLiMoT Gaussian Kernel functions are fitted to a rectangu-
lar partitioning of the m-dimensional input or partition space (for
details see Section 4.2) performed by a decision tree with axis-
orthogonal splits at the internal nodes (Fig. 5). Note that in Fig. 5
the gray boxes define the chosen LLM for the next split (thus
the worst performing LLM) and the white boxes give the LLMs
which are kept in the next iteration. Each local model belongs to
one hyper-rectangle in which center the fitting point is placed.

Fig. 5. First four iterations of LoLiMoT algorithm for a two-dimensional input space
(m = 2).

Fig. 6. Interpretation of Fig. 5 as a decision tree.

New hyper-rectangles are found by testing the possible splits in
all dimensions and taking the one with the highest performance
improvement. The algorithm stops when reaching a predetermined
modeling error or maximum size of the tree (Fig. 6). Note that the
partition space need not be identical to the input space of the local
models, and that the choice of partition variables allows for incor-
poration of expert knowledge. The partition space is the key point
of this algorithm, it should describe the strongest non-linearities
during the process to reach the best results. The algorithm is listed
in a short summary, see also Fig. 5:

1. Start with a global linear model.
2. Perform axis-orthogonal splits on that model.
3. Find the worst LLM by calculating the local loss function for each

model.
4. The hyper-rectangle of the worst LLM is split into two halves by

doing an axis-orthogonal split. Divisions in all dimensions are
tried.

5. Fit LLMs for all possible alternative splits by weighted least
squares.

6. Compare these fits and implement the one split with the highest
performance improvement.

7. If the termination criterion is met then stop, else go to Step 3.

As shown in [4], two intrinsic features make LoLiMoT extremely
fast: First, at each iteration only the worst local model is consid-
ered for division. Second, in Step 3 only the parameters of those
local models that are newly generated by the division have to be
estimated.

The calculation of the error in Step 3 is based on the local sum
of squared error loss function and not their mean. Thus, the local
model quality critically depends on the distribution of the training
data and hence also of the partitioning data.

3.3. Takagi–Sugeno (TS)-fuzzy models

TS-fuzzy models are suitable for approximating systems by
interpolating between local linear, time-invariant autoregressive
models with exogenous inputs (ARX), [11]. The resulting output of
the LoLiMoT algorithm, see Section 3.2, are parameters for an ARX-
model. Therefore, the equivalence to a TS-fuzzy model is obtained
[4].

The basic element of a TS-fuzzy system is a set of fuzzy inference
rules. In general, each inference rule consists of two elements: the
IF-part (antecedent) and the THEN-part (consequent) [10], the set
of rules is given by R in this work.

Here � = [�1, �2, . . ., �p] ∈ Rp is the vector of input fuzzy vari-
ables. The elements of the fuzzy vector are usually a subset of the
past input and outputs [11]. This vector is defined as:

� ∈ {y(k), . . ., y(k − na + 1), ul(k − �), . . ., ul(k − nb − � + 1)} ∈ Rp,

(1)
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Fig. 7. Inputs and outputs for the specific black-box model of zone i, i = {NE, SW}.
The first two inputs are supply heat temperatures and the third is the ambient
temperature, all in K.

where y is the output, ul is the input l where l denotes the specific
input parameter or number of input, na is the maximum lag con-
sidered for the output and nb is the maximum lag considered for
the input terms. Furthermore, � is the discrete dead time.

The overall system is approximated by a collection of coupled
multiple-input single-output (MISO) discrete-time TS-fuzzy mod-
els of the input–output nonlinear ARX (NARX) type

yk+1 =
r∑

j=1

˚j(�)yk+1
j

, (2)

where r denotes the global number of rules. The degree of fulfill-
ment of the specific jth rule can be computed using the product
operator �j(�) = ∏p

i=1�j,�i
(�i), where �i are the antecedent fuzzy

set or regions for the jth rule Rj . Furthermore, the normalized
degree of fulfillment can be computed as

˚j(�) = �j(�)∑r
i=1�i(�)

. (3)

The membership function is parametrized improperly through
the centers, the spreads and the steepness value k� , [4,11,10].

Note, that ˚j denotes the fuzzy membership function in the
operating point �, for LLMi, i = 1, . . ., r. In this work, blended describes
the mixture between LLMs, where

∑r
i=1˚i = 1 holds. Blended zones

are the areas in the partition space, where the LLMs are overlapping
each other. Note, that the approach of Section 3.2 is equivalent to
the mathematical representation in this section, Section 3.3, there-
fore p ≡ r holds.

4. Fuzzy black-box model for building heating dynamics

In this section the work flow of the effective fuzzy black-box
model for the specific building in Austria is presented. In Fig. 7
the specific input/output collection of the black-box model is pre-
sented. The overall output is given by the mean of the indoor room
temperature ϑmean,i

indoor of each zone i. The model inputs are given

by two heat supply, one for TABS ϑmean,i
indoor and one for FC ϑi

FC, the
ambient temperature ϑi

ambient, the radiancei for each orientation
and the occupancyi profile, depending on each zone i. The data
for the data-driven black-box model are taken from an open-loop
step-test during 29th of April 2014–5th of May, 2014. The test
was done during a holiday and an ensuring weekend. Therefore,
occupancy is insignificant during the duration of the open-loop
step-test. Note, that for complete identification additional data are
needed. Thus, closed-loop data are also used for the identification.

Fig. 8. Generic occupancy profile for offices in University buildings, adapted from
[9], pattern 3.

For the closed-loop data and the validation period the occupancy
profile is one of the most important disturbances for modeling
proper thermal behavior.

4.1. Selection of input and output data

Selecting input and output data for system identification is an
important pre-processing step in case of data-based modeling. It is
obvious to choose the output based on the associated control vari-
able of the MPC. For reconstructing the strongest nonlinear building
behavior it is important to choose the minimum number of uncor-
related inputs. Therefore, only the variables are chosen which are
affecting the model output. Note, that for heat flow Q̇ i

j
of TABS and

FC the following relation holds:

Q̇ i
j = ṁi

j︸︷︷︸
const.

· ϑi
j · ci

p︸︷︷︸
const.

, (4)

where cp, the specific heat capacity of water, is assumed to be con-
stant and has no sub fix j. Also the mass flows ṁi

j
are assumed to be

constant, further i = {NE, SW} and j = {TABS, FC}. Because of Eq. (4)
the heat supplies are given in K in the remainder of this work. The
following list specifies the model inputs:

• supply heat of TABS for each zone i in K, denoted by ϑi
TABS,

• supply heat of FC for each zone i in K, denoted by ϑi
FC,

• ambient temperature in K, denoted by ϑambient,
• radiance in W/m2,
• a generic occupancy profile for each zone i in %,

i = {NE, SW}. The output of the model is the mean of the indoor
room temperatures in one zone, denoted by ϑmean,i

indoor .
As such models are attractive for all kinds of controller design,

because of their low order, see Section 3, the goal is to obtain a
model which is able to reproduce the main dynamics of the whole
building and not to represent each single room perfectly. Utiliz-
ing analytical modeling tools, often a high-order model is obtained
and afterwards the reduced order model is used for model-based
control.

The utilized generic occupancy, adapted from pattern 3 of [9], is
presented in Fig. 8. This is a special profile for offices in an University
building.

4.2. Selection procedure for choice of partition space

As introduced in Section 3.2, selection of the partition space for
the LLMs is one of the major tasks. In many processes the parti-
tion space is given by expert knowledge. If this is not the case, it is
necessary to analyze the measurements to find the strongest non-
linearities in the process. In Fig. 9 the exemplary plotmatrix for
zone north-east is given. The procedure is as follows: (1) search for
a data-distribution/data-cloud which cannot be mapped by linear
correlations; (2) if (1) leads to no result, search for the data-cloud
with the largest spread; (3) if (1) and (2) did not succeed, start
trial and error procedure or incorporate expert knowledge. In this
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specific plotmatrix for zone north-east, which shows step-test mea-
surements from one week of the University Salzburg, see Fig. 9, the
problem is that only a small amount of data are measured, to be spe-
cific 168 hours (1 hour = 1 sample). Therefore, according to case (3)
the suitable partition space for this specific building was selected
by know-how of the building operators.

In the University building in Salzburg, Austria, a 2-dimensional
partition space is chosen for presenting the strongest nonlinear
effects in this building. Therefore, an input–input partition space
is chosen: ϑi

TABS × ϑi
ambient, i = {NE, SW}. Past analysis has shown

that these are the most important variables within building heating
control.

4.3. Selection procedure for choice of model order

The orders na and nb (see Section 3.3) in the LoLiMoT algorithm
have to be chosen manually. If order = 1 is chosen, the input–output
model from this algorithm is static. Therefore, with a higher order
it is possible to make the model dynamic and also represent dead
time. There is no strict rule to choose the order of each input
and output. Eq. (5) shows a general pulse transfer function for a
discrete-time transfer function representation:

G(z) = b0z−� + b1z−1−� + · · · + bnz−nb−�

1 + a1z−1 + · · · + anz−na
= Y(z)

U(z)
. (5)

This equation gives the relation between input U(z) (numerator)
and output Y(z) (denominator), see Eq. (1). Note, that for each build-
ing zone only one common denominator is identified. Therefore, the
dynamics of each input to the overall output is specifically given by
the numerator.

For linear system identification different algorithms are state-
of-the-art for parameter identification, see [15]. The orders of the
fuzzy black-box model of this specific building, are chosen as shown
in Table 1. The acronyms “rad” stand for radiance and “occ” for
occupancy, respectively. For details, see Sections 4.5 and 5.2.

Table 1
Orders for inputs and output of both zones.

ϑmean,NE
indoor

ϑNE
TABS ϑNE

FC ϑNE
ambient

radNE occNE

4 3 3 1 2 1

ϑmean,SW
indoor

ϑSW
TABS ϑSW

FC ϑSW
ambient

radSW occSW

3 2 2 2 1 1

4.4. Selection procedure for choice of number of LLMs

In Section 3.2 it is shown, that the number of LLMs is essential for
the quality of the model. This quality is measured with two different
statistical criterions: (1) the coefficient of determination R2 and
(2) the root-mean-square error (RMSE). These statistical tools are
computed as:

R2 ≡ 1 −
∑n

t ‖Yt − Ŷt‖2
2∑n

t ‖Yt − Y‖2
2

, (6)

RMSE ≡
√∑n

t=1‖Ŷt − Yt‖2
2

n
, (7)

where Y is the mean of the measured output values, calculated as
Y = 1/n

∑n
t=1Yt and n is the number of measurements for Y.

The steepness ki
� , i = {NE, SW} of the Gaussian-membership

functions is considered to be kNE
� = 1/2 and kSW

� = 1/3, illustrated
in Figs. 10 and 11 [4]. This steepness determines whether the blend-
ing between different LLMs is hard or soft. A smaller value for ki

� ,
i = {NE, SW} presents a harder crossover between models than a
larger value. As it is presented in Figs. 10 and 11, the membership
functions of zone north-east have a larger value for ki

� ,i = {NE, SW},
than those of zone south-west. The work flow is given as: (1) first
optimize k� , this could be done with trial and error or an nonlinear
optimization; (2) optimize the number of LLMs.

In Table 2 a comparison between the number of LLMs and the
model fit is presented for both zones, the chosen orders for inputs
and output is taken from Section 4.3.

Fig. 9. The plotmatrix for zone north-east is shown in this figure. In the main diagonal the distribution from all variables against their selves is shown.

2.1 Publication A 33



M. Killian et al. / Energy and Buildings 96 (2015) 175–186 181

Fig. 10. Fuzzy membership functions for zone north-east.

For both zones three LLMs are selected. Note, that the higher the
number of LLMs the better the model fit will be. Therefore, the first
significant increase (R2) or decrease (RMSE) in the statistical values
indicates the optimal number of LLMs. Fig. 12 presents Table 2 in a
graphical form.

The diamond shows a possible number of LLMs for R2 and
the circle shows the possible number of LLMs for the RMSE.
Note, that R2 converges faster than the RMSE. The possible-best
number of LLMs for R2 in both zones is 2, for the RMSE is 4.
Therefore, the chosen number in this specific building model is
given by 3 in both zones. If the number of LLMs is too high,

it can occur that some LLMs are so-called off-equilibrium LLMs
[27,28].

Note that an alternative approach is the use of the Akaike infor-
mation criterion (AIC), leading to similar results. In the AIC the
model performance is balanced against the number of parameters.
In the presented criterions the number of parameters is not con-
sidered inherently (but the mentioned balance is done by using
Fig. 12).

In Fig. 10 the fuzzy membership function for zone north-
east is shown, and in Fig. 13(a) the 2-dimensional partition
space with the axis orthogonal splits is shown. Furthermore, the

Fig. 11. Fuzzy membership functions for zone south-west.
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Table 2
Comparison of model performance of zone north-east depending on the number of
LLMs and zone south-west, respectively.

#LLMs R2
NE RMSENE R2

SW RMSESW

1 0.877 0.262 0.827 0.297
2 0.915 0.217 0.887 0.241
3 0.930 0.196 0.917 0.207
4 0.940 0.182 0.928 0.192
5 0.945 0.175 0.937 0.179
6 0.948 0.164 0.939 0.177

fuzzy membership function for zone south-west is presented in
Fig. 11. Moreover the 2-dimensional partition space is illustrated
in Fig. 13(b).

4.5. Final TS-fuzzy building model

The final model of this specific University building in Austria is
parametrized as discussed in Sections 4.1–4.4. In this section the

nonlinear step-responses are shown as well as the linear step-
responses of representative LLMs. Also the value when 90% of the
steady state step-response are reached are given in the specific sub-
plots. In Fig. 14 the partition space from zone north-east is shown
once again. In this plot the diamond gives the steady state value and
the cross denotes the input step (the dashed line shows the change
over different LLMs). The corresponding nonlinear step-response
shown in Fig. 15. Note, that only a step in the ambient temperature
input can directly cause a nonlinear step-response. Furthermore,
the resulting t90% value of the nonlinear step-response from ϑNE

ambient
is presented. Note that the t90% value for the transient between
those two LLMs is actually an average value between t90% values
of the individual LLMs (Fig. 16). The local linear step-responses of
each input to the overall output for LLM1 (from the final model) in
zone north-east is shown in Fig. 16. For zone south-west LLM2 is
chosen and presented in Fig. 17. Note, that instead of a unit step,
a step is chosen which is in a well defined temperature range for
buildings. All steps are simulated based on the fact that the system

Fig. 12. These subplots show the number of LLMs against the RMSE (on the left y-axes) and R2 (on the right y-axes) for both zones. On the top the plot shows the values for
zone north-east and on the bottom the same for zone south-west. The diamond shows the chosen number of LLMs in case of the best RMSE fit for this specific case. The same
is shown with the circle for R2.

Fig. 13. In (a) the 2-dimensional partition space for zone north-east with local model centers and spreads is shown. The same is presented in (b) for zone south-west.
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Fig. 14. Partition space of zone north-east with change over different LLMs, this
leads to a nonlinear step-response. The diamond represents the start in the steady
state and the cross represents the final step value.

Fig. 15. Nonlinear step-response for LLM2 → LLM1 of zone north-east with t90%

values.

Table 3
Statistical values for validation of both zones for 21.04.2014–28.04.2014.

