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Abstract

Dealing with large, sparse, volume data on the GPU is a necessity in many applications such

as volume rendering, processing or simulation. The limited memory budget of modern GPUs

restricts users from uploading large volume data-sets entirely. Fortunately, sparse data, i.e., data

containing large empty regions, can be represented more efficiently compared to a common

dense array. Our approach makes it possible to upload a full data set even if the original volume

does not fit on the GPU.

In previous work, a variety of sparse data structures have been utilized on the GPU, each

with different properties. Tree representations, such as the octree, kd tree or N3 tree, provide

a hierarchical solution for data sets of relatively low sparsity. For data sets of medium sparsity,

spatial hashing makes more efficient access and storage possible. Extremely sparse data can be

efficiently represented and accessed via binary search in sorted voxel lists.

Our observation is, that data sets often contain regions of different sparsity. Depending on

the sparsity of a region, a specific data structure (e.g., an octree, a voxel list) requires the least

memory to store the data. We formulate an algorithm that is able to automatically find this

memory-optimal representation. By using such a combination of different data structures, we

achieve an even better representation than any single data structure for real world data sets. We

call such a data structure a hybrid data structure.

Any sparse data structure introduces an access overhead. For example, the access to an

octree requires one additional indirection per height level of the tree. A voxel list has to be

searched to retrieve a specific element. By using a hybrid data structure, we also introduce an

access overhead on top of the overhead that comes from using a sparse data structure. In our

work we introduce JiTTree, which utilizes a data aware just-in-time compilation step to improve

the access performance of our hybrid data structure.

We show that the implementation of our hybrid data structure effectively reduces the memory

requirement of sparse data sets. JiTTree can improve the performance of hybrid bricking for

certain access patterns such as stencil accesses.
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Kurzfassung

Der Umgang mit großen, spärlich besetzten Volumen-Daten auf der Graphikkarte ist in vielen

Applikationen notwendig, wie beispielsweise im Volumen-Rendering, in der Datenverarbeitung

oder bei Simulationen. Der beschränkte Speicherplatz heutiger Graphikkarten hindert Nutzer

daran, größere Datensätze vollständig auf die Graphikkarte zu laden. Glücklicherweise ist es

aber möglich, spärlich besetzte Daten, also solche, die größere leere Bereiche enthalten, effizi-

enter zu speichern als als gewöhnliches Array. Unser Verfahren ermöglicht es Datensätze zur

Gänze zu speichern, selbst wenn die originale Datenmenge nicht auf die Graphikkarte passen

würde.

In vorhergehenden Publikationen wurde eine Vielzahl von Datenstrukturen mit unterschied-

lichen Eigenschaften verwendet. Baum Strukturen wie der Octree, kd Baum oder N3 Baum

sind hierarchische Lösungen für dichter besetzte Daten. Für weniger dicht besetzte Datensätze

ist räumliches Hashing speichereffizienter und ermöglicht eine höhere Zugriffsgeschwindigkeit.

Sehr spärlich besetzte Daten können als sortierte Liste effizient gespeichert werden, wobei der

Zugriff mit Binärsuche beschleunigt werden kann.

Unserer Beobachtung nach besitzen Datensätze oft Regionen mit unterschiedlicher Dichte.

Entsprechend der Dichte einer Region hat eine unterschiedliche Datenstruktur, beispielswei-

se ein Octree oder eine Liste von Voxeln, den geringsten Speicherverbrauch. Wir präsentieren

einen Algorithmus, der diese speicheroptimale Repräsentation automatisch finden kann. Für rea-

litätsnahe Datensätze besitzt so eine Kombination von unterschiedlichen Datenstrukturen einen

geringeren Speicher-Verbrauch als jede einzelne Datenstruktur für sich. Wir nennen diese Da-

tenstruktur hybride Datenstruktur.

Jede effiziente Datenstruktur für spärlich besetzte Daten erzeugt einen Zugriffs-Mehraufwand.

Beispielsweise braucht ein Octree eine weitere Dereferenzierung pro Höhenstufe des Baumes.

Eine Liste von Voxeln muss erst durchsucht werden, um ein bestimmtes Element zurückzulie-

fern. Beim Verwenden einer hybriden Datenstruktur wird die Zugriffszeit ebenfalls verringert.

Das entsteht einerseits dadurch, dass man nun statt Arrays beispielsweise Octrees oder Lis-

ten von Voxeln verwendet, und andererseits verringert auch die Realisierung einer hybrid Da-

tenstruktur die Zugriffszeit. Um die Zugriffszeit zu erhöhen, stellen wir erstmals JiTTree vor.

JiTTree erzeugt zur Laufzeit des Programmes datenspezifischen Programmcode, der verwendet

wird um auf unsere Datenstruktur mit höherer Performanz zuzugreifen.

Es zeigt sich, dass unsere hybride Datenstruktur spärlich besetzte Datensätze effizient spei-

chern kann. Außerdem kann JiTTree die Zugriffszeit für bestimmte Zugriffsmuster, beispiels-

weise das Stencil-Zugriffsmuster, verbessern.
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CHAPTER 1
Introduction

Volume data is a type of three dimensional data, typically represented as a Cartesian- or regular

grid of scalar or vector values. Each sample point of this grid represents a value in space, for

example a density at the corresponding spatial position. In the most simple case, such data is

implemented as an array of values.

Many applications in visualization and other disciplines deal with volume data. Although

we approach the topic through the lense of scientific visualization, it can be applied to other

areas. Our test applications include processing (i.e., filtering) and volume rendering, but volume

data is also used for example in simulation or real-time global illumination.

Today’s volumetric data sets are memory demanding and data sizes grow rapidly as new

imaging modalities become available. For instance a data set of type float with the extent of

1024 × 1024 × 1024 voxels requires 4.29 GB of memory. Doubling the side-length to 2048
results in an eigth times higher memory consumption of 34.35 GB. Processing such data on the

CPU is common on current desktop systems, however requires a considerable amount of RAM.

Even though, CPU systems scale better to large data sets in terms of memory, GPU systems

provide more processing power for data parallel algorithms.

The drawback of the GPU is that its memory size is more restricted. Even the highest end

consumer graphics card in 2015, the GeForce GTX TITAN X, is limited to 12 GB of memory.

Additionally, transferring data to the GPU has to be done explicitly by the programmer. Memory

transfer is limited by the PCI-Express 2.0 transfer rate which is in practice up to 6.0 GB/s as

stated in the Cuda FAQ [6]. As a result, large volume data-sets can easily exceed the available

memory on graphic cards. This leads to the motivation to find a representation that handles such

data in a memory efficient way.

1.1 Problem Statement

Many real-world volume data-sets contain empty regions where all values are zero. Since the

non-zero values are assumed to carry the information, data sets with large empty regions are
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called sparse. The sparsity is defined as the fraction of the number of zero elements over the

total size of the data set. A volume containing few non-zero values has a high sparsity, one with

many non-zero values a low sparsity. The density is the fraction of the non-zero values in the

data set.

Figure 1.1 shows a volume rendering of two example data sets with different levels and

kinds of sparsity. The Kingsnake data set contains about 56 % of empty values on the outside,

surrounding the snake-egg. Even though the global sparsity of the data set is 0.56, the data set

has varying local sparsity. The central region of this data set, the snake egg, has a high density,

the outer regions are of a high sparsity. The Vessels data set has a percentage of 98 % empty

values which are more evenly spread out throughout the volume. Still, on a fine level the data

set contains dense regions (the vessels) and sparse regions (the regions between the vessels).

The goal of a memory efficient data structure is to avoid storing zero values. Such a data

structure has to be adaptive to deal with regions of varying sparsity. This makes it possible to

efficiently encode sub-regions of different sparsity in a single data set, but also makes it possible

to encode a variety of data sets. Many sparse data structures have been proposed and we give

an overview in Chapter 2. Variants of octrees and kd trees provide a hierarchical solution to

the problem, but they introduce a traversal overhead when accessing data. Spatial hashing and

volume bricking, focus on keeping the access performance high by minimizing the number of

indirections to retrieve a data value. The former can be difficult to initialize, the latter can not

adapt well to regions of high sparsity.

Typically, the designer of an algorithm has to pick an optimal data structure to solve a specific

problem. Determining which representation is optimal can be difficult. Firstly, there are many

different candidates to chose from. Secondly, optimality can depend on multiple factors, some

of which may not be known to the programmer at the time of designing a program. In specific,

optimality not only depends on the algorithm to be executed on the data, but also on the data

itself. A programmer has to find an optimal balance between the memory requirement and the

performance of an algorithm executed on the data set. We consider for example the matrix octree
and the linear octree which are explained in section 2.2.2. Although both are variants of octrees,

they behave differently for different data sets. The matrix octree has an access performance that

depends on the side-length of the data set, while the access performance of the linear octree

depends on the number of non-zero values in the data set. As a result, the linear octree is

preferred if the input data to an algorithm is suspected to be of a high sparsity. The matrix octree

on the other hand performs better than the linear octree if the data is of medium sparsity.

A strategy to handle a large variety of different data sets efficiently is to split algorithm

design from data-structure design. As a result, the underlying data structure can be exchanged

without having to rewrite the algorithm. This makes it possible to pick an optimal data structure

if executing an algorithm on a certain type of data. The implementation of our data structure

primarily deals with retrieval of data values through a get method. Dynamic writes to our data

structure are not possible yet. When designing a parallel algorithm, our data structure is accessed

through its get method. The actual data-structure layout is logically separated from the algorithm

implementation.

2



(a) Kingsnake data set (1024× 1024× 795 voxels) with 44 % of non-zero values

(b) Vessels data set (1024× 1024× 1024 voxels) with 2 % of non-zero values

Figure 1.1: Volume rendering of two data sets with different levels and kinds of sparsity.
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1.2 Objectives and Approach

The objective of our approach is to introduce an adaptive data structure. Its goal is to reduce

the memory requirement of sparse data sets. This allows us to efficiently store large data sets

on the GPU. We are also concerned with the performance of our approach. Our data structure

can produce different representations, ranging from low memory requirement to fast access and

higher memory requirement. We present an automatic routine to generate the representation

with the lowest memory requirement. With a partial evaluation approach we further increase the

run-time of this memory-optimal approach.

Our data structure combines multiple different data structures, such as an octree or a voxel

list, to benefit from their advantages. Even though we use a meaningful set of four different data

structures that complement each other, our approach is extendible to different data structures.

This could further improve the results and allows it to incorporate data structures which may

become popular in the future.

Any application or algorithm that has to deal with large sparse volume data-sets on the GPU

can potentially benefit from our data structure. The drawback is that we introduce a performance

overhead and that we did not address trilinear interpolation yet. As a result, our approach is better

suited for algorithms with a low computational complexity that have to deal with large data sets.

Even for more computationally demanding algorithms our approach can be beneficial, since our

approach allows to store larger data sets on the GPU. Executing an algorithm on the entire data

set on the GPU can be faster than uploading parts of the data set and batch processing them

sequentially.

Our approach is based on the central observation that most data sets contain regions of dif-

ferent sparsity. Depending on the sparsity of a region, a specific data structure requires the least

memory. For example in a medium sparse region a pointer octree can be a good representa-

tion. For very dense regions, it can be of interest to store the data as a full array of values.

Our data structure uses different data structures for different regions of a data set, we therefore

call it a hybrid data structure. The building blocks of our data structure we call elemental data
structures. These complement each other in the sense that each of them is better suited for sub-

regions of different sparsity. Our data structure adapts to the data set by assigning the optimal

representation to the sub-regions of the data.

If a data set is uploaded to the GPU, we automatically generate and compile our data struc-

ture. OpenCL kernel code that uses our data structure requires to be recompiled when the data

is loaded since we inline the traversal code into the algorithm. We specialize the traversal code

of our data structure with respect to the data itself to increase the access performance. Since

this specialization is done at the run-time of the application, we call our data dependent data

structure just-in-time compiled tree (JiTTree). OpenCL lends itself well to our approach, since

it typically compiles the kernel code during the execution of the application.

Any sparse data structure introduces an access overhead. For example, the access to an

octree requires one additional indirection per height level of the tree. A voxel list has to be

searched to retrieve a specific element. By using a hybrid data structure, we also introduce an

access overhead on top of the overhead that comes from using sparse elemental data structures.

We use JiTTree to improve the access performance of our hybrid data structure.
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1.3 Contribution

The major contribution of this work is the presentation and evaluation of a novel GPU data

structure. We extend the concept of traditional volume bricking to support four different brick

types with varying properties. We implement dense volume, octree, voxel list and empty bricks.

This makes it possible to better fit most data sets, which reduces the memory requirement of

sparse volume data on the GPU. Our approach can be extended to support additional brick types.

We suspect that this would make it possible to even further decrease the memory consumption

of volume data. We call this bricking approach with different brick types hybrid bricking.

In addition, we present JiTTree, a data dependent code specialization step. We show that it

can improve the performance for the stencil access pattern, but does not necessarily work in all

cases. Nevertheless, we believe that data dependent compilation on the GPU can be used in other

scenarios as well. The concept of the JiTTree was summarized in the journal paper JiTTree: A
Just-in-Time Compiled Sparse GPU Volume Data Structure [26], and was presented at the IEEE

Visualization Conference 2015, Chicago, USA.

Besides the main contribution, we address the problem of automatically determining an

optimal representation. We show that, in our case, for a given brick size and a fixed set of

elemental brick types the representation with the lowest memory consumption can be easily

determined. This is achieved by employing parallel initialization schemes for all of the different

brick types to probe their final memory consumption. We also look into representations that

trade memory consumption for access performance.

We evaluate our approach by comparing it to traditional bricking approaches. The memory

consumption can be easily compared with other representations. The performance is tested

for two different access patterns, i.e., stencil access and ray traversal. Our results show, that a

combination of different brick types generally has a lower memory consumption than approaches

using only two types, such as dense volume and empty bricks.

1.4 Overview of the Thesis

This work is structured in the following chapters. The related work presented in Chapter 2 is split

into three main sections. We start with a brief introduction to Morton order, parallel reduction

and binary search, since these are basic concepts that other publications widely use. Then we

give an extensive summary of spatial data structures for two and three dimensional point data as

the basis for our hybrid data structure. Finally we introduce partial evaluation as it is important

for data aware just-in-time compilation.

The following three chapters deal with our data structure and its implementation. Chapter 3

introduces hybrid bricking with its advantages and drawbacks. We summarize and compare the

properties of our four chosen brick types: the dense volume, the octree, the voxel list and the

empty brick. Finally, we also introduce the concept of a modular data structure which was the

basis of our approach during the implementation phase. In Chapter 4 we introduce JiTTree a

just-in-time compiled data structure, which aims to increase the run-time performance of the

proposed data structure. A detailed explanation on the efficient initialization of the novel data
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structure is given in Chapter 5. We also briefly cover lower level GPU programming concepts in

OpenCL.

The last Chapters deal with the results and evaluation of our approach and covers our outlook

for possible future work. In Chapter 6 we present the results. We test two different algorithms on

15 data sets and measure the memory consumption and the run-time performance for different

representations of the data. Chapter 7, the summary, briefly recapitulates and evaluates our

approach. Finally, we provide a short outlook to possible applications and extensions.
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CHAPTER 2
Related Work

The first part of the related work chapter explains basic, but essential related concepts which

can be seen as building blocks of our approach and of some work. The second part focuses on

related work on spatial data structures to set our hybrid data structure in context to other work.

The chapter concludes with a short section about partial evaluation as the basis for JiTTree.

2.1 Related Concepts

In the following we explain three basic concepts: Morton order, the parallel reduction and binary

search. These are of relevance in our implementation and in related publications.

2.1.1 Morton Order

Typically, multidimensional data, has to be stored as a linear array in hardware memory. There

are different approaches to transform a multidimensional index to a linear one. For example,

Figure 2.1a shows a two dimensional data set, the values are sorted linearly along the black line.

Each value is represented by its binary number. The linear array is filled in the following order:

[0000, 0001, 0010, 0011, 0100, ..., 1111]. This sorting is called row-major order. A two dimen-

sional coordinate a can be transformed to a one dimensional coordinate b with the following

formula:

b = aywidth+ ax (2.1)

The problem with the row-major approach is, that values which are vertically adjacent in two

dimensional space, are not adjacent anymore in its one dimensional representation. Since many

hardware architectures (especially GPUs) are optimized to access data in a consecutive manner,

performance of spatially coherent algorithms suffers from this simple coordinate transformation.

To tackle this common problem, Morton [33] proposed the Morton order or often called

the z-order curve, shown in Figure 2.1b. A Morton ordered data set has a better probability

7



that spatially close values are close in its one dimensional representation. This is advantageous

in software and hardware caching scenarios, in parallel coalescing of memory access and in

virtual memory and out-of-core approaches. In such scenarios, memories of different sizes with

different access latencies exist. When accessing a part of a slow and large memory, only a sub-

section of the memory is moved to a faster and smaller memory. The spatial locality of values in

Morton order decreases the probability of having to read memory that is far apart when accessing

the neighbors of a data entry.

0000 0001

0100 0101

0010 0011

0110 0111

1000 1001

1100 1101

1010 1011

1110 1111

(a) Row-major order of a two

dimensional data set

0000 0001

0010 0011

0100 0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

(b) Morton order of a two di-

mensional data set

011

010

111

110

001

000

101

100
x

y
z

(c) Morton order of a three di-

mensional data set

Figure 2.1: Orderings of two and three dimensional data

Finding the Morton code of a multidimensional coordinate can be achieved with bit shift

operators as done by Baert et al. [1]. The code we use in our implementation to transform a

coordinate to Morton order can be found in Appendix A.

Improving memory locality is not the only application of Morton ordering. A Morton order

is also a depth-first order of a quad- or octree [1]. This is applied in related work such as in

linear octrees by Gargantini [13]. In our case, we make use of the observation that the elements

of a voxel list generated by histogram pyramids [50], are sorted in ascending Morton order. This

allows us to perform binary search on such a sorted voxel list.

2.1.2 Parallel Reduction

The parallel reduction is a basic parallel algorithm. It can be used if it is required to reduce

a large number of values to a smaller number of values by using an associative operation. A

mapping of the parallel reduction to the GPU is introduced by Harris [18]. Summing up all

intensities in an image, or finding the number of non-zero values in a volume, are examples for

parallel reductions.

Figure 2.2 shows a two dimensional parallel reduction for the summation operation over all

values in an image. In each iteration four values are summed up and stored in a reduced pyramid

representation. The final iteration returns the sum of all values contained in the image. In this

work, we use parallel reductions for finding the number of non-zero values inside volumes and

for the generation of point lists as well as for the construction of octrees as introduced in the

thesis of Ziegler [49].
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1 0 0 1
0 1 0 1
1 1 0 0
1 0 0 0

(a) Original data set

2 2

3 0

(b) First reduction pass

7

(c) Second pass and final result

Figure 2.2: Parallel summation of a two dimensional data set using a pyramid approach.

