Bibliographic Metadata

Title
Stochastische Portfoliotheorie / Hirhager Karin
Additional Titles
Stochastic portfolio theory
AuthorHirhager, Karin
CensorSchachermayer, Walter
Published2008
Description53 Bl..
Institutional NoteWien, Techn. Univ., Dipl.-Arb., 2008
Annotation
Abweichender Titel laut Übersetzung der Verfasserin/des Verfassers
LanguageGerman
Document typeThesis (Diplom)
Keywords (DE)Portfolios / Diversität / relative Arbitrage / portfolioerzeugende Funktionen
URNurn:nbn:at:at-ubtuw:1-27376 Persistent Identifier (URN)
Restriction-Information
 The work is publicly available
Files
Stochastische Portfoliotheorie [0.38 mb]
Links
Reference
Classification
Abstract (German)

Stochastische Portfoliotheorie wurde erstmals von E. Robert Fernholz eingeführt. Seit damals wurde diese Theorie von ihm, Ioannis Karatzas und Constantinos Kardaras ständig weiterentwickelt. Die Ergebnisse dieser Forschung finden sich in diversen Artikeln und auch in einem Buch von E. Robert Fernholz wieder.

Stochastische Portfoliotheorie bietet eine Möglichkeit, auf mathematische Weise das Verhalten von Portfolios und die Struktur von Kapitalmärkten zu untersuchen. Es ist eine beschreibende Theorie. Sie stellt, im Gegensatz zu den meist in der Finanzmathematik verwendeten normativen Theorien, keine Bedingungen an den Markt, wie zum Beispiel die allseits bekannte "No-Arbitrage-Bedingung" oder die Existenz eines äquivalenten Martingalmaßes.

In der stochastischen Portfoliotheorie wird für die Modellierung des Marktes die logarithmische Darstellung für die Stocks verwendet. Eine häufig an den Kapitalmarkt gestellte Anforderung ist die der Diversität.

Dies bedeutet, dass die gesamte Kapitalisierung des Marktes nicht nur auf eine Firma konzentriert ist. Bei der Untersuchung von Märkten, die diese Eigenschaft der Diversität erfüllen, zeigt sich, dass es in einem solchen Markt möglich ist, sowohl auf kurzen als auch auf langen Zeitintervallen Arbitragemöglichkeiten zu finden.

Es besteht die Möglichkeit, Portfolios mit Hilfe von Funktionen zu erzeugen. Die dafür verwendeten Funktionen müssen bestimmte Eigenschaften erfüllen, welche hier nicht näher erläutert werden sollen.

Mit Funktionen kann man auch die Portfolios erzeugen, die die eben genannten Arbitragemöglichkeiten in einem diversen Markt darstellen.

Stats
The PDF-Document has been downloaded 43 times.