R2
NE RMSENE R2

SW RMSESW

0.632 0.265 0.746 0.279

dynamics are steady state at this moment. In Figs. 16 and 17 the
different time constants are presented. For input ϑi

ambient, i = {NE,
SW}, a step from 286.15 K to 278.15 K is chosen, which is normal
for Salzburg at this season. Note, that in Fig. 16 and 17 tj,90% stands

Fig. 16. Step-responses for LLM1 of zone north-east with t90% values.
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Fig. 17. Step-responses for LLM2 of zone south-west with t90% values.

for the time when 90% of a steady state is reached, for specific input
j. The fuzzy black-box model is able to correctly reproduce the time
constants according to expert knowledge. Note, that because of
structural and physical differences between zone north-east and
zone south-west it is plausible, that the time constants are smaller
in zone south-west than in zone north-east. This could be due to the
fact that zone south-west is elevated on columns (see Fig. 1) and has
a much larger contact area to the ambiance than zone north-east,
which is integrated in the main building. The main statement is, that
the effective fuzzy black-box model is able to represent the non-
linear dynamical behavior of the University building, see following
Section 5.

5. Simulation and validation results

A full cross validation is shown in this section. Data from one
week before the step test were used for validation. In this specific
building all relevant variables are directly measured (ambient tem-
perature, radiance, indoor room temperature and both supply heats
are measured). Only for occupancy a generic profile is used, see
Fig. 8. The demonstration building is equipped with an Distributed

Control System (DCS) with an integrated historical database (XAM-
Control, [29]). Therefore all sensors (room temperature, ambient
temperature, radiation,. . .) and actors (valves, motors,. . .) are
directly connected (analog or digital signal) to the I/O modules of
the DCS. These modules are connected via an Transmission Control
Protocol/Internet Protocol (TCPIP) connection to the controllers,
using an internal http based protocol. Besides that the meters
(energy consumption) are connected via M-Bus to the DCS.

5.1. Model validation

In Fig. 18 the measured and predicted output values for both
zones during one week in April 2014 are shown. In Fig. 18 the solid-
black line gives the measured values (data) and the dashed-gray
line gives the model output from the specific zone obtained from
the fuzzy black-box model. Note, that during the validation weeks
normal occupancy profiles are in effect. In Table 3 the statistical cri-
terions for both zones are given. It is to mention, that the absolute
maximal temperature prediction error in zone north-east is smaller
than 0.72 K and the maximal temperature difference in zone south-
west is smaller than 0.76 K. The maximum resolution of the indoor
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Fig. 18. In subplot (a) the validation for zone north-east is presented. In subplot (b) zone south-west is shown. Statistical values R2 and RMSE are also shown in the subplots.

air temperature sensors is 0.1 K, see Section 2. Nevertheless, com-
putational results have been given up to three decimal points, such
as the model output �i

mean, which is an averaged value over several
rooms.

Note that the model is utilized in an MPC for predicting the
output over a prediction horizon. The FMPC starts calculating the
prediction from an accurate measure and computes for a predic-
tion horizon from about 12 hours to a maximum of 36 hours. Even
if the underestimation trend is present in the model it will hardly
compromise the validity of the FMPC prediction.

5.2. Discussion

As it has already been mentioned, that the overall dynamic
behavior is given good in both models. It must be considered,
that the duration for the open-loop step-test and the resulting
measurements cover only a duration of one week with a sampling-
time of 1 hour. Therefore, only 168 data-points were available for
system-identification. This small amount of training data yields a
surprisingly good nonlinear dynamic building model. The resulting
RMSE of 0.27 and 0.28 K, respectively, for a prediction horizon of
a whole week is a clear proof of the suitability for model based
controller design.

Another issue in this specific building is the disturbances of
the so-called blinds. The position of these blinds (see Fig. 1) is
not measurable. Unfortunately, the important information is miss-
ing in the system identification, but as it is shown in Section 5.1
the models are performing quite well without this information.
The reason is that the black-box model inherently contains the
average user behavior of a zone in terms of setting the blinds’
position for a specific radiation intensity. Furthermore, the out-
put ϑmean

indoor of each zone is given by the mean of 40 rooms per
zone, which partly compensates for deviations in the behavior of
an individual user. Nevertheless, the model for zone south-west
may still include systematic errors, which cannot be currently
eliminated.

As it is mentioned in the Introduction, this specific building has
different dynamics associated to the different zones (defined by
the individual supply zones and geographic orientation). Hence,
different time constants and different mean values are plausible
and coincide with existing expert knowledge. Furthermore, struc-
tural and physical differences between the zones exist. In spite of
these complications, the full cross validation (see Fig. 18) gives fine
results for a suitable model for an MPC design.

In Fig. 16 and 17 the local linear step-responses from selected
LLMs of both models are shown. Here it is to mention that the

different t90% constants are coming from the fact mentioned in
Section 4.5.

Note, that the effort in the work flow of data-driven modeling
versus white-box modeling is significantly different. For a black-
box model no perfect plan-data are needed and no algorithm for
order reduction is necessary. It should be noted, that there are only
few parameters for optimizing such a complex nonlinear dynamical
building behavior. To specify them: (1) k� and the spreads of the
membership-functions and (2) the ARX-parameters for the transfer
functions.

The main purpose of the presented model (plant model for
controller design) is therefore given, as a good generalization is
achieved with minimum modeling effort.

6. Conclusion

An effective fuzzy black-box model approach was introduced
and applied to a specific building. The data-based model makes use
of all relevant input and output measurements from an open-loop
step-test. Benefits of this effective modeling are the low complex-
ity by design, and that the fuzzy black-box model is suitable for
MPC, without any transformations. Another benefit is, that the
effective data-based model is able to represent the strongest non-
linear effects in building heating dynamics. The process for getting
such models is shown in details. A full cross validation highlights
the results of such low-order fuzzy black-box model for buildings.
Beside a full cross validation, nonlinear step-responses and local
linear step-responses for both zones are shown. The associated time
constants also coincide with expert knowledge. In summary, an
effective fuzzy black-box model for building heating dynamics has
been presented in this article.
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Cooperative Fuzzy Model Predictive Control
Michaela Killian, Barbara Mayer, Alexander Schirrer, and Martin Kozek.

Abstract—In this paper a cooperative fuzzy model predictive
control (CFMPC) is presented. The overall non-linear plant is
assumed to consist of several parallel input-coupled Takagi-
Sugeno (TS) fuzzy models. Each such TS-fuzzy subsystem is
represented in the form of a local linear model network (LLMN).
The control of each local linear model (LLM) in each LLMN is
realized by model predictive control (MPC). For each LLMN
the outputs of the associated MPCs are blended by the fuzzy
membership functions, which leads to a fuzzy model predictive
controller (FMPC). The resulting structure is one FMPC for each
LLMN-subsystem. Overall, a parallel combination of FMPCs
results, which mutually affects all LLMN-subsystems by their
respective manipulated variables. To compensate detrimental
cross-couplings in this setup, a cooperation between the FMPCs
is introduced. For this cooperation, convergence is proven and
for the closed-loop system a stability proof is given. It is
demonstrated in a simulation example that the proposed input-
constraint CFMPC algorithm achieves convergence of the fuzzy
LLMNs within few cooperative iteration steps. Simulations are
given to demonstrate the effectiveness of the theoretical results.

Index Terms—cooperative MPC, fuzzy MPC, fuzzy control,
stability, Takagi-Sugeno model.

I. INTRODUCTION

Controlling complex non-linear dynamic systems is a chal-
lenging task in the area of process control. Due to the
typically high order and strong coupling effects it is difficult,
if not impossible, to directly apply non-linear control design
methods. Two effective methods to circumvent this problem
are: (i) Splitting the complex non-linear problem into a set
of less complex sub-problems, solving the sub-problems inde-
pendently, and finding a cooperation between the set of sub-
problems. Note that a global optimum and stability may not
be guaranteed in this case, [1], [2], [3]. (ii) Using LLMNs
[4]. This LLMN approach is equivalent to Takagi-Sugeno (TS)
fuzzy modeling, and an effective way to control such systems
is given by fuzzy control, [5], [6]. Utilizing the LLMN or
TS-fuzzy approach, respectively, the overall complex non-
linear system is represented by a weighted superposition of
the LLMs.

However, if the system to be controlled is non-linear and
of high order, none of the two before mentioned approaches
may be feasible. Nevertheless, many large complex systems
can be divided into several LLMN-subsystems, where each
of these LLMN-subsystems is less complex but may still
exhibit non-linear behavior. In this paper an effective method
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to solve such a control problem is given, where a combination
of the two mentioned approaches is proposed, and a set of
input-coupled LLMN-subsystems constitutes the global plant.
Utilizing MPC, the resulting structure is a CFMPC.
One main advantage of this CFMPC concept is the sim-
plification from one global FMPC optimization problem to
multiple local optimization problems. Furthermore, the smaller
number of manipulated variables also significantly reduces
computational complexity. The CFMPC algorithm optimizes
several local less complex optimization problems, hence, if
convergence occurs, a solution exists which can only be
suboptimal, but the implementation is inherently distributed
and local optimizations can run in parallel. Furthermore,
tractability is much more likely than for the global FMPC
problem. Another benefit is the expandable structure of the
controller scheme. If one new subsystem and a resulting FMPC
is added to the CFMPC concept, only the new controller has
to be designed and all other controllers in the system only
have to incorporate an additional further disturbance signal
(the input signal of the new subsystem).

MPC is a well-established and effective method for process
control, [7]. The merging of TS-fuzzy modeling and MPC
leads to a so-called FMPC strategy, which can be considered
a powerful design tool on its own, [8], [3], [9], [10]. This
control concept is also utilized in this work because of efficient
constraint handling, its decoupling characteristics, and inherent
robustness properties, [2].

Cooperative MPC (CMPC) has been developed for both
non-linear and linear plants, and respective proofs of conver-
gence and stability are available, [11], [12]. Note, however,
that the CMPC concept does not guarantee global optimality.
Nevertheless, for complete convergence Pareto-optimality of
the plant-wide feedback control has been shown. For the
combination with LLMs the linear version of CMPC is the
natural choice [11]. Hence, the concept proposed here utilizes
cooperative control for several coupled fuzzy MPCs. The main
contributions of this work are as follows:

• A CFMPC concept for cooperative control of fuzzy MPCs
is presented.

• A CFMPC optimization algorithm is derived based on
[11].

• Based on a fixed-point theorem a proof of convergence
for the cooperative iteration loop is given.

• Stability of the resulting CFMPC is proven.

Cooperation between individual FMPCs is constituted by
an inner iteration-loop, see Fig. 1, which is executed within
consecutive time steps k and k + 1. At each cooperative iter-
ation q an improved solution of the cooperative manipulated
variable uq is computed by the q-th iteration update hq(·, ·).
The solution u� is obtained when the iterate uq converges to
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time step k

FMPC1 FMPC2 FMPCF

iteration-loop

compute
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1 , u
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go to k = k + 1
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u1 u2q = 1
uF

. . .

. . .

Fig. 1. Schematic flow-chart of CFMPC. Between consecutive time steps
k and k + 1 the q-th cooperative iteration update hq(·, ·) is computed in a
loop. The resulting cooperative solution for the manipulated variable is given
by u�.

a fixed value. Note that in contrast to the original manipulated
variable u from the individual FMPCs, the final cooperative
manipulated variable is denoted by u�. A fast cooperation (as
it is demonstrated in Sec. VI) is not guaranteed in general, it
strongly depends on the system behavior. The whole CFMPC
scheme in general is illustrated in Fig. 2.

‐

Y ref Y act

Fuzzy MPC1

Fuzzy MPC2

Fuzzy MPCF

u1

u2

u�
1

u�
2

uF
u�
F

cooperation loop (see Fig.1)

subsystem1

subsystem2

subsystemF

Cooperative FMPCs global plant

...
...

...

......

...

...

...

Fig. 2. Concept of Cooperative FMPCs for F = {1, 2, . . . , F}.

Note that Y ref gives the reference values and Y act represents
the actual output value. Furthermore, the manipulated variables
ui, ∀i ∈ F represent the manipulated variables before the
cooperative iteration update, u�

i , ∀i ∈ F in contrast denote the
manipulated variables after the cooperative iteration update.

The TS-fuzzy models utilized here have been extensively

applied in the area of MPC, [5], [9], [13], [14], [15]. This type
of underlying models leads to a specific class of controllers
– the class of fuzzy model predictive controllers (FMPC) [3],
[10], [16], [17]. Furthermore, controlling linear processes by
MPC is widespread because of its mature stability theory, the
inherent robustness, and handling of constraints [2], [7], [18].
One major advantage of TS-fuzzy models is given by the pos-
sibility of their direct identification from measurement data;
one of the published methods is the local linear model tree
algorithm (LOLIMOT), [4], [19]. This identification method
leads to LLMs as well and can be used to approximate TS-
fuzzy models for control design. In [5] the fundamental TS-
fuzzy concepts can be found.

In [13] an output-feedback predictive controller, based on
TS-fuzzy models, is presented. The control law depends on the
membership functions, and stability is ensured by quadratic
boundedness. [20] introduces robust stability constraints for
MPC, the underlying model being also based on TS-fuzzy
models. The MPC presented in [21] solves a min−max
optimization of a quasi-worst-case infinite horizon objective
function. Applications of FMPC schemes are given in [16],
[17], which cover the application of building heating control.
In [9], [10] an efficient way for using TS-fuzzy models in
MPC theory is given. Structure and controller design of an
MPC for TS-fuzzy models can be partly adopted from [9],
[10].

Stability for FMPC is presented in different approaches,
[22], [23], [24], [25], [26], [20]. A global analytic proof of sta-
bility for FMPC does not exist, but several stability conditions
have been derived: (i) using linear-matrix inequalities (LMI)
is a common approach for showing stability [23], [26], (ii)
the so-called non-quadratic membership-dependent Lyapunov
function is also used in literature [22]; (iii) other types of
Lyapunov functions are the common-quadratic Lyapunov func-
tion, the piecewise-quadratic Lyapunov function or the fuzzy
Lyapunov function [25], [21]. A different issue is discussed in
[27], namely a robust MPC-concept for discrete-time TS-fuzzy
systems (RFMPC) with input constraints and with persistent
disturbances. The authors of [27] show that an N -step RFMPC
is able to deal with a fixed terminal constraint set. The online
computation of the N -step prediction control strategy involves
bisection searches and solving a convex optimization problem
subject to LMI constraints. A further MPC variant for discrete
fuzzy systems is given in [28]. The authors of [28] compute
an optimal controller with iterative quadratic programming.

In contrast to the above mentioned control schemes, a
cooperative FMPC structure based on [11] is treated here. The
combination of cooperative suboptimal MPC [1] and FMPC
has not been presented yet. Stability proofs for each of the
two utilized methods are available in literature. Therefore, in
this paper a combined CFMPC structure is proposed and a
stability proof is presented. Additionally, a convergence proof
for the cooperative iteration loop is given.

This papers is structured as follows: The concept of an
FMPC and the underlying model structure is given in Sec. II,
and the principle of the suboptimal FMPC is described in
Sec. III. The main part of this work, the cooperation between
the FMPCs and the cooperative iteration loop, is introduced
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in Sec. IV. Stability is proven in Sec. V. An example with
illustrative results is given in Sec. VI, and a conclusion
summarizes the main results.

II. FUZZY MODEL PREDICTIVE CONTROL (FMPC)

Linear MPC refers to a class of control algorithms that
compute manipulated variables by utilizing a linear process
model, [2]. Many systems are, however, inherently non-linear.
This motivates the use of non-linear model predictive control.
Here a non-linear and generally non-convex optimization
problem has to be solved. To avoid non-convex optimization,
a set of LLMs can be extracted from a TS-fuzzy model, [9],
which are then used by the MPC algorithm, [8], [14], [6]. In
the following, the index i of FMPCs is taken from the set
F = {1, 2, . . . , F}, and the associated Li LLMs for FMPCi,
∀i ∈ F, are denoted by the index l ∈ Li = {1, . . . , Li}.
The control objective in this research is given by minimizing a
weighted summation of all FMPCs (so-called plant-wide cost
function), for details see Eq. (26) in Sec. IV-D.

