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Abstract

BOLD-fMRI data analysis is challenging - in part due to the strong influences by
non-white noise, some of which has physiological origins (e.g. cardiac activity or
respiration). Noise becomes even more of a problem in resting state fMRI research,
since BOLD fluctuations account for a smaller portion of signal than the BOLD
response in specific task-related fMRI signals does.
Researchers have not always been aware of the great extent of this problem. Phys-
iological noise is aliased into scans of a low temporal resolution (i.e. if the Nyquist
criterion is not satisfied). But with the advent of multiband sequences, which
facilitate higher sampling rates, it became possible to circumvent aliasing of high
frequency noise into the signal of interest, if only the sampling frequency was set
high enough. Since resting state networks have commonly been assumed to have a
bandwidth lying in the range of 0.01-0.1 Hz, it seemed, as if scans of high temporal
resolution could be freed from physiological noise by temporal filtering.
Recent studies have, however, revealed that resting state networks could also be
identified in frequency ranges >0.1 Hz. Hence, the application of temporal filters
turned out to be disadvantageous, since it eliminates useful information just as
well as noise.
A novel approach to noise removal (based on blind source separation) is presented
in this thesis. BOLD-fMRI data of high temporal resolution is decomposed into
temporally independent components (time courses) and corresponding weights.
The time courses are analysed in the frequency domain and components deemed
to be related to physiological noise were excluded from subsequent data recon-
struction.
fMRI data have been processed with this new algorithm and have (in another pro-
cessing pipeline) been band passed (as a reference). The band passed data and the
data processed by means of the proposed algorithm have both been subjected to
seed-based correlation analysis in order to determine whether significant differences
in functional connectivity could be observed. Results indicate that the different
approaches did in fact lead to such significant differences. With the exception of
the functional connectivity assessed for the auditory resting state network, the
differences did however not appear to occur in specific patterns.
Other exploratory approaches (e.g. cluster analysis) could be used in future anal-
yses in order to further validate this new noise removal approach and to compare
results to those of similar approaches (e.g. CORSICA, PESTICA).
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Zusammenfassung

Die BOLD-fMRI-Datenanalyse ist eine herausfordernde Aufgabe - mitunter bed-
ingt durch den starken Einfluss von Störgrößen. Diese Störgrößen sind teilweise
physiologischen Ursprungs (darunter fallen beispielsweise der Herzrhythmus oder
aber auch die Atmung). In der sogenannten “resting state” fMRI-Forschung wird
farbiges Rauschen zu einem noch größerem Problem, da BOLD-Fluktuationen dort
einen kleineren Signalanteil ausmachen, als die sogenannte “BOLD response” in
der “task-related” fMRI-Forschung.
Das Ausmaß dieses Problems ist in der Forschung noch nicht lange bekannt. Phys-
iologisch bedingtes Rauschen wird durch Aliasing-Effekte in das Signal zeitlich
niedrigauflösender Scans gespiegelt (wenn das Nyquist-Shannon-Abtasttheorem
ignoriert wird). Mit dem Aufkommen von schnellen Multiband-Sequenzen ist es
jedoch möglich geworden, solche Aliasing-Effekte zu vermeiden, sofern die Ab-
tastfrequenz hoch genug eingestellt wird. Und nachdem lange Zeit angenommen
wurde, dass “resting state” Netzwerke eine Bandbreite im Bereich von 0.01-0.1 Hz
haben, schien es, als könnten zeitlich hochauflösende Scans durch die Anwendung
einfacher Zeitfilter von physiologischem Rauschen befreit werden.
Aktuelle Studien haben jedoch gezeigt, dass “resting state” Netzwerke auch in
Frequenzbereichen >0.1 Hz identifiziert werden können. Die Anwendung von Zeit-
filtern erwies sich daher als nachteilig, da diese relevante Signalanteile ebenso eli-
miniert, wie Rauschen.
Ein neuer (auf einer sogenannten “Blind Source Separation”-Methode basierender)
Ansatz zur Rauschentfernung wird im Rahmen dieser Arbeit vorgestellt. Zeitlich
hochauflösende BOLD-fMRI-Daten werden in zeitlich unabhängige Komponenten
zerlegt. Diese Zeitreihen werden im Frequenzbereich analysiert und Komponenten,
die physiologischem Rauschen zugeordnet werden können, werden in die Daten-
rekonstruktion nicht miteinbezogen.
Dieser neue Algorithmus wurde auf reale fMRI Daten angewandt (und parallel
dazu wurden die selben Daten mit einem Bandpass-Filter gefiltert). Die bandgepassten
Daten und die mittels dem neuen Algorithmus analysierten Daten wurden einer
sogenannten “seed-based correlation”-Analyse unterzogen um festzustellen, ob be-
züglich der funktionellen Konnektivität signifikante Unterschiede festgestellt wer-
den können. Die Ergebnisse haben gezeigt, dass dies sehr wohl der Fall ist. Mit
Ausnahme der funktionellen Konnektivität, die speziell im Bezug auf das auditive
resting state Netzwerk bestimmt wurde, scheinen diese signifikanten Unterschiede
jedoch nicht in spezifischen Mustern aufzutreten.
Andere explorative Ansätze (z.B. eine Clusteranalyse) könnten Teil zukünftiger
Analysen zur Validierung dieses neuen Ansatzes sein und zum Vergleich des Sel-
bigen mit ähnlichen Ansätzen dienen.
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1 Introduction

Magnetic resonance imaging (MRI) is an imaging modality used in neuroimaging,
which – roughly stated – exploits the fact that the same nuclei (e.g. 1H nuclei) have
different magnetic properties in different molecules / tissues. Next to anatomical
MRI scans, which fall into the category of structural imaging, there exists also
functional magnetic resonance imaging (fMRI), which focuses on measuring brain
activity based on changes in the blood oxygen level dependent (BOLD) contrast.
This contrast mechanism is based on increased local oxygen consumption and
therefore venous blood deoxygenation due to increased metabolic activity during
a specific neural activity.
fMRI methods can be grouped into task-related- and resting state fMRI (rs-fMRI)
methods (i.e. studies in which subjects have to perform specific tasks in opposi-
tion to studies in which subjects are resting). rs-fMRI research mainly focuses on
functional connectivity of brain areas and has resulted in the discovery of multiple
so called resting state networks such as the default mode network (see Raichle et
al. [1]) and many others (see Damoiseaux et al. [2] and Robinson et al. [3]).
Besides model-driven fMRI data analysis approaches like the so called seed-based
correlation analysis (which is, however, prone to biasing due to seed selection),
exploratory approaches such as independent components analysis (ICA) are pop-
ular. Other exploratory approaches also fall within the category of blind source
separation (BSS) methods – amongst which there is one approach referred to as
second order blind identification (SOBI - [4]).
Analysis of fMRI data is, however, not trivial: on one hand, this is due to the huge
amount of data obtained by even single scanning sessions (not to mention studies
with large populations) as well as on the other hand the noisy and mixed nature
of the BOLD signal.

This thesis focuses on a new approach based on blind source separation for the
removal of physiological noise from resting state fMRI data with a high temporal
resolution. The presence of non-white physiological noise in fMRI data and its
characteristics have been repeatedly subjected to research (e.g. Liu et al. [5]).
Damoiseaux et al. state that “[...] these resting fluctuations of interest are typ-
ically associated with strong power in the range of 0.01–0.1 Hz.” [2] Due to this
wide-spread assumption, physiological noise (e.g. noise due to cardiac activity
and noise due to respiration), which typically lies in a higher frequency range, is
commonly removed from the BOLD-fMRI signals with a high temporal resolution
by simple band pass filtering. (Note, however, that this is not efficient in BOLD-
fMRI data with a low temporal resolution, due to the fact that the noise will be
aliased into the lower frequencies.) Boubela and Kalcher et al. have shown that
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resting state networks are in fact not bound solely to a low frequency range but
are much rather also identifiable in a frequency range >0.1 Hz. [6], [7] Since band
pass filtering rigorously eliminates all portions of a signal that are recurring with
a specified frequency, signal components, which are due to phenomena of interest
(neural activity) are removed just as well as signal components related to unde-
sired phenomena such as physiological noise. In short, band pass filtering is not
an ideal means of physiological noise removal.

The new approach to physiological noise removal presented in this thesis can basi-
cally be outlined as follows: After preprocessing the data, blind source separation is
performed in such a way that the results are temporally independent time courses
(components) with corresponding weights for each voxel. Those time courses are
then analyzed in the frequency domain. Components fulfilling certain criteria are
identified as being potentially related to cardiac activity (as an example for phys-
iological noise - the same could be done with different criteria for noise related to
respiration) and are excluded from the subsequent data reconstruction. Thereby,
noise can be eliminated from the data while retaining relevant signal components
which lie in the same frequency range as said noise.

This novel approach is presented within this thesis as follows: Section 2 focuses
on fundamentals related to NMR and MRI, as well as on the mathematical ba-
sics required to fully understand the underlying principles of the new approach.
Section 3 gives specific details of how the new algorithm has been implemented
and outlines the methods used to analyze whether data processed by this algo-
rithm delivers more promising results in postprocessing analyses. Section 4 lists
the actual results obtained by the application of said methods. Section 5 provides
a brief review of the work and discusses the presented results. Future prospects
are mentioned.
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2 Fundamentals

This section aims at clarifying basic physical principles of nuclear magnetic reso-
nance (NMR) and magnetic resonance imaging (MRI) as well as basic mathemati-
cal and statistical concepts required to understand the analytic methods which are
applied in subsequent sections of the thesis. However, the degree of detail is ob-
viously limited, so for more detailed insights into those topics consider consulting
literature, some of which is referenced within this thesis.

2.1 Magnetic Resonance Imaging

2.1.1 Physical Principles of Nuclear Magnetic Resonance

2.1.1.1 Larmor precession

Nuclear Magnetic Resonance is a phenomenon referring to the interaction of the
magnetic properties of atomic nuclei with three different electromagnetic fields.
Nuclei have a non-zero angular momentum or nuclear spin ~I and a non-zero mag-
netic moment ~µ if either their atomic number, their mass number or both are odd
numbers. The relation between magnetic moment ~µ and nuclear spin ~I is given by

~µ = γ~I, (2.1)

whereas the proportionality factor γ is called gyromagnetic ratio (note that ~µ and
~I are vector quantities with identical directions, i.e. γ is a scalar quantity).
In the absence of an external magnetic field, nuclear spins and magnetic moments
will have an indiscriminate orientation (due to Brownian motion), whereas in the

vicinity of an external static magnetic field (often referred to as ~B0-field), they
will tend to align themselves to the field in a quasi-parallel or quasi-antiparallel
manner.
Note, however, that nuclear spins and magnetic moments can never fully align
to the direction of the external field – they rather precess around the direction
of the effective field. This is called Larmor precession. The angle between the
direction of the ~B0-field and the direction of the magnetic moments / spins does
not decrease when increasing the strength of the magnetic field (as one might be
tempted to assume when having bar magnets in mind). Increasing the magnetic
field strength does however increase the precession frequency (which is referred to
as Larmor frequency). Also, the Larmor frequency is independent of said angle –
it is given by

ω = γ ∗B0. (2.2)
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2.1.1.2 Zeeman Levels, Net Magnetization

According to the principle of induction the precessing spins generate a dynamic
magnetic field which can be picked up by a coil generating a voltage. However, a
single nucleus cannot be used to produce a detectable MRI signal: large amounts
of nuclei are required for the generation of such a signal – thus, dealing with
the whole topic on a more macroscopic level (i.e. considering spin systems and
their net magnetization rather than individual nuclei and their spins and magnetic
moments) is of importance. Consequently, classical physics models may suffice.
The hydrogen nucleus (proton) has two possible quantum states (energy levels):
Spin up (low energy state) and spin down (high energy state). Such energy levels
are termed Zeeman levels and their energy difference is given by

∆E = ~γB0, (2.3)

with ~ being the reduced Planck constant (~ = h
2π

).

