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Kurzfassung

Die zunehmende Verbreitung von günstigen 3D-Scannern hat vielen Menschen Zugang
zu Technologie verschafft, die dreidimensionale Umgebungen in Echtzeit rekonstruieren
kann. Derzeit verfügbare Anwendungen zur Rekonstruktion von Szenen zielen hauptsäch-
lich darauf ab, ein einzelnes, verarbeitetes 3D-Modell für anschließenden 3D-Druck zu
produzieren. Es gibt kaum Möglichkeiten zur natürlichen und intuitiven Navigation und
Manipulation von Szenen. Zu diesem Zweck muss die virtuelle Umgebung in individuelle
Objekte segmentiert werden, die ihren echten Ebenbildern so gut wie möglich gleichen.
Um die Intuitivität eines solchen Systems noch weiter zu erhöhen, sollten gängige Ansätze
zur Navigation von Szenen überdacht und verbessert werden.

In diesem Forschungsprojekt wurde ein Prototyp für die virtuelle Rekonstruktion und
Manipulation von dreidimensionalen Szenen entwickelt. Das System ermöglicht schnelle
und intuitive Rekonstruktion durch 3D-Scanning mit Hilfe eines Tablets in Verbindung
mit einer Tiefenkamera. Individuelle Flächen und Objekte werden durch eine Kombination
von automatischen und manuellen Segmentierungsmethoden identifiziert und voneinander
getrennt. Die nachfolgende Verarbeitungsphase erlaubt das Schließen von Löchern und
das Entfernen von kleinen, unerwünschten Komponenten. Anschließend werden die
Tracking-Fähigkeiten des 3D-Rekonstruktions-Algorithmus ausgenutzt, um Anwendern
die Navigation in der virtuell rekonstruierten Szene durch Bewegen des Tablets zu
ermöglichen, dessen Bildschirm als Fenster in die virtuelle Welt fungiert. Der Touchscreen
des Handhelds kann dazu verwendet werden, zuvor segmentierte Objekte herumzutragen
und an jeden beliebigen Ort in der Szene zu verschieben. Vervielfältigung, Transformation
und Entfernung von Gegenständen werden durch die zur Verfügung gestellten Werkzeuge
ebenfalls ermöglicht. Bearbeitete Szenen können in verschiedene Dateiformate exportiert
werden, um anschließend in anderen Applikationen weiterverwendet zu werden.

Zur Evaluation des Prototyps wurde im Anschluss an die Entwicklung eine kleine
Benutzerstudie durchgeführt. Die Ergebnisse zeigen, dass das System eine hohe Benut-
zerfreundlichkeit aufweist und die Bedienung leicht gelernt werden kann. Teilnehmer
konnten Szenen ohne größeren Aufwand in ausreichender Qualität rekonstruieren und
segmentieren. Darüber hinaus haben sich die verwendeten Methoden zur Navigation und
Manipulation von Szenen als höchst intuitiv und natürlich erwiesen. Die Evaluation hat
zudem eine Reihe von Möglichkeiten aufgezeigt, wie eventuelle zukünftige Versionen noch
weiter verbessert werden könnten.
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Abstract

The rise of consumer devices capable of 3D scanning has given many people access to
technology that is able to reconstruct three-dimensional environments in real-time at a
relatively low cost. Available consumer solutions for scene reconstruction, however, are
mostly focused on producing a single, cleaned watertight mesh that is suitable for 3D
printing. There are no or very limited ways for a user to navigate and manipulate the
reconstructed scene in a natural and intuitive manner. To this end, the virtual scene must
be segmented into distinct objects that should resemble their real-world counterparts. To
further aid the design of an intuitive system, prevalent approaches to scene navigation
have to be revisited and improved upon.

In this research project, a prototype for the virtual reconstruction and manipulation
of three-dimensional scenes has been developed. The system allows for quick and
intuitive 3D scanning and reconstruction by using a tablet display in combination with
a depth camera. Distinct planes and objects are identified and separated from each
other by utilizing a combination of automatic and manual segmentation techniques. The
subsequent processing stage allows users to fill possible gaps and remove small, unwanted
components. Afterwards, the tracking capabilities of the 3D reconstruction algorithm
enable users to navigate through their reconstructed virtual scene by physically moving
the tablet. The mobile display functions as a window into the virtual world. By utilizing
the touch capabilities of the screen, previously segmented objects can be carried around
and repositioned anywhere in the scene. Duplication, transformation and removal of
items is also possible with the provided tools. Edited scenes can be exported to one of
several common file formats for use in other applications.

After development, a small user study was conducted in order to evaluate the
prototype. The results show that the system has a high usability and can be learned
easily. Participants were able to reconstruct and segment scenes in reasonable quality
without much effort. Moreover, the methods used for scene navigation and interaction
proved to be highly intuitive and natural. The evaluation also revealed several possible
areas of improvement for future releases.
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CHAPTER 1
Introduction

1.1 Motivation
In recent years, 3D reconstruction of real-world objects and scenes has become increasingly
popular not only for research purposes, but also for personal use. This is largely
attributable to the increasing availability of affordable devices capable of 3D scanning
such as the Microsoft Kinect [49] and the Structure Sensor [59]. They enable a wide
range of people to create 3D models of physical objects with reasonable quality. Having
digital reconstructions of real-world items is useful for a variety of applications, ranging
from consumer-level 3D printing to clinical analysis, cultural heritage and entertainment
production.

The ability to interact with and navigate through 3D scenes is essential to many
applications dealing with processing or editing of 3D models. Traditional approaches with
virtual cameras that can be controlled with mouse and keyboard have their advantages
for certain editing tasks, but are not entirely intuitive. Natural User Interfaces (NUIs)
aim to overcome this limitation by focusing on human abilities such as touch, voice and
movement [34][76]. Multi-touch displays, for example, enable a more direct manipulation
of 3D objects through touch gestures [41]. However, interaction techniques using only
a touchscreen are still restricted to a 2D surface. Several attempts have been made to
counteract this problem by utilizing additional RGB or depth cameras. These devices
enable intuitive scene navigation and seamless 3D object manipulation through head and
hand tracking [20][22][29][61].

However, little research has been done on 3D interaction designed specifically for
models obtained through 3D scanning. Algorithms used for 3D reconstruction typically
involve tracking of the current camera’s position and orientation in order to align the
captured depth data of subsequent frames. These capabilities can be utilized even after
completing a 3D scan, which makes it possible to navigate a scene through physical
movement and reorientation of the depth camera. Using the device in combination with
a touch display enables interactions with virtual representations of real objects. This
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1. Introduction

introduces a number of interesting possibilities for more intuitive 3D scene interaction
techniques.

1.2 Problem Statement
There are several commercially available applications that allow users to capture and
digitally reconstruct three-dimensional scenes [58][66]. Most of these toolkits are focused
on producing a single, cleaned watertight mesh suitable for 3D printing. Even though
some of them offer limited tools for model processing, almost no effort is put into designing
intuitive and natural ways of manipulating a reconstructed scene. One example of this
would be the ability to move specific scanned objects, e.g. a chair, around and place it
somewhere else on the ground.

In order to enable this type of interaction, distinct planes and objects in the recon-
structed scene have to be identified and segmented first. The resulting virtual clusters
should resemble corresponding physical objects in the real world as closely as possible.
Currently, there is no easy way for users to scan and subsequently segment their scene
using only one toolkit. Proper mesh segmentation is crucial for more realistic scene
manipulation and enables reconstructed 3D object models to be processed and exported
individually for further use in different applications (e.g. game engines).

Existing tools for scanning and reconstruction usually offer scene navigation in the
form of a mouse-controlled mesh viewer with cleaning and basic editing capabilities.
While this classic approach has its advantages (e.g. for applying different filters and
searching for holes), more intuitive and natural ways for scene navigation should be
explored. Mobile touch displays and the tracking abilities of the 3D scanner can be
utilized even outside the reconstruction process to navigate through virtual scenes by
physically moving scanner and display in the real-world counterpart. An editor with the
previously mentioned capabilities would introduce a new approach of interacting with
reconstructed scenes and enable several novel possibilities for 3D object manipulation.

1.3 Aim of the Work
The goal of this research project was the development and subsequent evaluation of a
system prototype that allows users to interactively scan, reconstruct, segment and process
three-dimensional scenes. Furthermore, it should enable virtual scene manipulation
through interaction with a tablet. The primary focus was on intuitive navigation and
interaction design as well as an easy-to-use interface.

For the reconstruction and segmentation process, suitable methods that are fast,
reliable and adjustable had to be selected and implemented. Due to large differences
between scanned point clouds (e.g. size and quality), it must be possible to change certain
parameters or even perform additional manual segmentations to achieve satisfactory
results for an even larger variety of input data.

By continuing camera tracking after the reconstruction has finished, users should be
able to move through the digital representation of their scene by using the tablet display

2



1.4. Outline

as a window into the reconstructed virtual world. Carrying around and repositioning
objects through touch input in combination with physical movement in the real scene
should also be possible. Further requirements for the prototype included tools for rotation,
scaling, duplication and removal of objects. These capabilities should enable intuitive
reorganization and manipulation of reconstructed scenes. In addition, users ought to
have the option of exporting their segmented and processed models for further use in
other applications, such as game engines or advanced mesh editors.

A small user study was conducted in order to evaluate the usability and functionality
of the developed prototype. Participants were required to complete prepared test scenarios
by using the different implemented tools. Afterwards, they were asked to provide feedback
regarding specific aspects of their interaction with the system. The results of this user
study should expose strengths and weaknesses as well as possible areas of improvement.

1.4 Outline
This thesis is separated into six chapters. Chapter 1 introduces the topic and states the
goal of the project. Chapter 2 explains several technologies, concepts and methods that
were used and discusses relevant related work. Chapter 3 presents the used hardware
setup as well as the expected workflow and design of the developed system. The different
application stages as well as the general interface are described. Chapter 4 is concerned
with the actual implementation of the developed system, including used libraries and
frameworks. Chapter 5 explains the design and setup for the conducted user study. Results
of the performed tests are presented and discussed. Finally, Chapter 6 summarizes the
key elements of this thesis and discusses open problems as well as possible areas of
improvement for future work.

3





CHAPTER 2
Theoretical Background and

Related Work

This chapter covers the underlying technology of the system and the techniques used
for three-dimensional reconstruction and segmentation. In addition, related literature
as well as software similar to the developed prototype is presented and discussed. The
system utilizes a variety of supplemental basic interaction and manipulation techniques,
such as 3D selection, rotation and translation. However, due to the scope of this thesis,
their theoretical foundations are not included in this chapter.

2.1 Microsoft Kinect

Figure 2.1: The Microsoft Kinect and its main components. Modified after Zhang [85].

The Kinect is a widely available motion sensing device developed by Microsoft. It
has originally been created for use with the Xbox 360 gaming console in order to give
users the ability to interact with games through speech and physical movement. The
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2. Theoretical Background and Related Work

Kinect consists of a depth sensor, RGB camera, a microphone array and a motorized
rack that can be used to adjust the device’s orientation [49]. The components relevant
for this thesis are shown in Figure 2.1.

Figure 2.2: IR dot pattern projected onto a scene. Retrieved from [23].

The depth sensor consists of an infrared (IR) projector combined with an IR camera.
A structured light technique developed by PrimeSense [21] is used to create a depth map
as follows. The emitter projects a known IR dot pattern onto the scene, which is captured
by the IR camera (see Figure 2.2). The observed dots are then matched with the known
pattern. Since the exact distance between the projector and the camera is established,
the depth value (i.e. the distance from the sensor) of any dot can be calculated using
triangulation [14][21].

The Kinect has a depth operation range of 800mm to 4000mm. The accuracy decreases
with the distance between a surface and the camera. Microsoft has released a Kinect
specifically for Windows that supports Near Mode, providing a range of 500mm to
3000mm [45]. Due to the depth sensor utilizing IR light in order to calculate 3D positions,
the system is able to work in many different lighting conditions. The Kinect for Xbox
360 has the following additional specifications [47][49]:

• Color Stream: 32-bit at a resolution of 640x480 and 30 frames/sec

• Depth Stream: 16-bit at a resolution of 640x480 and 30 frames/sec

• Field of View (horizontal): 57 degrees

• Field of View (vertical): 43 degrees

A newer version of the motion sensing device, the Kinect for Xbox One, has been
released in 2013. It uses a time-of-flight sensor, which measures the time a light signal
takes to travel between the camera and an object’s surface. The device has a higher
resolution, an increased field of view and an overall better accuracy than its predecessor

6



2.2. 3D Reconstruction with KinectFusion

[50]. However, due to its availability and a higher resolution not being vital to this
research project, the original Kinect for Xbox 360 was used.

2.2 3D Reconstruction with KinectFusion

Figure 2.3: KinectFusion pipeline. Retrieved from Newcombe et al. [31].

KinectFusion is an algorithm developed by Microsoft Research [31]. This technique
uses a temporal sequence of depth data collected from different frames and merges them
to a single three-dimensional surface model of a specific scene. The implementation has
optimized several steps of its pipeline (outlined in Figure 2.3) by using parallel computing
on the graphics processing unit (GPU) and by assuming very little movement between
two consecutive frames. This allows KinectFusion to run at interactive rates on most
modern systems. Users can thereby preview the ongoing reconstruction in real time [31].
The specific steps performed by the algorithm are explained in detail in the following
sections.

2.2.1 Depth Map Conversion

For each frame captured during the scanning process, the Microsoft Kinect produces
a depth map, which contains the distance between the camera and the nearest object
for every pixel in the depth sensor’s current field of view [46]. As the produced map
is typically noisy and inconsistent, KinectFusion uses a bilateral filter, which averages
depth values around a pixel, to smooth the resulting values and preserve edges [31].

Using the known intrinsic parameters of the Kinect camera, each depth measurement
can be reprojected as a 3D vertex in the camera‘s coordinate system to obtain a vertex
map. A normal map, which contains the normals of each point in the vertex map, can be
estimated by calculating the cross product of two neighboring reprojected vertices. To
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Figure 2.4: A multi-resolution pyramid with three levels. Modified after Pirovano [44].

optimize subsequent steps of the processing pipeline, KinectFusion stores these maps at
different resolutions by using sub-sampling. The resulting structure is a multi-resolution
pyramid, where each successive higher level has half the resolution of the one below it
(see Figure 2.4) [44]. To convert the vertices and normals into global coordinates, the
six degree of freedom transform of the camera pose is used. The result is a point cloud
composed of a 3D position and a normal vector for each vertex [31][87].

Microsoft Research has highly optimized this step of the KinectFusion processing
pipeline. Each 3D point and each normal vector are calculated by separate GPU threads
in parallel and are then merged into maps [31].

2.2.2 Camera Tracking

In the first frame, the point cloud gathered in the previous step is regarded as the whole
model. In each subsequent frame, the newly calculated 3D positions and normals have
to be aligned and merged with that model in order to iteratively improve and refine it.
To this end, the translation and rotation matrices of the current camera, i.e. its pose,
in world space have to be found. KinectFusion uses a modified version of the Iterative
Closest Point (ICP) algorithm, which takes the calculated cloud from the current and
the last frame and tries to find the translation and rotation that will best align the two
[8][31].

For each iteration, the original ICP method finds correspondences between the two
data sets by matching points in a source cloud to the closest points in a reference cloud.
The algorithm then estimates a transformation that minimizes the distances (alignment
errors) between the corresponding points. This transformation is applied to the source
cloud and the next iteration begins. The algorithm terminates when the sum of squared
alignment errors between two consecutive iterations is below a specified threshold [8].

Since this method is too slow for real-time scenarios, Newcombe et al. adjusted the
procedure to their specific needs. Due to KinectFusion running at interactive rates, it
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has to make the assumption of very small movements between two subsequent frames.
Therefore, the first cloud is transformed into camera coordinate space and then projected
into image coordinates. This projection is then compared to the current vertex and normal
maps. The algorithm considers two points to be corresponding if they are projected onto
the same pixel. Outliers are rejected by testing whether or not the Euclidean distance
and angle between two corresponding points in world space are within a chosen threshold.
In this implementation, the algorithm tries to minimize the distance between a point in
the current cloud and a tangent plane at the corresponding point in the previous cloud
[87]. This is significantly faster than the original implementation. These calculations are
performed at all three resolutions of the multi-resolution pyramid shown in Section 2.2.1.
These modifications to the original ICP algorithm allow KinectFusion to parallelize the
correspondence calculations by performing them in a separate thread for each point.
After a sufficient number of iterations (e.g. maximum passes, error below a certain
threshold), the modified ICP generates a relative camera transform which can be used to
calculate the current global camera pose [31][87].

2.2.3 Volumetric Integration

Figure 2.5: One slice of a 3D TSDF volume representation, where each square represents a
voxel with the corresponding TSDF value inside. Positive values are in front of the surface,
while negative values are behind it, with the surface itself being at the zero-crossing.
Retrieved from Zhaoyang et al. [87].

After a global camera pose estimation has been found, the clouds can be merged
into a single volume. The unfiltered depth data from the current frame is used to
preserve details. KinectFusion uses a Truncated Signed Distance Function (TSDF) for its
volumetric representation (see Figure 2.5). A TSDF volume is a uniformly subdivided
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3D grid of voxels stored on the GPU. The calculated 3D vertices in world space are
integrated into these voxels by applying a signed distance function, which maps every
point to a value between -1 and 1 indicating their relative distance to a surface in the
viewing direction of the camera. Negative values are either behind the surface or have not
been measured yet, while positive values are in front of the surface, increasing as they are
getting closer to the camera. The surface itself is at the zero-crossing, i.e. the point where
the values change sign. This has the advantage of implicitly storing surface geometry and
easily filling holes as new measurements are added. In addition to the signed distance
value, each voxel also has a weight assigned to it, indicating the uncertainty of the surface
measurement. This allows the system to merge the data to a single model by using the
weighted average of all TSDF volumes [31][87].

This specific representation has also been chosen due to its ease of parallelization on
the GPU. To construct and continuously update the fused volume, the algorithm launches
one GPU thread per (x, y) position on the front surface. Each one of them then moves
through each subsequent slice along the z-axis and updates the weight and averaged
TSDF of the voxels along the way [87]. Although this technique is very inefficient in
terms of memory usage, Newcombe et al. accepted this drawback due to its real-time
capabilities [31].

2.2.4 Surface Reconstruction

To reconstruct and render the calculated model, raycasting is performed. This technique
chooses a point of view, in this case the estimated focal point of the camera, and casts
rays into the scene. KinectFusion assigns one GPU thread to each pixel in the output
image, each of which performs raycasting from that position. The ray traverses voxels
along the ray and detects the zero-crossing, i.e. the change of sign in the TSDF volume.
The algorithm calculates the true surface intersection point by linearly interpolating
between the points on either side of the sign change. The 3D position of the intersection
is obtained and assigned to the pixel the ray originated from. As each ray has a known
starting position and direction, the surface normals can be estimated as a result. To
compute shadows, a secondary ray is cast from the surface intersection to the light source.
If it hits another surface before reaching its destination, the vertex is shadowed. In
a similar fashion, other light calculations like reflections can be determined by using
additional rays. The color of the output pixel is the highest resolution texture available
for the voxel at the intersection point [31].

The result of this algorithm performed on the chosen TSDF volume is a visualized
surface reconstruction of the 3D model from the camera’s point of view, with correct
occlusion handling and all the necessary requirements for virtual scene navigation [31].
In addition, the vertex and normal maps calculated in this step can be used as refined
input data for the ICP algorithm during camera tracking in the next loop of the pipeline
(as described in Section 2.2.2) due to the used camera pose corresponding to the physical
camera transform. These maps contain considerably less noise than the raw data obtained
by the Kinect camera (Section 2.2.1) and therefore result in a significant error reduction
during ICP tracking [55].
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2.3 3D Segmentation

3D segmentation refers to the task of dividing a 3D model (point cloud or mesh) into
distinct submodels based on geometric properties of the available vertices. In the case
of 3D reconstructed environments, each of the objects retrieved through segmentation
should correspond to a physical object in the real scene. Approaches to 3D segmen-
tation of scanned point clouds and reconstructed models have been widely studied
[1][7][19][26][27][42][65][78]. Due to the scope of this thesis, only the methods and algo-
rithms that are used in the implemented prototype as well as closely related techniques are
introduced in the following sections. As the proposed system works with the underlying
cloud data of the obtained 3D reconstruction during segmentation, only techniques used
to segment point clouds are discussed. More information on the closely related mesh
segmentation can be found in a variety of literature [2][11][73]. For a more exhaustive
study on point cloud segmentation, refer to the survey performed by Nguyen et al. [56].

2.3.1 Plane Model Segmentation

(a) 2D point set with noisy data. (b) Fitted line with RANSAC.

Figure 2.6: RANSAC fitting example for two-dimensional data.

Plane Model Segmentation is the process of finding and extracting planar surfaces,
such as tables, walls, ceilings or floors, in a specific point cloud. This is a particularly
important technique, as many other algorithms, such as those discussed in Section 2.3.2
and Section 2.3.3, rely on preliminary plane extraction to produce useful results.

Random Sample Consensus (RANSAC) was introduced by Fischler et al. [19] and is
a well established algorithm that is often used for plane detection. This iterative method
estimates parameters of a specific model (e.g. lines, planes, cylinders) from a series of
measurements containing outliers. It is highly robust against small measurement errors,
which are common in reconstructed scenes obtained through the methods presented in
Section 2.2 [19][84]. A simple application of RANSAC for a 2D set of data is shown in
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Figure 2.6. In this project, the method is used to detect planes in unorganized point
clouds obtained by the Microsoft Kinect. The algorithm performs the following steps to
find the best plane in a set of observed data values [19][70][72]:

Algorithm 2.1: Plane Model Segmentation using RANSAC.
Input: Point cloud P , max distance d, min inliers min_il, max iterations max_it
Output: Best plane parameters Mbest, best inliers Ibest

1 while number of iterations <= max_it do
2 Randomly select three points pk ∈ P and add them to inliers Icurr;
3 Calculate parameters Mcurr for a plane defined by pk;
4 foreach pi ∈ P do
5 if distance of pi to the plane Mcurr < d then
6 Add pi to Icurr;
7 end
8 end
9 if Count(Icurr) > min_il then

10 Reestimate plane parameters Mcurr using all pi ∈ Icurr;
11 if Count(Icurr) > Count(Ibest) then
12 Ibest = Icurr;
13 Mbest = Mcurr;
14 end
15 end
16 end

The distance threshold has to be chosen according to the specific point cloud data
and is therefore typically provided manually. In addition, due to the random nature of
the inlier selection at the beginning of the main loop and the fixed amount of iterations,
RANSAC is a non-deterministic algorithm that does not always provide an optimal
solution. The greater the number of iterations, the higher the probability of a correct
model [19].

2.3.2 Euclidean Cluster Extraction

A simple technique to divide an unordered point cloud into distinct objects is the
Euclidean Cluster Extraction. This method assigns points to different clusters based on
their Euclidean distance to each other. Rusu [69] used this technique in conjunction
with RANSAC plane fitting (see Section 2.3.1) to segment different physical objects in a
3D reconstruction of a typical indoor kitchen table in order to allow robots to interact
with them. Essentially, if the minimum gap between two sets of vertices is larger than a
user-defined threshold, they belong to two different clusters [69][79].

One key task of this method is to estimate the distance between a point and its
neighbors. To efficiently solve this problem, the algorithm makes use of the k-d tree
representation, which is a special form of a binary search tree. Every node represents a
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Figure 2.7: K-d tree representation for three-dimensional points. Each node represents a
single vertex. The bold value indicates the dimension used for splitting the child trees.
Modified after Cibils [12].

single vertex in the point cloud. Each level of the tree splits all children into a left and
right subtree by using a hyperplane that is perpendicular to a specific dimension. The
dimension depends on the current tree level. For example, if one starts with the median
as the root node and chooses a split along the x-axis, all vertices with a smaller x-value
than the median are assigned to the left subtree, while those with bigger x-values are put
in the right one. On the next level, the two newly created subtrees are split again using
the y-axis. The third level is then split employing z-values, while the fourth returns to the
x-axis, and so on. Figure 2.7 illustrates a three-dimensional k-d tree constructed using
the described process. This data structure can be used to efficiently perform k-nearest
neighbor searches in point clouds, which finds the k closest points to a specified position.
The steps performed for Euclidean Cluster Extraction are shown in Algorithm 2.2 [69].

Algorithm 2.2: Euclidean Cluster Extraction.
Input: Point cloud P , maximum distance d
Output: Segmented clusters C

1 Construct a k-d tree for P ;
2 Create a queue Q;
3 foreach point pi ∈ P that is not in a cluster do
4 Add pi to Q;
5 Create a cluster Ctemp with pi;
6 foreach pi ∈ Q do
7 Using the k-d tree, get all neighbors Pk of pi in a sphere with radius d;
8 Add Pk to Q;
9 end

10 Add Q to Ctemp, add Ctemp to C and clear Q;
11 end
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(a) Input point cloud without ground plane. (b) Resulting clusters.

Figure 2.8: Euclidean Cluster Extraction example.

As discussed in Section 2.2.4, KinectFusion typically produces a densely populated
point cloud that represents a single surface. Distances between vertices are generally
very small [31]. Since almost all objects are connected in some way, Euclidean Cluster
Extraction can not produce useful results on its own. Plane model segmentation, as
described in Section 2.3.1, has to be performed as a preliminary step. After the planes have
been identified, their individual vertices can be neglected during the cluster extraction.
As a result, objects very close to these surfaces can be segmented into distinct clusters.
Figure 2.8 shows an example of this procedure.

2.3.3 Region Growing Segmentation

While Euclidean Cluster Extraction focuses only on the spatial distance between a point
and its nearest neighbors, Region Growing Segmentation uses additional information when
deciding if neighbors should be added to the same cluster. It starts by selecting a seed
point from the input cloud and subsequently adds neighbors to the seed point’s cluster
if they satisfy a given criterion. This routine is iterated until there are no unclustered
points left in the provided point cloud [5][7][69]. The general procedure of this technique
is outlined in Algorithm 2.3.

The key difference between popular region-based approaches lies in the selection of
initial seed points and in the choice of criteria that are used to decide if point neighbors
should be added to the same cluster. The most frequently used method for seed point
selection was introduced by Besl et al. [7] in the original implementation of the algorithm
for region growing segmentation, in which they identified seed points based on their
curvature. The regions continue to grow based on criteria such as close distance between
points and estimated planarity of surfaces [7].

The prototype developed during this thesis uses the improved constraints presented
by Rabbiani et al. [68], who added points to the region if their differences in estimated
surface curvature and normal orientation lie within a specified threshold. This method is
also utilized by Rusu [69], who, in general, tries to solve segmentation problems that are
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Algorithm 2.3: Region Growing Segmentation.
Input: Point cloud P , criteria crit
Output: Segmented clusters C

1 Create a queue Q;
2 while not all p ∈ P have been clustered do
3 Add a seed point s ∈ P to Q;
4 Create a cluster Ctemp;
5 foreach si ∈ Q do
6 if si can be added to the cluster Ctemp based on crit then
7 Add si to Ctemp;
8 Add nearest neighbors of si to Q;
9 end

10 end
11 Add Ctemp to C;
12 end

very closely related to the ones presented in this thesis. Figure 2.9 shows a point cloud
that has been segmented with the explained technique.

Figure 2.9: Region Growing Segmentation example using smoothness and curvature
constraints. Red points have been rejected, other colors represent different resulting
regions. Retrieved from [64].

The quality of a segmentation performed with region-based methods is highly depen-
dent on the choice of initial seed points. A bad selection can lead to an abundance of
seeded regions resulting in over-segmentation [69].

2.3.4 Other Techniques

The following paragraphs give a quick overview of some other relevant and popular
state-of-the-art mesh and point cloud segmentation techniques.

