
Predicting Scalability
of Standalone Applications

in Cloud Environments
DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering/Internet Computing

eingereicht von

Gregor Schauer
Matrikelnummer 0926086

an der
Fakultät für Informatik der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar
Mitwirkung: Dipl.-Ing. Michael Vögler

Dr. Rostyslav Zabolotnyi

Wien, 01.01.2016
(Unterschrift Verfasser) (Unterschrift Betreuung)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Predicting Scalability
of Standalone Applications

in Cloud Environments
MASTER’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering/Internet Computing

by

Gregor Schauer
Registration Number 0926086

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Univ.Prof. Dr. Schahram Dustdar
Assistance: Dipl.-Ing. Michael Vögler

Dr. Rostyslav Zabolotnyi

Vienna, 01.01.2016
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Gregor Schauer

Bendikstraße 1/40, 4300 St. Valentin

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-

ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit -

einschließlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet im

Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-

lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

i

Danksagung

Die vorliegende Diplomarbeit läutet das Ende meines Informatikstudiums ein. An dieser Stelle

möchte ich mich bei jenen Menschen bedanken, die maßgeblich zum Erfolg beigetragen haben.

Mein Dank gebührt insbesondere meinen Eltern, die mich in jeglicher Hinsicht unterstützt und

mir viel Geduld und Verständnis entgegengebracht haben. Sie haben mir den Weg geebnet, so-

dass ich jetzt auf eine erfolgreiche Studienzeit zurückblicken kann. Deshalb möchte ich mich

nochmal herzlich für alles bedanken, was sie für mich getan haben.

Desweiteren möchte ich mich für die Möglichkeit die Diplomarbeit am Institut für Informations-

systeme zu schreiben bei Prof. Schahram Dustdar sowie bei Michael Vögler für die umfassende

Betreuung bedanken. Ebenso möchte ich mich bei Philipp Leitner und Rostyslav Zabolotnyi für

die Betreuung und das konstruktive Feedback während der ersten Phase der Diplomarbeit be-

danken.

Ein großes Dankeschön gilt auch Freunden und Studienkollegen, die mich während der Stu-

dienzeit unterstützt haben. Allen voran Dominik Strasser und Bernhard Nickel. Wir haben die

meisten Lehrveranstaltungen gemeinsam absolviert und haben dabei viel gelernt und auch ab-

seits des Studiums viel erlebt.

Weiters möchte ich mich bei meinen Arbeitskollegen Stefan Mader und Stefan Sevelda für das

Korrekturlesen der Diplomarbeit bedanken. Mein Dank gebührt natürlich auch meinem Chef

Andreas Halwein, der mir ermöglicht hat während der letzten vier Jahre Berufsalltag und Studi-

um unter einen Hut zu bringen. Danke auch allen Arbeitskollegen, von denen ich in dieser Zeit

viel lernen durfte.

iii

Abstract

Cloud computing opens up a variety of options, such as improving availability or fault tolerance

of applications. However, it might also entail non-negligible overhead. There are different

approaches for identifying and reducing overhead (e.g., by using a monitoring software). Most

of those solutions are reactive and do not offer a way to do accurate predictions about scalability

of applications running on cloud platforms.

This thesis deals with the issue and considers the question of how to predict certain per-

formance characteristics of an application without running it on the target platform. Generally

accepted models such as Amdahl’s and Gustafson’s Law were examined for their applicability

to cloud computing. Based on them, a model, which mathematically describes the scalability of

applications under consideration of cloud specific properties, was developed.

The model was evaluated on two applications with different load profiles. For this purpose,

a lightweight profiler has been implemented to gather runtime information of the distributed

applications. The collected data were filtered, clustered by thread, and aggregated by method

and class level. Then they were interpolated and compared with the performance predictions.

The deviations were analyzed and causes like garbage collection were discussed. The work

shows that, for example, minor changes in the application can have a significant impact on the

performance characteristics of the application. Models such as the one developed in the context

of this thesis provide valuable information (e.g., scalability and technical limits).

v

Kurzfassung

Cloud Computing eröffnet eine Vielzahl an Möglichkeiten wie z.B. die Verfügbarkeit oder Feh-

lertoleranz von Applikationen zu verbessern. Dabei entsteht aber auch ein unter Umständen

nicht vernachlässigbarer Overhead. Es gibt verschiedene Ansätze um diesen, beispielsweise mit-

tels Monitoring, zu identifizieren und zu vermindern. Diese großteils reaktiven Lösungen bieten

jedoch keine Möglichkeit vorab hinreichend genaue Vorhersagen über Skalierbarkeit von Appli-

kationen auf Cloud Plattformen zu treffen.

Die vorliegende Diplomarbeit beschäftigt sich mit dieser Thematik und geht unter anderem

der Frage nach ob und wie sich gewisse Performanceeigenschaften einer Applikation vorhersa-

gen lassen ohne diese auf der Zielplattform zu betreiben. Dazu wurden anerkannte Modelle wie

jene von Amdahl und Gustafson auf ihre Anwendbarkeit für Cloud Computing untersucht. Dar-

auf aufbauend wurde ein Modell entwickelt, welches die Skalierbarkeit von Programmen unter

Berücksichtigung von Cloud-spezifischen Eigenschaften mathematisch beschreibt.

Anhand zweier Applikationen mit unterschiedlichen Lastprofilen wurde dieses Modell eva-

luiert. Dazu wurde ein leichtgewichtiger Profiler implementiert um Laufzeitinformationen der

verteilten Applikationen zu sammeln. Die so gewonnen Daten wurden gefiltert, nach Thread ge-

clustert und auf Methoden- und Klassenebene aggregiert. Anschließend wurden sie interpoliert

und mit den Vorhersagen über die zu erwartende Performance verglichen. Desweiteren wurden

Abweichungen analysiert und deren Ursachen wie Garbage Collection diskutiert. Die Arbeit

zeigt, dass beispielsweise im Zuge einer Applikationsmigration entstehende geringfügige Ände-

rungen die Performancecharakteristika der Applikation signifikant verändern können. Modelle,

wie jenes, das im Rahmen der Arbeit entwickelt wurde, können wertvolle Informationen über

beispielsweise Skalierbarkeit und technische Limits liefern.

vii

Contents

Contents ix

1 Introduction 1
1.1 Motivation . 2

1.2 Research Questions . 3

1.3 Methodological Approach . 4

1.4 Scientific Contribution . 4

1.5 Thesis Organization . 5

2 State of the Art 7
2.1 Amdahl’s Law . 8

2.2 Gustafson’s Law . 9

2.3 Asymptotic Complexity . 10

2.4 Parallelism . 11

2.5 Computation Models . 11

2.6 cgroups . 15

2.7 Google App Engine . 16

2.8 Cloud Performance Benchmarking . 17

2.9 NoSQL Databases . 17

3 Related Work 21
3.1 Resource Allocation . 21

3.2 Scheduling . 22

3.3 Middleware . 23

3.4 Profiling . 24

3.5 MapReduce and Genetic Algorithm . 24

3.6 Costs . 25

3.7 Prediction . 26

4 Conceptual Approach 29
4.1 Model . 29

4.2 Amdahl’s Law Revisited . 31

4.3 Gustafson’s Law Revisited . 32

4.4 Example . 32

ix

5 Implementation 35
5.1 Middleware . 35

5.2 Profiling Applications . 40

6 Evaluation 45
6.1 Scenarios . 45

6.2 Environment . 46

6.3 Performance Predictions . 48

7 Conclusions 59
7.1 Summary . 59

7.2 Research Questions . 60

7.3 Future Work . 61

A Measurements 63

B Acronyms 67

Bibliography 71

x

List of Figures

2.1 Relative execution time with an increasing number of processing units 8

2.2 Parallel tasks processed with an increasing number of processing units 9

2.3 MapReduce execution overview [5] . 12

2.4 A complete utility-based agent [45] . 14

4.1 Comparison of serial execution, Amdahl’s and Gustafson’s approach 33

5.1 Remote method invocation with JCloudScale . 39

5.2 Deployment view of JCloudScale used along with ALASCA 41

5.3 Software architecture of the ALASCA profiler . 42

5.4 Sequence diagram of an application using JCloudScale and ALASCA 44

6.1 Example for overprovisioning (two hosts for eight tasks) 50

6.2 Measured execution time with an increasing number of cloud hosts 51

6.3 Overprovisioning (client schedules eight tasks on six hosts) 52

6.4 Processing of an increasing number of tasks with six computation nodes 52

6.5 Measured execution time with an increasing bacteria population 54

6.6 Execution time with increasing population size and mutation rate 55

6.7 Execution time for various fixed mutation rates and increasing population size, and

for various fixed population sizes and increasing mutation rate, respectively 56

A.1 Profiling information of simulation thread running in a distributed way 64

A.2 Profiling information of simulation thread (non-distributed) 65

xi

List of Tables

6.1 Measured performance with increasing number of video files 48

6.2 Measured bandwidth between servers . 49

6.3 Measured performance with increasing population size 53

Listings

5.1 Setup of JCloudScale . 38

5.2 Implementation of a cloud object . 38

5.3 Usage of JCloudScale . 39

5.4 Usage of ALASCA profiler . 43

xii

CHAPTER 1
Introduction

”Begin at the beginning,” the King
said gravely, ”and go on till you
come to the end: then stop.”

— Lewis Carroll

(Alice in Wonderland)

In the last decade the role of cloud computing has become more and more important. Cloud

computing is a computation model where many servers communicate via a network in order to

handle high load. The origin of this approach is not known because the basic idea emerged long

time before it was possible to build large clouds in a simple way. This is also the reason why

there is no single definition. National Institute of Standards and Technology (NIST) published

a definition [34], which is accepted generally. According to their definition, cloud computing

has the following five characteristics: broad network access, resource pooling, rapid elasticity,

on-demand self-service and measured services. Especially the first three characteristics build

the foundation for the first publicly known clouds.

Companies, which do e-commerce business or offer other services to many people, have to

deal with fluctuating load. For example, on the day when a new product is released, more than

ten times as many orders have to be processed than on a normal day. Cloud computing enables

companies to handle such situations easily while keeping the overall operational costs as low

as possible. Due to the fact that the amount of servers used for handling the requests can be

increased within a few minutes by buying more computation power from a cloud provider, a

potential overload of the system can be prevented. In other words, it can be ensured that the

system remains available all the time.

1

Cloud platforms can also be classified by their service model. The definition of NIST enu-

merates three different models, which can be summarized as follows:

• Infrastructure as a Service (IaaS): Only the basic infrastructure such as storage is pro-

vided. The client has control over the operating system and all the software running on

the machines.

• Platform as a Service (PaaS): The client has no control about hardware and some soft-

ware like a web server is provided. Applications can be deployed and run on top of the

environment.

• Software as a Service (SaaS): The cloud environment is under full control of the provider,

who hosts applications that can be used by the client.

While SaaS is a convenient model for end users, PaaS or even IaaS clouds are used whenever

certain application properties like consistency, availability and/or fault tolerance play an impor-

tant role and have to be optimized at all costs. Though, the optimization of one property often

entails a degradation of another one. Moreover, distributed computation introduces additional

effort like scheduling, synchronization or remote communication. To demonstrate this, let us

consider the well known MapReduce model [42]. On the one hand, it supports processing of

large amounts of data that would not fit onto a single machine. On the other hand, studies have

shown that the performance can vary dramatically [14]. For example, the authors have shown

that the selection of a different scheduling strategy may reduce execution time by more than

25%. This and other wrong configuration decisions could be avoided rather easily. In contrast to

that, some types of distribution overhead such as network latency often cannot be avoided. These

aspects not only have to be considered when it comes to scaling, but also before an application

is modified for being run in a cloud environment.

1.1 Motivation

Due to their nature, distributed applications have quite different requirements regarding compu-

tational resources such as Central Processing Units (CPUs) or memory. For example, it is quite

common to build highly optimized clusters for applications that simulate complex real-world

situations such as the impact of certain environment conditions on living beings. When talking

about simulations, there could even be opposing requirements for different tasks. For exam-

ple, in case of predicting the impact of an earthquake on oceanic regions, it is important to aim

for speed in order to be able to warn people of a potential tsunami. Therefore, the application

is optimized for using all computational resources for delivering the result as fast as possible.

Another approach is the usage of all available resources for processing more data in the same

period. For instance, when simulating the genetic evolution of a bacteria population, researchers

may be interested in getting as accurate results as possible. Using additional computation power

for running the same simulation on a bigger population may lead to more knowledge.

2

As a matter of fact, the costs for building, operating and maintaining clouds are usually quite

high. Therefore, cloud providers want to keep costs as low as possible. In many cases, one way

to achieve this goal is to reduce the computation power, which also reduces the overhead caused

by the distributed system itself. However, finding the right balance between resource provision-

ing and costs is not that simple. The ability to make accurate predictions of the performance

and the overhead of applications running in a cloud environment based on measurements of

non-distributed execution influences different aspects in cloud computing a lot. The outcome

could be that it is more economic to perform certain tasks in a distributed way whenever a cer-

tain threshold is reached. Alternatively, one might conclude that even when the performance

increases linearly with the number of computation nodes, the overhead increases exponentially

and therefore it might even be advisable to violate Service Level Agreements (SLAs) in order to

save costs.

This thesis mainly focuses on scenarios where it is important to aim for performance and/or

throughput (see also Chapter 2) and not for economic goals. Since cloud performance optimiza-

tion is not a trivial topic, lots of research has been done in the past and is still ongoing. Although

we go back a step and ask a fundamental question:

Does it actually make sense to make an application cloud-aware?
If yes, how big is the performance improvement expected to be?

In other words, we would like to derive runtime information based on the given conditions

and the facts we know from similar types of applications. By having this information available,

one could reason about cost amortization and whether there is a potential for optimization or

not.

1.2 Research Questions

The challenges outlined in Section 1.1 constitute the necessity of having models that allow the

determination of performance properties of applications as accurately as possible without run-

ning them in the target environment. The following questions, which are related to the funda-

mental question in the previous section, are researched in this thesis:

1. How can the speedup of distributable applications running in a cloud environment be

predicted by using metrics from non-distributed execution? Do some types of applications

have a general model that describes their cloud performance?

2. Is it possible to reason about the point where cloud execution outweighs the distribution

overhead including scaling, scheduling and communication?

3. Are there any indications that an application will not scale well in the cloud and how can

they be verified? Do they correspond to static models like Amdahl’s Law [1] or are there

any other factors that have to be considered?

3

1.3 Methodological Approach

Based on empirically collected runtime information of non-distributed applications and assump-

tions about the overhead caused by remote communication, synchronization, etc., we attempt

to derive information about the scalability of the applications running in a cloud environment.

More concretely, the execution time shall be reduced to a minimum by using additional re-

sources effectively. Models like Amdahl’s and Gustafson’s Law [11] build the foundation for

our mathematical model that describes the performance of applications depending on the avail-

able resources and amount of data to process. We claim that this approach allows to predict

application performance much more precisely than conventional methods like asymptotic analy-

sis. By applying our model to selected applications with high CPU, memory and/or Input/Output

(I/O) requirements, we would like to see upfront under which conditions the benefits of paral-

lelism outweigh the cloud overhead. The profiler implemented for evaluating the accuracy of our

predictions combines common profiling techniques with Aspect Oriented Programming (AOP)

in order to get precise runtime information. Finally, we discuss the deviations between the pre-

dictions and the measured results and explain impacts of indeterministic memory management

and other observations.

1.4 Scientific Contribution

In order to answer the research questions asked in Section 1.2, the following contributions to the

state of the art in cloud computing performance analysis have been made:

• Contribution 1: an extension to Amdahl’s Law as well as Gustafson’s Law for reasoning
about the expected performance of cloud applications under deterministic conditions.
The basic ideas of those laws are also applicable to cloud computing. However, it is

necessary to consider cloud-specific properties such as communication overhead and adapt

them accordingly. In Chapter 4 the modified rules for cloud speedup are introduced.

