Bibliographic Metadata

Title
Atom-Photon Interactions in Slow-Light Waveguide QED / von Giuseppe Calajo
Additional Titles
Atom-Photon Interactions in Slow-Light Waveguide QED
AuthorCalajo, Giuseppe
Thesis advisorRabl, Peter
PublishedWien, 2019
Description190 Seiten
Institutional NoteTechnische Universität Wien, Dissertation, 2019
Annotation
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprueft
LanguageEnglish
Document typeDissertation (PhD)
Keywords (DE)Quantenoptik / Wellenleiter QED
Keywords (EN)Quantum optics / waveguide QED
URNurn:nbn:at:at-ubtuw:1-120985 Persistent Identifier (URN)
Restriction-Information
 The work is publicly available
Files
Atom-Photon Interactions in Slow-Light Waveguide QED [13.35 mb]
Links
Reference
Classification
Abstract (German)

Das Gebiet der Wellenleiterquantenelektrodynamik (QED) befasst sich mit der Kopplung von Atomen oder Emittern in Festkörpern an das Lichtfeld in einem eindimensionalen optischen Leiter. Durch den transversalen Einschluss der emittierten Photonen können diese langreichweitige Wechselwirkungen zwischen den einzelnen Quantensystemen vermitteln, was diese Architektur für die Untersuchung quantenoptischer Phänomene und für die Realisierung zukünftiger Quantennetzwerke besonders interessant macht. In dieser Doktorarbeit werden verschiedene neue Aspekte der Wechselwirkung zwischen Licht und Atomen in nanophotonischen Wellenleitern theoretisch untersucht. Diese Arbeiten adressieren dabei vor allem ein neues Regime der "Wellenleiter-QED mit langsamen Photonen", in dem die maximale Gruppengeschwindigkeit im Inneren des Wellenleiters, im Vergleich zum freien Raum, erheblich reduziert ist. Solche Bedingungen ergebenen sich, z.B., in der Nähe von Bandkanten in photonischen Kristallen und führen zu einer extremen Verstärkung der Atom-Licht-Kopplung. In dieser Dissertation werden zunächst die Eigenschaften gebundener Zustände zwischen Atomen und Photonen, die die neuen Elementaranregungen dieses Systems darstellen, untersucht. Dabei werden zum ersten Mal auch die Bindung von mehreren Photonen an ein einzelnes Atom analysiert und die sich daraus ergebenden linearen und nichtlinearen spektralen Charakteristika dieser "multiphoton dressed states" beschrieben. Des Weiteren wird der interessante Fall betrachtet, in dem sich die Atome mit einer Geschwindigkeit bewegen, die mit der reduzierten Lichtgeschwindigkeit der Photonen vergleichbar ist. Unter diesen Vorraussetzungen beobachtet man eine von der Bewegung induzierten Richtungsabhängigkeit der emittierten Photonen und das Auftreten von nicht-perturbativen Effekten in der Atom-Licht-Kopplung. Diese Anomalien ergeben sich aus der lang anhaltenden Wechselwirkung mit den emittierten Cherenkov-Photonen, welche sich mit gleicher Geschwindigkeit wie die Atom entlang des Wellenleiters bewegen. Als Gegenstück dazu werden in einem weiterem Projekt dann die Auswirkungen von starken akustischen Wellen auf die Emissionseigenschaften von statischen Atomen analysiert. Dabei findet man, dass, im Regime des langsamen Lichts, diese akustische Wellen die Photon im Wellenleiter "mitziehen" können und damit sowohl die Richtung als auch die Form der emittierten Lichtpakete beeinflussen. Diese Effekte können direkt für die Übertragung von Quantenzuständen in photonischen Netzwerken ausgenützte werden.

Abstract (English)

Waveguide quantum electrodynamics (QED) refers to a scenario where single or multiple atoms or solid-state emitters are coupled to a one dimensional optical channel. The efficient interaction between individual quantum systems with photons that are confined along a single direction makes this setting particularly interesting for investigating quantum optical phenomena and for future quantum networking applications. In this thesis, we go beyond the standard scenario and address the new regime of \qq Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. In this thesis we analyze the linear and nonlinear spectral features associated with singleand multi-photon dressed states and we describe how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. We then consider a narrow-bandwidth waveguide coupled to atoms that are moving with velocities comparable to the reduced speed of light. Under these conditions, we observe a velocity-induced directionality and the emergence of effective divergencies in the photonic density of states. This anomalous interaction between atoms and co-propagating Cherenkov photons gives rise to a range of novel phenomena and non-perturbative effects in the emission of photons and the resulting photon-mediated interactions between moving atoms. Finally, we consider the coupling of multiple emitters to a slow-light waveguide in the presence of propagating acoustic waves. In this case, the strong index modulations induced by such waves can substantially modify the effective photonic density of states and thereby influence the strength, the directionality, as well as the overall characteristic of photon emission and absorption processes. The generalization of these control techniques to two dimensional photonic lattices creates a new scenario for chiral quantum optics, where nonreciprocal light-matter interactions are established along a single direction and with an extremely slow radial decay. These effect provide a versatile tool for implementing various quantum communication protocol in large-scale photonic networks.

Stats
The PDF-Document has been downloaded 2 times.