The Min-Cut Based Method proposed by Golovinskiy et al. [26] segments a point
cloud into a foreground and background by using a nearest-neighbor graph similar to the
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Figure 2.10: Result of a Min-Cut Based Segmentation. Black pixels represent the
foreground cluster (a street light). Retrieved from Golovinskiy et al. [26].

one described in Section 2.3.2. The algorithm assumes that points in the foreground are
better connected to each other than to those in the background. A user-provided expected
object radius is used to assign a weight to each node in the graph that encourages points
farther away to be in the background. Afterwards, foreground and background points are
added as hard constraints either automatically or interactively by users. The algorithm
then performs a minimum cut of the graph, which minimizes the sum of weighted nodes
while obeying the hard constraints. A foreground and background cluster for the provided
point cloud can then be generated, as illustrated in Figure 2.10. While this method is
primarily focused on outdoor scans, it can also be used to segment indoor reconstructions
by using appropriate parameters [26].

Hierarchical clustering techniques, as described by Attene et al. [1] and Garland et al.
[25], are used for mesh segmentation and try to address over-segmentation problems of
region-based algorithms as discussed in Section 2.3.3. A cluster is initialized for each
unique mesh element (e.g. a face) and a graph consisting of cluster nodes is constructed.
Adjacent segments are assigned a cost for merging them into a single cluster, based on a
given criterion. Regions with the lowest cost are then continuously merged until no more
adjacent clusters fulfill the specified criterion. Garland et al. used Euclidean distance
and the angle between triangles and representative planes as merge costs for face clusters
[25]. Attene et al., on the other hand, evaluated adjacent clusters by fitting them to
primitive models (planes, spheres and cylinders). They then estimated the minimum
approximation error, measured as the average Euclidean distance between the cluster
and the best fitting primitive [1].

While all of the algorithms mentioned so far have a resulting cluster number that is
unknown in advance, several iterative clustering methods exist [43][65]. These techniques
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Figure 2.11: Segmentation using an interactively placed plane. The model is cut along
the plane, with blue indicating the submesh above the plane and green the one below it.

are based on the algorithm by Lloyd [40] and require the desired number of segments
k as an input parameter. The process begins by creating k clusters, each defined by a
centroid, and subsequently assigns mesh elements (e.g. vertices, faces) to a cluster based
on a distance criterion. After all elements have been assigned, the center points of the
regions are updated and a new iteration begins. The process terminates when the cluster
centroids stay constant [43][65].

Interactive segmentation techniques rely on user interaction to divide a 3D model
into meaningful parts. The easiest approach is to allow users to explicitly cut a mesh by
using predefined primitives such as lines, planes or curves. When a plane is positioned
through a given model, the mesh is divided into the two submodels on either side of it
(see Figure 2.11) [16]. This technique is also used in this research project.

(a) Paint Mesh Cutting (b) Dot Scissor

Figure 2.12: Segmentation techniques based on interactive user input. Figure 2.12a
retrieved from Fan et al. [17], Figure 2.12b retrieved from Zheng et al. [88].

Fan et al. [17] introduced a more versatile interactive method. Users draw different
sketches on a mesh and the algorithm subsequently merges vertices close to the drawings
and includes vertex neighbors based on the angular distance, until all vertices are
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clustered [17]. Zheng et al. [88] proposed an even simpler interactive interface for mesh
segmentation that only requires a single click to perform a cut. The system then highlights
a segment based on considerations of shape geometry and user intent [88]. Both of these
techniques are illustrated in Figure 2.12.

2.4 3D Interaction

Interaction with 3D scenes is a very active field of research [20][37][41][61][74][82]. Due
to the scope of this work, this section will only give a short overview of some recent and
particularly interesting projects that are related to the methods used in this thesis. For
more detailed explanations of the basic 3D interaction and navigation techniques used in
the developed system (e.g. ray casting, color picking, transformations, orbital cameras),
refer to the works of Hearn et al. [28] and Jankowski et al. [32].

Mossel et al. [54] introduced two novel 3D object manipulation techniques for mobile
devices. 3DTouch combines 2D touch information with the device orientation to reduce
the overall number of touch gestures needed for object manipulation. HOMER-S, on the
other hand, is an adaption of the well-known HOMER interaction technique introduced
by Bowman et al. [9]. It requires only a single touch gesture for object selection and
maps the position and orientation of the handheld onto the selected object [54].

Fritz et al. [22] developed a mobile application using a tablet with an attached Kinect
that uses head tracking to allow users to freely look around in a virtual scene. In addition,
the depth sensor is used to detect hand and finger gestures to provide a natural interface
for 3D object manipulation [22].

Holodesk by Hilliges et al. [29] is an interactive system that uses a Kinect in
combination with a semi-transparent display allowing users to seemingly reach into a
scene and directly manipulate three-dimensional objects.

Zhang et al. [86] focused on integrating 3D scanned models into a game-based virtual
laboratory. The aim of this work was for users to be able to look at and interact with
the imported object. However, their research was very narrowly focused on integrating
one mesh into an existing premodeled virtual environment instead of solely interacting
with the reconstruction [86].

Sugiura et al. [77] developed a system consisting of an optical see-through head-
mounted display and an attached RGB-D camera. It enables dynamic 3D interactions
with virtual objects that superimpose a real environment. A physics engine provides
collision detection and allows virtual items to move in a more realistic way [77]. However,
the system focuses solely on interaction with superimposed virtual objects and does not
provide any tools for real-world scene reconstruction or manipulation.

2.5 Similar Tools

There are several commercially available products that allow consumers to scan and
digitally reconstruct three-dimensional scenes with low-cost depth cameras. Some of
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them offer additional limited mesh processing and cleaning abilities. The most popular
tools for real-time reconstruction of 3D environments are shortly described in this section.

2.5.1 Kinect for Windows SDK Examples

Microsoft Research built a number of example applications using the Microsoft Kinect
that are publicly available as part of their Kinect for Windows Software Developer Toolkit
[48]. The kit provides source codes for several examples that utilize the KinectFusion
algorithm (see Section 2.2), including applications for basic scene reconstruction with
or without color as well as head scanning. The KinectFusion Explorer is the most
complete example project in that collection. In addition to an implementation of the
basic KinectFusion algorithm, it offers features and options regarding different resolutions,
model exports, as well as adjustment of depth thresholds and several other parameters
used during the reconstruction process. All applications are available either in C# or in
C++ [48].

2.5.2 ReconstructMe

Figure 2.13: Interface after a finished scan with the free version of the ReconstructMe
software [66].

ReconstructMe [66] is an easy-to-use 3D real-time scanning application that supports
a wide range of depth cameras including the Microsoft Kinect. The software uses its own
implementation for the reconstruction process, which is very similar to the KinectFusion
method described in Section 2.2. ReconstructMe is able to provide real-time previews
during the scanning process, but optionally supports offline reconstruction for computers
with older hardware as well [66].

The focus of this application lies on the reconstruction of a single three-dimensional
object that can then be exported to common file formats for 3D printing or further
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editing in external mesh editors [66]. It offers no user-driven processing or segmentation
capabilities whatsoever and does not provide any methods for the user to directly interact
with the scene. As a result, the user interface (see Figure 2.13) is very clean, seeing that
there are very few customizable options available.

ReconstructMe offers a Software Development Kit that allows developers to implement
custom applications for three-dimensional scene reconstruction using their provided
algorithm. The SDK also provides basic post-processing operations such as noise removal,
hole filling as well as reduction of the overall triangle count [67].

2.5.3 Skanect

Figure 2.14: Skanect interface during the processing step [58].

Skanect [58] is another very popular solution for obtaining fast and reliable 3D scans.
It supports many different depth cameras and utilizes ICP (see Section 2.2.4) during the
reconstruction process. Similar to the other applications mentioned in this section, the
software provides a very convenient way to capture high-quality colored 3D scans while
showing real-time previews of the ongoing reconstruction [58].

In addition to this basic functionality, Skanect includes a step dedicated to mesh
processing right after the scanning procedure (see Figure 2.14). Users can close holes with
a specified minimum hole size and make the mesh watertight by connecting all distinct
components. The geometry of the reconstructed model can be simplified by reducing the
overall number of triangles and by removing small components. In addition, the whole
mesh can be moved around and even cropped using the ground plane of the editor. The
final model can be colorized and exported [58].

However, the application does not offer any way to perform mesh segmentation and
does not utilize the depth sensor for subsequent scene navigation and manipulation.

20



CHAPTER 3
System Design and Workflow

This chapter is primarily concerned with the overall design and workflow of the developed
prototype. First, the used hardware setup is presented. Then, a short overview of
the expected system workflow is given. The chapter continues by taking a closer look
at the overall composition of the user interface and the displayed guidance messages.
Afterwards, the usage of each individual application stage is explained in depth. Details
on the technical implementation can be found in Chapter 4.

3.1 Hardware
This section provides an overview of the different hardware components as well as the
general setup of the developed prototype. Since the current system is primarily a proof
of concept, the hardware setup could be subject to change in future releases.

3.1.1 Components

The developed prototype consists of a Microsoft Kinect, a tablet computer and a Windows
PC. The depth camera is attached to the tablet and has to be plugged into the desktop
PC and a power outlet. Section 3.1.2 describes the setup in more detail. The different
components and their purpose in the system are described in the following sections.

Microsoft Kinect

The Kinect is a low-cost motion sensing device developed by Microsoft. It consists of
a depth sensor, RGB camera, microphones and a motorized rack that can be used to
adjust the orientation of the device. The first-generation Kinect was originally introduced
in 2010 for Microsoft’s gaming console Xbox 360, while the second generation became
available in 2014 for the Xbox One. Both iterations can be used on Windows PCs.
Details about its general functionality are discussed in Section 2.1. In this prototype,
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due to lower cost and availability, a first-generation Kinect for Xbox 360 is being used.
As the only relevant differences between the generations are increased resolution and
depth fidelity, the chosen version only makes a difference in terms of quality, not in terms
of functionality.

The Kinect is primarily used to perform 3D scanning and reconstruction by utilizing
the KinectFusion algorithm described in Section 2.2. In addition, the data gathered
during the capturing process, together with the current estimated position of the camera,
will be used to navigate through the reconstructed scene during the manipulation step.

Windows PC

Due to the high hardware requirements for the KinectFusion algorithm (see Section 2.2)
and the lack of officially supported drivers for tablets, the primary application has to
be executed on a dedicated desktop PC running Microsoft Windows. In particular,
KinectFusion requires a strong graphics card with a high amount of memory to produce
results in good resolutions. The exact hardware specifications of the computer used for
this prototype are as follows:

• Operating System: Windows 7 Professional 64-bit

• CPU: Intel Core i5-3570K Processor, 4 Cores @ 3.4 GHz

• Graphics: NVIDIA GeForce GTX 970 with 4 GB Memory

• Memory: 8 GB DDR3

• Storage (of Application): Samsung SSD 840 with 256 GB

Android Tablet

The prototype requires touch input as well as a handheld display to create the illusion
of a window into the virtual world. An Android tablet is used as the primary display
output. It is the only device that end users interact with directly. Since the primary
application runs on the Windows PC and is streamed to the tablet, the only hardware
requirements are Wi-Fi, a multi-touch sensitive touchscreen and an appropriate display
size and resolution. The specifications of the tablet used for this prototype are as follows:

• Model: Samsung Galaxy Tab 10.1

• Operating System: Android 4.0.4

• CPU: NVIDIA Tegra 2, 2 Cores @ 1 GHz

• Display Size: 10.1 inch (25.65cm) widescreen

• Display Resolution: 1280x800 pixels

• Memory: 1 GB RAM

• Wi-Fi: 802.11 a/b/g/n, Dual-band support (2.4GHz, 5GHz)
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3.1.2 Setup

Figure 3.1: Hardware setup.

The general hardware setup is illustrated in Figure 3.1 and consists of a Microsoft
Kinect that is attached to the back of an Android tablet. Due to the predetermined
platform of the KinectFusion implementation, compatibility issues with Android and
high hardware requirements, the main application has to be run on a Windows PC. As a
result, the Kinect must not only be connected to a power outlet but also to the Windows
PC via USB. During ongoing usage of the system, the display of the Windows PC is
being streamed over the network to the Android tablet using Splashtop Streamer HD [75],
so that the handheld can function as the application’s sole display output. In addition,
users can interact with the tablet by using touch gestures that are transmitted back to
the desktop PC, where they are recognized as mouse input. As a result, the system feels
like a native tablet application, even though all the required processing power is being
provided by the PC. The only limiting factor is the length of the cable used to connect
the Kinect to the PC and power outlet, which can be extended by using USB and power
cord extensions.

In possible future iterations of this system, a Microsoft Surface tablet with a high-
performing GPU could be used to eradicate the need of two separate devices dedicated to
input/output and program execution respectively. Due to the high cost of such a device
and this prototype being primarily a proof of concept, the slightly more cumbersome
setup is being used. It has, however, no disadvantages in terms of functionality.

3.2 Workflow Overview
The developed application provides users with several tools needed to digitally reconstruct
a scene, segment it into distinct objects, process it, manipulate and navigate it in certain
ways and then export it for use in other applications. The simplified workflow from a
user’s perspective is illustrated in Figure 3.2.
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Figure 3.2: Simplified application workflow.

In the preparation step, users can adjust the desired size of the reconstructed scene.
The bigger the scene, however, the lower the overall quality of the reconstructed mesh.
Section 3.4 will deal with this step of the workflow in more detail.

After changing the parameters to their liking, users can start the scanning process. The
environment is scanned by moving around the scene while capturing it from different angles
through the tablet with an attached Kinect camera. This step utilizes the KinectFusion
algorithm presented in Section 2.2 and therefore allows users to get a real-time preview of
the ongoing scene reconstruction at all times. The scanning procedure can be restarted
at any given time if the current reconstruction proves to be unsatisfactory. When users
are satisfied with the current preview, they can finish the scan and start the automatic
scene reconstruction. During this procedure, several processing and cleaning algorithms
are performed to improve performance and general usability of the reconstructed model.
For more details about the scanning and reconstruction steps, see Section 3.5

After the reconstruction has finished, users are presented with the refined virtual
representation of their scene. In a first segmentation step, all immovable planar surfaces
(e.g. walls, floor, ceiling) or surfaces on which distinct (movable) objects are placed (e.g.
table surfaces), are detected and segmented. This is a necessary preliminary step for
the subsequent object segmentation. During this procedure, the algorithm uses plane
fitting (see Section 2.3.1) to highlight possible planar surfaces found in the scene. If the
highlighted area is too thick, too thin or contains holes, users can adjust certain parameters
to improve the suggestion. Each plane has to be confirmed or rejected manually. In
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the case of confirmation, the highlighted area is segmented as a distinct (immovable)
object and will not be included in the subsequent (movable) object segmentation. If it
is rejected, no segmentation is performed. Either way, the algorithm tries to find other
planar surfaces and presents them to the user in a similar fashion until no more planes
with sufficient size can be found. The process is described in more detail in Section 3.6.1].

In the next step, the application allows users to segment all the parts that have not
been classified as static planar surfaces into distinct objects. To this end, users can choose
between Euclidean (see Section 2.3.2) or Region Growing Segmentation (see Section 2.3.3)
and are able to adjust parameters for either one of them. A preview of the segmentation
with the chosen method is presented with the click of a button. It shows the resulting
clusters with the currently selected parameters, where each distinctly segmented object
in the scene has a different color. If the preview is considered to be good enough, users
finish this step, which results in the reconstruction model being segmented according to
the chosen options. The object segmentation is discussed in-depth in Section 3.6.2.

After the automated object segmentation has been performed, users have the possi-
bility to refine the resulting clusters. This is especially helpful if not all objects could
be separated from one another during the previous step. A semi-transparent plane
spanning across the entire reconstruction can be aligned to either one of the three axes
and subsequently rotated and translated. The existing mesh segments can then be split
into two subclusters along this prepositioned plane. This procedure can be performed as
many times as needed to achieve a more satisfying segmentation. More details can be
found in Section 3.6.3.

The model has now been segmented into distinct movable objects as well as immovable
planes and can be simplified and improved during the processing step. Users can eliminate
small objects that were accidentally created during scanning or segmentation. To this
end, all connected components that contain less than a specified number of vertices can
be removed. If desired, the application can try to fill holes with a provided minimum
diameter. The methods used during this step are described in Section 3.7.

After the final processing step has been performed, the application enters the scene
navigation and manipulation mode. By utilizing the tracking functionality of KinectFusion
without any reconstruction taking place, users can navigate through the reconstructed
scene by moving in the real world while carrying the tablet. As the Kinect is attached to
the back of the handheld, the display can be used as a window into the virtual world,
which means that users can see each part of the virtual reconstruction by pointing the
prototype in the direction of its real-world counterpart. In addition, the touchscreen
can be used to interact with the reconstructed scene. By performing simple gestures,
previously segmented distinct objects can be picked up and carried around by physically
moving in the scene. They can even be scaled and rotated along the camera axes and
then placed on any other movable or immovable objects (including planes such as the
floor or walls). Movable objects can also be duplicated or removed from the scene entirely.
For a quick overview of the current process, users can always switch to an orbital camera
and assess the situation. Using these techniques, the reconstructed environment can
be explored and manipulated in an intuitive way. When users are satisfied with their
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manipulated scene, they can export either the whole model or each individual segment
for use in other applications such as mesh editors or game engines. This step is described
in more detail in Section 3.8.

Users can switch back to previous steps at any time while using the application. This
will, however, result in losing the current progress in all subsequent steps. By switching
back to the preparation stage, for example, the whole reconstruction process can be
started over without having to restart the application.

3.3 User Interface

As stated in Section 3.1.2, users control the prototype exclusively by interacting with a
tablet computer. While some interactions only require physical movement around the
scene as well as orientational adjustments while carrying the handheld, most require
explicit touch input. Since the prototype was implemented as a Microsoft Windows
application and is only streamed to the tablet, these particular aspects have to be taken
into consideration during designing the interface.

As a result, the graphical user interface (GUI) during the different application stages
was primarily designed for tablet displays, which are typically smaller than desktop
computer screens. While it was primarily tested at a resolution of 1280x800, as used by
the tablet chosen for the prototype (see Section 3.1.1), the application scales well and
can be used with a wide variety of resolutions.

3.3.1 Overview

As shown in Figure 3.3, the overall composition of the GUI allows the reconstructed scene
to occupy most of the screen. This is particularly important, since too many obtrusive
overlays would hinder the goal of the tablet acting as a window into the virtual world.
Whenever controls such as buttons and sliders are needed in a particular step, they are
generally placed in a panel on the right side of the screen. This allows users to easily
interact with them even while holding the tablet with both hands. During the steps
requiring two buttons due to binary decisions, such as scanning (see Section 3.5) and
plane segmentation (see Section 3.6.1), the controls are placed vertically centered on
the left and right side of the screen. These regions are particularly easy to reach for
users carrying the tablet, as both thumbs will usually be positioned roughly over these
areas. Additionally, most buttons and sliders have a deliberately large scale to allow for
comfortable touch input without much frustration due to small controls. During most
application stages, the button on the lower right corner of the scene view can be used to
reset the orbital camera.

The bar at the top of the screen is constantly visible throughout all stages of the
application and visualizes a user’s current progress. Users advance through the displayed
steps from left to right, with the currently active one being highlighted. Users can jump
to any step by selecting the corresponding tab. However, the different procedures require
the completion of previous stages to work properly. Therefore, it is primarily designed
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Figure 3.3: Application interface overview.

as a means to go back to previous steps only if users want to revert a specific decision.
It is also noteworthy that the progress of the current stage will be lost if users switch
to a previous step and finish it. The mode selection bar can also be used to start a
new reconstruction by going back to the preparation screen. Only the segmentation
stage consists of more than one substep (plane, object and plane cut segmentation), even
though it is summarized into a single tab in order to save screen space. However, as
shown in Figure 3.3, each of the distinct segmentations is visualized by small squares
below the corresponding tab element and can be selected individually.

In addition, the GUI displays specific information about the scene and the current
state of the system. The vertex and triangle count of the displayed model is shown in
the lower right corner of the screen at all times. This information is also displayed in the
upper left corner of the scene view during all segmentation stages, along with the current
cluster count. The frames per second are displayed in the upper right. Users should pay
particular attention to it during the scanning procedure, where the counter should be as
close to 30 as possible to ensure good results. If it is significantly lower, users should
consider lowering the overall mesh quality or using better hardware to optimize the scan.
Whenever the system has to perform automatic steps without needing manual input,
users are continuously informed about the processes that are currently being executed.

3.3.2 User Guidance

There are a total of seven distinct stages in the system, each of which has slightly different
controls and a variety of options. In addition, users are required to follow some basic
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Figure 3.4: Guidance messages can be displayed to lead users through the application
stages.

guidelines to achieve satisfactory results. These prerequisites to successfully use the
application can be overwhelming, especially to first-time users.

In order to lower this threshold for novices and to provide tips for experienced users,
detailed guidance messages can be displayed during each stage of the application. They
provide a quick overview of the currently displayed interface elements as well as some
usage hints. An example is shown in Figure 3.4.

The messages can be displayed by pressing the small button with the question mark
in the upper left corner. This opens the help window for the currently active stage.
A tutorial mode can be activated as well by checking the Show Help option during
the preparation step (see Section 3.4). This leads to an automatic display of guidance
messages about important topics at appropriate times, such as right before users advance
from one stage to the next. As a result, users will be guided through the whole process
of scanning, reconstructing, segmenting and manipulating their specific scene.

3.4 Preparation

The preparation screen is the starting point of the developed application. It enables users
to adjust scanning parameters as well as general options. In addition, it prepares users
for the scanning procedure by showing hints about optimized physical movement as well
as specific interface elements. Figure 3.5 shows the screen during this application step.

First and foremost, users can use the central slider element to adjust the size of the
scene to be scanned. This will directly effect the dimensions of the reconstruction volume
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Figure 3.5: Application interface during the preparation step.

during the scanning procedure. Everything outside this predefined area will be completely
ignored by the depth camera. The position of the bounding box with the specified size is
determined by the position of the Microsoft Kinect at the exact moment the scan starts.
The area starts 35 centimeters in front of the Kinect in viewing direction and ends after
the chosen depth. The initial camera position also determines the center of the scanning
area with the specified height and width. The positioning of this bounding box relative
to the handheld device is illustrated in Figure 3.6.

The absolute number of voxels in KinectFusion‘s TSDF reconstruction volume (see
Section 2.2.3) is fixed to 512 x 384 x 512 (width x height x depth). Only the number of
voxels per meter (VPM), which directly influences the dimensions of the volume, can be
changed by adjusting the slider handle. The fixed voxel count has two implications:

1. The proportions of the reconstruction area never change, with the width and depth
at exactly the same, and the height at 3

4 of that size. The slightly reduced height
has been chosen as a result of most scenes having more relevant detail in the
direction of the x- and z-axis than y-axis, if an ideal starting scanning position with
a viewing direction parallel to the ground is being assumed.

2. The specified size of the reconstruction volume is inversely proportional to its
resolution. As the desired scanning area increases, the voxel count per meter
decreases, which directly affects the quality of the reconstructed mesh. On the
other hand, users can choose a very small volume to create a very high quality
reconstruction. The following examples illustrate this implication: A user chooses
a volume size of 4m x 3m x 4m. As a result of the absolute voxels being fixed at
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Figure 3.6: Positioning of the reconstruction volume relative to the depth camera.

512 x 384 x 512, the required VPM for this scenario is 128, since 512
4 = 128 in x-,

384
3 = 128 in y- and 512

4 = 128 in z-direction. In the same manner, a volume size of
1m x 0.75m x 1m means a VPM of 512 and therefore a 4-times increase in overall
mesh quality.

This system has been chosen to allow adjustments to the volume size according to
their specific needs without having a significant drop in performance. A voxel count
beyond these fixed values results in either a greatly reduced number of frames per second
during the scanning procedure or in premature termination due to the GPU being unable
to handle the high memory requirements (see Section 2.2.3 for details). The minimum
allowed volume size is 1m x 0.75m x 1m and the maximum 7m x 5.2m x 7m. Dimensions
beyond the chosen limit would result in very poor reconstruction quality.

A text label right below the slider control gives users a general indication of the mesh
quality resulting from their chosen volume size. The three possible values correspond to
the following VPM ranges:

• Low: < 200 VPM

• Medium: 200 - 300 VPM

• High: > 300 VPM

Users can also indicate whether or not they wish to see tutorial messages (see Sec-
tion 3.3.2 for more details) during each application step by (un-)checking the corresponding
check box. A click on START initiates the scanning procedure.

30



3.5. Scanning

Figure 3.7: Application interface during the scanning step.

3.5 Scanning

During this step, users are able to scan their scene with the parameters specified in the
preparation stage. After a successful scan, the scene is digitally reconstructed as well
as automatically cleaned using various filters. The user interface during this procedure
is shown in Figure 3.7. The necessary steps for scene capture as well as subsequent 3D
reconstruction are explained in more detail in the following sections.

3.5.1 Scene Capture

Before the scan starts, a three-second countdown gives users time to get into the position
that best aligns the bounding box of the reconstruction volume with the boundaries of
the scene to be scanned. Ideally, the tablet with the attached depth camera should be
about 50 centimeters away from the scene (or object) with a viewing direction parallel to
the floor. If users do not succeed at first or the scanning procedure encounters alignment
problems, the process can be restarted by clicking RESET.

During the scanning procedure, users have to slowly move around the scene and
capture it from as many different angles as possible. A live preview of the reconstructed
scene is shown directly on the tablet’s screen at all times, which makes it significantly
easier to identify remaining holes and gradually fill them by scanning objects from
different angles. Due to the Microsoft Kinect being directly attached to the back of the
tablet, the reconstruction preview is always from the user’s perspective. Some general
guidelines should be considered in order to perform a quality scan:
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• The camera should be moved slowly and smoothly around the scene. No abrupt
changes in the camera’s orientation or position should occur, as the alignment
algorithm used for reconstruction (see Section 2.2.2) assumes very small movements
between each frame to allow for real-time reconstruction.

• A distance of at least 35 centimeters between the Kinect and solid objects should
be kept, as everything closer than that can not be recognized and only disrupts the
ongoing scan.

• In case of alignment errors due to sudden movement or other emerging problems,
the application might fail to continue reconstruction due to losing the user’s current
position. Realignment can be attempted by capturing the scene from a perspective
that has previously been scanned successfully. The algorithm will continue as soon
as it is able to rediscover the camera’s position.

• Should the scan fail due to unsatisfying results or unrecoverable camera tracking,
users are recommended to restart the reconstruction from the beginning.

Since the Microsoft Kinect produces depth images at 30 frames per second, the
scanning procedure is highly reliant on working at a frame rate as close to 30 as possible.
This allows for a high success rate during point cloud alignment between frames. The
specific maximum voxel count in all dimensions, as introduced in Section 3.4, has been
chosen to allow a high enough frame rate at any desired volume size while running
the application on the PC used during this research project (see Section 3.1.1). On
computers with lower hardware specifications, the voxel count might have to be adjusted
to allow a high enough frame rate for successful scans. When users are satisfied with
their reconstruction, the capturing process can be finished by pressing DONE.

3.5.2 Reconstruction

As soon as the scanning procedure is finished, the application takes the acquired recon-
struction volume and converts it into a mesh, consisting of vertices and triangles, with
accurate surface geometry (see Section 2.2.4 for details).

The resulting mesh generally has a very high vertex density and a moderate amount
of noise due to the nature of the surface reconstruction method and Microsoft Kinect’s
way of recognizing depth information. Since the extremely high amount of vertices and
triangles has a direct impact on performance during subsequent stages of the application
workflow, all vertices that are closer than 0.5 millimeters are automatically merged in a
first filtering step. This reduces the vertex and triangle count by a significant number
without having any visually noticeable effect on the mesh’s quality. For example, a mesh
with 1.000.000 vertices and 100.000 triangles can typically be reduced to about 150.000
vertices and 20.000 triangles.

