Titelaufnahme

Titel
Ein mobiles Waferhorden-Handhabungssystem für 24-Stunden-Betrieb im Reinraum unter Menschen / von Peter Henöckl
Weitere Titel
FIRE - Factory Integrated Robotic Effector
VerfasserHenöckl, Peter
Begutachter / BegutachterinVincze, Markus
GutachterZillich, Michael
ErschienenWien, 2017
Umfang197 Seiten
HochschulschriftTechnische Universität Wien, Diplomarbeit, 2017
Anmerkung
Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprueft
Abweichender Titel nach Übersetzung der Verfasserin/des Verfassers
SpracheDeutsch
DokumenttypDiplomarbeit
Schlagwörter (DE)moibler Roboter / Reinraum / Manipulator / Beladung
Schlagwörter (EN)mobile robot / clean room / manipulator / laoding
URNurn:nbn:at:at-ubtuw:1-101919 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Ein mobiles Waferhorden-Handhabungssystem für 24-Stunden-Betrieb im Reinraum unter Menschen [11.79 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

In der stark vom Wettbewerb bestimmten Halbleiterindustrie zählen niedrige Produktionskosten zu den Hauptzielen eines Unternehmens. Dazu gibt es zwei unterschiedliche Herangehensweisen, die Verlagerung der Produktion in Billiglohnländer oder eine Erhöhung des Automatisierungsgrades zur Steigerung des Outputs pro Mann-Stunde. Diese Arbeit widmet sich der zweiten Variante. Ein erschwingliches System zur Automatisierung vorhandener Produktionsstandorte unter minimalen Abänderungen an bestehenden Produktionsabläufen und Fokus auf Qualität, Effizienz und Effektivität wird angestrebt. Zur Erreichung der vorgestellten Ziele werden automatisierte Lösungen sowohl für maschineninterne Prozessabläufe als auch Be- und Entladung der Maschinen benötigt. Der Fokus dieser Arbeit liegt auf der Vollständigkeit der Automatisierung in der Halbleiterfabrik.^ ^Da Prozessabläufe in Maschinen weitgehend automatisiert sind und Anlagen für 12-Zoll-Wafer standardisierte Beladeschnittstellen (Loadports) aufweisen, besteht die Aufgabe der Be- und Entladung von 8-Zoll-Anlagen. Aufgrund einer über jahrzehnte historisch gewachsenen Produktion variieren hier die Loadports in Höhe, Winkel und Zugänglichkeit und haben unterschiedliche Öffnungen und Türmechanismen. Automatisiertes Be- und Entladen dieser Vielfalt an Maschinen kann durch das hier vorgestellte mobile System FIRE (Factory Integrated Robotic Effector) erfolgen. Der Ablauf von Prozessende an Maschine N bis Prozessstart an Maschine N+1 kann in die drei folgenden Schritte unterteilt werden: 1. Unter Verwendung von FIRE wird eine Horde mit Wafern von der Maschine genommen, in eine Box gestellt und dabei auf einer Schnittstelle zu einem Transportsystem platziert. 2.^ Das Transportsystem, beispielsweise ein Operator, bringt die Box mit Wafern zu einem Puffer nahe der für den nächsten Prozess benötigten Maschine. 3. Ein FIRE an dieser Maschine nimmt die Horde aus der Box vom Puffer und platziert sie am Loadport der Anlage. Um den beschriebenen Anforderungen gerecht zu werden weist das hier vorgestellte System folgende Eigenschaften auf. Eine omnidirektionale Plattform aus vier Fahr-Dreh-Modulen erlaubt ein Navigieren in den engen Reinraumgängen. Ein an einem "Power Home" austauschbarer Akkumulator stellt eine Stromversorgung für den 24-Stunden-Betrieb im Reinraum sicher. Ein Roboterarm mit insgesamt acht Freiheitsgraden und Greifmechanismus erlaubt Handhabungsvorgänge unter starkem Platzmangel im Roboterarbeitsraum. Ein autonomes, mobiles System zur Handhabung von Wafern im Reinraum im selben Arbeitsraum mit dem Menschen für den 24-Stunden-Betrieb an sieben Tagen der Woche beinhaltet eine Reihe innovativer Lösungen.^ Besonders hervorstechend ist jedoch die hohe Positioniergenauigkeit des TCP (Tool Center Point) des Roboterarms. Auf einem Gebiet von 130000 Millimetern mal 215000 Millimetern wird eine Wiederholgenauigkeit von 0,2 Millimetern angestrebt. Diese Präzision wird durch eine Kombination von drei unterschiedlichen Sensorsystemen erreicht. Grobpositionierung erfolgt über ein im Reinraum vorhandenes IPS (Indoor Positioning System), Basisnavigation über Laser-LIDAR-Scanner [TBF06] und durch Ermittlung der Feinposition über Lasersensoren erfolgt eine Adaption der Roboterarmtrajektorie. In dieser Arbeit wird ein umsetzbares Gesamtsystem mit Vorschlägen zur Einbindung in der Produktion bei Infineon vorgestellt.