2.1.3 Binary Search

Consider a sorted list of elements in the form (key, value). key is a unique entry, which can

be for example a one dimensional coordinate. value is an arbitrary value, for example an RGB

value in an image. There are multiple ways to retrieve the value at a specific key (e.g., at a

specific coordinate) from the list. The naïve approach is to iterate over all elements, until the

key of interest is either found or the end of the list is reached. Accessing a key with the naïve

approach requires O(n) look-ups in the worst case.

2 3 5 7 11 13 14 15

Key k=5

<11

>3

<7

=5

Iteration

1

2

3

4

1

2 3 5 7 11 13 14 151

2 3 5 7 11 13 14 151

2 3 5 7 11 13 14 151

19 20

19 20

19 20

19 20

Figure 2.3: A sorted list of keys is searched for the key k = 5 with binary search. The example

shows the worst case access. The values to each key were omitted for simplicity.

If dealing with sorted lists where random access is possible, the retrieval performance can
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be increased to O(log(n)) with binary search [25]. Binary search requires a linearly sorted list

with respect to the key. In Figure 2.3 binary search is illustrated to find the key 5 in a sorted

list of keys. The algorithm compares the key to the central element and decides in which half

of the list to continue. If the list is reduced to one element, the algorithm checks if the keys are

equal. If so, the value is returned. If not, the list does not contain the key.

We use binary search to increase the look-up performance of our voxel list implementation.

In related work, the linear octree also uses binary search for memory access.

2.2 Spatial Data Structures

We now give an introduction to spatial data structures. An overview is given in the book written

by Samet [41]. He distinguishes between data structures for point data, collections of rectangles,

curvilinear data and a number of specific representations for volume data. In point data every en-

try has a fixed number of keys, which can be its spatial coordinate. Data entries can additionally

contain values of arbitrary type. Rectangle data deals with bounding boxes or other rectangu-

lar objects. Curvilinear data represents the boundary representation of objects, for example a

polygonal mesh. Finally, the chapter about volume data deals with very specific volumetric

representations, such as constructive solid geometry (CSG), or binary space partitioning trees.

For our case, point data is the most relevant representation. While any sparse volume rep-

resentation can be treated as spatial point data, typical volume data-sets, as represented in Fig-

ure 1.1, can not be easily represented by any of the other representations, such as for example as

a polygonal mesh or CSG representation.

For point data, Samet summarizes the following relevant representations:

1. Non-hierarchical data structures

2. Quadtrees

a) Point quadtree

b) Region-based quadtrees: matrix quadtree and point-region quadtree

3. Kd trees

4. Bucket methods: hashing and the grid file method

A more recent survey by Gaede and Günther [12] includes a number of more specialized

trees and hashing schemes for spatial data. Both of these surveys only consider CPU based

data structures. However, many of these representations were also implemented on GPUs. For

example, the Octree was used on the GPU by Lefebvre et al. [29] or Crassin et al. [7]. Foley

et al. [9] or Horn et al. [19] have implemented a kd tree on the GPU. Lefebvre and Hoppe [28]

introduced perfect spatial hashing on the GPU.

2.2.1 Non-Hierarchical Data Structures

A list and a grid are non-hierarchical data structures. Retrieving a coordinate from a list of

entries requires O(n) look-ups, where n is the number of elements in the list. Figure 2.4a shows

such a sequential list of two dimensional values. The fixed-grid method splits the spatial domain
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into equally sized cells (or bricks for a volumetric case). Each cell can either contain a single

value or a linked list of entries. In our case, we are only interested in a single value per cell.

This reduces the time to access a value at a specific coordinate to O(1). Figure 2.10b shows

a grid representation of the same data. The fixed-grid method only works well if the data is

uniformly distributed. Our definition of a volume data-set is basically represented by the grid

method where all values (i.e., also zero values) are stored in a single array.

x y Value

0 0 30

1 1 240

2 2 245

2 3 15

3 2 240

4 4 205

4 5 200

5 4 120

5 5 40

6 1 65

6 3 150

6 6 220

7 0 100

(a) Sequential list representation (0,8)

(0,0)

(8,8)

(8,0)

30

245

15

240

240

205

200

120

40

220

150

100

65

x

y

(b) Grid representation (fixed grid)

Figure 2.4: Non-hierarchical representations

Binary search can be used to improve the random access performance of sorted lists to

O(log(n)). When dealing with entries with multiple keys, e.g., entries located in two or three

dimensional space, it is necessary to define a linear sorting over all keys. This can be done by

sorting the elements linearly along a space filling curve. To efficiently sort a list on the GPU,

voxel radix sort by Satish et al. [43] can be used. In our case, histogram pyramids [50] provide

an alternative to sort the non-zero points in a volume in Morton order. The voxel list generated

from a volume data-set via histogram pyramids is already sorted in Morton order. The details

are explained in section 5.1.4.

2.2.2 Quadtrees and Octrees

The common property of all different types of quadtrees is that they recursively decompose

two dimensional space into four quadrants. Octrees are the extension of quadtrees to three

dimensional space.

Samet [41] distinguishes between the point quadtree and region-based quadtrees. Each node

of the point quadtree, introduced by Finkel et al. [8], stores an x and y position, a pointer to
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its four children and a value. The point quadtree is similar to the kd tree, which only splits in

a single dimension for each node. The drawback of the point quadtree is that it has a higher

branching factor per node and a larger memory requirement in comparison to the kd tree as

stated by Samet [41]. As a result, we do not cover the point quadtree in detail.

In the following we discuss the two predominant region-based quadtrees: the matrix quadtree

(MX quadtree) and the point-region quadtree (PR quadtree). In more recent literature the MX

quadtree is often called pointer quadtree.

MX Quadtree or Pointer Quadtree

The MX quadtree stores data points at discrete integer locations. Each data point corresponds

to a 1 × 1 square. Possible data sets that can be represented by the MX quadtree are a fixed

grid representation or the elements of a matrix, hence the name. Figure 2.5 shows the spatial

representation of the MX quadtree for the example data set presented in the previous section.

The data value of a point is associated with the upper left corner of a cell. The upper and left

boundaries of each cell of this quadtree are closed. The lower and right boundaries are open.

(0,8)

(0,0)

(8,8)

(8,0)

30

245

15

240

240

205

200

120

40

220

150

100

65

x

y

Figure 2.5: MX quadtree (pointer quadtree) spatial representation

The corresponding tree representation of the data structure is shown in Figure 2.6. Four

pointers are stored at every internal node and four data values at each leaf node. Internal nodes

are either gray, in this case they have at least one non-zero child node, or white, if all their

children are zero. Leaf nodes that contain a value are indicated with a black dot in Figure 2.6.

In the most basic case, this node data structure is implemented by having four pointers and

four data values at every node. For internal nodes the data values are zero, for leaf nodes the
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pointers are null. An important purpose of using a quadtree is to reduce the memory requirement

of a data set. Often two different node types are introduced: internal nodes and leaf nodes. This

results in a more compact overall representation.

30 240 245 240 100 65 150 205 40 22015 120 200

Figure 2.6: MX quadtree tree (pointer quadtree) representation

A further suggested memory optimization, as mentioned by Wilhelms [45], is to store only

a single pointer and arrange the children of each node in contiguous memory. Nevertheless, this

idea does not reduce the memory requirement of such a tree when using a pointer octree. Lets

consider the example in Figure 2.6 and calculate the total memory requirement of both cases.

We assume that each pointer and each value requires one memory unit of storage.

(a) In the traditional implementation, we store four pointers at each grey node, we get a total

of 10× 4 = 40 pointers. The internal nodes one level below the leaves, can directly store

the values instead of pointers to the leaf values, therefore we require 40 memory units of

storage space.

(b) If we store one pointer for each node and keep the child elements in contiguous memory,

we only require one pointer per internal node, that is 17 pointers. The drawback is, that

we have to store all leaves in contiguous memory, even the zero ones. These are 24 leaves.

In total we have to use 17+24 = 41 memory units of storage space. Since we can assume

that the root node points to the first level of the tree, we can omit the first pointer and thus

require 40 units of memory space.

Even for the more general case, i.e., if the memory requirement of the data values and the

pointers differ, the memory requirement of both implementations is the same.

In more recent literature, such as the survey by Knoll [23], the MX quadtree is called pointer
quadtree or pointer octree for the three dimensional case.

PR Quadtree

In contrast to the MX quadtree, the PR quadtree can store a single point anywhere inside a leaf

cell. This point is not necessarily located at the position corresponding to the integer coordinate

of the leaf cell, but at an arbitrary location covered by the leaf cell sub-region. To encode its

exact location each leaf node containing a non-zero entry also has to store its x and y position.
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Octree Variants

Variants of octrees for volume rendering are discussed in the survey by Knoll [23]. Besides

the pointer octree, he introduces octree hashing and mentions the full octree, the linear octree

and the branch-on-need octree. The full octree stores all of its leaves and if needed also all the

internal nodes, therefore no pointers have to be stored, such an octree is also called pointerless
octree. In the following we will explain the linear, the branch-on-need octree and octree hashing.

All these methods make use of so called locational codes which are closely related to the

Morton code. Locational codes encode a specific node in a quadtree, an octree or binary tree. An

illustrative example of a locational code for a special binary tree is given in Figure 2.7. Similarly

to the quadtree, this binary tree always splits a spatial range in the middle.

To encode a leaf of this binary tree with its locational code, we start at the root of the tree.

For each tree traversal step 0 denotes a traversal to the left and 1 a traversal to the right sub-tree.

Let us assume that the leaves of this binary tree encode the integer locations between 0 and 7 on

a one dimensional number line. The decimal representation of each leaf now corresponds to the

position in the interval between 0 and 7. For example the leaf 010 corresponds to the position 2
on this number line.

0 1

00 01 11

000 010 110 111
(a) Locational codes for internal and leaf nodes.

0

000

2 76

010 110 111

(b) Linear representation of the leaf nodes.

Figure 2.7: Locational codes for a binary tree

Linear Quadtree

The linear quadtree was introduced by Gargantini [13]. It stores all non-zero values in a one

dimensional array in the order if its locational code. Figure 2.8 shows an example of such a

linear quadtree. A so called quaternary code, the two dimensional extension of the previously

explained locational code, is used. It encodes each quadrant with either of the numbers 0, 1, 2
or 3 in base 4. Each leaf node stores the full quaternary code for traversing down the quadtree
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as its key. Lets consider the element 13 in Figure 2.8. Starting from the root of the quadtree, the

element lies in Quadrant 1. Inside Quadrant 1, the element lies in Quadrant 3. The locational

code of the element is 13.

01 10 11

03 13

20 21 30 31

23 33

Quadrant 0 Quadrant 1

Quadrant 2 Quadrant 3

Figure 2.8: Linear quadtree representation using quaternary numbers of base 4.

The quaternary codes can be linearly sorted with respect to their decimal value. For example:

01 < 03 < 10. To retrieve a value from a linear quadtree, the look-up coordinate has to

be transformed to quaternary code. A binary search on the sorted list of leaves, i.e., the non-

zero elements of the data set, is applied to retrieve a specific value. As a result, the look-up

performance now depends on the number of non-zero elements and not on the side-length of

the data. A linear quadtree has an access performance of O(log(n)), where n is the number

of non-zero leaf nodes. In comparison to the pointer quadtree, the linear quadtree has a lower

memory consumption, but a higher runtime for most cases.

The linear octree is an extension of the linear quadtree to three dimensions. In our work, the

voxel list access is very similar to the one in a linear octree. The quaternary code in base 2 is

exactly the Morton code of the pixel as described in Section 2.1.1.

Branch-On-Need Octree

The branch-on-need octree was introduced by Wilhelms et al. [45] for volumes that are non-

power-of-two. They use their octree for increasing the performance of isosurface generation.

Each internal node of the tree stores the minimal and the maximal value of its corresponding

sub-tree. In the following we explain the layout of the octree rather then their algorithm for

generating isosurfaces.

When storing a full octree for non-power-of-two volumes, two possible split strategies can be

observed. Either the octree splits the volume always in the middle, or the octree is constructed
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(a) The traditional quadtree has

a larger number of nodes.

(b) The branch-on-need quadtree requires fewer

nodes.

Figure 2.9: Branch-on-need quadtree and traditional approach, the green region is the actual size

of the data set.

for the next power-of-two cube that fits the data set. The branch-on-need octree applies the

latter strategy. The problem with using the next power-of-two volume for such an octree is that

values which fall outside the volume of interest are still stored inside the full octree. Figure 2.9

illustrates these two strategies.

The branch-on-need octree only stores values which are located inside the original volume

data-set. As a result, it is more difficult to find the location of a specific node inside the branch-

on-need octree data structure.

For a specific volume size, the number of nodes at each octree level can be read from the

side-length. Lets say our volume is of size 5 × 5 × 4, the theoretical octree required to store

such a volume would be of size 8 × 8 × 8. The binary locational code of the maximal position

in binary contained in the octree is: 100, 100 and 011. From these values it is possible to

calculate the number of nodes per octree level. Level 1 is the root level, it requires one node.

At level 2, we consider the most significant bit and add one each, i.e., the octree needs (1 +
1) ∗ (1 + 1) ∗ (0 + 1) = 4 nodes. At level 3, we consider the two most significant bits, the

octree needs (3 + 1) ∗ (3 + 1) ∗ (1 + 1) = 32 nodes. And finally at level 4 the octree has

(4 + 1) ∗ (4 + 1) ∗ (3 + 1) = 100 leaf nodes. For a more detailed explanation we refer to the

paper [45].

Finally, for each node, the branch-on-need octree stores a three bit code that defines whether

each of the eight children branches and a pointer to the first child.
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Octree Hashing

Frisken el al. [11] introduce a hashing scheme for octree traversal to improve performance.

They use locational codes similar to the linear octree. In their case, three locational codes are

generated for each dimension (x, y and z) separately like in the binary example in Figure 2.7.

They store a locational code at each octree node for each coordinate (x, y and z). This

locational code refers to the minimal corner vertex of the node. For example, an octree of size

8 × 8 × 8 requires three bits to encode the side-length. The minimal corner vertex of the root

is at the location x = (0)10 = (000)2, y = (0)10 = (000)2 and z = (0)10 = (000)2. For

the node in the first octant this locational code is x = (4)10 = (100)2, y = (0)10 = (000)2
and z = (0)10 = (000)2. For each leaf node, this code is exactly the location of the leaf in the

volume.

When doing a look-up in the data structure, the look-up coordinate is seen as a binary lo-

cational code representation. For example, the coordinate (3, 4, 5)10 would correspond to (011,
100, 101)2. During the traversal of the tree, the index of the child node where the look-up posi-

tion is located, is determined by bit shift operations. To do this, the three binary locational codes

of the look-up position are compared bit-by-bit with the locational codes of each octree node.

The index to the corresponding child node can be directly obtained by doing bit arithmetics

on the locational codes. This achieves a speed-up compared to doing the traditional boundary

checks in octree traversal.

Knoll et al. [24] use the approach of Frisken et al. [11] to achieve a lossless compression

of volume data. Using such an octree, they apply a CPU based volume renderer for large, time

varying data.

GPU Octrees

An efficient representation of a pointer octree is to represent each node either as an internal

or as a leaf node. For a sparse data set, internal nodes can have a varying number of children

(i.e., from zero to eight). In contrast to internal nodes, leaf nodes store from one to eight values

instead of pointers. These requirements result in different approaches to represent such a pointer

octree on the GPU.

First GPU implementations of sparse pointer octrees are found in the work of Lefebvre et

al. [29], who use octrees for surface texture encoding. They introduce a data structure called N3

tree. The tree only distinguishes between either N3 children or no children per node. N can

be an arbitrary integer (e.g., for an octree N = 2). To manage their data structure on the GPU

they rely on RGBA 3D textures. The pointers or values of the data set are encoded in the RGB

channels, the alpha channel is a flag that indicates if a node is an internal or a leaf node. The

traversal of the octree is done in a fragment shader.

More recently Crassin et al. [7] use a pointer octree for volume rendering. They also dis-

tinguish between internal nodes and leaf nodes. Internal nodes are stored in a node pool and

leaf nodes in a brick pool. For every internal node, they always store all eight child nodes in

successive regions of the memory. This allows them to only store one pointer (i.e., to the first

child node) per internal node. Since they also have to store the first node marked as empty, this

requires the same memory as storing eight pointers per node. Leaves are cubicals of values with
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side-length M which are stored in the brick pool. The size of these leaf bricks for their test cases

lay between 163 and 813, but they can be arbitrarily defined.

Octree Construction

Recently, algorithms were formulated to generate octrees on the GPU. For instance, Lauterbach

et al. [27] presented an efficient bottom-up generation scheme. Starting from a list of entries they

sort the nodes depending on their Morton code. An algorithm for parallel octree construction

that uses a full volume to construct a sparse octree was described by Ziegler [49]. The basis

of the octree construction algorithm are histogram pyramids [50] also used for generating voxel

lists. We have based our voxel list and octree generation on this parallel algorithm.

2.2.3 Kd Tree

The kd tree or multi-dimensional binary search tree was introduced by Bentley [2]. Each node

of a kd tree for two dimensional data contains two pointers one to the left and one to the right

child, an x and y coordinate, an entry (or value) and the information whether it splits in x or in y
direction. Often it is assumed that a kd tree splits along the dimensions in a specific pattern, for

example alternating x and y. If this is the case, it is not necessary to store the split direction for

each node. Figure 2.10 shows such a two dimensional kd tree, storing data points from A to F .

The most simple strategy to generate a kd tree assumes that each point is added subsequently

to an empty tree. The problem with this approach, is that this does not result in a balanced tree

and it is difficult to balance an unbalanced kd tree. A simple method to construct a balanced

tree from a number of points is to always split at the median element of the points sorted with

respect to the split direction.

A variant is the adaptive kd tree by Friedman et al. [10] that stores values in the leaves of the

kd tree only. Another option is to interpret the leaves of a kd tree as the regions covered by the

leaf.

Foley et al. [9] use a kd tree acceleration structure for rendering triangle meshes on the GPU.

They propose two stack-less routines for ray traversal, called the kd restart and the kd backtrack

algorithm. In traditional kd tree traversal, one ray is intersected with the volume covered by a

kd tree. A stack is used during the recursive traversal of the tree to keep track of branches that

are traversed later. The kd restart algorithm eliminates the requirement of having such a stack,

while increasing the run-time. After reaching a specific leaf of the kd tree it simply proceeds

to traverse the tree from the root. The kd backtrack requires each node to store a pointer to its

parent. This makes it possible to jump back to the parent node, if the current child node has been

successfully processed.