To further improve the quality and smoothness of the reconstructed geometry, Lapla-
cian smoothing is performed [18]. This filter choses a new position for each vertex based
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on its neighboring vertices, which results in a much smoother vertex distribution and
surface geometry.

Furthermore, every connected component (i.e. cluster composed only of connected
triangles) that consists of less than 1

100 of the mesh’s total amount of vertices is removed.
This step greatly reduces noise in the reconstructed model and simplifies subsequent
segmentation procedures without removing objects of interest, since they generally have
a higher relative vertex count.

After these initial smoothing and noise reduction filters have been applied, the mesh is
cleaned up by removing all duplicate, unreferenced or non-manifold vertices and triangles
as well as degenerate faces (i.e. faces that consist of less than three vertices). If any
vertex is missing or has deficient normal vector information, it is recalculated by using
the cross product of vectors between the vertex and neighboring vertices.

All these steps are performed automatically, but can take between a few seconds
and one minute, depending on the chosen volume size and the density of objects in the
reconstructed scene. As soon as the initial mesh reconstruction is finished, users can
inspect their reconstructed mesh with an orbital camera while the remaining filters are
being applied.

3.6 Segmentation

The reconstructed and cleaned virtual scene is now ready for segmentation. During this
procedure, the initial model is split into submeshes that correspond to distinct objects
in the real world. The methods used in this system are primarily designed to segment
relatively large items that are placed on a planar surface and have at least some spatial
distance between each other. Even though the segmentation of directly adjoining small
objects is possible by choosing the right method and parameters as well as by utilizing
the refinement tools provided by the prototype, it is not the primary focus and requires
significantly more effort.

This part of the application workflow comprises three successive steps: Recognition
and segmentation of planar surfaces, automatic clustering of remaining objects and
refinement by utilizing a plane cut technique. Each of these steps is explained in detail
in the next sections.

3.6.1 Plane Segmentation

In order to properly distinguish between separate objects in a scene, the application first
has to recognize static parts of the environment that are not going to be part of any of
these objects. Most of the time, these include a ground plane - either the actual floor of
a room or the surface of a table -, ceiling and/or walls. As soon as all of these elements
are removed from the mesh, components that are not part of the same physical object in
reality are disconnected in the virtual reconstruction as well and can be distinguished
from one another.
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In human-made environments, all the mentioned static segments tend to have a
more or less planar geometry. Even more so if only one of their surfaces is visible, as
is often the case in models retrieved through 3D scans. As a result, recognizing and
segmenting planes in the mesh can be a very powerful preliminary step to subsequent
cluster extraction.

Figure 3.8: Application interface during the plane segmentation step.

Models obtained through 3D scanning tend to differ greatly from one another in
terms of amount, variety and size of planar surfaces present. The sought-after planes
might also have a different thickness depending on the scale, chosen dimensions and/or
remaining noise in the scene. In addition, the final segmentation intended by the user
can not always be easily deducted from the scene itself. As an example, the surface of
a table can either be a static ground plane or part of the distinct physical object table,
depending on whether the user needs the table to be segmented and movable as a whole
or is just interested in the objects that are placed on its surface. As a result, the proposed
system incorporates user input into its plane segmentation method. The user interface
during this stage can be seen in Figure 3.8.

The application starts this procedure by utilizing the RANSAC plane fitting method
discussed in Section 2.3.1 in order to find the biggest plane parallel to the initial viewing
direction of the Microsoft Kinect during the scanning step. Assuming an ideal initial
camera pose, as discussed in Section 3.5.1, these requirements lead to the highest
possibility of finding the ground plane, which should be present in almost every scanned
scene and whose segmentation is of utmost importance to subsequent clustering steps.

After finding all planes parallel to the viewing direction, the system looks for possible
fits parallel to the other two axes to search for walls. The whole procedure is then
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Figure 3.9: Workflow during the plane segmentation stage. Blue steps are performed
automatically, while green steps require user input.

repeated without the restriction on plane orientation for all vertices that have not yet
been segmented. Only planes that consist of at least 1

15 of the total amount of vertices
are considered. This is due to the application only being interested in the biggest planar
surfaces that connect distinct components in the reconstructed model. In addition, users
should not be presented with too many false positives during this step.

If a plane is found, it is highlighted in the virtual reconstruction of the scene. This
acts as a suggestion to the user, who now has the possibility of inspecting the highlighted
area by using the provided orbital camera. If the area is too thick (i.e. falsely includes
objects that should not be part of the ground plane) or too thin (i.e. does not incorporate
the whole ground plane), users can adjust the thickness of the recognized plane. Users
can also change the maximum angle allowed between the normal vectors of two adjacent
vertices so that they are still considered to be part of the same plane by de- or increasing
the smoothness. Parameter adjustments result in an updated segmentation preview,
which enables users to immediately evaluate their choices.

If a suggested plane should be considered a static part of the scene, users can confirm
the segmentation by clicking the green YES button. The highlighted area is then classified
as a static surface and the application tries to find other planes in the remaining scene,
which are then suggested in a similar manner. If the suggestion is rejected by pressing
the red NO button, the application simply searches for other planes without performing
any segmentation. The whole process can be started over at any point by pressing the
corresponding dark red Start over button in the top right corner. The workflow during
this procedure is illustrated in Figure 3.9.

As soon as no more planes that have not yet been rejected or segmented meet the
current requirements, the plane segmentation procedure finishes. The result should be a
model of the reconstructed scene where each static planar surface has been recognized
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as such and can therefore be ignored during the subsequent segmentation of distinct
movable objects. It is possible for users to not select any plane during this step. However,
this makes it difficult to achieve a satisfactory result in the object segmentation stage, as
discussed in the following section.

3.6.2 Object Segmentation

After static planar surfaces have been identified in the previous step, the remaining
model can be segmented into distinct clusters. The application uses one of two methods
for this procedure, depending on user input. The first choice is Euclidean Cluster
Extraction, which is a segmentation method that divides a model into clusters using
only the spatial distance between adjacent vertices. The algorithm is described in more
detail in Section 2.3.2. The second possible choice is Region Growing Segmentation,
which, starting from a set of seed points, assigns neighbors to regions based on their
normal vectors and certain smoothness constraints. More information can be found in
Section 2.3.3.

As soon as the application switches to this step of the segmentation pipeline, initial
clustering is performed using Euclidean Cluster Extraction with default parameters. In
most cases, this initial segmentation produces sufficiently good and robust results. Note,
however, that this method will only assign objects to different clusters if they are not
connected to each other. That means that if static parts of the scene such as the floor
have not been recognized and segmented during plane segmentation (see Section 3.6.1) or
two or more movable objects are, for example, placed on top of each other, the Euclidean

Figure 3.10: Application interface during the object segmentation step.

36



3.6. Segmentation

Segmentation will assign multiple objects to the same cluster. In case of a completely
missing plane segmentation, this technique might put the whole model into a single
cluster. Many of these problems can be solved during the subsequent refinement step (see
Section 3.6.3), but sometimes Region Growing Segmentation with appropriate parameters
might be a better choice.

Therefore, and due to varying scale, noise and complexity of different scenes, users
have the possibility to choose between the two methods by selecting the corresponding tab.
In addition, certain parameters can be adjusted with slider controls in order to perform
a segmentation that produces satisfying results for the user’s specific reconstruction and
requirements. The interface during this step is shown in Figure 3.10. The following
parameters can be changed, depending on the selected segmentation method:

Euclidean Cluster Extraction

• Tolerance: Two vertices are considered to be in the same cluster only if their
Euclidean distance in centimeters is smaller than this value.

• Min Size: If a segmented cluster consists of less vertices than specified here, it is
discarded.

Region Growing Segmentation

• Smoothness: Maximum angle between the normal vectors of the current seed
point and a neighboring vertex, so that they are still considered to be in the same
cluster.

• Curvature: Maximum curvature between the current seed point and a neighboring
vertex in the same region, below which the latter will be used as a subsequent seed
point.

• Neighbors: Number of closest neighbors stored for each vertex in the k-d tree
representation constructed and used during the segmentation (see Section 2.3.2 for
details about this specific data structure).

• Min Size: If a segmented cluster consists of less vertices than specified here, it is
discarded.

Right after initial clustering and whenever users hit the SEGMENT button, the
application presents a preview of the currently selected segmentation method with the
chosen parameters. It shows the complete virtual reconstruction, where each resulting
cluster has a different color. The colors are chosen in a way that tries to enable proper
distinguishability. Static planes that have already been segmented during the previous
step as well as submeshes that are too small (according to the specified Min Size
parameter) keep their natural texture and are not color-marked. Figure 3.10 shows an
example of this highlighting technique. In addition, the preview can be explored with an
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orbital camera. This allows users to immediately inspect the consequences of different
options and evaluate possible results.

When users are satisfied with the chosen segmentation method and parameters, they
can confirm them by pressing DONE. As a result, the automatic clustering step is finalized
and the selected segmentation applied to the reconstructed model. This procedure
produces a number of duplicate vertices and triangles along the edges between distinct
clusters. Therefore, basic cleaning filters similar to those used during reconstruction (see
Section 3.5.2) are applied.

The Euclidean Cluster Extraction should be considered the preferred method in
this step. Even though it tends to under-segment the reconstruction (i.e. it assigns
multiple objects to the same clusters), the result can be improved by using the subsequent
plane cut segmentation described in Section 3.6.3. Region Growing, on the other hand,
generally over-segments objects (i.e. one object is divided into more than one cluster),
which can not be corrected with the tools provided by this prototype. However, if the
preliminary plane segmentation step could not be performed for any reason, Region
Growing Segmentation with properly chosen parameters produces better results, as it
is not dependent on spatial distance between objects. Region Growing is generally the
better choice if the primary goal is the segmentation of individual item surfaces and not
for resulting clusters to resemble connected real-world objects.

3.6.3 Plane Cut Segmentation

Figure 3.11: Application interface during the plane cut segmentation step.

If the submeshes produced by the automatic object segmentation are under-segmented,
as is often the case when using Euclidean Cluster Extraction, users sometimes need

38



3.6. Segmentation

to be able to refine the result by further splitting the segments. For this purpose, the
application provides an optional, intermediate step, during which users can cut existing
segments into two respective submeshes along a manually placed plane. The interface
during this procedure is shown in Figure 3.11.

This technique has been chosen as an additional refinement step due to its high
usefulness and good usability, while being relatively easy to implement. It is an optional
step and might not be needed in a majority of cases due to the automated object
segmentation (see Section 3.6.2) already producing satisfying results. There are a lot
of cases where this method can not be used to improve an under-segmented scene. For
example, whenever two distinct objects are in the same cluster and can not be properly
split along one (or more) planes, this additional segmentation step is not applicable.
Despite these shortcomings, the plane cut method has still been included in the prototype,
since it provides users with additional options if the primary segmentation algorithms
fail to provide sufficiently good results.

The plane used during this step spans across the entire reconstruction volume and is
semi-transparent, so that users can see exactly where it is placed in relation to the rest
of the model, regardless of the current perspective. If a ground plane, i.e. a plane with
sufficient size parallel to the initial viewing direction of the user, has been found during
plane segmentation (see Section 3.6.1), the semi-transparent plane is aligned with that
surface. If no planar surface has been found, however, it is aligned to be perpendicular to
the y-axis of the reconstruction volume. In any case, users have the possibility to realign
the semi-transparent plane to be perpendicular to either of the three axes by pressing
the corresponding button.

If users click on a specific point on the reconstructed model while the Translate mode
is selected, the plane will be shifted to that position, while still staying perpendicular
to the selected axis. By dragging the plane in a direction, it can be moved along this
axis. Clicking on a part of the mesh will also select that specific cluster as the one to be
cut. Similar to the preview during the automated object segmentation as described in
Section 3.6.2, the selected segment is color-marked, where blue and green colors represent
the two submeshes that would be created by cutting along the plane in its current
position.

Users can rotate the plane along each of the axes that are not currently selected
by changing to the Rotate mode and dragging the plane in the chosen direction. The
rotation is limited to an angle of 30 degrees, since the controls for this transformation
become unintuitive after this point due to rotating in a direction opposite to user input.
However, orientations beyond 30 degrees can easily be performed by switching to another
perpendicular axis.

Note that the orbital camera used for navigating the scene is disabled during plane
transformation, since the drag gesture cannot be used for both camera and rotation as
well as translation. Users can, however, switch to Free Camera mode, which allows them
to change their perspective with the same orbital camera that was used during previous
application steps. In this mode, plane repositioning is deactivated. After switching back
to transforming the semi-transparent plane, all rotations will be performed relative to the

39



3. System Design and Workflow

current perspective of the virtual camera to allow for more intuitive and refined controls.
The view can be reset by clicking on the camera button in the lower right corner.

A cut on the selected cluster along the currently positioned plane can be performed
by clicking on Cut. The application will immediately update the reconstruction model to
reflect the new changes. Users can perform as many plane cuts as needed in order to
achieve a mesh segmentation according to their requirements. The current progress can
be reset by pressing the corresponding button. This will, however, revert the mesh to
the state before any cut was performed. The segmentation procedure can be finished by
pressing DONE.

3.7 Processing

Figure 3.12: Application interface during the processing step.

After successfully completing the previous stages of the prototype, the virtual scene
reconstruction should be properly segmented. The model is ready to be cleaned and
processed one final time before starting scene manipulation. Even though several cleaning
filters are performed automatically during and after each segmentation step, the processing
stage allows users to perform two additional methods to potentially improve their mesh
with individually chosen parameters. This manual processing step has been provided to
allow users to improve or repair certain parts of their reconstruction according to their
specific needs. Users can reset their progress during this stage at any time by pressing
Reset. The two available methods are explained in the following sections. Figure 3.12
shows the user interface during this step.
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3.7.1 Small Component Removal

Even though several application stages already remove many unnecessary components
automatically, they only do so in order to reduce noise through elimination of outliers.
However, the different clustering methods - Region Growing Segmentation (see Sec-
tion 3.6.2) and plane cut refinement (see Section 3.6.3) in particular - often produce very
small clusters that do not resemble any physical object or are not needed in the model
for some other reason, but are still too big to be automatically removed. Therefore, users
have the possibility to manually remove all connected components that are smaller than
a user-provided threshold. This value can be controlled by adjusting a slider control
and represents the minimum number of vertices needed for each cluster to remain in the
scene. By clicking on Remove Components, users can apply the filter to the whole model
and the visual representation is updated accordingly.

3.7.2 Hole Filling

As discussed in Section 2.2.3, the capturing procedure stores surfaces of the scene by
continuously filling a TSDF volume with aligned depth data retrieved from the Microsoft
Kinect. The camera can only perceive the depth of the closest surface and does not
know anything about occluded objects behind them. Even if users scan the scene from
every possible angle, there are certain surfaces of the scene that will remain occluded.
Examples include parts of the floor other objects are standing on, the section of the wall
directly behind a small cabinet or even the side of an individual object that is directly
adjacent to another one.

These missing surfaces do not pose a problem to unmodified scanned models, as
they could not be seen even if present. They can, however, become an apparent flaw if
the reconstruction is segmented into distinct objects that are subsequently being moved
around. In that case, the missing surfaces will be visible as holes, as illustrated in
Figures 3.13a and 3.13b. To fix a majority of these problems, the application offers the
possibility to automatically fill holes in specific parts of the scene. Users can specify
the maximum hole size (in number of edges composing the boundary) to be filled by
adjusting the designated slider. If the intent is to fill every single gap, users should choose
the maximum possible amount. By clicking Fill Holes, the filling algorithm is performed
either on the currently selected cluster or, in the case of no selection, on the whole mesh.

The algorithm identifies holes by finding boundary edges, i.e. edges that are attached
only to a single triangle, that form a closed loop. If the number of edges in the loop is
smaller than the provided threshold, the gap is filled by creating new triangles. Their
color is determined by interpolating between the colors of edge vertices. Figure 3.13c
shows a 3D model after performing the described procedure.

In short, the provided method fills holes by creating a planar surface between boundary
edges. Therefore, it only provides good results if the missing surface is planar and does
not include complex geometry. Fortunately, most of the holes resulting from scanning
with a depth camera are planar. This also includes gaps that appear after segmenting the
scene. For example, if an object standing on the floor is segmented, both the resulting

41



3. System Design and Workflow

(a) Reconstructed model. (b) Missing surfaces after segmentation.

(c) Reconstruction after closing gaps.

Figure 3.13: Utilization of provided hole filling method.

hole in the object as well as the one on the floor are planar. Exceptions would be
physical objects that are only partly inside the reconstruction volume as well as those
with intersecting surfaces. If the hole filling method is applied in these cases, the resulting
surface will not be accurate. However, this method is only supposed to be a very simple
tool for fixing gaps that were created during the application’s segmentation stages and
should not be used to substitute complex missing object parts.

3.8 Manipulation

Now that the scene has been successfully reconstructed, segmented into static planes and
distinct movable objects as well as processed according to the specific user’s needs, it is
ready to be manipulated. During this step, users are able to freely move around in the
scene by physically moving in the real world while carrying the tablet. They can use the
touch display to interact with reconstructed objects and modify them in different ways.
The interface during scene manipulation is shown in Figure 3.14. The different options
in this phase are explained in more detail in the following sections.
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Figure 3.14: Application interface during the manipulation step.

3.8.1 Navigation

With the exception of the scanning step, all previous stages of the application offered
scene navigation in the form of an orbital camera, which could be controlled by using
different touch gestures on the tablet. Users could translate, rotate and scale the camera’s
perspective arbitrarily. This resembles the classic approach to scene navigation, as used
by many available mesh viewer applications. In the manipulation stage, however, the
developed prototype takes a different approach.

The KinectFusion algorithm (see Section 2.2), which is used during the application’s
scanning part, compares the newly acquired depth data with the already captured
reconstruction volume to estimate a user’s position and orientation relative to the scene
in each frame. Using this estimation, the new depth data is then aligned with and
incorporated into a single model. Essentially, this part of the algorithm changes the
perspective of a virtual camera to be the same as the user’s.

At the current stage of the application, the scan has already been performed. However,
the TSDF reconstruction volume (see Section 2.2.3 for more information) that has been
filled during the scan is still available, and the Microsoft Kinect attached to the tablet
can still capture depth data as well. Furthermore, it can be assumed that the real-world
scene has not changed since the scan, because all subsequent modifications were purely
virtual. As a result, the tracking part of the KinectFusion algorithm (as described
in Section 2.2.2) can be utilized with newly acquired depth data in order to update
the virtual camera’s perspective to correspond exactly to that of the Microsoft Kinect,
without actually adding the new depth data to the already finished reconstruction. This
makes it possible for users to freely move around in a scanned scene by physically moving
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Figure 3.15: The tablet functions as a window into the virtual world.

in the real-world counterpart while holding the tablet with the attached depth camera.
The orientation of the camera is updated to that of the Kinect every frame, which allows
the tablet display to be used as a window into the virtual world. If users point the depth
camera at a specific part of the real scene, they can see the corresponding part of the
virtual reconstruction as shown in Figure 3.15.

By utilizing this method, users are presented with a natural and playful way to
navigate through the reconstructed scene. They do not have to control an abstract orbital
camera and can instead move and look around freely as well as inspect specific parts of
the scene by walking to the corresponding section in the real scene and adjusting the
display orientation. Moreover, this technique enables intuitive ways to reposition distinct
objects by utilizing physical movement, as described in Section 3.8.2.

By using the camera tracking of KinectFusion’s ICP implementation, this navigation
technique also inherits its potential downsides. Changes to the real scene after a finished
reconstruction can lead to tracking failures due to the newly acquired depth data not
corresponding to the reconstruction volume obtained during scanning. In addition, for
the pose estimation to work, the Kinect needs to recognize some part of the scene that
has been reconstructed. As a result, positional and orientational tracking does not work
if the camera is pointing, for example, at a ceiling that has not been previously scanned,
even if the user is standing right inside the reconstructed scene. This technique also
assumes that the obtained data was collected from all possible angles, which in return
enables 360-degree navigation. If a scan only captured objects from a single perspective,
tracking will not work while inspecting it from different angles during this step.

However, since this prototype is primarily designed to work on reconstructed static
scenes that have been scanned with as much detail as possible, and users are assumed to
mainly point the tablet in the direction of objects they want to modify, the implemented
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navigation technique works well in a majority of cases. Furthermore, since the tracking
algorithm operates on already captured scene data, it is not as sensitive to abrupt changes
in perspective as it is during the scanning stage described in Section 3.5.1 and will recover
from tracking failures without problems.

Users also have the possibility of inspecting their manipulated scene by switching
to a free orbital camera with the click of a button. This gives them a current overview
and allows them to quickly assess the situation. While doing so, however, interaction
with objects as described in Section 3.8.2 is deactivated, since the used techniques are
explicitly designed for the default navigation mode utilizing camera tracking.

3.8.2 Interaction

The prototype offers the possibility to interact with the reconstructed scene during
this stage in different ways. The used interaction techniques enable users to reposition,
duplicate and remove objects, while also providing basic transformation abilities in the
form of rotation and scaling. This application stage is designed to offer users a playful
and natural approach to restructuring their scene, while still being powerful enough to
allow for a wide variety of modifications. All performed modifications can be reverted at
any given time by pressing Reset. The different ways to manipulate objects are described
in the following sections.

Repositioning

Making the repositioning of objects as natural as possible is one of the most important
features for intuitive scene manipulation. The primary goal of this interaction technique
is to allow users to relocate all segmented movable objects.

Figure 3.16: Objects can be repositioned with drag-and-drop gestures.

Repositioning is the default interaction mode during this stage and is active whenever
a user has not specifically selected any other technique. When a segmented object can
be seen from the user’s perspective (and is therefore visible on the tablet’s display), it
can be selected by tapping it on the touchscreen. By pressing and holding, an object can
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be picked up, i.e. it is attached to the front of the camera. The usage of this method
is shown in Figure 3.16. In conjunction with the provided scene navigation technique,
this allows users to carry objects around by dragging their fingers over the display and
by physically moving in the real world, since the selected item remains attached to the
camera while the perspective changes.

When users drag an object over another surface, including static as well as non-static
parts of the scene, it is relocated to the spot currently pointed to. The exact position
is determined by the normal vector orientation of the selected spot’s triangle as well as
the current viewing direction of the camera. For example, if a user picks up a box and
drags it over the floor, it is placed on top of the floor. If the box is dragged over a wall
or closet while standing in front of it, the box is positioned in front of it as well. This
simulates the positioning of objects in the real world and makes it easier to rearrange
them in a way that would also make sense in reality. For example, objects can be picked
up, carried around, and dropped somewhere, without having to precisely position them
so that their bottom edges align with the floor again, since the application automatically
takes care of that.

The position of a picked up object is constantly updated as the selected spot under
the finger changes, either by dragging or by adjusting the current perspective of the
camera. When the finger is lifted, the object is dropped at the specified position. If it is
released while being dragged over a part of the screen where no reconstructed objects
can be seen, the object’s position is reset to its location before pick-up.

Transformation

Figure 3.17: Object rotation during transformation mode.

Another important aspect of scene manipulation is the adjustment of an object’s
orientation and scale. Just as in the other interaction modes, only segmented movable
objects can be transformed, identified static planar clusters stay immovable.

After pressing the Transform button, users can reorient an object by selecting it on
the touchscreen and dragging the finger in the desired direction of rotation. The used
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axes are relative to the current camera orientation at all times, i.e. the rotation of the
object always follows the touch gesture and is not limited to the object’s or world’s axes.
This method allows for arbitrary (combined) rotations around the x- and y-axis of the
camera’s viewing direction with a simple drag gesture. Therefore, any desired rotation
can be performed by adjusting the current camera perspective accordingly. An example
of object rotation is shown in 3.17.

Objects are always rotated in a way that makes sure that they remain on the surface
they are attached to. For example, if a non-cubic box placed on the floor is rotated by 90
degrees so that its height, as measured from the ground plane, changes, the system makes
sure that the box is still directly attached to the floor’s surface. These considerations
ensure smooth and intuitive rotational adjustments while still utilizing the system’s
unique approach to scene navigation presented in Section 3.8.1.

Scaling an object works in a very similar fashion. Again, after selecting the Transform
option, users can choose the visible object that they wish to scale by selecting it on the
touchscreen. Without lifting the finger from the screen, they can now adjust the object’s
size by performing simple scroll gestures using two fingers. Scrolling up increases the
scale, scrolling down decreases it. By releasing the fingers, the transformation is applied.

Duplication

Figure 3.18: During duplication mode, copies can be dragged out of original objects.

In order to give users more possibilities in interacting with their reconstructed scene,
the system allows for duplication of segmented objects. As in the other interaction modes,
this operation can only be applied to movable clusters, not to static planar surfaces.

After users activate the Duplication mode, they can clone an object by selecting the
original and dragging a duplicated version out of it. The newly created object is a copy
of the original segment in every way and even inherits all performed transformations. It
can then be carried around and repositioned in exactly the same way as described in
Section 3.8.2. Clones can be independently transformed, repositioned, removed and even
copied themselves.
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Users can perform duplications as often as they like, even though they have to keep
the increasing number of faces and vertices in mind, as this might impact performance
when using the exported model in other applications. This interaction technique allows
users to create complicated scenes with a great number of similar objects, while only
needing to include a single one of them in their actual scan. An example of object
duplication can be seen in Figure 3.18.

Deletion

Figure 3.19: Objects can be removed by dragging them over the recycle bin.

If users want to eliminate a specific cluster, for example, if they have created too
many duplicates, they can remove segments from the scene completely. To achieve this,
the specific object has to be selected and dragged and dropped over the dustbin icon in
the lower right corner of the scene view. The usage is illustrated in Figure 3.19.

If the scene manipulation is reset by pressing Reset, all removed objects that were
part of the original scene are restored to their initial positions.

3.8.3 Export

Finally, as soon as users are satisfied with their reconstruction as well as their performed
manipulations, they have the possibility to export the virtual scene for use in other
applications, such as mesh viewers, game engines or 3D printing software.

Users can choose between exporting only a specific segment by selecting it or saving
the complete reconstruction by not selecting anything. Either way, the Export button
has to be pressed with the desired selection active, which will open a Save As dialog that
lets users specify the name of the exported file. They can also choose between OBJ, OFF,
PLY or STL file formats, which should cover enough options to accommodate different
editing applications.

If the system has detected a ground surface during the plane segmentation step (see
Section 3.6.1), it tries to rotate the exported model in a way that aligns the ground
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plane with the x-axis. This compensates for tilted reconstructions that resulted from
viewing directions at the start of scans that were not perfectly parallel to the ground.
With the implemented alignment step, however, it is much easier to reuse the model in
other applications as it can be imported with a more standardized orientation.

49





CHAPTER 4
Implementation

This chapter focuses on the technical implementation of the developed system. First,
a short overview of the overall software architecture as well as used frameworks and
libraries is given. Then, basic concepts and common methods used in the prototype are
explained. Finally, each of the implemented components and their functions are discussed
in more detail.

4.1 System Overview

The implemented prototype consists of many intertwined elements with distinct respon-
sibilities. A rough overview of the most important components excluding libraries and
other external dependencies is illustrated in Figure 4.1. The main system parts are
described as follows:

• Main Control: The main entry point and responsible for the application’s lifetime.
Contains the main window and instantiates the different sub windows, depending
on the current stage. The main application loop is also executed in this class. In
addition, this component forwards communication from user interface controls and
the scanning procedure to the graphics controller.

• Graphics Control: This component executes the OpenGL loop in a separate
thread, which is responsible for almost all 3D-related operations. This includes
rendering of the reconstructed scene, navigation, selection (including manipulation),
segmentation and export. The different procedures are highly parallelized and run
in several additional threads. Therefore, it is necessary to perform basic concurrency
control in order to ensure that concurrent operations produce correct results and
are executed in the right order.
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Figure 4.1: Rough system overview excluding libraries.

