Bibliographic Metadata

Title
Optoelectronic circuits in 40nm CMOS technology / von Mohammed Hassan
AuthorHassan, Mohammed
CensorZimmermann, Horst
Published2015
DescriptionXVII, 93 S. : Ill., graph. Darst.
Institutional NoteWien, Techn. Univ., Diss., 2015
Annotation
Zsfassung in dt. Sprache
LanguageEnglish
Document typeDissertation (PhD)
Keywords (EN)CMOS / Transimpedance amplifier / Laser Diode Driver / optical links / transmitter / receiver
URNurn:nbn:at:at-ubtuw:1-109361 Persistent Identifier (URN)
Restriction-Information
 The work is publicly available
Files
Optoelectronic circuits in 40nm CMOS technology [4.24 mb]
Links
Reference
Classification
Abstract (German)

Das ansteigende Interesse an Hochgeschwindigkeitsnetzwerken und Kommunikation mit hohen Kapazitätsanforderungen animiert die Weiterentwicklung von preiswerten, optischen Übertragungssystemen. Die Tendenz solche hochintegrierbaren Übertragungssysteme anzuwenden, macht es wünschenswert optoelektronische Schaltungen wie Transimpedanzverstärker (TIAs) und Laserdiodentreiber (LDDs) in CMOS-Technologie zu entwerfen. Da diese Nanometer-CMOS-Technologie neue Herausforderungen bezüglich Design solcher Schaltungen mit sich bringt, wird weiterführende Forschung an neuen Schaltungstopologien wegen kleiner werdender Leistungsaufnahme und höherer Integrierbarkeit vorangetrieben. Diese Dissertation zeigt auf, dass in einer Nanometer-CMOS-Technologie mit einem TIA in der optischen Empfängereinheit und einem LDD in der optischen Sendeeinheit zwei essentielle Blöcke in einem typischen optischen Übertragungssystem entwickelt werden können. Ferner konzentriert sich diese Arbeit auf Vorschläge neuer Schaltungstopologien um Technologielimits zu überwinden und die Implementierung von kompakten und sparsamen TIAs und Hochvolt-LDDs zu ermöglichen. Die Schaltungen sind in einer standard 40nm CMOS-Technologie realisiert. Auf der Empfängerseite werden drei verschiedene, spulenlose TIAs präsentiert. Zu Messzwecken sind die TIAs in einer Kette von Spannungsverstärker mitsamt einem 50 - Ausgangstreiber integriert. Der erste TIA ist als push-pull Stromspiegel (PPCM) mit einem Rückkopplungswiderstand ausgeführt. Messergebnisse zeigen einen Wirkungsgrad von 0.324 mW/Gb/s bei einer Versorgungsspannung von 1.2V und einer maximale Datenrate von 10Gb/s. Das gesamte Design benötigt eine aktive Fläche von 51x96 µm2. Der zweite TIA wurde als 'common drain' aktives Feedback (CDAF) verwirklicht. Der Wirkungsgrad liegt laut Messungen bei 0.3 mW/Gb/s. Die Versorgungsspannung beträgt 1.2V und ergibt eine maximale Datenrate von 8Gb/s. Die TIA-Schaltung benötigt eine aktive Fläche von 33x101 µm2. Im Vergleich mit dem heutigen Stand der Technik zeigen alle TIAs einen konkurrenzfähigen Wirkungsgrad bei minimaler Chipfläche. Seitens des Senders wurde ein Hochvolt-LDD implementiert. Um sowohl eine hohe Aussteuerung von bis zu 80mA, als auch einen verlässlichen Betrieb unter Hochvoltbedingungen gewährleisten zu können, wurde eine komplett differenzielle, 'open drain' - Doppelkaskodenstruktur verwendet. Zur Stromeinsparung wird der LDD mit 1.1V für die Vorstufe und mit 5V für die Endstufe versorgt. Die Messergebnisse zeigen eine Sprungantwort mit Anstiegs- bzw. Abfallzeiten (10% - 90%) von 209ps bzw. 153ps. Dadurch kann der LDD mit einer Datenrate von 3Gb/s betrieben werden.

Abstract (English)

The rapidly increasing interest in high speed access networks and large capacity communication encouraged the advancement of low-cost optical transmission systems. The tendency to design highly integrable and low cost broadband optical systems, makes it desirable to realize optoelectronic circuits such as transimpedance amplifiers (TIAs) and laser diode drivers (LDDs) in CMOS technology. Since advanced CMOS technology introduces challenges regarding the design of such circuits, the need of lower power dissipation and higher integrability motivates further research on new circuit topologies. This dissertation shows that nanometer CMOS technology can be used to design two of the most vital blocks in a typical optical transmission system, namely, the TIA in the optical receiver and LDD in the optical transmitter. Main focus of this thesis is to propose new topologies to overcome the technology limitations and allow the implementation of low power compact TIAs and a high voltage LDD. The circuits are all designed in standard 40nm CMOS technology. On the receiver side, three novel different inductorless TIAs are presented. For measurement purposes, the TIAs are integrated with a chain of voltage amplifiers and a 50 - output buffer. The first TIA is implemented using a push pull current mirror (PPCM) with a feedback resistor. Experimental results show that this TIA achieves a power efficiency of 0.324 mW/Gb/s from a 1.2V supply at a maximum data rate of 10Gb/s. The whole design occupies an active area of 51x96 µm2. The second TIA is implemented using a common drain active feedback (CDAF). Measurement results show that this TIA acquires a power efficiency of 0.3 mW/Gb/s from a 1.2V supply at a maximum data rate of 8Gb/s. The full design occupies an active area of 33x101 µm2. The third TIA introduces a regulated cascode TIA with an active feedback (RGCAF). Experimental results show that the TIA achieves a power e_ciency of 0.24mW/Gb/s m from a 1.2V supply at a maximum data rate of 10Gb/s. The whole design occupies an active area of 44x89 µm2. In comparison with the state-of-the-art the proposed TIAs show a competitive power efficiency while occupying minimum chip area. On the transmitter side, a high voltage LDD is implemented. An open drain double cascode fully differential structure is used to provide a high modulation current of up to 80mA and to guarantee a reliable operation of the devices under high voltage condition. To reduce power consumption, the LDD is supplied by 1.1V for the pre-driver and 5V for the output stage. Measurement results show a step response with rise and fall times (10%- 90%) of 209ps and 153ps, respectively. Therefore the LDD can operate at a data rate of 3Gb/s.

Stats
The PDF-Document has been downloaded 11 times.