2.2.4 Bucket Methods, Hashing and Bricking

Bucket methods were originally developed to hide access latency to external storage. They split

the region of interest into buckets, the content of a bucket can be loaded from disk on demand.

Each bucket can contain up to a specific number of values, this is called the bucket size.
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(b) Tree representation of the kd tree

Figure 2.10: Kd tree

Bucket methods can be divided into non-hierarchical and hierarchical methods. The most

basic non-hierarchical bucket method, is the fixed grid method, which can store multiple entries

per grid cell. A problem of this method is underflow and overflow as stated by Samet [41]. Many

cells may remain empty, others can contain a large number of values.

In volume rendering, empty grid cells can be discarded during ray traversal. A related con-

cept to the fixed grid method is volume bricking, for example Parker et al. [35] describe an

approach for CPU ray casting. The volume is split into bricks of the same size. An empty

brick does not need to be stored. Therefore the approach reduces the memory requirement. In

addition, bricking results in a better memory locality when caching nearby values.

Bricking on the CPU was used to improve cache coherency by Grimm et al. [14]. Kähler et
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al. [21] use a CPU based kd tree on top of a bricking approach to render adaptive mesh refinement

data. They render the bricks sequentially in back-to-front order. Ruijters et al. [40] use bricking

on the GPU for volume rendering. To reduce the workload on the GPU, they generate a CPU-

side octree for each brick. The octree is traversed with a threshold for sampling the brick data

which is used in slice based rasterization. Another related approach was presented by Purcell

et al. [36]. They use a bricking approach where each brick contains a list of values per cell for

photon mapping.

Other non-hierarchical methods are linear and spiral hasing. More recently hashing was

introduced on the GPU in perfect spatial hashing [28]. The advantage of this approach is the

fast access. Nevertheless, the generation of a suitable hash function and an offset table can be

computationally demanding.

The Grid File method by Nievergelt et al. [34] introduces an interesting concept. It is similar

to a volume bricking method (with varying brick boundaries), but bricks can store a pointer to

shared data. So, two bricks could point for example to the same list of data values.

In contrast to non-hierarchical methods, hierarchical bucket methods have to traverse a tree

to get to the actual buckets. Two of the previously mentioned methods can also be implemented

as a bucket method, the PR quadtree and the adaptive kd tree. Both of these methods can store

multiple data points in a leaf.

2.3 GPU Program Optimization and Data Structures

Our approach targets to optimize data structures for the GPU. Others have proposed similar

approaches in the context of scientific visualization. Glift [30] provides an abstraction layer

to build data structures on top of OpenGL. The library was used to define a dynamic, sparse,

adaptive structure for shadow maps and 3D painting. Glift uses an adaptive bricking approach

on the GPU. The introduction of OpenCL and CUDA allows developers to build such data

structures more easily. Just-in-time compilation makes it possible to dynamically allocate the

required memory on the GPU and to remove unnecessary code.

More recently, domain specific languages (DSL) were introduced as an abstraction layer to

reduce the difficulty of implementing certain sets of algorithms in visualization and data pro-

cessing. Diderot [3] defines a high-level DSL that was used for image analysis and visualization

algorithms, such as ray-casting, line integral convolution and isocontour detection. This ap-

proach provides high flexibility to develop a variety of algorithms. A user of Diderot can write

abstract code which is than translated either to sequential or parallel C code or to OpenCL code.

They compare the performance of their approach to code using the Teem library and show that

their approach is faster. A basic volume rendering in their DSL can require from two to 15
seconds. Vivaldi [4] is an extension of Diderot to multi-GPU systems. By using up to 12 GPUs

they are able to improve performance.

The Halide [37] DSL was introduced for image processing, in specific to speed up stencil

operations. They are interested in subsequent image processing steps, so called image processing

pipelines. A basic example is a 3×3 separable filter, which is applied first in x then in y direction.

They introduce a number of possible execution patterns. The two extrema of their approach are

either a so called breadth first execution or the loop fusion approach. In case of the breadth first
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approach, they execute the operation first in x direction over the whole image and store it in a

temporary array. Then they perform the operation in y direction starting from the previously

stored array to generate the result. The other extreme solution, the loop fusion, is to calculate

the value locally by iterating over all eight neighbor values, this avoids storing the intermediate

result, but introduces redundancy in the processing step. Their intermediate approaches between

these two extrema execute the operation in sub-regions of the data, so called overlapping tiles.

Alternatively, they apply a so called sliding window approach, that transforms the approach into

a sequential operation by reusing previously calculated results for example along scan-lines in

the image. These possible tuning options are modeled as a choice space to vary the execution

of the processing pipeline. Their auto-tuning optimizers intelligently sample the search space

of possible execution patterns to find a high performing solution. In their results, they show

that their auto tuning algorithm can outperform hand-optimized x86 code and also one case of

CUDA code.

2.4 Partial Evaluation and Deferred Compilation

Our work is based on the partial evaluation of programs that is described by Jones et al. [20]. We

partially evaluate the GPU programs for performance reasons but also to make our data struc-

ture more flexible. More recently Rompf et al. [38, 39] and Sujeeth et al. [44] have described a

lightweight modular staging approach that enables the deferral of parts of the program compila-

tion to a later stage. The reason is that at a late stage the compiler is aware of the data and can

thereby generate optimized programs. We show how such a data aware compilation can be used

to generate an efficient sparse volume data structure.

The idea of data aware compilation is based on partial evaluation. A compact tutorial on

partial evaluation is given by Consel and Olivier [5]. According to them, partial evaluation is

a source-to-source program transformation technique for specializing programs with respect to

their input. They split the input fed to a program into static input and dynamic input. A program

can then be specialized with respect to the static input.

In the following we list the simplifications a partial evaluator can perform according to Con-

sel and Olivier. These simplifications are done by most modern compilers. Nevertheless, partial

evaluation can be done at arbitrary stages, either during the compilation of a program or even at

the run-time, when additional information is known. In the case of our data structure, we treat

the data itself as static input to the just-in-time compilation stage.

2.4.1 Constant Folding

Constant folding is typically done by the compiler by evaluating constant expressions already at

compile time. An example is given in Listing 2.1. The arithmetic expression can be evaluated

to a single value and does not need to be evaluated during run-time.
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1// original code
2value = (10 + 15) * 10;

1// after constant folding
2value = 250;

Listing 2.1: Constant folding

2.4.2 Constant Propagation

Constant propagation propagates known values during compile time. An example is given in

Listing 2.2. If the variable varA is not used in the succeeding code it can be removed entirely by

dead code elimination.

1// before constant propagation
2int varA = 250;
3int varB = varA * 2;

1// after constant propagation of varA
2int varA = 250;
3int varB = 250 * 2;

1// after constant propagation of varA and constant folding of varB
2int varA = 250;
3int varB = 500;

Listing 2.2: Constant propagation

2.4.3 Function Inlining

Inline functions can be also partially evaluated. Listing 2.3 shows such an inlining of functions.

1// before function inlining
2add(int x, int y)
3{
4 return x + y;
5}
6int value = add(100, 0);

1// after inlining the add function
2int value = 100 + 0;

Listing 2.3: Function inlining
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2.4.4 Specialization of Functions

A slightly more complex scenario is the specialization of functions through partial evaluation.

For this example, the function given in Listing 2.4a is a recursive function for xn, where x and

n are of type integer. When calling this function with a constant n = 2, it is possible to unroll

the recursion.

In Listing 2.4b three different specialized functions are shown as intermediate steps for eval-

uating all power functions for n = 0, 1, 2. Listing 2.4c shows the final result. This function call

should be much faster than the one shown in Listing 2.4a. It has no recursive method calls and

no additional if/else condition for each recursion.

1int pow(int n, int x)
2{
3 if (n <= 0)
4 {
5 return 1;
6 }
7 else
8 {
9 return x * pow(n-1, x);

10 }
11}
12pow(2, varA); // specific method call

(a) Original code.

1int pow_0(int x)
2{
3 return 1;
4}
5int pow_1(int x)
6{
7 return x * pow_0(x);
8}
9int pow_2(int x)

10{
11 return x * pow_1(x);
12}
13pow_2(varA);

(b) Unrolling of all intermediate steps.

1int pow_2(int x)
2{
3 return x * x;
4}
5pow_2(varA);

(c) Final result.

Listing 2.4: Special functions by residualizing calls.
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For these low-level compiler optimizations, we rely on the OpenCL compiler. However,

for higher level optimizations we employ our data aware compilation stage that is explained in

Chapter 4.
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CHAPTER 3
Hybrid Volume Bricking

The goal of our data structure is to adapt to the local sparsity of a volume data-set. We aim to

store only non-empty values and to avoid to store zero values in the data set. A data set typically

contains sub-regions with different sparsity characteristics. Each of the regions can be optimally

encoded by one data representation. Very sparse regions are for instance better represented by a

voxel list, medium sparse regions lend themselves best to hash tables and octrees, while dense

regions are most efficiently stored in a dense representation. To split data into sub-regions we

apply a volume bricking approach. The advantage of bricking, as a non-hierarchical method,

is that it makes high performance access possible. In contrast to hierarchical methods such as

octrees or kd trees, the access cost of bricking is only a single indirection. Contrary to traditional

bricking, we allow multiple different data types in every brick. We call this a hybrid bricking
approach. The advantage of hybrid bricking over traditional bricking, is that we are able to pick

a memory efficient data structure for each individual brick.

(a) Splitting of a two dimen-

sional data set into four bricks.

White pixels are zero, gray pix-

els non-zero.

Non empty Non empty

Non empty Non empty

(b) Bricking approach with two

different brick types - empty

and non empty.

Point List Quadtree

Quadtree Dense

(c) Bricking approach with four

different brick types - empty,

point list, quadtree and dense.

Figure 3.1: Conventional bricking compared to hybrid bricking for two dimensional data.
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Figure 3.1 demonstrates the advantage of our data structure over a conventional bricking.

The conventional approach with two brick types only differentiates between empty and non

empty regions. In case of the top left brick it has to store the full non-empty brick, even though

it contains only four values. When using a larger number of different brick types, as shown in

Figure 3.1c, the representation can better adapt to the data and therefore reduce the memory

requirement.

For our hybrid data structure we chose a combination of four different representations:

empty, voxel list, octree and dense. Each representation performs best for a different level of

sparsity. We describe these elemental brick types from lowest to highest sparsity in Section 3.1.

Figure 3.2 shows an conceptual overview of our hybrid bricking approach. A constant brick

side-length m is used. As shown in Figure 3.2b, the bricking is implemented as an array that con-

tains the type of each brick and a pointer to the region of memory that holds the corresponding

data. The specifics of the data structure layout and traversal are explained in Section 3.2.

m=32 m m

m

m

m

Octree

Octree

Octree

Dense

Voxel list

Voxel list

(a) Volume

Voxel list

Octree

Dense

Octree

Voxel list

Dense Dense

Octree

...

(b) Pointer structure

Figure 3.2: (a) shows a volume that is split into 33 bricks each of size m3. Every brick holds

one of the elemental brick types: dense, voxel list, octree or empty. In (b) the basic data-layout

is shown. The volume consists of an array of bricks which point to elemental leaf nodes.

As a final remark, our approach assumes that the data set does not contain large homoge-

neous regions besides the empty regions. We do not make use of image compression techniques

that try to reduce the memory requirement by efficiently encoding the value range. Doing so,

would open up a large number of different possible techniques. However, compression is an

orthogonal concept to our approach and we could introduce compressed brick types as new el-

emental node types. One example of such a situation is a homogeneous brick where all voxels

are of the same value. In cases like this we could define a new elemental data structure that only

stores a single value for a whole brick.
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Access time
Bit overhead / non-empty Voxel Shift

sensitive
Empty space

skippingupper bound lower bound

Dense volume O(1) ∼ dm3 0 no no

Pointer octree O(log(m)) p log2(m) ∼ p
7 log2(m) yes yes

Voxel List O(log(n)) 3 log2(m) 3 log2(m) no no

Empty O(1) 0 0 no no

Table 3.1: Theoretical comparison of the properties of different elemental brick types. m is the

side-length a data block. n is the number of elements inside the data block. d is the size of one

data entry in bits. p is the pointer size and needs to be at least log2(
24
7 m) to address all possible

points in one continuous memory region.

3.1 Brick Types

Depending on the density of non-zero data values inside a sparse volume, a specific data struc-

ture minimizes the memory requirement to represent the data. In this work we consider four

elemental brick types:

3.1.1 Dense Volume Brick

Dense volume bricks, colored green in Figure 3.3, are a good representation for regions of high

density. They store all data values in one array. Empty values are also stored in this array. In our

case a one dimensional array is used. Each three-dimensional spatial location is transformed to

a one dimensional array position using the row-major order.

In contrast to octree and voxel list, no additional information has to be stored per value to

access the data structure. If we disregard the overhead of bricking, the dense volume has the

following bit overheads per data entry as also shown in Table 3.1. For the best case, a full

volume, the memory overhead per data entry is zero. The overhead of the worst case, a single

non-zero voxel in an otherwise empty volume, is the number of zero values we unnecessarily

store in addition to this single value. As a result, the dense volume representation performs very

well for dense regions and fails for extremely sparse regions.

When interested in look-ups at non integer positions, as for example in volume rendering,

trilinear interpolation is often used. A dense representation can easily be stored as a three-

dimensional texture on graphics hardware. This allows the hardware to perform fast trilinear

interpolation between eight values.

A major advantage of a dense grid is fast access. In total, such a dense look-up requires one

indirection through bricking and a constant, O(1) array look-up. In some cases it makes sense to

favor a dense representation over an octree or voxel list because of its high access performance.

3.1.2 Octree Brick

Octrees are an adaptive, hierarchical data structure. The traditional pointer octree (or MX octree)

performs best for medium sparse data sets. Other octree variants perform well for very dense
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Figure 3.3: Dense 64× 64× 64 bricks of the stagbeetle data set.

data such as the full (or pointerless) octree and some variants perform well for very sparse data

such as the linear octree.

We have chosen to implement a traditional pointer octree since it provides an intermediate

solution between the dense and the voxel list brick type. Each node of the tree stores exactly

eight pointers to its children. Pointers are indices into a one dimensional pointer array. In our

case the leaf nodes store bricks with eight values, which are located in a corresponding value
array. Octree bricks are shown in orange in Figure 3.4. They occur mainly at medium sparse

regions of the data set at the boundary of the beetle object.

The bit overhead per entry in an octree is not as good as the dense volume representation

in the best case. A full pointer octree requires (m3 − 1)/7 internal nodes, where m, the side-

length of a brick, is a power-of-two. The full octree corresponds to the lower bound in Table 3.1.

Each leaf node shares its parent nodes with all the other leaf nodes. The worst case occurs if

we store a single value in an octree. Such a pointer octree requires at least log2(m) pointers. In

our implementation the worst case memory consumption requires 8(log2(m) − 1) pointers and

eight values, this corresponds to the upper bound in Table 3.1. The voxel list clearly has a lower

memory consumption for such extremely sparse cases.

The access performance of a pointer octree depends on the side-length of the volume and not

on the number of elements with a worst case access of O(log(m)) traversal steps. As a result, in

very sparse cases, voxel lists can also outperform the octree with respect to access performance.

An important property of pointer octrees, is that they are shift sensitive [42]. The number of

internal nodes in such an octree depends on the exact location of the octree and not only on the

density of the data set. Slightly shifting an octree can result in a lower memory requirement. An
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Figure 3.4: Octree 64× 64× 64 bricks of the stagbeetle data set.

advantage of octrees is that they enable empty space skipping for ray casting [9].

3.1.3 Voxel List Brick

Voxel list bricks are represented as a set of quadruples (x, y, z, value). They perform well for

regions of high sparsity and are shown in blue in Figure 3.5.

Each of the x, y, z coordinates theoretically requires log2(s) bit where s is the side-length

of the volume. In our case we have chosen 16 bit coordinates, since a value range of 65536
was high enough for our data sets. Voxel lists require a constant overhead per entry, in our case

48 bit. Clearly this overhead is lower than the overhead that is necessary when storing a single

value in either a dense volume or a pointer octree.

A major drawback of naïve voxel list implementations is the high access time of O(n) look-

ups in the worst case, where n is the number of elements in the list. To increase the look-up

performance to O(log(n)) we use binary search. The prerequisites for applying binary search

are that the list entries are sorted and that random access is possible. We guarantee random

access by storing the voxels in an array. The sorting of the list elements is explained in the

following.

We use histogram pyramids to construct a sorted voxel list from a dense volume as discussed

in section 5.1.4. The algorithm specifies the position in a list by traversing the intermediate steps

of a reduction on a binary representation of the data. To find the position, the algorithm iterates

through the reduction levels and sums the values in a specific order. By making sure that the

order of summation is as shown in Expression 3.1 we guarantee that the resulting voxel list is
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Figure 3.5: Voxel list 64× 64× 64 bricks of the stagbeetle data set.

sorted in Morton order.

(0, 0, 0) → (1, 0, 0) → (0, 1, 0) → (1, 1, 0) → (0, 0, 1) → (1, 0, 1) → (0, 1, 1) → (1, 1, 1)
(3.1)

We can exploit this sorting by transforming every three-dimensional (x, y, z) coordinate into

a one dimensional Morton code using the routine given in Appendix A. Finding a coordinate in

the point list can now be done with the following steps. We first initialize the voxel list in

Morton order using histogram pyramids. Every three-dimensional (x, y, z) coordinate in the

list is than transformed to a one dimensional Morton code and stored instead of the (x, y, z)
coordinate. Our list elements are now sorted with respect to its Morton code. When doing

a look-up, we transform the look-up coordinate into Morton code. Now we can apply binary

search, by finding the look-up coordinate in the sorted voxel list. The general approach is also

called linear octree [13] in the literature. Our initialization is done more efficiently on the GPU.

Voxels lists provide a high access performance if the list only contains a low number of elements.

3.1.4 Empty Brick

Empty bricks can be used if a brick contains only zero values. They are the most beneficial brick

type. An empty brick only stores its type. When accessed they return zero, no indirection is

necessary. As a result they provide the highest access performance among the four brick types.

They also possess the lowest overhead per entry in bit.
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3.1.5 Choosing an Optimal Brick Type

As mentioned earlier, our selection of brick types can handle a wide range of different sparsity

characteristics. While the dense and empty representation provide the lowest overhead per entry

in bit, the octree and voxel list provide good intermediate results for medium sparse and very

sparse regions. In the following, we term the representation with the lowest memory requirement

the memory-optimal representation.

One further aspect is that the chosen data types also provide a relatively good access per-

formance when used correctly. The dense volume representation is clearly the best (non-empty)

representation with respect to performance. It has a constant access time as shown in Table 3.1.