As mentioned above, a single proton will not suffice to produce an MR image
– instead, spin systems (consisting of large amounts of protons populating the
energy states) are of interest. At thermal equilibrium, the ratio of populations of
the two states is given by the so called Boltzmann factor :

n− 1
2

n 1
2

= exp(−γB0~
kBT

), (2.4)

with kB denoting the Boltzmann constant and T denoting the absolute temperature
(Kelvin) .
Considering that ~, kB and γ are constants (γ being nucleus specific), it becomes
obvious that the difference in populations between the energy states (and thus the
net magnetization, which is the sum of the magnetic moments) can be influenced
by changes in temperature and / or the strength of the magnetic field:

M ∝ B0 and M ∝ 1

T
, (2.5)

with M denoting the net magnetization.

2.1.1.3 Nuclear Magnetic Resonance - Obtaining a Signal

The net magnetization vector precessing around the ~B0 field needs to be “tilted”
out of equilibrium into the transverse plane in order to induce a voltage which
can be picked up by a coil. The signal is emitted as soon as the magnetization
vector returns to thermal equilibrium - quantum mechanically this corresponds
to the excitation of spins from the low energy state to the high energy state and
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then “falling” back to the low energy state (also termed spin relaxation) and thus
inducing a voltage in a RF-coil tuned to the Larmor frequency.

Tilting the magnetization vector out of equilibrium (i.e. “exciting” the spins) is

done with the help of a dynamic magnetic RF-field perpendicular to the ~B0-field.
This perpendicular field (commonly referred to as ~B1-field) needs to be oscillating
at the Larmor frequency of the nuclei which are to be excited (e.g. for 1H in a 1

Tesla ~B0-field the Larmor frequency would be 42.576 MHz). Note that the nuclear

spins actually precess around the sum ~B0 + ~B1 = ~Beff rather than just around ~B0.

2.1.1.4 Spin Relaxation

As mentioned above, spin relaxation refers to the process of spins returning from
an excited state to thermal equilibrium state. There are two basic relaxation mech-
anisms referred to as T1 relaxation (also spin-lattice relaxation or longitudinal re-
laxation) and T2 relaxation (also spin-spin relaxation or transversal relaxation).
T1 relaxation usually takes longer than (or in some cases as long as) T2 relaxation.

T1 relaxation is a term used to describe the return of the net magnetization vec-
tor’s z-component (longitudinal component) to it’s equilibrium value (given that

z is the direction of the ~B0-field). This mechanism is based on the interactions
between a nucleus and its surroundings (“lattice”), i.e. energy dissipation. The
associated time constant is called T1 and refers to the time it takes the net mag-
netization vector to return to 1 − 1

e
(i.e. approximately 63%) of its initial value.

This corresponds to the so-called Bloch equation

Mz(t) = Mz(0) ∗ (1− e−
t
T1 ), (2.6)

Mz being the net magnetization vector’s longitudinal component.

T2 relaxation is a term used to describe the decay of the net magnetization vec-
tor’s transversal component to it’s equilibrium value due to spin-spin interactions.
More specifically, after flipping the spins into the transversal plane with the help of
a 90◦ pulse, the magnetic moments / spins precess around the ~Beff -field in phase
at first, but will then dephase. This out-of-phase precession obviously results in a
decrease of the net magnetization vector’s transversal component and represents
an increase in entropy. The associated time constant is called T2 and refers to the
time it takes for the net magnetization vector’s transversal component to decay
to 1

e
(i.e. approximately 37%) of its initial value. This corresponds to the Bloch

equation
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Mxy(t) = Mxy(0) ∗ e−
t
T2 , (2.7)

Mxy being the net magnetization vector’s transversal component.

Next to proton density (PD), the time constants T1 and T2 play a crucial role
when it comes to the contrast of MRI scans. Further details on this topic will be
treated in section 2.1.1.6 “Image Contrast”.

2.1.1.5 Nuclear Magnetic Resonance Pulses and Pulse Sequences

The so called flip angle θ(t) (i.e. the angle formed by the net magnetization vector

and the direction of ~Beff , when said net magnetization vector is tilted out of

the equilibrium state) is influenced by the field strength of the ~B1-pulse and its
on-time:

θ(t) ∝ B1 ∗ t, (2.8)

Of special interest are 90◦ pulses, by which the magnetization vector can be tilted
into the transversal plane from its initial position and 180◦ pulses, which are just
as common in many pulse sequences – e.g. they are used as refocusing pulse in
spin echo sequences. 180◦ pulses result from doubling either the amplitude or the
on-time of a 90◦ pulse.

Apart from RF-pulses, gradient pulses are used in magnetic resonance imaging.
Those temporarily active gradient fields encode spins in different locations pre-
cessing at different Larmor frequencies. Hence, gradient pulses are used for spatial
encoding . Furthermore, in gradient echo sequences, they are not only used for
spatial encoding but for the generation of echoes (i.e. signal generation) as well.

Specified trains of multiple RF-pulses and gradient pulses are called MRI se-
quences. Sequences can be differentiated according to their type, i.e. whether
they are spin echo (SE) sequences or gradient echo (GE) sequences (those types
create different image contrast). Sequences can however also be categorized ac-
cording to the image types that they produce – e.g. T1 weighted images (T1WI),
T2 weighted images (T2WI), proton density weighted images (PDWI). If multiple
sequences are required during an examination, the succession of those sequences
is called a protocol .

MRI sequences are determined by a multitude of parameters – e.g. the repeti-
tion time, echo time, inversion time (in the case of inversion recovery sequences),
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flip angle and many more, all of which are affecting both image contrast and spatio-
temporal resolution and may be easily changed on any MR scanner.

The duration between two successive pulse sequences applied to a slice is referred
to as repetition time (TR). The duration between the application of the initial 90◦

pulse and the maximum of the first signal echo is referred to as echo time (TE).
TR and TE are important parameters when it comes to image contrast (see section
2.1.1.6).

Echo Planar Imaging - commonly abbreviated as EPI - refers to a sequence type
where the readout gradient (also known as frequency encoding gradient) is rapidly
switched resulting in the generation of multiple echoes. Those facilitate the ac-
quisition of more than just one (horizontal) line in k-space1 at a time by adding
phase-blips in phase encoding direction. Instead, greater sections of k-space are
traversed (i.e. larger sections of the image / slice are acquired) within a single
TR period. Capturing one slice (i.e. traversing the entire k-space) in one TR is
referred to as single shot EPI, while capturing one slice over the period of multiple
TRs is referred to as multi shot EPI.
The main advantage of EPI sequences are short acquisition times (hence the ap-
plications in e.g. cardiac imaging). Their main disadvantage is that the image
quality is prone to suffer from susceptibility artifacts leading to blurring and geo-
metrical distortion, particularly in the (slower) phase encoding direction.
EPI sequences can be implemented as spin echo- or gradient echo sequences.
Amongst common multi-slice imaging techniques are the so called multibanded
EPI pulse sequences “[...] allowing simultaneous acquisition of multiple brain slices
during a single EPI echo train [...]”. [6]

2.1.1.6 Image Contrast, Weighting and MRI Applications

In MRI, image contrast depends basically on T1, T2 and proton density (PD) (for
details on T1 and T2: see section 2.1.1.4). McRobbie et al. explain the influence of
those parameters on image contrast as follows: “In PD images, high PDs give high
signal intensities which in turn have bright pixels on the image. In T2-weighted
images, tissues with long T2 give the highest signal intensities, producing a bright
appearance. T1-weighted images are completely different; long T1 tissues give the
weakest signal, i.e. bright pixels on T1 are associated with short T1s.” [9]
McRobbie et al. also state that fluids (e.g. the cerebrospinal fluid, synovial fluid or
edema) have the highest T1 and T2 time constants, followed by what the authors

1“The k-space represents the spatial frequency information in two or three dimensions of
an object. The k-space is defined by the space covered by the phase and frequency encoding
data.” [8]
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short TE long TE

short TR
or large α

T1WI
poor
contrast

long TR
or small α

PDWI T2WI

Table 1: Image contrast as a consequence of TE/TR or TE/α choice

refer to as “water-based tissues” (e.g. muscle, brain or cartilage), which have lower
T1 and T2 time constants and finally, fat-based tissues (e.g. fat or bone marrow)
have the lowest T1 and T2 time constants. For this reason, T1 weighted images
are commonly used to represent anatomical structures in general (since boundaries
between tissues are clearly visible). A more specific use would be the representa-
tion of fatty structures. T2 weighted images on the other hand may be used to
pathologies such as edema or cysts.

Signal weighting is done by appropriate choice of TR and TE (in the case of
spin echo sequences) and the flip angle and TE (in the case of gradient echo se-
quences), respectively (for details on TR and TE: see section 2.1.1.5).
Table 1 illustrates how different image contrasts depend on the choice of TE/TR
(in the case of spin echo sequences) and TE/α (in the case of gradient echo se-
quences). For specific values concerning appropriate choices of TR, TE and the
flip angle, consider reading [9].

2.1.2 Functional Magnetic Resonance Imaging

Functional magnetic resonance imaging (fMRI) uses the same hardware as stan-
dard clinical imaging (e.g. Moser et al. [10]), but refers to magnetic resonance
imaging used to visualize brain functions (i.e. physiologic and pathologic pro-
cesses) rather than visualizing brain anatomy (as is done in structural scans).

The term ‘fMRI’ refers to a variety of different methods used to obtain differ-
ent kinds of image contrast (e.g. diffusion MRI, perfusion MRI - either with the
help of contrast agents or by means of arterial spin labelling (ASL) - or so called
BOLD-fMRI). Unless otherwise stated, within the scope of this thesis, the term
fMRI will refer to BOLD-fMRI only.
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2.1.2.1 BOLD Contrast

The BOLD contrast was first discovered by Ogawa et al. and reported in the year
1990. [11] ‘BOLD contrast’ is the abbreviation for ‘blood oxygen level dependent
contrast’ and as the name already suggests, “[...] the BOLD signal is a measure
of the ratio of oxygenated to deoxygenated hemoglobin” [12] - or, as Eloyan et al.
put it - “Deoxyhemoglobin serves as an endogenous susceptibility contrast agent
allowing MRI to report on local hemodynamic changes.” [13] These hemodynamic
changes are assumed to be related to neural activity via local oxygen consumption
and blood flow. Ashby states: “The theory, which is not yet fully worked out, is
that active brain areas consume more oxygen than inactive areas.” [12]
In task-related fMRI, the so called BOLD response (which is a delayed reaction to
the neural activity related to the specific task) is of interest, while in resting-state
fMRI (rs-fMRI), one speaks of BOLD fluctuations (which are independent of any
task).

One major problem with fMRI is, however, the noisy nature of the BOLD sig-
nal. As Davey et. al have stated: “For BOLD signals obtained at 3T, the signal
of interest comprises less than 10% of the signal fluctuation, and is instead dom-
inated by physiological noise (Kruger et al., 2001) and scanner drift (Bianciardi
et al., 2009).” [14] Other sources (e.g. Damoiseaux et al. [2]) state that BOLD
fluctuations in resting state networks lie within a range of 2-3% of the total signal.

The influence of the heart rate on the BOLD signal has been investigated by
Chang et al. [15] They have found that modelling voxel time series by taking into
consideration not only respiratory influences, but influences due to cardiac activity
as well, will account for a higher percentage of total signal variance. Influences of
the heart rate on the BOLD signal were modelled using a transfer function referred
to as cardiac response function (CRF). Chang et al. state that the influence of
cardiac activity on the BOLD signal affects primarily regions containing major
vessels and cerebrospinal fluid (CSF).

2.2 Mathematical and Statistical Fundamentals of fMRI
data analysis

So far, (mostly physics-related) fundamentals concerning (functional) magnetic
resonance imaging have been addressed. Once image acquisition is completed,
data processing begins. Since this thesis describes a novel approach to the re-
moval of physiological noise from resting state fMRI data based on blind source
separation (BSS), this subchapter will mainly focus on BSS methods - namely inde-
pendent component analysis (ICA) and second order blind identification (SOBI).
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Furthermore, the preliminary step of principal component analysis (PCA) and the
underlying mathematical and statistical principles of all these methods will be
discussed.