A. Takagi-Sugeno Fuzzy Model

TS-fuzzy models are suitable to approximate such non-
linear systems by interpolating between local linear, time-
invariant auto-regressive models with exogenous inputs
(ARX), [6]. The basic element of a TS-fuzzy system is a set
of fuzzy inference rules [5]. For each rule Rj the structure
given in [5], [6] holds, ∀j = 1, . . . , r. For notation, ζ =
[ζ1, . . . , ζp] ∈ Rp is the vector of input fuzzy variables, and
Ξj,1, . . . ,Ξj,p are the fuzzy sets or regions for the j-th rule Rj

with corresponding membership functions μj,Ξ1
, . . . , μj,Ξp

,
with μj,Ξi

(ζi) �→ [0, 1], for i = 1, . . . , p, [4], [17], [16]. The
number of rules ri in this work is the same as the number of
LLMs Li, ∀i ∈ F, [4].

The elements of the fuzzy vector are usually a subset of the
past input and outputs, [6]. The overall system is approximated
by a collection of coupled multiple-input multiple-output
(MIMO) discrete-time TS-fuzzy models of the input-output
non-linear ARX (NARX) type

yk+1 =

L∑

j=1

Φj(ζ)y
k+1
j , (1)

where L denotes the global number of LLMs (rules). The
degree of fulfillment of the specific j-th rule can be computed
using the product operator μj(ζ) =

∏p
i=1 μj,Ξi

(ζi), further-
more, the normalized degree of fulfillment can be computed
as

Φj(ζ) =
μj(ζ)∑L
l=1 μl(ζ)

, (2)

It is obvious that there are systematic similarities between
conditional parametric models and TS-fuzzy models. In this
context the local neighborhood around each fitting point is
determined by Gaussian kernel functions, for fuzzy models
the term membership function is used for Eq.(2), [4], [6], [5],
[23].

A TS-fuzzy model can be locally represented by a linear
state-space model [10]

xk+1 = Akxk + B̃kũk

yk = Ckxk, (3)

with the state-vector xk ∈ Rnx at time step k. The output-
vector at time step k is given by yk ∈ Rny , uk

i ∈ Rnui is the
input vector at time k and uk

Ji ∈ RnuJi is the vector of distur-
bances at time k, where Ji ⊆ F \ i. The combined inputs are
given by ũk ∈ Rnui

+nuJi . In addition, ũ = [ui, uJi ]
′, where

ui is the manipulated variable and uJi are the disturbances for
FMPCi, which are the manipulated variables from all other
FMPCsJi , ∀i ∈ F, Ji ⊆ F \ i.

Furthermore, the matrices Ak ∈ Rnx×nx ,

B̃k =

[
Bi 0nxi

×nuJi
0nxJi

×nui
BJi

]
∈ R(nxi

+nxJi
)×(nui

+nuJi
)
,

∀i �= j, Ck ∈ Rny×nx are considered to be non-constant
(time-varying) in each time step k. Note that Bi is the input
matrix for ui, and BJi is the disturbance matrix for system i,
depending on input uJi from the j-th system, j ∈ Ji.
The time-variant matrices, Ak, B̃k, and Ck are computed by
blending parameters of all Ak

i,l, B̃
k
i,l, and Ck

i,l, ∀i ∈ F, l ∈ Li,
e.g. Ak =

∑Li

l=1 Φi,lA
k
i,l, ∀l ∈ Li, i ∈ F. The term Φi,l

denotes the fuzzy membership function in the operating point
ζ for LLMi,l, ∀i ∈ F, l ∈ Li. Note that Li can be different
for each LLMNi, ∀i ∈ F.
In this work, blended means that more than one subsystem
contributes significantly to the output.

Remark 1: In the following, all models are considered to
be only input-constrained systems and the developed algorithm
is derived for so-called input-coupled systems.

B. FMPC Formulation
The optimization problem for each FMPC can be formulated

as:

J�
i = min

Δui

Ji(ũi) ∀i ∈ F (4a)

where

Ji(y
k
i , ũ

k,k+np−1
i ) =

np−1∑

k=0

[(yki,ref − yki,act)
′Q̃i(y

k
i,ref − yki,act)

+ ũk
i

′
Riũ

k
i ] (4b)

subject to
ui,min ≤ ui ≤ ui,max, (4c)

∀i ∈ F, where np denotes the prediction horizon, and “′”
denotes transpose. Note that the yki,ref are external reference
values and are considered to be known (see Fig. 2)

It is important to note that the algorithm for FMPCi

optimizes only ui and not ũi. The values of uJi do not have to
be calculated, they result from the known past control inputs of
the other FMPCs (all FMPCs except FMPCi). The formulation
is valid for a general MIMO system, where

Ũ =
[
ũ1, ũ2, . . . , ũnui

+nuJi

]′
∈ Rnc×(nui

+nuJi
)
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denotes the control action for all manipulated variables ũi ∈
Rnui

+nuJi over the entire control horizon nc. Furthermore,

Y act =
[
y1,act, y2,act, . . . , yny,act

]′ ∈ Rnp×ny

represents the predicted output values over the prediction
horizon np.

Y ref =
[
y1,ref, y2,ref, . . . , yny,ref

]′ ∈ Rnp×ny

contains the values of the reference trajectory for each output,
Q̃i ∈ Rny×ny is a positive semi-definite weighting matrix, and
Ri ∈ R(nui

+nuJi
)×(nui

+nuJi
) is a positive definite weighting

matrix. The objective function of each FMPCi is also subjected
to a local linear model network (LLMN) which consists of Li

LLMs, which are equivalent to r-fuzzy rules.
Note that, without loss of generality, yki,ref is assumed to be
equal to zero in the following and for the stability proof.
However, for any given constant non-zero yki,ref there exists
a unique shift of coordinates to consider a zero-reference
problem.

Ji(x
k
i , ũ

k,k+np−1
i ) =

np−1∑

k=0

(yki,act
′
Q̃iy

k
i,act + ũk

i

′
Riũ

k
i ) (5a)

=

np−1∑

k=0

(xk
i

′
C ′

iQ̃iCi︸ ︷︷ ︸
Qi

xk
i + ũk

i

′
Riũ

k
i )(5b)

=

np−1∑

k=0

(xk
i

′
Qix

k
i + ũk

i

′
Riũ

k
i ), (5c)

∀i ∈ F, with Qi ∈ Rnx×nx . It follows that:

Ji(x
k
i , ũ

k,k+np−1
i ) =

np−1∑

k=0

(xk
i

′
Qix

k
i + ũk

i

′
Riũ

k
i ) (6a)

subject to
ui,min ≤ ui ≤ ui,max, (6b)

∀i ∈ F and time k.

In Eq.(4b) the input variable is denoted by ũk+t
i , ∀t ∈

{1, 2, . . . , nc}. This can be calculated by generating l sets
of local linear control inputs in the first step, ũk+t

i,l , ∀t ∈
{1, 2, . . . , nc},∀i ∈ F,∀l ∈ Li. In the second step the
weighted sum of the local linear control inputs give the overall
blended control input:

ũk+t
i =

Li∑

l=1

Φi,lũ
k+t
i,l , (7)

∀t ∈ {1, 2, . . . , nc}, i ∈ F.

In the above equation, the weight of the l-th fuzzy control
action Φi,l is the same as that for the l-th local linear model
[6], [15], [3], [10].

C. FMPC Formulation for Unstable Plants

For controlling an unstable plant with FMPC a terminal cost
has to be added to the objective function:

Ji(x
k
i , ũ

k,k+np−1
i ) =

np−1∑

k=0

(xk
i

′
Qix

k
i + ũk

i

′
Riũ

k
i )

+ x
np

i
′
P ix

np

i (8a)

subject to
ui,min ≤ ui ≤ ui,max, (8b)

∀i ∈ F and time k.
For Eq.(8a), Qi ∈ Rnx×nx is calculated as given in Eq.(5b).
The computation of the terminal weight P i is based on the
theory of common quadratic Lyapunov functions (CQLF),
∀i ∈ F, [29]. The weight P i ∈ Rnx×nx is the CQLF for FMPC
i, ∀i ∈ F and is obtained for all LLM l, ∀l ∈ Li, ∀i ∈ F. The
condition for closed-loop stabilizing unconstrained FMPCs
can be constructed as given in [29]. The closed-loop fuzzy
control system is globally exponentially stable if there exists
a positive definite matrix P i, ∀i ∈ F and a set of matrices
Qi,l, ∀l ∈ Li, ∀i ∈ F, such that the following LMIs are
satisfied:[

−P
−1

i P
−1

i A′
i,l +Q′

i,jB
′
i,l

Ai,lP
−1

i +Bi,lQi,j −P
−1

i

]
< 0 (9)

∀l, j ∈ Li, ∀i ∈ F. Moreover, it is assumed that the MPC
controller gains of each MPC are given as state-feedback
gains: Ki,l = Qi,lP i, ∀l ∈ Li, ∀i ∈ F.
Also consider a candidate Lyapunov function as: Vi(xi) =
x′
iP ixi, and denote the closed-loop system matrix as Acl,i,l =

Ai,l +Bi,lKi,j , ∀l, j ∈ Li, ∀i ∈ F. The terminal constraint for
each parallel local linear MPC is now given by U ′

ux
np = 0,

where Uu describes the unstable eigenmodes of the specific
system matrix Ai,l, ∀l ∈ Li, ∀i ∈ F, [2], [7], [11].

III. SUBOPTIMAL FMPC

Fuzzy MPCs (FMPC) are non-linear MPCs which achieve
the global optimum for a given performance criterion (e.g.
Eq.(4a)). However, for a cooperation between several FMPCs
increased flexibility and a scalable control architecture can
be achieved by accepting suboptimal inputs [11], [1], [17],
[16]. Hence, a suboptimal FMPC analogous to suboptimal
MPC presented in [1], [11] is proposed. Note that each FMPC
actually acts like a parallel connection of linear MPCs with
output-blending, which effectively constitutes a non-linear
controller [23], [10].

In the following, definitions and stability results for a
general non-linear plant are given. Furthermore, uk

Ji ∈ RnuJi

denotes the disturbances for FMPCi at time step k and
g : Rnx → Rnx and hq : Rnui

+nuJi → Rnui
+nuJi are non-

linear mappings, k ∈ {0, 1, . . . , np − 1}, ∀i ∈ F, Ji ⊆ F \ i.
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Then

xk+1
i = g(xk

i , u
k
i ) ∈ Rnx (10a)

uk+1
Ji ∈ RnuJi (10b)

ũk
i =

(
uk
i

uk
Ji

)
∈ Rnui

+nuJi (10c)

ũk+1
i = hq(xk

i , ũ
k
i ) ∈ Rnui

+nuJi (10d)

holds ∀i ∈ F, Ji ⊆ F\i, where the current state for system i at
time step k is denoted as xk

i , the state update xk+1
i is given by

the state equation (10a). The trajectory of inputs at time step k
is given by ũk

i = {ũ0
i , ũ

1
i , . . . , ũ

np−1
i } ∈ Rnui

+nuJi . Note that
disturbances are the manipulated variables of FMPCsJi , they
are included in ũk

i , see (10c). For simplification the subscript
i is omitted in the following descriptions.

The function hq(·, ·) in (10d) is the cooperative q-th iteration
update, see Fig. 1, [1], [11]. Between consecutive time steps
the cooperative FMPC performs q iterations of a feasible path
algorithm, and ũ is computed such that some cost function
is minimized. A definition of hq(·, ·) together with a proof
of convergence is given in Sections IV-D. At each time step
k, the first input ũ(0) = ũ0 of the suboptimal trajectory is
applied.

The suboptimal FMPC with initial condition x(0) = x0

is initialized with the feasible input sequence ũ0. For all
following sampling instances, ˆ̃u is defined as the so-called
warm start sequence [11], given by

ˆ̃uk+1 = {ũ1, ũ2, . . . ũnp−1, 0} ∈ Rnui
+nuJi . (11)

The sequence ˆ̃uk+1 is constituted from all but the first elements
of ũk and a zero as the last input. Furthermore, Xnp

is the set
of all x, for which a feasible ũ exists.

The following Definition and Lemma are directly taken from
[11]:

Definition 1 (Exponential Stability on a Set X, [11]): The
origin is exponentially stable on the set X if for all x0 ∈ X,
the solution ϕ(k, x0) ∈ X and there ∃α > 0 and ∃γ ∈ (0, 1)
such that ‖ϕ(k, x0)‖2 ≤ α‖x0γk‖2, ∀k ≥ 0.

Lemma 1 (Exponential Stability of Suboptimal MPC, [11]):
Consider a system with a steady-state solution
(0, 0) = (g(0, 0), h(0, 0)), where the initial values x0 ≡ x(0)
and ũ0 ≡ ũ(0) are given:

[
xk+1

ũk+1

]
=

[
G(xk, ũk)
hq(xk, ũk)

]
=

[
g(xk, ui)
hq(xk, ũk)

]
, (12)

∀i = {0, 1, . . . , np − 1} Assume a function V (·) : Rnx ×
Rnu → R+

0 = {x ∈ R|x ≥ 0} continuous on the origin with
V (0, 0) = 0 and the input trajectory u satisfy

α‖(x, ũ)‖2
2 ≤ V (x, ũ) ≤ β‖(x, ũ)‖2

2 (13a)
V (xk+1, ũk+1)− V (xk, ũk) ≤ −γ‖(xk, ũ0)‖2

2 (13b)
‖ũk‖2 ≤ σ‖xk‖2, x ∈ Nr (13c)

with
Nr := x ∈ Rnx : ‖x‖2 ≤ r (13d)

in which α, β, γ > 0. If Xnp
is forward invariant for the system

xk+1 = g(xk, ũk), the origin is exponentially stable for all

x0 ∈ Xnp
.

The proof is given in [11].

IV. COOPERATIVE FMPC (CFMPC) CONCEPT

A. Fundamentals
In this section the CFMPC structure is introduced and in

Fig. 3 the control concept for two cooperating FMPCs is
illustrated. In the figure, Y ref describes the reference trajectory
for the closed-loop system and Y act represents the actual value,
for further definitions see Sec. II-B.

The global plant consists of parallel input-coupled subsys-
tems (sub-plants), and each FMPC controls one subsystem.
These subsystems are each defined by a LLMN. For each
subsystem the number Li of LLMs can be different. The matri-
ces Ai, Bi, ∀i ∈ F for the global plant are parameter-blended
matrices, see Sec. II-A and Fig. 3. The fuzzy membership
functions Φi,l are given in each operating point for LLMi,l,
∀i ∈ F and l ∈ Li = {1, 2, . . . , Li}.