The voxel list is used for very sparse regions and the octree for medium sparse regions. Voxel list

access depends on the number of elements. Since we use a voxel list in very sparse situations,

the number of elements in such a list is low, therefore the access performance is good. Octree

access depends on the side-length of the bricks. Medium sparse regions contain a larger number

of nodes, therefore it is beneficial to depend on the brick size and not the number of elements.

For picking a memory-optimal representation, it is not enough to simply use a threshold

based on the sparsity of a brick. This is because of the shift sensitivity of the octree as mentioned

in Section 3.1.2. Even though a threshold based on the sparsity could be a viable method,

determining the sparsity of a volume requires to count the values. A fast algorithm of doing so,

is the parallel reduction. If the sparsity of a region is known, we know the exact size of a voxel

list representation. In fact, we use a single reduction to determine the final size of the voxel list.

To determine the size of an octree we require only two more reductions. The advantage of this

approach is, that it suffices to calculate three reductions on the whole data set, to determine the

memory requirement of each representation for every brick. Knowing the memory requirement,

we can simply pick the representation with the minimal size. More details on the initialization

of our data structure are given in Section 5.

3.2 Hybrid Bricking

Our hybrid bricking approach splits a volume into cubic bricks of side-length m. Bricks are

implemented with a power-of-two side-length mainly because this avoids special cases for the

dense and octree representations and leads to a better alignment in hardware memory. Even

though boundary bricks may extend outside of the volume for three sides, the impact is negli-

gible. Boundary bricks will still pick a memory-optimal data structure. If the border bricks are

only off by a few rows and the border region is densely populated with values, a dense represen-

tation will be picked. Otherwise an octree representation is more probable. Volumes with empty

boundary regions do not introduce any memory overhead, since the boundary bricks are empty.

3.2.1 Memory Layout and Traversal

The hybrid bricking approach stores a tuple (type, pointer) for every brick at the root level.

The size of the bricks is globally defined in our implementation. The type can be one of the four

elemental brick types. The pointer is handled in a type specific way.
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...
2x4 bytes

Dense volume ...
m3 x d

Root level

Octree pointer

Octree value

...
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8x4 bytes

8 x d

Voxel list
offset

...

...

6 bytes + d

4 bytes

El
em

en
ta

lb
ric

k
ty

pe
s

Voxel list

Figure 3.6: Conceptual data layout: root level nodes point to the elemental bricks. Traversal is

specific to the type of a brick. Different traversals are shown for the different elemental brick

types.

Figure 3.6 gives a conceptual overview of the data structure. At the root level, each brick

needs to store a type and a pointer, which consists of two 4 byte integers in our case. Even though

four bytes are not necessary to store a type with four possible values, we use this representation

due to simplicity and due to struct alignment as explained in Section 5.3.2. A struct of arrays

approach, which maintains one array for the pointers and another array for the types would be a

possible alternative.

Elemental bricks depend on the size of the data type in bytes d. Dense volumes store full

bricks of data values. Each voxel list stores one 4 byte pointer to its last element in the voxel list

offset array. Each voxel list element stores a data value and three 2 byte values as its coordinates.

These 3× 2 byte coordinates are essentially a 6 byte Morton code. Internal octree nodes always

store eight 4 byte pointers and leaf nodes store eight data values.

Every look-up starts with an address translation and then retrieves the (type, pointer) tuple

of the brick. Look-ups for empty nodes can be discarded at this point. The specialized look-up

procedures are:

• Dense volume bricks store a pointer into the dense volume array at the root level. The total

size of the dense volume array is m3 times the total number of dense volume bricks.

• Voxel lists are also managed in a single array. To access one of multiple voxel lists it is

necessary to define the start and end voxel of each list. This is done with the voxel list offset

array in Figure 3.6. One look-up retrieves the start offset and another one the end offset from

the offset array. Afterward, the list is traversed with binary search to retrieve the value at a

32



specific coordinate as explained in Section 3.1.3. If the coordinate is not found the look-up

returns zero.

• For the octree the brick pointer directly points to the root of the tree inside a global octree

pointer array. The brick resolution determines the maximal traversal depth of the octree (i.e.,

log2(m)). The octree is traversed until a leaf node or an empty node is reached. Empty nodes

are encoded with a special pointer value. The actual data values are stored in a separate region

of the memory in 23 blocks.

3.2.2 Pointer Sizes

In our implementation, we assume that the necessary pointer value range in our data structure

suffices to represent the data. We use unsigned integers of 4 byte for our pointers. This was

visualized in Figure 3.6. Pointers in the root level, the voxel list offset array and the octree

pointer array all use 4 byte pointers.

In Table 3.1 we show that the theoretical data size of our elemental brick types depends on

the pointer size. In fact, for larger data sets or if we wish to achieve an even lower memory

consumption, we have to pick the right data type for the pointers. Unsigned integer pointers can

index 232 = 4, 294, 967, 296 different values. To set this in context, directly indexing into a

volume larger or equal to 16263 would fail due to the insufficient value range.

In practice, the most predominant case where this matters is during the upload of the data

to the GPU. The octree is the only data structure we use that can theoretically have a larger

number of pointers than there are values in the volume. Since our hybrid data structure prefers a

representation that has a lower memory footprint than the dense data volume, it is unlikely that

an octree will require more pointers than there are values (under the assumption that the number

of bytes per value is smaller than the number of bytes per pointer). In this case, the data structure

would prefer the dense representation over the octree. Care has to be taken if indexing into a

volume with more than 232 values, be it on the application side or on the GPU. In this case the

index has to be of a data type with a larger value range.

In the final data structure we are in a more complicated setting. We index into different

arrays and use three types of different pointers. The analysis of the required value range for each

of these pointers is not straightforward. There are two cases to consider. On the one hand, there

is the pointer range which is necessary to consider for storing a pointer, we call this storage
pointer range. On the other hand, there is the pointer range required during computation and

look-up, the look-up pointer range. We illustrate this with a simple example. Assuming our

brick size is 8 × 8 × 8, the number of voxels per brick is 512. If we wish to access the second

brick, we can simply store 1 as a pointer (counting starts at 0). During look-up we multiply and

find 512 as the starting location of our look-up in the dense volume array. In this example the

storage pointer range differs from the look-up pointer range.

The maximum necessary pointer range for our pointers is shown in Table 3.2. From the

root level we have to direct the look-up to either of the three elemental brick types. For the

dense and the list bricks the storage pointer range is maximally the number of bricks. The more

problematic storage pointer range is the one required for octrees. We store all octree nodes for
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all bricks in a single array, as a result the storage pointer range is the total number all internal

nodes of all octrees.

The dense volume look-up requires no further indirection. The voxel list look-up needs a

value range which is at most the total number of non-empty values in a volume (if all bricks are

of type voxel list). The octree look-up needs to index into the whole set of leaf nodes, which are

bricks of size 23 in our case.

Look up from

Root level Voxel list offset Octree pointer

Dense volume # bricks - -

Voxel list offset # bricks - -

List element - # values -

Octree pointer all octree nodes - -

Octree value - - # values/8 or lower

Table 3.2: Minimal storage pointer value range for the three different types of pointers in our

data structure. The table shows look-ups along the rows of the table. For example, the root level

can either point to the dense volume array, the voxel list offset array and the octree pointer array.

In each cell, the minimal value range of the pointer is shown for the worst case.

We have shown that finding the necessary pointer range is unfortunately not so straightfor-

ward in a complex data structure. Nevertheless, it is important to keep track of the required value

range for pointers, because they pose a limit to the scalability of the data structure. For a com-

plex data structure this can be hard to determine, since pointers are used in many different cases.

For each pointer two possible types for overflow, i.e., storage overflows and run-time overflows

have to be considered. Efficiently choosing a minimal pointer type could decrease the memory

requirement, but the cost of implementing this is suspected to be high. Although this would

lend itself to just-in-time compilation and perfectly fit into our approach, we chose to set these

low level parameters to a fixed value. On the one hand, the code has the potential to be more

complex, on the other hand, dealing with pointer types with arbitrary bit lengths requires more

complex look-ups and casting. Nevertheless, optimizing the size of pointers for hierarchical data

structures could be an interesting future topic.

3.2.3 Choosing an Optimal Brick Size

Hybrid bricking provides a memory efficient representation by picking the memory-optimal

representations from a set of possible data structures. It can therefore adapt to a large variety of

data sets. The drawback is that it introduces type checks and it increases branching on the GPU

due to the differing look-up routines for each brick type.

An additional difficulty is to pick the optimal brick size for a specific data set. Although

we generally perform better than a traditional bricking with only non-empty and empty brick

types, a large brick size cannot adapt as well to the data as a smaller one. If the brick size gets

too small, the overhead introduced by storing brick types and pointers outweighs the benefit

of picking more optimal elemental brick types. For our 15 tested data sets, the optimal brick
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size with respect to the memory consumption was either 8× 8× 8 or 16× 16× 16 as shown in

Table 6.1.

Section 6.1 in the results Chapter deals with the benefits of using such a hybrid bricking data

structure, which is a representation with a low memory consumption. In the following Chapter 4

we introduce JiTTree, a data structure that aims to improve the access performance of hybrid

bricking. Chapter 5 provides an in depth explanation of our data-structure initialization-routine,

which makes use of a selection of parallel algorithms on the GPU.

3.3 Modular Data Structure

The hybrid bricking data structure we have presented can be displayed as a tree shown in Fig-

ure 3.7. The layout of this tree is very simple. The root is always a bricking implementation,

i.e., a grid. The leaf nodes of the tree can be of arbitrary types, in our case the four elemental

brick types.

Grid

Dense OctreeList Empty

Figure 3.7: Hybrid bricking data structure, the root is a grid data structure the leaves can be of

different types.

This simple bricking strategy can be replaced by a more complex, modular approach. As

shown in Figure 3.8, such a modular approach would allow every node of the tree to be of a

different data structure. The nodes in the example are of type grid, octree, hashing and list.

Octree

Grid Hashing

Grid Octree Grid List

Octree List

Figure 3.8: Modular adaptive data structure, each node can be of a different data type.

We hypothesize, that such a data structure can possibly even better fit a specific data set since

it is more flexible than our approach. Although this approach might seem elegant, we have seen

in practice that it introduces additional of problems. We made the following observations on our

way to implement such a data structure:
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• Internal nodes and leaves of the same type need to be implemented differently. For exam-

ple, an octree as an internal node does not directly store values but pointers. An octree at

the leaf levels has to store values directly, to be efficient. Therefore the number of types

which have to be implemented are twice as high as initially expected.

• Leaf nodes have to be implemented as very specialized code. Otherwise the performance

and the memory consumption is much higher than it needs to be. As mentioned before,

an octree has to store the values directly to be memory and performance efficient.

• Any edge in the tree in Figure 3.8 is an additional indirection. Any additional indirec-

tion slows down the look-up performance of the data structure The lower the number of

indirections, the better the performance of the data structure. Volume bricking is a good

candidate since it requires only a single indirection. Another good candidate could be

spatial hashing, since it also has a constant access performance.

• The initialization routine for such a data structure is more complex. It is harder to find

and optimal representation for a specific data set, due to a larger number of possible data-

structure layouts.

We conclude that, one of the top priorities for developing a data structure, should be to keep

the number of indirections as low as possible. In addition, low level optimizations make a big

difference. For example, let us consider once more an octree where leaves can either be pointers

to other data structures or pointers to values. Let us further assume that each leaf contains a

pointer to a single value. This would, for most cases (i.e., if the values and the pointers require

the same number of bits) double the cost for each leaf. Clearly, it would not make sense to use

such an octree, since it would probably have a higher memory requirement than a dense array.

Now let us consider an octree where each leaf is a single value. In our implementation, we

store eight pointers per internal leaf. An internal node pointing to just a single leaf value would

still have all eight pointers. This representation is not efficient enough.

For easier experimentation we found the data structure in Figure 3.7 to be a good trade off

between generality and complexity. In the future the analysis of a more general data structure

the one shown in Figure 3.8 would be interesting.
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CHAPTER 4
JiTTree: Just-in-Time Compiled Tree

In the following chapter we introduce JiTTree, a just-in-time compiled tree data structure. The

idea behind this data structure is to exploit information that is not known during earlier stages of

compilation to optimize traversal code. Specifically, we use partial evaluation to incorporate the

data set of interest into the traversal code of our tree data structure. A data set is typically loaded

at the run-time of the program. We apply our additional data dependent just-in-time compilation

step afterwards, hence we call our data structure just-in-time compiled tree.

Partial evaluation transforms general tree traversal code into data specific traversal code. We

term this code transformation step tree unrolling, due to its similarity to loop unrolling. One im-

portant aspect of our data structure is type routing. In general a hybrid data structure consists of

different elemental data structures, to locally better represent a data set. The more elemental data

structures are used, the higher is the potential that the memory efficiency increases. However,

with conventional approaches more elemental data structures mean a larger overhead during data

traversal, due to the type checks. JiTTree can implicitly handle type routing without introducing

additional traversal overhead. Instead of depending on the number of elemental data structures,

the traversal overhead of a JiTTree depends on the homogeneity of the data set.

In the following sections we introduction JiTTree step-by-step. We start by explaining the

general concept of tree unrolling with describing a binary search tree in Section 4.1. In Sec-

tion 4.2 we add a type routing step which makes it possible to efficiently assign types to the

nodes of our tree. Finally, in Section 4.3, we take this approach to three dimensions and explain

the full JiTTree concept.

4.1 Tree Unrolling

The goal of tree unrolling is to improve the performance of the tree traversal code. It is a

technique related to partial evaluation. We specialize the tree traversal code with respect to one

specific data set. The data set is our static data which is fed into the partial evaluator. The look-

up coordinates to our data structure remain the dynamic input data to our specialized traversal

code.
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To illustrate the concept of tree unrolling we consider the example of doing look-ups in a

binary search tree. Figure 4.1 shows the binary tree of a sorted list of keys. Corresponding to

each key a value is stored. In this case, the values have increasing indices starting from the

left, but they can be arbitrary numbers. During look-up the tree is traversed from top to bottom.

When the key is found the value of the element is returned.
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Figure 4.1: Binary search tree example, the upper value in each node is the position (or key) and

the lower one is the value.

Such a binary tree can efficiently encode a sparse set of values in one-dimensional space. For

instance a dense array of the 15 non-zero elements from v0 to v14 at the positions 1, 4, 6, 8, 9,

13, 105, 106, 107, 220, 221, 222, 225, 226 and 308 would allocate memory that is large enough

to fit at least 309 values. A sparse list representation of the array only stores the 15 values and

the indices of the elements. In contrast to a list, a binary search tree reduces the overhead of

retrieving a key from O(n) to O(log2(n)).

Listing 4.1 shows the pseudo code of the recursive tree traversal. The search key is compared

to the root node. If the search key is smaller than the current node’s key, the traversal continues

in the left sub-tree. If it is greater, the search continues in the right sub-tree. If the key is

equal, the search is successful and returns the corresponding value. The search tree is a sparse

representation which makes it possible to avoid storing the empty elements. Thereby, it greatly

saves storage space. Traversal is efficient but nevertheless incurs an overhead in comparison to

a dense array.

The node.key instructions in Listing 4.1 are the memory fetches that are introduced for the

tree traversal, and the node.value instruction is the memory fetch that is introduced to retrieve

the value. Unrolling such a tree directly incorporates the data of the tree into the code. It thereby

eliminates the need for memory fetches which can reduce the traversal overhead.
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1// recursive tree traversal for a look-up at the position key
2uint find(key, node)
3{
4 // compare key to node key
5 // traverse left subtree
6 if(key < node.key)
7 if (node.left != NULL)
8 return find(key, node.left);
9 else

10 return NOT_FOUND;
11 // traverse right subtree
12 else if(key > node.key)
13 if (node.right != NULL)
14 return find(key, node.right);
15 else
16 return NOT_FOUND;
17 else return node.value; // return result
18}

Listing 4.1: Recursive binary search tree look-up function in pseudo code.

1// unrolled tree traversal with look-up at the position key
2uint find(key)
3{
4 // compare key to root key
5 if(key < 106) // traverse left subtree
6 if(key < 8) // traverse left-left subtree
7 if(key < 4)
8 if (key == 1) return v0;
9 else if(key > 4)

10 if (key == 6) return v2;
11 else return v1;
12 else if(key > 8) // traverse left-right subtree
13 if(key < 13)
14 if (key == 9) return v4;
15 else if(key > 13)
16 if (key == 105) return v6;
17 else return v5;
18 else return v3;
19 else if(key > 106) // traverse right subtree
20

21 ...
22

23 else return v7;
24 return NOT_FOUND;
25}

Listing 4.2: Unrolled binary search tree look-up function in pseudo code.

Listing 4.2 shows the pseudo code of the unrolled binary search tree. By explicitly compiling

the data into the code the access becomes less memory-bound during tree traversal. The find
routine does not require the node data structure as argument anymore. The memory fetches to

node.key and node.value are avoided.
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The representation saves memory. Even though the data is now stored in instructions (i.e., in

the instruction cache), the pointers from parent to child nodes vanish. During traversal of such

a data structure, no fetches into the node data structure are necessary. Caching such a node data

structure is not very effective in a parallel environment. We will discuss the associated problems

in Section 5.3.2. It can be more efficient to design the array of structs node data structure as a

struct of arrays. In addition, the parent and child nodes may not necessarily lay close to each

other in the node data structure, which can cause cache misses when traversing the tree.

Tree unrolling shifts some of the data caching problem towards the instruction cache. Even

though the potential cache usage is lower, since we do not need to store pointers for example,

this transformation is not for free. Assuming that the GPU does some sort of instruction caching,

it might be of interest to arrange the code in a cache-efficient manner.

4.2 Type Routing

In the previous section we have used a simple binary tree to access sparse values. We now wish

to incorporate additional information per node. In our hybrid bricking approach we store a type

and a pointer for each brick. Similarly, in a binary tree it can be of interest to associate a type

to each node. Tree unrolling provides an elegant solution to implicitly assign types to individual

nodes.
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8 222

4 13 220 226

1 6 9 105 107 221 225 308

Figure 4.2: Binary search tree example. Color encodes the data type.

The types are encoded as colors in the example of Figure 4.2. If we want to execute a type

specific function foo on the elements we first have to look-up their type in the corresponding

array. To execute their specialized code, we call the function corresponding to that type. The

pseudo code for such a type-specific method-call is shown in Listing 4.3. First the binary tree is

traversed to find an index into the array of sparse elements. Then, depending on the type of the

node, we execute one of the three methods.
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1// function foo uses recursive traversal
2// type specialization via switch-statement
3value foo(key, root)
4{ // tree traversal to get index
5 uint index = find(key, root);
6 // compact array lookup
7 element e = acomp[index];
8 // specialize function call by element type
9 switch(e.type) {

10 case green: return foogreen(e.address);
11 case orange: return fooorange(e.address);
12 case blue: return fooblue(e.address);
13 }
14}

Listing 4.3: foo member function evaluation pseudo code

When unrolling the tree traversal it is possible to inline the specialized foo function. Type

routing and address passing can now be written explicitly. Listing 4.4 shows the result of inlining

and specializing the foo member function as a result of partial evaluation.