These two main controllers are responsible for managing a variety of smaller com-
ponents (or component groups), the most important of which are shortly described as
follows:

• User Interface: Contains the two-dimensional GUI overlay including controls
such as buttons, sliders, labels and similar elements. Listens for user input and
forwards it to the main controller class. It is divided into several subcomponents,
each of which represents a specific panel on the screen. They are activated and
deactivated depending on the currently selected mode, so not all of them are visible
and listening for input at any given time.

• Scanning: Responsible for communicating with the active capturing device and
retrieving the unfiltered reconstructed model. In addition, this component tracks
the current position and orientation of the depth camera for use in 3D scene
navigation.

• Rendering: Receives the current scene data (i.e. the 3D scene model and 2D
icons) and renders all required primitives using OpenGL.

• Camera: Responsible for scene navigation. Depending on the currently active
application stage, the camera can either be orbital or directly coupled to the current
orientation and position of the scanning device.
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• Selection: Handles 3D user interaction, including selection, manipulation and
transformation of objects.

• Segmentation: Provides several techniques for plane and object clustering.

• Export: Used to save the finished scene reconstruction to one or more files in one
of several different formats.

A more complete class diagram including most components with their specific inher-
itance hierarchy as well as most important associations and interactions, is shown in
Figure 4.2.

4.2 Dependencies and Foundations
This section provides a quick overview of all libraries and frameworks that were used
during this project. Furthermore, basic concepts utilized by two of these frameworks
are described in more detail. Note that this is not supposed to be a comprehensive
explanation of every function, but instead a short overview of some important recurring
concepts that are being used in the application developed during the project. For more
detailed information, refer to the official documentations by Microsoft [53] and Khronos
[36].

4.2.1 Frameworks and Libraries

The different used libraries and frameworks as well as their specific purpose in this project
are shortly described as follows:

• Win32 API: C-based framework that enables the development of Windows-based
desktop applications. It provides a set of interfaces to several dynamic link libraries
(DLL) that can be used to achieve a wide range of features. This prototype uses
the Win32 API to display and process the application window and its 2D Graphical
User Interface [53].

• Open Graphics Library (OpenGL): Cross-platform API developed by Silicon
Graphics that enables interaction with the Graphics Processing Unit (GPU) in
order to render 2D and 3D graphics [35].

• OpenGL Extension Wrangler Library (GLEW): Helps with the initialization
of OpenGL, including the determination of which versions are supported on the
current platform [30].

• OpenGL Mathematics (GLM): C++ mathematics library for OpenGL software
[24].

• KinectFusionExplorer-D2D/NuiSensorChooser: These C++ projects are in-
cluded in the Microsoft Kinect for Windows Developer Toolkit 1.8.0 [48]. They are
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part of an example application capable of utilizing KinectFusion to scan a three-
dimensional scene. This prototype uses several modified parts of these projects,
including the KinectFusion implementation itself and the communication with the
Microsoft Kinect [48].

• Boost C++ Libraries: A large compilation of peer-reviewed portable C++ source
libraries that can be used for a vast variety of tasks [15]. In this prototype, Boost
provides advanced thread management, logging and a robust implementation of
smart pointers.

• Visual and Computer Graphics (VCG) Library: Open-source C++ library
that offers a variety of efficient methods for processing triangular meshes as used in
their widely known open-source tool MeshLab [13]. The implemented prototype
uses it for several mesh filtering procedures such as vertex merging, hole filling and
surface smoothing.

• Point Cloud Library (PCL): Open-source library that provides many different
algorithms for processing of three-dimensional point clouds and 3D geometry in
general [71]. The prototype developed during this thesis uses its implementations
of RANSAC Model Fitting (see Section 2.3.1), Euclidean Cluster Extraction (see
Section 2.3.2) and Region Growing Segmentation (see Section 2.3.3) during the
segmentation stage.

• FreeType: Used to read font files and render text on screen [38]. This project
utilizes FreeType in conjunction with OpenGL to display informational text on top
of the three-dimensional scene.

4.2.2 Win32 API

The Win32 API is a set of programming interfaces used to create C and C++ applications
for Microsoft Windows [53]. It provides core functionalities such as access to network
capabilities, system processes and registry, error handling, thread management and
DirectX rendering. The prototype developed during this research project mainly utilizes
the user interface subsystem of the Win32 API, which provides ways to create windows
and different basic controls (i.e. buttons, sliders, labels) and allows proper handling
of user input [53]. The following sections describe some relevant Win32 concepts with
examples taken from this prototype’s implementation.

Window Class

The Window class is used to define a reusable type of window and includes information
about visual elements such as the background color, application icon and cursor image.
In addition, the window procedure, which is responsible for handling all relevant events,
can be specified (see Section 4.2.2 for more information). Several Window classes can be
created in an application and different windows can have the same class. The following
code snippet includes the initialization used for the main Window class in this project:
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1 WNDCLASSEX wc = { 0 } ;
2 wc .cbSize = sizeof (WNDCLASSEX ) ; // s t r u c t u r e s i z e
3 wc . lpfnWndProc = (WNDPROC )MainWindow : : MessageRouter ; //window procedure
4 wc .style = 0 ; // c l a s s s t y l e s
5 wc . hInstance = hInstance ; // handle to a p p l i c a t i o n i n s t a n c e
6 wc .hIcon = LoadIcon (NULL , IDI_APPLICATION ) ; // l a r g e a p p l i c a t i o n i con
7 wc . hCursor = LoadCursor (NULL , IDC_ARROW ) ; //mouse cur so r i con
8 wc . hbrBackground = backgroundBrush ; // background c o l o r
9 wc . lpszMenuName = NULL ; // used menu r e s o u r c e

10 wc . lpszClassName = L"MainWindow" ; // c l a s s name
11 wc . hIconSm = LoadIcon (NULL , IDI_APPLICATION ) ; // smal l a p p l i c a t i o n i con
12
13 ATOM ClassAtom = RegisterClassExW(&wc) ;

In order to use a Window class, it has to be registered with RegisterClassExW().
It can then be utilized in the initialization of different windows to automatically apply
all defined class-specific properties. For example, the following code is used to create the
prototype’s main window:
HWND hWndMain = CreateWindowExW (WS_EX_CONTROLPARENT , (LPCTSTR )MAKELONG (

ClassAtom , 0) , 0 , WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX |
WS_CLIPSIBLINGS | WS_CLIPCHILDREN | WS_CAPTION | WS_SYSMENU , 0 , 0 , 960 ,

545 , 0 , NULL , hInstance , this ) ;

HWND variables are handles for windows as well as all other interface elements such as
buttons and sliders. The first parameter of CreateWindowExW is for extended windows
styles, which can be used to change the appearance (e.g. scrollbar or border) of the
window. In this case, WS_EX_CONTROLPARENT specifies that all child windows should
forward their navigation events to this parent window. The next arguments should be
a pointer to the class name specified earlier as well as the window title. The fourth
parameter specifies different window styles, which define the appearance of elements such
as the title bar, as well as clipping behavior of child elements. Coordinates (0, 0,
960, 545) specify the x and y positions for the top left corner as well as the width and
height of the window. The remaining parameters are for a handle to the parent control
(as this is the main window, it does not have any), a handle to the menu, the application
instance as well as additional information that will be used during the creation of the
window. Child controls such as buttons and sliders are created in a similar manner, but
their parent handle has to be set to the control that hosts them instead of NULL.

Message Loop

The main Win32 message loop is entered right after initialization and is only exited when
quitting the application. The following code snippet shows the main Win32 message loop
of this prototype:

1 MSG msg = { 0 } ;
2 while (WM_QUIT != msg . message )
3 {
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4 while (PeekMessage(&msg , NULL , 0 , 0 , PM_REMOVE ) > 0)
5 {
6 TranslateMessage(&msg ) ;
7 DispatchMessage(&msg ) ;
8 }
9

10 /∗ . . . handle other events , update other components . . . ∗/
11 }
12 QuitApplication ( ) ;

The PeekMessage() method is constantly looking for any kind of event (e.g.
key strokes, mouse clicks, window resizing and closing). On receipt, it is immedi-
ately sent to the window procedure of the control handle it is addressed to by calling
DispatchMessage().

The MSG structure represents such an event (or a message) and is defined as follows:
1 typedef struct MSG {
2 HWND hwnd ;
3 UINT message ;
4 WPARAM wParam ;
5 LPARAM lParam ;
6 DWORD time ;
7 POINT pt ;
8 }

hwnd is the handle to the control the message is addressed to, while message is an
integer that specifies the type of event. The possible values are defined as constants in
the Win32 API for better readability:

1 #define WM_CREATE 0x0001 //window c r e a t i o n
2 #define WM_DESTROY 0x0002 //window d e s t r u c t i o n
3 #define WM_MOVE 0x0003 //window movement
4 #define WM_SIZE 0x0005 //window r e s i z i n g
5
6 /∗ . . . more types . . . ∗/

wParam and lParam are additional parameters that vary from message to message.
time represents the exact time at which the message was sent, while pt contains the
current cursor position.

Window Procedure

The window procedure is a method that receives the event messages dispatched from the
message loop. Every control has exactly one assigned window procedure. The following
is an example taken from the developed application’s abstract SubWindow class:

1 LRESULT CALLBACK SubWindow : : SubWindowProc (HWND hWnd , UINT message , WPARAM
wParam , LPARAM lParam )

2 {
3 switch (message )
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4 {
5 case WM_DESTROY : //on a p p l i c a t i o n qu i t
6 CleanUp ( ) ;
7 return DefWindowProc (hWnd , message , wParam , lParam ) ;
8 break ;
9 case WM_COMMAND : //on button pr e s s

10 ProcessUI (wParam , lParam ) ;
11 break ;
12 case WM_SIZE : //on window r e s i z i n g
13 Resize ( ) ;
14 break ;
15 case WM_LBUTTONDOWN : //on l e f t mouse button c l i c k ( or f i n g e r p r e s s and

hold )
16 mouseDown = true ;
17 break ;
18 case WM_LBUTTONUP : //on l e f t mouse button r e l e a s e ( or f i n g e r r e l e a s e )
19 mouseDown = false ;
20 break ;
21 default :
22 return DefWindowProc (hWnd , message , wParam , lParam ) ;
23 }
24 }

The hWnd parameter represents the handle of the control that a message is addressed
to. This is important, since a procedure can (and will, in most cases) handle the events
of more than one Win32 control. The remaining parameters contain relevant information
about an event, as already explained in Section 4.2.2. Depending on the message type,
different actions can be taken. For example, whenever the user presses a button, the
WM_COMMAND message with the origin control as lParam is received, whereupon the
appropriate actions are taken in ProcessUI(). All events that do not need custom
handling can be passed on to DefWindowProc(), which is the default Win32 procedure.

4.2.3 OpenGL

As mentioned in Section 4.2.1, the Open Graphics Library (OpenGL) is a cross-platform
and cross-language API used to interact with a GPU. The API provides a set of functions
and constants that can be utilized to render 2D and 3D vector graphics [35]. There are
several libraries available that help to create OpenGL windows and try to abstract most
of the functions away with wrapper classes [6][60]. However, this prototype uses the API
provided by OpenGL directly in order to have more control over the rendering process.
Some of the most used basic concepts are briefly explained in the following sections.

Context Creation

An OpenGL context essentially stores all state information about a specific instance of
OpenGL. In order to be able to use OpenGL at all, a context has to be created. As soon
as it is destroyed, the library ceases to function as well. Since OpenGL can not exist
without a context, its creation is not part of the OpenGL API and is therefore done
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differently on every platform. As this application runs on Microsoft Windows, the Win32
API has to be used for this task.

Every window in Win32 has an associated device context, which contains a pixel
format. It is essentially a structure that specifies the properties of the framebuffer, which
contains the currently displayed graphic data. As a result, it has to be set up properly in
order for OpenGL to work. The following shows the pixel format for this application’s
OpenGL context:

1 PIXELFORMATDESCRIPTOR pfd ;
2 memset(&pfd , 0 , sizeof (PIXELFORMATDESCRIPTOR ) ) ;
3 pfd .nSize = sizeof (PIXELFORMATDESCRIPTOR ) ;
4 pfd . nVersion = 1 ;
5 pfd . dwFlags = PFD_DOUBLEBUFFER | PFD_SUPPORT_OPENGL | PFD_DRAW_TO_WINDOW ;

// p r o p e r t i e s o f p i x e l b u f f e r
6 pfd . iPixelType = PFD_TYPE_RGBA ; // type o f p i x e l data
7 pfd . cColorBits = 32 ;
8 pfd . cDepthBits = 32 ;
9

10 int pixelFormat = ChoosePixelFormat (hDC , &pfd ) ;
11 SetPixelFormat (hDC , pixelFormat , &pfd ) ;

Essentially, this structure describes the desired features of an OpenGL pixel format.
It has to be subsequently passed to ChoosePixelFormat(), which returns the id of
the pixel format that most closely resembles it. Finally, it can be applied to the current
Win32 context hDC with SetPixelFormat().

The context is created by calling wglCreateContext(). Before OpenGL can be
used, however, the context has to be made current with wglMakeCurrent(). One
thread can only contain a single current OpenGL context.

This application uses the GLEW library during initialization to determine the plat-
form’s supported OpenGL versions, among other things [30]. The context creation is
then adjusted accordingly, since older versions require different pixel formats. In order to
use this library, a fake OpenGL context has to be set up and destroyed before creating
the actual context. This is done largely analogously to the already described procedure
and is therefore not covered here.

Vertex Buffer Objects

In order for OpenGL to be able to render a primitive, an array containing all necessary
information about its 3D data has to be set up. The following are exemplary vertex and
triangle arrays for a triangle mesh representing a simple square on the z-plane:

1 float vertices [ ] = {
2 0 . 0 , 0 . 0 , 0 . 0 , //bottom l e f t ver tex (x , y , z )
3 0 . 0 , 1 . 0 , 0 . 0 , // top l e f t ver tex
4 1 . 0 , 0 . 0 , 0 . 0 , //bottom r i g h t ver tex
5 1 . 0 , 1 . 0 , 0 . 0 , // top r i g h t ver tex
6 }
7
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8 int triangles [ ] = {
9 0 , 1 , 2 , // t r i a n g l e 1

10 1 , 3 , 2 // t r i a n g l e 2
11 }

Subsequently, this data has to be uploaded to the graphics card in order to be rendered.
OpenGL uses Vertex Buffer Objects (VBO) to store data about the vertices. In this case,
a buffer object needs to be generated for each of the two arrays.

1 GLuint vbo ;
2 glGenBuffers (1 , &vbo ) ; // generate ver tex b u f f e r o b j e c t
3 GLuint ibo ;
4 glGenBuffers (1 , &ibo ) ; // generate index b u f f e r o b j e c t

The variables vbo and ibo are references to the buffers, which are managed by
OpenGL. They have to be bound to a specific type before arrays can be loaded into the
buffers:

1 glBindBuffer (GL_ARRAY_BUFFER , vbo ) ; // bind ver tex b u f f e r o b j e c t
2 glBufferData (GL_ARRAY_BUFFER , sizeof (vertices ) , &vertices [ 0 ] ,

GL_STATIC_DRAW ) ; // s e t ver tex data
3 glBindBuffer (GL_ARRAY_BUFFER , 0) ; // unbind vbo
4
5 glBindBuffer (GL_ELEMENT_ARRAY_BUFFER , ibo ) ; // bind index b u f f e r o b j e c t
6 glBufferData (GL_ELEMENT_ARRAY_BUFFER , sizeof (triangle ) , &triangles [ 0 ] ,

GL_STATIC_DRAW ) ; // s e t t r i a n g l e data
7 glBindBuffer (GL_ELEMENT_ARRAY_BUFFER , 0) ; // unbind ibo

Shaders

Shaders in OpenGL are essentially small user-defined programs that are part of the
rendering pipeline and operate on the provided vertex data before it is rendered. Shaders
are written in the C-style OpenGL Shading Language (GLSL) and compiled at runtime.
The following shader stages are available, sorted by the order in which they are processed:

• Vertex Shaders: Receives and outputs exactly one vertex attribute. Typically
performs 3D transformations if necessary. (Mandatory)

• Tessellation Shaders: Subdivides sets of vertex data into smaller primitives.
(Optional)

• Geometry Shaders: Can create new primitive geometries based on the provided
vertex data. (Optional)

• Fragment Shaders: Calculates the color of every rendered pixel. (Mandatory)

• Compute Shaders: Can perform arbitrary tasks. (Optional)
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As this application only uses the mandatory shader stages, the following paragraphs
exclusively cover the vertex and fragment shaders.

Vertex shaders receive data for each vertex that is stored in the vertex buffer object.
In order to keep this example simple, it is assumed that only a 3D position is stored in
each vertex. The following is a bare-bones example of such a vertex shader:

1 #v e r s i o n 330 // used GLSL v e r s i o n
2
3 in vec3 inPosition ; // input ver tex p o s i t i o n
4
5 void main ( )
6 {
7 gl_Position = vec4 (inPosition , 1 . 0 ) ; // output render ing p o s i t i o n
8 }

For the sake of simplicity, this shader simply outputs the position that it receives.
Note that this would not lead to a correctly rendered cube. In an actual application,
the positions would be transformed into 3D camera space by using several provided
matrices. The calculated position needs to be assigned to gl_Position, which is a
global OpenGL variable used in the rendering pipeline.

The fragment shader calculates the color for every single pixel on the screen covered
by a primitive. The following shows, once again, a very simple example:

1 #v e r s i o n 330 // used GLSL v e r s i o n
2
3 out vec4 outputColor ; // output render ing c o l o r f o r one p i x e l
4
5 void main ( )
6 {
7 outputColor = vec4 ( 1 . 0 , 0 . 0 , 0 . 0 , 1 . 0 ) ;
8 }

To keep this introduction short, this shader simply assigns the color red to every
processed pixel. It could, for example, also perform additional lighting calculations based
on a predefined vertex color.

In order for the shaders to be usable by OpenGL, they have to be compiled first. For
that purpose, the source code has to be loaded into a specific buffer. This procedure has
to be performed once for each shader.

1 GLuint shaderId = glCreateShader (GL_VERTEX_SHADER ) ; // c r e a t e shader
2 glShaderSource (shaderId , (int )sourceCode .size ( ) , &sourceCode , NULL ) ; //

attach source code
3 glCompileShader (shaderId ) ; // compi le source code

Vertex and fragment shaders are part of the same rendering pipeline. As a result,
they have to be linked together by attaching them to a newly created Shader Program,
before they can be used for rendering. This is done in the following way:

1 GLuint shaderProgramId = glCreateProgram ( ) ; // c r e a t e shader program
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2 glAttachShader (shaderProgramId , vertexShaderId ) ; // attach ver tex shader
3 glAttachShader (shaderProgramId , fragmentShaderId ) ; // attach fragment shader
4 glLinkProgram (shaderProgramId ) ; // l i n k program

The method glLinkProgram() is used to finalize the program and make it available
to OpenGL. The linked shaders can be used during rendering by calling glUseProgram
(shaderProgramId). However, only one program can be active at any time.

Users can also specify additional parameters that can be passed to a shader program.
These global variables are called uniforms, which have to be declared in the shader code
as follows:
uniform int renderMode ;

Variables of this type can be used to pass a shader additional data associated with a
specific primitive. They can be set right before drawing a set of vertices and typically
contain matrices used for 3D projection, current lighting conditions or the active rendering
mode.

Vertex Array Objects

The only thing missing is the link between the vertex buffer objects and the shaders,
since OpenGL does not know how the vertex data in the buffer is ordered. To this end,
Vertex Array Objects (VAO) are used. A VAO essentially stores all the links between raw
vertex data in a VBO and input attributes of shaders. It is initialized and bound very
similarly to VBOs:

1 GLuint vao ;
2 glGenVertexArrays (1 , &vao ) ; // generate ver tex array o b j e c t
3 glBindVertexArray (vao ) ; // bind ver tex array o b j e c t

Every input attribute defined in the vertex shader has a unique incrementing id
referencing its position. In the example code shown in Section 4.2.3, the only input
attribute is inPosition, which automatically has the id 0. A second attribute, such as
the vertex color, would have the id 1, and so on. Now that the VAO is generated and
bound, the links between the VBO and the shader attributes can be set up as follows:

1 glBindBuffer (GL_ARRAY_BUFER , vbo ) ; // bind vbo to c o r r e c t type
2 glEnableVertexAttribArray (0 ) ; // enable the a t t r i b u t e array f o r a t t r i b u t e

with id 0 ( i n P o s i t i o n )
3 glVertexAttribPointer (0 , 3 , GL_FLOAT , GL_FALSE , 0 , reinterpret_cast<void

∗>(0) ) ; // s e t ac tua l l i n k

The method glVertexAttribPointer() has six parameters. The first one refer-
ences the id of the shader attribute, while the second and third parameter represent the
number of elements this attribute consists of as well as the data type of each element.
The fourth parameter decides whether or not the values should be normalized between
-1.0 and 1.0. The fifth parameter represents the stride in the input array, i.e. the
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number of bytes between each attribute in the array. The last parameter specifies how
many bytes are in front of the first attribute of this type in the array. The last two
parameters are particularly important in case of more than one shader attribute being
stored in the vertex array.

Drawing

After the vertex buffer objects, shader programs and vertex array objects have been set
up, OpenGL is ready to draw the 3D scene onto the screen:

1 // c l e a r s c r e en
2 glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT ) ;
3
4 // bind and use appropr ia t e o b j e c t s
5 glUseProgram (shaderProgramId ) ;
6 glBindVertexArray (vao ) ;
7 glBindBuffer (GL_ELEMENT_ARRAY_BUFFER , ibo ) ;
8
9 //draw t r i a n g l e s

10 glDrawElements (GL_TRIANGLES , triangles .size ( ) , GL_UNSIGNED_INT , (void∗) 0) ;
11
12 // unbind/ f r e e used b u f f e r s and shaders
13 glBindBuffer (GL_ELEMENT_ARRAY_BUFFER , 0) ;
14 glBindVertexArray (0 ) ;
15 glUseProgram (0 ) ;

Since the graphics card already has the vertex data in memory, the primitive can
be drawn by calling the glDrawElements() function every frame, as long as the
corresponding shader program and vertex buffer objects are active. In order to allow
other 3D models with different shader programs to be drawn as well, all used buffers
and programs should be unbound after drawing. Several additional options for OpenGL
rendering (e.g. depth tests and culling) can be set simultaneously. For example, calling
glEnable(GL_DEPTH_TEST) before making the draw call will enable depth tests. It
can be disabled again by using glDisable(GL_DEPTH_TEST).

4.3 Controller

The implemented system is mainly controlled by two particularly important classes.
MainController contains the starting point of the application and is responsible for
its life cycle, while also managing state changes, the 2D user interface and communication
between UI, KinectFusion and the 3D engine. GraphicsController, on the other
hand, is responsible for all 3D-related functionality aside from 3D scanning. This includes
rendering, navigation, selection and segmentation. Both classes and their primary
responsibilities are described in more detail in the following sections.

63



4. Implementation

4.3.1 Main Controller

The MainController class is the central hub and responsible for a wide variety of
components. It manages the application’s user interface and handles mode changes as
well as communication between core system parts. Most of the methods in this class
are very straight forward and are either used to update specific user interface elements
directly or initiate commands in GraphicsController based on user input, all of
which are discussed in their own sections. The main components of the Win32 main
messaging loop, which is initialized during startup, are explained in a generic way in
Section 4.2.2. Therefore, this section only provides a quick overview of the initialization
at startup and discusses the implemented methods and components used for managing
the current application state.

Initialization

The InitApplication() method is the application’s entry point, during which all
of the main components are initialized. It begins by creating and initializing the
StyleSheet class, which stores most layout-related information, such as text for-
matting and button gradients, in a globally accessible place. It is explained in more detail
in Section 4.4.2. Subsequently, the main Win32 window and all its constantly visible child
interface elements, such as the mode selection bar, the help button and text labels with
information about the current scene, are initialized with appropriate parameters. More
details about the elements and procedures used for Win32 applications can be found
in Section 4.2.2. In addition, the method initializes and populates the custom wrapper
classes GUIContainer, each containing a logically connected group of interface elements.
They simplify UI management by allowing controller classes to perform certain operations
(e.g. visibility changes) on all elements in a group simultaneously. See Section 4.4.2 for
more information about these wrapper classes.

The method subsequently fills data structures used for state management, which
is discussed in more detail in Section 4.3.1. Afterwards, GraphicsController is
initialized in an additional thread, which will be responsible for 3D graphic operations
(see Section 4.3.2). The controller then initiates the initial application stage (Prepare)
and starts the main messaging loop, which constantly updates all currently active user
interface elements and forwards messages and commands to the GraphicsController.

State Management

WindowState is an enumeration class, consisting of constants representing the distinct
application stages. It is declared as follows:

1 enum class WindowState {
2 Prepare = 0 ,
3 Scan = 1 ,
4 PlaneSelection = 2 ,
5 Segmentation = 3 ,
6 PlaneCut = 4 ,
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7 Processing = 5 ,
8 Interaction = 6
9 } ;

Elements of the type SubWindow represent entire UI panels with own Win32 message
loops that can contain a variety of child interface controls (see Section 4.4.1 for more
details). During application startup, MainController initializes a SubWindow for
every distinct WindowState and stores them as (WindowState,SubWindow) pairs
in an unordered map as follows:

1 //map i n i t i a l i z a t i o n
2 unordered_map<WindowState , unique_ptr<SubWindow>> subWindowMap ;
3
4 // a s s i g n o b j e c t that i n h e r i t s from SubWindow
5 subWindowMap [ WindowState : : Prepare ] = unique_ptr<PrepareWindow>(new

PrepareWindow ( ) ) ;
6
7 // i n i t i a l i z e the subwindow with appropr ia te parameters
8 subWindowMap [ WindowState : : Prepare]−>Initialize ( /∗ parameters ∗/ ) ;
9

10 /∗ . . . i n i t i a l i z a t i o n s o f other SubWindows . . . ∗/

This allows for efficient state management, since the controller can quickly retrieve
and activate the appropriate SubWindow as well as deactivate all unrelated ones by
accessing the unordered map with the current WindowState as index key, whenever the
currently selected application stage changes. The ChangeState() method takes care
of this procedure:

1 void MainController : : ChangeState (WindowState _state )
2 {
3 // hide the p r e v i o u s l y a c t i v e u i panel
4 if (currentWindow != subWindowMap .end ( ) )
5 currentWindow−>second−>Hide ( ) ;
6
7 // r e t r i e v e the UI panel cor re spond ing to the s e l e c t e d WindowState and

make i t a c t i v e
8 currentState = _state ;
9 currentWindow = subWindowMap .find (currentState ) ;

10 currentWindow−>second−>Show ( ) ;
11
12 /∗ . . . o ther commands that happen on s t a t e changes . . . ∗/
13 }

In the main messaging loop, the events of the currently active SubWindow are handled
as follows:

currentWindow−>second−>HandleEvents (∗this ) ;

An instance of MainController itself is passed to the currently active SubWindow
every frame. This allows the individual UI panels to send possible user input to the
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MainController, which can either forward it to GraphicsController or process
it directly.

4.3.2 Graphics Controller

The GraphicsController class manages all application aspects related to 3D graphics
and interaction, i.e. navigation, rendering, segmentation, selection and model export.
Even though it is initialized by the MainController, it executes all operations in its
own thread, which includes a separate Win32 message loop (the basics of which are
described in Section 4.2.2) in order to handle events for the UI panel hosting the OpenGL
context. Many methods in GraphicsController are simply sending commands to
graphics-related components, sometimes in a dedicated thread. Since most of them are
explained in their own sections, only the general structure, main loop and event handling
techniques are covered in this section.

Overview

As soon as GraphicsController is initialized, it immediately sets up the OpenGL
context in its own dedicated thread, as described in Section 4.2.3. If this operation is
successful, it continues to initialize all the tools needed for 3D rendering, segmentation
and selection. Afterwards, the class begins executing its main loop, which will only
be exited once the application is terminated. Note that context creation as well as
all subsequent OpenGL operations, which are used by almost every 3D aspect of the
application, have to be executed in the same thread due to restrictions of OpenGL.