• Contribution 2: a case study, which shows the negative impact of inefficient scheduling of
small amounts of tasks as well as natural limitations for asymptotic infinite tasks.
In order to validate the statements regarding performance predictions, scenarios based on

real-world applications have been evaluated. More information about them can be found

in Chapter 6 and Chapter 7.

• Contribution 3: a Java-based profiling library for analyzing runtime performance of dis-
tributed applications.
Low-level performance information is very crucial for understanding which parts of the

application can be parallelized and which have to be invoked sequentially. The ALASCA
profiler has been implemented for getting in-depth information about applications running

in cloud environments and is introduced in Chapter 5. Even though it is very lightweight, it

provides all the features required for analyzing runtime performance focusing on CPU and

memory utilization of distributed applications. In the evaluation it is used for predicting

the scaling capabilities of the application and later on for verification of the predictions.

4

1.5 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 gives a short introduction into the terminology and explains the most relevant

related concepts and research approaches. Additionally, it describes state-of-the-art com-

putation models and cloud technologies.

• Chapter 3 continues with a selection of relevant related work of performance analysis in

the area of cloud computing.

• Chapter 4 discusses theoretical concepts from the previous chapter and presents the ideas

and the approach of this thesis. Especially the statistical models used for predicting the

performance of applications running in a cloud environment are explained and the impact

of the distribution overhead is elucidated.

• Chapter 5 provides a description along with an illustration of the architecture of the profiler

implemented within the frame of this thesis.

• Based on the models proposed in Chapter 4, the cloud performance of selected types of

applications are predicted in Chapter 6. Then the profiler introduced in Chapter 5 is used

to verify or falsify the predictions.

• Chapter 7 concludes the thesis by discussing the accuracy of the predictions and their

relevance for similar applications. Last but not least it answers the research questions of

Section 1.2.

5

CHAPTER 2
State of the Art

Where would we be if we all just sat
there and said ’where would we be
now’, but nobody was prepared to
go and find out where we would be if
we actually went?

— Kurt Marti

(english translation)

Regardless of the optimization goal of a distributed application, there are several ways to

classify it. As described in Section 1.1, in this thesis we do not focus on the economic point of

view. Instead we are interested whether certain types of applications benefit from cloud com-

puting and what the performance potential is expected to be. Assuming that an application is

suited for distributed execution, one has two choices that are orthogonal to each other. On the

one hand, one may want to get as much speedup as possible (i.e., reduce the execution time to a

minimum). On the other hand, one may use the additional computation power to process more

data. While it is a legitimate goal to achieve both, this is not possible without having any trade-

off. However, as both approaches have drawbacks, their combination might be more efficient

than optimizing for one or the other.

In this chapter, we first describe the more natural approach for scalability (reducing the ex-

ecution time), which is described by Amdahl’s Law. Secondly, we have a look at Gustafson’s

Law, which is probably more suitable for data-intensive applications [16]. Subsequently com-

mon computation models are explained. Finally, the chapter concludes with a brief introduction

into some technologies used in cloud environments.

7

2.1 Amdahl’s Law

Amdahl’s Law [1] describes the potential speedup of applications given a fixed sized problem

using various machines, which support parallelism differently. Amdahl and his colleagues de-

fined speedup as the sequential run time divided by the parallel run time:

Definition 1 (speedup).

speedup =
s+ p

s+ p
N

=
1

s+ p
N

Whereas N is the number of processing units, s and p denote the fraction of the instructions

that are processed in serial order and in parallel, respectively. The larger the fraction of the

code that supports parallelism, the smaller is the execution time using the machine that supports

parallelism best. Note that for the sake of simplicity, it is assumed that every instruction can be

processed in the same amount of time.

The total execution time tt can be defined by using the definition of speedup after rearrang-

ing the equation and multiplying it by tt:

tt = tt · (s+ p

N
) = (tt · s) + (tt · p

N
) = ts + tp

Figure 2.1 depicts the relative execution time with different amounts of parallelizable in-

structions and an increasing number of processing units compared to serial processing. As it can

be seen, the higher the amount of parallelizable instructions, the bigger is the speedup and the

less is the execution time.

Furthermore, it can be concluded that the relative execution time converges against the time that

is spent for serial processing ts. The proof can be found in Chapter 4.

2 4 6 8 10

0.2

0.4

0.6

0.8

1

processing units

re
la

ti
v
e

ex
ec

u
ti

o
n

ti
m

e

p=0.0

p=0.4

p=0.9

p=0.99

Figure 2.1: Relative execution time with an increasing number of processing units

8

2.2 Gustafson’s Law

Gustafson et al. state that with an increasing number of processing units, the problem size also

scales [11]. In other words, the additional computation power can be used to process more data

instead of reducing the execution time. Thus the total execution time tt can be defined as follows:

tt = ts +

⌈
tp · n
N

⌉

Where N is the number of available computation nodes, n is the amount of parallel tasks, and tp
and ts represent the amount of time of a single task and spent for serial processing, respectively.

For this approach the term speedup has to be defined differently because this time, the size of the

problem scales up as well. To distinguish between them, this kind of speedup is called scaled
speedup and is defined in [11] as follows:

Definition 2 (Scaled speedup).

Scaled speedup = (s+ p ·N)/(s+ p)

= s+ p ·N

Whereas N is the number of processing units, and s and p denote the fraction of the instruc-

tions that are processed in serial order and in parallel, respectively. Figure 2.2 shows the number

of tasks that can be processed within a fixed time range with an increasing number of processing

units.

2 4 6 8 10

2

4

6

8

10

processing units

p
ar

al
le

l
ta

sk
s

p=0.0

p=0.4

p=0.9

p=0.99

Figure 2.2: Parallel tasks processed with an increasing number of processing units

9

2.3 Asymptotic Complexity

The execution time of a program is the sum of the duration of executed primitive operations. It

is convenient to assume that operations require a constant amount of time. Even when different

durations are associated with every operation, the analysis of asymptotic complexity states the

runtime effort for large input. The notion of input size depends heavily on the type of problem.

For example, it can be measured as the number of items to sort or the amount of memory to

search for a certain element. Due to the fact that we are interested in problems with large inputs

and the running time of many algorithms is directly proportional to the input size, one can omit

constants, because they do not influence the asymptotic complexity. Furthermore, we assume

that the duration of every operation takes the same amount of time. Besides that, it often is

assumed that those operations are machine-independent. In other words, there are no CPU-

instructions like vector operations, which violate the assumptions stated above to some extent.

O-notation

Asymptotic complexity describes the order of growth of the running time. Therefore, not only

constants can be omitted, but also any terms with a lower order than the term with the highest

order. For example, the asymptotic complexity of the term a · n2 + b · n+ c is a · n2 or simply

just n2. The lower terms have no significant impact for large values of n. Although algorithms,

which have a lower order of growth, might take longer than algorithms whose order of growth

is higher, but the constants are relatively smaller. For example, an algorithm with complexity n3

is faster than an algorithm with k · n2 for large k and small n.

The O-notation describes the asymptotic upper bound of an algorithm. In this particular

example, n2 is the lowest upper bound for the algorithm (written as O(n2)). Any function with

a larger upper bound (e.g., nk for k > 2, n! or nn) is also an asymptotic upper bound. When

talking about the asymptotic upper bound, one refers to the lowest upper bound.

Θ-notation

There is also an asymptotic lower bound. However, the lower bound is less important than the

upper bound unless it is equal to the upper bound. In this particular case the asymptotic com-

plexity can be specified in Θ-notation. For example, Θ(n2) states that the runtime complexity

of the algorithm is quadratic on the size of the input n.

Applicability on Cloud Computing

Asymptotic complexity analysis is often used for describing the general complexity of algo-

rithms. When talking about cloud computing, we are primarily not interested in the complexity,

but in the runtime behavior of the actual application. On the one hand, distributed execution

entails additional computation effort that might have a significant impact on execution time. On

the other hand, the algorithm might not be suitable for being used in a distributed application.

Thus the implementation might have a higher runtime complexity than expected.

10

For example, an application, which implements an algorithm with asymptotic complexity of

n2, could have a runtime complexity of n2.5 + k when running in a cloud environment. That

means, in addition to some fixed overhead k, the application does not scale with the problem

size n. In other words, it is not advisable to run the application in a cloud environment, because

the overhead outweighs the performance gain.

2.4 Parallelism

Although Amdahl’s and Gustafson’s Law describe contrary approaches, they are related to each

other and have something in common. Having twice as many resources does not necessarily im-

ply that the computation is twice as fast or twice as much data can be processed. It depends on

the runtime complexity of the application. Amdahl and Gustafson also assumed that the serial

part does neither grow nor shrink with increasing resources or input.

Besides that, the overhead was omitted in the formulas above. Since the overhead might

change with the amount of processing units used or the problem size, it cannot be assumed to be

constant and therefore not added to the non-parallelizable computation time. Even though those

formulas are not suited for concrete performance predictions of distributed applications, they are

the foundation for the model we introduce later. To be more specific, they have to be extended

by adding a function that calculates the overhead depending on various parameters like number

of processing units or fraction of parallelizable code. This is explained in detail in Chapter 4.

2.5 Computation Models

MapReduce

MapReduce [5] is a distributed computation model for processing large amounts of data. The

name is taken from its main steps, which use two functions called map and reduce. Figure 2.3

gives an overview of the model. The basic idea is to split the data and process it in parallel

by multiple workers, which map the parts to an intermediate result. Finally, these indepen-

dent results are reduced to the final result. Thus MapReduce is ideally suited for use cases

where the task can easily be split into hundreds or thousands of subtasks that can be processed

independently. Due to the large amount of data, it might be a suitable approach to reduce consis-

tency requirements and avoid costly operations like synchronization in order to gain additional

speedup.

One can conclude that for some use cases it is impractical or even impossible to collect a

consistent snapshot of up to several terabytes of data and keep it until the computation is fin-

ished. However, due to the fact that large data sets contain billions of records many operations

like calculating the arithmetic mean of a list of values is precise enough even if some are omitted

or have been altered in the meantime. This way, MapReduce is heavily optimized for throughput

and is a standard model for such use cases.

11

Figure 2.3: MapReduce execution overview [5]

A popular framework, which implements the MapReduce model, is Apache Hadoop1. When

a master node receives a request (so called job), it splits the data into partitions of equal size (e.g.,

128 MB each), and distributes them among the available worker nodes. The workers fetch the

data assigned to them and perform the mapping task. First, the map function takes key-value

pairs as input and generates intermediate key-value pairs. Afterwards, the reduce function com-

bines all key-value pairs with the same key and produces a result. The data is often stored on

a distributed file system like Hadoop Distributed File System (HDFS). It uses the Transmission

Control Protocol (TCP) for replicating blocks of data to some other data nodes and reduce po-

tential bottlenecks. After finishing the task, the data is written to the distributed storage until all

parts required for the next step are processed. Finally, when all the reduce tasks are completed,

the result can be sent back to the client.

Even though many real world problems can be solved by using this approach, the actual

performance heavily depends on the scheduling. It is crucial to distribute the tasks in a way such

that all nodes are fully utilized. Therefore, different scheduling strategies can be applied. A

common strategy is First In, First Out (FIFO). It assigns the tasks in the natural, temporal order

to the first available node. Alternatively, priority queues can be used if some tasks are more

1http://hadoop.apache.org/

12

important by some means. However, this implies that some tasks might be processed later than

expected. In order to solve this kind of unfairness, more complex scheduling strategies have

been implemented. One approach is to classify the tasks and group them among certain criteria.

By supplying a dedicated set of workers to every pool, it can be ensured that all tasks are treated

in a fair way and the response times for smaller jobs can be reduced.

Despite from scheduling tasks, it is also important to keep the amount of communication

overhead as low as possible. Even when using commodity hardware for the worker nodes, it

could be the case that it takes longer to transmit the data to and from the worker than the actual

computation. This issue is mainly caused by the throughput of the network connections. In other

words, the network overhead defines the upper limit for the speedup. Again, there are several

techniques to bypass these limitations and increase the performance. For example, some kinds

of data such as plain text files can be compressed before they are transmitted. This is a tradeoff

between network and CPU utilization, which increases the distribution overhead further, but

can lead to more efficient resource utilization. Another technique is to take the location of the

data and the expected transfer times into account when doing the scheduling. This approach is

called data locality and is one of the biggest benefits compared to conventional high performance

computing models.

Intelligent Agents

An Intelligent Agent (IA) is a concept in the field of Artificial Intelligence (AI). More concretely,

it is an entity that acts autonomously and aims to achieve a certain goal. Every agent has one

or more sensors where it receives information about the enclosing environment. Based on the

information, the agent can decide on the action to perform in order to react on the current en-

vironment. This is done by using a rule engine, an internal model of the environment, a utility

function or something similar. According to [45], there are four types of agents, namely simple

reflex agents, agents that keep track of the world, goal-based agents and utility-based agents. In

the end, there are actuators, which perform the actions decided in the previous step. Further-

more, the actions may have an impact on the environment and therefore the agent will have to

adapt itself to the changed conditions. In Chapter 6 this computation model has been applied for

evaluating the model proposed in this thesis. Figure 2.4 shows the structure of an utility-based

agent. It uses sensors to gather information about the environment and actuators to interact with

it. The agent selects and carries out actions based on a function that computes utilities of the

outcome of each possible action in the given environment.

Genetic Algorithms

Many problems related to AI such as interaction between agents can be solved with evolution-

ary algorithms. A genetic algorithm is a special type of evolutionary algorithm that is related to

the biological evolution of living beings. Thus such algorithms are used for simulating whether

some individuals can survive in an environment with limited resources or dangers. Moreover,

individuals have to evolve and try to adapt themselves to the properties of the simulated envi-

ronment. Like an IA, they also have to interact with others either to build up something which

13

Figure 2.4: A complete utility-based agent [45]

improves their chance for survival or eliminate rivals. By applying biological mechanisms like

inheritance, new generations emerge out of successful individuals while others become extin-

guished. This process is commonly known as natural selection or survival of the fittest.

One of the implementations for evolutionary algorithms is the Watchmaker2 framework. It

supports different models for simulating the evolution of a species. Many of them have in com-

mon that they implement an iterative procedure consisting of separate steps, which are executed

one after another. In general, genetic algorithms consist of four phases:

1. Initialization / Genesis

Before the actual evolution begins, the initial population has to be created. There are dif-

ferent ways for getting the candidates. For example, they can be selected from a predefined

pool or they can be generated randomly.

2. Selection

A fitness function is applied on the population, or on a subset in case the entire population

cannot be processed in time. This function calculates their quality by some means, which

depends on the actual problem. Note that the fitness function is equivalent to the utility

function of an IA.

2http://watchmaker.uncommons.org/

14

3. Evolution

The selected candidates are then evolved by applying genetic operators. There are var-

ious operations like crossover, where the elements are recombined, or mutation, which

performs slight modifications on every individual element.

4. Termination

Steps two and three are repeated until a solution, which fulfills a certain condition, is

found. Again, the condition depends on the actual problem. Possible conditions can be,

for example, a subset of the population, which exhibits a certain fitness, or the result is

simply collected after a certain period or number of iterations.

2.6 cgroups

Cgroups allows the Linux kernel to isolate processes and limit their resource usage. Moreover,

it can prioritize or even freeze them. By using this fine-grained process control mechanism, it

is possible to measure resource utilization on a very technical level. The information can not

only be used for scheduling, but also for billing purposes. Customers of cloud providers can

rent control groups, where they can run their processes almost without interfering with other

processes on the same machine. This approach is more efficient than Virtual Machines (VMs),

because the virtualization layer is thinner and the processes can communicate with the under-

lying hardware in a simpler way. More concretely, instead of running a hypervisor and one or

more guest Operating Systems (OSs) on top of the host OS, the applications run directly on the

host OS with a small control layer in between. Virtualization solutions such as VMware3 are

still state of the art. Although during the last years many products, which make use of cgroups,

emerged. For example, Docker4 is one of the best known implementations with a rich ecosystem.