1// function foo inlined traversal
2value foo(key, root)
3{ // compare key to root key
4 if(key < 106) // traverse left subtree
5 if(key < 8) // traverse left-left subtree
6 // call specialized function
7 if(key < 4)
8 if (key == 1) return foogreen(v0);
9 else if(key > 4)

10 if (key == 6) return foogreen(v2);
11 else return foogreen(v1);
12 if(key > 8) // traverse left-right subtree
13 if(key < 13)
14 if (key == 9) return foogreen(v4);
15 else if(key > 13)
16 if (key == 105) return fooorange(v6);
17 else return foogreen(v5);
18 else return foogreen(v3);
19 else if(key > 106) // traverse right subtree
20

21 ...
22

23 else return fooorange(v7);
24 return NOT_FOUND;
25}

Listing 4.4: foo function specialized and inlined

The overhead of resolving types is eliminated as specialized functions are directly called.

The same concept can be applied as a routing step on top of our previously introduced hybrid

bricking. It eliminates memory fetches in the top level traversal code and inlines type special-

ization. This eliminates type resolving as well as the switch-statements that route execution
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between the different elemental data structures. Therefore, the access time to one node is inde-

pendent of the number of different elemental brick types.

In essence such a tree unrolling decreases memory requirements by increasing program

length. GPU algorithms are known to be either memory-bound (i.e., the performance is lim-

ited by the number of memory fetches), compute-bound (i.e., the performance is limited by

the number of arithmetic computations, also called high computational density), or instruction-

throughput-bound (i.e., the performance is limited by the non-arithmetic instructions) [48]. The

just-in-time compilation is an attempt to shift some of the burden from the GPU’s memory cache

to the instruction cache making the overall algorithm less memory-bound.

4.3 JiTTree Approach

JiTTree is closely related to the previously introduced unrolled binary search tree for type rout-

ing. Since we are dealing with three-dimensional data, we use a kd tree instead of the binary

tree. During run-time of the program, at the time when the data set has been loaded, we apply a

partial evaluation scheme that specializes the code with respect to the data set. This can improve

the access performance of our tree data structure. JiTTree is an extension of the hybrid volume

bricking approach explained in Chapter 3. In our bricking approach, we pick an optimal brick

for each sub-region of a data set.. Such an optimal brick layout can be for example a bricking

with the minimal memory footprint. JiTTree is a kd tree of bricks, that is partially evaluated

with respect to the data.

DenseOctree

z<32

x<32

x<32y<32

y<320 0

(0,0,0)

Dense Octree

Octree

Octree

Dense

(64,64,64)

Figure 4.3: Kd tree of bricks, in this case each leaf node is a single brick. Empty bricks return

zero.

Figure 4.3 shows a kd tree of bricks, where each leaf node contains either a single brick or

an empty region. A kd tree makes it possible to access a sparse volume of bricks. The drawback

of the approach is, that the traversal depth can be high. Even homogeneous regions, which are

of the same type, will be split by the kd tree. If we use the kd tree for type routing this is not

necessary. It is more efficient to generate a kd tree where each leaf node contains a sub-volume

with a single brick type. This makes it possible to discard empty regions fast. Homogeneous
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sub-regions implement a bricking approach that uses only a single brick type, which locally

reduces the need for type branching.

Such a kd tree with leaf node bricking is shown in Figure 4.4. The volume contains three

different brick types: dense, octree and voxel list bricks. The splitting planes of a kd tree are

shown in gray. These planes split the volume into large homogeneous regions of the same brick

type. For example, the plane at x = 192 splits the volume into the left sub-volume containing

octree and dense bricks. The right sub-volume is further split, until each leaf of the kd tree

contains only a single type. The resulting kd tree has a lower traversal depth compared to the kd

tree with a single brick in each leaf node. In the leaf nodes we still have to do a bricking, but

the type of the bricks is known. Therefore we get rid of the type routing conditionals, which are

directly encoded in the kd tree.

4.3.1 Kd Tree Construction

Constructing a general kd tree where each leaf node contains a single brick is straightforward. It

is possible to sort the bricks with respect to a coordinate and split at the median brick element. In

contrast to point lists, which are often located randomly at non-integer coordinates, we regularly

have to handle the case that bricks share the same x, y or z coordinate. Our algorithm sorts the

bricks three times with respect to all coordinates. From each of these sorted lists, we chose the

candidate where the left and the right sub-lists are closest to be equally sized.

However, the more beneficial kd tree variant, is a tree that groups bricks of the same type.

It requires a different initialization routine with a splitting criterion that minimizes the average
entropy, as introduced by Michalski et al. [32] in the context of optimizing decision trees. The

entropy E of a region S with respect to the brick types is given in Equation 4.1.

E(S) = −
b∑

i=1

pi log2 pi (4.1)

b is the number of different brick types, in our case four. pi is the portion of the bricks with

type i. The equation for the entropy has a negative sign, since it takes the binary logarithm of

probabilities between zero and one.

Minimizing the average entropy is equivalent to maximizing information gain. We calculate

the average entropy for each possible split as given in Equation 4.2. The volume is recursively

split into two sub-regions Sj , j ∈ [1, 2]. Let us define vj as the volume of a sub-region (i.e., a

kd tree child) Sj , the average entropy I(S) is then computed as

I(S) =

2∑

j=1

vj
v
E(Sj) (4.2)

where the entropy of each sub-region E(Sj) is weighted by the volume of this sub-region vj
normalized by the total volume v. Splitting is applied recursively until each kd tree leaf contains

bricks of only one elemental brick type.

Example: For example, consider the split at x = 192 in Figure 4.4. This split creates two

sub-regions. The left sub-volume is weighted with 3/8 and the right sub-volume with 5/8.
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The entropy E(Sleft) of the left sub-volume is evaluated with Equation 4.2. The probabili-

ties pi are: poctree = 168/192 = 0.875, pempty = 0, plist = 0 and pdense = 24/192 = 0.125.

As a result, the entropy evaluates to E(Sleft) = 0.5436.

Let us consider the entropy of the right sub-volume E(Sright) in Figure 4.4. The volume

contains 3 × 8 × 6 = 144 voxel list bricks, 5 × 3 × 2 = 30 dense bricks and 320 − 144 −
30 = 146 empty bricks. The portions of brick types are: pempty = 146/320 = 0.45625,

plist = 144/320 = 0.45, poctree = 0 and pdense = 30/320 = 0.09375. As a result, the entropy

is E(Sright) = 0.6775. The weighted entropy of this split is I(S) = 0.627.

4.3.2 Kd Tree Traversal

Let us consider a volume of size 512 × 512 × 512 that is split into bricks of size 64 × 64 × 64
as shown in Figure 4.4. Our goal is to split the volume into homogeneous regions of the same

type. The corresponding tree is shown in Figure 4.5. The resulting tree has a larger number of

bricks than the previous example. Still the tree has the same depth.

x=192 x=384

x

y

z

z=384

y=192

Octree
Dense

Voxel list

z=64

Figure 4.4: Kd tree of bricks where leaf nodes are of a single type, but multiple bricks can fall

into a single kd tree leaf. Green bricks are dense, orange bricks are octrees and blue bricks are

voxel lists.
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x<192

z<384

x<384 y<192
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Octree

z<64
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Figure 4.5: Kd tree of bricks, in this case each leaf node is a sub-volume containing multiple

bricks of the same type.

1// Node of the kd tree data structure
2struct Node
3{
4 uint axis; // x:0, y:1, z:2
5 uint key; // coordinate of the splitting plane
6 uint type; // INTERNAL, OCTREE, VLIST, DENSE
7 Node leftChild;
8 Node rightChild;
9}

10// Kd tree get function
11int get(uint[] pos, Node node)
12{
13 // recursion
14 if (node.type == INTERNAL) {
15 if (pos[node.axis] < node.key)
16 get(pos, node.leftChild);
17 else
18 get(pos, node.rightChild);
19 }
20 // type checks for all possible leaf node types
21 else if (node.type == OCTREE)
22 // octree bricking
23 return getOctree(...);
24 else if (node.type == VLIST)
25 // voxel list bricking
26 return getVList(...);
27 else if (node.type == DENSE)
28 // dense bricking
29 return getDense(...);
30 else return EMPTY;
31}

Listing 4.5: Traversal code for the kd tree of bricks in a recursive fashion.

Traditional kd tree traversal for this case is shown in Listing 4.5. A node data structure is
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necessary, where the parent node connects with two pointers to its children. The axis variable

defines in which direction the node splits, the key is the coordinate of the splitting plane. Notice

that the axis variable is not necessary if the kd tree splits in x, y, z order successively. Splitting

in arbitrary directions is more flexible and can be done for free in the unrolled kd tree. Each

node stores a type which can be INTERNAL for all internal kd tree nodes and VLIST, OCTREE and

DENSE for the other brick types.

After the recursive kd tree traversal, the algorithm determines the type of the leaf node.

Depending on the type, a different function is called (i.e., getOctree, getVList or

getDense).

Otherwise, the brick is empty and therefore the EMPTY value is returned. Type routing is

done with an if/else condition, but can conceptually also be a switch-statement. OpenCL does

not support switches and the performance of a switch and if-statements is comparable.

4.3.3 Kd Tree Unrolling

Listing 4.6 shows the just-in-time compiled kd tree code for the example of Figure 4.4. The

getSubVolume functions are specialized bricking functions which can be either a sub-volume of

bricks with the same type (Listing 4.7) or a single brick (Listing 4.8). In practice these functions

are inlined. The pseudo code representation was chosen for better readability.

1// jit get function with look-up position (x,y,z)
2int get(int x, int y, int z)
3{
4 if(x < 192) {
5 if (z < 64) {
6 // dense bricking or single brick
7 return getDenseSubVolume0(...);
8 } else {
9 // octree bricking or single brick

10 return getOctreeSubVolume0(...);
11 }
12 } else {
13 if (z < 384) {
14 if (x < 384)
15 // voxel list bricking or single brick
16 return getVListSubVolume0(...);
17 } else {
18 if (y <192)
19 // dense bricking or single brick
20 return getDenseSubVolume1(...);
21 }
22 }
23 return EMPTY;
24}

Listing 4.6: JiTTree get function pseudo code.

Our kd tree unrolling applies five optimizations:

(i) Traversal optimization: No data memory fetches are required for the kd tree traversal.

The splitting axis order is directly encoded in the conditionals. Splitting plane positions
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are inserted as literals.

(ii) Efficient discarding of empty regions: Empty regions are quickly discarded without a

bricking memory fetch. If the (x, y, z) position is not found as a leaf node in the kd tree,

the EMPTY value is returned as the default in the last line of Listing 4.6.

(iii) Implicit specialization: No type routing between specializations of the get functions of

different elemental data structures is required. The getDense, getOctree and getVList

functions are inserted at the leaf nodes. No type checks are required. The type checks

which were needed in Listing 4.5 are removed.

(iv) Pointer in-baking: For leaf nodes containing more then a single brick, the pointers are

stored as a local constant array. In the case of a single brick inside a kd leaf node, it is

possible to entirely eliminate the bricking. For these single-brick leaf nodes, the pointers

are literals that can be directly written into the specialized function call. This eliminates

one memory fetch for such leaf nodes.

(v) Leaf node branch removal: Kd tree branches having only a single type are reduced to a

single-type bricking approach.

The specialized access functions getDenseSubVolume, getOctreeSubVolume and getVList

SubVolume can either contain a cuboid sub-volume of bricks with a the same type or a single

brick. An example of the access function for the octree is shown in Listing 4.7. For pointer

in-baking, the function contains a local array of pointers p[x,y,z]. First, the algorithm has to de-

termine the index of the brick corresponding to position (x, y, z). The local array contains the

pointer of the octree root and the general getOctree function is executed with the pointer as

argument.

1// specialized get function for the [0,0,64] to [192,512,448] sub-region
2int getOctreeSubVolume0(int x, int y, int z)
3{
4 // stores the pointers for all bricks, in this case octree root nodes
5 int pointer[168] = {p[0,0,64], p[64,0,64], ..., p[128,448,384]};
6 // transform the (x, y, z) position into a brick index
7 int i = toLinearIndex[0,0,64],[192,512,448](x, y, z);
8 // starts an octree traversal at the root node defined by the pointer
9 return getOctree(pointer[i], x, y, z);

10}

Listing 4.7: Specialized bricking function

If a kd leaf contains only a single brick, the code can be further simplified as shown in

Listing 4.8.
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1// specialized get function for a sub-region cointaining a single brick
2int getOctreeSubVolumei(int x, int y, int z)
3{
4 // starts an octree traversal starting at pointer p
5 return getOctree(p, x, y, z);
6}

Listing 4.8: Pseudo code for a single leaf brick. p in this case is a single, known integer

value.

The toLinearIndex function in Listing 4.7 is partially evaluated by the OpenCL compiler.

The boundaries of the corresponding leaf node are known at compile time. For the example of

the octree, the sub-volume starts at [0, 0, 64] and is of size [192, 512, 448]. Listing 4.9 shows the

index transformation for the octree sub-volume before and Listing 4.10 after partial evaluation.

At the compilation time all parameters to the function except for the variable position (x, y, z)
are known. As a result, the compiler can specialize the toLinearIndex function at compile time

and inline it.

1// index transformation
2int toLinearIndex(int3 pos, int3 start, int width, int height)
3{
4 return (pos.x-start.x) + (pos.y-start.y) * width + (pos.z-start.z) *

width * height;
5}
6// example call for the octree
7int i = toLinearIndex((int3)(x, y, z), (int3)(0, 0, 64), 192, 512);

Listing 4.9: Index transformation pseudo code. The code in the implementation additionally

has to transform the (x, y, z) to the brick space, by dividing with the brick size.

1// inlined code
2int i = x+(y-64)*192+z*98304;

Listing 4.10: Inlined index transformation can be partially evaluated by the OpenCL

compiler.
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CHAPTER 5
Implementation

The following chapter deals with the concrete implementation of our data structure. We start

by explaining the initialization routine, which uses a number of parallel algorithms to keep the

processing cost low, in Section 5.1. In Section 5.2 we briefly explain the just-in-time code

generation. Finally, in Section 5.3, we deal with low level OpenCL specifics, such as branch

divergence and structs in OpenCL.

5.1 Hybrid Bricking Construction

After defining a brick size, the construction of the hybrid data structure is done sequentially as

illustrated in Figure 5.1.

The initial step is to analyze the sparsity of the data set for each brick (sub-section 5.1.1).

This is done by performing a parallel operation which calculates the memory requirement for

all bricks with all possible types. After the memory requirement is known for all types, it is

possible to chose the optimal type for every brick (sub-section 5.1.2). With a fixed brick layout

for the entire data set, it is possible to build a kd tree of bricks (i.e., a JiTTree) on the application

side. At this point, the memory requirement is known and the GPU memory can be allocated

(sub-section 5.1.3). The sequential initialization and upload of each brick is the final step (sub-

section 5.1.4).

During run time, when compiling a kernel that uses our data structure, we inline the data

structure traversal code into the kernel code. Depending on the settings, this inlined code can

either be a hybrid bricking or a JiTTree get method. In the following, we explain these initial-

ization steps in more detail.

5.1.1 Sparsity Analysis of the Bricks

Different brick types require a different amount of memory. To allocate the memory on the GPU,

the memory consumption has to be known beforehand. Furthermore, if the memory requirement
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Figure 5.1: Data structure initialization steps.

for each possible brick type is known, it is possible to pick the representation with the minimal

memory consumption.

The memory consumption of all elemental brick types is summarized in Table 5.1. We use

these values to exactly calculate the memory requirement for each representation. The dense

volume’s memory footprint is constant for the brick size m and the data type d, while the octree

and voxel list depend on the number of non-zero values. As a result, an octree and a voxel list

representation will always require roughly the same amount of memory independent of the brick

size. No matter how often a volume is split, the number of non-zero values to be stored stays

the same, the only difference is the overhead of additionally storing brick type and pointers.

Nevertheless, a small grid size is often beneficial in terms of memory consumption, because the

elemental node types better fit the data.

Brick Type Memory Consumption

Empty 0

Dense d×m3

Octree 32× ninternal + 8× d× nleaf

Voxel list (6 + d)× n

Table 5.1: Memory requirement in byte for each elemental node type. m is the brick size, n
the number of non-zero values inside a brickand d the size of the data type in byte. nleaf is the

number of internal octree nodes at the deepest internal node level, i.e., the parent node of the

leaves, ninternal is the number of remaining internal nodes.
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To determine the memory requirement for each type we require four different routines. An

empty brick can be picked if the number of non-zero data voxels inside a brick is zero (n = 0).

To determine the memory requirement of a voxel list, it is necessary to count the exact number

of non-zero voxels in a brick. For octree bricks the number of internal octree nodes and leaf

nodes has to be calculated. Dense bricks always require a constant amount of memory.

We use different variations of parallel reductions to determine these numbers. For large data

sets we execute these reductions on sub-volumes of the data, since the data set may not entirely

fit into GPU memory. In the following, we explain the process of figuring out the memory

requirements for a two dimensional case. Figure 5.2a shows a two dimensional example data

set. Each entry xcolumn,row represents a non-zero value.

Basic Reduction

To count the number of non-zero elements for the empty or the voxel list brick type, we apply a

pyramidal summation reduction on a binary representation of the data as shown in Figure 5.2b

and 5.2c. If the number of elements is zero, the brick type can be defined as empty and we

are done. Otherwise, the size of a voxel list can be calculated as given in Table 5.1. For the

particular example, we figure out that the data set contains seven non-zero values.

x0,0 0 0 x3,0

0 x1,1 0 x3,1

x0,2 x1,2 0 0
x0,3 0 0 0

(a) Original data

2 2

3 0

Brick 1 Brick 2

Brick 3 Brick 4

(b) First reduction level

7

(c) Second reduction level

Figure 5.2: (a) An example data set. Non-zero values are represented by xcolumn,row. (b) and

(c) show the results of a pyramidal summation reduction to find the number of non-zero values

in the data set.

We calculate the number of elements for each brick in parallel over the entire data set with

only a single reduction. Let us consider splitting the example data into four bricks of side-length

m = 2. We first apply a summation reduction to the data set to determine the number of non-

zero values per brick. In this case, we stop the reduction in the first level shown in Figure 5.2b.