The main loop contains an additional Win32 message loop, since the controller class
is responsible for the Win32 window that contains the OpenGL context. In addition, the
loop is responsible for updating the 3D scene and related elements every frame as follows:

1 HandleEvents ( ) ;
2 if (openGLWindow . IsVisible ( ) )
3 {
4 openGLWindow . HandleEvents (∗this ) ; //window−s p e c i f i c events
5 UpdateFrame ( ) ; // render ing
6 HandleInput ( ) ; // user input
7 CountFPS ( ) ; // update fp s counter
8 UpdateSceneInformation ( ) ; // update ver tex and t r i a n g l e l a b e l s
9 }

The main loop performs all graphics-related tasks whenever the OpenGL window is
visible. UpdateFrame() renders the 3D scene corresponding to the current application
stage and updates the virtual camera. 2D elements such as text overlays and icons (e.g.
the trash bin) are also being drawn in this function. HandleInput() continuously checks
for user input and activates appropriate 3D selection techniques if necessary. CountFPS
() counts the frames that are processed every second and updates a corresponding text
label. Information about the scene, such as vertex and triangle counts, is gathered and
updated by UpdateSceneInformation(). Events are handled every frame, regardless
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of whether or not the scene is actually being rendered at that moment. More details on
this aspect can be found in the following section.

Event Handling

Even though GraphicsController is responsible for almost all 3D-related operations,
many of these methods are called from other threads, since most user input regarding
3D interaction is being registered in the Win32 message loop of MainController.

In order to make this possible despite OpenGL’s thread restrictions and to reduce other
concurrency issues, an event system has been implemented. GraphicsController
exposes the method PushEvent(), which allows the class responsible for its initialization
to request modifications by passing an object of the type GraphicsControlEvent.
The controller class then adds this specific request to an event queue. Every frame,
HandleEvents() checks the queue and processes all pending requests. As explained
before, events are handled regardless of whether or not 3D content is currently being
rendered. This allows the application to prepare certain time-consuming 3D operations,
such as the initial processing of 3D reconstructions, while users are still finishing other
tasks (e.g. reading guidance messages). As a result, the perceived downtime during
application usage is reduced. In addition, this ensures that sensitive data structures,
such as 3D scene data, is not corrupted due to concurrency issues.

4.4 2D User Interface
As mentioned in Section 4.2.1, the 2D user interface is implemented using the Win32
API [53]. This section describes the different UI panels for each application stage as well
as helper classes used for style and layout management.

4.4.1 UI Panels

Figure 4.3: Class hierarchy for 2D interface panels.

The main Win32 window, which resides in MainController, consists of many
different child control elements. Depending on the currently active application stage,
only a very small subset of them is visible at a given time. In order to better manage
the different mode interfaces, they are split into distinct UI panel classes that inherit
from the abstract type SubWindow. Each stage has a dedicated panel responsible for
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all of its specific interface elements. Furthermore, HelpWindow is used to display and
manage all guidance messages on top of other panels if necessary, while OpenGLWindow
provides the canvas for OpenGL rendering.

Since almost all used elements related to Win32 interfaces, such as window classes
and procedures, handles and event messages, are already explained in Section 4.2.2, this
section will not discuss them in further detail. UI panels can be initialized by calling the
following function:
virtual void Initialize (HWND _parentHandle , HINSTANCE _hInstance , float

_marginTop , float _marginBottom , float _marginRight , float _marginLeft ,
std : : wstring _className , ColorInt _backgroundColor ) ;

The first and second parameter represent the handle to the Win32 parent window and
application instance respectively. The next four parameters specify the panel’s margins
as percentages of the parent control’s height and width. This way, the positioning of the
panel is always relative to its parent, which allows for proper rearrangement whenever
users resize the application. The last two parameters are the name of the window class
to use and the specific panel’s background color.

As every single UI panel contains its own Win32 window procedure, a distinct
window class has to be created on each initialization, before all child controls as well
as the panel itself can be created with CreateWindowEx(). The window procedure
SubWindowProc() is responsible for handling Win32 messages addressed to the respec-
tive panel (see Section 4.2.2 for a small code snippet). The procedure receives and handles
events such as button clicks, window resizing, mouse movement and the customized
drawing of specific controls. It can be extended or overwritten by child controls to
handle events that are only important in a specific application stage. Whenever a button
is pressed, the procedure receives a WM_COMMAND message, whereupon ProcessUI()
is executed with the pressed button name and state as parameters. The concrete im-
plementation of ProcessUI() depends on the specific subclass of SubWindow, since
each of them consists of different controls with distinct purposes. The panels receive
their events from the Win32 message loops in the threads they have been initialized
on. In this specific application, only OpenGLWindow is receiving messages from the
message loop in GraphicsController, all other panels are initialized and managed
by MainController.

Elements of type SubWindow offer some basic UI functionalities such as Show() and
Hide(), which can be used to control a panel’s visibility. Resize() changes the size of
the panel as well as all child elements depending on the current size of the parent control.
Some panels have additional, stage-specific responsibilities. For example, ScanWindow
handles the communication with the 3D scanning interface, while PrepareWindow
initiates and displays a countdown whenever users start a scan.

UI panels do not hold any reference to the class that initialized them as member
variables in order to avoid unnecessary dependencies. However, if a user presses a button,
it is usually expected to have an effect on a variety of components in the application,
such as MainController or GraphicsController. As the UI panels handle the
events associated to these controls, but do not have any way to access the controller
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classes and their members, they instead push an event into a custom event queue. These
events are of the type SubWindowEvent, which holds an enum variable defining the
type of the event. The following is the implementation of the base class:

1 class SubWindowEvent {
2 public :
3 enum Type {
4 StateChange , // switch to d i f f e r e n t a p p l i c a t i o n s tage
5 Last // he lpe r value to enable i n h e r i t a n c e
6 } ;
7 } ;

The enum elements listed are standard events, which can be raised by every element
of the type SubWindow. As enum types cannot be inherited from directly in C++, it has
been encapsulated in its own class. This allows child classes of SubWindow to extend
the event types as follows:

1 class InteractionWindowEvent : public SubWindowEvent{
2 public :
3 enum Type {
4 ChangeCameraMode = SubWindowEvent : : Last ,
5 ChangeManipulationMode ,
6 Reset ,
7 ExportModel ,
8 Last
9 } ;

10 } ;

Whenever a panel is active and visible, the controller responsible for its creation calls
HandleEvents() with a self-reference as parameter. The specific panel can then call
methods on the provided instance, depending on the elements in its event queue.

4.4.2 Style and Layout Management

In order to make it easier to manage the application’s appearance, a variety of different
classes is used. They wrap cumbersome Win32 functions and provide a centralized way
of storing layout parameters. The following sections give a quick overview of the most
important classes used for these tasks.

Button Layout

Customizing the appearance of buttons in Win32 applications is a very cumbersome pro-
cess. The window event message (see Section 4.2.2) WM_DRAWITEM, which is responsible
for drawing UI controls on the screen, has to be custom-handled. For example, different
background or text colors of interface elements can not be changed without manually
performing the entire drawing process. The corresponding (rectangular or circular) region
on the screen has to be filled, different brushes have to be instantiated and applied to
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certain button elements. In addition, text has to be placed and colored depending on the
current state of the button.

This application has a variety of different buttons, many of which share a majority of
layout parameters such as background and text color. In order to group the different but-
ton styles and handle Win32 control drawing in a more generic way, the ButtonLayout
class has been implemented. Each element of this class represents exactly one type
of button layout. However, different controls can share the same appearance. Button
layouts are defined by their ButtonLayoutParams, a structure containing the following
information:

1 struct ButtonLayoutParams
2 {
3 int fontSize ; // s i z e o f button text
4 ColorInt backgroundColor ; // background c o l o r
5 Gradient activeGradient , inactiveGradient , pressedGradient ; // g rad i ent

brushes f o r d i f f e r e n t s t a t e s
6 ColorInt activeTextColor , inactiveTextColor ; // t ex t c o l o r s f o r d i f f e r e n t

s t a t e s
7 ColorInt activePenColor , inactivePenColor , pressedPenColor ; // border

c o l o r s f o r d i f f e r e n t s t a t e s
8 int edgeRounding ; //amount o f edge rounding
9 } ;

Note that the backgroundColor variable represents the color of the UI element behind
the button, as Win32 can not display transparency properly. Every UI panel in the
developed application contains the following unordered map:

std : : unordered_map<HWND , ButtonLayout> buttonLayoutMap ;

Each button control handle is assigned exactly one ButtonLayout on initialization,
which determines its appearance and manages its customized rendering. In the window
procedure of a panel, the WM_DRAWITEM message for a control can be handled as follows:

1 LRESULT CALLBACK SubWindow : : SubWindowProc (HWND hWnd , UINT message , WPARAM
wParam , LPARAM lParam )

2 {
3 /∗ . . . handle other events . . . ∗/
4 case WM_DRAWITEM :
5 {
6 HWND controlHandle = ( (LPDRAWITEMSTRUCT )lParam )−>hwndItem ; // get

button handle
7 buttonLayoutMap [ controlHandle ] . Draw (lParam ) ;
8 }
9 /∗ . . . handle other events . . . ∗/

10 }

The Draw() method receives the lParam variable as a parameter, since it contains
the information about the current button state (i.e. pressed, unpressed, inactive). The
button is then drawn using the layout parameters specified for the active state.
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Style Sheet

The StyleSheet class is a singleton, i.e. a globally accessible class of which only a
single instance can exist at any time. It provides centralized access to layout parameters
that are being used in a wide variety of controls. This includes font size, weight, style
and color as well as background brushes for different types of interface elements. It
also initializes ButtonLayout instances for every distinct button appearance type and
stores them in a map. As a result, whenever UI panels initialize button controls and
want them to have a specific appearance, they can do so as follows:

1 HWND button = CreateWindowEx ( /∗ . . . parameters . . . ∗/ ) ; // c r e a t e button
2 buttonLayoutMap [ buttonExport ] . SetLayoutParams (StyleSheet : : GetInstance ( )−>

GetButtonLayoutParams (ButtonLayoutType : : Green ) ) ; // a s s i g n layout

GUI Container

The GUIContainer class is a simple wrapper class for an arbitrary number of Win32
control handles. It provides an easy way to simultaneously call commonly used Win32
functions on a number of connected control handles (HWND). Examples include Show()
and Hide(), Enable() and Disable(), as well as IsCursorInHandle(), which
determines whether or not the mouse cursor is currently hovering over any one of the
handles in this GUIContainer.

4.5 Rendering

This section describes the classes and data structures used to represent the different 2D
and 3D objects in the scene. Text and shader implementations are discussed as well,
before explaining the components responsible for actual 3D rendering.

4.5.1 Renderables

Figure 4.4: Class hierarchy for renderable objects.
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Every instance of the type Renderable or one of its subtypes represents exactly
one self-contained 3D object that can be rendered onto the screen. Every Renderable
contains an array of vertices and sometimes a list of triangle indices. Each vertex is
an object of the custom structure Vertex, while indices are represented by Triangle,
both of which are defined as follows:

1 struct Vertex
2 {
3 float x , y , z ; //3D p o s i t i o n
4 float r , g , b ; // ver tex c o l o r
5 float normal_x , normal_y , normal_z ; // normal vec to r
6 } ;
7
8 struct Triangle
9 {

10 GLuint v1 , v2 , v3 ; // i n d i c e s o f t r i a n g l e v e r t i c e s
11 } ;

Each Renderable contains its own OpenGL Vertex Buffer Objects (VBOs) as well
as Vertex Array Object (VAO), which are created on initialization with the provided
vertex and triangle arrays (see Section 4.2.3 for details). There are similar buffers for
bounding boxes in each Renderable, which contain a uniformly colored, simplified
version of the original mesh that can be used for 3D selection (see Section 4.8). Every
mesh has an assigned OpenGLShaderProgram, which is explained in Section 4.2.3. By
calling Draw() with the appropriate parameters, the Renderable utilizes OpenGL
functions to render itself onto the screen. Depending on the availability of a triangle
array, the Renderable is either drawn by utilizing glDrawElements with indices
or glDrawArrays with the vertex data directly. DrawForColorPicking(), on the
other hand, renders the bounding box of the mesh.

Renderable is an abstract base class with two abstract child classes Renderable2D
and Renderable3D.

Renderable2D

Renderable2D represents models that are orthogonally projected onto the screen and
therefore do not need to be transformed whenever the camera perspective changes.
Instead, their scale and position depend entirely on the current viewport size. For
this reason, the Draw() function of Renderable2D expects only the current OpenGL
viewport width and height as parameters. The concrete implementation of this abstract
class is MeshContainer2D, which provides additional functions for loading a 2D mesh
from a file. Objects of this type are typically 2D interface elements, such as the trash bin
in the manipulation stage (see Section 3.8).

Renderable3D

Renderable3D are three-dimensional objects that are positioned directly in the scene.
They have to be projected into 3D space using a special transformation matrix, consisting
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of the multiplied model, view and projection matrices.
The model matrix transforms coordinates from model to world space. It is composed of

the multiplied translation, rotation and scaling matrix of a specific mesh and is therefore
saved in each Renderable3D separately. The class also exposes a variety of methods
to enable different 3D transformations: SetTranslation() changes the position of a
model, while SetScale() can in- or decrease the current size. AddRotation(), on
the other hand, can be used to add a rotation around a specified axis. Rotations are
stored as quaternions to improve performance and avoid possible problems with Euler
angles such as gimbal lock [33]. The model matrix is calculated for every frame with
CalculateModelMatrix() by multiplying the mentioned transformation components.

The view matrix contains information about the current camera pose and transforms
coordinates from world to camera space. It is calculated by the GraphicsCamera
component, which is described in Section 4.6. The projection matrix transforms the
vertices to 2D screen coordinates and depends on the field of view and clipping plane of
the chosen camera. The current aspect ratio of the viewport influences the components of
this matrix as well. Both the view and the projection matrix are expected as parameters
in the Draw() method of Renderable3D. In addition, the class exposes the method
HighlightTrianglesWithColor(), which highlights specific triangles of the 3D
object by temporarily changing the corresponding vertex colors.

SimplePlaneRenderable3D is one concrete implementation of Renderable3D,
which represents a simple three-dimensional plane. It contains a PlaneParameters
structure, which consists of the plane normal as well as the plane’s distance from the
world origin.

MeshContainer3D also implements Renderable3D and represents an arbitrary
three-dimensional triangle mesh. In addition to all inherited functionality, it pro-
vides methods for mesh processing, which use the functions provided by the VCG
library (see Section 4.2.1) [13]. A VCGMesh object is needed for this purpose, since
it is the internal mesh representation used in the library. It embodies the same 3D
model represented by MeshContainer3D itself, but can be used to call the process-
ing methods provided by the VCG library. CopyInternalToVisibleData() and
CopyVisibleToInternalData() are used to synchronize the two representations
before and after filters are applied. The following methods in MeshContainer3D,
which themselves call functions provided by the VCG library, can be used to process the
represented mesh:

• Clean(): Removes duplicate and unreferenced vertices as well as duplicate,
degenerate or zero-area faces and ensures that all vertex normals are correct.

• FillHoles(): Searches for and subsequently closes holes in the mesh by using the
VCG methods EarCuttingIntersectionFill() and EarCuttingFill().

• LaplacianSmooth(): Performs Laplacian smoothing on the mesh, which ad-
justs the positions of vertices based on their neighbors and smooths their overall
distribution. Uses VCG’s VertexCoordLaplacian() method.

73



4. Implementation

• MergeCloseVertices(): Merges all vertices that are closer than a specified
parameter by using the VCG method MergeCloseVertex().

• RemoveNonManifoldFaces(): Removes all non-manifold faces of a mesh, since
they would cause problems during several other procedures.

• RemoveSmallComponents(): All connected components in a mesh that contain
less than a specified number of vertices are removed by utilizing the VCG method
RemoveSmallConnectedComponentsSize().

• UnsharpColor(): Smooths the vertex color distribution of a mesh by using
VCG’s VertexColorLaplacian().

The method LoadFromFile() can be used to fill the vertex and triangle arrays
as well as the VCGMesh structure with data provided by a saved mesh file by utilizing
the ImporterPLY class of the VCG library. On loading a mesh, MeshContainer3D
automatically performs several cleaning and simplification filters. This includes merging
all vertices closer than 0.5mm, removing components that contain less than 1

100 of the
mesh’s total vertex count and performing Laplacian smoothing. These steps ensure that
the application’s performance does not decrease because of an unnecessary high number
of vertices. In possible future releases, these simplifications could be made optional to
allow more control over the resulting mesh quality.

4.5.2 Scene Data

An instance of the type ModelData contains an array filled with all MeshContainer3D
objects of a single three-dimensional scene. The class provides easy ways to perform
specific operations on every triangle mesh in a scene with a single function. Each
application stage has a corresponding ModelData instance, all of which are managed
by GraphicsController. Storing the scenes of all steps enables users to return to
previous modes while undoing all changes applied in subsequent stages. Whenever the
current mode changes, CopyFrom() is used to copy model data from one stage to the
next.

The class offers a variety of methods, most of which call a specific function on either
every or one MeshContainer3D object in the scene by providing the corresponding
index. For example, the FillHoles() function can either be called with an index
parameter to only fill holes of a specific submesh or without it to perform the oper-
ation on all clusters in the scene. Draw() is called by OpenGLRenderer instances
(see Section 4.5.5) and draws every MeshContainer3D on the screen. Several help-
ing functions such as GetCenterPoint(), which returns the center position of the
entire scene, and GetBasePoint(), which provides the bottom center position, are
available as well. DuplicateMeshAndGetItsIndex() is responsible for duplicating
a MeshContainer3D with all its properties.

The class IconData offers similar functionalities for MeshContainer2D instances
and is therefore representing all 2D icons in the scene. Its Draw() method, for example,
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renders all 2D objects to the screen. Each icon consists of one default MeshContainer2D
and an additional one that is only shown as users hover over it.

4.5.3 Text

The OpenGLText class is used to render two-dimensional text onto the OpenGL viewport.
It utilizes the FreeType Library to access a provided font file as a bitmap and subsequently
convert it to a texture that can be rendered by OpenGL [38]. The class uses its
own OpenGLShaderProgram consisting of custom shaders (see Section 4.5.4 for more
details).

Initialize() generates the necessary buffers, creates the shader program and
loads the font file, whose name has to be provided as a parameter. Before rendering any
text, the PrepareForRender() function has to be called, as it adjusts the OpenGL
options accordingly and binds the necessary buffers and textures. The following method
can be used to display a string:

1 void OpenGLText : : RenderText (
2 wstring text , // t ex t to be rendered
3 int pixelSize , // t ex t s i z e in p i x e l s
4 float x , // h o r i z o n t a l t ex t po s i t i on , −1 ( l e f t ) to 1 ( r i g h t )
5 float y , // v e r t i c a l t ex t po s i t i on , −1 ( top ) to 1 ( bottom )
6 float sx , // cur rent viewport width d iv ided by two , used f o r s c a l i n g
7 float sy // cur rent viewport he ight d iv ided by two , used f o r s c a l i n g
8 ) ;

4.5.4 Shaders

OpenGLShader is essentially a wrapper class for shader objects used by OpenGL, the
basics of which are explained in Section 4.2.3. Each OpenGLShader object represents
exactly one shader of any type. In this project, the shader code is saved in separate
files with the extensions .vert and .frag, representing vertex and fragment shaders
respectively. The LoadShader() method can be used to load and compile a shader by
providing the file name and shader type. The code for the standard vertex shader used
by all 3D models in the scene is as follows:

1 #v e r s i o n 330 // used GLSL v e r s i o n
2
3 layout (location = 0) in vec4 inPosition ; // input ver tex p o s i t i o n
4 layout (location = 1) in vec4 color ; // input ver tex c o l o r
5 layout (location = 2) in vec4 inNormal ; // input ver tex normal
6
7 smooth out vec4 theColor ;
8
9 uniform struct Matrices { //3D trans fo rmat ion matrix

10 mat4 projectionMatrix ;
11 mat4 modelMatrix ;
12 mat4 viewMatrix ;
13 } matrices ;

75



4. Implementation

14
15 void main ( )
16 {
17 vec4 vEyeSpacePosVertex = matrices . viewMatrix∗matrices . modelMatrix∗

inPosition ;
18 gl_Position = matrices . projectionMatrix∗vEyeSpacePosVertex ; //3D

transformed render ing p o s i t i o n
19 theColor = color ; // c o l o r passed to fragment shader
20 }

It receives the 3D position, color and normal for each Vertex, and calculates the new
position by multiplying it with the provided 3D transformation matrix. The unchanged
color is passed on to the fragment shader, which is defined as follows:

1 #v e r s i o n 330 // used GLSL v e r s i o n
2
3 smooth in vec4 theColor ; // c o l o r r e c e i v e d from vertex shader
4
5 uniform vec4 pickColor ; // h i g h l i g h t c o l o r used when picked up
6 uniform bool colorPicking = false ; // c o l o r p i ck ing a c t i v e
7 uniform bool highlight = false ; // c u r r e n t l y h i g h l i g h t e d
8 uniform float alpha ;
9

10 out vec4 outputColor ;
11
12 void main ( )
13 {
14 if (colorPicking )
15 outputColor = pickColor ;
16 else if (highlight )
17 outputColor = theColor + vec4 ( 0 . 1 , 0 . 0 , 0 . 0 , 0 . 0 ) ; //add h i g h l i g h t c o l o r
18 else
19 {
20 outputColor = theColor ;
21 outputColor .w = alpha ;
22 }
23 }

In case of standard rendering, the fragment shader simply outputs the unchanged
vertex color. If the uniform highlight indicates that the current vertex belongs to a
selected model, it returns the specified highlight color. By adjusting alpha, the opacity
of the mesh can be changed. The uniform colorPicking is used during 3D selection,
which is explained in Section 4.8. The developed system contains two additional sets of
fragment and vertex shaders, one of which is used for font rendering, while the other one
is used for orthographically projected 2D icons.

The OpenGLShaderProgram class is a wrapper for OpenGL shader programs
and consists of one or more OpenGLShader objects. Shaders can be added by using
AddShaderToProgram(). The program can consist of any number of shaders, which
have to be linked by calling LinkProgram(). Several overloaded SetUniform()
methods are provided that can be used to set shader uniforms. Each renderable object

76



4.6. Navigation

in the scene contains its own OpenGLShaderProgram, which can be used by calling
UseProgram() before and UnUseProgram() after rendering.

4.5.5 Renderer

The different subtypes of OpenGLRenderer are used to handle the entire rendering
process for a specific application stage. An instance of every subtype is instantiated
and subsequently managed by GraphicsController. The Initialize() function
initializes all required OpenGL parameters (e.g. enabling depth tests and defining the
depth range) and initializes the OpenGLText object, which is shared by all instances
of OpenGLRenderer and used to render text. In addition, several static overlays are
instantiated as MeshContainer2D. These semi-transparent backgrounds are used to
enhance the visibility of status messages.

Whenever the system wants to render the current scene, GraphicsController
calls the Render() function belonging to the renderer corresponding to the currently
active application stage once every frame. The three required parameters are a reference
to the controller itself, the 3D scene data as well as the 2D icon data. The method is
implemented as follows:

1 void OpenGLRenderer : : Render (GraphicsControl& _glControl , ModelData&
_modelData , IconData& _iconData )

2 {
3 PrepareRender (_glControl ) ; // prepare viewport ( c l e a r b u f f e r s , s e t

background c o l o r and other parameters )
4
5 _modelData .Draw (_glControl . GetProjectionMatrix ( ) , _glControl .

GetViewMatrix ( ) ) ; //draw 3D models
6 _iconData .Draw (_glControl . GetViewportWidth ( ) , _glControl .

GetViewportHeight ( ) ) ; //draw 2D i c o n s
7
8 SubRender (_glControl , _modelData , _iconData ) ; // stage−s p e c i f i c r ender ing
9

10 FinishRender (_glControl ) ; //swap b u f f e r s f o r ac tua l r ender ing
11 }

The specific implementation of SubRender() depends on the active subtype of
OpenGLRenderer. Examples of mode-specific rendering logic include drawing the
cut-plane in PlaneCutRenderer and text overlays in PlaneSelectionRenderer.
Whenever the application is busy processing data internally, ShowStatusOverlay()
renders the current system status.

4.6 Navigation
As explained in Section 3.8.1, two navigation modes are available. One uses an orbital
camera, the other uses physical position and orientation of the Kinect.

In general, a camera in three-dimensional space is represented by the projection
and view matrix. In combination with the model matrix, which contains information
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about a specific model’s local position and orientation, these matrices compose the 3D
transformation matrix used to transform every single triangle mesh into three-dimensional
space. The projection matrix contains information about the camera frustum, i.e. field
of view, aspect ratio, near and far plane. Since these properties do not change between
different navigation modes, only the view matrix needs to be adjusted in order to switch
between an orbital camera and navigation through physical reorientation. The three
transformation matrices are already explained in Section 4.5.1. The following sections
cover some important details about the implementation of both the orbital and sensor
camera.

4.6.1 Orbital Camera

GraphicsCamera is the class responsible for orbital navigation. Most matrices and
vectors in this component are stored as glm data types, since many methods utilize
functions provided by the OpenGL Mathematics (GLM) library [24]. The most important
member variables in this class are as follows:

1 glm : : vec3 camPosition ; // cur rent 3D p o s i t i o n
2 glm : : vec3 camLookAt ; // t a r g e t po int in 3D space
3 glm : : vec3 camUpDirection ; //up vec to r
4
5 float zoomFactor = 1.0f ; // cur rent zoom fac to r , with 1 being the d e f a u l t

(100%)
6 float zoomStep = 0.2f ; //zoom adjustment step s i z e
7
8 float orbitXStep = 0.2f ; // h o r i z o n t a l r o t a t i o n step s i z e
9 float orbitYStep = 0.15f ; // v e r t i c a l r o t a t i o n step s i z e

The GetViewMatrix() function returns the current view matrix and is called
by GraphicsController every frame the orbital camera is active. It utilizes the
method glm::lookAt() in order to calculate the view matrix with the current camera
position, target point and up vector as parameters. The following is a shortened version
of GetViewMatrix():

1 glm : : mat4 GraphicsCamera : : GetViewMatrix ( )
2 {
3 if( /∗ . . . s c r o l l g e s tu r e detec ted . . . ∗/ )
4 Zoom (scroll_direction ) ;
5 if( /∗ . . . drag ge s tu r e detec ted . . . ∗/ )
6 Orbit (orbit_amount ) ;
7
8 return glm : : lookAt (CalculateCameraPosition ( ) , CalculateCameraLookAt ( ) ,

camUpDirection ) ; // c a l c u l a t e view matrix
9 }

Zoom() increases or decreases the current zoom factor depending on the scroll
direction. Orbit() rotates the camera pose whenever a drag gesture is detected:

1 glm : : mat4 GraphicsCamera : : Orbit ( )
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2 {
3 float cursorOffsetY = (previousCursorPosition .y − currentCursorPosition .y

) ∗ orbitYStep ; // v e r t i c a l cu r so r movement s i n c e l a s t frame
4 float cursorOffsetX = (previousCursorPosition .x − currentCursorPosition .x

) ∗ orbitXStep ; // h o r i z o n t a l cu r so r movement s i n c e l a s t frame
5
6 glm : : vec4 camRight = glm : : cross (camUpDirection , camDirection ) ; // camera

r i g h t vec to r
7
8 glm : : mat4 yRotation = glm : : rotate (cursorOffsetY , camRight ) ; // c a l c u l a t e

v e r t i c a l r o t a t i o n matrix
9 glm : : mat4 xRotation = glm : : rotate (cursorOffsetX , camUpDirection ) ; //

c a l c u l a t e h o r i z o n t a l r o t a t i o n matrix
10 camPosition = (yRotation ∗ (camPosition − camLookAt ) ) + camLookAt ; //

apply v e r t i c a l r o t a t i o n around lookAt l o c a t i o n to camera p o s i t i o n
11 camPosition = (xRotation ∗ (camPosition − camLookAt ) ) + camLookAt ; //

apply h o r i z o n t a l r o t a t i o n
12
13 camUpDirection ∗= yRotation ; // r o t a t e up vec to r
14 camUpDirection ∗= xRotation ; // r o t a t e up vec to r
15 }

Note that for simplification purposes, several straightforward conversions between
different vector types have been omitted from the snippet. Finally, the camera’s actual
position and view point, which are used for glm::lookAt(), are determined with the
help of all previously calculated parameters:

1 glm : : vec3 GraphicsCamera : : CalculateCameraPosition ( )
2 {
3 return currentCamPosition + (camDirection ∗ zoomFactor ) + (camRight ∗

completeStrafeX ) + (camUpDirection ∗ completeStrafeY ) ;
4 }
5
6 glm : : vec3 GraphicsCamera : : CalculateCameraLookAt ( )
7 {
8 return currentCamLookAt + (camRight ∗ completeStrafeX ) + (camUpDirection

∗ completeStrafeY ) ;
9 }

4.6.2 Sensor Camera

As explained in Section 2.2.2, the tracking step of the KinectFusion implementation
calculates a camera pose and corresponding view matrix for each frame. This matrix
can be used directly for navigation during the scanning stage, where the reconstruction
is being displayed with Direct3D. The scanner still performs Kinect tracking in the
background during scene manipulation, without actually adding more vertices to the
reconstruction volume. This enables the stage to utilize the sensor view matrix for
navigation as well.
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However, the view matrix calculated by KinectFusion is in a left-handed coordi-
nate system as used by Direct3D, whereas OpenGL uses a right-handed coordinate
system. Therefore, the matrix provided by KinectFusion has to be converted prior to
using it in other parts of the application. GetTransformedCameraMatrix() in the
KinectFusion class takes care of this conversion and returns a view matrix representing
the current sensor pose that is usable by OpenGL.

