Titelaufnahme

Titel
Planar quad meshes from relative principal curvature lines / Alexander Karl Schiftner
VerfasserSchiftner, Alexander Karl
Begutachter / BegutachterinPottmann, Helmut
Erschienen2007
UmfangVII, 79 Bl. : Ill., graph. Darst.
HochschulschriftWien, Techn. Univ., Dipl.-Arb., 2007
Anmerkung
Zsfassung in dt. Sprache
SpracheEnglisch
Bibl. ReferenzOeBB
DokumenttypDiplomarbeit
Schlagwörter (DE)Planare Vierecksnetze / Relative Differentialgeometrie / konjugierte Kurvennetze / Diskrete Differentialgeometrie / Stützfunktionen / Sphärische Harmonische / Freiformflächen / Geometrie in der Architektur
Schlagwörter (EN)Planar quadrilateral meshes / relative differential geometry / conjugate curve networks / discrete differential geometry / Support functions / spherical harmonics / free-form surfaces / geometry in architecture
URNurn:nbn:at:at-ubtuw:1-20896 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Planar quad meshes from relative principal curvature lines [20.04 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

This thesis proposes a technique for the approximation of surfaces by PQ meshes. These are meshes with planar and mostly quadrilateral faces. Relative differential geometry is used for the generation of conjugate curve networks. It is well known that a discrete choice of curves from these networks naturally leads to meshes with quadrilateral faces, which are in turn planarized using optimization algorithms. The possibility to choose a convex ob ject, defining the relative differential geometry, gives rise to bounding the minimum intersecting angle of conjugate curves from below. This is a requirement for practical applications. Methods from convex geometry and Fourier analysis on the unit sphere are utilized to allow an interactive layout of the conjugate curve networks. This is followed by a discussion of the possibility to influence singularities in the conjugate curve networks, and consequently in the resulting PQ meshes. In a new approach, non-flat isotropic subdomains can be given an anisotropy, which is a replacement for the smoothing techniques introduced in recent papers on quad-dominant meshing. Finally, examples from architecture are used for demonstrating the capabilities of these techniques.

Zusammenfassung (Englisch)

In dieser Diplomarbeit wird ein Verfahren zur Approximation von Flächen mit PQ Netzen vorgestellt. PQ Netze bestehen aus planaren und hauptsächlich viereckigen Flächenstücken. Relative Differentialgeometrie wird dazu benutzt um konjugierte Kurvennetze zu erzeugen, welche auf natürliche Weise zu Netzen mit viereckigen Flächenstücken führen. Die Flächenstücke werden danach mit Hilfe von Optimierungsmethoden planarisiert. Durch die Wahl einer entsprechenden konvexen Fläche, welche die relative Differentialgeometrie definiert, kann der minimale Schnittwinkel konjugierter Kurven nach unten beschränkt werden. Dies ist eine Forderung, die in praktischen Anwendungen auftaucht. Methoden der konvexen Geometrie, sowie der Fourieranalyse auf der Einheitssphäre, werden dazu verwendet um die Erzeugung von konjugierten Kurvennetzen interaktiv vorzunehmen. Darauf folgend wird beschrieben wie Singularitäten in den konjugierten Kurvennetzen, und dadurch auch in den resultierenden PQ Netzen, beeinflusst werden können. Darüber hinaus können isotrope Teilbereiche wie anisotrope behandelt werden. Dies führt zu einem Ersatz der Glättungstechniken, die in kürzlich erschienenen Veröffentlichungen zur Erzeugung von Vierecksnetzen vorgestellt wurden. Schlussendlich werden die Möglichkeiten der untersuchten Methoden an Beispielen aus der Architektur demonstriert.