At this point, we already know that Brick 4 is empty. The sizes of the dense and the voxel list

representation of Brick 1, 2 and 3 are known (i.e., can be calculated from Table 5.1). For the

octree (quadtree) we still require to calculate the exact number of octree (quadtree) nodes.
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Octree Reductions

An efficiently stored pointer octree requires two distinct arrays on the GPU, one for the leaf

nodes and one for the internal octree nodes. To determine the size of the final octree, we need

to count the number of these nodes. We explain the necessary octree reductions for the data set

shown in Figure 5.3a. Figure 5.4 represents the pointer quadtree generated from the example

data set. The quadtree has four internal nodes and exactly n leaves. Therefore it is possible to

use a reduction to determine the size of the leaf node array.

x0,0 0 0 x3,0

0 x1,1 0 x3,1

x0,2 x1,2 0 0
x0,3 0 0 0

(a) Original data

1 1

1 0

(b) First octree internal node

reduction level

4

(c) Second octree internal

node reduction level

Figure 5.3: (a) Example data set. (b) and (c) show a custom reduction to count the number of

internal nodes of a pointer octree.

x0,0

I1,0,0 I1,1,0 I1,0,1

I0,0,0

x1,1 x3,0 x3,1 x0,2 x1,2 x0,3

Figure 5.4: Quadtree representation of the example data set. Internal nodes Ilevel,x,y and leaf

values xx,y

For determining the number of internal nodes I , we use a customized internal node reduc-

tion. A pointer octree needs one node for every non-empty sub-tree. We count the number of

internal nodes with the approach shown in Figure 5.3. On the first level, we check if the leaf

nodes are all zero. If they are, we start the reduction with 0, if they are not we start with 1. On

every subsequent reduction level we sum the child values and add 1 for the internal node, if at

least one child is non-zero. The final step of the reduction returns the number of internal nodes.

In this case the number of internal nodes is 4.

A pointer octree with leaf nodes containing only one element is inefficient. Hence, our

implementation uses a pointer octree with 2 × 2 × 2 leaf bricks. To generate such an octree,
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we have to determine if a leaf brick contains at least one value. We achieve this, by applying

the initial internal node reduction step once more before calculating the number of leaves and

internal nodes. After the memory requirement calculation step, the size of all possible data

structures are known. In the next step we pick an optimal type for every brick.

5.1.2 Choosing Optimal Brick Types

The number of possible data structure representations is exponential in the number of bricks.

With four different elemental bricks there are 4#bricks possible data structure representations. In

the following section we describe our strategies for finding a good data structure representation

in a timely manner.

The two optimal solutions with respect to run time and performance can be easily found.

The performance optimal solution consists of dense and empty bricks only. Dense volume look-

ups are optimal, because they can be done in O(1), while the octree requires O(log(m)) and the

voxel list O(log(n)) additional look-ups to retrieve a specific data value. The optimal solution

with respect to memory consumption can also be generated easily. For each brick, we simply

pick the representation that requires the least memory.

Memory optimal

Performance optimal

9.510.511.512.513.514.515.516.517.518.519.5

B
yt

e

ms

Figure 5.5: Space of possible data representations between the performance and the memory-

optimal solution. Four different strategies are compared to a random sampling between both of

these solutions.

Figure 5.5 shows a sampling of the space of possible data structure representations for the

Hydrogen data set with a brick size of m = 16. Each sample point in the (ms, byte)-space is

one specific data structure representation with a different brick assignment. The Figure gives the
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measured size of the data structure in bytes and its run time in ms, using a 3×3×3 mean filter.

The value at the bottom left is the memory-optimal solution. It consists of a mixture of dense

volume, octree, voxel list and empty bricks. The value at the top right is the representation with

the optimal performance, it only consists of dense volume and empty bricks. Notice that many

more, less optimal data structure representations exist, which we did not plot.

For finding good in-between solutions, we start from the memory-optimal solution and sub-

sequently replace octree and voxel list nodes by dense nodes. As a result the performance and

the memory consumption increase. We test different approaches for finding optimal in-between

solutions (best performance with the least memory consumption). We compared the following

strategies:

• max(ms): Replace the slowest non-dense brick with a dense representation first. This is

achieved by executing an algorithm only on a single brick. We sequentially calculated the

run time for every brick alone. The strategy finds the slowest brick and replaces it with a

dense representation.

• max(ms − msdense): In Figure 5.5 the strategy is denoted as max(msd). Replace the

bricks with the largest difference between their run time and their expected dense-volume

run-time first. The approach tests the dense-brick run-time and the actual run time and then

calculates the difference. It exchanges the brick that introduces the largest performance

gain. It is necessary to consider this difference, since dense bricks can have a varying

performance. For example in the case of 3×3×3 filtering, boundary cases are handled

differently. The performance of a brick on the volumes boundary is generally higher than

the performance inside the data structure since fewer look-ups have to be done. Look-

up positions that fall outside of the volume of interest can be discarded before executing

further data structure traversal code.

• min(bytedense − byte) = max(byte): Replace the bricks with the smallest memory in-

crease first. Picking the globally largest value first generates the same result, since the

dense representation is always the one with the highest memory requirement. The repre-

sentation with the highest memory consumption is always the one that has the smallest

difference to the dense representation.

• min((bytedense−byte)/(ms−msdense)): In Figure 5.5 the strategy is written as max(byted/msd).
Replace the smallest slope in the (ms, byte) space first. Figure 5.6 shows that in the pre-

vious two approaches we were trying to optimize by picking an optimum in either the

horizontal or the vertical direction. The theoretically best solution is to minimize the

slope.

The performance in ms is measured by executing a specific kernel on the data for every

brick. Due to performance limitations, we approximate the run time of a brick, by executing the

kernel on the brick only. We calculate the performance for every brick locally. The theoretically

correct solution would require to compare the performance of the global run time for every

possible brick assignment. Testing every globally possible representation requires the generation

of as many data representations as there are non-dense bricks in the memory-optimal solution
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{
ms

(ms -ms )current dense

(byte -byte )dense current

(ms ,byte )current current

byte
dense dense(ms ,byte )

Figure 5.6: The lower left point represents a specific non-dense brick. The point in the upper

right shows the same brick, represented as dense volume. The performance and the memory

consumption of the dense representation is higher. In our second approach we maximize the

performance gain only. In the third we minimize the memory overhead. In the fourth strategy,

we pick the lowest slope.

for a single brick replacement. Therefore, the data structure would have to be re-initialized for

every possible replacement. Our local measuring approach, only needs to generate the memory-

optimal solution and test the performance of the kernel executed on each individual brick. In

addition, for calculating the differences, the performance optimal solution is generated and its

run times are measured.

All four strategies perform better than the random replacement in Figure 5.5. The theoreti-

cally optimal solution performs almost always best. There are three drawbacks of this approach.

First, measuring performance on the GPU is noisy. Secondly, we try to find a globally opti-

mal solution by using local measurements. Replacing the local measurements by global mea-

surements would significantly decrease the performance of the data-structure optimization-step.

Currently, this is not manageable for a large number of samples. Thirdly, picking an optimal

representation by probing comes at a high cost. To find such an in between representation, we

need to execute the algorithm on the data set. This only makes sense if we plan to execute the

algorithm many more times in the future, since the result is already known during the measuring

phase.

Our approach is able to pick one of the representations that fits the best to the desired use

case. The memory-optimal or the performance-optimal solution are desirable in cases where

either performance or data size are critical. In-between solutions can be picked by using the

minimal slope strategy mentioned above.

5.1.3 Sequential Pre-Initialization and GPU Memory Allocation

After a specific data structure layout is choosen, it is possible to allocate the GPU memory and

subsequently upload the data to the GPU. Figure 3.6 shows a detailed view of the memory layout

on the GPU. All bricks of a specific elemental type share global arrays for that type. To initialize

each brick in its correct location inside its buffer, it is necessary to sequentially iterate over all

bricks of a type and increment its start and end location. The global memory requirement is

already known after step 5.1.1 and can be allocated on the GPU. The concrete size of the data
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structure also depends on the value range of the pointers, coordinates and data values stored

inside the data structure.

5.1.4 Initialization and Upload of the Data Structure Nodes

Initialization of the nodes is done sequentially, but each node type uses a parallel algorithm for

initialization. The dense volume initialization only requires to copy a sub-region of the input

volume directly to the GPU. Voxel list and octree initialization require more effort as explained

in the following sections.

Voxel List Construction Using Histogram Pyramids

To initialize a voxel list on the GPU, we need to count the number of non-zero elements in

the input volume. Then, it is possible to initialize a list of voxels for all non-zero voxels. To

achieve the necessary performance, we use histogram pyramids [50] to initialize the voxel lists

on the GPU. A histogram pyramid stores the result of a reduction on the binary classified data,

as introduced in section 5.1.1. Figure 5.7 shows the input data in (a), the binary classification of

non-zero values in (b) and the histogram pyramid we store in (c).

x0,0 0 0 x3,0

0 x1,1 0 x3,1

x0,2 x1,2 0 0
x0,3 0 0 x3,3

(a) Input data

1 0 0 1
0 1 0 1
1 1 0 0
1 0 0 1

(b) Binary classified in-

put

2 2

3 1
8

(c) Internal histogram pyramid levels

Figure 5.7: Input data and histogram pyramid. The binary classified input data is not stored in

our approach.

After constructing the histogram pyramid, which is based on a parallel reduction, the algo-

rithm can initialize the voxel list in parallel. A kernel is started, using n work-items. Where n
is the number of elements in the list. The size of the list can be obtained by reading the root

of the histogram pyramid. In this case the number of elements is eight. For each element we

traverse the histogram pyramid as shown in Figure 5.8 to find the data entry in the input data that

corresponds to a linear index. During traversal, we keep track of the boundaries corresponding

to the current traversal cell. The histogram traversal for an index i starts at the root node. The

traversal iterates over all elements in the current level in Morton order [33] and sums the entries

until the next entry would exceed the index i. If the index i is exceeded, the traversal moves one

level down the histogram pyramid hierarchy and repeats iterating in Morton order.

In the example in Figure 5.8, the index 5 is observed. 5 is smaller than 8, therefore the

traversals moves down the hierarchy. In the next step, the summation of 2, 2 and 3 is stopped at
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8
2 2

3 1

1 0 0 1
0 1 0 1
1 1 0 0
1 0 0 1

5
<8

>2

>4
<7 >5

(a) Histogram pyramid traversal for the index 5. In the first step the boundary interval

corresponding to the traversal is [0, 0] to [4, 4], in the second step [0, 2] to [2, 4].
Finally the traversal stops at [1, 2].

x0,0 x1,1 x3,0 x3,1 x0,2 x1,2 x0,3 x3,3
[0] [1] [2] [3] [4] [5] [6] [7]

(b) Final voxel list

Figure 5.8: Voxel list construction for the list element at index 5. The histogram pyramid is

traversed to find the coordinate and the value of the list element in the input volume. Traversal

can be done in log(m) steps, where m is the side-length of the input data.

7, since the value just exceeded the index 5. In the leaf level, the traversal stops when the index

5 just exceeded the summation of 2+2+1+1 = 6. During the iteration we store the coordinate

interval of the traversal and finally stop at location [1, 2] at index 5. The same traversal is done

for every other index of the list in parallel.

The algorithm sorts the elements of the list in Morton order (z-order). We exploit the sorting

of the list elements in the look-up phase to perform binary search to increase the look-up time

into our voxel list implementation. Instead of the coordinate in (x, y, z) coordinates we store the

Morton code of the voxel. The code to transform a spatial location to Morton code is given in

the Appendix A.

Octree Construction Using Histogram Pyramids

For initializing octrees, we also use histogram pyramids as explained in the work of Ziegler [49].

The idea of the approach is to split a pointer octree into two lists: the internal node list and the

leaf node list. Both of these lists store a histogram pyramid during construction. The construc-

tion can be done in parallel for both lists.

In the following we explain the octree construction for a simple two dimensional example.

First both histogram pyramids are generated as shown in Figure 5.9. The histogram pyramids

use the reductions explained in Section 5.1.1 and temporarily store the histogram pyramids on

the GPU.

The second step of the construction phase is executed in parallel for all of the final ninternal+
nleaf octree nodes. For the example case these are 4 + 7 = 11 nodes. We now distinguish

between two different cases: internal node traversal and leaf traversal.
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x0,0 0 0 x3,0

0 x1,1 0 x3,1

x0,2 x1,2 0 0
x0,3 0 0 0

(a) Input data

1 1

1 0
4

(b) Internal node histogram pyramid

1 0 0 1
0 1 0 1
1 1 0 0
1 0 0 0

(c) Binary classified in-

put data

2 2

3 0
7

(d) Leaf node histogram pyramid

Figure 5.9: Input data and octree histogram pyramids. The binary classified input data is not

stored in our approach.

Internal Node Traversal

Internal nodes require to store all pointers to their non-zero children. We start by setting all

pointers to −1, which is the not-set flag. To write the pointers we traverse the histogram pyramid

down to the children. The children write their index into their parent’s pointer. The internal node

traversal can initialize all but the highest level of internal nodes. The highest level of internal

nodes point to the leaves, therefore this level can only be written during leaf node traversal.

Internal node traversal starts at the root node. In contrast to the algorithm used in the voxel

list construction in Section 5.1.4, the traversal can also terminate on internal levels of the his-

togram pyramid. In voxel list construction the traversal always stopped at the leaf level.

We achieve this, by introducing checks for equality in the histogram pyramid traversal. If an

index is exactly matched during histogram pyramid traversal, we found an internal node. After

finding an internal node I , we need to find its parent. The parent node is the index one level

above the current node I in the histogram pyramid.

An example of finding the index 6 is shown in Figure 5.10. In this case, the index is increased

by one. The value is checked with the entries of the histogram pyramid until we find the node

corresponding to 7. The parent node in this case is at the index 8− 1 = 7.
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8
2 3

2 0

0 0 0 1
0 1 0 1
0 1 0 0
0 0 0 0

6(+1)

<8

>2

>5
=7

set child pointer3 to 6

(a) Histogram pyramid internal leaf traversal for the index 6

I1,1 I0,0 I3,0 I3,1 I1,0 I1,2 I1,0 I0,0
[0] [1] [2] [3] [4] [5] [6] [7]

2 2 2 21 1 1 0

(b) Temporary internal node list. The root is the last

element.

Figure 5.10: An example showing that the internal leaf traversal can stop in internal levels of the

histogram pyramid.

Leaf Node Traversal

During the leaf node traversal, the algorithm needs to write the values into the octree leaf nodes

and set the pointers from the lowest level internal nodes to the leaf nodes. Once again the

algorithm writes the pointers in reverse order. It iterates to the leaf nodes and then writes the

index of the current leaf node into its parent.

Traversing to the leaf nodes uses the same algorithm as in the voxel list generation. Finding

a leaf node’s parent requires to traverse the internal node histogram pyramid at the same time as

the leaf node histogram pyramid (called co-traversal [49]). This is done by executing the exact

same traversal steps in both histogram pyramids. In addition to the leaf node index, it is possible

to retrieve the parent node index from the internal node histogram pyramid. Subsequently, the

pointer and the value for each leaf node are written.

Figure 5.11 shows the octree constructed from the example in Figure 5.9. The arrows de-

note the pointer writes during the construction phase. The generalization from quad- to octrees

requires only an adaptation of the Morton order computations.

5.2 JiTTree Construction

The general concept of the JiTTree was explained in Chapter 4. In this section we give a brief

overview on the generation routine of the JiTTree representation. As shown in Figure 5.1, the

construction of the JiTTree can be done after the optimal brick type representation was chosen.

We start by initializing a volumetric array of types. This array is then fed into an algorithm

that minimizes the entropy with respect to the brick types. The algorithm tries all possible split

planes through the volume and splits when the resulting two sub-volumes provide the solution
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Figure 5.11: Pointer quadtree implementation.

with the lowest entropy. The splitting is recursively applied until each leaf contains only a single

type.

After this tree representation is constructed on the CPU, a GPU code generator is started.

We recursively traverse the tree representation and build OpenCL code. For each node of the

kd tree the code generator builds either an if/else-statement for internal nodes or a single-type

bricking for leaf nodes. The if/else-statement compares the input coordinates with a split plane

to identify the traversal direction. The resulting code is very similar to the pseudo code presented

in Listing 4.6 for the unrolled tree. At the leaf nodes of the kd tree, a local array is generated. It

holds the pointers to do a volume bricking with a single brick type.

5.2.1 Low Level Optimizations

Low level code modifications result in better code readability and sometimes in performance

gains.

Single Branch Optimization

Simplifications of if/else-statements in the tree traversal are possible as shown in Listing 5.1.

Where no else-statement is necessary it is possible to omit it. If the if -side of the if/else-statement

is unnecessary, we reverse the condition and also omit the else-statement. However measuring

the performance did not show any benefits. We suspect that the OpenCL compiler removes

unnecessary branches which results in the same binary representation. However, for debug

purposes we apply the simplification since it makes the code shorter and easier to read.
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1// generated if/else-statement
2if (y < 64) {
3 if(x < 64)
4 {
5 return EMPTY;
6 }
7 else
8 {
9 return getOctree(...);

10 }
11}
12else
13{
14 return EMPTY;
15}

Listing 5.1: If/else-statement with an empty return value in the if -branch.

1// simplified statement
2if (y < 64) {
3 if(x >= 64) // reversed condition
4 {
5 return getOctree(...);
6 }
7}
8return EMPTY;

Listing 5.2: Simplification by switching the condition and moving the EMPTY return to

the end of the code.

One limiting factor of our approach is the OpenCL compilation time, as will be shown in

the results. As the code for larger trees can reach thousands of lines of code, the compilation

can take on the order of minutes. As a result, we were only able to unroll kd trees up to several

thousands of leaf nodes on the Nvidia OpenCL compiler. Intel’s OpenCL compiler consequently

showed worse results in terms of compile time.

The just-in-time compilation approach also allowed us to compile constants into the code

such as the brick size or the volume size. This potentially allows the compiler to simplify

statements through partial evaluation.

The approach also works well for the case that a volume is represented only by a single

brick. In this case, the just-in-time compilation completely gets rid of any bricking code and just

performs a single look-up into the type of the elemental data structure.

Octree Traversal Optimization

When traversing through an octree, we have to decide into which of the eight octants a value

falls. This can be done by eight different if-conditions, as shown in Listing 5.3.

61



1if (x < midX && y < midY && z < midZ) node = node.child[0];
2if (x < midX && y < midY && z >= midZ) node = node.child[1];
3if (x < midX && y >= midY && z < midZ) node = node.child[2];
4if (x < midX && y >= midY && z >= midZ) node = node.child[3];
5if (x >= midX && y < midY && z < midZ) node = node.child[4];
6if (x >= midX && y < midY && z >= midZ) node = node.child[5];
7if (x >= midX && y >= midY && z < midZ) node = node.child[6];
8if (x >= midX && y >= midY && z >= midZ) node = node.child[7];

Listing 5.3: Octree traversal, checking into which octant a look-up coordinate falls.