4.7 Scanning

Figure 4.5: Components used for scanning.

The implemented prototype uses two external projects that are part of a KinectFusion
example application from the Microsoft Kinect for Windows Developer Toolkit 1.8 [48].
The project NuiSensorChooser handles the recognition and initialization of the Kinect
camera and has not been modified aside from removing unnecessary components.

KinectFusionExplorer-D2D, on the other hand, provides a complete implementation
of the KinectFusion algorithm as described in Section 2.2. Its KinectFusionParams
header file contains all relevant parameters for the reconstruction procedure, which have
been adjusted slightly to satisfy the specific needs of the implemented application and to
improve the overall performance. The resolution of the reconstruction volume can also
be adjusted in this file by changing the voxels per meter as well as the voxel count in
all dimensions. The impact of different parameters and the specific values used in this
prototype are explained in Section 3.4.

The KinectFusionProcessor class in KinectFusionExplorer-D2D contains
the methods responsible for the reconstruction algorithm. Aside from a few concurrency
improvements and adding a method that returns the current camera matrix for navigation
purposes, no major modifications have been made to this class. For more information
about these projects, readers are referred to the official documentation by Microsoft [51].

The ScanWindow class (see Section 4.4.1) is responsible for the initialization and
subsequent use of the 3D reconstruction procedure. It communicates with an implemen-
tation of the IScanner interface, which is deliberately kept very abstract in order to
allow the use of different sensors or reconstruction algorithms in possible future releases.
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The implementation used in this prototype is KinectFusion, which handles the entire
communication to the two external projects mentioned before. It is also responsible
for rendering the current reconstruction as well as retrieving the resulting triangles and
vertices in appropriate formats for further use.

Initialize() has four HWND parameters: The first one is the handle to the parent
window, while the other three are used to display depth information, the reconstruction
volume itself and tracking residuals respectively. The method initializes the interface
elements and prepares them for rendering, while also starting the reconstruction loop in
KinectFusionProcessor in its own thread. HandleCompletedFrame() fetches
the current reconstruction volume from the processor and renders it to corresponding
interface elements in every single frame. In addition, the reconstruction parameters
are updated whenever changes are made either by users or the application itself. The
methods PauseRendering() and ResumeRendering() can be used to pause or
resume the rendering of the reconstruction, without actually stopping the KinectFusion
algorithm. This is used during application stages that utilize the physical orientation
of the Kinect sensor for navigation, even though a modified virtual scene is being
rendered. PauseProcessing(), on the other hand, can stop the reconstruction entirely,
while ResetScan() restarts the scanning procedure. FinishMeshSave() converts
the current reconstruction volume to vectors of Triangle and Vertex elements (see
Section 4.5), which can then be obtained and used to construct a triangle mesh for further
use in subsequent application stages.

4.8 Selection

Figure 4.6: Class hierarchy of selection classes.

Selector provides abstract methods and variables used for object selection and
scene interaction. The HandleSelection() method identifies the current state of the
left mouse button (or the user’s touch input) and forwards the current scene data to one
of the abstract methods HandleLeftMouseClick(), HandleLeftMouseDown() or
HandleLeftMouseRelease(). These functions are implemented in various child
classes, each of which represents a specific type of interaction, such as transformation,
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duplication or simple color highlighting. The Selector base class also provides an
implementation of color picking and raycasting, both of which are techniques used for
object selection. This section explains these methods as well as the most important child
classes in more detail.

4.8.1 Color Picking

The basic idea behind color picking is to assign each pickable object in the scene a
unique color that does not change during its lifetime. Since the prototype utilizes a
24-bit color scheme for rendering, there are 224 or about 16.8 million distinct values
available. Whenever a user selects anything inside the viewport, the application renders
every cluster with its unique color. By utilizing OpenGL’s glReadPixels() method,
the color value of the pixel under the current cursor position can be obtained. Due to
each color code being unique, this makes it possible to identify selected objects. The
framebuffer is immediately cleared after selection and therefore never swapped, which
means that users will not notice this procedure at all.

In this prototype, color codes are simply incrementing integer values assigned whenever
a MeshContainer is created and added to a ModelData object (see Section 4.5 for
details). The ColorCoder namespace provides static helper methods for conversion
between integer codes and RGB colors for object picking:

1 namespace ColorCoder
2 {
3 static int ColorToInt (int r , int g , int b)
4 {
5 return (r) | (g << 8) | (b << 16) ;
6 }
7
8 static glm : : vec4 IntToColor (int index )
9 {

10 int r = index & 0xFF ;
11 int g = (index >> 8) & 0xFF ;
12 int b = (index >> 16) & 0xFF ;
13
14 return glm : : vec4 (float (r) / 255 .0f , float (g) / 255 .0f , float (b) / 255 .0

f , 1 . 0f) ; // d i v i d e by 255 f o r OpenGL
15 }
16 }

The methods utilize standard bit manipulation in order to convert each integer to a
unique color with red, green and blue components, and the other way around. Note that
OpenGL represents colors as floating point values between 0 and 1, so each component
has to be divided by 255.

Whenever the user clicks on a pixel inside the OpenGL viewport, the integer
color code of the object directly below the cursor can be received by calling the
GetIndexOfMeshUnderCursor() method of Selector. During this procedure,
every object is rendered with its unique color by setting the respective shader uniforms
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pickColor and colorPicking accordingly (see Section 4.5.4 for details about these
data types). The GetColorCodeUnderCursor() method subsequently reads the pixel
color under the cursor and converts it to an integer code as follows:

1 int Selector : : GetColorCodeUnderCursor (HWND _windowHandle )
2 {
3 // r e t r i e v e cur so r c o o r d i n a t e s
4 POINT cursorPos ;
5 GetCursorPos(&cursorPos ) ;
6 ScreenToClient (_windowHandle , &cursorPos ) ;
7
8 //OpenGL uses inve r t ed y sc r e en coord inate s , so they need to be adjusted
9 RECT rect ;

10 GetClientRect (_windowHandle , &rect ) ;
11 cursorPos .y = rect .bottom − cursorPos .y ;
12
13 // read c o l o r under cur so r
14 BYTE colorByte [ 4 ] ;
15 glReadPixels (cursorPos .x , cursorPos .y , 1 , 1 , GL_RGB , GL_UNSIGNED_BYTE ,

colorByte ) ;
16
17 // convert c o l o r to i n t e g e r code
18 int output = ColorCoder : : ColorToInt (colorByte [ 0 ] , colorByte [ 1 ] , colorByte

[ 2 ] ) ;
19
20 return output ;
21 }

The returned color code identifies the selected object. If the code corresponds to the
viewport’s current background color, no selection is performed.

4.8.2 Raycasting

While color picking is useful to identify the object under the mouse cursor, some operations
need to know the exact 3D coordinates of a selected point in the reconstructed scene. To
this end, the application projects a ray into the scene, starting from the current cursor
position on the camera’s near plane and going all the way to the projected end point
on the far plane. If it intersects with any triangle of the reconstructed 3D model, the
exact hit point coordinates can be obtained. In case of multiple intersections, only the
one closest to the current camera position is chosen as the intended selection.

The GetRayCastFromCursor() method of Selector is responsible for the pro-
jection of the ray. It uses glm::unProject() with the cursor position, view and
projection matrix as well as the current size of the OpenGL viewport as parameters in
order to obtain the ray’s start and ending point. To increase the performance of user
selection, the developed prototype utilizes raycasting in conjunction with color picking.
First, the selected object is determined by using color picking as described in Section 4.8.1.
Afterwards, instead of inspecting the whole scene, only the triangles belonging to the
identified object are checked for intersections to obtain the exact hit point coordinates.
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The method GetHitPoint() with the projected ray as input parameter is used for this
purpose.

4.8.3 Duplication and Manipulation

During the manipulation mode, users are able to move objects around and place
them in another location. In addition, they can drag and drop items over the trash
bin to remove them from the scene entirely. These interactions are implemented in
ManipulationSelector, which inherits from the abstract Selector base class.
HandleLeftMouseClick() retrieves the currently selected object index through color
picking. The concrete implementation of HandleLeftMouseDown() in a slightly short-
ened version is as follows:

1 void ManipulationSelector : : HandleLeftMouseDown (int selectedIndex , ModelData
& _modelData , /∗ . . . ∗/ )

2 {
3 if (selectedIndex != −1) // i f any o b j e c t i s s e l e c t e d
4 {
5 int indexOfMeshUnderCursor = GetIndexOfMeshUnderCursor ( /∗ . . . ∗/ ) ;
6 Ray cursorToFarPlaneRay = GetRayCastFromCursor ( /∗ . . . ∗/ ) ;
7
8 if (indexOfMeshUnderCursor != −1) // i f any o b j e c t i s under the cur so r
9 {

10 Vertex hitPoint = _modelData . GetHitpoint (indexOfMeshUnderCursor ,
cursorToFarPlaneRay ) ; // r e t r i e v e h i t po int through r a y c a s t i n g

11 std : : vector<int> orientation = GetVertexOrientationFromRayPerspective
(hitPoint , cursorToFarPlaneRay ) ; // c a l c u l a t e s u r f a c e o r i e n t a t i o n

12 _modelData . TranslateMeshToPoint (_selectedIndex , hitPoint , orientation
) ; // t r a n s l a t e s e l e c t e d mesh

13
14 }
15 else
16 {
17 _modelData . TranslateMeshToCursorRay (_selectedIndex ,

cursorToFarPlaneRay , 5) ; // attach s e l e c t e d o b j e c t to cursor , in
f r o n t o f the camera

18 }
19 }
20 }

Whenever a user has picked up an object, this method continuously checks if the
dragging finger is over another, not currently selected cluster. If no suitable surface
is detected, the carried object is attached to the cursor just in front of the camera.
Otherwise, raycasting is used to calculate the exact hit point. Whenever an object is
attached to another cluster, it is positioned in a way that avoids triangle intersections
entirely. This means that every single vertex of the repositioned object ends up on the
same side of the surface they are placed upon. For example, if an item is repositioned
on the floor, it should be placed on top of that surface in its entirety. For this purpose,
GetVertexOrientationFromRayPerspective() determines the orientation of the
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calculated hit point relative to the current camera perspective. Using this information,
TranslateMeshToPoint() translates the selected mesh to the hit point.

HandleLeftMouseRelease() drops the currently selected mesh in its current
location or resets its position if it is released over an empty part of the scene. Whenever
a mesh is dropped while dragging it over the trash bin icon, it is removed.

The DuplicateSelector inherits from ManipulationSelector and handles
object duplication. The component clones items on pickup and performs all subsequent
manipulations on the created copy instead of the original.

4.8.4 Highlighting and Transformation

The ColorSelector class inherits from Selector and highlights the currently selected
object by temporarily adding red to their original surface color. This technique is used
during the application’s processing stage.

TransformSelector inherits from ColorSelector and adds the possibility of
object rotation and scaling. HandleLeftMouseDown() checks whether or not any item
has been selected and subsequently performs transformations depending on user input.
Scaling is handled by HandleScale(), which adjusts the size of an object whenever
scroll input is detected. HandleRotation() is responsible for rotating objects with
drag gestures. Rotations are always relative to the current camera perspective. The code
responsible for object rotation is as follows:

1 void TransformSelector : : HandleRotation (GraphicsControl& _glControl ,
ModelData& _modelData , int _selectedIndex )

2 {
3 // get cur rent cur so r p o s i t i o n
4 POINT pCur ;
5 GetCursorPos(&pCur ) ;
6 float offSetX = (float ) ( (pCur .y − oldPosY ) ∗ 0 .2f) ;
7 float offSetY = (float ) ( (pCur .x − oldPosX ) ∗ 0 .2f) ;
8
9 if (firstClick ) // only i f an o ld cur so r p o s i t i o n i s a v a i l a b l e

10 {
11 // use camera view matrix as r o t a t i o n a l axes
12 glm : : mat4 cameraMatrix = _glControl . GetViewMatrix ( ) ;
13 glm : : vec3 horizontalRotation = glm : : vec3 (cameraMatrix [ 0 ] [ 0 ] ,

cameraMatrix [ 0 ] [ 1 ] , cameraMatrix [ 0 ] [ 2 ] ) ;
14 glm : : vec3 verticalRotation = glm : : vec3 (cameraMatrix [ 1 ] [ 0 ] , cameraMatrix

[ 1 ] [ 1 ] , cameraMatrix [ 1 ] [ 2 ] ) ;
15
16 _modelData . RotateMeshAroundAxis (_selectedIndex , offSetX ,

horizontalRotation ) ; // h o r i z o n t a l r o t a t i o n
17 _modelData . RotateMeshAroundAxis (_selectedIndex , offSetY ,

verticalRotation ) ; // v e r t i c a l r o t a t i o n
18 }
19
20 // s t o r e cur so r p o s i t i o n f o r next frame
21 oldPosX = pCur .x ;
22 oldPosY = pCur .y ;
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23 firstClick = true ;
24 }

The application ensures that the transformed object always stays attached to the
surface it is currently placed upon, regardless of scale or orientation. This is achieved
by using appropriate pivot points for scaling as well as automatic repositioning after
rotation. For example, if users transform a chair placed on the floor of a room, it will
always remain attached to the ground plane.

4.8.5 Plane Cut Interaction

PlaneSelector is another direct child class of Selector and is responsible for user
interaction during the plane cut segmentation stage. HandleLeftMouseClick()
retrieves the index and exact hit point of a selected mesh through color picking and
raycasting and subsequently translates the cut plane to the calculated position. The
plane’s surface is always parallel to the currently active axis, which can be manually
selected by the user. HandleLeftMouseDown() translates or rotates the plane depend-
ing on the selected transformation mode. Both of these transformations are performed
based on current mouse or finger movement. Similarly to TransformSelector (see
Section 4.8.4), rotations are always relative to the current camera perspective. Orientation
adjustments are limited to 30 degrees in all directions. Whenever the plane has been
repositioned, the PlaneCutPreview() method of ModelData visualizes the proposed
segmentation using the calculated parameters of the cut plane.

4.9 Segmentation

Figure 4.7: Class hierarchy of segmentation classes.

3D segmentation techniques are implemented in the abstract Segmenter component
as well as the classes that inherit from it. Each concrete implementation has to be
instantiated with a data structure that contains all custom parameters necessary for the
specific segmentation technique. These options can be changed after initialization by
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calling SetSegmentationParams() with an updated structure of the required type.
UpdateSegmentation() takes a 3D model as an input parameter and segments it
according to the chosen parameters. The resulting clusters can then be retrieved by
calling FinishSegmentation(). The different segmentation techniques are imple-
mented in their own Segmenter child classes. Every one of them provides a concrete
implementation of Segment(), which contains the segmentation algorithm, as well as
other technique-specific functions. This section covers each of the three clustering imple-
mentations in more detail. Since the developed system utilizes the Point Cloud Library
(PCL) [71] for 3D segmentation, several manual conversions between data structures have
to be performed, which are briefly explained as well.

4.9.1 Point Cloud Conversion

The segmentation techniques provided by the PCL operate on point clouds, while the
developed prototype utilizes triangle meshes as data structures for 3D models. As a
result, the data has to be converted before segmentation. Segmenter provides the
ConvertToPointCloud() method for this purpose, which takes a MeshContainer
object and converts it to a PointCloud.

The conversion to a point cloud is very straightforward: Every single distinct vertex
in the triangle mesh simply has to be added to a new PointCloud object. However,
since the individual cluster clouds have to be converted back to a MeshContainer
after segmentation for subsequent use in the application, the mesh triangles have to be
conserved as well. For this purpose, the original index of each vertex is stored in an
unordered map with the Vertex structure as key. The required hash function has been
implemented by utilizing the hash_value() and hash_combine() methods provided
by the Boost Library [15]. It calculates a distinct index for each vertex using only its 3D
coordinates. As a result, since the position does not change during segmentation, the
original vertex index can be retrieved after finishing the clustering procedure. A second
map is used to store triangle information for every vertex. Each entry consists of the
original index as key and a list of triangles that contain the corresponding vertex. By
using these data structures, the application is able to reconstruct original triangles in
each resulting cluster as described in Section 4.9.5.

4.9.2 Plane Segmentation

The PlaneSegmenter class provides methods and variables needed for Plane Model
Segmentation using RANSAC, which is explained in detail in Section 2.3.1. Objects of
this type are initialized with PlaneSegmentationParams, which is a structure that
contains user-chosen parameters needed for this segmentation (i.e. plane smoothness and
thickness). As mentioned in Section 3.6.1, thickness determines how close a point must
be to the resulting plane in order to be considered a part of it. Smoothness represents
the maximum angle allowed between the normal vectors of two vertex neighbors in the
plane.
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The prototype uses the RANSAC implementation provided by the Point Cloud Library
[63]. The Segment() method is the core part of the segmentation procedure and tries to
find the biggest planar surface and its parameters in the remaining point cloud according
to certain constraints. First, it detects the biggest plane parallel to the world’s x-axis.
If no surface that contains more than 1

15 of the whole point cloud is found, the z- and
the y-axis are checked. If no plane can be found after these iterations, a final check
without parallelism constraints is performed. This sequencing increases the likelihood of
identifying the floor, ceiling or walls. Algorithm 4.1 shows the individual steps of this
procedure in more detail.

Algorithm 4.1: Algorithm used in PlaneSegmenter::Segment().
Input: Point cloud C, segmentation parameters S
Output: Plane indices I, plane coefficients P

1 axis a = x;
2 for i = 0 to 3 do
3 while true do
4 if i < 3 then
5 Find biggest plane in C parallel to a with RANSAC;
6 else
7 Find biggest plane in C with RANSAC;
8 end
9 Create Itemp with plane indices;

10 Create Ptemp with plane coefficients;
11 if size of Itemp <= (size of C)/15 then
12 break;
13 end
14 Add Itemp to I;
15 Add Ptemp to P ;
16 end
17 Set a to next axis (x→ z → y);
18 end

If a planar surface is found, the inlier vertices are highlighted in the rendered scene
with UpdateHighlights() and proposed to the user. If the segmentation is confirmed,
ConfirmLastSegment() adds all vertices that are part of the found plane to a cluster.
Afterwards, Segment() is called again for the remaining point cloud. If the proposal
is rejected, RejectLastSegment() calls Segment() without creating a new cluster.
Instead, specific constraints are used to make sure that the rejected surface is not proposed
again. If no more planes can be found, the procedure terminates and the reconstructed
scene is updated by calling FinishSegmentation().

Note that the prototype assumes the first detected surface to be the ground plane,
which is then used to align the cut plane during the segmentation step described in
Section 4.9.4. This assumption can only be made due to the recommended starting
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position at the beginning of the scanning stage (see Section 3.4). This increases the
likelihood of the floor being nearly parallel to the world’s x-axis. However, in order to be
more flexible, the ground plane detection could be improved in future releases.

4.9.3 Object Segmentation

The different object clustering techniques are implemented in ObjectSegmenter and
its child classes. The base class provides a concrete implementation of the method
UpdateHighlights(), which is used to let users preview their segmentation before
actually applying it to the scene. This is achieved by assigning a unique color to each
of the resulting clusters in the rendered scene. Users can therefore see the effect of
their parameter choices and decide whether or not further adjustments are necessary.
On confirmation, FinishSegmentation() performs the chosen segmentation and the
application continues to the next stage.

The procedures provided by ObjectSegmenter are only performed on parts of the
scene that have not been recognized as planar surfaces in the previous segmentation
step described in Section 4.9.2. The different clustering techniques are implemented in
two classes that inherit from ObjectSegmenter, both of which are explained in the
following sections.

Euclidean Segmentation

One of the two available object segmentation methods is Euclidean Cluster Extraction,
which segments a three-dimensional scene based on the distance between neighbor-
ing vertices. The general approach and algorithm of this technique is explained in
Section 2.3.2. EuclideanSegmenter is the component containing the implementa-
tion of this clustering method. Each instance of this type has to be instantiated with
EuclideanSegmentationParams. This structure contains the two user-defined pa-
rameters used for segmentation, cluster tolerance and minimum cluster size, the effects
of which are explained in Section 3.6.2.

The developed application utilizes the Euclidean Cluster Extraction implementation
provided by the Point Cloud Library [62]. The Segment() method is responsible for
initializing and performing the actual segmentation:

1 bool EuclideanSegmenter : : Segment ( )
2 {
3 pcl : : EuclideanClusterExtraction<pcl : : PointXYZRGB> ec ;
4
5 // s e t segmentat ion parameters ( EuclideanSegmentationParams )
6 ec . setClusterTolerance (segmentationParameters . clusterTolerance ) ;
7 ec . setMinClusterSize (segmentationParameters . minComponentSize ) ;
8
9 // execute segmentat ion on point cloud , e x t r a c t c l u s t e r i n d i c e s

10 ec . setInputCloud (mainCloud ) ;
11 ec . extract (segmentationClusterIndices ) ;
12
13 if (segmentationClusterIndices .size ( ) == 0)
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14 return false ;
15
16 return true ;
17 }

The extract() method performs the extraction and returns the vertex indices for
each detected cluster. Euclidean segmentation is the default clustering technique and
tends to yield the most consistent results for three-dimensional reconstructed scenes.

Region Growing Segmentation

RegionGrowthSegmenter contains the implementation of the Region Growing Segmen-
tation method. This technique starts from a set of selected seed points and continuously
adds neighboring vertices to the same clusters based on certain criteria. The generalized
approach and algorithm is explained in Section 2.3.3.

This prototype utilizes the implementation provided by the Point Cloud Library [64].
In this version, the algorithm starts by selecting a seed point with the lowest curvature
value. Then, the algorithm finds the angles between the current seed point’s normal and
the normals of neighboring vertices and adds neighbors to the cluster if they are below
a specified threshold. Afterwards, if any neighbor has a curvature value that is below
a certain value, it is added to the collection of current seed points. The cluster grows
along these seeds until there are no more neighbors left that have a low enough curvature.
Then, the algorithm starts again by selecting a new seed from the remaining vertices and
grows the next region in an analogous fashion. This continues until every point in the
cloud has been assigned to a cluster.

Instances of the type RegionGrowthSegmenter have to be constructed with the
structure RegionGrowthSegmentationParams. It contains all user-chosen param-
eters necessary for the segmentation, including the mentioned curvature and angular
thresholds. The different options are explained in Section 3.6.2. The Segment()
method, which is responsible for initializing and performing the segmentation technique,
is implemented as follows:

1 bool RegionGrowthSegmenter : : Segment ( )
2 {
3 // i n i t i a l i z e k−d t r e e s t r u c t u r e
4 pcl : : search : : Search<pcl : : PointXYZRGBNormal>::Ptr tree = boost : : shared_ptr

<pcl : : search : : Search<pcl : : PointXYZRGBNormal> >(new pcl : : search : :
KdTree<pcl : : PointXYZRGBNormal>) ;

5
6 pcl : : PointCloud<pcl : : Normal>::Ptr temporaryNormalCloud (new pcl : :

PointCloud<pcl : : Normal>) ;
7
8 /∗ . . . i n i t i a l i z a t i o n o f c loud conta in ing ver tex normals . . . ∗/
9

10 pcl : : RegionGrowing<pcl : : PointXYZRGBNormal , pcl : : Normal> reg ;
11
12 // choose k−d t r e e s t r u c t u r e f o r neighborhood search
13 reg . setSearchMethod (tree ) ;
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14
15 // s e t segmentat ion parameters
16 reg . setMinClusterSize (segmentationParameters . minComponentSize ) ;
17 reg . setNumberOfNeighbours (segmentationParameters . numberOfNeighbors ) ;
18 reg . setCurvatureThreshold ( (segmentationParameters . curvatureThreshold /

1 0 . 0 ) ) ;
19 reg . setSmoothnessThreshold ( (segmentationParameters . smoothnessThreshold /

1 0 . 0 ) / 180 .0 ∗ M_PI ) ; // convert to rad ians
20
21 reg . setInputCloud (mainCloud ) ;
22 reg . setInputNormals (temporaryNormalCloud ) ;
23 reg . extract (segmentationClusterIndices ) ;
24
25 if (segmentationClusterIndices .size ( ) == 0)
26 return false ;
27
28 return true ;
29 }

In order to search for nearest neighbors of seed points, a k-d tree data structure,
as explained in Section 2.3.2, is used during segmentation. The method extract()
performs the cluster extraction and returns the vertex indices for each resulting region.

4.9.4 Plane Cut Segmentation

This segmentation technique cuts an object in two along a prepositioned plane. The two
resulting clusters can then be subdivided further to continuously improve the segmentation.
This optional tool is especially useful in order to split distinct objects that have been
wrongly segmented into the same region by a prior Euclidean Cluster Extraction due to
being too close to each other. However, it can also be used as a main segmentation tool
if the objects that should be divided can be split along a plane and do not overlap each
other.

The technique is implemented in PlaneCutSegmenter, the instances of which
require a PlaneCutSegmentationParams object. This structure contains the param-
eters of the manually positioned cut plane, i.e. a point on the surface and the plane
normal. Segment() performs the actual segmentation by using the following algorithm:

Essentially, the method utilizes the plane equation in order to determine the position
of each vertex relative to the cut plane, i.e. whether it is on one side or the other [83]. The
point indices are then assigned to the corresponding cluster. UpdateHighlights()
assigns each of the two resulting clusters a unique color in order to provide an appropriate
segmentation preview.

4.9.5 Triangle Mesh Conversion

After a successful segmentation, EstimateIndices() constructs the individual point
clouds for each cluster with the index lists provided by the Segment() method. In
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Algorithm 4.2: Plane Cut Segmentation.
Input: Point cloud C, cut plane parameters P
Output: Segmented clusters S1, S2

1 foreach point pi ∈ C do
2 dot = pi.x ∗ P.x + pi.y ∗ P.y + pi.z ∗ P.z − P.d;
3 if dot > 0 then
4 Add pi to S1;
5 else
6 Add pi to S2;
7 end
8 end

addition, the original vertex indices are retrieved from the map constructed during point
cloud conversion, as described in Section 4.9.1.

