Titelaufnahme

Titel
The Poincaré Lemma in subriemannian geometry / Philipp Harms
VerfasserHarms, Philipp
Begutachter / BegutachterinTeichmann, Josef
Erschienen2008
Umfang49 Bl. : graph. Darst.
HochschulschriftWien, Techn. Univ., Dipl.-Arb., 2008
SpracheEnglisch
DokumenttypDiplomarbeit
Schlagwörter (DE)Poincaré Lemma / Subriemannsche Geometrie / Geodäte / Distribution / Satz von Chow / Stefan-Sussmann Theorie / Ball-Box Theorem / Endpunkt-Abbildung
Schlagwörter (EN)Poincaré Lemma / Subriemannian Geometry / geodesic / distribution / bracket generating / Chow's Theorem / Stefan-Sussmann Theory / Ball-Box Theorem / endpoint map
URNurn:nbn:at:at-ubtuw:1-23295 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
The Poincaré Lemma in subriemannian geometry [0.42 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

This work is a short, self-contained introduction to subriemannian geometry with special emphasis on Chow's Theorem. As an application, a regularity result for the the Poincaré Lemma is presented. At the beginning, the definitions of a subriemannian geometry, horizontal vectorfields and horizontal curves are given. Then the question arises: Can any two points be connected by a horizontal curve? Chow's Theorem gives an affirmative answer for bracket generating distributions. (A distribution is called bracket generating if horizontal vectorfields and their iterated Lie brackets span the whole tangent space.) We present three different proofs of Chow's Theorem; each one is interesting in its own. The first proof is based on the theory of Stefan and Sussmann regarding integrability of singular distributions. The second proof is elementary and gives some insight in the shape of subriemannian balls. The third proof is based on infinite dimensional analysis of the endpoint map. Finally, the study of the endpoint map allows us to prove a regularity result for the Poincaré Lemma in a form suited to subriemannian geometry: If all horizontal derivatives of a given function f are known to be r times continuously differentiable, then so is f.