Titelaufnahme

Titel
Tensor grid methods for micromagnetic simulations / von Lukas Exl
VerfasserExl, Lukas
Begutachter / BegutachterinSchrefl, Thomas
Erschienen2014
Umfang178 S. : graph. Darst.
HochschulschriftWien, Techn. Univ., Diss., 2014
Anmerkung
Zsfassung in dt. Sprache
SpracheEnglisch
Bibl. ReferenzOeBB
DokumenttypDissertation
Schlagwörter (DE)Mikromagnetismus / Energieminimierung / Streufeld / Kronecker Produkt Repräsentation / Tensorformate / Niedrigrangapproximation von Tensoren / finite Elemente / FEM-BEM Kopplung / Nicht-uniforme schnelle Fourier Transformation
Schlagwörter (EN)micromagnetics / energy minimization / stray field / Kronecker product representation / tensor formats / low-rank approximation of tensors / finite elements / FEM-BEM coupling / non-uniform fast Fourier transform
Schlagwörter (GND)Mikromagnetismus / Simulation / Energie / Minimierung / Tensor / Numerisches Gitter / Kronecker-Produkt / Schnelle Fourier-Transformation
URNurn:nbn:at:at-ubtuw:1-73100 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Tensor grid methods for micromagnetic simulations [3.62 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

In dieser Arbeit werden einige neue numerische Methoden für mikromagnetische Simulationen entwickelt. Die vorgestellten Konzepte basieren alle auf der Darstellung der makroskopischen Magnetisierung auf Tensorgittern. Dabei dient die datenschwache Darstellung oder Approximation mittels Tensor Formate als Hauptmotiv. Viel Aufmerksamkeit ist der Berechnung des Streufeldes gewidmet. Eine neuartige Methode bestimmt das Demagnetisierungsfeld auf Tensorgittern mit datenschwacher Tensor Format Darstellung der Magnetisierungskomponenten. Kronecker Produkt Struktur des Streufeldoperators und der Hessematrix der totalen magnetischen freien Gibbs Energie wird gezeigt. Dies erlaubt die billige und effiziente Auswertung der Energie und des Gradienten für tensorstrukturierten Input. Desweiteren wird die beschriebene Methode mit Hilfe von Schneller Fourier Transformation beschleunigt. Ein detailierter Überblick über mikromagnetische Energieminimierung wird gegeben, welcher auch eine neue Variante der Methode des steilsten Abstiegs enthält. Darauf aufbauend wird Energieminimierung mit niedrig-rang Magnetisierung betrachtet. Ein sublinear skalierender Algorithmus wird vorgestellt, welcher auf Rang-k Updates beruht. Der Zugang adressiert die Berechnung von Gleichgewichtszuständen und Hysterese von großen ferromagnetischen Teilchen auf Tensorgittern. Um mikromagnetische Simulationen auf unstrukturierten finite Elemente Gittern zu adressieren, wird ein weiterer Streufeldalgorithmus vorgestellt, welcher auf nicht-uniformer Schneller Fourier Transformation beruht.

Zusammenfassung (Englisch)

This thesis is dedicated to computational micromagnetics, where several new numerical methods are developed. All concepts rely, at some point, on representation of the macroscopic magnetization on tensor grids. In this context, the data-sparse representation or approximation via tensor formats serves as a key motivation. Much attention is paid to the computation of the stray field. A novel method determines the demagnetizing field on a tensor grid with help of data-sparse tensor format representation of magnetization components. Kronecker product structure of the demagnetizing field operator is shown. Also, the Hessian of the discretized total magnetic Gibbs free energy permits a Kronecker product form. This allows cheap and efficient evaluation of the energy and computation of the gradient for tensor structured input. Furthermore, the described method is even accelerated with help of fast Fourier transform. A detailed overview of micromagnetic energy minimization is given, including a new method that is a variation of steepest descent. On this basis, energy minimization with structured tensor magnetization is considered. A sublinearly scaling low-rank algorithm is introduced, which relies on successive rank-k updates. The approach addresses the computation of equilibrium states and hysteresis of large ferromagnetic particles on rectangular grids. In order to address micromagnetic simulations on unstructured finite element meshes, a further novel demagnetizing field method, based on non-uniform fast Fourier transform, is developed.