In order for the rest of the application to use the segmented cluster data, the point
clouds have to be converted back to triangle meshes in ConvertToMesh(). The vertices
can be converted without any modification. Faces, however, have to be recreated using
the original vertex indices and the stored triangle map, which contains information about
all the faces connected to a specific vertex (see Section 4.9.1).

The procedure loops through every vertex of a cluster and retrieves all faces it used
to be a part of in the unsegmented mesh. It then looks for all the vertices these triangles
consisted of in the current cluster. If all vertices of a triangle are found, the face can be
reconstructed without any modifications to the vertex data. However, some triangles
in the original mesh might have been split up during the segmentation procedure. In
these cases, the missing vertices are duplicated and subsequently added to each of the
two clusters in order to recreate the original faces. Although this does lead to redundant
vertex data, this approach is preferred as it ensures the preservation of the entire mesh
surface. The simplified procedure for the implemented triangle reconstruction is shown
in Algorithm 4.3.

4.10 Export

The export of 3D models into different file formats is implemented in the abstract
ModelExporter class. SaveMeshToFile() utilizes the VCG library to save a single
mesh to a specific location in OBJ, OFF, PLY or STL format. The virtual method
Export() takes a ModelData object as input parameter, which represents a three-
dimensional scene and can contain more than one triangle mesh (see Section 4.5.2).
This method is intended to be used for actual model export and therefore needs to be
implemented in classes that inherit from ModelExporter.

The child class DialogExporter saves either the currently selected submesh or
the entire reconstructed scene to a single file. GetFileNameFromSaveFileDialog()

92



4.10. Export

Algorithm 4.3: Triangle reconstruction after segmentation for a single cluster.
Input: Cluster vertices V , original vertex cluster indices I, triangle map M
Output: Cluster vertices V , cluster triangles T

1 Retrieve original vertex indices i of V from I;
2 foreach ii ∈ i do
3 Retrieve triangles Ttemp from M by using ii as index;
4 foreach ti ∈ Ttemp do
5 Create triangle t;
6 foreach vertex index ci ∈ ti do
7 if ci /∈ i then
8 Add missing vertex to V ;
9 else

10 Remove ci from i;
11 end
12 Add ci to t;
13 end
14 Add t to T ;
15 end
16 end

opens a Win32 file save dialog in order to determine the desired storage location and
format. This exporting option is used by default during normal application use.

ScenarioExporter, on the other hand, saves every single segmented cluster of the
scene to a different file. The storage location and format cannot be changed. This class
is used to export the individual objects of the scene for further use in other applications
during the user study described in Chapter 5.

If a ground plane has been identified during plane segmentation (see Section 4.9.2),
the exported model is reoriented in a way that aligns the surface normal of the ground
plane with the world’s y-axis. By doing so, the scene is moved into an upright position,
which simplifies subsequent placement and modifications in other applications.
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CHAPTER 5
Evaluation

In order to evaluate the usability and functionality of the developed system, a small user
study was conducted. This chapter describes the setup and procedure of the different
test scenarios as well as methods used to collect data during the evaluation. Afterwards,
the obtained results are presented and discussed.

5.1 Participants

The system was evaluated with five participants between 23 and 27 years of age. Since
the developed application is primarily intended for people who are able to use the
reconstructed scene in other applications, all users had to be proficient with computers
and mobile applications. None of the participants had used the developed system before.
All users were reasonably experienced in interacting with virtual three-dimensional scenes,
with three users having a background in computer science and/or game development. A
pilot study with one additional participant was conducted prior to the main evaluation in
order to identify possible problems regarding the test setup, scenarios and the application
interface.

5.2 Procedure

At the beginning of the study, participants received information about the general purpose
and handling of the developed system. They were also informed about the methods used
for data collection and the overall procedure of the study.

Afterwards, the participants were asked to complete two different scenarios, each
of which required them to use the developed system in order to complete a specified
task. The application displayed user guidance messages during different stages that were
designed to provide all instructions necessary to successfully complete the scenarios. In
order to evaluate the effectiveness of these messages and to more thoroughly test the
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intuitiveness of the system, participants did not receive additional instructions on how to
use the application beforehand.

Both of the prepared scenarios were focused on different aspects of the system, even
though they required similar steps in order to be completed. Users were expected to be
able to finish the second task quicker than the first one due to an increased familiarity
with the interface and most of the required actions.

The participants were observed during their interaction with the system in order
to identify emerging problems. After completing both tasks, participants were given
a questionnaire containing a standardized usability test as well as several additional
questions about their interaction with the developed application.

5.3 Test Scenarios

Two test scenarios were prepared for the user study. Each of them required participants to
scan, reconstruct and manipulate a small prearranged scene. Users received instructions
on the expected outcome along with some useful hints on working with the required
application tools.

The entire study was conducted at the same location to ensure equal conditions for
every participant. The used area was well-lit and had enough space to move around
during scanning and scene manipulation. Since the prototype requires a high-end graphics
card, the system was connected to an appropriately equipped computer at all times (see
Section 3.1.1 for the exact specifications). Even though both scenarios were focused on
the same highlighted area, they had different item arrangements. Non-relevant objects in
the immediate vicinity of the prepared scene were removed, if possible, in order to make
the reconstruction procedure easier.

Most of the objects used during the scenarios were single-colored boxes or cylinders.
This increased their visual distinguishability and made it easier to assess the quality of
user-performed segmentations after finishing the scenarios.

5.3.1 Bowling

In the first scenario, participants were asked to transform the prepared scene (see
Figure 5.1) into a virtual pin area of a bowling lane, consisting of around ten pins placed
in a custom formation. To this end, the highlighted yellow area and all the objects
on it had to be scanned and digitally reconstructed first. Then, the scene had to be
segmented in order to separate distinct objects from the floor. The red box and blue
cylinder were deliberately unnecessary parts of the scene that had to be digitally removed
by the participant. Holes left open during the scanning procedure had to be closed in the
processing stage. Finally, users were asked to use the prototype’s scene manipulation tools
to produce an arbitrary number of duplicates of the pin and place them in the virtual
scene in a way that resembles a setup used in bowling. Participants were encouraged to
make their finished scene recognizable by scaling pins differently or by placing them in a
custom formation.
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Figure 5.1: Setup for the first test scenario of the user study.

After successfully exporting the modified scene, participants had the opportunity to
play a game of bowling in a small application developed with Unity [80] (see Figure 5.2).
The reconstructed and manipulated pin formation was dynamically imported at the
beginning of the game. The ground plane was removed automatically, while the pins
were placed in a bowling alley and received basic physical behavior. Afterwards, test
subjects were able to throw the bowling ball by using touch gestures in order to hit
as many pins as possible. This game was primarily a reward for completing the first

Figure 5.2: Bowling game during first test scenario. The pin setup that was prepared by
the participant during the first phase was dynamically imported and integrated into the
game.
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scenario. Its outcome was therefore not relevant to the results of the study. However, the
small application showcased the possibilities of using scanned and reconstructed scenes
in other virtual environments.

The scenario required participants to use most of the prototype’s functions without
having to deal with a cluttered scene that might be difficult to segment or manipulate.
The primary focus was to observe users’ first interaction with the system and potential
difficulties. Since the scene composition did not require plane cut segmentation, the
respective application stage was automatically skipped.

5.3.2 Stacked Boxes

Figure 5.3: Setup for the second test scenario of the user study.

The second scenario was primarily focused on testing the effectiveness and usability
of the segmentation tools provided by the developed system. Once again, users were
asked to scan and reconstruct the highlighted yellow area and all the objects on it. The
scene featured differently colored boxes and one cylinder that had to be segmented after
reconstruction (see Figure 5.3).

In contrast to the first scenario, some of the objects were stacked in order to provide
an additional level of difficulty. Users had to utilize the plane cut tools to properly
separate some of the items from each other. Even though subsequent editing of the virtual
reconstruction was not the primary task of this scenario, participants were still encouraged
to try out different manipulation tools after performing a successful segmentation.
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Finally, the segmented and manipulated scene had to be exported in order to finish
the scenario. The application automatically created a model for the entire modified
scene as well as for every individual object, which made subsequent visual assessment
of the segmentation quality easier. Even though the second scenario was slightly more
complicated than the first, participants were expected to finish it quicker due to an
increased familiarity with most of the tools.

5.4 Data Collection

In addition to visually observing participants during the test scenarios, their interaction
with the system was documented with pictures, screen captures and an application log.
Further problems or questions that emerged during testing were documented manually.
Questionnaires were used to gather feedback about specific aspects of the interaction
with the developed prototype.

5.4.1 Screen Capture

The free and open-source Open Broadcaster Software (OBS) was used to record the screen
during the two test scenarios in the user study [57]. The resulting videos helped the
evaluation process by providing additional information in case of emerging problems.

5.4.2 Application Log

By utilizing the Boost Library (see Section 4.2.1), almost all events and interactions
during application usage are written to a log file. Each entry is comprised of the current
time stamp, application stage and a detailed event description. During the user study,
a log was created for each completed scenario. These files can be helpful if emerging
problems have to be analyzed more thoroughly, because the exact sequence of specific
performed interactions can be reconstructed.

5.4.3 Exported Model

As the final step in each test scenario, participants were asked to export their modified
scene as a 3D model. Upon pressing the respective button, the application automatically
saves the entire scene as well as every individual object to different .obj files. These
models can be qualitatively analyzed to assess how well participants were able to follow
the instructions of each scenario and whether or not the results differ substantially from
the expected output.

5.4.4 Questionnaire

The questionnaire handed out to participants after completing both scenarios consists of
nine short sections: One for general questions, one for each application stage and one
concerned with the hardware setup.
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The general section starts with a ten-question System Usability Scale (SUS), a
standardized usability test developed by John Brooke [10]. It has been used in a wide
range of studies and has become a standard for usability evaluation [4]. It is composed of
ten items concerned with a user’s subjective assessment about the system, each of which
has the form of a statement:
Q1 I think that I would like to use this system frequently
Q2 I found the system unnecessarily complex
Q3 I thought the system was easy to use
Q4 I think that I would need the support of a technical person to be able to use

this system
Q5 I found the various functions in this system were well integrated
Q6 I thought there was too much inconsistency in this system
Q7 I would imagine that most people would learn to use this system very quickly
Q8 I found the system very cumbersome to use
Q9 I felt very confident using the system
Q10 I needed to learn a lot of things before I could get going with the system

For each statement, participants have to indicate the degree of agreement on a Likert
scale, ranging from one (strongly disagree) to five (strongly agree). In order to avoid
acquiescence bias, the ordering of items is alternated such that a positive statement is
always followed by a negative one. With the results of these assessments, a final SUS
score ranging from 0 to 100 can be derived, where a higher value indicates better system
usability.

The general section contained six additional items specific to the developed system.
These statements followed the ordering and rating principles of the System Usability
Scale:
Q11 I found the system to be visually appealing
Q12 I found many interface elements and descriptions to be misleading
Q13 I thought the help messages made it easier to understand and use the system
Q14 I found it very difficult to produce good results with the provided tools
Q15 I think that there are many practical applications for the system
Q16 I personally would not find much use for the system

The remaining sections featured similar, system-specific items about individual aspects of
the different application stages and the used hardware setup. Furthermore, participants
had the opportunity to leave additional comments about aspects they particularly liked or
disliked at the end of every section. The entire questionnaire is attached in Appendix A.

5.5 Pilot Study
Prior to the main evaluation, a short pilot study with one additional participant was
conducted. During this test run, several minor technical issues were identified and
subsequently fixed. In addition, the following changes to the evaluation setup and
procedure were made based on the feedback gathered during the pilot study:
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Figure 5.4: Evolution of the prototype.

• The participant reported difficulties holding the prototype while simultaneously
interacting with the touch screen. Even though the device was reasonably heavy,
it did not have handles or any other convenient way to carry it. Moreover, the
system setup was not particularly visually appealing. As a result, the prototype was
improved by placing both the depth camera as well as the tablet inside a painted
cardboard box with appropriate cut-outs. Holes on the side of the box should make
it easier to carry the box with one or two hands. Figure 5.4 depicts the evolution
of the prototype.

• The user guidance messages displayed during the test scenarios were perceived as
too long and complicated. As a result, almost the entire text was rephrased and
shortened in order to focus on essential information.

• After completing the questionnaire, the participant had additional comments about
several specific parts of the application, but did not find a suitable field on the
form. As a result of this and in order to gather additional feedback about the
system, the questionnaire was significantly extended. It originally only contained
one page consisting of a System Usability Scale and general questions about the
system. After the change, the questionnaire featured an additional section for each
individual application stage as well as one page about the hardware setup.

5.6 Results and Discussion

This section presents the information gathered during the user study through observation,
questionnaires and analysis of segmented 3D reconstructions created by participants.
Furthermore, the obtained results are discussed and analyzed in detail in order to evaluate
the prototype’s usability and effectiveness as well as identify potential problems and
areas of improvement.
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5.6.1 Observations

All participants were able to finish both test scenarios without major hindrances. Since
they received only limited instructions before approaching the tasks, they had to rely
on the usefulness of user guidance messages as well as an intuitive interface during the
individual application stages in order to correctly use the system. Participants were
able to finish most of the necessary steps without having to ask for help. Only a few
parts required additional hints in order to be completed. Problems that occurred during
the evaluation as well as some of the most noteworthy observations are discussed in the
following sections.

Initial Scan Position

Figure 5.5: Participants trying to find a perfect starting position for scanning.

Four out of five participants had at least some problems trying to figure out the
correct starting position for the scanning procedure (as explained in Section 3.4). It
seemed to be difficult to intuitively recognize whether or not the resulting bounding box
contained the entire highlighted area. This lead to participants having to reset a few
times and needing additional positioning hints before being able to find a reasonably
good starting pose. This initial step of the scanning procedure should be improved by
visualizing the bounding box at the beginning of the scan.

Furthermore, guidance messages specified that aligning the viewing direction of
the camera with the floor would make subsequent segmentation easier. Even though
participants seemed to find aligning the tablet in such a way somewhat cumbersome,
all of them managed to do it correctly (see Figure 5.5). It should be noted that users
are allowed to ignore this alignment constraint in the current implementation, even
though doing so increases the time it takes the plane selection algorithm to find correct
surfaces. The system could be improved such that camera alignment does not influence
the efficiency and reliability of the plane segmentation procedure in any way. Essentially,
users should be able to start their scan from any desired viewing direction without having
to worry about subsequent segmentation.
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Holes During Scan

Two participants unintentionally created big holes in their reconstruction during the
second scenario by not thoroughly scanning objects in the scene from every angle. They
stated that they were unable to spot these holes during the capturing process. As a result
of the size and form of the resulting gaps, participants were unable to sufficiently close
them during the subsequent processing stage, since the used algorithm is primarily suited
for filling small planar holes. In order to improve the ability of users to detect missing
surfaces during the scan, a more noticeable background color could be used, since gaps in
dark gray seem to be difficult to spot. In a future version, holes could be automatically
detected and highlighted even while capturing the scene. An improvement to the hole
filling algorithm is also a possibility, even though leading users to a thorough scan should
be prioritized as this typically produces the best results.

Prototype Handling

In general, participants seemed very comfortable while using the prototype. Even holding
the device while simultaneously interacting with the touch screen did not result in any
major problems. The changes to the prototype casing as a result of the pilot study (see
Section 5.5) seemed to have sufficiently improved the handling of the system. However,
the wiring of the device appeared to be a major nuisance, since it significantly restricted
its mobility. During the scanning part of the scenarios, cables had to be kept out of the
camera’s field of view manually by the test supervisor. Additionally, since the application
was running on the desktop computer and streamed to the tablet, some standard touch
gestures (e.g. pinch, zoom) could not be properly mapped to the PC and had to be
replaced by scrolling. It was apparent that this was not entirely intuitive for most
participants. However, these circumstances are the result of the device being a prototype.
Future versions could be run directly on a Microsoft Surface tablet [52] to improve gesture
controls. In addition, a depth camera without the need for an external power supply
could be used to remove the necessity of wires completely.

Unintentional Duplication

Two participants unintentionally produced multiple bowling pin duplicates in the same
location during the first test scenario. An analysis of the application log in conjunction
with screen captures revealed that this was due to problems with the display streaming
software, which wrongly detected some drag and drop gestures as clicks and immediate
releases. Instead of duplicates being dragged out of objects, they were created and
immediately placed in their initial position, i.e. directly on top of the original item. As a
result, participants did not notice that they already cloned the item and therefore created
more duplicates until they were able to move it around. This led to an unnecessary high
number of vertices in the scene and could cause problems when using the individual
objects with physics in other applications, such as the bowling game in the first test
scenario.

103



5. Evaluation

Even though this issue is a direct result of the prototype-like nature of the device, it
still highlights a potential problem with the visualization of duplicates. The application
should offer some way of seeing how many object replicas exist at any given time. Shifting
the initial position of duplicates slightly could be another solution. This would make
clones visible even if they are not manually repositioned.

Tracking Performance

Even though the entire study was conducted using the same hardware, one participant
experienced some performance issues due to a problem with the screen capturing soft-
ware, which reduced the frame rate to about 15 instead of 30-60 frames per second.
Unfortunately, this issue was only noticed and resolved half way through the study. Even
though the low frame rate did not affect all of the system’s functionality, the tracking
algorithm used during scanning and manipulation was significantly impaired and failed
to estimate the position and orientation of the participant several times. Even though
this particular issue is entirely caused by external software and therefore not relevant for
the evaluation of this system’s usability, it emphasized the need for a stable frame rate
and adequate hardware. The tracking part of the ICP algorithm used by KinectFusion
(see Section 2.2.2) requires at least 20-30 frames per second in order to guarantee smooth
tracking of the camera pose.

User Experience

(a) Plane cut segmentation. (b) Scene manipulation (pilot study).

Figure 5.6: Participants interacting with the system during different application stages.

With the assistance of displayed guidance messages, participants seemed to be able to
quickly understand and use the basic functions of the system without major problems (see
Figure 5.6). In some cases, users had to try out tools before being completely sure about
their purpose. This is, however, expected and even encouraged by providing the option
of undoing accidental changes in every stage. The unique interaction and navigation
through physical movement in the manipulation stage was not immediately apparent
to three participants. They seemed to expect an orbital camera similar to those in the
previous stages and therefore tried to navigate using touch gestures. It took some time
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for them to notice that moving while looking at the scene changes the virtual perspective.
After recognizing this, however, all participants seemed to intuitively understand this
unusual method of scene interaction. Moreover, users gave the impression of enjoying
the fact of the tablet display acting as a window into the virtual world. Participants
also seemed to appreciate the inclusion of the small bowling game at the end of the first
scenario. Dynamically utilizing their previously reconstructed and modified scene seemed
to have been a successful way of rewarding their work as well as showcasing some of the
possibilities of the developed system.

5.6.2 Questionnaire Analysis

Participants were asked to fill out a questionnaire after finishing both test scenarios.
This section presents some of the most interesting findings and discusses their possible
implications.

System Usability Scale

Interpreting scores of System Usability Scales can be difficult, since they can only be
evaluated in a meaningful way when compared to the scores of other systems. Bangor
et al. [3] added an adjective rating scale based on the analysis of a large number of
usability tests. It assigns each range of scores a corresponding adjective as follows: Worst
Imaginable (< 25), Poor (25 - 38), Ok (38 - 52), Good (52 - 73.5), Excellent (73.5 - 85)
and Best Imaginable (85 - 100). The average SUS score is 70, which is also considered
the minimum value needed in order to have acceptable usability [3].

Participant SUS Score Learnability Usability
P-1 82.5 100.0 78.1
P-2 87.5 100.0 84.4
P-3 82.5 100.0 78.1
P-4 60.0 75.0 56.3
P-5 77.5 75.0 78.1
Mean 78.0 90.0 75.0
Std Dev 10.7 13.7 10.8

Table 5.1: Individual and mean System Usability Scale scores (including standard
deviation) for the developed system. In addition, the table includes the results of the
two-factor analysis for usability and learnability as suggested by Lewis et al. [39].

The system developed during this thesis scored 78 out of 100 points (standard
deviation: 10.7), which indicates above-average, excellent usability. Lewis et al. [39]
suggested splitting the scores into the two factors usability and learnability. According to
this, the developed system scored 75 out of 100 for usability (standard deviation: 13.7)
and 90 out of 100 for learnability (standard deviation: 10.8). The exact results for each
participant are shown in Table 5.1.
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It is noteworthy that the participant who gave the lowest SUS score (P-4) is also the
one who experienced significant frame rate drops due to technical issues as explained in
Section 5.6.1. As a result, the system had considerable problems correctly tracking his
position and orientation, which very likely impacted the user experience in a negative
way.
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Figure 5.7: Individual ratings for each statement of the System Usability Scale.

Figure 5.7 shows the ratings for each individual statement of the System Usability
Scale. Participants seemed to find the developed prototype easy to learn and subsequently
use. The participant who experienced technical issues did not feel entirely confident
while using the system and found the prototype somewhat inconsistent. The results
also indicate that participants were unsure whether or not they would use the system
frequently, although there was a slight positive tendency with two users agreeing, one
disagreeing and two staying neutral on the subject.

Interface and Practical Application

Figure 5.8 shows the results of all questions related to the general user interface and
practical application of the system. The findings indicate that a majority of participants
found the system visually appealing. Even though there are many stages with a variety
of different interface elements throughout the developed application, no participant found
any part of the UI misleading or unclear. In addition, the test subjects did not find it
difficult to produce good results with the provided tools. However, the displayed user
guidance messages seem to be in need of improvement, with only one participant thinking
that they were truly useful. The questionnaire also explored whether or not users would
find use for the system even outside the user study. The results indicate that a majority
of test subjects thought that there are many practical applications for the developed
application and that they would use the system themselves.
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Figure 5.8: Individual ratings for each statement concerned with the interface or practical
application.

Participants also had the opportunity of leaving comments about general aspects of
the system they particularly liked or disliked. Four participants explicitly stated how
intuitive and well designed the user interface was and two particularly liked the way of
manipulating the scene. One user disliked the tracking and interaction problems he had
due to technical issues (frame rate drops) while using the system.
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Figure 5.9: Individual ratings for selected statements relating to the preparation stage.

The results of the questionnaire section about the preparation stage are shown in
Figure 5.9. Even though the interface during this step made sense to the majority of
participants, one of them was not entirely sure what each of the controls on the screen
was for. He noted that he did not really know the implications of selecting different
values with the size slider. Another participant stated that she wanted more information
on how exactly the chosen dimensions influenced the displayed mesh quality. These
statements indicate that better labeling is required and future releases could feature
additional informations in order to indicate the mesh quality.

A majority of participants would have liked to be able to adjust each of the dimensions
of the reconstruction volume separately (one user abstained). One test subject stated in
an optional comment that he would have preferred to change the size of the volume while
already seeing the image of the depth camera. This would make it easier to correctly
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set the dimensions without having to go back and forth between the preparation and
scanning screen.

Despite these remarks, no participant found the options during this stage to be
completely insufficient. In addition, three of them specifically liked the simplicity of the
user interface, as stated in the respective comment sections.

Scanning
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Figure 5.10: Individual ratings for selected statements relating to the scanning stage.

According to the results of the scanning section in the post-study questionnaire
(shown in Figure 5.10), the majority of participants did not experience any problems
while scanning their scene. Only one user had to reset often due to reconstruction
errors. No one found the instructions to be too difficult to follow. More importantly, all
participants had fun digitally capturing real objects.

However, according to the corresponding comment section, all participants found the
device’s wiring very cumbersome during scanning, since it had to be manually kept out
of the camera’s view at all times. This reinforces the intent of achieving a completely
wireless solution in future releases.
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Figure 5.11: Individual ratings for selected statements relating to the plane selection and
segmentation stage.

The results of the questionnaire section about the plane segmentation stage are shown
in Figure 5.11. Two out of five participants did not know the exact purpose of each
interface element. One of those two also stated that he did not know what he was
supposed to do at the beginning of this application stage. Another participant stated
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that she did not know the difference between plane smoothness and thickness and had
the feeling that she could achieve the same result with different settings. These findings
indicate that the instructions and labels used for this stage should be improved.

However, the majority of participants found it easy to improve the highlighted area
by adjusting the parameters and did not have to reject many suggestions before getting
satisfying results. This indicates that, as soon as users are able to understand the different
features of this stage, they have no difficulties getting a good outcome.

Object Segmentation
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Figure 5.12: Individual ratings for selected statements concerned with the object segmen-
tation stage.

The findings of the questionnaire section regarding the object segmentation procedure
show that participants had no noteworthy problems during this stage (see Figure 5.12).
No test subject had any difficulties getting a good segmentation result or had to change
many parameters in order to do so. Even though no participant found it particularly
difficult to distinguish between the differently colored segmentation clusters, one of them
noted that the used colors were too similar in some cases. For future releases, the
distinguishability of resulting segments should be improved by enhancing the algorithm
responsible for color assignment.

It should be noted that participants only had to use Euclidean Clustering for both test
scenarios. Region Growing Segmentation is arguably more difficult to understand and
choosing the right parameters for a satisfying outcome is typically more time-consuming.
The answers to the statements in this section might have been different if users had to
use both segmentation methods.

Plane Cut

The results of the questionnaire section dealing with the plane cut segmentation applica-
tion stage are shown in Figure 5.13. Participants did not have difficulties positioning or
rotating the cut plane. One of them, however, stated that she would have preferred to
see the current rotation axis while adjusting the plane orientation. This could be a useful
improvement for future releases. One test subject did not have to use plane rotation
and therefore abstained. Overall, all participants were able to achieve satisfying results
without noteworthy problems.
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Figure 5.13: Individual ratings for selected statements relating to the plane cut stage.
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Figure 5.14: Individual ratings for selected statements relating to the processing stage.

The statement ratings of the questionnaire’s processing section shown in Figure 5.14
reflect the observations discussed in Section 5.6.1. Two participants had large holes in
their reconstruction due to not scanning certain objects from every angle. Since the
hole-filling algorithm is only effective for small gaps, these users were not able to close
them completely. One of the two participants had more holes remaining than the other
and coherently reported difficulties in getting satisfying results as well as selecting the
correct parameters. Even though these occurrences indicate that a better hole-filling
algorithm would be helpful, the majority of participants had no problems during this
stage due to a thoroughly scanned scene. Therefore, leading users to flawless scans should
be prioritized over enhancing post-processing of reconstructions. Possible improvements
are already discussed in Section 5.6.1

Manipulation and Navigation

Figure 5.15 shows the results of the questionnaire section concerned with interaction
and navigation during the scene manipulation stage. As discussed in Section 5.6.1, one
participant had significant frame rate drops due to technical difficulties with screen
capturing during this stage, which decreased the system’s tracking quality and influenced
the user experience. As a result, this participant had problems figuring out how to
navigate the scene and getting satisfying results. The same user also reported several
tracking failures. Other participants had significantly less problems with correct pose
estimation and therefore a smoother experience while navigating the scene through
physical movement.
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Figure 5.15: Individual ratings for selected statements relating to interaction and naviga-
tion during the manipulation stage.

Scaling objects to different sizes posed no problem for four participants, the remaining
one reported significant issues regarding the recognition of corresponding touch gestures.
This was likely because of mapping problems due to the application being streamed to
the tablet instead of running natively. Three participants found duplication easy, while
two gave the respective statement a neutral rating. The optional comments revealed that
this was caused by occasional failure of the feature due to incorrectly recognizing the
respective gesture, which resulted in accidental clone creation as observed in Section 5.6.1.
As already stated, this feature needs to be improved, either by making the duplication
less prone to errors or by enhancing the visualization or positioning of cloned objects.