In this cooperative control structure (based on Fig. 3) two
FMPCs are in cooperation, the manipulated variable of one
FMPC, is a disturbance to the other FMPCs and vice versa.
The variables ui, ∀i ∈ F are output-blended control inputs over

‐

Y ref Y act

Fuzzy MPC1

Fuzzy MPC2

uq
2,np

uq
1,np

u1

u2

u�
1

u�
2

cooperation loop (see Fig.1)

A1 =
∑L1

l=1 Φ1,l · A1,l

A2 =
∑L2

l=1 Φ2,l · A2,l

B1 =
∑L1

l=1 Φ1,l · B1,l

B2 =
∑L2

l=1 Φ2,l · B2,l

subsystem1

subsystem2
Cooperative FMPCs

global Plant

Fig. 3. Concept of Cooperative FMPCs for F = {1, 2}.

the control horizon nc in each time step k, F represents the
set of subsystems standing in cooperation (formally defined in
Sec. IV-D3). In the case of Fig. 3 u1 and u2 are defined as:

uk
1 =

L1∑

l=1

Φk
1,lu

k
1,l, uk

2 =

L2∑

l=1

Φk
2,lu

k
2,l. (14)

Furthermore, uq
1,np

and uq
2,np

denote the disturbances for the
other FMPC over the prediction horizon np at iteration q. After
the iteration loop the FMPCs get the sub-optimal solution for
this time step k, namely u�

i , ∀i ∈ F.

B. Concept for F -Subsystems
For simplify the notation the systems and proofs have been

done for the case of 2 subsystems. The number of subsys-
tems is denoted with F < ∞ because for each subsystem
one FMPC is required and the set of FMPCs is given by
F = {1, 2, . . . , F}, see Fig. 2. In general the extension to
F -subsystems and resulting F -FMPCs is given in Section 6
in [11]. The extension from [11] can be adopted with one
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additional assumption: It has to be assumed that the structure
of all FMPCs is parallel and each set of MPC per subsystem
(depending on the number of LLMs) leads to an output-
blended FMPC. This assumption implies that the difference
to [11] is only a linear operation (a weighted summation of
signals), therefore the extension in [11] to multiple subsystems
can be adopted directly.

C. Cooperative Plant-Wide Model
As mentioned in Sec. III the cooperative FMPC is a form

of a suboptimal non-linear MPC. In this Section a plant-wide
model is introduced for the cooperative control structure. As
shown in Fig. 3, the plant consists of two parallel input-
coupled subsystems, one for each FMPC. This structure is
easily expandable to more FMPCs, and it is also possible
to include classic MPCs in this structure or mix them with
FMPCs. For the remainder of this paper it is assumed that
F = {1, 2}. Because the set F includes 2 values, the set
Ji ⊆ F\i is not explicitly given by Ji, the structure is denoted
by i, j ∈ F, i �= j.

Assume that for each subsystem i a accumulation of linear
models exists which describes the effects of inputs of subsys-
tem j on the states of subsystem i, for all (i, j) ∈ F × F.
In Sec. II-A it was shown that TS-fuzzy models can be
represented by parameter-blending which means that the non-
linear structure can be seen as a local linear structure and
all models, per definition, are LLMs for each subsystem. The
difference equation Eq.(10a) can now be defined precisely as

xk+1
i,j = Ak

i,jx
k
i,j + B̃k

i,j ũ
k
j , (15)

in which k ∈ N0 = N ∪ 0 represents the time step and the
state-space quantities, xi,j ∈ Rnxi,j , ũj ∈ R(nuj

+nui
), Ai,j ∈

Rnxi,j
×nxi,j , and B̃i,j ∈ Rnxi,j

×(nuj
+nui

), are defined as in
Eq.(3). Note that ũj includes also the disturbance variables ui

with dimension nui
, ∀i �= j and i, j ∈ F. Following [11], the

states from subsystem 1 can be accumulated as
[
x1,1

x1,2

]

︸ ︷︷ ︸
x1

k+1

=

[
A1,1

A1,2

]

︸ ︷︷ ︸
Ω1

k[
x1,1

x1,2

]

︸ ︷︷ ︸
x1

k

+

[
B1,1

0

]

︸ ︷︷ ︸
θ1,1

k[
u1

u2

]

︸︷︷ ︸
ũ1

k

+

[
0

B1,2

]

︸ ︷︷ ︸
θ1,2

k[
u2

u1

]

︸︷︷ ︸
ũ2

k

. (16)

and for subsystem 2 in the same way as
[
x2,1

x2,2

]

︸ ︷︷ ︸
x2

k+1

=

[
A2,1

A2,2

]

︸ ︷︷ ︸
Ω2

k[
x2,1

x2,2

]

︸ ︷︷ ︸
x2

k

+

[
B2,1

0

]

︸ ︷︷ ︸
θ2,1

k[
u1

u2

]

︸︷︷ ︸
ũ1

k

+

[
0

B2,2

]

︸ ︷︷ ︸
θ2,2

k[
u2

u1

]

︸︷︷ ︸
ũ2

k

. (17)

The models of Eq.(16) and Eq.(17) can now be written as

xk+1
1 = Ωk

1x
k
1 + θk1,1ũ

k
1 + θk1,2ũ

k
2 (18a)

and

xk+1
2 = Ωk

2x
k
2 + θk2,1ũ

k
1 + θk2,2ũ

k
2 , (18b)

with

Ωi ∈ R(nxi,i
+nxi,j

)×(nxi,i
+nxi,j

),

xi ∈ R(nxi,i
+nxi,j

),

ũi ∈ R(nui
+nuj

)+(nuj
+nui

),

θi,i ∈ R(nxi,i
+nxi,j

)×(nui
+nuj

)+(nuj
+nui

),

and
θi,j ∈ R(nxi,i

+nxi,j
)×(nui

+nuj
)+(nuj

+nui
)

∀i �= j ∈ F.
Forming a plant-wide model from subsystem 1, Eq.(18a), and
subsystem 2, Eq.(18b), the model is given by

[
x1

x2

]

︸︷︷ ︸
x

k+1

=

[
Ω1

Ω2

]

︸ ︷︷ ︸
Ω

k[
x1

x2

]

︸︷︷ ︸
x

k

+

[
θ1,1

θ1,2

]

︸ ︷︷ ︸
Θ1

k

ũk
1 +

[
θ2,1

θ2,2

]

︸ ︷︷ ︸
Θ2

k

ũk
2 (19)

with

Ω ∈ R2(nxi,i
+nxi,j

)×2(nxi,i
+nxi,j

),

x ∈ R2(nxi,i
+nxi,j

),

ũi ∈ R(nui
+nuj

)+(nuj
+nui

),

and
Θi ∈ R(nxi,i

+nxi,j
)×(nui

+nuj
)+(nuj

+nui
),

∀i �= j ∈ F.
For the system output

Y act = Ckxk =
[
C1 C2

]
︸ ︷︷ ︸

C

k
[
x1

x2

]k
(20a)

and

Ck
1 =

[
C1,1

C1,2

]k
, (20b)

Ck
2 =

[
C2,1

C2,2

]k
, (20c)

with Ci,j ∈ Rnyi,j
×nxi,j , Ci ∈ R(nyi,j

+nxi,j
)×(nyi,j

+nxi,j
)

and C ∈ R2(nyi,j
+nxi,j

)×2(nyi,j
+nxi,j

), ∀i, j ∈ F holds.
The notation of the plant-wide model (19) and (20) can be
simplified to

xk+1 = Ωkxk +Θk
1 ũ

k
1 +Θk

2 ũ
k
2 (21a)

yk = Ckxk (21b)

D. Cooperative Suboptimal FMPC
In this subsection the objective function is defined (Sec.

IV-D1), the constraints are established (Sec. IV-D2) and the
cooperative FMPC algorithm is given in Sec. IV-D3.

1) Objective Functions: The objective functions of the
individual FMPCs are given by:

Ji(x
k
i , ũ

k,k+np−1
i ) =

np−1∑

k=0

(xk
i

′
Qix

k
i + ũk

i

′
Riũ

k
i )

+ x
np

i
′
P ix

np

i (22)
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∀i ∈ F, P i is formally defined in Sec. II-C, xi ∈ Rnx ,
ũi ∈ Rnui

+nuj , Qi ∈ Rnx×nx , calculated as in Eq.(5b) and
Ri ∈ Rnui

×nui . The manipulated variable ui is optimized,
and the disturbance vector uj cannot be affected by FMPCi,
∀i, j ∈ F, i �= j.
The following remark is essential to motivate the stability
proof in Sec.V.

Remark 2: Let Qi and Ri be diagonal time-invariant
weighting matrices for FMPCs, moreover let P i a suitable
Lyapunov matrix, defined in Sec. II-C, ∀i ∈ F, these weighting
matrices are defined as:

Qnp

i = diag(Qi, Qi, . . . , Qi, P i) (23a)

and
Rnp

i = diag(Ri, Ri, . . . , Ri). (23b)

Based on the objective function Eq.(22) the objective function
for subsystem 1 is given by

J1(x
0
1, ũ

k,k+np−1
1 , ũ

k,k+np−1
2 )

= J1(x
0
1, u

k,k+np−1
1 , u

k,k+np−1
2 )

=

np−1∑

k=0

(xk
1

′
Q1x

k
1 + ũk

1

′
R1ũ

k
1) + x

np

1
′
P 1x

np

1 (24)

and for subsystem 2 by

J2(x
0
2, ũ

k,k+np−1
2 , ũ

k,k+np−1
1 )

= J2(x
0
2, u

k,k+np−1
2 , u

k,k+np−1
1 )

=

np−1∑

k=0

(xk
2

′
Q2x

k
2 + ũk

2

′
R2ũ

k
2) + x

np

2
′
P 2x

np

2 , (25)

with xi ∈ Rnxi , ui ∈ Rnui , and ũi ∈ Rnui
+nuj , ∀i �= j with

i, j ∈ F. With Eq.(24) and Eq.(25) the plant-wide objective
function is given as

J(x0
1, x

0
2, ũ

k,k+np−1
1 , ũ

k,k+np−1
2 )

= J(x0
1, x

0
2, u

k,k+np−1
1 , u

k,k+np−1
1 )

= ρ1J1(x
0
1, u

k,k+np−1
1 , u

k,k+np−1
2 )

+ ρ2J2(x
0
2, u

k,k+np−1
2 , u

k,k+np−1
1 ), (26)

in which ρ1, ρ2 > 0 are relative weights, with ρ1 + ρ2 = 1.

2) Constraints: It is required that the inputs satisfy in a
finite horizon

uk
1 ∈ Unp

1 uk
2 ∈ Unp

2 ∀k ∈ Nnp−1
0

where Ui are convex and compact sets, such that 0 is in the
interior, denoted by U◦

i , ∀i ∈ F.

3) Cooperative FMPC Optimization Algorithm: Let u�

be the overall blended output, after the iteration loop, of
the FMPCs with u0 = (u0

1, u
0
2) the initial condition for

the cooperative FMPC algorithm. The following optimization
problem is solved at each iteration q ≥ 0 for all subsystems

i ∈ F.

J� = min
ui

J(x0
1, x

0
2, u

k,k+np−1
1 , u

k,k+np−1
2 ) (27a)

subject to
xk+1 = Ωkxk +Θk

1u
k
1 +Θk

2u
k
2 , (27b)

ui ∈ Unp

i , (27c)
‖ui‖2 ≤ δi

∑

j∈F
‖x0

i,j‖2 if x0
i,j ∈ Nr, ∀j ∈ F, (27d)

uj = uq
j ∀j ∈ F \ i, (27e)

U ′
ux

np = 0, (27f)

where Nr is a neighborhood of the origin with a small radius
r > 0, and Eq.(27f) has to be fulfilled for all LLMsi,l,
∀i ∈ F, l ∈ Li. Due to output-blending in the FMPCs, the
blended control sequences for subsystem 1 and subsystem 2
are defined as in Eq.(14).
In this case Φi,l are the fuzzy membership functions for
output-blending for LLMl of LLMNi.
The (generally sub-optimal) solutions of the minimization
problem (27a) subject to equations (27b)–(27e) are denoted
as

u�
1(x

0
1, x

0
2, u

q
2) (28a)

u�
2(x

0
1, x

0
2, u

q
1) (28b)

Given the prior feasible iteration (uq
1, u

q
2), then the next

iteration is defined to be

uq+1= (uq+1
1 , uq+1

2 )

= Ψ1 · (u�
1(u

q
2), u

q
2) + Ψ2 · (uq

1, u
�
2(u

q
1))

= Ψ1

(
L1∑

l=1

Φ1,lu
�
1,l

(
L2∑

l=1

Φ2,lu
q
2,l

)
,

L2∑

l=1

Φ2,lu
q
2,l

)

+Ψ2

(
L1∑

l=1

Φ1,lu
q
1,l,

L2∑

l=1

Φ2,lu
�
2,l

(
L1∑

l=1

Φ1,lu
q
1,l

))
(29)

∑

i∈F
Ψi = 1 ∀Ψi > 0, i ∈ F. (30)

Here, Ψi are arbitrary scalar weighting factors.
The iteration loop is computed between consecutive time

steps. Furthermore, the matrices Ωk,Θk
1 ,Θ

k
2 are constant dur-

ing the iteration loop, only ui for FMPCj and uj for FMPCi,
∀i, j ∈ F, i �= j, are iteratively updated. Hence, the index k is
not included in the notation of the iteration loop. To simplify
notation the state dependence of ui has not been explicitly
written, ∀i ∈ F. The following Lemma is specifically defined
for 2 subsystems, for its extension to more subsystems see
Sec. IV-B.

Lemma 2: (Feasibility) see [11].
Given a feasible initial input sequence, the iterates satisfy

(uq
1, u

q
2) ∈ Unp

1 × Unp

2 , ∀q ≥ 1.

For proof see [11], page 9. The arguments from [11] can be
adopted because of the linear output-blending in the FMPCs.
The structure is equivalent to parallel MPCs and becomes
a fuzzy system structure in the output-blending. It is also
important to mention that the non-linear fuzzy output is a
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linear combination (summation) of local outputs, therefore, the
proof of [11] can be adopted. As mentioned before in Lemma
2, also in the next Lemma the extension to more subsystems
is discussed in Sec. IV-B.

Lemma 3: (Convergence of suboptimal J(., .) subject to the
cooperative iteration loop, Eq.(26))
The cost J(x0, uq) is not increasing for each iteration q and
converges as q → ∞.

Proof: For every q ≥ 0, the cost function satisfies the
following relation:

J(x0, uq+1) = J(x0,Ψ1(u
�
1, u

q
2) + Ψ2(u

q
1, u

�
2))

= J

(
x0,Ψ1

(∑L1

l=1
Φ1,lu

�
1,l,
∑L2

l=1
Φ2,lu

q
2,l

)

+Ψ2

(∑L1

l=1
Φ1,lu

q
1,l,
∑L2

l=1
Φ2,lu

�
2,l

))

≤ Ψ1J

(
x0,

(∑L1

l=1
Φ1,lu

�
1,l,
∑L2

l=1
Φ2,lu

q
2,l

))

+Ψ2J

(
x0,

(∑L1

l=1
Φ1,lu

q
1,l,
∑L2

l=1
Φ2,lu

�
2,l

))
(31a)

≤ Ψ1J

(
x0,

(∑L1

l=1
Φ1,lu

q
1,l,
∑L2

l=1
Φ2,lu

q
2,l

))

+Ψ2J

(
x0,

(∑L1

l=1
Φ1,lu

q
1,l,
∑L2

l=1
Φ2,lu

q
2,l

))
(31b)

= J

(
x0,

(∑L1

l=1
Φ1,lu

q
1,l,
∑L2

l=1
Φ2,lu

q
2,l

))
(31c)

= J(x0, uq)

The inequality (31a) follows from convexity of J(.). Inequality
(31b) follows from optimality of u�

i , ∀i ∈ F, and the last equal-
ity (31c) comes from the fact that

∑
i∈F Ψi = 1. Because of

output-blending for the FMPCs, u is a sum of weighted scalar
inputs. As the sum operator is a linear operator, the reasoning
of inequality conversion is adapted from [11]. Because of the
fact that the cost is bounded below (J(·) ≥ 0), it converges.