Google Borg [48] is a cgroups-based cluster management system for running applications

across thousands of machines. In addition to features of cgroups, it incorporates other resource

handling capabilities, task scheduling and real-time monitoring. This is achieved by a declar-

ative job specification language that abstracts low-level resource management details. Agents,

so called Borglets, monitor the instances and modify the parameters of the cgroups-containers

accordingly. Google has evaluated Borg in detail and published results in [43]. They have

also pointed out some weaknesses such as Internet Protocol (IP) address handling. The clus-

ter manager must be able to manage port numbers like resources. Additionally, there are some

resources that cannot be managed (e.g., the CPU cache or the bus connecting the memory). Pro-

cesses, which exhibit a high I/O rate, can have a negative impact on other processes that have to

access data from the memory with low latency. Nevertheless, these performance considerations

can be neglected for many applications, because other factors such as data locality or scheduling

usually have a bigger impact on performance.

3http://www.vmware.com/
4https://www.docker.com/

15

2.7 Google App Engine

Google offers a PaaS environment called Google App Engine5. Clients can deploy and run

their applications on top of managed nodes. Therefore, a proprietary Software Development Kit

(SDK), which contains the Application Programming Interfaces (APIs) and tools for building

and deploying applications, is needed. Once an application is deployed, additional parameters

can be modified by using an administration console. In particular, the client can change the in-

frastructure by selecting a hardware configuration out of a set of preconfigured settings. Based

on that, Google App Engine dynamically provisions computational resources. For example, ad-

ditional servers are started if necessary and terminated once the application load drops below a

certain threshold. Therefore, it measures metrics like latency and counts the requests within a

certain timeframe. Based on these values, it attempts to derive the upcoming load. In this way,

it is possible to utilize the nodes and achieve efficient resource usage without manual interven-

tion. In general, such automatic approaches cause some overhead and therefore PaaS solutions

are typically not as efficient as IaaS clouds. Nevertheless, they provide a convenient way for

running an application with volatile load.

In addition to dynamic resource provisioning, Google App Engine supports various services

that can be accessed by an application. An important component for many applications is a per-

sistent storage where data can be stored to in order to be accessed concurrently by other nodes

or at any time in the future. In general, data storages can be classified in many ways. For exam-

ple, common Relational Databases (RDBs) can be used as storages. The cloud provider handles

the database management so that clients do not have to deal with administrative tasks such as

software patches. Another benefit for application developers is that relational databases obey

commonly known and standardized interfaces such as Java Database Connectivity (JDBC) for

executing Structured Query Language (SQL) queries. Thus storage and retrieval of data happens

transparently to the application and independently of the actual database.

Some cloud providers also offer file-base storages, which are used for scenarios where large

amounts of data have to be replicated to other nodes or archived until needed. File-based stor-

ages provide a limited set of access operations. For example, they do not support fine-grained

transaction management as some others do. However, they are ideally suited for use cases where

large amounts of data have to be read by different nodes, which process the data and produce a

result mostly independent of each other. This approach is used for the video rendering scenario

introduced in Chapter 6.

5https://appengine.google.com/

16

2.8 Cloud Performance Benchmarking

PerfKit Benchmarker6 is a tool suite for comparing the performance of cloud platforms. Pre-

defined benchmarks can be executed on a cloud in order to get deeper information about its

performance characteristics by monitoring the entire application life cycle including startup and

shutdown of the nodes. More concretely, it supports measurement of common metrics including

latency, network throughput and resource provisioning. PerfKit comes with a graphical perfor-

mance analysis tool for interpreting the results. It runs on Google App Engine, Amazon Web

Services7 and Microsoft Azure8. Thus it allows comparing different aspects of cloud platforms.

In [20] processing, memory and disk performance as well as network transfer rates of Google

Compute Engine9 and Amazon Web Services are compared. The authors give an overview about

benchmarking solutions including PerfKit Benchmarker and measured performance metrics of

various server configurations. According to their observations, there are three to five different

machine types among the set of analyzed offerings. Machines belonging to the same type have

similar performance characteristics. They can be identified quite easily so that developers are

able to select the right type of machine for their purposes.

2.9 NoSQL Databases

During the last years, Not-only SQL (NoSQL) databases have emerged. Unlike RDBs, they do

not rely on the relational approach. Instead, they use other mechanisms for storing and retrieving

data. Although some implementations support a subset of SQL or provide an SQL-like query

language. NoSQL databases can be categorized by their storage technology as follows:

1. Graph database: a storage where relationships between entities can be handled efficiently.

2. Column-oriented database: a column is a tuple consisting of a unique identifier, a value

and a timestamp.

3. Key-value store: every entry is a tuple consisting of a unique key and the associated value.

4. Document-oriented database: typically used for storing semi-structured information such

as Extensible Markup Language (XML) or JavaScript Object Notation (JSON).

Among the NoSQL database types listed above, there are other approaches like object databases.

However, many NoSQL databases used for cloud computing belong to the categories mentioned

above.

6https://github.com/GoogleCloudPlatform/PerfKitBenchmarker/
7http://aws.amazon.com/
8http://azure.microsoft.com/
9https://cloud.google.com/compute/

17

Graph Databases

A graph database is a database that makes use of graph theory in order to fetch related data

efficiently. More concretely, instead of storing data in tables and logically link them together

via foreign key relationships, the data is modeled as a graph consisting of nodes and edges.

Nodes represent entities such as people or companies whereas edges describe their relationship

(e.g., ”knows” or ”works for”). Nodes and edges can have additional attributes called properties

where the actual data is stored. This storage format enables users to query for entities using

relationship information in addition to conventional entity properties. For example, it is possible

to look for a person that has a third-degree connection with someone who works at a certain

company without knowing any personal facts about the people. When executing similar queries

on RDBs, they often have to load lots of data before a few rows, which match the given criteria,

can be fetched. In comparison, a graph database starts at one or more nodes and explores the

graph by traversing adjacent nodes in order to find the result set. Thus loading a small block of

data, which contains the next node, into main memory is significantly faster than loading entire

database tables.

Column-oriented Database

Unlike traditional RDBs, column-oriented databases store records in columns instead of rows. In

other words, a table is stored as a sequence of columns rather than a sequence of rows. Due to the

transposed data structure, some operations can be done faster than on an equivalent row-based

storage. Especially the aggregation of values of a single column is much more efficient because

column loading is supported natively. On a physical level the query engine looks for a particular

column on the hard disk and reads the entire column sequentially. With increasing popularity

and lower prices of Solid-State Drives (SSDs), the performance penalty caused by random disk

access becomes irrelevant. Thus by using SSDs, the decision for a row-based or a column-based

data storage becomes less important. Although when using rotating Hard Disk Drives (HDDs),

column-oriented database will perform better for many Online Analytical Processing (OLAP)

operations.

Key-Value Store

Key-Value stores are databases that consist of associative arrays rather than tables. That means

a record is either a scalar value such as a number or a string, or a collection of those types,

identified by a unique key. During the last years, they have become quite popular along with

large-scale distributed systems. They allow to store records, which contain sparse data, more

efficiently than RDBs. Thus, the data needs less space on a hard disk and therefore less data

has to be loaded into main memory. This circumstance can lead to better performance when

aggregating values. Since key-value stores do not support relationships like RDBs do, they

allow easier replication in cluster environments.

18

Document-oriented Database

Document-oriented databases are key-value stores that work on semi-structured objects with

several attributes containing large amounts of data. Document-oriented Database Management

Systems (DBMSs) often store XML or JSON files, but also allow binary data like images. Typ-

ically, they do not provide several types of locking and isolation levels like RDBs do. Instead,

they focus on fast retrieval of large amounts of coherent data. Every document is identified by a

globally unique key. In order to locate documents fast, the database maintains an index on the

keys. Many implementations also offer query languages such as XQuery for extracting selected

parts of data. Besides that, Representational State Transfer (REST) APIs are quite common, be-

cause most document queries can be expressed naturally as REST Uniform Resource Locators

(URLs). Another huge benefit of documented-oriented databases compared to RDBs is their

flexibility regarding the structure of the data. There are no constraints like a schema definition,

which describes the structure of every record. Thus, it is possible to extend a specific document

by adding attributes as well as removing unnecessary attributes at any time without the necessity

of modifying other documents.

19

CHAPTER 3
Related Work

"If I have seen further it is only by
standing on the shoulders of Giants.

— Isaac Newton

Since cloud computing does not only have technical challenges, but is also a crucial op-

timization problem from an economic point of view, many papers in this area introduce cost

models for describing the monetary aspect and help identifying cost drivers. This includes the

costs for computational resources, storage as well as network transfer.

3.1 Resource Allocation

There are several works that focus on optimal resource allocation like [46] and [4]. The first

one maximizes the financial profit on a per-user base with a fixed budget and a limited amount

of cloud resources. The authors clearly focus on economics and revenue, while [4] introduces

a model-driven resource allocation framework. The scheduling of data-intensive tasks relies on

both time and cost restrictions. Thus this approach provides great accuracy for some types of ap-

plications. However, both approaches assume that the applications are scalable in a deterministic

way. In other words, they solely focus on optimizing application runtime. In contrast, this thesis

deals with the question whether an application is sufficiently scalable and under which circum-

stances a distributed execution of an application is more advantageous than a non-distributed

execution. So the outcome can be treated as relative costs, which can be mapped to absolute

costs, but such considerations are not within the scope of this thesis.

21

3.2 Scheduling

In [41] the impact of Quality of Service (QoS) restrictions on job scheduling strategies is dis-

cussed. For the purpose of finishing jobs according to the users’ needs, the tradeoff between

costs and time is discussed. In order to come up with an efficient strategy, n individual tasks

are assigned to m resources. Additionally, a directed acyclic graph is built for describing the

dependencies of tasks. This graph defines the initial order of the tasks and restrictions on the

actual scheduling. The authors calculate the processing costs of the task execution in a time-

based manner. Next, it is checked whether the tasks are executed in time. If one is slower

than expected, it is put into a queue for tasks that should be executed as fast as possible and if

one is faster than necessary, it is put into a queue that has lower priority. This way the tasks

are classified by their priority and form a sequence for processing. Depending on the nature of

the job and the environment, it might be necessary to reschedule the tasks regularly. This job

scheduling strategy attempts to optimize for both costs and execution time. As described by the

authors, the algorithm does neither take communication overhead nor costs for waiting time into

account. As discussed in Chapter 4, the overhead for scheduling and communication can have a

big impact on the scheduling strategy and the performance in general. The model introduced in

the very same chapter considers those factors for calculating the speedup of an application when

running in a cloud environment. However, this thesis does not take QoS requirements or SLAs

into account, but instead it focuses on performance and reliable predictions.

When running several tasks on a single host concurrently, it is crucial to control the amount

of resources claimed by every task. Especially, this is true for cumulative resources like memory.

The utilization of cumulative resources is the sum of the resource utilization of every task. The

value can be predicted rather easily, but there is a hard limit (e.g., the amount of memory of a

host). Nevertheless, scheduling cumulative resources is simpler than competitive resources such

as CPUs. Those resources are divided among the tasks executed concurrently and underprovi-

sioning has a negative impact on the performance of all tasks. In [49] an approach for scheduling

tasks of a producer-consumer application is introduced. The authors use a distributed profiler for

gathering runtime information of the application. The resource profile is later used by another

component for task scheduling. If the system maintains a long and precise task schedule plan, it

can react on fluctuating load in time. On the one hand, it can start new hosts and distribute the

overall load by running tasks there. Alternatively, it can suspend some tasks to handle resource

peaks and prevent the application from crashing. On the other hand, it can free some resources

(e.g., shut down hosts with low utilization and reduce costs). In Chapter 5 a similar profiler is

introduced, which captures runtime information actively, but distinguishes between workload

and overhead. The information is also used to predict the load profile of the application.

22

Another way to categorize metrics is described in [32]. The authors present a model-driven

approach called Cloud Metric Classification, which includes four models, namely application-

based, measurement-based, implementation-based and nature-based categories. The application-

based model defines whether a metric can be measured for any application or applies to the ca-

pabilities of a specific application. In general, some metrics can be measured directly, but some

can only be derived based on various factors. This circumstance is handled by the measurement-

based model. The implementation-based model defines how a metric can be measured. Last but

not least, metrics can be distinguished by their nature i.e., whether they describe quantitative

or qualitative properties. The benefits of this approach have been shown by implementing an

agent-based monitoring solution that is capable of collecting several application level metrics in

a generic way.

SPEEDL [51] is a declarative Domain Specific Language (DSL) [47] for defining scaling

behavior of cloud applications. Instead of governing the application based on pro-active moni-

toring, it is based on a rule engine and makes use of Complex Event Processing (CEP) [29]. A

rule consists of an event definition in form of a sequence of events, guarding conditions and ac-

tions. Whenever it receives a sequence of events, which matches a rule, the guarding conditions

are evaluated and in case they are fulfilled, the actions are performed. For example, whenever

the application has to handle 50 requests within one second, a new computation node is started

unless there are already ten instances running.

An overview of various common scheduling algorithms can be found in [12]. The traditional

scheduling algorithms Min-Min and Max-Min as well as Genetic Algorithm are discussed in

[21]. The authors propose to combine the latter one with Min-Min and Max-Min. They show the

positive impact on execution time by using those algorithms for task assignment. Moreover, the

authors argue that it is possible to optimize for other factors (e.g., execution costs) by modifying

the fitness function accordingly.

3.3 Middleware

A common approach for executing arbitrary tasks is the usage of a middleware, which monitors

the state of the computation nodes and either provides hints for scheduling or does it transpar-

ently on its own as described in [3] and [18]. These solutions process workload changes in

realtime or near-realtime in order to provide a good QoS for all users. Thus they can be consid-

ered as state-of-the-art approaches for efficient task management.

For the evaluation of the model introduced in this thesis, a middleware is used for task

execution, namely JCloudScale1. It is a Java-based framework for building transparently scaling

cloud applications. Therefore, it is ideally suited for predicting the performance of distributed

execution without having an application that is specifically developed for it. Additionally, a

profiler is attached to it in order to measure the overhead and collect some performance metrics.

Further information about this approach can be found in Chapter 4 and Chapter 5.

1https://github.com/xLeitix/jcloudscale/

23

3.4 Profiling

As described in [6], when profiling Java applications, it is important to measure not only the

time a Java Virtual Machine (JVM) spends on executing byte code, but also the time for exe-

cuting native code (e.g., code written in C and provided as an external library). The authors use

their tool for predicting the performance of arbitrary applications. Its main purpose is to allow

fine-tuning of a single JVM, but it does not provide a holistic view on the performance of a

distributed application. Even though it is not necessary to distinguish between Java byte code

and native code, the profiler introduced in this thesis has to monitor the application by capturing

per-thread statistics and classify the utilization. In other words, it has to determine the amount

of time a thread has spent on processing the actual task, doing remote calls or waiting for data

sent by another computation node.

A framework for execution time estimation of logic programs is proposed in [35]. It en-

riches static cost analysis with one-time profiling. Based on that, a cost model, which is used for

deriving application-specific cost functions, can be created. The actual cost function of an appli-

cation is parametrized by platform-specific constants collected in the previous steps. By using

this approach, it is possible to estimate the execution time of logic programs without profiling

them separately. The approach discussed in Chapter 4 is similar to the one of [35]. Profiling

information is used to increase the accuracy of performance predictions of an application. How-

ever, instead of estimating execution time of logic programs, this thesis focuses on applications

that obey a distributed programming model such as MapReduce.