2.2.1 Statistical Relationships

In order to thoroughly understand how PCA and BSS algorithms work, one has
to understand some basic principles of statistical relationships.
Correlation, covariance and dependence are measures of statistical relationships.
While there are a variety of different correlation measures, the term is mostly used
to refer to the so called Pearson correlation (this will also be the case for the
remainder of this thesis).
Correlation and covariance are measures referring to linear relationships, which is
exactly why uncorrelated variables are not necessarily independent, but can just
as well be dependent (their dependence can be based on a non-linear relationship).
While the covariance is dependent on the units of measurement of the respective
variables, the correlation coefficient is not in any way affected by said units. This
makes comparability of covariance values referring to data sets with different scales
difficult. This is however not a problem with our fMRI data (all having the same
units). Hence, the covariance may be used as a measure of linear relationship when
performing fMRI data analysis.

2.2.1.1 Independence

BSS methods aim at separating mixtures of signals into their original source sig-
nals without (or with very little) a priori knowledge about the source signals and
or the mixing process. ICA in particular works - as its name already suggests -
based on the assumption that the source signals are statistically independent.

Statistical independence of two random variables X and Y is given if and only
if their joint probability density function (pdf) is equal to the product of their
marginal probability density functions:

pX,Y (x, y) = pX(x)pY (y) ∀ x, y. (2.9)

2.2.1.1.1 Estimating Independence

Estimating statistical independence is essential in the course of ICA since an exact
solution of the problem could only be computed if the probability density functions
of the sources were known (which in practice usually isn’t the case).
There are basically three popular concepts of estimating statistical independence.
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Their underlying principles will be briefly introduced in this subchapter, but for
more detailed descriptions, consider reading [16]. Those concepts are somewhat
related to each other – Hyvärinen even states: “In fact, almost all of these es-
timation principles can be considered as different versions of the same general
criterion.” [16]

• Minimization of mutual information
This approach is based on information theory, in which one bit of information
(or entropy) is defined as being a measure of uncertainty / unpredictability
of an event.
Joint entropy is the amount of information contained in a system of more
than one variable.
Mutual information is the information content that individual variables from
a set of variables have on each other.
These measures can easily be illustrated using a Venn diagram (as is common
in set theory) – see figure 1. Members of a set of random variables are said
to be statistically independent if and only if their mutual information equals
0.

H(A) H(B)

H(A|B) H(B|A)

I
(A
,B

)

H(A,B)

Figure 1: Venn diagram illustrating the relationship between different measures of
information theory (H(A) and H(B) being the individual entropies of the variables
A and B, respectively, H(A,B) being the joint entropy, I(A,B) being the mutual
information)

• Maximization of non-gaussianity
The central limit theorem basically states that (given certain conditions)
the sum of non-gaussian random variables will be more gaussian than each
individual constituent. Since ICA assumes that the individual components
are non-gaussian (which will be explained in section 2.2.3.2.2), a linear com-
bination of the original components will be maximally non-gaussian, if it
represents one of the components. Hence, by maximizing non-gaussianity
of the mixed signals matrix, one can estimate a model for the independent
components (and thus also for the mixing matrix).
When maximizing non-gaussianity, one could e.g. be interested in super-
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gaussian distributions. Supergaussian distributions have a higher peak (at
zero mean as well) and higher tails than gaussian distributions. They are
referred to as leptokurtic, since their kurtosis is >3 (a gaussian distribution
has a kurtosis of 3).
But since the kurtosis is a fourth-order statistic, using it as a measure for
non-gaussianity is not ideal: Its sensitivity to outliers is greater than that of
other measures.
Amongst all variables of identical mean and variance, a gaussian variable
is the most unpredictable one – or, as one could also say – the gaussian
variable has the highest entropy. Hence, entropy can be used as a measure
for non-gaussianity. Negentropy has been introduced as a measure, which
is zero for gaussian variables and otherwise always positive. Negentropy is
mathematically defined as

J(x) = H(xgauss)−H(x), (2.10)

i.e. as the difference in entropy between the distribution of any given variable
and the gaussian distribution with the same mean and the same variance as
the variable of interest. The International Organization of Standardization
uses a possibly more intuitive language, when stating that negentropy can
be defined as “mean value of the information content of the events in a finite
set of mutually exclusive and jointly exhaustive events [...]” [17]

• Maximum-likelihood approaches
Maximum-likelihood estimation (MLE) aims at estimating the parameters of
a model so that with those parameters, the observed data is most probable
to be produced by the model. To be more specific, the parameters are chosen
in such a way that they maximize a so called likelihood function.
For computational reasons it is advantageous to calculate the logarithm of
the likelihood function instead. This does not change the results in any way,
since the log-function is strictly increasing and thus, its maximum coincides
with the maximum of the likelihood function.

Those concepts of estimating independence are used in a variety of different ICA
algorithms. Without going to much into details yet, ICA decomposes a matrix of
observed (mixed) signals into a mixing matrix and a components matrix containing
independent source signals (see equation 2.27 and section 2.2.3.2 for a thorough
presentation of that topic). When it comes to minimizing mutual information,
an algorithm would adapt the entries of the unmixing matrix until the mutual
information of the rows in the components matrix becomes as small as possible.
In fact, the fastICA algorithm (which will be presented in section 2.2.3.2.3) can be
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regarded as an approach which is based on both: minimizing mutual information
and maximizing negentropy. This is because mutual information can actually
be computed from negentropy. Hyvärinen states: “[...] mutual information is
minimized [...] when the sum of the negentropies of the components is maximized.”
[18] MLE-based ICA algorithms use the joint probability density function of the
independent components as likelihood function. The elements of the mixing matrix
then serve as parameters to maximize this likelihood function.

2.2.1.2 Whiteness and Uncorrelatedness

Uncorrelatedness and whiteness are weaker properties than independence in that
variables can be uncorrelated or whitened and yet be dependent. Nevertheless, the
concepts of uncorrelatedness and whiteness are important when it comes to blind
source separation (for reasons which are discussed in section 2.2.1.2.3).

If the n components of a zero mean random vector X are uncorrelated, the covari-
ance matrix of the random vector will be a diagonal matrix:

E[XXT ] = D

with di,j = 0 if i 6= j ∀ i, j ∈ {1, 2, ..., n}
(2.11)

A zero mean random vector X ′ is said to be whitened if its components are decor-
related and its variances (i.e. the diagonal elements of the covariance matrix) all
equal 1:

E[X ′X ′T ] = I, (2.12)

I being the unity matrix.
Hence, as Hyvärinen simply states: “[...] whitening is essentially decorrelation
followed by scaling [...].” [16]

Mathematically speaking, whitening is a linear transformation of a zero mean
vector:

Y ′ = V Y such that E[Y ′Y ′T ] = I, (2.13)

whereas V is referred to as whitening matrix

There are two common whitening transformations, which will be discussed in the
following two paragraphs.
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2.2.1.2.1 Whitening by means of Zero-Phase Component Analysis

Eigendecomposition of the covariance matrix of Y yields

E[Y Y T ] = QΛQT , (2.14)

whereas Q is an orthogonal matrix containing the eigenvectors of E[Y Y T ] and Λ
is a diagonal matrix containing the eigenvalues of E[Y Y T ] as diagonal elements.
(Note that eigendecomposition will be explained in detail in section 2.2.2.2.)

Whitening by zero-phase composition analysis (ZCA) is then done by choosing

V = E[Y Y T ]−1/2 = QΛ−1/2QT (2.15)

as a whitening matrix (whereas Λ−1/2 can easily be determined, since it equals

diag(λ
−1/2
1 , λ

−1/2
2 , ..., λ

−1/2
n )).

The proof that this matrix whitens Y is simple:

E[Y ′Y ′T ] = E[V Y (V Y )T ] = E[V Y Y TV T ] = V E[Y Y T ]V T

= E[Y Y T ]−1/2E[Y Y T ]E[Y Y T ]−1/2 = I.
(2.16)

Note that since V is diagonal, V = V T .

Geometrically, ZCA can be thought of as a transformation which rotates the data
only minimally, thus preserving as much of its initial orientation as possible. This
minimizes the Mahalanobis distance of the original data and the whitened data.
The transformation is therefore also known as Mahalanobis transformation.

2.2.1.2.2 Whitening by means of Principal Component Analysis

Whitening by means of principal component analysis (which itself will be discussed
in section 2.2.2) also starts off with the computation of the eigendecomposition of
the covariance matrix.
The whitening matrix is then given by

V = Λ−1/2QT . (2.17)

The proof that using this matrix to orthogonally transform the original vector Y
is as follows:

E[Y ′Y ′T ] = E[V Y (V Y )T ] = E[V Y Y TV T ] = V E[Y Y T ]V T

= Λ−1/2QTE[Y Y T ]QΛ−1/2 = Λ−1/2QTQΛQTQΛ−1/2 = I.
(2.18)

19



Note that mere decorrelation (not whitening) can be obtained by

Yd = QTY, (2.19)

Yd denoting the vector containing the decorrelated elements of Y . This is es-
sentially omitting the act of scaling which is mathematically represented by the
multiplication with Λ−1/2.

2.2.1.2.3 Whitening prior to Independent Component Analysis

One might wonder why so much attention has been paid to whiteness, although
it is a weaker property than independence. The reason for this is that whitening
data has two major advantages:

• One characteristic of BSS problems is that they are underdetermined. This
leads to certain ambiguities, of which one is referred to as scaling ambiguity
(see section 2.2.3.1). In this context, whitening normalizes the variances of
the source signals, thus guaranteeing that their entire variance is adequately
accounted for by the information contained in the mixing matrix.

• Whitening reduces the ICA problem to a simple orthogonal transformation.
This drastically reduces the complexity of the problem, since it confines
the solution space of the mixing matrix to orthogonal matrices (or unitary
matrices, respectively, when referring to complex signal matrices) – i.e. only
n ∗ (n − 1)/2 instead of n2 parameters need to be estimated (n being the
number of variables).

Considering that whitened data will be further rotated by ICA anyways, it is not
necessary to pay attention to rotating the data as little as possible in the course
of whitening (as is done in ZCA whitening). Hence, PCA whitening will work just
as well in this context.

PCA of the data prior to ICA is also commonly used to reduce the dimension-
ality of the data. This is done as a means of noise reduction as well as it serves to
reduce the computational effort during ICA. Further details are discussed in the
next section.

2.2.2 Principal Component Analysis

Principal component analysis (PCA) is a multivariate statistical technique that
decorrelates data. Hyvärinen et al. describe the purpose of PCA as follows:
“Given a set of multivariate measurements, the purpose is to find a smaller set of
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variables with less redundancy, that would give as good a representation as pos-
sible.” [16] Mathematically speaking, PCA is an orthogonal transformation that
projects the data into a new coordinate system. In this new coordinate system,
the direction in which the data has the greatest variance is the direction of the
first coordinate. The direction of second largest variance is then the direction of
the second coordinate, which is also orthogonal to the first coordinate and so on.
The result of PCA is low dimensional (depending on the number of chosen com-
ponents) decorrelated data.
It is important to note that PCA is (in contrast to ICA) not a procedure that
generates a statistical model: “[...] PCA is a straightforward orthogonal rotation
of the data to a new coordinate system that requires no model fitting process. This
is because PCA has no free parameters to estimate from the data. PCA simply
allows the user to view his or her data from a different perspective.” [12]

2.2.2.1 The PCA procedure

Figure 2 illustrates the steps comprising PCA. As shown, after having centered the
data, PCA can be performed either by eigendecomposition or by singular value
decomposition of the data. These two matrix factorizations will be explained in
more detail in sections 2.2.2.2 and 2.2.2.3. Also, section 2.2.2.4 deals with how
they are related to each other and finally, section 2.2.2.5 focuses on why it is often
advantageous to perform PCA by means of SVD.
After having factorized the data matrix with either of the two decompositions,
the dimensionality of the data may be reduced by using only a limited set of
eigenvalue / eigenvector- or, respectively, singular value / singular vector pairs for
further processing.
The data can now easily be projected into the new space (where they are decor-
related) and from there, back projected into the original space. Section 2.2.2.6
focuses on how to determine a useful degree of dimensionality reduction.
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Figure 2: Basic steps of PCA.