V. STABILITY OF COOPERATIVE FMPC
Stability for FMPC can be shown in different ways, see

[25], [30], [23], [24], [26], [20]. For the proof F = {1, 2} is
assumed, for an extension to F = {1, 2, . . . , F} see Sec. IV-B.
To prepare for the stability proof of the cooperative FMPC
structure the following two assumptions are necessary:

Assumption 1: For all i ∈ F the following properties are
assumed to hold:

1) The systems (Ωi,Θi) are stabilizable.
2) The systems (Ωi, Qi) are detectable.
3) The input weights are positive definite: Ri > 0.
4) The state weights are positive semi-definite: Qi ≥ 0.
5) nc ≥ max(nu), in which nu is the number of unstable

eigenvalues of Ai,l, ∀i ∈ F, l ∈ Li.
6) The FMPCs have to operate as parallel linear MPCs for

each LLM and the output has to be blended for each
FMPC.

Assumption 2: Let r > 0 be given, ∀i ∈ F, δi ∈ R+

be chosen large enough such that there exists a ũi ∈ Unp

satisfying ‖ũi‖2 ≤ δi
∑

j∈F ‖x0
i,j‖2, ∀xi,j ∈ Nr, ∀j ∈ F.

Because of Assumption 2 the set Xnp
is invariant.

Now the stability for the closed-loop system with cooperative
FMPCs is introduced, based on [11], [12]. Define the following
as the warm start sequence of each subsystem i:

ˆ̃uk+1
i = {ũ1

i , ũ
2
i , . . . , ũ

np−1
i , 0}, (32)

∀i ∈ F.
The warm start sequence in Eq.(32) is used as the initial con-
dition for the cooperative FMPC problem in each subsystem
i. Let the output of the cooperative FMPC control iteration,
see Eq.(29), be defined as functions hq

1 and hq
2:

ũk+1
1 = hq

1(x1, x2, ũ1, ũ2), (33a)
ũk+1

2 = hq
2(x1, x2, ũ1, ũ2). (33b)

The closed-loop system then is given by
⎡
⎢⎢⎣

xk+1
1

xk+1
2

ũk+1
1

ũk+1
2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Ωk
1x

k
1 + θk1,1ũ

k
1 + θk1,2ũ

k
2

Ωk
2x

k
2 + θk2,1ũ

k
1 + θk2,2ũ

k
2

hq
1(x1, x2, ũ1, ũ2)

hq
2(x1, x2, ũ1, ũ2)

⎤
⎥⎥⎦ . (34)

The system Eq.(34) can be simplified to
[
Xk+1

ũk+1

]
=

[
ΩkXk +Θ1ũ

k
1 +Θ2ũ

k
2

hq(X, ũ)

]
. (35)

Based on Lemma 1, the next lemma can be introduced.

Lemma 4 (Exponential Stability, [11]): Given Assumption
1 and Assumption 2, the origin x = 0 of the closed-loop
system xk+1 = ΩkXk +Θ1ũ

k
1 +Θ2ũ

k
2 is exponentially stable

on the set Xnp
.

Proof: Equation (35) is of the same type as given in
[11]. Because of Assumption 1, item 6), the summation for
blending is a linear operation. In addition, Assumption 1 and
Assumption 2 are fulfilled for Eq. (35), therefore it is possible
to directly adopt the proof from [11].

Corollary 1: For suboptimal FMPC the stability proof
holds if Eq. (31b) is fulfilled and Eq. (32) is given. If these
two relations are fulfilled the stability proof above holds, even
if no convergence in the iterative cooperation loop occurs.

Remark 3: The extension from unconstrained guaranteed
stable FMPCs (see Sec. II-C) to input-constrained stable
FMPC has to be carried out as shown in [29] (Sec.10.3.1,
pp.205–213).

VI. SIMULATION EXAMPLE

A simulation study of the CFMPC concept is shown in the
following, where two FMPCs are in cooperation (see Fig. 3).
LLMN1 is given by 3 LLMs each with oscillatory dynamics.
The second LLMN2 is described by 3 unstable LLMs. Hence,
F = {1, 2} and Li = {1, 2, 3}, ∀i ∈ F holds. In Fig.4 the poles
of the second-order LLMs for both subsystems and the unit
circle (dashed dotted line) are shown. The diamonds represent
the poles of the oscillatory LLM1,l, and the circles represent
the poles of unstable LLM2,l, ∀l ∈ Li. In all simulations the
reference steps Y ref are given by a black dashed-dotted line
(Figs. 5, 6, and 9). During the simulations the first reference
step occurs at k = 100 from 2 to 40, at k = 250 the reference
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poles for the LLMs
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Fig. 4. Poles of oscillatory and unstable LLMs.

step goes to 0 and the last reference step goes to −40 at
k = 400.
The fuzzy partition space is given as a two-dimensional space
spanned by the manipulated variables [u1, u2] (the splits are
shown in black dashed lines, see Fig. 11). Therefore, the
blending zones (areas of overlap) are very small and the
borders are sharp, which makes control design more difficult.
The reference FMPC is a non-cooperative FMPC, which
means that the structure and parameters of the used controller
are the same as utilized for the CFMPC. The sole exception
is the cooperative iteration loop which is not active in the
non-cooperative FMPC. In Fig. 5 non-cooperative FMPC are
shown, Y 1 (light-gray solid line) indicates the output of the
oscillating LLMN1, and Y 2 (gray solid line) is the output
of the unstable LLMN2. Fig. 6 shows the CFMPC with 10
iteration steps (q = itmax = 10) in between each time step.
It illustrates that the CFMPC is able to stabilize the interact-
ing FMPCs. Note that fast cooperation is not guaranteed in
general, but in this simulation example the convergence of the
inner iteration loop works well and fast. In both cases the
FMPCs are affecting each other as disturbances, but in the
non-cooperative case the FMPCs cannot compensate spurious
interactions and generate a limit circle. In the case of CFMPC
the cooperative optimization guarantees the desired closed-
loop performance. Fig. 7 and Fig. 8 show the manipulated
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Fig. 5. Outputs of subsystems 1 and 2 without cooperation.

variables ui,l and u�
i,l for each single LLMi,l vs. the global

manipulated variables ui or rather u�
i , ∀i ∈ F,∀l ∈ Li. In the

next simulation on Fig. 9 the case of a constrained CFMPC is
presented, see Sec.IV-D2. Note that the manipulated variable
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Fig. 6. Outputs of subsystems 1 and 2 with cooperation
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Fig. 7. The plot on the top shows the global fuzzy manipulated variable of
the oscillating LLM1,l vs. the single control from each LLM1,l, ∀l ∈ Li,
∀i ∈ F, without cooperation in between each time step. The plot on the
bottom shows the same for the unstable LLMs2,l.
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Fig. 8. Both plots shows the results of controlling with CFMPC. The plot on
the top shows the global fuzzy manipulated variable of the oscillating LLMs1,l
vs. the cooperative single control from each LLM1,l, ∀i ∈ F,∀l ∈ Li. The
plot on the bottom shows the same for the unstable LLMs2,l.
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for controlling without cooperative iteration loop is denoted
by ui, ∀i ∈ F , and after running through the cooperative
iteration loop by u�

i , ∀i ∈ F. Fig. 9 shows that FMPC1 (solid

constrained CFMPC
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Fig. 9. Outputs of subsystems 1 and 2 with cooperation and active constraints
in u�

1 and u�
2 .

line) is not able to reach its reference after the first step
(k = 100 to k = 250) because of the hard constraints in
u�
i,l, ∀i ∈ F,∀l ∈ Li. In Fig.10 it is shown that the manipulated

variables are saturated by the constraints (dashed lines) after
the first step. It is also important to mention that after the last
reference step u�

1,3, u�
2,1 ,and u�

2,3 remain entirely in the lower
constraints. Note that the constraints for LLMi,l are the same
∀l ∈ Li, but are different for ∀i ∈ F.

In Fig. 11 the global fuzzy trajectories in the partition
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Fig. 10. Manipulated variables of CFMPC with active constrained set in u�
1

and u�
2

space are given. The gray rectangle in this figure shows the
active constrained intersection set in the partition space. The
trajectories of u�

1 and u�
2 hit each constraint at least once

during the simulation.

VII. CONCLUSION

The CFMPC algorithm is introduced and the cooperative
model structure is defined. It is important to notice that the
single FMPCs have to be output-blended and the global plant
has to be parameter-blended in this approach. The stability

constrained CFMPC trajectory LLMN1

constrained CFMPC trajectory LLMN2
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Fig. 11. This plot shows the constrained CFMPC trajectories in the corre-
sponding partition space. The gray box shows the active set of constraints.

problem for CFMPCs has been studied in this paper and
a proof for the closed-loop stability of the CFMPC system
is given. Moreover, a convergence proof for the cooperative
iteration loop is presented. This work shows also theoretically
that the CFMPC algorithm is able to handle hard constraints as
well as unstable LLMs. In the first simulation example a non-
cooperative FMPC is compared to a CFMPC. In the second
simulation it is shown that the CFMPC is able to satisfy hard
constraints in u1 and u2. These simulation examples verify
the advantages and effectiveness of the proposed approach.

APPENDIX

The system matrices of the simulation are given as:

A1,1 =

[
0.8 0.57

−0.57 0.8

]
; B1,1 =

[
−0.2525
1.4289

]
; E1,1 =

[
0.5260
1.2344

]
;

A1,2 =

[
0.85 0.51
−0.510.85

]
; B1,2 =

[
−0.2429
1.7826

]
; E1,2 =

[
0.6064
1.1856

]
;

A1,3 =

[
0.73 0.64
−0.640.73

]
; B1,3 =

[
−0.3424
1.73549

]
; E1,3 =

[
0.5658
0.9511

]
;

A2,1 =

[
0.4 0
0 1.7

]
; B2,1 =

[
−0.7586
−0.4142

]
; E2,1 =

[
−0.9482
−0.2209

]
;

A2,2 =

[
0.35 0
0 1.4

]
; B2,2 =

[
−1.6385
−1.0090

]
; E2,2 =

[
−1.5020
−0.5381

]
;

A2,3 =

[
0.45 0
0 1.75

]
; B2,3 =

[
−1.5504
−0.8435

]
; E2,3 =

[
−1.3954
−0.3749

]
.

Note that, because of the fact that the output is the summa-
tion of the states Ci,i = [1 1], ∀i ∈ F holds.
The constraints are chosen as follows:

−14 ≤u�
1,l≤ 13,

−3 ≤u�
2,l≤ 7,

∀l = {1, 2, 3}.
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a b s t r a c t

In this paper a mixed-integer model predictive controller for hybrid energy supply systems in buildings is
presented. This approach is based on a hierarchical building control concept where the energy supply
level is coupled to the energy consumption level only by the heat load. The supply level is characterized
by non-linear dynamics due to a stratified water storage tank and a switched heat pump with minimum
on/off times. The mixed-integer model predictive controller optimizes the unit commitment problem at
minimum costs while satisfying the consumption level’s predicted heat load. The hybrid system is
formulated as a piecewise affine model comprising continuous and discrete system inputs. Moreover,
the proposed controller is able to manage the stratified storage tank including switching sequences of
the heat pump with respect to energy price forecasts. The effectiveness of this approach is shown by a
comparison to a model predictive controller with an a priori fixed operation mode profile, where the heat
pump is only operating at night, and discussing the effect of the variation of the stratified storage tank
size. The proposed concept is able to flexibly manage all sizes of stratified storage tanks with better
performance than the reference control strategy, which is only effective for larger tanks. Additionally,
a robustness analyses demonstrates that the mixed-integer model predictive controller can handle errors
in the heat load prediction from the consumption level. Both analyses show promising results for the
practical use of the proposed controller within the hierarchical control concept or as a control module
in a similar but more general application.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

According to the statistics of the International Energy Agency
the building sector consumes up to 40% of the total final energy
consumption, [1]. In order to achieve significant reductions in pri-
mary energy consumption passive measures like improved insula-
tion are taken, but also renewable energy sources are being
considered, which are highly dependent on weather conditions.
Therefore, the periods of efficient energy production do usually
not coincide with the energy demand of buildings. That is why
appropriate thermal energy storages become necessary, [2]. They
are realized either by thermally activated building systems
(TABS), where massive concrete structures are thermally activated,
or by dedicated thermal storage such as stratified tanks. The usage
of an increasing number of energy sources, the combination of
continuous and switching heat sources, together with the

management of storage requires new control strategies.
Regarding management of the energy production level, the points
of view differ considerably and range from peak load shifting
approaches, [3], to integrated storage management with building
automation systems, [4].

Model-based predictive control (MPC) has been proven as a
promising technology for building control, [5]. Most of the pre-
sented approaches of recent years focus on the control of the entire
building comprising the buildings’ zone control as well as the
energy supply optimization within one model and controller. In
[6] building modeling approaches are discussed, whereas [7]
presents how to include forecasts into the MPC strategy.
However, a building can be seen as a two-layer structure, the
High Level (HiLe) energy-consuming layer and the Low Level
(LoLe) energy providing layer, [8]. This paper is based on the
fundamental concept presented in [8]: (i) A HiLe-MPC optimizes
the heat load for maximum comfort and minimum energy con-
sumption, (ii) the LoLe-MPC provides the requested heat load with
minimum monetary costs. As the two layers exhibit different non-
linear system dynamics and optimization targets an hierarchical
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approach is reasonable, splitting one modeling and control problem
into two optimization tasks. The resulting modularity in imple-
mentation and operation is an important advantage for industrial
implementation.

Focusing on the LoLe, the presence of possibly numerous switch-
ing aggregates such as heat pumps requires the management of on/
off times which consequently influences the operation modes of the
stratified storage tanks at each time step. Furthermore, this unit
commitment problem involves constraints on the minimum on/
off times, which are considered due to constraints on the aggre-
gates’ actuators and the aim to reduce maintenance costs over the
whole lifecycle. The resulting system is a hybrid system, [9], where
each operation mode requires a dedicated, generally non-linear,
model. The combination of continuous and discrete decision vari-
ables leads to a mixed-integer non-linear optimization problem
(MINP), for which there is no exact solution technique. However,
by approximating the dedicated models by piecewise linear mod-
els, mixed-integer linear programming (MILP) can be used to solve
the optimization problem, yielding suboptimal solutions.

Summarizing, the main challenges for the LoLe control are (i)
the hybrid energy supply system including continuous as well as
discrete control variables for switching aggregates with minimum
on/off times, (ii) the mixed-integer MPC formulation (with time
variant cost structure) and (iii) the coupling to the HiLe controller
with uncertain load prediction.