However, there are different low level options to check into which of the eight octants the

position falls. One option is to use bit shift operators as done by Knoll [24]. The code is shown

in Listing 5.4, while this code has fewer lines of code and might suggest that it is faster, we did

not measure a significant performance gain.

1uint lastElementPos = (x >= midX) << 2 | (y >= midY) << 1 | (z >=
midZ);

2node = node.child[lastElementPos];

Listing 5.4: Octree traversal via bit shift

By trying multiple different settings we found that moving one conjunct out of the eight

different if-conditions provides the best performance in our case. The optimized code is shown

in Listing 5.5.

1if (x < midX) {
2 if (y < midY && z < midZ) node = node.child[0];
3 if (y < midY && z >= midZ) node = node.child[1];
4 if (y >= midY && z < midZ) node = node.child[2];
5 if (y >= midY && z >= midZ) node = node.child[3];
6} else {
7 if (y < midY && z < midZ) node = node.child[4];
8 if (y < midY && z >= midZ) node = node.child[5];
9 if (y >= midY && z < midZ) node = node.child[6];

10 if (y >= midY && z >= midZ) node = node.child[7];
11}

Listing 5.5: Highest performing octree boundary checks

One of the benefits of our hybrid bricking approach is that it makes it possible to optimize

each of the elemental data structures independently.

5.3 OpenCL Programming

The following section will give an overview of a few essential OpenCL programming concepts

which we have used in our implementation. This section focuses on details, rather then on a

lengthy introduction to OpenCL. For a more in depth introduction to OpenCL we would like

to refer to the many presentations given on the topic, for example by Woolley [47] and to the

OpenCL specification [15].
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Calling a kernel in OpenCL typically starts a specified number of concurrent work items.

Work-items are conceptually the concurrent threads executed on the hardware (therefore they

are also called threads in Cuda). The code defined in the kernel function is executed for every

work-item in parallel. Each of these work-items has a unique global id. Work-items are grouped

into work-groups. Each work-item also has a local id inside its work-group. Work-items in

work-groups share local memory, which is a faster but smaller region of memory.

These work-items are mapped in the following way to the Nvidia hardware. The actual

hardware cores are called streaming multiprocessors. Each work-group is assigned to one of the

streaming multiprocessors. The work-items inside a work-group are grouped together in groups

of size 32 - these groups are called warps.

5.3.1 Branching

Work-items in a warp execute the same code concurrently in lockstep. When reaching a branch-

ing control flow, the executed code can differ. In this case, different branches are executed

sequentially if the work items actually branch out during run time (called branch divergence).

Listing 5.6 shows an example branching code. There are two branches, which call potentially

expensive other functions. The path of the branching is determined by the global id.

1kernel void branching(global uint * result)
2{
3 uint globalID = get_global_id(0);
4

5 if (globalID < 4)
6 {
7 result[globalID] = expensiveFunctionCallA();
8 }
9 else

10 {
11 result[globalID] = expensiveFunctionCallB();
12 }
13

14}

Listing 5.6: Branching example code.

As a result, the code of the else branch has to wait until the if branch was executed and

vice versa. The resulting paths of execution are shown in Figure 5.12. In some cases, branch

divergence can be avoided. This can be done by having the same branches execute in every

warp. It is much more efficient to have different warps execute different branches.

If the amount of code in a branch is small, the compiler uses a technique called predication as

mentioned in the Cuda Handbook [46]. Typical branching instructions cause a jump in machine

code. Predication is a mechanism to mark whether each line of machine code has to be evaluated

or not. Predicated code is executed in any case, but the result is not written back if the code lies

in a branch that is not reached. As a result, branching is cheaper if the code in branches is short.
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Figure 5.12: Temporal diagram for the code given in Listing 5.6 showing branch divergence.

The eight work-items of the same warp have to wait for each other.

5.3.2 Structs in OpenCL

One of the goals of our implementation was to keep the content of our data structure in a single

buffer. This makes it easier to use the data structure from other kernels. It was achieved by

organizing the data structure as a struct. In the following, we explain a few pitfalls when using

structs in OpenCL and how to avoid them. In addition, the efficient usage of structs is necessary

to avoid wasting GPU memory.

Arrays of Structs vs Structs of Arrays in Global Memory

In our implementation, the data structure itself has to reside in global memory due to its size.

Instructions that access global memory have a high latency. With certain compute capabilities 1

global memory access uses L1 caching. In OpenCL the size of these cache lines can be checked

with the device info query of CL_DEVICE_GLOBAL_MEM_CACHE_TYPE. In most hardware, global

memory cache lines are 128 bytes wide. Load operations from global memory by different

threads in the same warp are coalesced. So, to achieve effective global memory access, work-

items in a warp should read the global memory that falls within a cache line.

Structs in OpenCL work similarly as in C since OpenCL is based on the C99 standard.

Correctly dealing with structs in a parallel environment can provide a performance benefit as

reported in the presentation by Luitjens [31]. One example is the difference between arrays of

structs and structs of arrays.

Array of Structs

Let us consider for example our voxel list implementation for the data type ushort shown in

Listing 5.7. This array of structs is stored linearly in memory as shown in Figure 5.13.

1With compute capability 2.0, 3.5, 3.7 and 5.2 http://www.acceleware.com/blog/opt-in-L1-
caching-global-loads, Dec. 2015.
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1struct Voxel
2{
3 ushort x; // 2 byte
4 ushort y; // 2 byte
5 ushort z; // 2 byte
6 ushort v; // 2 byte
7}
8// array of structs
9struct Voxel voxelArray[SIZE];

Listing 5.7: Array of structs for a voxel list.

x y z v x y z v x y z v x y z v
0 byte 8 16 24 32

Figure 5.13: Array of structs as stored in memory.

Let us examine an algorithm executing on the voxel list. It accesses the data at the x coordi-

nate of a voxel shown in Listing 5.8 and stores it to a different array. Typically such a kernel is

executed in work-items where each group of 32 work-items form a warp. Starting from global

index 0, a cache line of 128 bytes is read from global memory. The cache line can hold 16
voxels, therefore in the entire warp it is necessary to load two cache lines.

1kernel void globalCopyX(global struct * voxelArray, global ushort *
resultX)

2{
3 uint id = get_global_id(0);
4 resultX[id] = voxelArray[voxelArray[id].x];
5}

Listing 5.8: Array of structs global access.

x y z v x y z v x y z v x y z v
0 byte 8 16 24 32

Figure 5.14: Access to an array of structs.

Figure 5.14 shows how the memory is accessed in an array of structs. Six of the eight bytes

per voxel from global memory are unnecessarily cached.

Struct of Arrays

The alternative to an array of structs is a struct of arrays, shown in Listing 5.9.
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1// struct of arrays
2struct VoxelList
3{
4 ushort x[SIZE]; // 2 byte
5 ushort y[SIZE]; // 2 byte
6 ushort z[SIZE]; // 2 byte
7 ushort v[SIZE]; // 2 byte
8}

Listing 5.9: Struct of arrays.

Accessing the array with the same algorithm is more efficient. Figure 5.15 shows the access

pattern in this case.

x x x x y y y y z z z z v v v v
0 byte 8 16 24 32

Figure 5.15: Access to a struct of arrays.

In the example, the struct of arrays would be able to load all 32 x-coordinates in a warp with

a single cache line of 128 bytes. In conclusion, the struct of arrays approach is especially useful

if the struct of interest is large, such as in a voxel list where the coordinates are stored with 4 or

8 byte precision.

In our implementation, we avoided using arrays of structs if the containing structs are too

large. In practice, the voxel list example is not so bad since the struct itself only requires 8 bytes.

The data structure itself is organized as a struct of arrays, while some arrays can contain small

structs. The maximum size of a struct inside an array in our implementation is 8 bytes.

Data Structure Alignment & Struct Padding

Data types in OpenCL can not start at an arbitrary location in memory. Each data type has to be

aligned to a multiple of its size in bytes. Structs are therefore generally aligned with respect to

its largest member.

Consider once more the array of structs of a voxel list with 2 bytes per value as given in

Listing 5.7. This struct is efficient since it is well aligned in memory. In contrast, a similar Voxel

with 4 byte values as shown in Listing 5.10 will result in struct padding.

1struct Voxel
2{
3 ushort x; // 2 byte
4 ushort y; // 2 byte
5 ushort z; // 2 byte
6 uint v; // 4 byte
7}

Listing 5.10: Voxel with 4 byte value
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The largest element of the struct is 4 byte, therefore its representation in memory contains

empty regions to correctly align the struct and its content. The resulting memory layout is shown

in Figure 5.16. The x, y and z coordinates are stored contiguously like in the previous example.

After each z coordinate there are 2 bytes of unassigned memory. The value v starts with an offset

of 2 bytes to be aligned as a multiple of four. In this data structure layout, 1/6 of the memory is

wasted.

x y z v
0 byte 12 24

x y z v x y z v
36

Figure 5.16: Array of voxels with 4 byte values.

To avoid such an alignment there are two options. Either the programmer packs the structs

in a good way, or it is possible to use a struct of arrays approach. Struct alignment with the de-

fault compiler settings in OpenCL is not necessarily the same as in C++. OpenCL additionally

supports alignment options, for more details we would like to refer to the OpenCL specifica-

tion [15].

One of the pitfalls in our case, was that an array storing 2 byte values, which is followed by

an array of 4 byte values, has to to contain an even number of entries. This is because the array

of 4 byte size will always start at a position that is 4-byte aligned. An array containing 2 byte

values with an odd number of elements does not stop at a 4-byte aligned position in memory.

Problems can occur when uploading such structs from the CPU to OpenCL, since the alignment

can differ.
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CHAPTER 6
Results

The results are generated on a machine using an NVIDIA GeForce GTX TITAN X, Intel Core

i7-4770K @ 3.50 GHz with 16 GB RAM. The screen resolution for rendering is 768 × 768
pixels.

We compare 15 test data sets. The kingsnake data set is courtesy of DigiMorph.org and Tim-

othy Rowe. The vessels data set was provided by John Keyser at Texas A&M University. The

stag beetle data set was created by Georg Glaeser, Vienna University of Applied Arts, Austria,

Johannes Kastner, Wels College of Engineering, Austria, and Meister Eduard Gröller, TU Wien,

Austria. The christmas tree was provided by TU Wien, Austria [22].

6.1 Memory Consumption

We compare the memory requirement for 15 data sets shown in Table 6.1. Larger renderings can

be seen in Figure 6.7. Noise was removed from most of the shown data sets since we are inter-

ested in the investigation of sparse data sets. Wherever we applied a threshold to a data set we

denote this in Table 6.1 with the specific threshold indicated with th. The data after thresholding

are shown as icons. It is important to note that we also tested our data structure on all shown

data sets without applying a threshold. Although our data structure is not designed for dense

data, it outperforms other representations, such as a dense bricking or a dense representation, for

most cases. However, for a better analysis of the data structure we used data sets with varying

sparsity. We compared the final size in relation to the total size of a dense representation. The

percentage of non-zero values gives the theoretical lower bound for the optimal data structure.

The last column shows the distribution of elemental node types for the memory-optimal JiTTree.

Grey denotes the empty, green the dense, orange the octree and blue the voxel list representation.

The Vessels data set, for example, has a high number of voxel list bricks, which means that

many bricks contain only a very small number of non-zero values. The stag beetle data set results

in a low overhead because it contains a large number of empty bricks and most bricks containing

non-zero values are densely populated. In our experiments our approach never exceeded three

times the size of the lower bound solution.
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Volume
size m

Non-zero
values

(%)

Size
(% of
dense)

Type of bricks
(% of volume)

Bonsai
th=0.08 512×512×189 16 8.17 14.85
Bunny
th=0.08 512×512×361 8 28.76 34.28
Carp

th=0.08 256×256×512 16 16.27 19.82
Christmastree

th=0.03 512×499×512 16 1.47 4.02
Engine
th=0.08 256×256×256 8 8.34 12.32
Frog

th=0.08 256×256×44 8 11.22 18.23

Hydrogen 128×128×128 8 32.72 38.58

Monkey-CT 256×256×134 16 17.11 29.68
Piggy Bank

th=0.03 512×512×134 8 23.72 30.53
Porsche
th=0.03 559×1023×347 16 40.31 52.46
Schaedel
th=0.03 512×512×333 8 15.64 23.14

Stagbeetle 832×832×494 16 4.06 4.75
Kingsnake

th=0.15 1024×1024×795 16 43.68 44.85
Vessels
th=0.15 10243 16 1.67 4.22

Connectomics 10243 16 29.68 34.04

Table 6.1: Memory consumption results. The brick types are empty (gray), dense (green), octree

(orange) and voxel list (blue)

In comparison to perfect spatial hashing, which achieves an overhead of 3 − 7 bit per data

entry for very sparse data, we have shown that our approach can be applied to a broader range

of volumes (also with much higher density). The overhead of our data structure for the tested

data sets lies between 1.8 and 27.7 bit per non-zero voxel. Volumes with very dense and very

sparse regions, can be represented very efficiently with our approach. Still, the approach is

extensible to other elemental representations such as spatial hashing, to further improve the

overall performance for special data set characteristics.

Figure 6.1 shows the memory requirements for two data sets for different brick sizes and

different elemental data. In Figure 6.1a the hydrogen data set is shown. It can be represented

optimally with a brick size of 8. A combination of dense, octree and voxel list (Opt.) performs

better than any bricked solution using the octree, the dense, or the voxel list representation only.

Even though the voxel list does not provide good results over the whole data set, there are still

very sparse bricks that are best represented by a voxel list as seen in Table 6.1.

In Figure 6.1b the results for the Engine data set are shown. The data is represented effec-

tively by an octree with a larger brick size. Nevertheless, the memory-optimal (Opt.) solution

still performs better. If for a specific data set a single elemental data structure would be the best
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solution, our approach would degenerate and fall back to this solution. However, we have never

observed this in practice.
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Figure 6.1: Memory requirement of dense, octree, voxel list and memory-optimal bricking. The

memory-optimal bricking outperforms any other bricking for most cases.

6.2 Performance

The performance was tested for a mean filter with different kernel sizes as well as for volume

ray casting. Figure 6.2 shows the performance for the mean filter. As expected the dense brick

type results in the best performance for all brick sizes and kernel sizes. The memory optimized

data structure (i.e., a mixture of dense, octree and voxel list) is still faster than an octree bricking

solution for these data sets.

Figure 6.3 compares the performance of the direct volume bricking approach of the memory-

optimal solution (Chapter 3) with the JIT compilation approach of the memory-optimal solution

(Section 4.3). The JIT approach improves the performance in most cases with an average speed-

up factor of 1.29 over all measured cases. The highest speed-up in Figure 6.3, a factor of 1.79,

is given for the stag beetle data set at a brick size of 323. Only for one case (kingsnake data set

with brick size 1283) we observe a decrease in performance by a factor of 0.96.

Figure 6.4 shows the performance of a 3 × 3 × 3 mean filter for different data represen-

tations. The dense bricking approach (green) performs better with a smaller brick size. The

octree bricking (orange) does not decrease its memory requirement significantly with a smaller

brick size. Nevertheless it is faster for a smaller brick size since the traversal depth is reduced.

The memory optimized solutions (black) perform best in terms of memory consumption over

all different brick sizes. The just-in-time compiled variations (purple) improve the performance

of the memory-optimal solutions. A comparison with voxel lists was omitted from Figure 6.4,

since their performance is much worse for an entire data set. Nevertheless, voxel lists perform
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Figure 6.2: Performance of a mean filter with kernel sizes 73, 53 and 33 in ms.
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Figure 6.3: Performance comparison for a mean filter with 3×3×3 kernel size. JIT compilation

(purple) compared to direct volume bricking (black) for three different data sets.

optimal in terms of memory for very sparse nodes, which makes them attractive for a hybrid

data structure.

Table 6.2 shows the JIT generated code properties and build times for a typical case. The

number of leaf nodes increases with the number of bricks. However, the dependency is not

linear since the kd tree groups bricks of the same type together. Therefore, the number of leaves

does not grow as fast as the number of bricks. Table 6.2 also shows the source-to-source kd tree

construction time and the OpenCL compile time.
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Results: Optimized for Memory Consumption
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Figure 6.4: 3×3×3 mean filtering of the Connectomics data set. Different brick sizes are tested

for dense, octree and memory optimized bricking approaches.

# bricks # leaves
max. branch

depth
kd tree

construction (ms)
OpenCL

compilation (ms)

8 1 0 0.05 151

64 12 6 0.62 275

512 95 14 6.42 3086

4096 363 17 67.44 5365

32768 2148 22 1085.25 78306

Table 6.2: JIT generated code properties and build times for the Connectomics data set.

In contrast to filtering, the JIT approach does not perform well for ray casting as shown in

Figure 6.5. In our experiments we found that it only outperforms the direct bricking for small,

homogeneous data sets. Larger data sets with a high number of bricks are better handled with a

direct bricking approach. We suspect that the ray access pattern leads to a much higher branch

divergence than the stencil access pattern for the mean filter calculation.
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Figure 6.5: Performance of ray casting with the JIT approach compared to the memory-optimal

bricking (black line).

6.3 Varying Brick Size

Although we always use a fixed brick size for one instance of our data structure, we are able

to generate our data structure for different brick sizes. Changing the brick size has multiple

implications. A small brick size makes it possible to use more dense volume and empty brick

types, which are a more beneficial representation with respect to the memory requirement of the

data structure. Figure 6.6 shows bricking with different brick sizes for the vessel data set. Voxels

are colored with respect to their brick type.

The largest brick size is 32 × 32 × 32. In this case, there is a large number of octrees and

voxel lists. As the brick size is decreased, the number of empty, voxel list and dense bricks

increases. In Figure 6.6c thick vessels are mostly represented by dense bricks.

Table 6.3 gives an overview of the corresponding brick distribution and memory size for

each of the three brick sizes. Looking at the brick distribution, the brick size of 8 has the highest

portion of empty bricks and also the relatively highest portion of dense bricks. Nevertheless,

the representation with a brick size of 16 provides the best result with respect to the memory
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requirement. This is because bricking itself is not for free. At a small brick size the storage cost

of types and pointers exceeds the benefit of a better data representation for each individual brick.

Brick size
Memory

requirement Type of bricks
Type of bricks

w.o. empty Number of bricks

32× 32× 32 93, 1 MB 32768

16× 16× 16 90, 6 MB 262144

8× 8× 8 98, 2 MB 2097152

Table 6.3: Memory requirement and brick distribution for the three different brick sizes of the

vessel data set.