2.2.2.2 Eigendecomposition

The eigendecomposition of a matrix is its factorization into three matrices con-
taining its eigenvalues and eigenvectors. This representation is unique for each
diagonalizeable matrix (except for the order of the eigenvalues and eigenvectors)
and doesn’t exist for non-diagonalizeable matrices.
Let A be a real or complex n × n matrix. The scalar λ ∈ C is called eigenvalue
of A if and only if there exists a vector ~v ∈ Cn, ~v 6= ~0, which satisfies the linear
equation

A~v = λ~v. (2.20)

Every such vector is termed eigenvector of A with corresponding eigenvalue λ.
If the eigenvectors of a matrix A are linearly independent, A can be decomposed
as
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A = QΛQ−1, (2.21)

where the columns of Q are the eigenvectors of A and the non-zero entries of the
diagonal matrix Λ are the corresponding eigenvalues.
Note, that the decomposition of a real valued symmetric matrix A′ (covariance
matrices have those properties by definition!) will yield an orthogonal eigenvector
matrix. Hence, A′ = QΛQ−1 ⇔ A′ = QΛQT .

2.2.2.3 Singular Value Decomposition

The singular value decomposition of a matrix is its factorization into three ma-
trices containing its singular values and its (left and right) singular vectors. This
representation is unique for each (real or complex) matrix (except for the order of
the singular values and singular vectors) and exists (in opposition to the eigende-
composition) for diagonalizeable as well as non-diagonalizeable matrices.
Let B be a real or complex m× n matrix. B can then be factorized as

B = USV ∗, (2.22)

whereas U is a real or complex m×m unitary matrix, V ∗ (the conjugate transpose
of V ) is a real or complex n×n unitary matrix and S is a m×n rectangular diag-
onal matrix with its diagonal elements being non-negative real numbers.2 Those
diagonal elements are the singular values of B; the columns of U are called the left
singular values of B and the columns of V the right singular values of B.

2.2.2.4 Relation of ED and SVD

If and only if a matrix A is symmetric (or hermitan, if A is complex) and positive
semi-definite, its singular value decomposition will be the same as its eigendecom-
position.
Let’s consider the matrices A∗A and AA∗ and their decompositions:

A∗A = (USV ∗)∗USV ∗ = V S∗U∗USV ∗ = V S∗SV ∗ = V S2V ∗,

AA∗ = USV ∗(USV ∗)∗ = USV ∗V S∗U∗ = USS∗U∗ = US2U∗.
(2.23)

Since the matrices A∗A and AA∗ are by definition symmetric and positive semi-
definite, their singular value decompositions coincide with their eigendecomposi-
tions, whereas Λ = S2 (i.e. the eigenvalues of A∗A and AA∗ are the squared
diagonal entries of S). Also, the columns of V and U are the eigenvectors of A∗A
and AA∗, respectively.

2S has been used to denote the singular value matrix instead of using the equally common Σ
in order to avoid confusion with covariance matrices, which are also commonly denoted by Σ.
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2.2.2.5 Superiority of SVD over ED in PCA

This is of relevance, when it comes to principal component analysis. In PCA it is
necessary to compute the eigenvalues and eigenvectors of the covariance matrix of
the data (as explained in section 2.2.2.1). Since the covariance matrix of a data
matrix X is given by

cov(X) = E[(X − E(X)(X − E(X))T )] (2.24)

and, thus, for a centered data matrix X ′, it is given by

cov(X ′) = E[X ′X ′T ] (2.25)

and since covariance matrices are by definition always symmetric and positive
semi-definite, it is obvious that instead of computing the eigendecomposition of
E[X ′X ′T ], one could just as well compute the singular value decomposition of X ′.

This is highly advantageous considering the computational effort: E.g., if in a
whole brain fMRI scan, 250000 voxels have been recorded (at t time points),
the data matrix would have the dimensions 250000 × t - resulting in the covari-
ance matrix having the dimensions (250000 × t)(t × 250000) = 250000 × 250000.
Assuming that every voxel value is obtained at double precision (i.e. having 8
bytes), the covariance matrix would require 2500002 ∗ 8/10243 = 465 Gigabytes of
memory. Taking into consideration that for fMRI scans the temporal dimension
is usually much lower than the spatial dimension, computing the singular value
decomposition of the original data matrix in the course of PCA (instead of the
eigendecomposition of the covariance matrix) makes much more sense regarding
computational effort.

Apart from computational efforts, there is yet another reason to choose the sin-
gular value decomposition of a data matrix over the eigendecomposition of its
covariance matrix. A measure used to determine how much a function’s output
changes with regard to its input (or, to put it differently: how sensitive the func-
tion is towards input errors) is the so called condition number κ. With respect
to the spectral norm, the condition number is defined as being the ratio of the
largest to the smallest singular value. And in the special case of normal matrices
(i.e. A∗A = AA∗) it is given by the ratio of the largest to the smallest eigenvalue.
Since the eigenvalues of a covariance matrix are (as mentioned above) equal to the
squared singular values of the original data matrix, it is obvious that

κ(A∗A) = κ(AA∗) =
λmax
λmin

= (
σmax
σmin

)2 = κ(A)2, (2.26)
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meaning that the PCA computed by means of singular value decomposition of
the data matrix will lead to more precise results (i.e. a lower condition number)
than when computing it by means of eigendecomposition of the covariance matrix
(which would yield the higher condition number). And, as Narsky et al. state, “For
this reason, PCA implementations often prefer SVD of X over EVD of XTX.” [19]

2.2.2.6 Dimensionality Reduction: Choosing the Number of PCs

After having decomposed the data matrix by means of ED or SVD, an important
problem in PCA is how to choose the number of principal components. In his book
“Principal Component Analysis” I.T. Jolliffe describes this problem as follows:
“The major objective in many applications of PCA is to replace the p elements
of x [x being a vector of p random variables] by a much smaller number m of
PCs, which nevertheless discard very little information. It is crucial to know how
small m can be taken without serious information loss.” [20] There are a variety of
different approaches, amongst which the most common are to base the decision on
the cumulative percentage of total variation or to make the decision with the help
of a so called scree plot. In the latter, the eigenvalues (which describe the variance
in the data) are ordered according to their value and then plotted. Ideally, the
scree plot would include a kink at some point, at which the shape of the curve
changes. Assuming that “true” (desired) signal components are responsible for a
higher variance of the data than noise components, it would make sense to keep
only the principal components that are probably signal components rather than
keeping all components – i.e. including those that are probably related to noise.
However, as F. G. Ashby states, “[...] unfortunately, a kink is rarely obvious. [...]
The key here is to be conservative. In most cases, it will be much better to leave
some noise in the data than to throw away signal.” [12]

2.2.3 Blind Source Separation Problems

The statistical concepts of independence, uncorrelatedness and whiteness have
been thoroughly discussed and principal component analysis has been introduced
as a crucial step prior to blind source separation. Based on all that, this section
will now focus on BSS itself.

Blind source separation (BSS) problems deal with separating mixtures of signals
into their original source signals without (or with very little) a priori knowledge
about the source signals and / or the mixing process - or, as Ziehe puts it -
“[r]estated in the matrix formulation, the BSS problem consists in factoring the
observed signals data matrix X into the mixing matrix A and the source signals
matrix S.” [21]
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This is represented by the equation

X = AS. (2.27)

BSS problems are by nature underdetermined and thus, there is no unique solution
to them. Even though some ambiguities will therefore always remain, useful results
can be obtained from a multitude of approaches, if certain assumptions (depending
on the BSS approach) about the nature of the source signals are made.

2.2.3.1 Ambiguities of BSS Problems

In BSS problems, there are basically two types of ambiguities:

• Scaling ambiguity
Since BSS problems are described by equation 2.27, whereas X represents
the observed data, A an unknown mixing matrix and S the latent (i.e. un-
observable) source signals (or components), the variances of the components
cannot be determined. Multiplying the source signals with a random scalar
and simultaneously dividing the respective parameters (weights) of the mix-
ing matrix by the same scalar leaves the mixed signals X unchanged.
With respect to a commonly used normalization convention, Belouchrani et
al. state: “Advantage can be taken of this ambiguity by assuming, without
any loss of generality, that the source signals have unit variance so that the
dynamic range of the sources is accounted for by the magnitude of the cor-
responding columns of A.” [4] (This has already been briefly mentioned in
section 2.2.1.2.3.)
It is, however, important to “[n]ote that this still leaves the ambiguity of the
sign.” (Hyvärinen, [16])

• Permutation ambiguity
The order of the computed components cannot be determined.
Considering that the mixed signals are nothing else than the sums of the
weighted source signals (as illustrated in equation 2.28) and considering that
addition is always commutative, it becomes clear that the order of the indi-
vidual terms can be arbitrarily changed.

xi = ai,1s1 + ai,2s2 + ...+ ai,nsn (2.28)

It is important to note that whitening the observed data is not an indispensable
prerequisite for BSS algorithms to yield useful results, but much rather a helpful
preprocessing step. In the same way, centering of the data is not mandatory.
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2.2.3.2 Independent Component Analysis

Independent component analysis is probably the most prominent BSS method.
This section starts with a description of what ICA is meant to accomplish (based
on the well known cocktail party problem). Furthermore, underlying assumptions
are explained and finally, the fastICA algorithm is presented.

2.2.3.2.1 The Cocktail Party Problem

Most attempts to explain independent component analysis (ICA) start with the so
called cocktail party problem. The term “cocktail party problem” was introduced
in 1953 by Colin Cherry ([22]). In this context it was purely physiologically (rather
than technically) referring to the ability of discriminating speech signals: “[H]ow
do we recognize what one person is saying when others are speaking at the same
time (the ‘cocktail party problem’)?”
With respect to ICA the cocktail party problem is mostly described in a more tech-
nical way: Several persons (signal sources) in a room talk at the same time, while
their voices are being recorded by microphones (at least as many microphones are
required as there are persons speaking simultaneously to make separation possi-
ble). The problem is then to separate the signal mixtures into the original source
signals with little or no a priori knowledge about the source signals or the mixing
process. The cocktail party problem is thus a classical BSS problem.
ICA can solve the cocktail party problem: This is due to the fact that speech
signals are usually statistically independent - i.e. the fact that one person starts
talking does not necessarily imply that others start talking at the same time. As
its name already suggests, ICA attempts to separate the signal mixture into dif-
ferent components which are as independent as possible.
In addition to the independent components (source signals) the parameters of these
components (weights), which are (in the case of the cocktail party problem) the
amplitudes of the source signals at the individual microphones also need to be de-
termined. As already mentioned, the cocktail party problem is a BSS problem and
thus by nature an underdetermined problem - i.e. an infinite amount of solutions
exist. Yet, apart from only a few ambiguities (see section 2.2.3.1), component
estimates can be made, which come very close to the original signals.

2.2.3.2.2 Assumptions

There are two basic assumptions in ICA:

• Statistical independence of the source signals (components)
As we recall from section 2.2.1.1, statistical independence of two random
variables X and Y is given if and only if their joint probability density
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function (pdf) is equal to the product of their marginal probability density
functions:

pX,Y (x, y) = pX(x)pY (y) for all x, y. (2.29)

However, “[s]ince a closed form solution to the ICA problem would require
exact determination of the pdfs, which are generally not available, the sources
have to be estimated by approximating independence with an objective func-
tion.” [23] Therefore, independence needs to be estimated. Means of doing
this have been discussed in section 2.2.1.1.1.

• Gaussianity of at most one independent component
A continuous random variable Z is said to have a gaussian distribution (or
to be normally distributed) if its probability density function is given by

p(z) =
1

σ
√

2π
e−

(z−µ)2

2σ2 , (2.30)

whereas σ is the standard deviation of the distribution (i.e. σ2 is its variance)
and µ is its expected value (mean). A special case of the gaussian distribution
is the standard normal distribution. It has µ = 0 and σ2 = 1 (note, that this
is the case for whitened data!) and is thus given by

p(z′) =
1√
2π
e−

z′2
2 . (2.31)

Since statistical independence of a set of variables is given only if their joint
probability density function (pdf) equals the product of their marginal pdfs,
the joint pdf of two independent components (obtained from whitened data)
is given by

p(s1, s2) =
1√
2π
e−

s21
2 ∗ 1√

2π
e−

s22
2 =

1

2π
e−

s21+s
2
2

2 =
1

2π
e−
||s||
2 . (2.32)

The joint pdf of the mixed signals x1 and x2 can be computed from the joint
pdf of the independent components as follows:

p(x1, x2) =
p(s1, s2)

|detA|
. (2.33)

The division by |detA| is a special case of the transformation theorem for
nonsingular linear transformations (as is the case with A).
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From X = AS (equation 2.27), we obtain S = A−1X. And since the data
has been whitened, the mixing matrix A is orthogonal (see section 2.2.1.2.3),
i.e. A−1 = AT . Thus S = ATX.
The joint pdf of the mixed signals therefore becomes

p(x1, x2) =
1

2π|detA|
e−
||AT x||2

2 . (2.34)

We will now consider two more properties of orthogonal matrices:

– ||Ax|| = ||x||
This is because isometry (preservation of lengths) and isogonality (preser-
vation of angles) are characteristic properties of orthogonal matrices.
Orthogonal matrices represent rotations, reflections or combinations of
those.