Using MPC requires accurate but rather simple models.
Therefore, appropriate assumptions on the system have to be
made. Refs. [10,11] have presented hybrid system formulations
for cooling systems including different operation modes. In [10] a
two-layered stratified storage tank was considered with constant
tank temperatures as well as fixed return temperatures from the
building. Ref. [11] generalizes the stratified storage tank manage-
ment for an arbitrary number of stratification layers, energy
sources and consumers. Nevertheless, both [10,11] assume two
tank operation modes, charging and discharging, specified by an
a priori fixed operation plan. Subsequently, chillers are only
switched on at night, in order to charge the stratified storage tank,
and switched off during day, when the tank is discharged. In con-
trast to the aforementioned building control references, this paper
focuses on the model-based predictive control of the buildings’
heating supply (LoLe) covering the unit commitment problem
and introduces the hybrid mixed-integer MPC (MI-MPC) approach;
a method which has not yet been applied to building heating con-
trol. The energy supply system includes a geothermal heat pump, a
stratified two-layered water storage tank, and a TABS system.
District heat supply is considered as an additional heating circuit
providing energy for the Fan Coils (FC) in the indoor rooms.
While [12] shows first experimental results on MPC for building
heating control, in [7] focus is put on the comparison of different
MPC concepts. However, both use bi-linear models to describe
the overall system, whereas this paper introduces a hybrid
mixed-integer formulation including discrete decision variables
for aggregate switching times as well as constraints on minimum
on/off times. The resulting unit commitment and MILP problem
has also been theoretically introduced in the field of microgrid
operation optimization, [13]. The feasibility and effectiveness of
this approach has been experimentally proven in [14], where the
method was applied to a microgrid in Athens, Greece. Although
the fundamental problem formulation is similar, the model depth
for the microgrid is lower than needed for building energy supply,
where pumps must be controlled individually. In contrast to
[13,14], the modeling approach utilized here is based on analyti-
cally derived first order non-linear differential equations, approxi-
mated by piecewise linear models. The hybrid mixed-integer
problem formulation is carried out as introduced in [9] resulting
in a piecewise affine (PWA) system.

The simulation results of the proposed decoupled LoLe mixed-
integer MPC are compared to those with an a priori fixed tank
operation mode profile in terms of mean error, (monetary) costs
and coefficient of performance (COP) of the energy supply of the
TABS system. Additionally, the effect of varying the tank size on
the controller’s decision and the resulting costs are discussed.
Since recent work show that the impact of forecasting accuracy
on the predictive control strategy is high, [15], an analysis of the
MI-MPCs robustness is given with respect to the uncertainty of
the heat load prediction from the HiLe. For simulating this error
the deterministic reference trajectory is disturbed with a fixed bias
and a randomly generated white noise over the entire simulation
period.

The paper is structured as follows: The problem is formulated in
Section 2, followed by introduction of the model of the energy sup-
ply hybrid system, Section 3. The mixed-integer MPC formulation
is given in Section 4 and the simulation results discussed in
Section 5. Finally, conclusions are drawn in Section 6.

2. Building control

In this Section the fundamental approach, the concept of
hierarchical building control, the energy supply system, and the
problem formulation are given.

2.1. Fundamental approach

Large building heating control necessarily includes the whole
building, the High Level (HiLe), where the building indoor rooms
are conditioned, as well as the Low Level (LoLe), where heating is
provided. In recent years, most of the MPC approaches have
focused on the control of both layers in one controller, [7,6].
Therefore, one model including both systems’ dynamics has to be
taken into account. The complexity for modeling and control is
high as both systems are inherently non-linear and the time con-
stants and optimization targets are completely different. The
approach presented in [8] splits this optimization problem by
defining a dedicated MPC for each of the two levels, which interact
via the predicted heat load from the HiLe _Q ref

i and the actual deliv-

ered heat from the LoLe _Qi, where i denotes different heating sup-
ply circuits. The maximization of the users’ comfort is the central
objective for the HiLe-MPC, considering stochastic disturbances
ambient temperature, radiance and occupancy. In contrast, the
LoLe controller optimizes the operation of the switching aggregate
and consequently the number of available energy sources used to
meet the HiLe requirement by minimizing the costs. This is a clas-
sical unit commitment problem (when to optimally switch an
aggregate on/off), but additionally the stratified storage tank’s
operation and the usage of electric energy with time-varying pric-
ing is optimized. Note that the relevant dynamics in the higher
level is comparatively slow (from hours to several days), whereas
in the lower level it is faster (from minutes to several hours). In
[8], this hierarchically decoupled approach was presented, which
is briefly explained in Section 2.2 since it defines the requirement
for control of the energy supply system Section 2.3 and in [16] the
HiLe-MPC was further developed.

2.2. Hierarchic building control

Fig. 1 shows a schematic diagram of the two building layers and
the single coupling point between the controllers. The HiLe
optimizes the user comfort by minimizing the deviation of the
indoor temperature from the consumer preference. _Q ref

i , for
i ¼ fTABS; FCg, depicts the energy demand of the HiLe to fulfill
the optimization target, which constitutes the control variables
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of the HiLe-MPC at the same time. As each building zone j can be
controlled individually by a separate MPC, the sum of these control

variables
P

j
_Q ref

i;j is the reference value for the energy supply of the
LoLe-MPC. However, the important fact is the decoupling of the
optimization problems. Stochastic disturbances such as weather
and occupancy information only affect the HiLe-MPC, [7], Fig. 1.
Decoupling is useful due to the fact that (i) the dynamic behavior
is significantly different in HiLe-MPC and LoLe-MPC, (ii) the mod-
eling and optimization problem is split into two tasks, and (iii)
the possibility of modular application is given. Minimum up- and
down-times and operation modes of the stratified storage tank
are the reason for the dynamics in LoLe, whereas the dynamics
in the HiLe differ not least due to large time constants. Global opti-
mal solutions may not be reached with a decoupled method, but
two local optimal solutions are more likely to be feasible and easier
in operation due to the resulting real time capability. Industrially
motivated, system identification of the HiLe may be data-driven,
[17], while LoLe can be modeled by an analytical approach.
Additionally, the optimization targets of the two layers differ
fundamentally, so that large benefits arise with an hierarchically
decoupled approach that allows modular application in industry.

2.3. Energy supply system

In the following the variables, parameters and subscriptions
given in Tables 1 and 2, respectively, will be used.

Due to the different temperature levels, the heating supply sys-
tem consists of two separated supply circuits, see Fig. 2, one
responsible for the Fan Coil (FC) system in the indoor rooms and
the other one for the TABS system implemented as activated con-
crete in two office floors.

District heating is the source of the first circuit, directly fed
through to the distributor for the office floors, whereas the TABS
system is provided by a geothermal-based heat pump and a

subsequent stratified water storage tank. The water-glycol mixture
fed by the geothermal pipes varies between 12 �C and 16 �C
depending on the season and ambient temperature. The TABS sys-
tem has a minimum supply temperature constraint which depends
on the insulation of the pipe system. Therefore, it is reasonable to
operate a stratified storage tank in order to compensate the tem-
perature gap. This also enables an energy saving management
since the heat pump can be switched off regularly. As in [11,10],
the assumption is that the warm water enters the storage tank at
the top and is also drawn from there, whereas the cold return
water from the building is supplied to the bottom. The storage tank
can operate in two basic operation modes: charging and discharg-
ing. These operation modes depend on the status of the heat pump
(on/off) and on the difference of the mass flows to, _mHP, and from,
_mTABS the storage tank. As the supply systems are located in the

basement of the building, the ambient temperature Tamb is
assumed to be constant with 20 �C. The water return temperatures
TTABS;r and TFC;r are also assumed to have a constant level of 22 �C
and 30 �C. This assumption is plausible, because the HiLe-MPC
optimizes the energy amount needed to guarantee user comfort.
Since the LoLe controller is designed to meet these requirements,
the resulting return temperatures are almost constant.

2.4. Control problem statement

For the energy supply system outlined in Section 2.3 a control
design should be performed which guarantees that the actual heat
supply _Q i tracks the desired heat load _Q ref

i with optimal perfor-
mance (meaning both minimum error and minimum costs).
Available variables for that task are heat pump, supply pumps,
and supply temperature. Moreover, the management of the strati-
fied storage tank should utilize the storage capacity as effectively
as possible. As a model based control scheme is to be used, the fol-
lowing Section focuses on the modeling of the energy supply
system.

HiLe

LoLe

Q̇ref
TABS

Q̇ref
FC

Q̇TABS

Q̇FC

Fig. 1. Concept of hierarchic building control.

Table 1
Definition of variables and parameters.

Variables Description

z Height of stratified water storage tank [m]
T Temperature of the water ½�C�
_m Mass flow rate [kg/s]
_Q Heat flow from LoLe to HiLe [W]

cp Specific heat capacity of water [J/kg K]
q Density of water [g/cm3]
r Radius of tank [m]
k Coefficient of thermal conductivity of the storage tank [W/m �C]
v Volume of the stratified water storage tank [m3]
d Discrete variable

Table 2
Definition of subscripts.

Subscripts Description

‘h’ Hot water above thermocline
‘c’ Cold water below thermocline
‘s’ Supply water to the building
‘r’ Return water from the building
‘TABS’ TABS system
‘FC’ Fan Coils system
‘HP’ Heat pump
‘DH’ District heat
‘amb’ Ambient
‘in’ Indoor

District heat

Geothermal

FC

TABS

Heat pump
zh

Stratified storage tank

ṁHP ṁTABS

ṁFC

Fig. 2. Heating circuits for FC and TABS.
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3. Energy supply system model

In this Section the models for both heating circuits are derived
analytically. The non-linear equations are given and the lineariza-
tion is outlined.

3.1. FC supply model

The FC supply model is determined as a static first order non-

linear differential equation with the control output _QFC and the
manipulated variables _mFC and TFC;s:

_Q FC ¼ _mFC � ðTFC;s � TFC;rÞ � cp; ð1Þ

with TFC;s ¼ TDH and _mFC as the system’s inputs. Linearizing the

model at the operating point O ¼ To
FC;s; _mo

FC

n o
, results in:

D _Q FC ¼ c1 � cp � DTFC;s þ c2 � cp � D _mFC; ð2Þ

with DTFC;s ¼ TFC;s � To
FC;s and D _mFC ¼ _mFC � _mo

FC. The coefficients c1

and c2 are provided in Appendix A.

3.2. TABS supply model

For the TABS supply model, the water storage tank is modeled
as a two-layer stratified storage tank with one perfectly separating
thermocline as in [10]. As the tank is within a closed hydraulic sys-
tem, the water level in the storage tank is assumed to be constant
with z ¼ zh þ zc at each time. Nevertheless, as the focus of this
work is placed on heating control, only the height and volume of
water above the thermocline zh and vh, respectively, are of impor-
tance in the following. On the hot generation side, the tank is sup-
plied by the mass inflow _mHP with water from the heat pump,
whereas on the consumption side, the mass outflow _mTABS deter-
mines the amount of hot water provided for the TABS system,
see Fig. 2. Consequently, the status of the heat pump determines
the mass flow rate _mHP. In order to make the controller decide
whether the heat pump is switched on or off, the discrete variable
dHP 2 0;1f g is introduced, which affects the mass flow rate _mHP and
its constraints, see Section 4.2. If the heat pump is switched on, it
operates between 30% and 70% of its nominal power, whereas
there is no mass flow at all if the pump is switched off.
Therefore, the stratified storage tank’s operation mode depends
on the controller’s decision, on the difference of the two mass
flows, and on the status of the heat pump, see Fig. 3.

The water supply temperature TTABS;s depends on the active
operation mode. Each mode is represented by one dedicated
model. The hybrid system’s dynamics are given by the change in
zh and the temperature of the hot water in the stratified storage
tank Th over time. Thus, these two variables form the states of
the system. The manipulated variables are given by the mass flows
_mHP and _mTABS and by the temperature of the water supply from the

heat pump THP to the stratified storage tank. The control outputs
_Q TABS and TTABS are expressed by the two states and the manipu-

lated variables in each case.

3.2.1. Continuous non-linear model
The TABS supply model is determined as a set of non-stationary

first order non-linear differential equations based on heat and
mass flow balances:

dQhðmh; ThÞ
dt

¼ _Q in
h � _Qout

h ; ð3Þ

_mh ¼ _min
h � _mout

h ¼ _mHP � _mTABS: ð4Þ

For all operation modes, mh is the mass of hot water in the stratified
storage tank above the thermocline, r denotes the radius of the tank
and q the density of the hot water:

mh ¼ zh � r2pq: ð5Þ

Hence, the derivative of the height of stratified water storage tank
above the thermocline _zh can be derived from Eqs. (4) and (5)
independently from the operation mode:

dzh

dt
¼ gð _mHP; _mTABSÞ ¼

_mHP � _mTABS

r2pq
: ð6Þ

The heat flow based on the heat balance Eq. (3) is expressed by the
following total differential, where the derivative of the temperature
_Th is denoted by the losses to the ambiance:

dQ h

dt
ðmh; ThÞ ¼ _mh � Th � cpþmh � _Th � cp ¼ ð _mHP � _mTABSÞ �

Th � cp� 2rp � k � zh � ðTh � TambÞ: ð7Þ

Charging: _mHP > _mTABS and dHP ¼ 1
The mass flow rate of the heat pump is higher than the mass

flow needed for the TABS system. Therefore, the energy content
rises and zh increases as the thermocline lowers, see Fig. 3(a).
This operation mode is only feasible if the heat pump is active. In
this case the temperature Th can approximated by THP and Eq. (7)
can be written as:

_mh � Th � cpþmh � _Th � cp ¼ ð _mHP � _mTABSÞ � THP � cp� 2rp�
k � zh � ðTh � TambÞ ð8Þ

The time derivative of the temperature of the hot water in the
stratified storage tank _Th can therefore be expressed by utilizing
Eq. (8) where mh is substituted by Eq. (5) and _mh is substituted by
Eq. (4):

_Th ¼
ð _mHP � _mTABSÞ � ðTHP � ThÞ � cp� 2rp � k � zh � ðTh � TambÞ

zh � r2pq � cp
: ð9Þ

As the mass flow to the storage tank is higher than the mass flow to
the TABS system, the temperature of the water supply for the TABS
system, TTABS;s, is assumed to be the temperature of the water sup-
ply from the heat pump (direct feed through). Hence, the heat flow
to the TABS system is derived from this assumption and the non-
stationary heat balance (3):

TTABS;s ¼ THP; ð10aÞ
_QTABS ¼ _mTABS � ðTHP � TTABS;rÞ � cp: ð10bÞ

zh

charging ∧ δHP = 1

ṁHP ṁTABS

(a) ṁHP > ṁTABS, żh > 0

zh

discharging ∧ δHP = 1

ṁHP ṁTABS

(b) ṁHP ≤ ṁTABS, żh ≤ 0

zh

discharging ∧ δHP = 0

ṁHP ṁTABS

(c) 0 ≤ ṁTABS, żh ≤ 0

Fig. 3. The three operation modes of the stratified storage tank.
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Discharging: _mHP 6 _mTABS and dHP ¼ 1
If the mass flow rate produced by the heat pump is lower than

the mass flow needed for the TABS system, the stratified storage
tank is discharged, see Fig. 3(b). The time derivative of the tem-
perature of the hot water in the stratified storage tank _Th can be
directly expressed from Eq. (7):

dTh

dt
¼ �2rp � k � zh � ðTh � TambÞ

zh � r2pq � cp
: ð11Þ

If the heat pump is active the water supply temperature to the TABS
system, TTABS;s, is a mixture of the water supply temperature from
the heat pump and temperature of the hot water in the stratified
storage tank weighted by the corresponding mass flows. This also
causes a different formulation of the heat flow to the TABS system
than in the charging mode:

TTABS;s ¼
_mHP � THP � ð _mHP � _mTABSÞ � Th

_mTABS
; ð12aÞ

_Q TABS ¼ _mHP � ðTHP � ThÞ � cpþ _mTABS � ðTh � TTABS;rÞ � cp: ð12bÞ

Discharging: 0 6 _mTABS and dHP ¼ 0
If the mass flow rate produced by the heat pump is zero the

stratified storage tank is discharged, see Fig. 3(c). The deviation
of the temperature of the hot water in the stratified storage tank
_Th is equal to the corresponding formulation for charging while
the heat pump is on. The water supply temperature to the TABS
system TTABS;s is then equal to the temperature of the hot water
in the stratified storage tank:

TTABS;s ¼ Th; ð13aÞ
_Q TABS ¼ _mTABS � ðTh � TTABS;rÞ � cp: ð13bÞ

3.2.2. Continuous linearized model
In order to use the MI-MPC a piecewise linear model is required to

formally describe the hybrid system. For the linear approximation,
operating points for both states and all manipulated variables are
fixed, O ¼ zo

h; To
h; To

HP; _mo
HP; _mo

TABS

� �
. The linearized, continuous

system is given by the three sets of linear Eqs. (17)–(19) derived
from the respective non-linear part of the model (9)–(13). The
coefficients c3 � c19 are provided in Appendix A.