3.5 MapReduce and Genetic Algorithm

In [22] a parallel evolutionary algorithm for cloud environments is introduced. The authors pro-

pose to use MapReduce for processing large amounts of genetic information in parallel. By

using this parallel computation model, they achieve up to 9.1 times performance speedup under

certain circumstances. Similar to this thesis, the authors refer to Amdahl’s Law for calculating

the speedup. Moreover, they focus on the design of the algorithm and evaluate the performance

among different datasets. The authors conclude that MapReduce and similar computation mod-

els are ideally suited for parallel evolutionary algorithms, which iteratively improve candidate

solutions.

In [28] MapReduce is compared to data-intensive flow computing. Different types of ge-

netic algorithms are used for comparing those two approaches. Even though they are related to

each other, they have different characteristics. Experiments show that Hadoop provides good

performance in general, but performance suffers when running out of resources. In contrast to

Hadoop, the dataflow execution environment Meandre2 has a linear speedup. It’s performance

is more predictable under high load than the performance of the Hadoop-based implementation.

2http://www.seasr.org/meandre/

24

One of the scenarios introduced in Chapter 6 uses a genetic algorithm. Thus the simulation

of the evaluation of a bacteria population uses a MapReduce-like computation model. We also

came to the conclusion that this approach fits naturally to this type of problems. However, we

also encountered different runtime behavior partly caused by parametrization.

3.6 Costs

When talking about cloud computing, costs are one of the driving factors in one or the other

form. However, there are huge differences in definition, calculation as well as measurement.

For example, as shown by [26] resource usage in terms of machines and energy costs may corre-

late, but they may also vary significantly. The authors propose a dynamic round-robin algorithm

that is able to detect overprovisioning of resources and schedule tasks in a way that enables the

system to shut down physical hosts. It makes use of code migration by moving VMs between

hosts in order to speed up resource deallocation. By running multiple test cases using the stan-

dard algorithms of Eucalyptus3, the authors show that their algorithm is way more efficient than

the built-in round robin and greedy algorithm.

Moreover, it is crucial to select the right task scheduling algorithm for a particular problem

as described in [39]. Besides genetic algorithms [27] mentioned previously, various common

algorithms including priority based job scheduling [10] are compared and categorized in terms

of cost and time. For this thesis, the approaches used for the applications introduced in Chapter 6

have been chosen in a way that reflects the nature of the problem definition. That means, for

the video rendering application (dynamic) round robin is used for utilizing the hosts as good as

possible. For the simulation of genetic evolution a genetic algorithm fits best.

The estimation of resource costs of data-intensive workloads is not a trivial task. The model

introduced in [37] considers all the different resources enumerated before. Since it focuses on

query processing in distributed databases, it also takes distributed transactions into account. Fur-

thermore, it supports SLAs in order to be able to calculate costs using IaaS clouds. Instead of

having a model-based approach for mapping resource costs, [17] predicts the cost amortization

for data structures, like materialized views, in distributed databases.

Even if those works address a different research area i.e., databases, the underlying idea is sim-

ilar to the one of this thesis: measuring resource usage for certain tasks and mapping them to a

model for predicting cost amortization i.e., when does cloud execution outweigh the additional

costs for scheduling, remote method invocations, etc.

3https://www.eucalyptus.com/

25

In [2] the authors propose an approach for calculating costs as decision base for job assign-

ment. They convert the costs of resources like CPU and memory into an artificial cost value. In

order to obtain a semi-optimal job assignment, the tasks are assigned in a way that minimizes the

overall costs. The authors do a comprehensive analysis using Parallel Virtual Machine (PVM)4

and Mosix5, compare the results and conclude that the opportunity cost approach leads to good

results compared to naive online heuristics.

The problems of moving applications to a cloud environment are discussed in [33]. More

concretely, the authors introduce a methodology for doing trade-off analysis taking various costs

into account. The costs can be divided into four categories, namely complexity, performance, re-

source and energy. Complexity includes all migration efforts such as environment setup, manual

reconfiguration or even reprogramming. The performance aspect includes performance metrics

and penalties caused by virtualization. Another crucial cost driver is resource utilization, where

it is important to optimize for resource utilization and keep overprovisioning as low as possible

at the same time. Last but not least, power consumption can be measured for every physical

machine, which results in operations costs that grow with the size of the cloud. Based on the

results of the analysis, it can be decided which infrastructure setup provides the best cost-benefit

ratio.

This thesis solely focuses on technical aspects such as scalability. In other words, the pro-

posed model gives a good indication whether it makes sense to run an application in a distributed

way or if there are any limitations. However, when deciding whether a cloud-based approach

shall be used for a concrete application, additional factors like setup and operations costs have

to be taken into account as well.

3.7 Prediction

The major goal of [24] is similar to the one of this thesis. The authors claim that CloudProphet

can predict the performance of a particular application without running it on the target cloud

platform. Instead of attempting to categorize the application by its performance characteristics,

they use trace-and-replay [36]. This approach allows the generation of reproducible system load

for testing purposes (e.g., performance optimizations). First, the tracer records the behavior of

an application. This can be done either directly by observing the operations performed by the

application to trace, or by monitoring the state of the machine. Second, the replayer simulates

the previously recorded states by re-submitting network packages, allocating memory, causing

load on the CPUs, etc. In [25] it is shown that the error rate of CloudProphet was below 20% in

almost every case. However, the authors state that the applications chosen for evaluation behave

quite deterministically. By using trace-and-replay on nondeterministic applications, the accu-

racy of the predictions is likely to drop. They also postpone memory-intensive applications as

future work.

4http://www.csm.ornl.gov/pvm/
5http://www.mosix.cs.huji.ac.il/index.html

26

The model introduced in Chapter 4 supports fluctuating cloud overhead, but cannot be ap-

plied without further knowledge about the application and the system it is running on. In contrast

to that, CloudProphet allows predicting the performance without running the actual application.

Log2cloud [40] is invented for predicting the costs of VMs based on log files. By extracting

traces and categorizing them, it is possible to build resource profiles that describe the utiliza-

tion over time. In the first step of the analysis these profiles are translated to Markov decision

processes. In the second step model checking techniques as explained in [15] are applied on

them, which results in a cost prediction. On the one hand, this approach does not influence the

performance of the application like a profiler, so the measured values are very accurate. On the

other hand, log analysis does not lead to detailed information on a low and technical level. Thus

it is suited for determining the minimum amount of VMs required for avoiding SLA violations

based on historic information. The ALASCA profiler introduced in Section 5.2 also writes log

files, which contain information on source code level. Like any profiler, it has a small, but mea-

surable negative impact on performance. Especially if the information about the running threads

is collected too frequently, there might be a considerable difference in the runtime behavior of

the application.

27

CHAPTER 4
Conceptual Approach

A person who never made a mistake
never tried anything new.

— Albert Einstein

As already mentioned in Chapter 2, Amdahl’s and Gustafson’s Law describe the scaling of

applications on multi-core machines. We argue that the general principles can also be applied

to cloud computing. However, as both do not consider overhead as a crucial dimension, they

do not provide the required accuracy for such estimations. Therefore, we show the impact of

cloud overhead and define cloud speedup and scaled cloud speedup based on Amdahl’s and

Gustafson’s Law, respectively.

4.1 Model

Cloud Overhead

When we are talking about overhead, we are referring to the cloud overhead we have to accept

when running a distributed application. It consists of all the additional effort that would not

occur if the application would be running on a single physical machine. To be more specific,

we focus on the scaling of machines, remote procedure calls, data transmission and network

latency/bandwidth. Depending on the application, some of them can not even be noticed. For

example, when running a computation intensive task, which lasts for hours and delivers a single

numeric value, the network bandwidth can be neglected. In general, they are measurable and

have to be considered when predicting the performance of an application.

In the following, we propose a model that supports all those dimensions. However, any other

parameter can be added easily if the following conditions hold:

29

• The value can be measured quantitatively without having additional impact on the appli-

cation. In other words, the measurement must neither have an impact on the application

itself nor on other measurements (e.g., additional runtime overhead by monitoring has to

be considered carefully).

• The measured values can be mapped to compatible units of measurement, if necessary.

Typically, most of the measurements will deliver temporal values. In this case, the count

of failures or similar information can also be used as long as a temporal value can be

associated with them.

• The parameter can be measured deterministically, since indeterminism will lead to inac-

curate results or even could make performance predictions impossible.

In order to make reliable performance predictions, it is important to have a deep understand-

ing of the measured values. Therefore, the cloud overhead is classified into two categories: static

and dynamic overhead.

Static Overhead

Static overhead subsumes the fixed overhead as well as the one that depends on several static

parameters that can be evaluated before runtime.

Every additional effort that does neither scale with the execution environment (e.g., the host

count), nor with the problem size (e.g., the amount of data), can be considered as fixed. Despite

the fact that most types of overhead do not fit into this category, they can have considerable

impact on the execution time. For example, if the computation nodes are started on-demand, the

scaling overhead is fixed. Every time a task is started, it takes a certain amount of time to start

the required instances. Note that the simultaneous startup of multiple machines increases the

overall duration by the startup time of one machine, while the costs are increased by the costs

for the sum of the startup times.

Furthermore, cloud overhead, which depends on one or more factors that can be computed

statically, is static as well. For example, for every computation node that is monitored, additional

effort is introduced, which would not be necessary in case of non-distributed execution. In this

case, it increases with the number of computation nodes used.

Dynamic Overhead

Dynamic overhead depends on the execution of a particular application. In other words, it is

specific for the application or a type of application. Compared to static overhead, it depends on

runtime parameters and therefore varies. This includes all effort that cannot be determined stat-

ically (e.g., the amount of messages passed between computation nodes over time). Therefore,

dynamic overhead is harder to predict than static overhead.

30

Effective Overhead

The effective overhead o is equal to the sum of the static and the dynamic overhead:

o = ostatic + odynamic

4.2 Amdahl’s Law Revisited

Originally, performance properties were observed for some programs running on CPUs sup-

porting different features (e.g., instruction pipelining or vector operations), but Amdahl’s Law

can be applied to cloud computing as well. Instead of heaving p being the fraction of parallel

instructions, it denotes the fraction of the overall computation that can be executed in parallel.

Additionally, N is not a physical processing unit (i.e., a CPU), but a computation node with one

or more virtual or physical CPUs.

Proof: tt = ts for large N .
As we already concluded, for any fixed size problem and a possibly infinite amount of computa-

tion resources N , the total execution time tt is equal to the execution time of the part that cannot

be parallelized ts.

lim
N→∞

tt = lim
N→∞

((tt · s) + (tt · p
N

)) = tt · s = ts

This fact seems to be trivial, however, it has a crucial impact on the scalability of applica-

tions. Therefore, one would like to determine p for any type of application in order to get an

indication what the maximum speedup with a given amount of computation resources can be.

Since distributed execution can entail a large overhead, it has a significant impact on the part ex-

ecuted in parallel. Without loss of generality, the overhead changes the speedup linearly like the

fraction of the code that is not executed in parallel. Thus, we extend the formula by introducing

the cloud overhead o and obtain the following modified formula for the cloud speedup:

cloud speedup =
s+ p

s+ p
N + o

=
1

s+ p
N + o

By considering the cloud overhead like that, the performance prediction is much more accu-

rate. Although knowing the upper bound might not be sufficient if there is a natural boundary.

For example, in Chapter 6 we have shown that an exemplary application does indeed scale as

expected, but at soon as a certain amount of network traffic is reached, adding additional in-

stances does not pay off. While performance might still increase slightly, the network builds a

bottleneck and therefore decreases efficiency by not being able to provide the required data and

fully utilize the machines.

31

4.3 Gustafson’s Law Revisited

Similar to Amdahl’s Law, cloud overhead has impact on the parallel part in Gustafson’s Law as

well. Parallelization enables the application to process a larger problem (e.g., more tasks) within

the same time frame. Thus, additional effort caused by distribution reduces the amount of time

that can be spent on running tasks in parallel.

scaled cloud speedup =
s+ (p - o) ·N

s+ p
= s+ (p - o) ·N

4.4 Example

Let us assume that 90% of an application can be parallelized among three nodes. The tasks

can be scheduled simultaneously, which means that they can be started at the same point in

time. Furthermore, we assume that the static cloud overhead ostatic is 10% for startup time, etc.

Therefore, the cloud speedup can be calculated as follows:

cloud speedup =
1

s+ p
N + o

=
0.1 + 0.9

0.1 + 0.9
3 + 0.1

= 2

By running the application on three nodes, the result can be computed in half the time.

Alternatively, the problem size can be increased while the execution time stays the same. By

applying the modified Gustafson’s Law, we obtain the following result:

scaled cloud speedup = s+ (p - o) ·N
= 0.1 + (0.9− 0.1) · 3 = 2.5

By running the application on three nodes, 2.5 times as many tasks can be executed within the

same time frame.

Figure 4.1 outlines the different approaches. A1 to A3 and G1 to G3 are the Cloud Hosts

(CHs) performing the tasks according to Amdahl’s and Gustafson’s approach whereas Serial
is a computer doing non-distributed execution. White boxes designate cloud overhead, dotted

boxes represent the tasks that can be processed in parallel, black boxes indicate the amount of

code that cannot be parallelized and the striped boxes show the additional tasks that can be pro-

cessed when using the cloud resources entirely. Similar to the definition of Amdahl’s Law, it

can be seen that the execution time is reduced to a minimum by making full use of the available

resources. However, starting three machines takes some time, which would not be necessary

32

in the non-distributed approach. The total overhead here is approximately 23%. The same ob-

servations are true for the application of Gustafson’s Law to cloud computing. While the cost

of running three CHs for 90% of the time is significantly higher than in the other scenarios,

2.5 times as many tasks can be executed and the amount of overhead is almost 11%.

t

A1

A2

A3

G1

G2

G3

Serial

0 20 40 60 80 100

Figure 4.1: Comparison of serial execution, Amdahl’s and Gustafson’s approach

33

CHAPTER 5
Implementation

The final test of a theory is its
capacity to solve the problems which
originated it.

— George Dantzig

5.1 Middleware

A middleware is a software that connects different software components or applications with

each other. Typically, middleware systems fulfill various purposes like monitoring or forward-

ing and translating of messages. As already mentioned in Chapter 3, we used JCloudScale1

as middleware solution for running exemplary applications in order to evaluate the approach

we propose in this thesis. Its main purpose is to enable ordinary Java-based applications to be

run in an IaaS cloud environment without considerable changes in code or software architec-

ture [23] [50].

Code Mobility

One of the main concepts of JCloudScale is commonly known as code mobility [7]. It is an um-

brella term for migrating code or application state between machines. Its purpose is to support

operations that cannot be performed on the target machine due to various reasons (e.g., hardware

limits), by performing them on another machine and eventually getting the result once the com-

putation is finished. Over the past 15 years more and more types of applications have emerged,

where code mobility is used in the one or other form. This includes thin-clients, mobile devices

such as smartphones, and last but not least cloud computing.

1https://github.com/xLeitix/jcloudscale/

35

One important classification is the distinction between weak and strong code mobility. While

the weak variant includes the migration of code, data and all dependencies, the strong variant

also includes application state such as the intermediate result of a computation. Various types of

approaches and technologies like Remote Method Invocation (RMI) support different aspects of

code mobility. For many use cases weak code mobility is sufficient. There is no general solution

for supporting strong code mobility for any type of application. This does not imply that it is not

supported for some applications. In other words, it heavily depends on the applications nature

whether its state can be migrated or not. More precisely, the application must obey the following

properties:

• be interruptible at certain points in time

• state, which describes the "progress of the computation", can be observed and collected

• the state is serializable (can be transmitted to another location e.g., another server)

• given the code and a state, the application can continue and produce the same result as if

it had not been interrupted

These properties roughly describe what is known as continuation [44]. It can be seen as

a snapshot of the current program execution including the program counter, the call stack and

variable assignments. Continuations have been described by Adriaan van Wijngaarden in 1964

and since then many programming languages have been adapted to support them as a first-class

language construct. For example, they can be used for backtracking (Prolog) or coroutines

(Perl). Other languages like Java have no built-in support, however, there are some libraries

like Apache Commons Javaflow2, which enable applications to make use of continuations to

some extent. Regardless of the implementation, neither JCloudScale nor any other solution will

be able to support code mobility if one or more of the above listed properties are not fulfilled.