– The determinant of an orthogonal matrix is always either +1 or −1.

Bearing those properties in mind, we obtain

p(x1, x2) =
1

2π
e−
||x||2

2 (2.35)

for the pdf of the mixed signals x1 and x2.
From those considerations Hyvärinen concludes: “[W]e see that the orthogo-
nal mixing matrix does not change the pdf, since it does not appear in this pdf
at all. The original and mixed distributions are identical. Therefore, there
is no way how we could infer the mixing matrix from the mixtures.” [16]
If only one gaussian component is present in a mixture of otherwise non-
gaussian components, “[...] we can estimate the model, because the single
gaussian component does not have any other gaussian components that it
could be mixed with.” [16]

2.2.3.2.3 fastICA

fastICA is an ICA algorithm developed by Apo Hyvärinen. Different versions
of the algorithm facilitate deflation-based and symmetric signal separation (i.e.
sequential or simultaneous computation of the components). fastICA estimates
independence by maximizing non-gaussianity (to be more specific: by maximizing
the negentropy).

The basics steps of the fastICA algorithm are illustrated in figure 3. In this

29



example X = AS with AT = W , hence S = WX.

The approximation of the weight vectors is done using an approximation of negen-
tropy:

wn = E[xg(wTx)]− E[g′(wTx)]w, (2.36)

whereas g(.) is an objective function and g′(.) is its derivative.

In [16] Hyvärinen states that good choices for the objective function are either

g1(u) = log cosh(u) and therefore g1
′(u) = tanh(u) or

g2(u) = −e−
u2

2 and therefore g2
′(u) = ue−

u2

2 .
(2.37)

Apart from those two objective functions, one could also use

g3(u) =
1

4
u4 and therefore g3

′(u) = u3, (2.38)

however, Hyvärinen states, that this last function is sensitive to outliers and there-
fore not an ideal choice.

Figure 3: Basic steps of the fastICA algorithm.
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2.2.3.3 Second Order Blind Identification

Apart from ICA, there is a diversity of BSS methods relying on joint diagonaliza-
tion: Next to JADE (Joint Approximate Diagonalization of Eigen-matrices – [24])
and AMUSE (Algorithm for Multiple Unknown Signals Extraction – [25]) there
is another approach called SOBI (second order blind identification), which will
be the described in this section. Belouchrani et al. have introduced SOBI as an
approach to solve BSS problems, which (as they state in said paper) “[...] relies
only on stationary second-order statistics that are based on a joint diagonalization
of a set of covariance matrices.” [4] SOBI is thus superior to JADE and AMUSE
in that it is a more robust algorithm (it is based on second order statistics only
rather than on fourth order statistics, as is the case with JADE and it jointly
diagonalizes a multitude of autocovariance matrices rather than just two, as is the
case with AMUSE).
This section focuses on the underlying assumptions of SOBI and how they differ
from those of ICA. Furthermore, approximate joint diagonalization is explained as
a basis for understanding the actual algorithm, which is then given.

2.2.3.3.1 Assumptions

Compared to ICA, SOBI has significantly different prerequisites. In ICA, mutual
independence of the components and gaussianity of at maximum one component is
required (see section 2.2.3.2.2). SOBI on the other hand requires the components
to be individually autocorrelated (to be more specific: weakly stationary) and
mutually uncorrelated. It is worth mentioning again that uncorrelatedness is a
much weaker criterion than independence. Also, multiple gaussian sources can be
separated by SOBI.

2.2.3.3.2 Approximate Joint Diagonalization Problems

Eigendecomposition (as described in 2.2.2.2) is (at its core) a diagonalization prob-
lem - hence, when performing PCA by means of eigendecomposition of the covari-
ance matrix of the data, one basically diagonalizes said covariance matrix.
We will now consider the autocovariance matrices of a data set (instead of its co-
variance matrix). Autocovariance simply means covariance of a signal with itself
at different points in time.
Let x be zero mean mixed signals, s the source signals and A the mixing matrix,
so that x = As and let τ be a time lag. Then the autocovariance matrix of the
mixed signals x with respect to the time lag τ will be

Cτ (x) = E[x(t)x(t+ τ)T ]. (2.39)
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Substituting x with As on the right side of the equation leads to

Cτ (x)
def
= E[As(t)As(t+ τ)T ] = AE[s(t)s(t+ τ)T ]AT = ACτ (s)A

T . (2.40)

The matrix A is in fact already the solution to the diagonalization problem, since
the source signals are assumed to be statistically independent (resulting in the
off-diagonal elements of the covariance matrix Cτ (s) to be zero).

Note that, so far, we have only dealt with a simple diagonalization problem. We
will now focus on joint diagonalization problems.
Joint diagonalization aims at simultaneously diagonalizing multiple matrices – i.e.
minimizing the off-diagonal elements in every single one of those matrices. Using a
set of autocovariance matrices as target matrices for joint diagonalization (rather
than just a single autocovariance matrix) can solve BSS problems.
The squared Frobenius norm of the off-diagonal elements of autocovariance ma-
trices is often used as a “joint diagonality criterion”, which is to be minimized
in order to solve the respective BSS problem. In the context of explaining SOBI
Belouchrani et al. [4] define the “off” of a n× n matrix M as

off (M)
def
=

∑
1≤i 6=j≤n

|M |2. (2.41)

They then define the joint diagonality criterion for any n× n matrix V as

C(M, V )
def
=

∑
k=1,K

off (V HMkV ) (2.42)

with M = {M1, ...,Mk} being a set of n× n matrices.

Belouchrani et al. state that “it is not required that the matrix set under con-
sideration can be exactly simultaneously diagonalized by a single unitary matrix
[...] it is not even required that the matrices in the set are individually unitarily
diagonalizable.” [4] Instead, the unitary matrix V serving as joint diagonalizer of
the matrix set M is only meant to minimize the joint diagonality criterion. This
is referred to as approximate joint diagonalization. Ziehe puts it this way: “The
approximation is understood in the sense of minimizing a suitable diagonality cri-
terion.” [21]

To sum all this up: The SOBI algorithm computes an approximate joint diag-
onalization of a multitude of autocovariance matrices by minimizing the joint di-
agonality criterion given in equation 2.42. The exact steps of the algorithm are
detailed in the following section.
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2.2.3.3.3 The SOBI Algorithm

The SOBI algorithm has been presented by Belouchrani et al. in 1997. [4]
Since SOBI is based on joint diagonalization of autocovariance matrices and since
autocovariance refers to the covariance of a signal with itself at different points in
time, the classical BSS problem (as given in equation 2.27) is reformulated in such
a way that it expresses the time dependency of the signals:

x(t) = As(t). (2.43)

The steps of the actual algorithm are illustrated in figure 4.

The first three steps of SOBI comprise data whitening. Whitening has been in-
cluded in the algorithm to confine the solution space for the mixing matrix A
to unitary matrices. A can therefore be factored into the pseudoinverse of the
whitening matrix and a unitary matrix (this can be seen in the last step of figure
4).

After having whitened the data, autocovariance matrices are formed for a set
of time lags. As Miettinen et. al state, “[...] the choice of the number of lags and
which lags to choose is still an open problem for SOBI.” [26]

The next step is then to compute the unitary matrix which serves as a joint
diagonalizer for the set of autocovariance matrices. For this purpose, Belouchrani
et al. have presented a modified version of the Jacobi eigenvalue algorithm (which
is an iterative diagonalization method). [4]

Considering that the product of the whitening matrix and the joint diagonalizer
is the mixing matrix, one can now compute the source signals.

As with fastICA, there are deflation-based, as well as symmetric approaches to
SOBI.
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Figure 4: Basic steps of the SOBI algorithm.
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2.3 Making use of all these fundamentals...

The first part of the fundamentals section basically dealt with the physical prin-
ciples related to magnetic resonance imaging. Those principles help to under-
stand what actually happens during (f)MRI scanning sessions and how images are
formed.

However, before fMRI data analysis can be performed, a variety of processing
steps are essential (e.g. motion correction, deobliqueing,...). Ideally, noise removal
should also be part of this process. Since a novel approach to the removal of
physiological noise from fMRI data based on blind source separation methods is
the topic of this thesis, those methods and the mathematical and statistical back-
ground related to them have also been explained.

Before moving on to the next section, which goes into details on how this ap-
proach has actually been implemented, figure 5 roughly outlines the idea behind
the approach: PCA (by means of SVD) is used for dimensionality reduction and
decorrelation of the data. Subsequent blind source separation generates the in-
dependent components. Those are then analyzed (in the frequency domain) and
only the ones which are assumed not to be related to cardiac activity are finally
used for reconstruction.
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Let X be a data matrix containing the (preprocessed) subject data. By means
of SVD, it is decomposed such that

Xt×v = Ut×c1Sc1×c1(Vv×c1)
T ,

hence,

Xt×vVv×c1 = Ut×c1Sc1×c1 .

Since the right singular vectors (columns of V ) are the so-called principal axes
or principal directions, projections of the data onto these axes (given by XV
or, alternatively, US) are referred to as principal components.

Blind source separation of said principal components yields

(XV )t×c1 = Ct×c2(Ac1×c2)
T ,

S denoting the component matrix (i.e. the columns of C are the independent
time series) and AT denoting the mixing matrix (i.e. the rows of AT are the
corresponding weights).
Note, that when using the current R implementation of the SOBI algorithm
for blind source separation, c1 will equal c2.
Using spectral analysis, some of the independent components are identified
as being related to cardiac activity. The respective columns of C and the
corresponding weights (rows of AT ) are thus eliminated, such that

c̃2 = c2 \ cCA,

cCA being the components related to cardiac activity. Reconstruction of the
principal components is thus given by

(XV )t×c1 = Ct×c̃2(Ac1×c̃2)
T .

Projecting those reconstructed principal components into the original space
produces a reconstructed data matrix (denoted by Y):

Yt×v = (XV )t×c1(Vv×c1)
T .

Figure 5: PCA by means of SVD, subsequent BSS and data reconstruction after removal
of components related to cardiac activity. Matrix dimensions are denoted as subscripts,
v being the number of voxels, t being the number of time points and c1 and c2 being the
number of components computed by PCA and BSS, respectively.
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3 Methods

3.1 Data Acquisition

The data analyzed in this thesis has been recorded within the course of a previous
fMRI study of Boubela et al. [27] Within this study, a total of 18 subjects (9 male,
9 female, mean age: 34.6 years, SD = 12.2 years) have been scanned in the research
facilities of the Medical University of Vienna using a Magnetom TIM Trio (3T)
MRI scanner with a 32-channel head coil (Siemens Healthcare GmbH, Erlangen,
Germany).

The resting-state BOLD fMRI scans were measured using a multiband EPI se-
quence (as described by Feinberg et al. in [28]) at a resolution of 1.7 × 1.7 × 1.7
mm3 with a slice gap set to 2 mm. 32 axial slices (matrix size 128 × 128, aligned
with the AC-PC line) were recorded at TE/TR = 31/333 ms, a flip angle of 30◦,
with a multiband factor of 8 and a bandwidth of 1776 Hz/Pixel. 1200 volumes
were recorded - corresponding to an overall scan time of approx. 7 minutes.

A high-resolution (1 × 1 × 1.1 mm3) structural scan was also acquired (160 sagit-
tal slices were recorded at TE/TR = 4.21/2300 ms, a flip angle of 90◦ and an
inversion time (TI) of 900 ms).

The subjects heart rates have been recorded using the so called peripheral pulse
unit (PPU - a Siemens product). Unfortunately, this has however only been done
for 11 out of the 18 subjects.