The method to derive the following linearized equations for
each operation mode is exemplarily demonstrated for one specific
model equation. For all operation modes _zh is given by Eq. (6).

The following D-variables define the deviation from the operat-
ing point: _zh ¼ D _zh; _mHP ¼ _mo

HP þ D _mHP and _mTABS ¼ _mo
TABS þ D _mTABS.

Consequently, Eq. (6) can be rewritten:

D _zh ¼ gð _mo
HP þ D _mHP; _mo

TABS þ D _mTABSÞ: ð14Þ

Developing Eq. (14) in a first-order Taylor series at the operating
point results in:

D _zh ¼ gð _mo
HP; _mo

TABSÞ þ
@gð _mHP; _mTABSÞ

@ _mHP
joD _mHP

þ @gð _mHP; _mTABSÞ
@ _mTABS

joD _mTABS: ð15Þ

With gð _mo
HP; _mo

TABSÞ ¼ 0 the linearized equation for D _zh is given by:

D _zh ¼
1

r2pq
D _mHP �

1
r2pq

D _mTABS: ð16Þ

Charging: _mHP > _mTABS and dHP ¼ 1

D _Th ¼ c3 � DTHP þ c4 � D _mHP þ c5 � D _mTABS þ c6 � Dzh þ c7 � DTh

DTTABS;s ¼ DTHP

D _Q TABS ¼ c8 � cp � DTHP þ c9 � cp � D _mTABS ð17Þ

Discharging: _mHP 6 _mTABS and dHP ¼ 1

D _Th ¼
�2k

rq � cp
DTh

DTTABS;s ¼ c10 � DTHP þ c11 � D _mHP þ c12 � D _mTABS þ c13 � DTh

D _QTABS ¼ c14 � cp � DTHP þ c15 � cp � D _mHP

þ c16 � cp � D _mTABS þ c17 � cp � DTh ð18Þ

Discharging: 0 6 _mTABS and dHP ¼ 0

D _Th ¼
�2k

rq � cp
DTh

DTTABS;s ¼ DTh

D _QTABS ¼ c18 � cp � DTh þ c19 � cp � D _mTABS ð19Þ

Summarized, the system manipulated D-variables, the state
D-variables, and the system output D-variables are given by:

Du ¼ ½DTHP;D _mHP;D _mTABS;DTFC;D _mFC�T ;
Dx ¼ ½Dzh;DTh�T ;

Dy ¼ ½D _Q TABS;DTTABS;s;D _Q FC�
T
: ð20Þ

3.3. Piecewise affine (PWA) model

The MI-MPC requires a model formulation in a linear state
space form. Therefore, the overall hybrid system introduced in
Sections 3.1 and 3.2 is transformed into a piecewise affine (PWA)
model. As motivated in Section 3 the hybrid system consists of
two continuous states, X ¼ Xc ¼ zh; Thf g 2 R2, five continuous
manipulated variables, Uc ¼ THP; _mHP; _mTABS; TFC; _mFCf g 2 R5, one

discrete input Ud ¼ dHP with U ¼ Uc

Ud

� �
2 R5 � 0;1f g and three

continuous outputs, Y ¼ Yc ¼ _QTABS; TTABS;s; _QFC

n o
2 R3.

The auxiliary logical variables dmðtÞ 2 0;1f g;8m ¼ 1; ::;3 are
introduced to denote the operation mode of the stratified storage
tank. As the system can only be in one mode at each time they
are satisfying

X3

m¼1

dmðtÞ ¼ 1 ð21Þ

as an additional constraint. In the following, the overall discrete-time
PWA system is considered, which is derived from (2), (17)–(19) with
a sampling time of ts ¼ 1 h:

xðt þ 1Þ ¼
A1xðtÞ þ B1uðtÞ; if d1ðtÞ ¼ 1

A2xðtÞ þ B2uðtÞ; if d2ðtÞ ¼ 1

A3xðtÞ þ B3uðtÞ; if d3ðtÞ ¼ 1;

8><
>:

yðtÞ ¼
C1xðtÞ þ D1uðtÞ; if d1ðtÞ ¼ 1

C2xðtÞ þ D2uðtÞ; if d2ðtÞ ¼ 1

C3xðtÞ þ D3uðtÞ; if d3ðtÞ ¼ 1;

8><
>:

ð22Þ

where the matrices Am 2 R2�2; Bm 2 R2�5; Cm 2 R3�2 and Dm 2 R3�5

are given in the Appendix. The auxiliary variables dm for m = 1,2,3
can be expressed by:

d1ðtÞ ¼ dchargeðtÞdHPðtÞ
d2ðtÞ ¼ ð1� dchargeðtÞÞdHPðtÞ
d3ðtÞ ¼ ð1� dchargeðtÞÞð1� dHPðtÞÞ; ð23Þ

with

dcharge ¼
1 if _mHP � _mTABS > 0
0 if _mHP � _mTABS 6 0:

�
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The non-linear model (22) and the logical expressions in (23) can be
transformed to a set of mixed integer linear inequalities as pre-
sented in [9].

4. Mixed-integer MPC formulation

The MI-MPC formulation consists of its objective function and a
set of constraints. In this section both parts are motivated and for-
mally described. The objective of the MI-MPC is to minimize both
the deviation to the head load prediction from the HiLe and the
costs while respecting constraints on control inputs, states and
minimum on/off times of the heat pump. The optimization proce-
dure is carried out as a moving horizon control strategy [18], at
time t an optimal solution for the manipulated variables

UH ¼ uH

tjt; � � � ;uH

tþNp�1jt

n o
is calculated for the complete horizon.

Only the first element uH

tjt is actually applied to the plant (22), then
the optimization problem is repeated at time t þ 1 with the
updated states xtþ1.

4.1. Objective function

For the LoLe optimization problem, minimum deviation to the
head load prediction from the HiLe, the minimum costs, and sus-
tainable management of the stratified tank are relevant.

Note that each D-variable in (24) denotes the respective
deviation from the fixed operating point: v ¼ vo þ Dv . The
corresponding D-vectors used are given in (20). The MI-MPC
optimization function is formulated over the prediction horizon
Np as follows:

JH ¼min
Du2U

XNp�1

k¼0

½ð1�aÞ � QðDyrefðtþ kÞ �Dyactðtþ kÞÞj jð

þ SðDxref �Dxactðtþ kÞÞj jÞ þ a � Rðtþ kÞðDuðtþ kÞ þ uoÞð
þ TðDuðtþ kÞ �Duðtþ k�1ÞÞj jÞ�; ð24Þ

where Dyref denotes the shifted reference output vector and Dxref

the shifted reference state vector. The objective function (24) con-
sists of four additive terms covering the four objectives. The first
addresses the three continuous outputs, whereas the second term
refers to the continuous states of the stratified storage tank. The
third covers the costs occurring due to the manipulated variables
and the fourth is limiting the change in control increments. Each
of these terms is penalized individually. The weights on the out-
put deviation to the reference heat load Q, the weights on the state
deviation S and the weights on control increments T are time-in-
variant. The weight on control inputs Rðt þ kÞ depends on the
fluctuating, possibly predicted energy prices and is therefore
time-variant. Since the linearized model is formulated in D-values
(see (2), (17)–(19)), all variables in the objective function (24) are
deviations to the operating point, e.g. Duact ¼ uact � uo . However,
in order to penalize the absolute costs, in the third term the
manipulated variables Duðt þ kÞ are re-shifted by their operating
points uo.

Apart from the primary weights Q ; S; T and Rðt þ kÞ;a 2 0;1f g is
an additional weight of the minimization criterion, which allows a
global balance between performance and cost variables,
respectively.

4.2. Constraints

The MI-MPC has to cope with several types of constraints, for
the overall optimization problem defined in Section 4.3. Firstly,
constraints on operation and capacities for control inputs and
states:

xi;min 6 xi 6 xi;max; ð25aÞ
ui;min 6 ui 6 ui;max: ð25bÞ

As the heat pump is a switching aggregate operating either between
30% and 70% of its nominal power or at zero level if it is switched
off, the constraint set for _mHP is disconnected. Therefore, the
corresponding constraint (25b) is modified:

_mHP;mindHP 6 _mHP 6 _mHP;maxdHP: ð26Þ

Constraints for minimum on/off times in each sampling time t þ k
for which the heat pump has to be kept on/off can be expressed
by the following mixed integer linear inequalities, as demonstrated
in [13]:

dHPðt þ kÞ � dHPðt þ k� 1Þ 6 dHPðxupÞ; ð27aÞ
dHPðt þ k� 1Þ � dHPðt þ kÞ 6 1� dHPðxdownÞ; ð27bÞ

with xup ¼ t þ k; t þ kþ 1; . . . ;minðt þ Np; t þ kþ Tup
HP � 1Þ and

xdown ¼ t þ k; t þ kþ 1; . . . ;minðt þ Np; t þ kþ Tdown
HP � 1Þ.

4.3. MPC optimization target by MILP

According to the predictive control theory with moving horizon
strategy, [18], the MPC is solving an MILP at each time step t þ k,
given initial storage states zh and Th and a prediction horizon Np,
but only the first sample of the input sequence is implemented.
The MPC solves an optimal finite-horizon control problem given
in (24).

subject to

– The PWA model (21) and (22) in terms of linear inequalities,
– the input and state constraints on operation and capacity (25)

and (26) with (30),
– the constraints for minimum on- and off times (27).

The controller for the comparison analysis is set up with the
same structure, substituting the discrete manipulative variable
dHP by the predefined operation mode profile.

5. Simulation results

In this Section the simulation results for the comparison of the
MI-MPC and the MPC with fixed operation mode profile are given.
Therefore the comparison metrics will be defined. For this analysis,
the volume of the stratified tank vh is varied in the simulation, see
Section 5.3. Hence, its maximum ranges from 30 m3 to 50 m3. In a
second analysis, the robustness of the MI-MPC with respect to
uncertain heat load predictions and depending on the length of
the prediction horizon is shown in Section 5.4 based on an approxi-
mated Pareto front.

5.1. Comparison metrics

The mean error (ME) is a critical value as the LoLe MI-MPC has
to provide the energy demanded by the HiLe. The costs are caused
by the electric costs to generate the mass flow rates and tempera-
tures and by the penalties on control increments:

ME ¼ 1
Np

XNp

i¼1

QðyrefðiÞ � yactðiÞÞj j þ Sðxref � xactðiÞÞj jð Þ; ð28Þ

costs ¼
XNp

i¼1

RðiÞðuðiÞ þ uoÞ þ TðuðiÞ � uði� 1ÞÞj jð Þ: ð29Þ

For the comparison analysis of the two controllers the coefficient of
performance (COP) of the TABS system is additionally defined as the
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ratio of the thermally generated energy Et:g: (for the usage in the
building) and the amount of electrical energy consumed Ee:c: by
the energy supply systems, [10]:

COP ¼ Et:g:=Ee:c:;

with

Et:g: ¼
XNp�1

i¼0

_mi
TABS � Ti

TABS;s � TTABS;r

� �
� Dt;

Ee:c: ¼
XNp�1

i¼0

k1 � _mi
HP þ k2 � _mi

TABS;s þ
_mi

HP � Ti
HP;s � Tc;s

� �
� cp

COPHP
:

The COPHP is approximated by a linear equation, as discussed in
[19]:

COPHP ¼ c0 þ c1 � Tc;s þ c2 � Th;s

with c0 ¼ 5:593; c1 ¼ 0:0569 K�1 and c2 ¼ �0:0661 K�1 constant.
Th;s denotes the temperature of the heat pump on the hot side
which is To

HP;s = 35, and the cold supply to the heat pump Tc;s is
assumed to be constant with 16 �C as the water is taken from the
geothermal pipes. The comparison of the ME, the costs, and the
COP for the two different control strategies is shown in
SubSection 5.3.

5.2. Simulation setup

The MI-MPC is implemented in the Matlab framework using
Yalmip, [20]. For the MILP task the Gurobi solver, [21], was added.
The hybrid system is formulated as a PWA system. The MPC for
comparison analysis is run with the same Yalmip implementation
exchanging the discrete manipulated variable dHP with the a priori
fixed storage tank operation mode profile.

The University of Salzburg, representing the demonstration
building, contains the energy heat supply circuits such as shown
in Fig. 2.

The only important coupling point between the HiLe and the
LoLe is the heat demand of the HiLe and the effectively realized
amount of energy provided by the LoLe, as depicted in Fig. 1. The
corresponding picture of the building shows the modern
27.000 m2 building in the center of Salzburg, Austria. It has five
floors above ground containing several large and numerous smaller
meeting rooms, offices and lecture rooms. There are six atrium
within the modern building complex. For this study, the second
and third floor of the building is considered, comprised of about
500 rooms, almost all used as offices, and about 13.000 m2. The
corresponding characteristics of the heat supply circuit as admissi-
ble ranges, see (30), for pumps and the heat pump are derived from
the characteristic curves and technical data sheets. The operation
constraints and admissible ranges for this work are therefore given
by:

THP 2 20;60½ �½�C�

_mHP 2 0f g [ 6;15½ �½kg=s�

_mTABS 2 6;15½ �½kg=s�

TFC 2 20;70½ �½�C�

_mFC 2 7;18½ �½kg=s�

Th 2 0;60½ �½�C�

zh 2 0:1;2½ �½m�: ð30Þ

The operating points are chosen as given in Table 3 for linearizing
the non-linear models:

The radius of the stratified storage tank r is varied from 2:03 m
to 2:8 m in order to study the effects on an increase in volume vh.
The coefficient of thermal conductivity k amounts 0:01 W=m2 �C
and the ambient temperature in the basement, Tamb, is assumed
to be constant with 20 �C. The minimum on/off-times for the heat

pump for this work are given by Tup
HP ¼ Tdown

HP = 1 h.
The energy costs used for the simulation runs are given in

Table 4. The assumption comprises a low night rate and a high
day rate in the morning for electric energy. In the afternoon, the
costs change every two hours between the low night and the high
day tariff. The costs for the district heat are assumed to be
constant.

The prediction horizon is 24 h, and the simulation is presented
for three days, the sampling time is one hour. The desired energy

from the HiLe for the TABS as well as for the FC system, _Q ref
i , is a

snapshot of historic data from the demonstration building. This
output reference is firstly interpreted deterministically. In a further
simulation study, robustness is shown. The desired heat demand
trajectory is overlaid by a low pass filtered sinus as a bias and a
random white noise in order to simulate error of the heat load pre-
diction from the HiLe.

