Titelaufnahme

Titel
Collision recovery receivers for RFIDs / Jelena Kaitović
VerfasserKaitović, Jelena
Begutachter / BegutachterinRupp, Markus
ErschienenWien, 2015
Umfang112 Seiten : Diagramme
HochschulschriftTechnische Universität Wien, Dissertation, 2015
Anmerkung
Zusammenfassung in deutscher Sprache
SpracheEnglisch
Bibl. ReferenzOeBB
DokumenttypDissertation
Schlagwörter (DE)RFID / Kollisionsvermeidung
Schlagwörter (EN)RFID / Collision recovery
URNurn:nbn:at:at-ubtuw:1-79414 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Collision recovery receivers for RFIDs [1.16 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

Radio Frequency Identification (RFID) ist eine neue Technologie welche es erlaubt, die Identität eines Chips (Tag), das an einem Objekt oder einer Person befestigt ist, über Funk zu übertragen. In meiner Arbeit fokussiere ich mich auf Ultra High Frequency (UHF) Tags, deren übertragung in der Medium Access Control Schicht (MAC) durch ein sogenanntes Frame Slottet Aloha (FSA) zugeordnet wird. In dieser Dissertation schlage ich vor, mehrfache Antennen beim Lesegerät (Reader) zu verwenden, um Kollisionen aufzulösen. Durch Ausnutzen der Tatsache, dass ein Tagsignal reellwertig ist, während alle anderen Signalkomponenten komplexwertig sind, teile ich die Signale in ihren Real- und Imaginärteil auf, wodurch ich Kollisionen unter perfekter Kanalkenntnis auflösen kann, die zweimal so viele Tags enthalten wie Empfangsantennen am Reader vorhanden sind. Weiters habe ich eine Modifikation der Tagsignale empfohlen, indem ein spezieller Anteil hinzugefügt wird, der die Kanalschätzung erleichtert. Die von mir empfohlene Methode weist exzellente Ergebnisse unter perfekter Kanalkenntnis auf. Allerdings entsteht durch die beschränkte Menge von erzeugten Sequenzen ein neues Problem. Ich habe die Verteilung der zusätzlichen Sequenzen in der Tagpopulation analysiert und darauf basierend habe ich unterschiedliche Kollisionssituationen untersucht. Ich habe eine zweistufige Kollisionsvermeidung vorgeschlagen, die zunächst alle Tags mit einfach auftretender Sequenz per Slot entfernt. Bei auftretenden Paaren von gleichen Sequenzen wird die Kollision durch Projektion in den orthogonalen Unterraum der Interferenz aufgelöst. Die vorgeschlagene Methode verbessert die Kollisionsvermeidung und erhöht weiterhin den Durchsatz des Systems. Darüber hinaus habe ich in dieser Arbeit den Einfluss verschiedener Parameter auf den Durchsatz untersucht und fand das Maximum des theoretisch erwarteten Durchsatzes für Empfänger mit verschiedenen Kollisionsvermeidungsfaktoren und unterschiedlichen Empfängerarchitekturen. Weiters habe ich die Verwendung von zusätzlichen Ortsfiltern vorgeschlagen, um noch näher an die theoretisch vorausgesagten Maxima zu gelangen. Die wesentliche Idee besteht darin, sich auf verschiedene Taggruppen durch unterschiedliche sektorielle Antennengewichte zu fokussieren. Auf diese Weise werden Tagsignale verstärkt oder gedämpft, je nach Empfangswinkel. So habe ich einen einfachen Beamformer per FFT und einen aufwendigeren durch Eigenfilter entwickelt. Die dadurch erhaltenen Resultate zeigen, dass der Reader robuster wird. Zusätzlich habe ich eine halb-analytische Formel hergeleitet mit der optimale Rahmenl ängen berechnet werden können. Die Formel beinhaltet Eigenschaften der Raumfilter und der Durchsatzcharakteristika. Auf diesem Wege konnten weitere Optimierungen erzielt werden. Darüber hinaus habe ich auf Modifikationen der Protokolle hingewiesen, die nötig sind, um die Kollisionsvermeidung zu nutzen und zwei Acknowledgement Schemata vorgeschlagen, die zur Kollisionsvermeidung Anwendung finden. Ich habe die Zeit vorausgesagt, die notwendig ist, die Tags erfolgreich im Readerbereich zu lesen. Dabei wurde der gesamte Leseprozess modelliert sowie auch die veränderten Slotlängen. Die erhaltenen Ergebnisse zeigen, dass die vorgeschlagenen Mehrfachantennensysteme zur Kollisionsvermeidung Tags in signifikant kürzerer Zeit identifizieren, was von großer Wichtigkeit bei zeitkritischen Anwendungen ist.

Zusammenfassung (Englisch)

Radio Frequency Identification (RFID) is a very fast emerging technology that wirelessly transmits the identity of a tag attached to an object or a person. It usually operates in a dense tag environment. My work is focused on passive Ultra High Frequency (UHF) tags whose transmission on the Medium Access Control (MAC) layer is scheduled by Framed Slotted Aloha (FSA). In this thesis, I propose the use of multiple antennas at the reader side in order to recover from collision. By exploiting the fact that a tag signal is real-valued while all other components of a received signal are complexed-valued, I have separated real and imaginary part and in that way I have achieved a recovery from a collision that contains a two times higher number of tags than the number of the receive antennas at the reader, under perfect channel knowledge. Furthermore, I have recommended a modification of a tag signal by an additional part that is specially designed to facilitate channel estimation. The recommended method provides excellent results in comparison to perfect channel knowledge. However, due to the constrained set of the designed sequences, a new issue arised. I have investigated the distribution of the additional sequence set within a tag population and depending on that, I have studied different collision scenarios. I have proposed a two phase collision recovery method that takes out all tags with a unique sequence per slot and if there is just one pair of tags with a common sequence left, such collision is resolved by projecting the signal constellation into the orthogonal subspace of the interference. The proposed method improves collision recovery and further increases the system throughput. Moreover, in this thesis I have studied the influence of several parameters on the system throughput, and I have found the maxima of the theoretically expected throughput for receivers with different collision recovery factors and for different receiver architectures. Furthermore, in order to approach to the theoretical maxima, I have proposed spatial filtering in postprocessing. The main intention is to focus separately on different groups of tags by applying different weights within sector postprocessing. In that way tag signals are attenuated or amplified depending on the angle of arrival. I have designed a simple beamformer with the weights modelled by an FFT algorithm and a more complex beamformer with an eigenfilter design. The obtained results show that the reader has become more robust. Additionally, I have derived a semi-analytical formula for calculating the optimal frame size. This formula incorporates properties of the spatial filter and throughput characteristics. In this way, further optimization of frame lengths is achieved. Furthermore, I have pointed out what modifications in the protocols are required in order to benefit from collision recovery and I have proposed two acknowledgement schemes, applicable for collision scenarios. I have calculated the time necessary to successfully read tags from the reader's area. In these calculations I have taken into account the complete read out process, and the modified slot durations. The obtained results demonstrate that the proposed multiantenna collision recovery reader identifies tags in significantly shorter time which is of a great importance for time-sensitive applications.