3.2 Computing Environment

All computations have been performed on a server equipped with two Intel Xeon
X5690 CPUs (3.47GHz, 6 cores) and 192 GB of main memory running on Ubuntu
Linux (Version 14.04 ‘Trusty Tahr’).

As for the software environment, R v3.1.1, AFNI version ‘AFNI 2011 12 21 1014’
and FSL v5.0 have been used.

3.3 Data Preprocessing

The data have been preprocessed using the neuroimaging tools / libraries FSL
([29]) and AFNI ([30]). The order in which the preprocessing steps have been per-
formed, was based on the recommendation given in [31].
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The resting-state data sets have been bias-corrected using FSL FAST and skull
stripped using the FSL brain extraction tool (BET). They have then been motion
corrected using FSL FLIRT. Subsequently, the data sets have been aligned to the
anatomical images in MNI152 standard space (using AFNI’s 3dAllineate). De-
obliqueing was performed using AFNI’s 3drefit. All data sets were then spatially
blurred using a Gaussian kernel (FWHM = 8 mm) with AFNI’s 3dmerge tool.
Furthermore, considering that each subject data set had a high spatial and tempo-
ral resolution (1.7 × 1.7 × 1.7 mm3 with 1200 volumes being recorded), the group
data matrix, which was constructed in order to perform group ICA (for ROI se-
lection – see section 3.7.1) was a very large matrix (>75 GB for 18 subjects). This
lead to computational limits, which were overcome by resampling the data to a
spatial resolution of 2 × 2 × 2 mm3 using AFNI’s 3dresample.

In order to assess the capabilities of the algorithm, functional connectivity analysis
has been performed (after all the processing steps – see section 3.7). This anal-
ysis has not only been performed with the fully processed data, but as well with
data of which physiological noise was removed by means of band pass filtering.
This reference data was created by using the same original data, performing the
exact same preprocessing steps on it and then band pass filtering it with cut-off
frequencies of 0.01 and 0.1 Hz, respectively.

3.4 Principal Component Analysis

Principal component analysis has been performed by means of computing the sin-
gular value decomposition of the (centered) data matrix. This has been done
using R’s SVD package (since in comparison to R’s IRLBA package, SVD allows
for multi-threaded processing when using an OpenBLAS library instead of R’s
standard BLAS library).

The common considerations have been made with respect to the dimensionality
determination for PCA (see section 2.2.2.6 for more details on that topic).
First, the scree plots for all 18 subjects have been computed. They have then all
been scaled in such a way that their maximum values would all equal 100 (arbi-
trarily chosen value). In a next step, a mean scree plot has been computed from
the scaled plots (this mean scree plot is depicted in section 4.1).
One common approach would then be to compute the cumulative variance for
which the principal components account and to then take a random guess at the
percentage of how much of this variance is probably noise related in order to finally
choose the number of principal components. This, however, seemed unreasonably
arbitrary. Also, projecting the original data of each subject (1200 dimensions)
into 1000 dimensions would still retain only less than 90% of the total variance -
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such an approach would thus probably tempt to retain too many components for
further processing.
Another common approach would be to look for a kink in the scree plot (see sec-
tion 2.2.2.6). Since the computed scree plot showed no kink, this approach was
not helpful either.
Hence, the slope of the mean scree plot was computed at different points. Since
scree plots are by definition strictly decreasing, their slopes can never be positive.
Also, the absolute value of the slope of this scree plot is steadily decreasing (i.e.
the curve doesn’t get steeper). Therefore, it can be concluded that the changes
in variance explained by the components constantly become smaller. At a certain
point, they can be regarded as being negligible. Large numbers of components
with negligibly different variances were assumed to be noise related. A threshold
value for the slope (i.e. a value from which on the variances were defined as chang-
ing sufficiently little) has been defined (rather arbitrarily) in order to determine a
reasonable number of principal components – results are given in section 4.2).

3.5 Blind Source Separation

Blind source separation was computed with the help of an R implementation
of Belouchrani’s SOBI algorithm ([4], [26]) and an R implementation of Aapo
Hyvärinen’s fastICA algorithm ([18]).

The R implementation of the SOBI algorithm automatically computes as many
components as are given to it as input (i.e. in this case 100 components, since
PCA was set to deliver 100 components) – it does not enable the user to define
another number of components to be computed. So, in order to properly compare
the results obtained from BSS by means of fastICA to the results obtained from
BSS by means of SOBI, the number of independent components to be computed
by the fastICA algorithm needs to be equal to the number of principal components
computed by means of PCA.
Thus, 100 components (time series) and corresponding weights (spatial maps) were
computed. However, so far, the choice of the number of components can hardly be
justified – further research is needed in this area. As Hyvärinen et al. have stated:
“[I]t is even more difficult to give any guidelines as to how many components
should be estimated. Trial and error may be the only method applicable.” [16]

Within the course of this work, symmetric SOBI and fastICA approaches have
been utilized. It remains an open issue, though, whether different (and if so, bet-
ter) results can be obtained by using deflation-based approaches.

The components obtained by BSS using fastICA were remarkably different to
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those obtained by BSS using SOBI: While the Fourier transforms of some of the
SOBI components were spectra with clearly distinguishable peaks (figure 6 is a
good example of SOBI component with an obvious peak), the Fourier transforms
of the fastICA components contained no such peaks (respective results are not
shown, since displaying 100 components for 18 subjects - or even for a single sub-
ject - would go beyond the scope of this thesis).
Since the component identification algorithm (as described in section 3.6.1) fully
relies on spectral analysis (to be more specific: on finding certain peaks within the
spectra), the results obtained from the fastICA computations could not be used
for further processing.

3.6 Component Identification and Extraction

3.6.1 Identification

In order to identify the components related to cardiac activity, the power spectral
densities (PSDs) of all components were estimated for each subject by squaring
the magnitude of their Fourier transform.
The local variability of the Fourier spectra has been estimated by means of com-
puting the sliding window median absolute deviation (MAD). The MAD has been
chosen as a measure of central tendency for this purpose, because unlike approaches
using the mean or standard deviation, it is rather robust against outliers. The size
of the sliding window has been set to 30 frequency bins (of which each has a size
of ∼ 2.5 ∗ 10−3 Hz – this size is of course determined by the sampling rate).
A magnitude threshold has then been used in order to determine the frequency
range potentially related to cardiac activity: the threshold is basically dependent
on the sum of the median and the median absolute deviation of the sliding window
MAD. The latter can however be scaled by a factor f , which facilitates an adaption
of the sensitivity of the algorithm:

threshold = median(sldg.mad) + f ∗mad(sldg.mad), (3.1)

where a value of 5 for the factor f has been found empirically to deliver useful
results and has thus been used in this work.

The highest frequency at which the sliding window MAD curve would rise above
this threshold was defined as the upper limit of the above mentioned frequency
range. The lower limit of this frequency range was defined as being the highest
possible frequency at which the sliding window MAD curve would fall below the
above mentioned threshold (provided that this frequency value is at least 50 fre-
quency bins – i.e. ∼ 0.125 Hz – lower than the upper limit).
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Based on the sliding MAD curve within this frequency range, a component has
been assumed to be primarily related to the heart rate,

• if the area under the sliding MAD curve within said frequency range (which
corresponds to the signal power of this frequency range) is at least 50% of
the area under the entire sliding window MAD curve (i.e. it comprises at
least 50% of the total signal power) and

• if the lower limit of the frequency range is larger than 0.5 Hz.

If the first criterion is not fulfilled, the component might be related to cardiac ac-
tivity and additionally to other physiological phenomena (there might be another
relevant peak in the PSD curve) - e.g. neuronal activity, which has to be preserved
in the data.
The second criterion simply ensures that low frequency peaks in the PSD curve
related to other physiological phenomena are not mistaken for heart rate peaks (it
is unlikely that a healthy subject has a resting heart rate of less than 30 bpm).

The measures used within the algorithm for identification of components related to
cardiac activity are illustrated in figure 6 (the given component would be identified
by the algorithm as being related to cardiac activity).
It is noteworthy that the behavior of the algorithm and thus also the results
obtained by it (number and nature of extracted components) strongly depend
on how some of the parameters are set (factor f in threshold computation, AUC
criterion, sliding window size). So far, the values have been determined empirically.

3.6.2 Extraction

The components (and corresponding weights) related to cardiac activity have been
saved separately. The spatial maps can be used to locate the brain areas in which
cardiac activity predominantly contributes to the original data).
The remaining components were used for the reconstruction of the data matrix.

3.6.3 Heart rate determination as plausibility check

For every subject, a mean curve of all sliding window MAD curves of the com-
ponents related to cardiac activity was computed. The maximum of this mean
curve was assumed to be an estimator of the most prevalent heart rate. This value
was compared to pulse data, which was recorded separately during the scanning
sessions. (The pulse data itself was analyzed by computing its Fourier transform
and then determining the maximum of the resulting spectrum.)
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Figure 6: Measures used in the algorithm for identification of components related to
cardiac activity: Component PSD (black curve), sliding window MAD (red curve), mag-
nitude threshold (green horizontal line), frequency range limits (blue vertical lines),
signal power within frequency range (blue area under the curve).

The similarities in the heart rates computed from the components related to car-
diac activity and the heart rates computed from the pulse data were then assessed
(high similarities were assumed to indicate the plausibility of the identified com-
ponents to actually be related to cardiac activity).
However, it needs to be mentioned that specific heart rate values (like the ones
used here, which are assumed to be the subjects most prevalent heart rates) com-
puted from the components related to cardiac activity are strongly dependent on
the behaviour of the component identification algorithm - which again depends on
how its parameters are set (see section 3.6.1).
Results are listed in section 4.2.

Another approach of investigating the algorithms ability to correctly identify com-
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ponents related to cardiac activity would be to compare the heart rate variability
(HRV) computed from the photoplethysmography data to the HRV estimated from
the components spectra. Heart rate variability is a physiological phenomenon re-
ferring to the variability in duration between heart beats (roughly stated: a high
HRV is a sign of good health). There are different measures of HRV. One way
of expressing it is by computing the standard deviation of NN intervals (i.e. in-
tervals between heart beats). This measure is referred to as ‘SDNN’ and can be
computed e.g. from photoplethysmography data. Estimating the HRV from the
BOLD signal components Fourier spectra could be approached by computing the
width of the frequency peak (e.g. between the frequency range limits described in
section 3.6.1). The HRV measures obtained from the photoplethysmography data
and those obtained from the BOLD signal components could then be compared
and the ability of the algorithm to correctly identify BOLD signal components
related to cardiac activity could be deducted. However, one drawback of using
SDNN as a measure of HRV is that the standard deviation is sensitive to outliers
– hence, an extremely accurate detection of peaks in the photoplethysmography
data would be required.
This approach has not been followed through within the course of this thesis
project, but should be subject to future research.

3.7 Analysis of Reconstructed Data

Seed-based correlation analysis (SCA) has been performed as a means of studying
functional connectivity. In order to compare the functional connectivity of the
band passed data with that of the reconstructed data (i.e. the data, from which
the components related to cardiac activity have been removed), the same regions
of interest (ROIs) have been used for said data sets. The correlations have been
calculated using R and visualized using AFNI.

3.7.1 ROI computation for functional connectivity analysis

Although there seems to be no standardized way of ROI selection, it has become
common practice to select ROIs based on the anatomy of standard atlases and to
then use the selected ROIs for functional connectivity analysis of all subjects of a
study. However, Sohn et al. have shown only recently that due to the variability
of functional brain connectivity amongst subjects, this approach leaves room for
improvement [32].
Hence, they describe a novel approach to ROI selection. This approach selects
ROIs for each subject individually. To be more specific: “[...] the associated time-
series for a network obtained in [group] ICA is used to reconstruct that network
for a specific individual. To do this, we took the time component of each target
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ICA network and identified the time-series for each individual. [...] Seed coordi-
nates were determined by the peak z-values in the reconstructed networks for each
individual, which resulted in a unique set of ROIs for each subject.” [32]

Before performing the actual spatial ICA (with 30 components) on the group
data, PCA has been performed (1000 components) - again, using R’s SVD pack-
age. 1000 components have been used for PCA in order to retain a high degree
of information (1000 components account for approx. 88% of the total variance).
The number of PCA components is (in this context) however by far not as impor-
tant as the number of ICA components (which was determined empirically). E.g.
an attempt to use 100 ICA components (instead of 30) has proven to separate the
data into too many subgroups, resulting in the fact that no known resting state
networks could be identified.
The resulting ICA components (spatial maps) have been inspected visually (using
AFNI) and categorized by comparison to literature data ([33], [2]).
Results are depicted in section 4.3.1.