Moreover, there are some use cases, where it is not possible to interrupt the computation or it is

simply impractical to transmit the state due to its size or dependencies.

Code Deployment

JCloudScale supports code on demand, which enables CHs to download code from a remote

machine, execute it locally and interact transparently with other machines. Therefore, the cloud

manager component has to ensure that the code is available on the CHs. Furthermore, all runtime

dependencies like files to process or third-party libraries have to be deployed as well. Whenever

a CH performs a request, it has to resolve the Cloud Object (CO) containing the code to execute.

A CO is an ordinary Java object with methods exposed to other machines. In case it has not

been constructed yet, a transitive closure over the dependencies of the CO has to be computed.

However, the JVM can load more code later on (on demand) so building a Directed Acyclic

Graph (DAG) of the CO and its statically known dependencies might not be sufficient. A special

classloader is used for retrieving additional classes from a remote machine whenever they are

required. In the worst case, the entire code base, which is also known as classpath, has to

2http://commons.apache.org/sandbox/commons-javaflow/

36

be transmitted to the CHs. In the near future, Project Jigsaw3 is going to enhance Java with

built-in module support. It enables developers to modularize code and express dependencies in

a declarative way. This will enable a standardized way for deploying Java code across many

machines. As of today, frameworks like JCloudScale have to implement remote classloading on

their own. Additionally, any resources like files, which will be accessed, have to be available

remotely as well. Depending on the type of resource, there may be different solutions for making

them available on the remote machine. For example, files can be transmitted along with the

code onto the remote machine. Alternatively, file access can be intercepted and redirected to a

Network-Attached Storage (NAS) that is available at the CHs, or a distributed file system such

as Network File System (NFS) is used.

Scaling

The main purpose of JCloudScale is to simplify development and deployment of ordinary Java

applications that should benefit from distributed execution. Ideally, an application needs no

modifications in order to utilize the potentially infinite amount of processing power provided

by an IaaS cloud. More precisely, JCloudScale enables an application to scale transparently by

making use of AOP [19]. JCloudScale provides all the code for deployment and remote com-

munication via Java Message Service (JMS) and weaves it into the application. The byte code

is modified at load-time so that the code, which should be executed in a distributed way, is re-

placed by proxies. At runtime, whenever such a proxy is accessed (i.e., one of its methods is

invoked), JCloudScale ensures that the code intended to be executed is executed on a remote CH

instead. Thus the byte code and all dependencies required for the execution are transmitted to

the CH and instances of the desired COs are created if necessary. This process is done entirely

transparently to the caller and all cloud-related aspects like remote communication and scaling

are done by the middleware. In particular, it scales up and down CHs by starting and terminating

virtual machines, and deploying the application onto them.

Basically two artifacts have to be provided in order to make an application scalable with

JCloudScale: the cloud configuration and the scaling policy. The cloud configuration contains

all the information required for operating the cloud platform (e.g., the IP address where the mid-

dleware can be accessed at), or credentials for a public IaaS cloud like Amazon Elastic Compute

Cloud (EC2)4. The scaling policy handles the execution of COs by distributing them among the

CHs. At any point in time, the scaling policy can trigger the creation of new CH instances in

order to provide enough computation nodes to handle the execution. It can also scale down the

cloud by terminating CHs and therefore improve utilization and reduce costs. JCloudScale au-

tonomously collects metrics of the CHs such as CPU and memory utilization as well as network

I/O. Based on these collected values, a custom scaling policy can be implemented, which fits

the requirements of an application that does not have the same scaling characteristic as any of

the provided scaling policies. Research has shown that by using an appropriate scaling policy,

an application using JCloudScale can perform almost as good as the same application extended

with application-specific code for distributed computing and deployed manually [50].

3http://openjdk.java.net/projects/jigsaw/
4http://aws.amazon.com/ec2/

37

Usage of JCloudScale

As described before, JCloudScale has to be parametrized with the cloud configuration and an

optional custom scaling policy. Listing 5.1 shows an example of a typical JCloudScale bootstrap-

ping sequence as it was used for the scenarios evaluated in Chapter 6. First, platform specific

configuration is loaded from a file. Second, JCloudScale itself is configured by supplying the

previously created platform configuration and additional information like the IP address of the

JMS server to use. Moreover, a custom scaling policy is provided, which is optimized for a

particular application.

Properties props = load("openstack.properties");
CloudPlatformConfiguration cloudPlatformConfig =

new OpenstackCloudPlatformConfiguration(props)
.withInstanceType("m1.medium");

JCloudScaleConfiguration config =
new JCloudScaleConfigurationBuilder(cloudPlatformConfig)
.with(new CustomScalingPolicy())
.withMQServerHostname(mqServerIpAddress)
.build();

JCloudScaleClient.setConfiguration(config);

Listing 5.1: Setup of JCloudScale

Next, the tasks can be processed like in an ordinary non-distributed application. Every task-

based application has (at least) two classes, namely the task itself and a scheduling component,

which runs the tasks. For the sake of simplicity, we call them Scheduler and Task. A Task
contains the code that does the actual processing of the given data. Listing 5.2 shows a typical

CO, which accepts a parameter of a certain type and is destroyed automatically after it is invoked

by JCloudScale.

@CloudObject
public class Task {

@DestructCloudObject
public String work(@ByValueParameter Parameter p) { ... }

}

Listing 5.2: Implementation of a cloud object

The Scheduler contains code for handling the execution of tasks. For example, it runs

them in a thread pool and monitors their execution state. Note that the implementation is tied to

the application and may vary significantly in its details. In Listing 5.3 a set of Task instances

is submitted to the Scheduler, which provides a way to retrieve the results of the tasks once

they are completed.

38

Scheduler scheduler = new Scheduler();
for (Task task : tasks) {

scheduler.schedule(task);
}
while (!scheduler.isFinished()) {

Object result = scheduler.getNextResult();
// Process result...

}
// Terminate JCloudScale
JCloudScaleClient.closeClient();

Listing 5.3: Usage of JCloudScale

Instead of executing Task instances within the very same JVM, JCloudScale replaces them

with proxies and distributes the work among several CHs as specified by the scaling policy.

Figure 5.1 shows the process of invoking a method on a remote CO. Whenever a method of

a CO is invoked (e.g., work()), JCloudScale intercepts the invocation and requests a CH to

perform the actual invocation. It also takes care of parameters and returns the result to the

object, which called the method on the proxy. This process is done completely transparently to

the caller like it would invoke the method on the actual object.

Figure 5.1: Remote method invocation with JCloudScale

39

5.2 Profiling Applications

In order to inspect an application and get more technical information about the application’s

runtime behavior, a profiler can be used. First, Java profilers can observe different high-level

metrics of a JVM like the number of classes loaded or the number of threads, which are alive

at the moment. Second, they track system information such as CPU and memory utilization or

garbage collection. Finally, they collect low-level performance data like the frequency and the

duration of method calls.

For the purpose of predicting the performance of applications by applying the model introduced

in Chapter 4, a profiler was implemented in order to measure low-level performance data as well

as system information.

Architecture of the ALASCA Profiler

Most Java profilers provide more features than the core functionality mentioned above (e.g., a

Graphical User Interface (GUI) for convenient presentation of the data). However, those fea-

tures are not necessary for profiling a distributed application and collecting runtime information.

Moreover, they can be troublesome, because the monitoring entails additional overhead, which

might bias the measured data. Even though Java provides a facility to collect that information

resource-efficiently, a custom profiler, which fits the needs of this particular use case, provides

more accurate results. Therefore, a profiler called ALASCA5 (A Lightweight Analyzer for Scal-

ability of Cloud Applications) has been developed. Unlike most other Java profilers, it runs

inside the process, which is profiled, and therefore can access all public objects within the very

same JVM with almost no overhead. Figure 5.2 shows how a distributed application can be pro-

filed with ALASCA. In every JVM a separate profiler instance keeps track of the components to

profile. The collected data is persisted in the file system and can be combined in order to get a

holistic view on the application.

ALASCA uses Java Management Extensions (JMX) for retrieving the low-level informa-

tion like method call duration. JMX is a standardized technology for managing different kinds

of resources (e.g., applications and services). Information about those resources (e.g., Random

Access Memory (RAM)) can be obtained from so called Managed Beans (or MBeans). A JMX

agent exposes those MBeans for other components or applications, which use a well-defined

JMX connector for querying them. Even though MBeans can be accessed remotely, ALASCA

collects the information locally to avoid network latency and reduce overall system utilization.

Furthermore, the NetBeans Profiler Library6 has been used to collect CPU profiling snapshots.

On the one hand, by using this standalone library it can be ensured that the performance data

is collected correctly. On the other hand, the snapshots can be stored in a standardized format,

which can later be processed by other monitoring and profiling tools like Java VisualVM7. Ad-

ditionally, ALASCA emits the data in a textual format, which can be analyzed easily in order to

detect bottlenecks and measure the cloud overhead.

5http://alasca.googlecode.com/
6https://netbeans.org/projects/profiler/
7https://visualvm.java.net/

40

Figure 5.2: Deployment view of JCloudScale used along with ALASCA

ALASCA consists of three components: the sampler, the analyzer and the snapshot stor-

age. The sampler uses the JMX connector for retrieving information about all threads of the

JVM, which is profiled. Then the NetBeans Profiler is invoked and collects CPU profiling snap-

shots, which contain information about the current call stack of the threads to monitor. Next the

sampler stores them in the snapshot storage until the profiling is stopped (e.g., the application

terminated or the request was processed successfully). Finally, the analyzer filters the collected

snapshots and aggregates them on method and class level. The preprocessed data can be used

to extrapolate the execution time and derive performance characteristics. Figure 5.3 outlines the

architecture of ALASCA.

41

Figure 5.3: Software architecture of the ALASCA profiler

Sampler

The sampler periodically collects information about each thread of the JVM it is running in.

Therefore, it uses JMX to get a list of all threads that are alive. A thread is considered to be

alive if it has been started and has not yet died. The collected thread dumps contain the thread

identifier, the current thread state and its stack trace. The NetBeans profiler keeps track of

the last dumps and calculates metrics such as the duration the thread was active. Furthermore,

by comparing stack trace elements, it counts the number of method exits and method enters.

Since this is done in a fixed time interval (typically a few milliseconds), it can happen that some

method invocations will not be recognized. However, this is perfectly fine since we only consider

method invocations that take quite some time. The amount of information that can be obtained

by reducing the sampling interval is inversely proportional to the overhead. Thus decreasing the

interval may not necessarily lead to more accurate results.

Snapshot Storage

By creating a snapshot of all alive threads every few milliseconds, lots of data is collected over

time. The collected data is (by default) stored on the local file system for two reasons. First,

the application can be distributed among multiple CHs and therefore the collected data has to

be transmitted to the node that runs the analyzer. Second, in order to run analytical queries it

is more convenient or even necessary to combine the data collected on several machines. The

snapshots are stored in a common binary format, which is supported by other Java profilers, or

in plain text.

42

Analyzer

The analyzer performs statistical methods on collected snapshots. By filtering known block-

ing methods like sun.misc.Unsafe.park(), the analyzer collects only methods that con-

sume CPU time. Runtime information about the remaining methods can be used for various

appraisals. For example, the fraction of the time spent on network communication can be cal-

culated by summing up the execution times of the methods that contain the code, which is used

for communication. Moreover, it is possible to rebuild the call stacks at certain points in time by

processing a sequence of snapshots. Thus the number of invocations of a particular method can

be counted and inefficient code can be detected.

Usage of ALASCA

As already mentioned before, ALASCA runs within the JVM of the application that should

be profiled. Thus it has to be started directly in the code right before the actual application is

running. After the analysis is stopped, various statistics can be accessed programmatically and

stored in a file for post-processing. Listing 5.4 shows how ALASCA can be used for recording

method call stacks and printing them (excluding ActiveMQ8 methods) to the console.

CpuSnapshotBuilder snapshotBuilder = new CpuSnapshotBuilder();
snapshotBuilder.withSamplingInterval(10L).start();

// Run the application...

snapshotBuilder.stop();
String[] excludeFilter = new String[] {"org.apache.activemq."};
snapshotBuilder.printCallTree(excludeFilter);

Listing 5.4: Usage of ALASCA profiler

Figure 5.4 shows an example of a control flow of an application using JCloudScale along

with ALASCA. It illustrates the lifecycle of COs including creation of remote objects, commu-

nication via proxies and destruction. At the same time, ALASCA periodically takes snapshots

of selected threads and collects performance metrics. Afterwards, it permanently stores them so

that ALASCA’s analyzer component or other tools can be used to gain insight into the collected

data. Note that the Scheduler component (introduced in Figure 5.1) is part of the application

and not displayed separately for the sake of simplicity. Furthermore, it might be necessary to

profile the client side of the application as well in order to get a comprehensive performance

profile of the application.

8http://activemq.apache.org/

43

Figure 5.4: Sequence diagram of an application using JCloudScale and ALASCA

Figure A.1 and Figure A.2 show aggregated call stacks of a single thread rendered as call

trees. They visualize the methods invoked by other methods and the accumulated amount of time

of all method invocations within the profiling period. In Section 6.3 we compare the figures and

explain the deviations in the context of the exemplary application introduced in Section 6.1.

44

CHAPTER 6
Evaluation

The most exciting phrase to hear in
science, the one that heralds the
most discoveries, is not ”Eureka!”
(I found it!) but ”That’s funny...”

— Isaac Asimov

6.1 Scenarios

In order to verify the predictions based on the model introduced in Chapter 4, different types of

applications with contrary resource usage were considered. The first scenario primarily relies on

I/O throughput, whereas the second one deals with tasks that are both computation and memory

intensive.

Scenario 1: Video Processing

Video processing can cause high CPU load and might require a considerable amount of memory.

Unlike many typical processing tasks, big amounts of data are read from and written to a data

storage, which requires a high I/O rate.

In this scenario, a video file is read from a hard drive, a watermark is added to every frame and

finally, the resulting video is stored on the hard drive again. Since the sequence of frames can

be split into chunks, which can be processed in parallel, this kind of task naturally scales with

the available processing units (i.e., CPU cores). For every frame, the picture information has

to be stored in memory. Thus the amount of memory can be taken as constant with respect to

the number of processing units. This leads to the conclusion that the amount of parallel tasks

heavily depends on the I/O throughput. In other words, there is a point where the speed of the

CPUs exceeds the transfer rate of the storage and adding additional CPUs or memory does not

result in a performance improvement.

45

Scenario 2: Genetic Algorithm

The second scenario simulates biological evolution by using genetic algorithms. As described in

Section 2.5, a genetic algorithm is a special type of evolutionary algorithm, where a population

of living beings such as bacteria are evolved over many generations in a simulated environment.

The fitness function is applied to every candidate and those with the highest outcome build the

genetic pool for the next generation. Moreover, with a certain probability a genetic mutation

happens, which can either result in an advantage or disadvantage for the organism. Therefore,

an arbitrary gene is selected and modified randomly. Additionally, one-point crossover is done

by selecting a random crossover point for recombining Deoxyribonucleic Acid (DNA) strands.

In this scenario, DNA strands consisting of 4.65 million nucleotides are used. This amount

of nucleotides conforms to the average amount of Escherichia coli. The algorithm used in this

scenario stores a single DNA strand consisting of Adenine (A), Cytosine (C), Guanine (G),

Thymine (T) for every bacteria. Due to the encoding of 2 bit per nucleotide base, a single DNA

strand requires roughly 1.11 MB of memory.