In the current prototype, users can inspect their edited scene with an orbital camera
at any time during the manipulation stage. However, objects can only be rearranged while
navigating with physical movement and reorientation. When asked whether or not they
preferred to use conventional navigation methods for editing their scene, the participant
with technical issues strongly agreed, one disagreed and three stayed neutral on the
matter. Even though this does not indicate a clear preference, it might be helpful to
offer some alternative form of navigation for scene manipulation. One participant stated
in the comment section that she would have liked to be able to temporarily switch to a
bird’s eye view for more precise object placement. This could be added as an additional
feature in future releases to increase the usefulness of provided scene manipulation tools.

Nevertheless, three out of five participants found navigating the scene by using
physical movement very intuitive and natural, with two staying neutral on this matter.
Three test subjects explicitly stated how much they enjoyed being able to use the tablet
as a window into the virtual world while carrying objects around. Moreover, they noted
that this made small adjustments to the camera’s position and orientation easier and
more intuitive. All five participants stated that they had fun while manipulating and
maneuvering the scene during this stage.

These findings indicate that this unusual form of navigating a virtual world resonates
with users, since it seems to be very easy to grasp and subsequently use. The ability to
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carry objects around and look at the scene from different, natural perspectives appears
to be highly appreciated. However, whenever precise object placement was necessary,
participants seemed to prefer more conventional forms of navigation, such as a camera in
bird’s eye view. Offering the ability to switch between both options might be a good
solution for future releases.
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Figure 5.16: Individual ratings for selected statements relating to the used hardware
setup.

In the last section of the questionnaire, participants were asked about their opinion
on the current device prototype. The results are shown in Figure 5.16. Four out of five
participants found the device too heavy. Two had problems interacting with the touch
screen due to wrong gesture recognition as a result of the application being streamed
to the tablet and not running natively. Three participants thought that the hardware
setup needed much improvement. The wiring of the device was a nuisance for all test
subjects, since it made the interaction much more cumbersome. However, four out of
five participants had an overall pleasant experience while using the prototype, with one
staying neutral on this matter.

These results are not surprising due to the proof-of-concept nature of the developed
prototype. By running future releases natively on, for example, a Microsoft Surface tablet
[52], problems with touch gesture recognition and mapping could be almost entirely
avoided. In addition, by using a smaller depth camera without the need for an external
power supply, the weight could be drastically reduced while simultaneously getting rid of
the cumbersome wiring.

5.6.3 Created Reconstructions

Participants produced a number of virtual reconstructions during the course of the two
test scenarios. This section takes a look at some examples and analyzes them in order to
assess the effectiveness of the developed tools.

Figure 5.17 shows the virtual reconstruction of a bowling pin that was created as
a result of one participant completing the first test scenario, the details of which are
explained in Section 5.3.1. The reconstructions created by other participants are very
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(a) Colored (upright) (b) Wireframe (upright) (c) Colored (lying down)

Figure 5.17: Virtual reconstruction of a bowling pin that was created by one participant
during the first test scenario.

similar in terms of size and quality. Despite the blurriness of colors due to the small
resolution of the used depth camera, the quality of the shown model is reasonably high.
It consists of 2792 vertices and 5381 faces and uses per-vertex coloring. Note that the
KinectFusion algorithm tends to produce reconstructions with an even higher point
density. The developed system processes and cleans these reconstructions to reduce the
number of vertices while distributing them more evenly.

During segmentation, the non-visible touching surfaces of two separated objects result
in holes in the reconstruction. Looking at Figure 5.17c, it can be seen that the participant
was able to close the gap at the bottom side of the bowling pin by using the provided
hole-filling tools.

(a) Reconstruction (b) Game

Figure 5.18: Custom bowling setup scene that was created by one participant at the end
of the first test scenario as well as its usage in a small demo application.

Figure 5.18a shows the entire custom bowling setup exported by a participant after
completing the final stage of the first scenario. The test subject used the manipulation
tools to create nine duplicates of the reconstructed pin. They were then arranged in
a custom formation and scaled differently in order to make the result recognizable.
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Furthermore, participants were asked to remove all objects but the pin and the ground
plane from the reconstructed scene. Figure 5.18b shows the virtual setup after being
loaded into a small bowling game that participants were able to play after finishing the
scenario. The demo application dynamically imported all objects into the illuminated
scene, automatically removed the ground plane and gave the pins basic physical properties.

In the second test scenario, participants had to scan a scene containing colored
boxes and cylinders, some of which were stacked on top of each other. As described
in Section 5.3.2, the goal was to segment the reconstructed scene into distinct objects
by using the tools provided by the developed prototype. Figure 5.19 shows the virtual
scene as reconstructed by one of the participants. Some objects in that model contain
small miscolored patches, such as the blue blur on the front surface of the green box
and the yellow rims on the blue crate in front of it. These occur due to some pixels of
Kinect’s RGB camera being matched to the wrong vertices in the reconstruction volume
when participants make rapid movements during scanning. As a result, a few triangles
on a surface might accidentally receive the color information of an object that was
directly in front or behind it during scene capture. These flaws have to be fixed manually
after reconstruction. Considering, however, that textures have to be refined for high
quality scenes anyway due to their low resolution, this is not particularly troublesome.
Furthermore, a higher fidelity and frame rate of the depth and RGB camera would
decrease the amount of incorrectly assigned vertex colors. The mesh quality is, apart
from these small flaws, generally high. The reconstructed scene consists of 136.877
vertices and 162.878 triangles.

As discussed in Section 3.6.2, the implemented automatic object segmentation with
Euclidean Clustering is unable to separate directly adjoining, non-planar items. Therefore,

Figure 5.19: Virtual reconstruction of the scene shown in Figure 5.3 that was created by
a participant during the second test scenario.
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(a) Connected Objects (b) Segmented First Object (c) Segmented Second Object

Figure 5.20: Two connected object reconstructions before and after plane cut segmentation
as produced by a participant during the user study.

participants had to use the plane cut tools provided by the developed system in order to
segment stacked objects. The result of this procedure, as performed by one user during
the second test scenario, are shown in Figure 5.20. Users were able to separate stacked
objects after they took some time carefully adjusting the alignment of the cut plane. In
addition, resulting gaps could be closed with the provided hole filling tools without any
problems. However, as shown in Figure 5.20b, a small part of the upper object is still
attached to the lower one. Other participants produced very similar results. It seems to
have been difficult to align the cut plane precisely in between two objects, even if the
two adjoining surfaces were entirely planar. These findings indicate that even though
the current plane cut segmentation tools can be used for rudimentary separation, more
sophisticated tools are needed in order to cleanly segment two directly adjoining objects.
A possible improvement would be to use curvature information of vertices within a certain
distance of the cut plane in order to find the exact transition between two objects.
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CHAPTER 6
Conclusion and Future Work

In this research project, a system capable of virtual reconstruction and manipulation of
3D scenes has been designed and implemented. The device enables users to create 3D
scans quickly and intuitively. The resulting reconstructions can then be clustered into
distinct static surfaces and movable objects by utilizing a combination of automatic and
manual segmentation techniques. Users are able to clean the mesh and close unwanted
holes in the subsequent processing step. The reconstructed scene can then be navigated
by using the tablet screen as a window into the virtual world. Users can inspect the
reconstruction from different perspectives by physically moving and reorienting the device
in the real world. Through touch screen interaction, previously segmented objects can
be repositioned, duplicated, transformed and removed. When users are satisfied with
their edited scene, it can be exported to one of several common file formats. The system
provides the ability to save the whole scene as well as individual segmented objects.
The exported models can then be used in other applications, such as game engines or
advanced mesh editors.

The prototype consists of a tablet computer and a Microsoft Kinect. The KinectFusion
algorithm is used for 3D scanning and reconstruction as well as user tracking during the
scene manipulation stage. Using modern OpenGL, a basic graphics pipeline has been
developed to enable efficient 3D rendering. A variety of libraries, such as the Point Cloud
Library and VCG Library, has been used in conjunction with own implementations to
provide segmentation and processing capabilities. The various functions of the system are
very reliant on a stable frame rate in order to run smoothly, which results in relatively high
hardware requirements. Due to the unavailability of a tablet with sufficient specifications,
the prototype application is running on a desktop PC and streamed to the screen of
the handheld device. However, since the tablet functions as a user’s primary interaction
device, the application interface was designed specifically for mobile screens. In order to
improve the device’s usability, the display as well as the depth camera have been housed
inside a cardboard casing with appropriate cut-outs for better handling.
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The effectiveness and usability of the prototype was evaluated during a small user
study. Participants had to complete two test scenarios, each of which required them to
use the developed system in order to complete a specified task. The first scenario was
primarily concerned with the ease-of-use and intuitivity of the system as a whole, while
the second one focused more on segmentation tools and the quality of resulting models.
After completing these tasks, participants were asked to fill out a questionnaire consisting
of a System Usability Scale and a variety of additional questions about the prototype.

The evaluation showed that the system has good usability and can be learned easily.
Users are able to digitally reconstruct and segment a three-dimensional scene in a
relatively short time and without major technical hurdles. Moreover, the findings indicate
that navigating the scene through physical movement feels highly intuitive and natural.
In addition, the 3D models created by participants were of reasonably high quality,
considering the low resolution of the Microsoft Kinect. Furthermore, a small game was
developed for the participants of the user study that dynamically imported and used
their segmented reconstructions. This application showcased how models created with
the developed prototype could be used in other applications without much effort.

The evaluation also revealed a few issues and several possible areas of improvement
for future releases, the most important of which are listed as follows:

Bounding Box Visualization
Participants found it difficult to find a good initial position for the scanning
procedure, since they were unable to see the bounding box before starting their
scene capture. Even though the scan can be reset at any time, it is still a minor
obstacle that has to be overcome by trial and error. A future release should visualize
the bounding box with the chosen dimensions either before or at the beginning of
the scene capture.

Explanations and Labeling
Since some of the used techniques and algorithms are reasonably complex, the
system provides a variety of guidance messages during the different application
stages. Even though they seemed to be able to lead users to satisfying results, a few
participants still revealed difficulties understanding the exact purpose of certain
procedures. It seems that better interface labeling and optional, more detailed
explanations could go a long way towards improving the overall experience.

Camera Alignment for Plane Segmentation
Users are recommended to align the viewing direction of the camera with the floor
surface at the beginning of the capturing process. This is due to the currently
implemented plane segmentation technique assuming major planes (i.e. walls, floor
and ceiling) to be parallel or perpendicular to this direction in order to speed
up surface recognition. Users seemed to find this additional constraint somewhat
cumbersome and had a few issues finding the correct pose. The system could
be improved such that the camera alignment does not affect the efficiency and
reliability of the plane segmentation tools in any way.
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Reconstruction Holes
Some users had problems with relatively big gaps that were accidentally left
open during scene capture. Since the algorithm used for hole filling is primarily
suited for small planar gaps, these flaws could not be completely corrected. While
improvements to the hole filling algorithm are a possibility, leading users to thorough
scans should be prioritized. Therefore, a more noticeable background color during
scene capture as well as possible automatic gap highlighting could help users in
this regard.

Alternative Manipulation Views
During scene editing, certain camera perspectives (e.g. a bird’s eye view) are difficult
to achieve since users would have to physically move the tablet into a position
where they are typically unable to simultaneously interact with the touch screen.
These views are, however, helpful for certain, very precise object manipulations.
Future versions could feature the option of temporarily switching to a fixed bird’s
eye view while still being able to use the manipulation tools.

Improved Plane Cut Segmentation
The study revealed that the provided plane cut tools alone are not sufficient to
cleanly separate two stacked items that could not be automatically segmented with
Euclidean clustering. The existing procedure could be improved by using curvature
information of vertices within a certain distance of the cut plane in order to find
the exact transition between objects or by using more sophisticated segmentation
techniques.

Native Execution on Tablet
The application is streamed from a desktop to a tablet computer since the hardware
requirements are too high for the currently used handheld device. This results in
several issues with correct recognition of touch gestures such as pinch and zoom,
since they are converted to mouse input after being sent to the PC. By using a
Windows tablet with sufficient hardware, these problems could be solved completely.
In addition, the system would not rely on an additional stationary computer for
processing.

Better Depth Camera
Using a depth camera with higher resolution and overall better specifications, such
as the Kinect for Xbox One, would increase the stability of the tracking algorithm
as well as the overall quality of produced 3D models. By utilizing a depth sensor
without the need of an external power supply, such as the Structure Sensor, in
combination with a modern Windows tablet, the need for external wires could be
completely eradicated. Since cables seemed to be a major hindrance during the
user study, this would significantly improve the overall user experience.

Despite these limitations, the research project showed that utilizing depth camera
tracking for navigation introduces new and exciting possibilities for interaction with 3D
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6. Conclusion and Future Work

reconstructed environments. Editing scenes by using the tablet as a window into the
virtual world more closely resembles real-world object manipulations. Besides offering
intuitive tools for 3D scanning and segmentation, the developed system could be used to
see how modifications would visually affect a specific scene without having to actually
make changes in the physical world. Future applications could also include simulations of
real-world scenarios in reconstructed virtual environments for entertainment or training
purposes.
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Participant ID: ______ A Tool for Interactive Segmentation and Manipulation                       Date: ____/____/____ 
                              Of 3D Reconstructed Scenes  

This questionnaire is based on the System Usability Scale (SUS), which was developed by John Brooke while working at Digital Equipment 
Corporation. © Digital Equipment Corporation, 1986. 

Questionnaire 
 

Instructions: For each of the following statements, mark one box that best describes your reactions to the used system. 
 

#  
1 – Strongly 

Disagree 
2 3 4 

5 – Strongly 
Agree 

1 
I think that I would like to use this system 

frequently 
☐ ☐ ☐ ☐ ☐ 

2 I found the system unnecessarily complex ☐ ☐ ☐ ☐ ☐ 

3 I thought the system was easy to use ☐ ☐ ☐ ☐ ☐ 

4 
I think that I would need the support of a 

technical person to be able to use this system 
☐ ☐ ☐ ☐ ☐ 

5 
I found the various functions in this system 

were well integrated 
☐ ☐ ☐ ☐ ☐ 

6 
I thought there was too much inconsistency in 

this system 
☐ ☐ ☐ ☐ ☐ 

7 
I would imagine that most people would learn 

to use this system very quickly 
☐ ☐ ☐ ☐ ☐ 

8 I found the system very cumbersome to use ☐ ☐ ☐ ☐ ☐ 

9 I felt very confident using the system ☐ ☐ ☐ ☐ ☐ 

10 
I needed to learn a lot of things before I could 

get going with the system 
☐ ☐ ☐ ☐ ☐ 

11 I found the system to be visually appealing ☐ ☐ ☐ ☐ ☐ 

12 
I found many interface elements and 

descriptions to be misleading 
☐ ☐ ☐ ☐ ☐ 

13 
I thought the help messages made it easier to 

understand and use the system  
☐ ☐ ☐ ☐ ☐ 

14 
I found it very difficult to produce good results 

with the provided tools 
☐ ☐ ☐ ☐ ☐ 

15 
I think that there are many practical 

applications for the system 
☐ ☐ ☐ ☐ ☐ 

16 
I personally would not find much use for the 

system 
☐ ☐ ☐ ☐ ☐ 

 

(Optional) Specific parts/aspects of the system I particularly liked:  

 

 

(Optional) Specific parts/aspects of the system I did not like: 

 

 

(Optional) Other comments: 

A. Questionnaire
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Participant ID: ______ A Tool for Interactive Segmentation and Manipulation                       Date: ____/____/____ 
                              Of 3D Reconstructed Scenes  

This questionnaire is based on the System Usability Scale (SUS), which was developed by John Brooke while working at Digital Equipment 
Corporation. © Digital Equipment Corporation, 1986. 

 

PREPARE 
 

 

Instructions: For each of the following statements, mark one box that best describes your reactions to the PREPARE stage of the used system. If 
you haven’t used a mentioned aspect of the system, just skip to the next row. 
 

#  
1 – Strongly 

Disagree 
2 3 4 

5 – Strongly 
Agree 

1 
I knew exactly what each of the different 

interface elements did 
☐ ☐ ☐ ☐ ☐ 

2 
I found the screen to be unnecessarily 

cluttered  
☐ ☐ ☐ ☐ ☐ 

3 I found this stage to be visually appealing ☐ ☐ ☐ ☐ ☐ 

4 
I would have liked to be able to adjust each 
one of the three space dimensions (height, 

width, depth) independently 
☐ ☐ ☐ ☐ ☐ 

5 
I felt like the options before starting my scan 

were sufficient 
☐ ☐ ☐ ☐ ☐ 

 

(Optional) I found the following tasks in the PREPARE stage too difficult or cumbersome (Explain why): 

 

 

(Optional) Specific parts/aspects of the PREPARE stage I did not like: 

 

 

(Optional) Specific parts/aspects of the PREPARE stage I particularly liked:  

 

 

(Optional) Other comments: 
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Corporation. © Digital Equipment Corporation, 1986. 

 
SCAN 

 

 

Instructions: For each of the following statements, mark one box that best describes your reactions to the SCAN stage of the used system. If 
you haven’t used a mentioned aspect of the system, just skip to the next row. 
 

#  
1 – Strongly 

Disagree 
2 3 4 

5 – Strongly 
Agree 

1 
I knew exactly what each of the different 

interface elements did 
☐ ☐ ☐ ☐ ☐ 

2 
I found the screen to be unnecessarily 

cluttered 
☐ ☐ ☐ ☐ ☐ 

3 I found this stage to be visually appealing ☐ ☐ ☐ ☐ ☐ 

4 I had to reset often due to scanning errors ☐ ☐ ☐ ☐ ☐ 

5 
I liked the placement of the RESET and DONE 

buttons 
☐ ☐ ☐ ☐ ☐ 

6 
I found correctly following the instructions in 

this stage very difficult 
☐ ☐ ☐ ☐ ☐ 

7 I had fun scanning the scene ☐ ☐ ☐ ☐ ☐ 

 

(Optional) I found the following tasks in the SCAN stage too difficult or cumbersome (Explain why): 

 

 

(Optional) Specific parts/aspects of the SCAN stage I did not like: 

 

 

(Optional) Specific parts/aspects of the SCAN stage I particularly liked:  

 

 

(Optional) Other comments: 
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This questionnaire is based on the System Usability Scale (SUS), which was developed by John Brooke while working at Digital Equipment 
Corporation. © Digital Equipment Corporation, 1986. 

 
PLANE SEGMENTATION 

 

 

Instructions: For each of the following statements, mark one box that best describes your reactions to the PLANE SEGMENTATION stage of the 
used system. If you haven’t used a mentioned aspect of the system, just skip to the next row. 
 

#  
1 – Strongly 

Disagree 
2 3 4 

5 – Strongly 
Agree 

1 
I knew exactly what each of the different 

interface elements did 
☐ ☐ ☐ ☐ ☐ 

2 
I found the screen to be unnecessarily 

cluttered 
☐ ☐ ☐ ☐ ☐ 

3 I found this stage to be visually appealing ☐ ☐ ☐ ☐ ☐ 

4 
I was not sure what I was supposed to do at 

the beginning of this stage 
☐ ☐ ☐ ☐ ☐ 

4 
It was easy to improve the highlighted area by 

adjusting the thickness and smoothness  
☐ ☐ ☐ ☐ ☐ 

5 
I had to reject multiple suggestions before a 

correct plane was highlighted 
☐ ☐ ☐ ☐ ☐ 

6 
I liked the placement of the different interface 

elements 
☐ ☐ ☐ ☐ ☐ 

 

(Optional) I found the following tasks in the PLANE SEGMENTATION stage too difficult or cumbersome (Explain why): 

 

(Optional) Specific parts/aspects of the PLANE SEGMENTATION stage I did not like: 

 

(Optional) Specific parts/aspects of the PLANE SEGMENTATION stage I particularly liked:  

 

(Optional) Other comments: 
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OBJECT SEGMENTATION 

 

 

Instructions: For each of the following statements, mark one box that best describes your reactions to the OBJECT SEGMENTATION stage of 
the used system. If you haven’t used a mentioned aspect of the system, just skip to the next row. 
 

#  
1 – Strongly 

Disagree 
2 3 4 

5 – Strongly 
Agree 

1 
I knew exactly what each of the different 

interface elements did 
☐ ☐ ☐ ☐ ☐ 

2 
I found the screen to be unnecessarily 

cluttered 
☐ ☐ ☐ ☐ ☐ 

3 I found this stage to be visually appealing ☐ ☐ ☐ ☐ ☐ 

4 
It was difficult to get good results with the 

provided segmentation methods 
☐ ☐ ☐ ☐ ☐ 

5 
I could easily distinguish the differently 

coloured objects in the scene 
☐ ☐ ☐ ☐ ☐ 

6 
I needed to change several parameters in 

order to get a good result 
☐ ☐ ☐ ☐ ☐ 

 

(Optional) I found the following tasks in the OBJECT SEGMENTATION stage too difficult or cumbersome (Explain why): 

 

 

(Optional) Specific parts/aspects of the OBJECT SEGMENTATION stage I did not like: 

 

 

(Optional) Specific parts/aspects of the OBJECT SEGMENTATION stage I particularly liked:  

 

 

(Optional) Other comments: 
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Participant ID: ______ A Tool for Interactive Segmentation and Manipulation                       Date: ____/____/____ 
                              Of 3D Reconstructed Scenes  

This questionnaire is based on the System Usability Scale (SUS), which was developed by John Brooke while working at Digital Equipment 
Corporation. © Digital Equipment Corporation, 1986. 

 
PLANE CUT SEGMENTATION 

 

 

Instructions: For each of the following statements, mark one box that best describes your reactions to the PLANE CUT SEGMENTATION stage 
of the used system. If you haven’t used a mentioned aspect of the system, just skip to the next row. 
 

#  
1 – Strongly 

Disagree 
2 3 4 

5 – Strongly 
Agree 

1 
I knew exactly what each of the different 

interface elements did 
☐ ☐ ☐ ☐ ☐ 

2 
I found the screen to be unnecessarily 

cluttered 
☐ ☐ ☐ ☐ ☐ 

3 I found this stage to be visually appealing ☐ ☐ ☐ ☐ ☐ 

4 
I feel like the plane cut segmentation step is 

unnecessary 
☐ ☐ ☐ ☐ ☐ 

5 
I found it easy to correctly position the cut 

plane 
☐ ☐ ☐ ☐ ☐ 

6 
I thought that adjusting the plane rotation was 

too difficult 
☐ ☐ ☐ ☐ ☐ 

7 
The blue and green colours before cutting 

helped me get a good segmentation 
☐ ☐ ☐ ☐ ☐ 

8 
I had to reset a few times before I got 

satisfying results 
☐ ☐ ☐ ☐ ☐ 

 

(Optional) I found the following tasks in the PLANE CUT SEGMENTATION stage too difficult or cumbersome (Explain why): 

 

(Optional) Specific parts/aspects of the PLANE CUT SEGMENTATION stage I did not like: 

 

(Optional) Specific parts/aspects of the PLANE CUT SEGMENTATION stage I particularly liked:  

 

(Optional) Other comments: 
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This questionnaire is based on the System Usability Scale (SUS), which was developed by John Brooke while working at Digital Equipment 
Corporation. © Digital Equipment Corporation, 1986. 

 
PROCESS 

 

 

Instructions: For each of the following statements, mark one box that best describes your reactions to the PROCESS stage of the used system. 
If you haven’t used a mentioned aspect of the system, just skip to the next row. 
 

#  
1 – Strongly 

Disagree 
2 3 4 

5 – Strongly 
Agree 

1 
I knew exactly what each of the different 

interface elements did 
☐ ☐ ☐ ☐ ☐ 

2 
I found the screen to be unnecessarily 

cluttered 
☐ ☐ ☐ ☐ ☐ 

3 I found this stage to be visually appealing ☐ ☐ ☐ ☐ ☐ 

4 
I was able to close all the holes I wanted to 

close 
☐ ☐ ☐ ☐ ☐ 

5 
I had to reset a few times before I got 

satisfying results 
☐    ☐ 

6 
I had no difficulties selecting the correct 

parameters 
☐ ☐ ☐ ☐ ☐ 

 

(Optional) I found the following tasks in the PROCESS stage too difficult or cumbersome (Explain why): 

 

 

(Optional) Specific parts/aspects of the PROCESS stage I did not like: 

 

 

(Optional) Specific parts/aspects of the PROCESS stage I particularly liked:  

 

 

(Optional) Other comments: 
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This questionnaire is based on the System Usability Scale (SUS), which was developed by John Brooke while working at Digital Equipment 
Corporation. © Digital Equipment Corporation, 1986. 

 
MANIPULATE 

 

 

Instructions: For each of the following statements, mark one box that best describes your reactions to the MANIPULATE stage of the used 
system. If you haven’t used a mentioned aspect of the system, just skip to the next row. 
 

#  
1 – Strongly 

Disagree 
2 3 4 

5 – Strongly 
Agree 

1 
I knew exactly what each of the different 

interface elements did 
☐ ☐ ☐ ☐ ☐ 

2 
I found the screen to be unnecessarily 

cluttered 
☐ ☐ ☐ ☐ ☐ 

3 I found this stage to be visually appealing ☐ ☐ ☐ ☐ ☐ 

4 
I had problems figuring out how to navigate 

the scene 
☐ ☐ ☐ ☐ ☐ 

5 
I thought that navigating the scene with 

physical movement felt intuitive and natural 
☐ ☐ ☐ ☐ ☐ 

6 
I would have preferred other navigation 

methods (e.g. orbital cameras via keyboard 
and mouse) 

☐ ☐ ☐ ☐ ☐ 

7 
I thought that scaling an object to the desired 

size was easy 
☐ ☐ ☐ ☐ ☐ 

8 
I felt like it was difficult to adjust an object’s 

rotation the way I wanted 
☐ ☐ ☐ ☐ ☐ 

9 
I thought that duplicating objects was intuitive 

and easy 
☐ ☐ ☐ ☐ ☐ 

10 
I did not like the way objects are deleted (drag 

and drop in the trash bin) 
☐ ☐ ☐ ☐ ☐ 

11 I found it easy to get the results I wanted ☐ ☐ ☐ ☐ ☐ 

12 
The application failed to track my position and 
orientation correctly several times during this 

stage 
☐ ☐ ☐ ☐ ☐ 

13 
I had fun manipulating and navigating the 

scene in this stage 
☐ ☐ ☐ ☐ ☐ 
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This questionnaire is based on the System Usability Scale (SUS), which was developed by John Brooke while working at Digital Equipment 
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(Optional) I found the following tasks in the MANIPULATE stage too difficult or cumbersome (Explain why): 

 

 

(Optional) Specific parts/aspects of the MANIPULATE stage I did not like: 

 

 

(Optional) Specific parts/aspects of the MANIPULATE stage I particularly liked:  

 

 

(Optional) Other comments: 
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PROTOTYPE SETUP 

 

Instructions: For each of the following statements, mark one box that best describes your reactions to the hardware setup of the used system. 
If you haven’t used a mentioned aspect of the system, just skip to the next row. 
 

#  
1 – Strongly 

Disagree 
2 3 4 

5 – Strongly 
Agree 

1 I felt like the device was too heavy ☐ ☐ ☐ ☐ ☐ 

2 
I had no problems interacting with the 

touchscreen 
☐ ☐ ☐ ☐ ☐ 

3 
I had troubles simultaneously holding the 

prototype and interacting with the touchpad  
☐ ☐ ☐ ☐ ☐ 

4 
The overall experience while using the device 

was pleasant 
☐ ☐ ☐ ☐ ☐ 

5 
I feel like the hardware setup needs much 

improvement 
☐ ☐ ☐ ☐ ☐ 

 

(Optional) I found the following aspects of the setup too difficult or cumbersome (Explain why): 

 

 

(Optional) Specific parts/aspects of the hardware setup I did not like: 

 

 

(Optional) Specific parts/aspects of the hardware setup I particularly liked:  

 

 

(Optional) Other comments: 
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