The time series (weights) of the components of interest have then been used for
correlation analysis with single subject voxel time series (using R’s cor()-function,
which computes Pearson’s correlation coefficient): Every voxel time series of every
subject has been correlated to said components’ time series. Since exactly one r
value is computed for each voxel time series of each subject, those r values can be
easily visualized as spatial maps. In order to perform a plausibility check of the
results obtained from the correlation analysis, a mean of those spatial maps (hence-
forth referred to as “mean correlation map”) has been computed from all subjects
for the previously selected components. Furthermore, the correlation between the
individual correlation maps and the sICA components have been computed in or-
der to investigate the consistency of the resting state networks among the subjects.
The respective results are given in section 4.3.2.

A maximum correlation value has been determined for every correlation map and
has been chosen as center voxel for the respective subject- and component-specific
ROI. The Fisher transformation to z values (z := arctanh(r)) has been omitted,
since the inverse hyperbolic tangent function is strictly monotonic increasing and
hence, the maximum correlation value corresponds to the maximum z value.
To ensure that those center voxels really are part of the respective networks, voxel
masks have been computed from the spatial ICA maps of the group data. The
threshold to determine whether a voxel would be part of the mask or not has
been set to ±2, respectively, for every component of interest. However, due to
the scaling ambiguity of BSS problems, which is discussed in section 2.2.3, the
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threshold needs to be determined anew for every new analysis. Using those masks,
the computation of the center voxels was confined to the selected networks.
Results are given in section 4.3.3.

3.7.2 Seed-Voxel Correlation Maps

The ROIs around the center voxels have been set to be spherical with a radius of
4 mm. With a voxel size of 2 × 2 × 2 mm3, this corresponds to 33 voxels within
each ROI. As usually done in seed-based correlation analysis, the mean time series
has been computed from all the time series of the voxels within the ROI. This
mean time series has then been correlated to all voxel time series of the respective
scan. This has been done for the reconstructed and the band passed data of every
subject.

In order to examine the differences between the seed-voxel correlation maps of
the reconstructed and the band passed data, their absolute values have been sub-
tracted from each other as follows:

∆r = |rreconstructed| − |rbandpassed|, (3.2)

with rreconstructed denoting a seed-voxel correlation map of the reconstructed data,
rbandpassed denoting a seed-voxel correlation map of the band passed data.
For every component of interest, the mean of the difference maps of all subjects has
been computed. Showing that this mean is significantly different from 0 would im-
ply that the seed-voxel correlation maps of the reconstructed and the band passed
data are significantly different. This test, which is essentially a paired t-test, has
been carried out voxelwise using AFNIs 3dttest++. AFNI uses False Detection
Rate (FDR) correction in order to control Type-I errors. The fact that such a cor-
rection is necessary (since the test procedure would otherwise represent a classical
multiple comparisons problem) has been described in [34].

Fisher’s z-transformation has been computed (before performing AFNIs 3dttest++)
in order to meet the normality assumption of the t test.
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4 Results

4.1 Dimensionality determination for PCA

The steps leading to the computation of the mean scree plot (depicted in figure 7)
are described in section 3.3.
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Figure 7: Mean scree plot computed from the scree plots of all subjects (the vertical
blue line marks the singular value ranked 100 and the horizontal blue line marks the
actual 100th singular value).

The first one hundred singular values account for 17.4% of the total variance.
The fact that the slope of the curve at the 100th singular value lies at -0.02
and that it (and its absolute value) steadily decreases from there on indicates
that the variance accounted for by the remaining 1100 components changes only
negligibly (the curve’s slope at the 1st singular value lies at 13.16). The more or
less similar variance of these last 1100 components leads to the assumption that
those components might represent noise.
Hence, the first 100 principal components have been computed for the data sets
of all subjects. This may seem arbitrary (and to a certain extent it actually
is), however, as Ashby states, “[...] PCA, by itself, offers no statistical basis for
deciding how many components to eliminate.” [12]
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4.2 Heart rates computed from components related to car-
diac activity

The methods used to determine the most prevalent heart rates of the subjects from
the components related to cardiac activity are described in section 3.6.3. Said sec-
tion also describes the method used to determine the subjects most prevalent heart
rates from the data recorded with the Siemens peripheral pulse unit (PPU).

Those heart rates are listed in table 2.

Subject ID
HR computed
from components

HR computed
from pulse data

Percent
Error [%]

1 78 78 0
2 72 66 9.1
3 42 42 0
4 66 66 0
5 60 60 0
6 54 54 0
7 66 42 57.1
8 72 66 9.1
9 54 54 0
10 66 72 8.3
11 54 54 0

µ± σ 62±10 59±12 7.6±16.9

Table 2: Heart rates computed from components which are related to cardiac activity
versus heart rates as obtained from the Siemens PPU. The last row contains the means
(µ) and standard deviations (σ). Heart rates are given in beats per minute.

The percent error has been calculated assuming that the heart rates computed
from the PPU data correspond to the “true” values.
In seven out of eleven subjects the heart rate computed from the BOLD signal
was identical to the heart rate computed from the PPU signal. In another three
subjects, the heart rate computed from the BOLD signal deviated by ±0.1 Hz (i.e.
±6 bpm) from that of the PPU data. This corresponds to percent errors of 8.3%
and 9.1%, respectively. In one subject, the heart rate computed from the BOLD
signal was 0.4 Hz (i.e. 24 bpm) off - that corresponds to a percent error of 57.1%.

The given results show that the described method can not be used to determine a
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subject’s exact heart rate. However, the results do suggest that using the method
for identifying components related to cardiac activity is legitimate. As the the
data are taken from brain scans, other factors like vessel compliance (decreasing
with increasing age) may also play a role.

Changing the parameters of the identification algorithm in a way which makes
it ‘less strict’ (i.e. more components are identified as being related to cardiac ac-
tivity) is possible and increases the accuracy of the determined heart rates. On the
other hand, this would also lead to an ‘extraction’ of more data and thus might
result in the loss of valuable information contained in the signal.

4.3 ROI computation

4.3.1 Components of interest

Spatial ICA on the group data matrix yielded 30 spatial components (with corre-
sponding weights), of which only a few have been chosen (upon comparison with
literature – see [2] and [35]) for ROI determination.
The chosen components are depicted in figures 8 through 12.3 Said figures also
depict the maps referred to as mean correlation maps (further details on those are
to be found in section 4.3.2).
The MNI152 T1 template has been chosen as an underlay.

The sub-figures (a)-(c) of figures 8 through 12 have been thresholded at ± 2.
A more detailed look at the atlas regions covered by the component depicted in
figure 8 reveals that it primarily covers parts of the superior temporal gyri (Brod-
man Area 22), the insular cortex and - to some extent - sections of the inferior
frontal gyri - especially the pars orbitalis (BA 47). This is in accordance to litera-
ture (Damoiseaux et. al [2]), where said network is described as covering parts of
the superior temporal gyri, the insular cortex and the postcentral gyri. The given
source describes those cortical regions as being “[...] acknowledged to represent
the auditory cortex.”
This is consistent with the fact that some activation was also found in the transver-
sal temporal gyri (also known as Heschl’s gyri – BA 41 and BA 21), which comprise
the primary auditory cortex.

The component depicted in figure 9 represents the primary visual network. It
basically covers the cuneus. Using functional rather than structural terminology,

3All 2d maps within this thesis are given together with coordinates according to neurological
convention (i.e. LPI axes orientation). The coordinates refer to the distance (in mm) to the
location of the anterior commissure in the MNI152 T1 template.
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(a) z = -6 (b) x = 48 (c) y = 12
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(d) z = -6 (e) x = 12 (f) y = 48

0 1

Figure 8: Auditory network computed by group sICA (a-c) and corresponding mean
correlation map (d-f)

the covered section is referred to as primary visual cortex (or striate or visual area
V1). The corresponding Brodmann area is BA 17. Parts of the primary visual
network also cover the parastriate (BA 18).
These anatomical classifications were not only determined with the help of the
underlying atlas, but have also been reported about in the before mentioned pub-
lication by Damoiseaux et al.

Due to the strong resemblance of the component depicted in figure 10 (a-c) to
the network referred to as “auditory” in [35], this component was first assumed
to actually represent the auditory network. However, an in-depth analysis showed
that the areas covered by the component are primarily the precentral gyrus and -
from a cytoarchitectural point of view - BA 4 and BA 6. BA 4 refers to the primary
motor cortex (it coincides with the precentral gyrus) while BA 6 is located anterior
to BA 4 and comprises the premotor- and the supplementary motor cortex.
Out of all five selected components, this one shows the greatest variability amongst
subjects (as indicated by the strongly smeared mean beta map depicted in figure 10
(d-f)). Beckmann et al. ([33]) have reported about a network to which they refer
as sensory-motor network. The smeared beta map (especially the coronal view
which illustrates strong correlation of the voxel time series of even the superior
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Figure 9: Primary visual network computed by group sICA (a-c) and corresponding
mean correlation map (d-f)

sections of the pre- and postcentral gyri with the sICA component’s time series)
shows a strong resemblance to Beckmann’s sensory-motor component.
Hence, it seems plausible that this network is related to sensory-motoric neural
activity.
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(a) z = 16 (b) x = -56 (c) y = -6
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(d) z = 16 (e) x = -56 (f) y = -6
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Figure 10: Sensory-motor network computed by group sICA (a-c) and corresponding
mean correlation map (d-f)

The component depicted in figure 11 covers a variety of areas belonging to the
occipital lobe: primarily the superior and middle occipital gyri as well as the lingual
gyri. From a cytoarchitectural point of view, BA 18 and BA 19 are comprised in
this component - which together form the extrastriate (or peristriate) cortex (i.e.
visual areas V1-V5).
Damoiseaux et al. have found this same network (covering the exact same areas)
and have also stated, that those areas “[...] are recognized as part of the visual
cortex.” [2].
The network is commonly referred to as lateral visual network.
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(a) z = -2 (b) x = -32 (c) y = -78
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Figure 11: Lateral visual network computed by group sICA (a-c) and corresponding
mean correlation map (d-f)

The component depicted in figure 12 covers parts of the medial frontal gyrus,
the superior frontal gyri, as well as parts of the anterior cingulate cortex. In
cytoarchitectural terms, BA 9 and BA 10 lie within the covered area.
Damoiseaux et. al have found this same network and have analogously stated that
prefrontal cortical areas as well as the cingulate cortex are involved ([2]).
This network represents the anterior part of a network commonly referred to as
default mode network. Buckner et al. describe the functional properties of this
network as follows: “In particular, the default network is the most active brain
system when individuals are left to think to themselves undisturbed. The default
network also increases activity during mental explorations referenced to oneself
including remembering, considering hypothetical social interactions, and thinking
about ones own future.” [36]
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(a) z = 18 (b) x = 2 (c) y = 46
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Figure 12: Default mode network (anterior part) computed by group sICA (a-c) and
corresponding mean correlation map (d-f)

4.3.2 Mean correlation maps and network consistency among subjects

As described in section 3.7.1, correlation analysis yielded correlation maps, of
which a mean map has been computed from all subjects for each of the selected
components. Those mean maps are also depicted in figures 8 through 12 (d-f) –
together with the corresponding maps obtained from group data sICA (see section
4.3.1).

The similarity between those mean correlation maps and the maps computed by
group data sICA is obvious. This indicates that the networks found by means of
sICA are not merely patterns artificially produced by sICA, but that the correla-
tions of the respective time series are actually present in the subjects.

