Titelaufnahme

Titel
Alte und neue Ruinformeln und deren Implementierung / Engelbert Kegele
VerfasserKegele, Engelbert
Begutachter / BegutachterinHubalek, Friedrich
Erschienen2012
Umfang76 S. : graph. Darst.
HochschulschriftWien, Techn. Univ., Dipl.-Arb., 2012
SpracheDeutsch
DokumenttypDiplomarbeit
Schlagwörter (DE)Cramer-Lundberg-Modell / Ruinzeit / Rekursive berechnung / Zeitkomplexität
URNurn:nbn:at:at-ubtuw:1-46469 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Alte und neue Ruinformeln und deren Implementierung [0.64 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

In dieser Arbeit werden 5 verschiedene Ruinformeln hergeleitet und verglichen. Es wird dabei festgestellt, dass sie zwar gleiche Ergebnisse liefern aber je nach Ausgangslage besser/schlechter anwendbar (aufwand, genauigkeit) sind. Zwei Formeln ,die nach Picard-Lefèvre, sind für natürliche Werte besser, jedoch, ab einer gewissen Größe der Ausganswerte, ungenauer. Eine Rekursive Formel und die Formel von Takács sind dagegen genauer. Eine art Zwischenlösung, jedoch nicht so leicht zu implementieren, ist hingegen die Formel mittels direkter Faltung. Zusammenfassend kann man sagen, da der Aufwand der Berechnungen nicht wirklich hoch ist, ist jede Formel geignet, wobei die Takács und die rekursive Formel am besten geignet sind.