5.3. Analysis of simulation results

For the comparison analysis, the weighting parameter a is kept
constant with 0.1 and the initial states vhð0Þ and Thð0Þ are chosen
at their operating points, such that the stratified storage tank is
half full with hot water. The stratified storage tank is assumed to
have a volume of 30 m3 for the first comparison analysis. Figs. 4
and 5 show the simulation results of the MI-MPC and the MPC with
fixed operation mode profile, respectively. The first subplots (a)
show the output and the reference trajectories for both circuits.
In subplot (b) one can see the manipulated temperatures from
the heat pump, the district heat and the temperature of the hot
water in the stratified storage tank. The third subplot (c) depicts
the manipulated mass flows to and from the tank to the building
for the TABS system as well as the mass flow to the fan coil system,
whereas subplot (d) shows the trajectories of the states vh and Th.
The last subplot (e) in Fig. 4 shows the decision on dHP, whereas in
Fig. 5 the corresponding line represents the fixed operating mode

Table 3
Operating points of input and state variables.

Variables Operating point Unit

zo
h 1 [m]

To
h 30 [�C]

To
HP 35 [�C]

_mo
HP 9 [kg/s]

_mo
TABS 7 [kg/s]

To
FC 70 [�C]

_mo
FC 12 [kg/s]

Table 4
Energy costs [€/kW h].

Time slots Electric energy District heat

08:00–12:00 €0.12 €0.09
12:00–14:00 €0.06 €0.09
14:00–16:00 €0.12 €0.09
16:00–18:00 €0.06 €0.09
18:00–20:00 €0.12 €0.09
20:00–08:00 €0.06 €0.09
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profile. It should be noted, that both controllers are not able to pro-
vide the heat load demanded for the FC at all times, because both
manipulated variables _mFC and TFC;s are at their upper bounds and
the saturation level is reached, see Figs. 4 and 5 at simulation time
10–12 h and 22–30 h, respectively. In Fig. 5 (d) the volume reaches
the lower constraint at the end of the first and third discharging
period, whereas the MI-MPC is able to operate the stratified stor-
age tank more efficiently. The actual storage tank volume used
by the two controllers differs considerably. The MI-MPC uses an
actual volume of 11:22 m3 for its optimal management strategy,

whereas the MPC with fixed operation mode profile needs an
actual volume of 27:22 m3.

The comparison according to the metrics introduced in
Section 5.1 is given in Table 5. For this analysis the radius of the
stratified storage tank r is increased from 2:03 m to 2:8 m, so that
the maximum volume is increased from 26 m3 up to 49:4 m3. The
simulation results show that for a stratified storage tank volume
below 32:5 m3 there is no feasible solution for the MPC with fixed
operation mode profile, as long as the stratified storage tank is sup-
posed to be half full with hot water at the start of the simulation.

0 10 20 30 40 50 60 70
0

200
400
600
800

0 10 20 30 40 50 60 70
20
40
60
80

0 10 20 30 40 50 60 70
0

10

20

0 10 20 30 40 50 60 70
0
20
40

0 10 20 30 40 50 60 70
−1
0
1

(a) heat flows

(b) temperatures

(c) mass flows

(d) states

(e) switching

time [hour]

[k
W

]
[◦

C
]

[k
g
/
s
]

[m
3
]

[◦
C

]

Q̇TABS
Q̇ref

TABS
Q̇FC
Q̇ref

FC

THP
TTABS,s
TFC,s
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Fig. 5. MPC with fixed operation mode profile. Bold rectangles mark sections where the output of hot water volume in the tank remains in its lower constraint. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

0 10 20 30 40 50 60 70
0

200
400
600
800

0 10 20 30 40 50 60 70
20
40
60
80

0 10 20 30 40 50 60 70
0

10

20

0 10 20 30 40 50 60 70
0
20
40

0 10 20 30 40 50 60 70
−1
0
1

(a) heat flows

(b) temperatures

(c) mass flows

(d) states

(e) switching

time [hour]

[k
W

]
[◦

C
]

[k
g
/
s
]

[m
3
]

[◦
C

]

Q̇ TABS

Q̇ref
TABS

Q̇FC
Q̇ref

FC

THP
TTABS,s
TFC,s
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Table 5
Performance comparison for different levels of the storage tank volume vmax

h .

vmax
h ¼ 26 m3 vmax

h ¼ 36:4 m3 vmax
h ¼ 49:4 m3

Metrics MI-MPC MPC MI-MPC MPC MI-MPC MPC

ME 60.93 – 55.64 82.71 55.78 84.95

Costs ½104� 0.01 – 2.90 2.88 2.90 2.88

Costs on elec. energy [€] 611.36 – 598.41 413.99 640.27 414.46

Energy therm. gen. ½104 kW h] 3.95 – 3.76 3.28 3.98 3.29

Energy elec. cons. ½103 kW h] 8.53 – 7.81 6.90 8.36 6.91

COP 4.63 – 4.81 4.75 4.76 4.76
Volume spread [m3] 24.57 – 14.2 33.72 16.03 46.72
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Fig. 6. Comparison of operation mode profile for MI-MPC and different storage tank volume levels.
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For a stratified storage tank full with hot water, the minimum
volume for achieving a feasible solution is 20:8 m3. The MI-MPC
yields better results in terms of the mean error which is an
essential requirement with regard to the user comfort because
the HiLe-MPC already makes use of the temperature tolerance
band at minimal energy demand. Therefore, deviations to the
requested energy amount result most likely in a user comfort band
violation.

Variation of the stratified storage tank volume results in two
major outcomes: Firstly, only the MI-MPC achieves feasible solu-
tions for small tank volumes and secondly, the change in the strat-
egy for the stratified storage tank management differs for small to
middle size in different decisions for dHP, whereas for middle to big
volume only the decision for the operation mode changes, see
Fig. 6(a)–(c).

Figs. 7 and 8 show a cutout of a simulation for the heating
period from December 2013 until March 2014 for the TABS
system. The heat demand has characteristics from strongly
variant to almost stationary, so that the difference of the
controllers’ strategies becomes apparent. The controller with
the fixed operation mode profile runs a cyclically recurring
strategy, which is successful in terms of ME if the reference
trajectory is quite stationary. When the heat demand becomes
higher in frequency the MI-MPC benefits from its flexibility in

operation. The difference of the controllers strategies lie as well
in the management of the storage tank as well as in the usage
of different temperature levels. Important to mention is, that
with the given set of constraints for operation and capacities
for control inputs, the MPC with the fixed operation mode profile
only yields feasible optimization results for very large storage
tanks, whereas the MI-MPC is implementable also for small sizes.
Table 6 show the results for the whole period regarding the
comparison metrics. The effects on the gap between the ME as
well as the costs and the volume spread of the short run analysis
are intensified over the long period, meaning that the more
weight is put on the comfort the more beneficial is the
implementation of the MI-MPC.

5.4. Robustness analysis

In order to prove robustness of the MI-MPC with respect to
disturbances of the heat load prediction (which has been
assumed deterministic in the optimization problem in
Section 4.3), some unknown bias and random noise is added
to the deterministic heat load prediction. The closed-loop
performance is then evaluated for different levels of this
stochastic disturbance.

For the robustness analysis an approximated Pareto front is
computed for a fixed set of weights Q ;Rðt þ kÞ; S; T , as introduced
in Section 4.1 and varying a between ½0;1�. Fig. 9(a)–(d) shows
the approximated Pareto fronts and the convex hulls for different
lengths of Np. For all simulation runs a stratified storage tank vol-
ume of 39 m3 is chosen.

Since the MI-MPC optimization problem is generally non-con-
vex, [22], the approximation of the Pareto front is not necessarily
convex either. Furthermore, this approximated Pareto front is only
one among a family of curves, each corresponding to a certain set of
fixed weights, nevertheless not yielding the effective Pareto front.
Identifying the global Pareto front is a global optimization prob-
lem; its solution would be available by e.g. executing a genetic
algorithm to find the optimal set of weights. Initially a set of ran-
domly chosen genomes would have to be evaluated according to
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Fig. 8. MPC with fixed operation mode profile.

Table 6
Performance comparison for long term simulation for vmax

h ¼ 260 m3.

Metrics MI-MPC MPC

ME 18.37 59.95

Costs ½104� 116.56 115.79

Costs on elec. energy ½104 €] 3.05 1.97

Energy therm. gen. ½104 kW h] 190.41 162.90

Energy elec. cons. ½103 kW h] 406.56 328.39

COP 4.69 4.96
Volume spread [m3] 11.89 106.68
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their fitness, i.e. their contribution to the optimal Pareto front. In
an iterative process, the successive ones would have to be modified
and again evaluated in order to achieve the best combination of
weights.

Secondly, the deterministic output reference ydet
ref is overlaid

with a fixed bias over the entire simulation period and a randomly
generated white noise in order to get a disturbed reference trajec-
tory ydist

ref . The bias is given by the sine of the low pass filtered refer-

ence trajectory ylpf
ref , while the white noise is randomly generated

offline for each step over the prediction horizon Np with an ampli-
tude of one tenth of the standard deviation r of the deterministic
standard trajectory ydet

ref :

ydist
ref ðt þ kÞ ¼ ydet

ref ðt þ kÞ þ k � sinðylpf
refðt þ kÞÞ þ r=10 � fðt þ kÞ; ð31Þ

where f is a random number 2 ½0;1�. In order to show the
MI-MPCs robustness, the deterministic reference trajectory is sub-
stituted by the disturbed one ydist

ref . The amplitude of the sinus is
successively increased in each simulation run by increasing the
parameter k from 1 to 8 at four given levels of a. Fig. 10(a)–(d)
shows the results compared to the ones without bias and noise.
The symbols, stars, circles, squares and diamonds represent the
results for the same level of a. For low a the distances from the
disturbed results to the optimal ones on the approximated
Pareto front regarding both axes are less than the distances for
higher a. In Fig. 10(a)–(c) the results for higher a are widely
scattered.

The utilized robustness measure s is the mean sum of the
weighted distances to the corresponding optimal result on the

approximated Pareto front in terms of ME and costs. It allows the
direct comparison of the results for different prediction horizons
Np. si is given by:

si ¼
1
N

XN

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� aiÞ � ðMEdist

i;j �MEdet
i Þ

2
þ ai � ðcostsdist

i;j � costsdet
i Þ

2
r

:

ð32Þ

Fig. 11 shows the results for s for the four different prediction
horizons as in Figs. 9 and 10. As the robustness analysis is done
for k 2 1;2; . . . ;8f g eight results with increasing white noise are
compared to the optimal result. According to the definition of s
in Eq. (32), the MI-MPC becomes the more robust the smaller s
is. It is shown that for a large prediction horizon the MI-MPC
shows less distance to the corresponding optimal result on the
approximated Pareto front than for smaller prediction horizons.
However, if the weighting parameter a is in the interval from
0.1 to 0.45 the MI-MPC is robust even for smaller horizons. If
one considers also the absolute costs and the ME as demonstrated
in Fig. 10, an a of around 0.1 can be recommended for the given
application.

The results considering the system’s COP are given in Table 7 in
terms of mean value and standard deviation. The two statistical
parameters are calculated over the 8 different values of k at each
level of a and different prediction horizons. The highest COP mean
value is reached for a ¼ 0:172 for all prediction horizons. The sys-
tem’s COP standard deviation is small throughout all simulation
runs, although with the variation of k up to 8 very high disturbance
is caused.
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Fig. 9. Approximated Pareto fronts for Np = 8, Np = 12, Np = 16 and Np = 24.
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6. Conclusion

In this paper a mixed-integer MPC (MI-MPC) has been presented
for building heating management with a stratified storage tank. In
contrast to other studies in this field, this approach covers the unit
commitment problem with switching aggregate, as well as taking
their minimum up- and down times into account. The considered
stratified storage tank operates in three operation modes,
depending on the state of the heat pump. Therefore, the resulting
hybrid PWA model, based on first order differential equations,
includes discrete and continuous manipulated variables. A
validation of the model is currently not possible due to a lack of
measurements on the stratified storage tank in the demonstration
building. However, for future work the implementation of an
appropriate observer is planned in order to substitute the missing
plant data. The control strategies are shown in comparison to
MPC formulations with a fixed operation tank profile. The
simulation results are evaluated according to the mean error, the
costs and the system’s COP value depending on the volume of
the stratified tank. One can see that for small tanks, the MPC with
an a priori operation mode profile runs into an infeasible problem,
whereas the MI-MPC delivers optimal solutions. Additionally, a
robustness analysis has been performed and the approximated
Pareto front of the MILP given. For this analysis the originally
deterministic heat load reference trajectory has been disturbed.
The considered parameter of this analysis was a, putting
more emphasis either on the ME or on the costs. Simulation
studies with larger prediction horizons have proved beneficial.
However, for small a = 0.1 robustness is achieved even for small
Np yielding less computational burden than for larger prediction
horizons.
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Fig. 10. Robustness analysis for Np = 8, Np = 12, Np = 16 and Np = 24.

Table 7
COP statistics for robustness analysis.

Np Metrics a1 = 0.103 a2 = 0.172 a3 = 0.655 a4 = 0.862

8 Mean value 4.8377 4.8422 4.7491 4.7492
Standard deviation 0.0306 0.0111 0.0220 0.0245

12 Mean value 4.7783 4.8222 4.7530 4.7623
Standard deviation 0.0271 0.0285 0.0410 0.0392

16 Mean value 4.7378 4.7635 4.7003 4.6376
Standard deviation 0.0192 0.0238 0.0275 0.0450

a1 = 0.103 a2 = 0.172 a3 = 0.414
24 Mean value 4.7328 4.7356 4.6931

Standard deviation 0.0365 0.0159 0.0075

COP statistics for robustness analysis at different levels of the weighting
parameter a.
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Fig. 11. Robustness metrics for MI-MPC with Np = 8, Np = 12, Np = 16, Np = 24.
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Appendix A

The coefficients for the linear system models in (2), (17)–(19) in
Sections 3.1 and 3.2 are given in Table A.8.

For the time-continuous linear PWA model (22), the system
matrices are derived from the linearized physical first order model,
(2), (17)–(19) in SubSections 3.1 and 3.2 where the coefficients in
Table A.8 give the matrix entries.

A1;c ¼
0 0

c6 c7

 !

B1;c ¼
0 1

r2pq � 1
r2pq 0 0

c3 c4 c5 0 0

0
@

1
A

C1;c ¼

D1;c ¼

c8 � cp 0 c9 � cp 0 0

1 0 0 0 0

0 0 0 c1 � cp c2 � cp

0
BBB@

1
CCCA

A2;c ¼
0 0

0 �2k
rq�cp

0
@

1
A

B2;c ¼
0 1

r2pq � 1
r2pq 0 0

0 0 0 0 0

0
@

1
A

C2;c ¼

0 c17 � cp

0 c13

0 0

0
BBB@

1
CCCA

D2;c ¼

c14 � cp c15 � cp c16 � cp 0 0

c10 c11 c12 0 0

0 0 0 c1 � cp c2 � cp

0
BBB@

1
CCCA

A3;c ¼
0 0

0 �2k
rq�cp

0
@

1
A

B3;c ¼
0 1

r2pq � 1
r2pq 0 0

0 0 0 0 0

0
@

1
A

C3;c ¼

0 c18 � cp

0 1

0 0

0
BBB@

1
CCCA

D3;c ¼

0 0 c19 � cp 0 0

0 0 0 0 0

0 0 0 c1 � cp c2 � cp

0
BBB@

1
CCCA

The matrices for the time-discrete system are derived by Laplace
transformation for ts ¼ 1:

Ai ¼ eAi;c ts ; ðA:1Þ

Bi ¼
Z ts

0
eAi;cfBi;cdf ¼ WB; ðA:2Þ

with ðA:3Þ
W ¼ A�1

i;c ðeAi;c ts � IÞ; ðA:4Þ
Ci ¼ Ci;c; ðA:5Þ
Di ¼ Di;c: ðA:6Þ
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