Such simulations are CPU-intensive and require large amounts of memory. The simulated

environment provides resources, which can be consumed by the living beings and their behavior

has an impact on the environment. Furthermore, at any time the organisms might interact with

each other. For example, some individuals could dominate others.

Algorithm

For this scenario, the MapReduce programming model is used as proposed by [22] and [28]. At

first, the entire population is split among the available computation nodes. Then the map func-

tion is applied, which computes the fitness of chromosomes. As mentioned in Section 2.5 every

individual can be considered as an agent. Furthermore, there is an utility function, which calcu-

lates the current fitness value of chromosomes. This function is also part of the map function in

the first step (i.e., it assigns a numeric value to every chromosome). The procedure is sketched

in Listing 6.1. Note that the invocation of the utility function is omitted because it is part of the

framework used for the evaluation.

The reduce step is done by the selection policy. It selects a subset of the individuals based on

their fitness and carries out genetic crossover as well as permutations with a certain probability.

At the end, the fittest chromosomes are collected from the computation nodes and the fittest one

among them is determined. Thus the resulting chromosome is the fittest one of the population

after a certain amount of generations. The combine step is outlined in Listing 6.2.

6.2 Environment

The scenarios were run on a private cloud consisting of 12 Dell blade servers with two Intel

Xeon E5620 CPUs (2.4 GHz Quad Cores) and 32 GB memory each. The servers are connected

46

input : The simulation parameters including population size, number of nucleotides, elitism

rate and number of generations

output: The chromosomes of all individuals of the population that survived

1 geneticAlgorithm← initGeneticAlgorithm (

2 crossoverPolicy, mutationPolicy, selectionPolicy);

3 stopCondition← createStopCondition (generations);

4 population← genesis (speciesProperties);

5 chromosomes← simulate (geneticAlgorithm, population, stopCondition);

6 return chromosomes;

Listing 6.1: Algorithm for the map step

input : The chromosomes of several individuals

output: The fittest chromosome of the population according to a utility function

1 fittest← null;
2 foreach chromosome in chromosomes do
3 if fitnessOf (chromosome) > fitnessOf (fittest) then
4 fittest← chromosome;

5 end
6 end
7 return fittest;

Listing 6.2: Algorithm for the combine step

via a dedicated Gigabit Ethernet. The applications were executed in generic Ubuntu 12.101 VM

instances running on top of OpenStack2. In our evaluation we used one medium-sized cloud

instance (two virtual CPUs, 3.7 GB of memory) for the ActiveMQ3 communication server and

up to 16 small instances (one virtual CPU and 960 MB memory each) as CHs. Although the

cloud was used exclusively for the test runs, we repeated the measurements several times in

order to eliminate one-time effects.

For the second scenario, which is quite memory-intensive, we also did some test runs on a

large machine (16 virtual CPUs, 30 GB of memory). This instance performed better for small

amounts of tasks, but we encountered similar runtime behavior on both machine types for larger

bacteria populations. The effects, which lead to a performance decrease, occurred at a later point

in time. Thus the predictions as well as the measurement results refer to the setup with smaller

instances.

1http://old-releases.ubuntu.com/releases/12.10/
2http://www.openstack.org/
3http://activemq.apache.org/

47

6.3 Performance Predictions

Predictions Scenario 1

For this scenario the video was split into parts of 60 seconds each. First, we did some measure-

ments with various files in order to determine the amount of data that can be processed in a given

time frame. Table 6.1 lists the measured throughput. On average, 1.88 MB were processed per

second.

Files Total Size [MB] Time [s] Throughput [MB/s]

1 25.144 11.614 2.165

2 41.072 19.856 2.068

3 58.120 29.187 1.991

4 71.870 39.381 1.825

5 88.295 48.840 1.808

10 174.002 94.927 1.833

Table 6.1: Measured performance with increasing number of video files

For estimating the cloud overhead, a single measurement was performed with ten files us-

ing a single cloud host. The processing took 132.304 seconds, which is approximately 40%

more compared to the previous measurements (listed in Table 6.1). Even though we know the

amount of overhead for the task, the collected information is not sufficient for predicting the

performance for a larger amount of computation nodes. Since the total processing time linearly

increased with the amount of data processed (i.e., twice as much data took twice as long) and

the application utilized 100% of the CPU, the host had no capacity left. In other words, the total

processing time can be reduced only by acquiring more cloud hosts and performing the tasks in

parallel.

In order to calculate the expected cloud speedup, the formula introduced in Section 4.1 can

be used. For the sake of simplicity, we assume that the fraction of the serializable processing

can be neglected, because we are interested in big amounts of data:

cloud speedup =
1

s+ p
N + o

=
1

0 + 1
N + o

Now, the effective cloud overhead o, which is the sum of all types of effort introduced

with the distributed processing, has to be calculated. In this example, there was no detailed

monitoring, and the scheduling was rather simple, because only a single host was available.

Since neither detailed monitoring information nor information about the scheduling strategy is

available, it is not possible to predict the overhead for a larger amount of hosts yet.

48

Even though the prediction uses incomplete information, the increase of execution time

caused by network transfer might give a good indication of the performance that can be ex-

pected by using a larger amount of hosts. As already stated in the description of this scenario,

the limiting resource could be the I/O throughput. Therefore, the network bandwidth was mea-

sured in order to determine the upper bound of cloud hosts that can be used.

Size [MB] Time [s] Bandwidth [MB/s]

Upload 174.002 20.004 8.698

Download 160.704 11.913 13.490

Table 6.2: Measured bandwidth between servers

As it can be seen in Table 6.2, the upload into the cloud is a little bit slower than the down-

load. Due to the fact that the speed of upload and download is nearly equal, the weighted mean

can be calculated without loss of precision. In this scenario the weighted mean is 10.487 MB/s.

Since network usually is volatile compared to other resources (i.e., the available bandwidth

varies over time), it is assumed to be 10 MB/s. Note that there could be SLAs, which give a

good indication of the network capacity that can be expected. Thus it might not be necessary

to measure network performance in detail to get sufficient information for calculating its impact

on the scaling capacity of an application. In order to calculate the cloud speedup, we have to

determine the degree of parallelization as follows:

degree of parallelization =
avg. bandwidth

rendering throughput

=
10MB/s

1.88MB/s
≈ 5.32

Due to the network bandwidth, up to five cloud hosts can be fully utilized. Every host added

after the sixth one does not result in any performance improvement. Based on this result and the

measured overhead of 40%, we calculate the cloud speedup as follows:

cloud speedup = lim
N→5.32

1
1
N + o

=
1

1
5.32 + 0.4

5.32

= 3.8 (6.1)

In other words, by using six (or more) computation nodes and optimal scheduling, the com-

putation is up to 3.8 times faster than a non-distributed execution. However, optimal scheduling

cannot always be achieved because it is known to be Nondeterministic Polynomial-time hard

(NP-hard) [9] and usually depends on many parameters.

49

Nevertheless, with this kind of information one can calculate the amount of hosts that are

necessary to perform a big number of tasks faster than with non-distributed execution. However,

this leads to additional overhead, namely the startup and shutdown time of the hosts. The startup

phase includes all work that has to be done to run the application. In case of image-based virtual

hosts, this includes the loading of the system images containing the operating system and any

additional data for running the application (e.g., the application itself). In the shutdown phase

all acquired resources have to be freed (e.g., the state of the system image is discarded).

For this particular scenario we assume that it takes up to 60 seconds to start a host. Fur-

thermore, it takes up to 30 seconds to terminate it (e.g., signing off from the cloud and closing

connections, discarding the system image, freeing the occupied IP address, etc.). Since we are

interested in the point where parallel execution outperforms serial execution, we have to solve

the following equation:

serial execution = parallel execution

x = static overhead+
x

cloud speedup

x = 60 sec + 30 sec +
x

3.8

x− x

3.8
= 90 sec

2.8x = 90 sec · 3.8
x = 122 +

1

7
sec (6.2)

According to Equation 6.2, when serial execution takes longer than 122 seconds, distributed

processing pays off even if there is fixed size overhead of 90 seconds.

Measurements Scenario 1

Figure 6.1 illustrates the general approach of scheduling several tasks (T1, ..., T8) using two

computation nodes. As it can be seen, before and after every task, the client (C) has to transmit

the data to the hosts (H1, H2) and retrieve the result, respectively.

t [s]
H1

H2

C

0 20 40 60 80

T1T1 T3T3 T5T5 T7T7

T2T2 T4T4 T6T6 T8T8

Figure 6.1: Example for overprovisioning (two hosts for eight tasks)

50

Figure 6.2 shows the total execution time for 20 tasks with increasing number of cloud hosts.

In particular, it shows the impact of scheduling on execution time. According to the prediction,

the best performance is reached when six machines are used. However, as it can be seen in

Figure 6.2, the total execution time for five and seven machines is slightly lower than for six.

2 4 6 8 10

190

210

230

250

270

290

310

330

cloud hosts

ex
ec

u
ti

o
n

ti
m

e
[s

]

Figure 6.2: Measured execution time with an increasing number of cloud hosts

As already mentioned before, best performance can only be achieved if optimal scheduling is

used. When using five computation nodes, the idle times are lower than with six because at most

five machines can be fully utilized. In other words, every machine does not have to wait that

long for the next task to be assigned. In contrast to that, when using seven computation nodes,

the idle times are considerable longer, but 20 tasks can be processed in three iterations, while

five or six machines require four iterations. Thus the efficiency is worse, but the performance is

better than using five or six instances. Whenever one or more computation nodes do not have a

task to process, there will be a decrease of performance. Even though if there are no pauses due

to incomplete task assignment, during the last iteration half of the computation nodes will idle

on average because the amount of tasks is not a multiple of the number of nodes. In general, the

following rule applies to scheduling: the higher the amount of available computation nodes and

the less the number of tasks to process, the more machines will be idle at some point in time.

Figure 6.3 visualizes this behavior.

Note that the total time of the distributed execution increases sub-linearly compared to non-

distributed execution. Nevertheless, the scheduling itself introduces some kind of threshold. If

t tasks cannot be distributed uniformly among N computation nodes (i.e., (N mod t) > 0 is

true), an additional iteration is required as it can be seen in Figure 6.4. In theory, distributed

execution pays off if 12 tasks (t′) have to be processed on 6 (or more) hosts. However, due to

inefficient scheduling, 16 tasks (t′′) are required to outweigh the time wasted on waiting for task

assignment.

51

t [s]

H1

H2

H3

H4

H5

H6

C

0 20 40 60

T1T1 T7T7

T2T2 T8T8

T3T3

T4T4

T5T5

T6T6

H1 idle

Figure 6.3: Overprovisioning (client schedules eight tasks on six hosts)

5 10 15 20

50

100

150

200

t′ t′′

tasks

to
ta

l
ex

ec
u
ti

o
n

ti
m

e
[s

]

non-distributed

distributed (theoretical)

distributed (actual)

Figure 6.4: Processing of an increasing number of tasks with six computation nodes

52

Predictions Scenario 2

Populations Time [s]

1 46.306

2 99.290

4 196.609

8 394.854

16 792.637

Table 6.3: Measured performance with increasing population size

In order to estimate the cloud overhead, a single measurement was performed with two

bacteria populations using a single cloud host. The processing took 60.306 seconds, which is

almost 40% less compared to non-distributed processing (see Table 6.3). Even though there is

not as much network overhead as in the other scenario, distribution overhead cannot be negative

by definition. Thus the application behaves quite differently and further investigation had to be

done for the purpose of predicting the further behavior of the performance.

Profiling Scenario 2

In order to profile the application, the ALASCA profiler introduced in Chapter 5 was used.

The results of the measurements are summarized in Figure A.1 and Figure A.2. Although

there is a considerable profiling overhead, there is one anomaly that can easily be seen. While

running non-distributed, the execution time of NucleotideChromosome.mutate() was

30.529 seconds. By transmitting the single task to another CH, the execution time was reduced

to 7.593 seconds. In other words, the mutation of the population is four times slower when run-

ning the application not distributed. Due to the fact that a single task cannot be parallelized, the

profiling runs have been repeated several times with different JVM memory parametrization in

order to determine under which conditions memory management becomes inefficient. However,

all runs had in common that the distributed execution had a similar performance or even was

considerably faster than non-distributed execution. This leads to the conclusion that efficient

memory management is very crucial for this type of application.

Measurements Scenario 2

The application allocates memory whenever a new DNA strand is generated. Thus the mutation

rate has a huge impact on the memory management. Figure 6.5 shows the performance degra-

dation of the application with an increasing bacteria population and different mutation rates. It

can be seen that the execution time increases non-linearly. Thus it can be concluded that the

mutation rate has a larger impact on the performance than the DNA crossover or other aspects

of the simulation.

53

1 2 4 6 8

50
100
150
200
250
300

400

500

600

700

population size

ex
ec

u
ti

o
n

ti
m

e
[s

]

0% mutation rate

25% mutation rate

50% mutation rate

75% mutation rate

100% mutation rate

Figure 6.5: Measured execution time with an increasing bacteria population

Now we can apply our model for predicting the performance of the application running

in a distributed environment. Since there is (almost) no cloud overhead, the cloud speedup is

theoretically infinite:

cloud speedup = lim
N→∞

1
1
N + o

=
1

1
∞ + 0

∞
=∞

In other words, it scales linearly with the number of CHs. This fact leads to the conclusion

that any fixed size overhead (e.g., 90 seconds startup time) can be neglected if there are many

tasks that can be executed in parallel. By assuming that an average task takes x seconds, and the

number of parallel computations N is equal to the number of tasks T , the following equation

holds:

static overhead+
T · x

cloud speedup
= T · x

90 sec +
T · x
N

= T · x

90 sec +
T

T
x = T · x

90 sec + x = T · x
90 sec

x
+ 1 = T

90 sec

24.416 sec
+ 1 = T

4.686 ≈ T (6.3)

54

In this particular example, where the measured time for x is 24.416 seconds, the result would

be T = 5. This means that the simulation of a five times bigger population, which runs in par-

allel on five CHs, is faster than running it on a single computation node. However, in order to

get an accurate prediction of the scalability, the parametrization of the simulation has to be con-

sidered as well. Figure 6.5 has shown that the execution time does not increase linearly with an

increasing mutation rate. Therefore, the cloud overhead o cannot be considered to be constant.

Instead, it has to be a function that depends on the mutation rate. According to the results from

the previous measurements, a simulation, where the mutation rate is 100%, takes approximately

40% longer than a simulation, where no bacteria mutates, when running in a distributed envi-

ronment. When running the simulation non-distributed, the execution time is even 90% higher

compared to a mutation rate of 0%. Even though the execution time increases almost linearly

with small deviations, it can be considered to increase linearly, because of the jitter, which is

caused by the indeterminism of the memory management of the JVM [38]. Figure 6.6 shows the

variation of the total execution time as a function of population size and mutation rate. It can

be seen that the execution time strictly increases for higher mutation rate and/or population size.

Moreover, doubling the population size has a bigger impact than doubling the mutation rate.

1 2
4

6
8

0
25

50
75

100

0
100
200
300
400
500
600

population sizemutation rate

ex
ec

u
ti

o
n

ti
m

e
[s

]

Figure 6.6: Execution time with increasing population size and mutation rate

By adding this information to Equation 6.3, another formula can be obtained, which is much

more precise. Let f(m, s) be the function that calculates the (average) execution time of a single

task depending on the mutation rate m (m ∈ [0, 1]) and the population size s (s > 0):

90 +
T · f(m, s)

cloud speedup
= T · f(m, s)

90

f(m, s)
+ 1 = T (6.4)

55

In order to get a better understanding of the impact of the population size and the mutation

rate on the execution time, Figure 6.7 shows the respective increase. On the left side, the solid

lines represent the relative population size (1×, 2×, 4×, 8× compared to the initial size). The

dotted lines show the lower and upper bound of the execution time assuming that it increases

linearly with the population size. On the right side the solid lines depict the mutation rates in

steps of 25%. The dotted lines show the lower and upper bound of the execution time assuming

that execution time increases linearly with the mutation rate.