In order to investigate the consistency of the networks amongst subjects (i.e. to
ensure that the patterns do not arise due a single occurrence in one of the subjects),
the individual correlation maps have been correlated with the corresponding sICA
components. This has also been described in section 3.7.1. The results of this
analysis are listed in table 3 and illustrated in form of a box plot in figure 13.
Initially, the r values might seem to indicate a low correlation, but the reason for
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Figure 13: Pearson correlation between the individual subjects’ correlation maps and
the sICA components

this is simply that only a portion of all voxels of a brain scan actually contribute
to each of those networks. When investigating the consistency of resting state net-
works among 1000 subjects (data obtained from the human connectome project),
Kalcher et al. have obtained comparable results. [37]

However, the magnitude of the individual correlation coefficients only accounts
for the degree to which the resting state networks are present in the individual
subjects. The consistency of the presence of these networks among the individual
subjects has to be derived from the spread of the correlation coefficients of all
subjects. As depicted in figure 13, the interquartile range (IQR) of the data with
respect to the the auditory network reaches a value of 1.0 (i.e. higher than that
of any other network). This indicates that the auditory network seems to be the
least consistent amongst subjects. The sensory-motor network seems to be the
most consistent among all subjects, having an IQR of only 0.03 as well as the
lowest minimum-to-maximum range.
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Min 1st Quart. Median 3rd Quart. Max

primary visual network 0.31 0.44 0.46 0.50 0.60
DMN (anterior section) 0.40 0.49 0.53 0.56 0.66
auditory netowork 0.21 0.38 0.43 0.49 0.57
lateral visual network 0.39 0.44 0.48 0.52 0.60
sensory-motor network 0.25 0.39 0.41 0.42 0.53

Table 3: Five-number summary of the correlation coefficients between the subject specific
correlation maps and the sICA components

A more thorough investigation of the consistency of resting state networks would
go beyond the scope of this thesis.

4.3.3 Subject specific ROIs

The resulting subject specific ROIs for each of the selected components have been
computed as described in section 3.7.1 and are depicted in figures 14 through 18.
For the sake of brevity, not all 90 ROIs (one for each subject-component combina-
tion) can be visualized individually within this thesis. However, a combination of
an axial view, a sagittal (or coronal) view (depending on which was deemed to be
better suited) and a three dimensional view for each of the resting state networks
should suffice to offer insights into the locations of the subject specific ROIs. More
specifically, the atlases depicted contain the subject specific ROIs of all subjects
(although not every single one will be visible due to their different locations) for
every one of the chosen resting state networks.

The ROIs seem to appear in more or less dense clusters in case of some net-
works (this is for example clearly visible in the case of the ROIs determined for
the default mode network – see figure 18) and are more spread across the brain
areas in the case of other networks (e.g. the sensory-motor network – see figure 16).

The MNI152 T1 template has been chosen as an underlay for the 2d views. Anal-
ogously, an MNI152 template has also been chosen as underlay for the 3d views.

Figure 14 shows that the majority of subject specific ROIs computed for the audi-
tory network are located in the anterior section of the superior temporal gyri and
– to a certain extent – in the insular cortex as well.

Figure 15 reveals that the subject specific ROIs computed for the primary visual
network are not as densely clustered as e.g. in case of the default mode network.
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(a) z = -10 (b) x = -44 (c)

Figure 14: Subject specific ROIs computed for the auditory network

In the case of the subjects of this study, almost all of the ROIs appear to be located
in the right cuneus.

(a) z = 6 (b) x = 0 (c)

Figure 15: Subject specific ROIs computed for the primary visual network

Figure 16 shows that the subject-specific ROIs computed for the sensory-motor
network are spread over the entire precentral gyri (this is especially visible in the
coronal view (b) and the 3d view (c)).

The subject specific ROIs computed for the lateral visual network are mostly lo-
cated in the middle occipital lobe (mostly in the area of the lingual gyrus). Some
clustering appears in the left BA 18. This is illustrated in figure 17.

Figure 18 clearly illustrates that the subject specific ROIs computed for the an-
terior default mode network are all located in the anterior section of the medial
frontal gyri - or, from a cytoarchitectural point of view - within BA 10.
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(a) z = 20 (b) y = -2 (c)

Figure 16: Subject specific ROIs computed for the sensory-motor network

(a) z = -18 (b) x = 26 (c)

Figure 17: Subject specific ROIs computed for the lateral visual network

(a) z = 18 (b) x = 0 (c)

Figure 18: Subject specific ROIs computed for the default mode network (anterior part)

4.4 Analysis of Functional Connectivity

Analysis of functional connectivity has been carried out by means of seed-based
correlation analysis using the previously computed subject specific ROIs. The spe-
cific steps are outlined in section 3.7.2.
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Displaying the seed-voxel correlation maps of the band passed data and the recon-
structed data (containing an r value for each voxel) for every subject with respect
to every one of the five chosen resting state networks would go beyond the scope
of this thesis. This, however, is not necessary, since the five maps (one for each
network) of the FDR corrected results of 3dttest++ (containing a t statistic for
each voxel) portray the differences between the band passed data sets and the
reconstructed data sets for each of the networks.

(a) z = -6 (b) x = 48 (c) y = 12

-0.12 0.12

Figure 19: Differences in seed-based correlation analysis of band passed and recon-
structed data (using the auditory network ROIs)
t <0 → higher correlation in band passed data
t >0 → higher correlation in reconstructed data

(a) z = 6 (b) x = 12 (c) y = -78

-0.12 0.12

Figure 20: Differences in seed-based correlation analysis of band passed and recon-
structed data (using the primary visual network ROIs)
t <0 → higher correlation in band passed data
t >0 → higher correlation in reconstructed data

Since the difference maps are computed as being the voxelwise differences between
the absolute correlation values of the band passed data and the absolute correla-
tion values of the reconstructed data (see equation 3.2), the fact that the results
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(a) z = 16 (b) x = -56 (c) y = -6

-0.12 0.12

Figure 21: Differences in seed-based correlation analysis of band passed and recon-
structed data (using the sensory-motor network ROIs)
t <0 → higher correlation in band passed data
t >0 → higher correlation in reconstructed data

(a) z = -2 (b) x = -32 (c) y = -78

-0.12 0.12

Figure 22: Differences in seed-based correlation analysis of band passed and recon-
structed data (using the lateral visual network ROIs)
t <0 → higher correlation in band passed data
t >0 → higher correlation in reconstructed data

depicted in figures 19 through 23 mainly consist of negative values means that
the correlation (or anti-correlation, respectively) in the band passed data tends to
be higher than in the reconstructed data. This was originally unexpected, since
the higher information content of the reconstructed data was assumed to lead to
higher (anti-)correlations. However, on second thought, this makes sense, consid-
ering that Chang et al. have already reported about the removal of heart rate
components from fMRI data to result in reductions of functional connectivity (a
photoplethysmograph was used to obtain the subjects heart rates). [15]
Yet, another important factor could play a role: As Davey et al. have put it - “[...]
the fMRI preprocessing step of temporal filtering increases the sample variance of
correlation, thereby inflating the false positive rate and artificially inducing con-
nectivity.” [14]. Higher (anti-) correlations could thus be induced by the process
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(a) z = 18 (b) x = 2 (c) y = 46

-0.12 0.12

Figure 23: Differences in seed-based correlation analysis of band passed and recon-
structed data (using the anterior default mode network ROIs)
t <0 → higher correlation in band passed data
t >0 → higher correlation in reconstructed data

of band pass filtering and hence reflect spurious connectivity rather than actual
functional connectivity. Further research on this matter and potentially correc-
tions for filtering-induced correlations are necessary.

The differences in the seed-voxel correlation maps computed for the auditory net-
work from the reconstructed data and the band passed data seem to coincide with
the structure of the network itself (compare figures 8 and 19 - especially the axial
and sagittal views).

(a) z = -6 (b) x = 48 (c) y = 12

-0.12 0.12

Figure 24: Differences in seed-based correlation analysis of band passed and recon-
structed data (using the auditory network ROIs) – threshold set to a q value of 0.05

Figure 24 illustrates the results of 3dttest++ for that network once more - this
time with the threshold being set to a q value of 0.05 (the MNI152 T1 template
has once again been chosen as underlay). The fact that the (anti-)correlations
within the regions of the network are significantly different in the band passed

60



data and the reconstructed data leads to the assumption that the different means
of removing noise related to cardiac activity could potentially have an impact on
functional connectivity analysis. However, this assumption should be reflected
upon with caution, since on the one hand seed-voxel correlations may be induced
by temporal filtering (as already mentioned above) and on the other hand similar
findings were not made for the other resting state networks.
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5 Discussion

The goal of this work was to remove physiological noise related to cardiac activity
from resting state fMRI data with high temporal resolution by means of an algo-
rithm based on blind source separation rather than by simple band pass filtering.
Band pass filtering removes not only physiological noise from the data but rather
all signal components at some predefined frequencies. The new approach, how-
ever, separates the data into temporally independent components, analyses their
frequency spectra, removes only the components related to cardiac activity and
then uses the remaining components for data reconstruction. It thus retains more
useful signal components.

The proposed noise identification approach is based solely on the assumption that
time series components fulfilling certain criteria (see section 3.6.1) are primarily
related to physiological noise (in this case: cardiac activity). This seems to be a le-
gitimate assumption, since, as Beall et al. state, “[...] ICA can identify components
in BOLD-weighted MRI data whose principal temporal behavior is attributable to
physiologic noise-either cardiac, respiratory, or an unknown combination of these
(Beckmann et al., 2005; De Luca et al., 2006).” [38]
Other approaches based on blind source separation algorithms are often based on
stricter assumptions.
CORSICA (CORrection of Structured noise using spatial Independent Component
Analysis), which has been developed and reported by Perlbarg et al. in 2007, e.g.
does (in opposition to many other approaches) work for short TR (333 ms) and
long TR (>1000 ms) scans, however, it requires a priori knowledge of where phys-
iological noise is to be found in the brain: “[...] a set of noise-characteristic signals
is defined by extracting time courses from regions that are known to exhibit major
physiological fluctuations [...]”. [39] This leads - as they also state in said source
- to the fact that “[...] the design of the masks of interest seems to be a sensitive
part of the procedure because such masks must allow one to select only signals
related to noise but not to other processes of interest on the functional point of
view.”
Other approaches make even stricter assumptions. PESTICA for example (Physi-
ologic EStimation by Temporal Independent Component Analysis) makes the as-
sumption that “[...] linear additive physiologic noise, in the form of respiratory
and cardiac-rate related fluctuations, will be sufficiently represented in one inde-
pendent temporal component [...] [emphasis added]”. [38]
Therefore, with respect to it’s fewer and more general assumptions (not requiring
a priori knowledge about the location of noise sources and not limiting the sources
to single components only), the proposed approach seems to be a promising alter-
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native. Nevertheless, comparing those different approaches with respect to their
performance (ability to correctly identify noise, computational efforts, etc.) would
be of interest and should addressed in future work.

Analysis of the proposed algorithm’s performance (with respect to the signal
changes related to noise removal) was approached by comparing the functional
connectivity of its output data with a band passed version of the same original
data. This was done by means of seed-based correlation analysis.

Results indicated that significantly higher (anti-)correlations are to be found in
the band passed data. This is in accordance with what Chang et al. have found:
They reported that the removal of signal components related to physiological noise
from fMRI data reduces functional connectivity. [15] It is worth mentioning that
for the case of the auditory network, seed-based correlation analysis was able to
show that the significantly higher (anti-)correlations in the band passed data seem
to coincide (location-wise) with the areas covered by the actual resting-state net-
work.
This does, however, not necessarily imply that band passing is superior to the
proposed approach, since temporal filtering is known to induce spurious (anti-)
correlations. [14] Hence, corrections will need to be implemented to compensate
for those artificially induced correlations.

Yet another unsolved problem, which crucially influences the performance of the
proposed algorithm, is the choice of the number of components / weights that are
to be computed. Beall et al. sum this up as follows: “Reliable identification of the
physiologic source can obviously depend on the appropriate choice of the number
of sources. Overestimation of the number of sources can lead to a subdivision
of the physiologic sources into uninteresting or trivial temporal effects. Likewise,
underestimation could lead to incomplete separation of the sources.” [38]
This also should be subject to future research.

As already stated in section 3.6.3 the HRV could be computed from photoplethys-
mography data and compared to the HRV estimated from BOLD signal compo-
nents, which are identified as being related to cardiac activity. This comparison
could potentially improve the proposed algorithms ability to correctly identify
BOLD signal components related to cardiac activity.

Finally, the developed algorithm has only been used for a training data set yet
and future study data could be used as test data and validation data in order to
further evaluate the algorithms performance.
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