We also observe that a smaller brick type can increase the performance because of the fol-

lowing reasons. The number of empty and dense volume bricks increases, where these have a

fast access time. Octrees are constructed for a smaller brick size, which improves the octree

traversal. Finally, also point lists tend to get shorter, with a smaller brick size. The drawback

with respect to the performance is that the amount of branching on the GPU can increase. For

example, for stencil look-ups (e.g., filter kernels) it is more likely to hit brick boundaries with a

smaller brick size.
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(a) Brick size 32× 32× 32. (b) Brick size 16× 16× 16.

(c) Brick size 8× 8× 8.

Figure 6.6: Rendering of the vessel data set with different brick sizes, voxels are colored de-

pending on the type of their including brick. Dense voxels are green, octree voxels are orange

and list voxels are blue.

76



(a) Bonsai (b) Bunny

(c) Carp (d) Christmas tree

(e) Engine (f) Frog
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(g) Hydrogen (h) Monkey-CT

(i) Piggy Bank (j) Porsche

(k) Schaedel (l) Stag beetle
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(m) Kingsnake (n) Vessels

(o) Connectomics

Figure 6.7: Volume rendering of the benchmark data sets.
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CHAPTER 7
Summary and Discussion

We were interested in finding an efficient data structure for sparse volumes on the GPU. It should

have a low memory requirement and a high access performance. We started experimenting with

a modular approach (see Section 3.3). The idea was to combine different data structures with

varying properties to generate an adaptive representation. The goal of this data structure was to

adapt to different data sets automatically and also to take the algorithm that is executed on the

data into consideration. Our initial concept of a modular data structure combines a large variety

of different data structures and connects them by pointers.

Experimenting with such a modular data structure led to hybrid bricking. Hybrid bricking

is a volume bricking variant that incorporates four different brick types: dense, octree, voxel list

and empty bricks. The advantage of a bricking approach over other hierarchical data structures

is that it provides good access performance. It requires only a single indirection, but includes

enough flexibility to efficiently adapt to many data sets. The approach makes use of the observa-

tion that a single volume data-set typically contains regions of varying sparsity. The brick types

we have chosen complement each other well and provide an efficient representation for regions

of varying sparsity.

Our results show, that hybrid bricking is very efficient in generating representations with a

low memory consumption. The proposed initialization routine can generate the representation

with the lowest memory consumption for a given brick size efficiently. This was achieved by

calculating the memory consumption for each brick type in parallel as explained in Section 5.1.

The drawback of using a sparse data structure is that a representation which reduces the

memory requirement typically introduces a performance overhead. Non-hierarchical represen-

tations such as bricking and hashing introduce at least one indirection. Hierarchical representa-

tions such as the octree require a costly tree traversal step to retrieve a specific data value. In our

hybrid bricking approach we introduce an access overhead through the bricking on the one hand,

on the other hand we introduce an overhead for each brick type. The overhead through bricking

involves type routing and following a pointer to the elemental brick data structure. Additionally,

each elemental brick type, i.e., the dense, octree, voxel list and empty brick, has a different per-

formance overhead as explained in Chapter 3. The empty type and the dense representation are

the fastest, the octree and voxel list access performance depends on the data.
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Reducing the overhead of the elemental data structures can only be done by improving the

performance of their concrete implementations. We have done this for voxel lists by employing

a binary search. For the octree we were manually experimenting with low level optimizations as

mentioned in Section 5.2.1. Additionally, we keep the node data structure as minimal as possible

to reduce the cost of global memory access. The tuning of the elemental data structures can be

done independently from the implementation of the hybrid bricking data structure. Improving a

single elemental brick type can further increase the performance of the overall approach.

To reduce the overhead of hybrid bricking we apply a data dependent specialization tech-

nique, which we call JiTTree. JiTTree is a kd tree of bricks which is unrolled in a data depen-

dent fashion to OpenCL source code. After the elemental data type with the lowest memory

consumption for each brick is determined, the kd tree is constructed. Each kd leaf either stores

a single brick or a number of bricks with the same type. After the kd tree is constructed on the

application side, data dependent OpenCL code for kd tree traversal is constructed and compiled.

One limitation is that large trees result in a large number of lines of code which in turn results

in a high OpenCL compilation time on current OpenCL platforms. Our approach shows that an

unrolled kd tree can provide a high performance alternative to a traditional kd tree if the tree is

not too large. Such an unrolled kd tree is able to shift some of the data memory fetches from

global memory to either instructions or local memory look-ups.

Our experiments with the JiTTree reveal that it can provide a performance benefit for some

access patterns. In specific, the approach was beneficial for regular access patterns such as the

stencil look up as used in mean filtering. Random access such as ray traversal could not benefit

from the JiTTree yet. In the following two sections we point out benefits and limitations of the

approach as well as there implications which point to potential new challenges.

7.1 Benefits

A central benefit of our hybrid bricking approach is that it allows to store sparse volume data with

a significantly reduced memory consumption. The concept of combining different data struc-

tures to generate an overall better representation turned out to be useful especially for the mem-

ory consumption. Hybrid bricking provides enough flexibility but keeps the traversal overhead

to a minimum, since it only introduces one additional indirection. Our approach is extensible,

since it is not restricted to the four brick types we have used. It can easily incorporate different,

new data structures. A higher number of different elemental data structures could results in an

even better adaptation to specific data sets. For example it could be possible to incorporate com-

pression based elemental brick types. Such compression based data structures make use of the

distribution of data values in the value range to further reduce the memory consumption.

Such a hybrid data structure can also be useful in a production setting. It is easy to start with

a basic bricking with two brick types such as dense and empty. The usage of a hybrid data struc-

ture can steadily improve the data representation without invalidating previous developments.

It is possible to subsequently develop additional elemental data structures which improve the

previous representation.

Another advantage of our hybrid bricking approach is, that for a given brick size and a

fixed number of brick types, it can automatically find the representation with the lowest memory
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consumption. Nevertheless, besides the representation with the lowest memory consumption,

there exist many other possible brick assignments. The representation with the best run-time

performance is generally the one using only empty and dense bricks. Our data structure can

also accommodate intermediate representations between the one with the best run-time perfor-

mance and the lowest memory consumption. We have investigated simple strategies to pick such

intermediate representations, but more work has to be done to come up with a more effective

approach.

We have shown that the JiTTree increases the access performance in certain cases by em-

ploying a data dependent tree unrolling approach. For the stencil access pattern we were able to

achieve an improvement of the access performance by 1.29 over all our test runs. For the ray

traversal access pattern, we were only able to improve the access performance for smaller data

sets. In pure hybrid bricking, the introduction of a larger number of brick types will result in

a higher type routing cost. This is not the case for the JiTTree, since its traversal cost is inde-

pendent of the number of different data types, but still depends on the homogeneity of the brick

distribution.

7.2 Limitations

A general problem with hybrid bricking is its performance overhead. The more obvious perfor-

mance cost comes from type routing between different traversal routines. We have shown that

this type routing can be improved by the JiTTree.

In addition to type routing, the approach introduces an additional cost through branch diver-

gence when executed on the GPU. Let us consider the example of an octree brick next to a voxel

list brick. An algorithm executed on the data introduces branch divergence if it accesses two

values, one from each brick from two threads of the same warp. As mentioned in Section 5.3,

this effectively results in sequential traversal of the code in both branches. This branch diver-

gence cannot easily be resolved, since the type assignment of the neighboring bricks is fixed.

For certain access patterns, such as stencil access, it would be possible to reduce this branch

divergence by storing redundant data values for neighboring bricks. For other techniques, such

as ray casting the reduction of branch divergence is harder to manage.

As mentioned previously, the JiTTree can improve the performance of hybrid bricking. An-

other aspect that should be considered is that the JiTTree introduces an increased implementation

complexity. Generating a prototype can be done fast, but fine tuning is necessary. The code gen-

eration step in the JiTTree creates very simple traversal code containing mainly if/else branches.

This approach is less error prone to unnecessary operations. To generate a fair comparison be-

tween hybrid bricking and JiTTree it was necessary to optimized both approaches.

Finally, in addition to the access performance and implementation cost, JiTTree introduces

an additional compilation step. The performance of the compilation depends on the size of the

underlying kd tree. A higher number of nodes results in a the higher compilation cost. While the

application is able to generate such a tree and the source code fast, the current OpenCL compiler

is the bottleneck. For bricking a case with more than 323 bricks, the current OpenCL compiler

might fail. It results in either very high compile times, or the compiler can terminate with errors.
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CHAPTER 8
Conclusion and Future Work

We have presented two promising ideas. The first was the introduction of a hybrid data structure,

which was deduced from a modular data structure. We believe that a more general modular data

structure could eventually lead to a variety of high performing data structures which are not

known or widely used today. The second concept was to use data dependent code specialization

on the GPU. We suspect that other GPU based applications could benefit from data dependent

code specialization. A further investigation could lead to new insight about the benefits and

drawbacks in a more general setting. From the advantages and limitations we can infer some

possible directions for future work for hybrid bricking and for the JiTTree in Section 8.1. In the

last Section 8.2 we shortly cover the concept of iteration delaying as a technique that could be

used to reduce branch divergence.

8.1 Hybrid Bricking and JiTTree

One obvious extension to hybrid bricking would be to implement additional brick types. An ap-

proach taking compression into consideration can decrease the memory consumption for certain

types of data. A spatially hashed brick type could be another interesting data structure, which

could complement the existing ones.

In the current implementation, our data structure is statically generated and write access is

impossible. To support writing into the data structure, we would have to rearrange the data

structure layout and implement a more complex memory management. For example, deletion

can result in memory fragmentation. To counterbalance fragmentation, it is necessary to re-

arrange the data at run-time to free memory and keep large, contiguous regions of memory

available for future allocations. Memory fragmentation is easily handled in a dense volume

bricking approach, due to the fixed memory requirement of each brick. To avoid fragmentation,

it is possible to insert new bricks into previously deleted locations. Octree and voxel list brick

types are of variable size and would therefore be more difficult to use in a dynamic memory

environment.
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For very large data sets a multi-resolution out-of-core representation similar to the work of

Hadwiger et al. [16] might be of interest. High resolutions can only be transferred to the GPU on

demand, low resolutions can be used if less detail suffices. The problem with such an approach

is that it also requires dynamic memory handling. To counterbalance memory fragmentation,

the memory efficient representation could only be used for the transfer to the GPU. This repre-

sentation can then be directly written to a traditional dense volume brick representation on the

GPU.

Even though we have shown that hybrid bricking is a feasible solution, it could be of in-

terest to further investigate other modular data structures. The most basic example would be a

data structure that uses a hashing approach instead of the bricking. But an even more interest-

ing direction of further work could concentrate on the concept of a modular data structure. In

Section 3.3 we mentioned, that a modular data structure would be more complex to initialize.

It could be interesting to come up with such an initialization routine, as in some cases a mod-

ular data structure could outperform hybrid bricking. For example, typical octrees in volume

rendering store bricks in its leaves. Hybrid bricking does not allow such a data structure that

contains an octree at the root level and bricks instead of single values at its leaves. There could

be a number of data structures which have not been used yet. An automatic routine to generate

a larger variety of data structures could come up with promising candidates for more efficient

data structures.

One further drawback of the bricking approach, is that it imposes a regular splitting of the

data in equally sized bricks. We counterbalance this by allowing different brick types, but it

could be of interest to chose different ways of grouping data values. The bricking approach

stores locally adjacent values in close regions of memory for most cases. Even though we

hypothesize that this is advantageous for most access patterns, it could be that other access

patterns benefit from different ways of grouping. For example, a slicing approach could benefit

from a data structure where individual slices of data are stored in adjacent regions of memory.

An algorithm that can automatically find the optimal representation for a given algorithm could

find new data structures for certain access patterns.

The just-in-time compilation approach also opens up a large number of possible scenarios.

Our evaluation shows that the JiTTree was not able to improve the performance for all data sets

and algorithms. We compared the performance, i.e., of a bricking which requires O(1) steps

to an unrolled kd tree traversal which requires O(log(k)) steps. Still, we were able to achieve

a performance gain with our kd tree approach. This leads to the assumption that an unrolled

tree representation on the GPU could perform very well for other cases, where hierarchical

representations are used.

One restriction of our approach is that we construct the just-in-time compiled kd tree on top

of a bricking approach. But, the kd tree would also make it possible to employ arbitrary splits

through the data set, which do not have to be aligned to the brick boundaries. This would open

up a large number of different representations. For example, it would be possible to position

octrees in arbitrary locations in the volume to make use of their shift sensitivity. Shifting an

octree slightly, can reduce the memory consumption since it may require a different number

of nodes. Further it could be possible to generate kd leafs spanning multiple bricks. This is

especially easy to implement for larger dense regions or voxel lists.
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A further restriction is connected to the algorithm which assigns types to the bricks. The

optimal memory representation is not necessarily the highest performing one. Even though for

our specific brick types the performance adapts well (see Chapter 3), different strategies to assign

brick types can be of interest. Two such strategies seem promising. The first would prefer brick

types with a high access performance over the brick type with the lowest memory requirement.

This approach was introduced in Chapter 5. The second strategy evolves out of the JiTTree

setting. The traversal depth of the JiTTree depends on the size of the leaf nodes. Large leaf

nodes result in a higher performance. Intelligently swapping brick types to increase the size of

the kd leaves could lead to a performance benefit in this case.

In the future we would like to evaluate our approach in a storage and data transfer scenario.

Our data representation can provide an efficient method to store volume data-sets on the hard-

disk. In addition to the lower memory consumption on the disk, this can also increase the transfer

rate of data sets from and to the GPU.

We have shown, that modern GPUs can handle complex data structures reasonably well.

Complex data structures on the GPU are often hard to profile with respect to performance. We

presented certain factors which seem plausible to influence the performance of the JiTTree. A

further investigation of specialized, data dependent traversal code of a more general hierarchical

data structure could lead to more insights. It would be useful to restrict the scenario to simpler

cases which can be explored more easily.

There are two possible improvements to our data structure which can be important in volume

rendering. For access at non-integer locations, trilinear interpolation is necessary. A possible

extension to our approach would be to store data in textures where possible. This could allow

the hardware to do the interpolation.

8.2 Iteration Delaying

Iteration delaying was introduced by Han and Abdelrahman [17]. It can be used if threads (work-

items) iterate over a loop and the body of the loop contains branching code. If all threads run in

the same warp, the branching can cause branch divergence (see Section 5.3).

We explain the benefit of iteration delaying with an example. Let us consider a stencil

operation on one dimensional data, such as a mean filter with a kernel size of 3. Figure 8.1

shows a visualization of the execution of such a filter. We assume that our data is organized as

a bricking approach with a brick size of two. We only have two different bricks: the F-brick

shown in dark gray and the the T-brick shown in bright gray. For retrieving a value, we first

make a look-up into the type array and determine the type. If the type is T we route to the T-type

traversal code, otherwise we route to the F-type traversal code. A simple pseudo code of the

filter is shown in Listing 8.1. For each stencil, a for-loop with three iterations is executed, each

look-up is routed to either the T-type or the F-type.

We now consider three different threads (A, B and C) each in the same warp. Each thread

starts its for-loop iteration shifted one element to the right. For example, thread A starts in the

branch corresponding to type F and ends in the branch of type T.
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thread A

thread B

thread C

1

1

1

2

2

2

3

3

3

F F FT T Ttype

Figure 8.1: Code visualization of a stencil access for three different threads A, B and C. Thread

A accesses the F branch in the first look-up and the T branch in the second and third.

1// for loop accessing three elements, some branch to the T-type
2// others to the F-type
3for (int i=start; i<start+3; i++)
4{
5 float result = 0;
6 if (type[i])
7 {
8 result += routeTBranch();
9 }

10 else
11 {
12 result += routeFBranch();
13 }
14}
15result /= 3;

Listing 8.1: Pseudo code of a kernel for mean filtering on one dimensional data.

Figure 8.2 shows a visualization of the parallel execution of the three threads from top to

bottom: Thread A, Thread B and Thread C. Each thread executes a loop with three iterations.

Inside this loop the thread can take either the T- or the F-branch. For example, thread A executes

the following branches: F, T, T. The total execution time of this code is six (abstract) cycles. So

for example, in the first loop iteration, thread A has to wait while thread B and C execute the T

branch. Then, B and C wait while A is in the F branch.

With iteration delaying the run-time can be improved. It provides a mechanism to rearrange

the execution of branches while keeping the local order for each thread, this results in a more

efficient traversal. Figure 8.3 shows the result of iteration delaying. The execution time now

only requires five cycles.

Our approach could benefit from iteration delaying. In addition to iteration delaying, some

access patterns, such as the mean filter, are independent of the retrieval order. So it could be

further possible to speed up the execution time to four cycles by changing execution order of
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loop iteration 2

loop iteration 3

F
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F
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thread
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3
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6
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8 9

Figure 8.2: The three threads require six cycles to be executed without iteration delaying. Due

to branch divergence the code in one thread has to wait for the other threads while they execute

different code.

A B C
F

T

F

T

F

thread

1 2

3

4 5

6

7

8 9

Figure 8.3: With iteration delaying the code only needs five cycles. The relative order inside

each thread remains the same, but the rearrangement can reduce the number of cycles.

some branches. To achieve this we could execute 4, 1 and 2 in the T branch, then 3, 8 and 6 in

the F branch, 5 and 7 in the T branch and finally 9 in the F branch.
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APPENDIX A
Morton code

1ulong zorder3d(ulong x, ulong y, ulong z)
2{
3 const ulong B[] = {0x00000000FF0000FF, 0x000000F00F00F00F,

0x00000C30C30C30C3, 0x0000249249249249};
4 const ulong S[] = {16, 8, 4, 2};
5

6 x = (x | (x << S[0])) & B[0];
7 x = (x | (x << S[1])) & B[1];
8 x = (x | (x << S[2])) & B[2];
9 x = (x | (x << S[3])) & B[3];

10

11 y = (y | (y << S[0])) & B[0];
12 y = (y | (y << S[1])) & B[1];
13 y = (y | (y << S[2])) & B[2];
14 y = (y | (y << S[3])) & B[3];
15

16 z = (z | (z << S[0])) & B[0];
17 z = (z | (z << S[1])) & B[1];
18 z = (z | (z << S[2])) & B[2];
19 z = (z | (z << S[3])) & B[3];
20

21 return ( x | (y << 1) | (z << 2) );
22}

Listing A.1: Transforms a 64 bit three-dimensional coordinate to Morton code.1

1http://stackoverflow.com/questions/1024754/how-to-compute-a-3d-morton-
number-interleave-the-bits-of-3-ints, Dec. 2015
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