1 2 3 4 5 6 7 8

0

100

200

300

400

500

600

700

population size

ex
ec

u
ti

o
n

ti
m

e
[s

]

0 25 50 75 100

0

100

200

300

400

500

600

700

mutation rate

ex
ec

u
ti

o
n

ti
m

e
[s

]

Figure 6.7: Execution time for various fixed mutation rates and increasing population size, and

for various fixed population sizes and increasing mutation rate, respectively

The mutation rate has considerable impact on the execution time. Although it can be seen

that a linear rise increases the execution time sublinearly. Similar to that, it has been shown that

a linear rise of the population size has a superlinear impact on the execution time.

By calculating f(m, s) with the lower and upper bound of m and s, we can determine the

number of hosts that have to be used in order to outweigh the cloud overhead. In Equation 6.3

the upper bound for m = 0 and s = 1 has already been calculated. Equation 6.4 can be used to

calculate the lower bound (e.g., m = 1 and s = 8):

90

f(mmax, smax)
+ 1 ≤ T ≤ 90

f(mmin, smin)
+ 1

90

f(1, 8)
+ 1 ≤ T ≤ 90

f(0, 1)
+ 1

2.094 ≤ T ≤ 4.686 (6.5)

As it can be seen in Equation 6.5, starting two computation nodes for a simulation that con-

tains eight times as many individuals with a high mutation rate almost pays off. The additional

setup and shutdown time of 90 seconds in total can be neglected. Better results can be achieved

with even larger simulations.

56

While the application used in the first scenario has linear performance characteristics, the

application of this scenario behaves differently in many ways. First, it has no hard limit like

network throughput. Second, the high demand of memory entails considerable indeterminism

regarding performance metrics. Third, application parameters like mutation rate and population

size have non-linear impact on execution time. All those factors have to be considered in order

to predict the performance accurately. We have shown that the model proposed in Chapter 4

along with profiling information enables performance predictions of applications running in

cloud environments.

57

CHAPTER 7
Conclusions

In theory, there is no difference
between theory and practice.
But, in practice, there is.

— Jan L. A. van de Snepscheut

This chapter concludes the thesis with a short summary of the results. Furthermore, the

research questions from Section 1.2 are revisited. Finally, the relevance of the predictions for

similar applications is discussed.

7.1 Summary

First, this thesis discussed cloud computing and outlined its importance as well as the basic

idea of our performance prediction model. Second, background information on various related

state-of-the-art topics including complexity theory, Amdahl’s and Gustafson’s Law, computa-

tion models, and common cloud technologies and environments were given. In general, lots of

research has been done on these topics during the last years. Thus a selected set of related work

has been presented. As this thesis focuses on performance, we discussed papers about resource

allocation and scheduling, cloud middleware, application profiling, and models for cost approx-

imation. Subsequently, we introduced a general model for predicting scalability of applications

running in cloud environments based on Amdahl’s and Gustafson’s Law and profiling informa-

tion, and described the procedure with the aid of an exemplary scenario. Next, we introduced

the ALASCA profiler, which was implemented for verifying the accuracy of our model. In par-

ticular, we explained the architecture of ALASCA and how it is used for profiling distributed

applications. Finally, we did experiments on performance predictions by applying the proposed

model on selected applications with high I/O, CPU and memory requirements. We collected

profiling information and explained deviations from the predictions. In general, our approach

59

leads to accurate predictions, unless there is some indeterminism or the application behaves quite

differently when running in a distributed way. The outcome of this thesis is discussed below.

7.2 Research Questions

This thesis has been guided by the research questions introduced in Section 1.2. The following

section summarizes the results of the work that has been done in order to address them.

How can the speedup of distributable applications running in a cloud environment be predicated
by using metrics from non-distributed execution? Do some kinds of applications have a general
model that describes their cloud performance?

In principle, there are various ways of how an application can be classified. For the scenar-

ios introduced in Section 6.1, both applications consisted of a large part that can be distributed

among multiple nodes and executed individually. Unlike other applications, there is almost no

need for synchronization or other overhead. Even if this seems to be a good starting point, the

predictions in Section 6.3 have shown that there are many factors that have to be taken into con-

sideration. Scheduling, for example, is NP-hard without loss of generality, however, for large

problem sets, it is very likely that it can be neglected as long as the overall CH utilization is quite

good.

Based on the modified variants of Amdahl’s and Gustafson’s Law proposed in Chapter 4, we

predicted the performance of selected applications. Therefore, we profiled those applications

and collected runtime information as input for our calculations. On the one hand, our model has

lead to accurate predictions, which have been proven by detailed measurements. On the other

hand, we also encountered that indeterminism (e.g., in terms of memory management or even

parametrization) can cause considerable inaccuracy. Thus we can conclude that applications,

which have a constant runtime profile can be predicted rather easily. For applications, which

have a volatile runtime behavior, it is still possible to determine the maximum cloud speedup. It

acts as a fixed boundary and may indicate that an application is not suited for distributed execu-

tion under the given conditions.

Is it possible to reason about the point where cloud execution outweighs the distribution over-
head including scaling, scheduling and communication?

As it has been shown in Section 6.3, scheduling has a significant impact on performance. On

the one hand, being not able to fully utilize all nodes results in suboptimal performance. Typi-

cal reasons are insufficient network bandwidth or contempt of data locality. On the other hand,

going for full utilization at all costs often entails a degradation of efficiency. These observations

correlate with the results of [28], where the authors conclude that the MapReduce implementa-

tion Hadoop performs well until the simulation ran out of resources.

60

Despite of that, cloud overhead has been measured precisely using the ALASCA profiler. If

the overhead is quite high compared to the overall computation effort, one can conclude that the

benefits of executing an application in a distributed way certainly will not outbalance the effort.

Are there any indications that an application will not scale well in the cloud and how can they be
verified? Do they correspond to static models like Amdahl’s Law or are there any other factors
that have to be considered?

Even if the amount of parallelizable code is high, there is no guarantee that the cloud over-

head outweighs the theoretical speedup. For instance, the outcome of the analysis of scenario 2

introduced in Section 6.1 would be totally different if the CHs would synchronize their bacte-

ria population onto the other machines at every iteration step. As described in [13], there are

different approaches for synchronizing state in distributed systems. Most of them can be clas-

sified into two main categories, namely conservative and optimistic mechanisms. Conservative

mechanisms can lead to good performance for certain classes of problems. Although optimistic

mechanisms can achieve great performance if the worst case (e.g., acquiring exclusive locks)

does not happen very frequently [8]. Furthermore, it has been shown in [30] [31] that optimistic

approaches like Time Warp may perform poorly for some types of application. Besides that

there are various reasons that can lead to bad performance or overproportional high overhead.

As we have seen in Section 6.3, resource bottlenecks like insufficient network throughput build

hard boundaries. However, typically they are quite easy to detect.

7.3 Future Work

In both Amdahl’s and Gustafson’s Law the ratio between serial and parallel code is assumed to

be constant. While this assumption is perfectly fine for the code of most applications running

on a single machine, it might vary when running an application in the cloud. First, the total

amount of instructions executed is higher, because of the overhead. In addition, it is very likely

that a significant amount of indeterminism is entailed by distributed execution. For example, the

scheduling strategy used for assigning tasks behaves differently between two runs. Second, parts

of the code that can be executed in parallel are parallelizable to a limited extent. In other words,

the cloud provides more computation power than the amount that can be used by the program in

some of its sections. Therefore, only a fraction of the parallelizable code can be expressed as a

function rather than a constant. Further work will investigate under which circumstances the ra-

tio between serial and parallel code changes over time. Additionally, both laws will be extended

to support those factors, which would further improve the quality of the performance predictions.

As already mentioned in Chapter 1, this thesis omits economical aspects such as operational

costs. An interesting addition is the deduction of concrete costs based on the results of this

thesis. By combining an approach for maximizing financial profit like in [46] with in-depth

profiling analysis, it will be possible to make profound assumptions about costs before running

an application. In particular this is interesting for companies running applications with different

performance characteristics in heterogeneous environments.

61

APPENDIX A
Measurements

63

T
h

re
ad

-3
3

1

at
.a

c.
tu

w
ie

n
.i

n
fo

sy
s.

g
en

et
ic

s.
se

rv
er

.G
en

et
ic

S
im

u
la

ti
o

n
E

n
g

in
e$

1
.r

u
n

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
4

3
5

8
5

m
s

o
rg

.a
p

ac
h

e.
co

m
m

o
n

s.
m

at
h

3
.g

en
et

ic
s.

G
en

et
ic

A
lg

o
ri

th
m

.e
v
o

lv
e(

)
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.
4

1
5

6
8

m
s

o
rg

.a
p

ac
h

e.
co

m
m

o
n

s.
m

at
h

3
.g

en
et

ic
s.

G
en

et
ic

A
lg

o
ri

th
m

.n
ex

tG
en

er
at

io
n

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

4
1

5
6

8
m

s

o
rg

.a
p

ac
h

e.
co

m
m

o
n

s.
m

at
h

3
.g

en
et

ic
s.

E
li

ti
st

ic
L

is
tP

o
p

u
la

ti
o

n
.n

ex
tG

en
er

at
io

n
()

..
..

..
..

..
..

..
..

..
..

..
..

..
.2

9
0

5
7

m
s

ja
v
a.

u
ti

l.
C

o
ll

ec
ti

o
n

s.
so

rt
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.2

9
0

5
7

m
s

ja
v
a.

u
ti

l.
A

rr
ay

s.
so

rt
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

2
9

0
5

7
m

s

ja
v
a.

u
ti

l.
C

o
m

p
ar

ab
le

T
im

S
o

rt
.s

o
rt

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
2

9
0

5
7

m
s

ja
v
a.

u
ti

l.
C

o
m

p
ar

ab
le

T
im

S
o

rt
.s

o
rt

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.2

9
0

5
7

m
s

ja
v
a.

u
ti

l.
C

o
m

p
ar

ab
le

T
im

S
o

rt
.c

o
u

n
tR

u
n

A
n

d
M

ak
eA

sc
en

d
in

g
()

..
..

..
..

..
..

..
..

..
..

..
..

.
2

7
4

5
4

m
s

ja
v
a.

u
ti

l.
C

o
m

p
ar

ab
le

T
im

S
o

rt
.b

in
ar

y
S

o
rt

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.1

6
0

3
m

s

at
.a

c.
tu

w
ie

n
.i

n
fo

sy
s.

g
en

et
ic

s.
co

m
m

o
n

.N
u

cl
eo

ti
d

eM
u

ta
ti

o
n

.m
u

ta
te

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
7

5
9

3
m

s

co
m

.g
o

o
g

le
.c

o
m

m
o

n
.p

ri
m

it
iv

es
.B

y
te

s.
to

A
rr

ay
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.6

2
6

4
m

s

ja
v
a.

u
ti

l.
C

o
ll

ec
ti

o
n

s$
U

n
m

o
d

ifi
ab

le
C

o
ll

ec
ti

o
n

.t
o

A
rr

ay
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.6
1

6
0

m
s

S
el

f
ti

m
e

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

1
0

3
m

s

S
el

f
ti

m
e

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
1

3
2

9
m

s

at
.a

c.
tu

w
ie

n
.i

n
fo

sy
s.

g
en

et
ic

s.
se

rv
er

.S
im

p
le

C
ro

ss
o
v
er

.c
ro

ss
o
v
er

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.4
9

1
7

m
s

at
.a

c.
tu

w
ie

n
.i

n
fo

sy
s.

g
en

et
ic

s.
u

ti
l.

G
en

et
ic

sU
ti

ls
.c

re
at

eR
an

d
o

m
P

o
p

u
la

ti
o

n
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

1
8

1
9

m
s

o
rg

.a
p

ac
h

e.
co

m
m

o
n

s.
m

at
h

3
.g

en
et

ic
s.

L
is

tP
o

p
u

la
ti

o
n

.g
et

F
it

te
st

C
h

ro
m

o
so

m
e(

)
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.1
9

8
m

s

Fi
gu

re
A

.1
:P

ro
fi

li
n

g
in

fo
rm

at
io

n
o

f
si

m
u

la
ti

o
n

th
re

ad
ru

n
n

in
g

in
a

d
is

tr
ib

u
te

d
w

ay

64

T
h

re
ad

-4

at
.a

c.
tu

w
ie

n
.i

n
fo

sy
s.

g
en

et
ic

s.
se

rv
er

.G
en

et
ic

S
im

u
la

ti
o

n
E

n
g

in
e$

1
.r

u
n

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
6

0
1

4
2

m
s

o
rg

.a
p

ac
h

e.
co

m
m

o
n

s.
m

at
h

3
.g

en
et

ic
s.

G
en

et
ic

A
lg

o
ri

th
m

.e
v
o

lv
e(

)
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

5
7

4
4

7
m

s

o
rg

.a
p

ac
h

e.
co

m
m

o
n

s.
m

at
h

3
.g

en
et

ic
s.

G
en

et
ic

A
lg

o
ri

th
m

.n
ex

tG
en

er
at

io
n

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.5
7

4
4

7
m

s

at
.a

c.
tu

w
ie

n
.i

n
fo

sy
s.

g
en

et
ic

s.
co

m
m

o
n

.N
u

cl
eo

ti
d

eM
u

ta
ti

o
n

.m
u

ta
te

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.3
0

5
2

9
m

s

co
m

.g
o

o
g

le
.c

o
m

m
o

n
.p

ri
m

it
iv

es
.B

y
te

s.
to

A
rr

ay
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
2

8
9

6
7

m
s

ja
v
a.

u
ti

l.
C

o
ll

ec
ti

o
n

s$
U

n
m

o
d

ifi
ab

le
C

o
ll

ec
ti

o
n

.t
o

A
rr

ay
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

2
8

8
6

6
m

s

S
el

f
ti

m
e

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

1
0

1
m

s

S
el

f
ti

m
e

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
1

5
6

1
m

s

o
rg

.a
p

ac
h

e.
co

m
m

o
n

s.
m

at
h

3
.g

en
et

ic
s.

E
li

ti
st

ic
L

is
tP

o
p

u
la

ti
o

n
.n

ex
tG

en
er

at
io

n
()

..
..

..
..

..
..

..
..

..
..

..
..

..
.2

9
0

5
7

m
s

ja
v
a.

u
ti

l.
C

o
ll

ec
ti

o
n

s.
so

rt
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.2

5
5

1
5

m
s

ja
v
a.

u
ti

l.
A

rr
ay

s.
so

rt
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

2
5

5
1

5
m

s

ja
v
a.

u
ti

l.
C

o
m

p
ar

ab
le

T
im

S
o

rt
.s

o
rt

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
2

5
5

1
5

m
s

ja
v
a.

u
ti

l.
C

o
m

p
ar

ab
le

T
im

S
o

rt
.s

o
rt

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.2

5
5

1
5

m
s

ja
v
a.

u
ti

l.
C

o
m

p
ar

ab
le

T
im

S
o

rt
.c

o
u

n
tR

u
n

A
n

d
M

ak
eA

sc
en

d
in

g
()

..
..

..
..

..
..

..
..

..
..

..
..

.
2

4
0

1
5

m
s

ja
v
a.

u
ti

l.
C

o
m

p
ar

ab
le

T
im

S
o

rt
.b

in
ar

y
S

o
rt

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
.1

4
9

9
m

s

at
.a

c.
tu

w
ie

n
.i

n
fo

sy
s.

g
en

et
ic

s.
se

rv
er

.S
im

p
le

C
ro

ss
o
v
er

.c
ro

ss
o
v
er

()
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.1
4

0
1

m
s

at
.a

c.
tu

w
ie

n
.i

n
fo

sy
s.

g
en

et
ic

s.
u

ti
l.