Zusammenfassung (Englisch)

Given the highly competitive nature of the semiconductor industry, one of the main objectives of an enterprise is maintaining low manufacturing costs. There are two diverging policies to cope with the competition pressure: either outsource production to low-wage countries or increase the degree of automation to enhance the output per man-hour. This paper describes the projectâ s aim to stimulate the latter by creating an affordable way of automating existing production sites with a minimum impact on the manufacturing plantâ s established processes while concentrating on manufacturing effectiveness and productivity [Hau07]. To achieve the goals above, both internal machine sequences and wafer loading/ unloading procedures must be automated, creating a continuous process flow.^ ^Integrating the latest machines processing wafers with a diameter of twelve inches into a fully automated factory can be done using state of the art solutions as their load ports are standardized and optimized for the integration of conveying systems. However, due to a historically grown production site, most of the load ports for eight inch machines differ in height, angle and accessibility, and have various apertures and door mechanisms. The aim of automatically controlled load and unload sequences is achieved by the mobile Factory Integrated Robotic Effector (FIRE). The succession from a finished process at machine N to the start of the process at machine N+1 can be divided into three subtasks: 1. Using FIRE, the carrier is unloaded, boxed, and thereby placed on an interface to the transportation system, called the equipment buffer. 2. The transportation system (e.g. an operator) conveys the box to another equipment buffer close to the subsequent machine. 3.^ A FIRE at the machine takes the carrier out of the box in the equipment buffer and positions it on the machineâ s load port. To meet the demands given before, a system for handling wafer cassettes should fulfill the subsequent requirements. To easily overcome the narrow aisles in the cleanroom environment the suggested robot system uses an omnidirectional platform composed of four motor-driven omni-drive modules. The power necessary is delivered by a rechargeable battery. To guarantee a continuous production 24 hours a day, the system is equipped with an automatic battery-changing mechanism at a â ‰power homeâ . To achieve the agility required for loading within narrow confines, kinematic redundancy is exploited by the systemâ s arm via eight degrees of freedom: seven provided by the robot-arm itself and an additional one added by extending the robotgripper with a modulus of torsion.^ As an autonomous, mobile wafer-handling cleanroom robot sharing the workspace with humans operating 24/7 the FIRE-handling is intrinsically innovative. Regardless of the systemâ s extensive portfolio of innovative solutions, the accurate positioning of the mobile robotâ s tool centre point is truly intrepid. It should work with a repeatability of 0.2 mm over an area of 130000 mm by 215000 mm. The precision of the advocated concept is attained by using a combination of three different sensor systems. The rough positioning is achieved by using an IPS (Indoor Positioning System) currently used to locate wafer boxes and assist the operator, wirelessly providing process information on a box-mounted display. It is used to supply the main laser navigation on the vehicle with data constraining the possible position to a clearly defined area.^ The laser navigation algorithm [TBF06] can achieve an accuracy of  15 mm including the heading uncertainty to reliably position the FIRE-vehicle in front of the machine. The meticulous precision is obtained by laser precision sensors to fine-tune the pre-programmed positions of the robot-arm. Finally a possible way of implementation is presented.