Titelaufnahme

Titel
Pricing financial derivatives using Brownian motion and a Gaussian Markov alternative to fractional Brownian motion / von Miriam Skorupa
Verfasser / Verfasserin Skorupa, Miriam
Begutachter / BegutachterinGerhold, Stefan
ErschienenWien, 2018
Umfang90 Seiten : Illustrationen, Diagramme
HochschulschriftTechnische Universität Wien, Diplomarbeit, 2018
SpracheEnglisch
DokumenttypDiplomarbeit
Schlagwörter (DE)Gauss Markov Prozess / fraktionale Brownsche Bewegung / Hurst Index / Optionspreisberechnung / implizite Volatilität / Simulation
Schlagwörter (EN)Gaussian Markov process / fractional Brownian motion / Hurst index / option pricing / implied volatility / simulation
URNurn:nbn:at:at-ubtuw:1-112471 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Pricing financial derivatives using Brownian motion and a Gaussian Markov alternative to fractional Brownian motion [0.88 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Englisch)

This thesis examines different models for pricing financial options. Instead of using Brownian motion as the underlying process, as is done in the Black-Scholes model, fractional Brownian motion is introduced and discussed. Then the Dobri-Ojeda process, a Gaussian Markov alternative, and a modified version of it will be presented as an alternative to fractional Brownian motion, based on the analysis of Conus and Wildman. In contrast to Brownian motion, fractional Brownian motion and its alternatives incorporate past dependencies, using the Hurst index. The Black-Scholes and the Conus-Wildman model will be tested on options of the S&P 500 index, where the implied volatility and the implied Hurst index are estimated. The pricing accuracy of the two models will be compared using the obtained estimators. We find that the Conus-Wildman model estimates option prices better than the Black-Scholes model, concluding that past dependencies matter and should be incorporated when pricing options.

Statistik
Das PDF-Dokument wurde 22 mal heruntergeladen.