G
en

et
ic

sU
ti

ls
.c

re
at

eR
an

d
o

m
P

o
p

u
la

ti
o

n
()

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

2
4

9
7

m
s

o
rg

.a
p

ac
h

e.
co

m
m

o
n

s.
m

at
h

3
.g

en
et

ic
s.

L
is

tP
o

p
u

la
ti

o
n

.g
et

F
it

te
st

C
h

ro
m

o
so

m
e(

)
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.1
9

8
m

s

Fi
gu

re
A

.2
:P

ro
fi

li
n

g
in

fo
rm

at
io

n
o

f
si

m
u

la
ti

o
n

th
re

ad
(n

o
n

-d
is

tr
ib

u
te

d
)

65

APPENDIX B
Acronyms

A Adenine.

AI Artificial Intelligence.

AOP Aspect Oriented Programming.

API Application Programming Interface.

C Cytosine.

CH Cloud Host.

CO Cloud Object.

CPU Central Processing Unit.

DAG Directed Acyclic Graph.

DBMS Database Management System.

DNA Deoxyribonucleic Acid.

EC2 Amazon Elastic Compute Cloud.

FIFO First In, First Out.

G Guanine.

GUI Graphical User Interface.

67

HDD Hard Disk Drive.

HDFS Hadoop Distributed File System.

I/O Input/Output.

IA Intelligent Agent.

IaaS Infrastructure as a Service.

IP Internet Protocol.

JDBC Java Database Connectivity.

JMS Java Message Service.

JMX Java Management Extensions.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

NAS Network-Attached Storage.

NFS Network File System.

NIST National Institute of Standards and Technology.

NP-hard Nondeterministic Polynomial-time hard.

OLAP Online Analytical Processing.

ORB Object Request Broker.

PaaS Platform as a Service.

QoS Quality of Service.

RAM Random Access Memory.

RDB Relational Database.

REST Representational State Transfer.

RMI Remote Method Invocation.

RPC Remote Procedure Call.

SaaS Software as a Service.

68

SDK Software Development Kit.

SLA Service Level Agreement.

SQL Structured Query Language.

SSD Solid-State Drive.

T Thymine.

TCP Transmission Control Protocol.

URL Uniform Resource Locator.

XML Extensible Markup Language.

69

Bibliography

[1] Gene M. Amdahl. Validity of the single processor approach to achieving large scale com-

puting capabilities. In Proceedings of the April 18-20, 1967, spring joint computer confer-
ence, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA, 1967. ACM. → pages 3

and 8.

[2] Yair Amir, Baruch Awerbuch, Amnon Barak, R. Sean Borgstrom, and Arie Keren. An

Opportunity Cost Approach for Job Assignment in a Scalable Computing Cluster. IEEE
Trans. Parallel Distrib. Syst., 11(7):760–768, July 2000. → page 26.

[3] Kyoungho An, Subhav Pradhan, Faruk Caglar, and Aniruddha Gokhale. A Publish/Sub-

scribe Middleware for Dependable and Real-time Resource Monitoring in the Cloud. In

Proceedings of the Workshop on Secure and Dependable Middleware for Cloud Monitor-
ing and Management, SDMCMM ’12, pages 3:1–3:6, New York, NY, USA, 2012. ACM.

→ page 23.

[4] Tekin Bicer, David Chiu, and Gagan Agrawal. Time and Cost Sensitive Data-Intensive

Computing on Hybrid Clouds. In Cluster, Cloud and Grid Computing (CCGrid), 2012
12th IEEE/ACM International Symposium on, pages 636–643, May 2012. → page 21.

[5] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. In Proceedings of the 6th Conference on Symposium on Opearting Systems De-
sign & Implementation - Volume 6, OSDI’04, pages 10–10, Berkeley, CA, USA, 2004.

USENIX Association. → pages xi, 11, and 12.

[6] Parijat Dube, Seetharami Seelam, Yanbin Liu, Megumi Ito, Thomas Ling, Michel Hack,

Liana Fong, Graeme Johnson, Michael Dawson, Li Zhang 0002, and Yuqing Gao. A Tool

for Scalable Profiling and Tracing of Java and Native Code Interactions. In QEST, pages

37–46. IEEE Computer Society, 2011. → page 24.

[7] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understanding Code Mobility.

IEEE Trans. Softw. Eng., 24(5):342–361, May 1998. → page 35.

[8] Richard M. Fujimoto, Asad Waqar Malik, and Alfred J. Park. Parallel and Distributed

Simulation in the Cloud. SCS Modeling and Simulation Magazine, 1, 2010. → page 61.

71

[9] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1979. →
page 49.

[10] Shamsollah Ghanbari and Mohamed Othman. A Priority Based Job Scheduling Algorithm

in Cloud Computing. Procedia Engineering, 50:778–785, 2012. → page 25.

[11] John L. Gustafson. Reevaluating Amdahl’s law. Commun. ACM, 31(5):532–533, May

1988. → pages 4 and 9.

[12] M Hemamalini. Review on Grid Task Scheduling in Distributed Heterogeneous Environ-

ment. International Journal of Computer Applications, 40(2):24–30, 2012. → page 23.

[13] Shafagh Jafer, Qi Liu, and Gabriel Wainer. Synchronization methods in parallel and dis-

tributed discrete-event simulation. Simulation Modelling Practice and Theory, 30:54–73,

2013. → page 61.

[14] Dawei Jiang, Beng Chin Ooi, Lei Shi, and Sai Wu. The Performance of MapReduce: An

In-depth Study. Proc. VLDB Endow., 3(1-2):472–483, September 2010. → page 2.

[15] Kenneth Johnson, Simon Reed, and Radu Calinescu. Specification and Quantitative Anal-

ysis of Probabilistic Cloud Deployment Patterns. In Hardware and Software: Verification
and Testing, pages 145–159. Springer, 2012. → page 27.

[16] Ben H. H. Juurlink and Cor H. Meenderinck. Amdahl’s Law for Predicting the Future of

Multicores Considered Harmful. SIGARCH Comput. Archit. News, 40(2):1–9, May 2012.

→ page 7.

[17] (Vasiliki) Verena Kantere, Debabrata Dash, Georgios Gratsias, and Anastasia Ailamaki.

Predicting Cost Amortization for Query Services. In Proceedings of the 2011 ACM SIG-
MOD International Conference on Management of data, SIGMOD ’11, pages 325–336,

New York, NY, USA, 2011. ACM. → page 25.

[18] Yumiko Kasae and Masato Oguchi. Proposal for an Optimal Job Allocation Method for

Data-intensive Applications based on Multiple Costs Balancing in a Hybrid Cloud Envi-

ronment. In Proceedings of the 7th International Conference on Ubiquitous Information
Management and Communication, ICUIMC ’13, pages 5:1–5:8, New York, NY, USA,

2013. ACM. → page 23.

[19] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean

marc Loingtier, and John Irwin. Aspect-Oriented Programming. In ECOOP. SpringerVer-

lag, 1997. → page 37.

[20] Nane Kratzke and Peter-Christian Quint. About Automatic Benchmarking of IaaS Cloud

Service Providers for a World of Container Clusters. Journal of Cloud Computing Re-
search, 1(1):16–34, 2015. → page 17.

72

[21] Pardeep Kumar and Amandeep Verma. Scheduling Using Improved Genetic Algorithm in

Cloud Computing for Independent Tasks. In Proceedings of the International Conference
on Advances in Computing, Communications and Informatics, ICACCI ’12, pages 137–

142, New York, NY, USA, 2012. ACM. → page 23.

[22] Wei-Po Lee, Yu-Ting Hsiao, and Wei-Che Hwang. Designing a parallel evolutionary al-

gorithm for inferring gene networks on the cloud computing environment. BMC Systems
Biology, 8:5, 2014. → pages 24 and 46.

[23] Philipp Leitner, Benjamin Satzger, Waldemar Hummer, Christian Inzinger, and Schahram

Dustdar. CloudScale - a Novel Middleware for Building Transparently Scaling Cloud

Applications. In Proceedings of the 27th Annual ACM Symposium on Applied Computing,

SAC ’12, pages 434–440, New York, NY, USA, 2012. ACM. → page 35.

[24] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang. CloudProphet:

Towards Application Performance Prediction in Cloud. SIGCOMM Comput. Commun.
Rev., 41(4):426–427, August 2011. → page 26.

[25] Ang Li, Xuanran Zong, Ming Zhang, Srikanth Kandula, and Xiaowei Yang. CloudProphet:

Predicting Web Application Performance in the Cloud. ACM SIGCOMM Poster, 2011. →
page 26.

[26] Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. Energy-Aware Virtual Machine Dynamic

Provision and Scheduling for Cloud Computing. In Cloud Computing (CLOUD), 2011
IEEE International Conference on, pages 736–737, July 2011. → page 25.

[27] Jing Liu, Xing-Guo Luo, Xing-Ming Zhang, Fan Zhang, and Bai-Nan Li. Job Scheduling

Model for Cloud Computing Based on Multi-Objective Genetic Algorithm. IJCSI Interna-
tional Journal of Computer Science Issues, 10(1):134–139, 2013. → page 25.

[28] Xavier Llorà, Abhishek Verma, Roy H. Campbell, and David E. Goldberg. When Huge is

Routine: Scaling Genetic Algorithms and Estimation of Distribution Algorithms via Data-

Intensive Computing. In Parallel and Distributed Computational Intelligence, 2010. →
pages 24, 46, and 60.

[29] David C. Luckham. The Power of Events: An Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 2001. → page 23.

[30] Asad Waqar Malik, Alfred J. Park, and Richard M. Fujimoto. Optimistic Synchronization

of Parallel Simulations in Cloud Computing Environments. In Cloud Computing, 2009.
CLOUD ’09. IEEE International Conference on, pages 49–56, Sept 2009. → page 61.

[31] Asad Waqar Malik, Alfred J. Park, and Richard M. Fujimoto. An Optimistic Parallel

Simulation Protocol for Cloud Computing Environments. SCS M&S Magazine, 4:1–9,

2010. → page 61.

73

[32] Toni Mastelic, Vincent C. Emeakaroha, Michael Maurer, and Ivona Brandic. M4Cloud -

Generic Application Level Monitoring for Resource-shared Cloud Environments. In Frank

Leymann, Ivan Ivanov, Marten van Sinderen, and Tony Shan, editors, CLOSER, pages

522–532. SciTePress, 2012. → page 23.

[33] Toni Mastelic, Drazen Lucanin, Andreas Ipp, and Ivona Brandic. Methodology for trade-

off analysis when moving scientific applications to Cloud. In Cloud Computing Technology
and Science (CloudCom), 2012 IEEE 4th International Conference on, pages 281–286,

Dec 2012. → page 26.

[34] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. Technical

Report 800-145, National Institute of Standards and Technology (NIST), Gaithersburg,

MD, September 2011. → page 1.

[35] Edison Mera, Pedro López-García, Germán Puebla, Manuel Carro, and Manuel V.

Hermenegildo. Combining Static Analysis and Profiling for Estimating Execution Times.

In Proceedings of the 9th International Conference on Practical Aspects of Declarative
Languages, PADL’07, pages 140–154, Berlin, Heidelberg, 2007. Springer-Verlag. →
page 24.

[36] Michael P. Mesnier, Matthew Wachs, Raja R. Simbasivan, Julio Lopez, James Hendricks,

Gregory R. Ganger, and David R. O’Hallaron. //TRACE: Parallel Trace Replay with Ap-

proximate Causal Events. In Proceedings of the 5th USENIX conference on File and Stor-
age Technologies. USENIX Association, 2007. → page 26.

[37] Rizwan Mian, Patrick Martin, Farhana Zulkernine, and Jose Luis Vazquez-Poletti. Esti-

mating Resource Costs of Data-Intensive Workloads in Public Clouds. In Proceedings of
the 10th International Workshop on Middleware for Grids, Clouds and e-Science, MGC

’12, pages 3:1–3:6, New York, NY, USA, 2012. ACM. → page 25.

[38] Sun Microsystems. Memory Management in the Java HotSpot Virtual Ma-

chine, 2006. http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-

whitepaper-1-150020.pdf. → page 55.

[39] Pradeep Naik, Surbhi Agrawal, and Srikanta Murthy. A survey on various task scheduling

algorithms toward load balancing in public cloud. American Journal of Applied Mathe-
matics, 3(1-2):14–17, 2015. → page 25.

[40] Diego Perez-Palacin, Radu Calinescu, and José Merseguer. log2cloud: Log-based Predic-

tion of Cost-Performance Trade-offs for Cloud Deployments. In Proceedings of the 28th
Annual ACM Symposium on Applied Computing, SAC ’13, pages 397–404, New York, NY,

USA, 2013. ACM. → page 27.

[41] Huang Qi-yi and Huang Ting-lei. An Optimistic Job Scheduling Strategy based on QoS

for Cloud Computing. In Intelligent Computing and Integrated Systems (ICISS), 2010
International Conference on, pages 673–675, Oct 2010. → page 22.

74

[42] Colby Ranger, Christos Kozyrakis, Ramanan Raghuraman, Arun Penmetsa, and Gary

Bradski. Evaluating MapReduce for Multi-core and Multiprocessor Systems. In HPCA,

02/2007 2007. → page 2.

[43] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz, and Michael A.

Kozuch. Heterogeneity and Dynamicity of Clouds at Scale: Google Trace Analysis. In

Proceedings of the Third ACM Symposium on Cloud Computing, SoCC ’12, pages 7:1–

7:13, New York, NY, USA, 2012. ACM. → page 15.

[44] John C. Reynolds. The Discoveries of Continuations. Lisp Symb. Comput., 6(3-4):233–

248, November 1993. → page 36.

[45] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pearson

Education, 2 edition, 2003. → pages xi, 13, and 14.

[46] Konstantinos Tsakalozos, Herald Kllapi, Eva Sitaridi, Mema Roussopoulos, Dimitris Pa-

paras, and Alex Delis. Flexible Use of Cloud Resources Through Profit Maximization and

Price Discrimination. In Proceedings of the 2011 IEEE 27th International Conference on
Data Engineering, ICDE ’11, pages 75–86, Washington, DC, USA, 2011. IEEE Computer

Society. → pages 21 and 61.

[47] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific Languages: An Annotated

Bibliography. SIGPLAN Not., 35(6):26–36, June 2000. → page 23.

[48] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer, Eric Tune,

and John Wilkes. Large-scale cluster management at Google with Borg. In Proceedings
of the European Conference on Computer Systems (EuroSys), Bordeaux, France, 2015. →
page 15.

[49] Rostyslav Zabolotnyi, Philipp Leitner, and Schahram Dustdar. Profiling-Based Task

Scheduling for Factory-Worker Applications in Infrastructure-as-a-Service Clouds. In Soft-
ware Engineering and Advanced Applications (SEAA), 2014 40th EUROMICRO Confer-
ence on, pages 119–126, Aug 2014. → page 22.

[50] Rostyslav Zabolotnyi, Philipp Leitner, Waldemar Hummer, and Schahram Dustdar.

JCloudScale: Closing the Gap Between IaaS and PaaS. ACM Transactions on Internet
Technology, 15(3):10:1–10:20, July 2015. → pages 35 and 37.

[51] Rostyslav Zabolotnyi, Philipp Leitner, Stefan Schulte, and Schahram Dustdar. SPEEDL

- A Declarative Event-Based Language for Cloud Scaling Definition. In The Future of
Software Engineering For and In Cloud, Visionary Track of IEEE Services, IEEE Computer

Society, JUN 2015. s.n. → page 23.

75

