Titelaufnahme

Titel
Ultrafast dynamics in the strong laser field ionization of atoms and molecules / Xinhua Xie
VerfasserXie, Xinhua
Begutachter / BegutachterinScrinzi, Armin ; Faber, Manfried
Erschienen2007
UmfangIV, 122 S. : Ill., graph. Darst.
HochschulschriftWien, Techn. Univ., Diss., 2007
SpracheEnglisch
Bibl. ReferenzOeBB
DokumenttypDissertation
Schlagwörter (DE)Attosecond Physik / starken Felder Ionisation / Hohe-Harmonische-Strahlung
Schlagwörter (EN)attosecond physics / strong field ionization / high-order harmonic generation
Schlagwörter (GND)Ionisation / Laserstrahlung / Attosekundenbereich / Zeitabhängige Schrödinger-Gleichung / Diskretisierungsverfahren
URNurn:nbn:at:at-ubtuw:1-19712 Persistent Identifier (URN)
Zugriffsbeschränkung
 Das Werk ist frei verfügbar
Dateien
Ultrafast dynamics in the strong laser field ionization of atoms and molecules [2.84 mb]
Links
Nachweis
Klassifikation
Zusammenfassung (Deutsch)

This thesis presents a theoretical investigation of ultrafast dynamics during strong laser field ionization with atoms and molecules.

For that a new method for solving the time-dependent Schrödinger equation was developed and implemented, where a hybrid discretization was used with cylindrical coordinates with a finite element method for the radial coordinate and a pseudo-spectral technique for the axis coordinate. The main results of the thesis are:

1). Orientation dependence, orbital symmetry dependence of molecular field ionization was studied with a two-dimensional model molecule. To get the information of rescattering electrons, an analytical probing of rescattering electrons was implemented. By studying the momentum distribution of rescattering electrons during strong field ionization of molecules, we found that the rescattering process is strongly dependent on the orientation and symmetry of the molecule. 2). Sub-cycle dynamics during laser field ionization of molecules was investigated. With a two-dimensional diatomic molecule model, we found that the laser induces sub-laser-cycle dynamics during field ionization and the field-induced sub-cycle dynamics modifies the time structure of rescattering electrons. Such dynamics may modify the time-frequency structure of high-order harmonic response, or lead to the appearance of even harmonics with certain laser intensities. 3). An extreme-ultraviolet (XUV) probing method with attosecond resolution has been applied to study ionization dynamics of a hydrogen atomin a strong infrared laser field. Distortion of ground state and electron excitation during strong field ionization influence the total XUV photon ionization yield. We found the total XUV photon ionization yield follows electron density near the nucleus.